openCV library for Renesas RZ/A
Dependents: RZ_A2M_Mbed_samples
Revision 0:0e0631af0305, committed 2021-01-29
- Comitter:
- RyoheiHagimoto
- Date:
- Fri Jan 29 04:53:38 2021 +0000
- Commit message:
- copied from https://github.com/d-kato/opencv-lib.
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/calib3d.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,2134 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CALIB3D_HPP +#define OPENCV_CALIB3D_HPP + +#include "opencv2/core.hpp" +#include "opencv2/features2d.hpp" +#include "opencv2/core/affine.hpp" + +/** + @defgroup calib3d Camera Calibration and 3D Reconstruction + +The functions in this section use a so-called pinhole camera model. In this model, a scene view is +formed by projecting 3D points into the image plane using a perspective transformation. + +\f[s \; m' = A [R|t] M'\f] + +or + +\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} +\begin{bmatrix} +r_{11} & r_{12} & r_{13} & t_1 \\ +r_{21} & r_{22} & r_{23} & t_2 \\ +r_{31} & r_{32} & r_{33} & t_3 +\end{bmatrix} +\begin{bmatrix} +X \\ +Y \\ +Z \\ +1 +\end{bmatrix}\f] + +where: + +- \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space +- \f$(u, v)\f$ are the coordinates of the projection point in pixels +- \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters +- \f$(cx, cy)\f$ is a principal point that is usually at the image center +- \f$fx, fy\f$ are the focal lengths expressed in pixel units. + +Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled +(multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not +depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is +fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of +extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa, +rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a +point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above +is equivalent to the following (when \f$z \ne 0\f$ ): + +\f[\begin{array}{l} +\vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ +x' = x/z \\ +y' = y/z \\ +u = f_x*x' + c_x \\ +v = f_y*y' + c_y +\end{array}\f] + +The following figure illustrates the pinhole camera model. + +![Pinhole camera model](pics/pinhole_camera_model.png) + +Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion. +So, the above model is extended as: + +\f[\begin{array}{l} +\vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ +x' = x/z \\ +y' = y/z \\ +x'' = x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\ +y'' = y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ +\text{where} \quad r^2 = x'^2 + y'^2 \\ +u = f_x*x'' + c_x \\ +v = f_y*y'' + c_y +\end{array}\f] + +\f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are +tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion +coefficients. Higher-order coefficients are not considered in OpenCV. + +The next figure shows two common types of radial distortion: barrel distortion (typically \f$ k_1 > 0 \f$ and pincushion distortion (typically \f$ k_1 < 0 \f$). + +![](pics/distortion_examples.png) + +In some cases the image sensor may be tilted in order to focus an oblique plane in front of the +camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or +triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and +\f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07. + +\f[\begin{array}{l} +s\vecthree{x'''}{y'''}{1} = +\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)} +{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} +{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ +u = f_x*x''' + c_x \\ +v = f_y*y''' + c_y +\end{array}\f] + +where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$ +and \f$\tau_y\f$, respectively, + +\f[ +R(\tau_x, \tau_y) = +\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)} +\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} = +\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)} +{0}{\cos(\tau_x)}{\sin(\tau_x)} +{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}. +\f] + +In the functions below the coefficients are passed or returned as + +\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f] + +vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion +coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera +parameters. And they remain the same regardless of the captured image resolution. If, for example, a +camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion +coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and +\f$c_y\f$ need to be scaled appropriately. + +The functions below use the above model to do the following: + +- Project 3D points to the image plane given intrinsic and extrinsic parameters. +- Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their +projections. +- Estimate intrinsic and extrinsic camera parameters from several views of a known calibration +pattern (every view is described by several 3D-2D point correspondences). +- Estimate the relative position and orientation of the stereo camera "heads" and compute the +*rectification* transformation that makes the camera optical axes parallel. + +@note + - A calibration sample for 3 cameras in horizontal position can be found at + opencv_source_code/samples/cpp/3calibration.cpp + - A calibration sample based on a sequence of images can be found at + opencv_source_code/samples/cpp/calibration.cpp + - A calibration sample in order to do 3D reconstruction can be found at + opencv_source_code/samples/cpp/build3dmodel.cpp + - A calibration sample of an artificially generated camera and chessboard patterns can be + found at opencv_source_code/samples/cpp/calibration_artificial.cpp + - A calibration example on stereo calibration can be found at + opencv_source_code/samples/cpp/stereo_calib.cpp + - A calibration example on stereo matching can be found at + opencv_source_code/samples/cpp/stereo_match.cpp + - (Python) A camera calibration sample can be found at + opencv_source_code/samples/python/calibrate.py + + @{ + @defgroup calib3d_fisheye Fisheye camera model + + Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the + matrix X) The coordinate vector of P in the camera reference frame is: + + \f[Xc = R X + T\f] + + where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y + and z the 3 coordinates of Xc: + + \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f] + + The pinhole projection coordinates of P is [a; b] where + + \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f] + + Fisheye distortion: + + \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f] + + The distorted point coordinates are [x'; y'] where + + \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f] + + Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where: + + \f[u = f_x (x' + \alpha y') + c_x \\ + v = f_y y' + c_y\f] + + @defgroup calib3d_c C API + + @} + */ + +namespace cv +{ + +//! @addtogroup calib3d +//! @{ + +//! type of the robust estimation algorithm +enum { LMEDS = 4, //!< least-median algorithm + RANSAC = 8, //!< RANSAC algorithm + RHO = 16 //!< RHO algorithm + }; + +enum { SOLVEPNP_ITERATIVE = 0, + SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp + SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete + SOLVEPNP_DLS = 3, //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct + SOLVEPNP_UPNP = 4 //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive + +}; + +enum { CALIB_CB_ADAPTIVE_THRESH = 1, + CALIB_CB_NORMALIZE_IMAGE = 2, + CALIB_CB_FILTER_QUADS = 4, + CALIB_CB_FAST_CHECK = 8 + }; + +enum { CALIB_CB_SYMMETRIC_GRID = 1, + CALIB_CB_ASYMMETRIC_GRID = 2, + CALIB_CB_CLUSTERING = 4 + }; + +enum { CALIB_USE_INTRINSIC_GUESS = 0x00001, + CALIB_FIX_ASPECT_RATIO = 0x00002, + CALIB_FIX_PRINCIPAL_POINT = 0x00004, + CALIB_ZERO_TANGENT_DIST = 0x00008, + CALIB_FIX_FOCAL_LENGTH = 0x00010, + CALIB_FIX_K1 = 0x00020, + CALIB_FIX_K2 = 0x00040, + CALIB_FIX_K3 = 0x00080, + CALIB_FIX_K4 = 0x00800, + CALIB_FIX_K5 = 0x01000, + CALIB_FIX_K6 = 0x02000, + CALIB_RATIONAL_MODEL = 0x04000, + CALIB_THIN_PRISM_MODEL = 0x08000, + CALIB_FIX_S1_S2_S3_S4 = 0x10000, + CALIB_TILTED_MODEL = 0x40000, + CALIB_FIX_TAUX_TAUY = 0x80000, + CALIB_USE_QR = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise + // only for stereo + CALIB_FIX_INTRINSIC = 0x00100, + CALIB_SAME_FOCAL_LENGTH = 0x00200, + // for stereo rectification + CALIB_ZERO_DISPARITY = 0x00400, + CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise + }; + +//! the algorithm for finding fundamental matrix +enum { FM_7POINT = 1, //!< 7-point algorithm + FM_8POINT = 2, //!< 8-point algorithm + FM_LMEDS = 4, //!< least-median algorithm + FM_RANSAC = 8 //!< RANSAC algorithm + }; + + + +/** @brief Converts a rotation matrix to a rotation vector or vice versa. + +@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3). +@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively. +@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial +derivatives of the output array components with respect to the input array components. + +\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos{\theta} I + (1- \cos{\theta} ) r r^T + \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f] + +Inverse transformation can be also done easily, since + +\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f] + +A rotation vector is a convenient and most compact representation of a rotation matrix (since any +rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry +optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP . + */ +CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() ); + +/** @brief Finds a perspective transformation between two planes. + +@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2 +or vector\<Point2f\> . +@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or +a vector\<Point2f\> . +@param method Method used to computed a homography matrix. The following methods are possible: +- **0** - a regular method using all the points +- **RANSAC** - RANSAC-based robust method +- **LMEDS** - Least-Median robust method +- **RHO** - PROSAC-based robust method +@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier +(used in the RANSAC and RHO methods only). That is, if +\f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \| > \texttt{ransacReprojThreshold}\f] +then the point \f$i\f$ is considered an outlier. If srcPoints and dstPoints are measured in pixels, +it usually makes sense to set this parameter somewhere in the range of 1 to 10. +@param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input +mask values are ignored. +@param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be. +@param confidence Confidence level, between 0 and 1. + +The function finds and returns the perspective transformation \f$H\f$ between the source and the +destination planes: + +\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] + +so that the back-projection error + +\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f] + +is minimized. If the parameter method is set to the default value 0, the function uses all the point +pairs to compute an initial homography estimate with a simple least-squares scheme. + +However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective +transformation (that is, there are some outliers), this initial estimate will be poor. In this case, +you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different +random subsets of the corresponding point pairs (of four pairs each), estimate the homography matrix +using this subset and a simple least-square algorithm, and then compute the quality/goodness of the +computed homography (which is the number of inliers for RANSAC or the median re-projection error for +LMeDs). The best subset is then used to produce the initial estimate of the homography matrix and +the mask of inliers/outliers. + +Regardless of the method, robust or not, the computed homography matrix is refined further (using +inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the +re-projection error even more. + +The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to +distinguish inliers from outliers. The method LMeDS does not need any threshold but it works +correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the +noise is rather small, use the default method (method=0). + +The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is +determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an H matrix +cannot be estimated, an empty one will be returned. + +@sa +getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective, +perspectiveTransform + + +@note + - A example on calculating a homography for image matching can be found at + opencv_source_code/samples/cpp/video_homography.cpp + + */ +CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints, + int method = 0, double ransacReprojThreshold = 3, + OutputArray mask=noArray(), const int maxIters = 2000, + const double confidence = 0.995); + +/** @overload */ +CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints, + OutputArray mask, int method = 0, double ransacReprojThreshold = 3 ); + +/** @brief Computes an RQ decomposition of 3x3 matrices. + +@param src 3x3 input matrix. +@param mtxR Output 3x3 upper-triangular matrix. +@param mtxQ Output 3x3 orthogonal matrix. +@param Qx Optional output 3x3 rotation matrix around x-axis. +@param Qy Optional output 3x3 rotation matrix around y-axis. +@param Qz Optional output 3x3 rotation matrix around z-axis. + +The function computes a RQ decomposition using the given rotations. This function is used in +decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera +and a rotation matrix. + +It optionally returns three rotation matrices, one for each axis, and the three Euler angles in +degrees (as the return value) that could be used in OpenGL. Note, there is always more than one +sequence of rotations about the three principal axes that results in the same orientation of an +object, eg. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angules +are only one of the possible solutions. + */ +CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ, + OutputArray Qx = noArray(), + OutputArray Qy = noArray(), + OutputArray Qz = noArray()); + +/** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix. + +@param projMatrix 3x4 input projection matrix P. +@param cameraMatrix Output 3x3 camera matrix K. +@param rotMatrix Output 3x3 external rotation matrix R. +@param transVect Output 4x1 translation vector T. +@param rotMatrixX Optional 3x3 rotation matrix around x-axis. +@param rotMatrixY Optional 3x3 rotation matrix around y-axis. +@param rotMatrixZ Optional 3x3 rotation matrix around z-axis. +@param eulerAngles Optional three-element vector containing three Euler angles of rotation in +degrees. + +The function computes a decomposition of a projection matrix into a calibration and a rotation +matrix and the position of a camera. + +It optionally returns three rotation matrices, one for each axis, and three Euler angles that could +be used in OpenGL. Note, there is always more than one sequence of rotations about the three +principal axes that results in the same orientation of an object, eg. see @cite Slabaugh . Returned +tree rotation matrices and corresponding three Euler angules are only one of the possible solutions. + +The function is based on RQDecomp3x3 . + */ +CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix, + OutputArray rotMatrix, OutputArray transVect, + OutputArray rotMatrixX = noArray(), + OutputArray rotMatrixY = noArray(), + OutputArray rotMatrixZ = noArray(), + OutputArray eulerAngles =noArray() ); + +/** @brief Computes partial derivatives of the matrix product for each multiplied matrix. + +@param A First multiplied matrix. +@param B Second multiplied matrix. +@param dABdA First output derivative matrix d(A\*B)/dA of size +\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ . +@param dABdB Second output derivative matrix d(A\*B)/dB of size +\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ . + +The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to +the elements of each of the two input matrices. The function is used to compute the Jacobian +matrices in stereoCalibrate but can also be used in any other similar optimization function. + */ +CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB ); + +/** @brief Combines two rotation-and-shift transformations. + +@param rvec1 First rotation vector. +@param tvec1 First translation vector. +@param rvec2 Second rotation vector. +@param tvec2 Second translation vector. +@param rvec3 Output rotation vector of the superposition. +@param tvec3 Output translation vector of the superposition. +@param dr3dr1 +@param dr3dt1 +@param dr3dr2 +@param dr3dt2 +@param dt3dr1 +@param dt3dt1 +@param dt3dr2 +@param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and +tvec2, respectively. + +The functions compute: + +\f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f] + +where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and +\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details. + +Also, the functions can compute the derivatives of the output vectors with regards to the input +vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in +your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a +function that contains a matrix multiplication. + */ +CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1, + InputArray rvec2, InputArray tvec2, + OutputArray rvec3, OutputArray tvec3, + OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(), + OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(), + OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(), + OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() ); + +/** @brief Projects 3D points to an image plane. + +@param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or +vector\<Point3f\> ), where N is the number of points in the view. +@param rvec Rotation vector. See Rodrigues for details. +@param tvec Translation vector. +@param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed. +@param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or +vector\<Point2f\> . +@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image +points with respect to components of the rotation vector, translation vector, focal lengths, +coordinates of the principal point and the distortion coefficients. In the old interface different +components of the jacobian are returned via different output parameters. +@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the +function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian +matrix. + +The function computes projections of 3D points to the image plane given intrinsic and extrinsic +camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of +image points coordinates (as functions of all the input parameters) with respect to the particular +parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in +calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a +re-projection error given the current intrinsic and extrinsic parameters. + +@note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by +passing zero distortion coefficients, you can get various useful partial cases of the function. This +means that you can compute the distorted coordinates for a sparse set of points or apply a +perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup. + */ +CV_EXPORTS_W void projectPoints( InputArray objectPoints, + InputArray rvec, InputArray tvec, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray imagePoints, + OutputArray jacobian = noArray(), + double aspectRatio = 0 ); + +/** @brief Finds an object pose from 3D-2D point correspondences. + +@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or +1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here. +@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, +where N is the number of points. vector\<Point2f\> can be also passed here. +@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are +assumed. +@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from +the model coordinate system to the camera coordinate system. +@param tvec Output translation vector. +@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses +the provided rvec and tvec values as initial approximations of the rotation and translation +vectors, respectively, and further optimizes them. +@param flags Method for solving a PnP problem: +- **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In +this case the function finds such a pose that minimizes reprojection error, that is the sum +of squared distances between the observed projections imagePoints and the projected (using +projectPoints ) objectPoints . +- **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang +"Complete Solution Classification for the Perspective-Three-Point Problem". In this case the +function requires exactly four object and image points. +- **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the +paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation". +- **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis. +"A Direct Least-Squares (DLS) Method for PnP". +- **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto, +F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length +Estimation". In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$ +assuming that both have the same value. Then the cameraMatrix is updated with the estimated +focal length. + +The function estimates the object pose given a set of object points, their corresponding image +projections, as well as the camera matrix and the distortion coefficients. + +@note + - An example of how to use solvePnP for planar augmented reality can be found at + opencv_source_code/samples/python/plane_ar.py + - If you are using Python: + - Numpy array slices won't work as input because solvePnP requires contiguous + arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of + modules/calib3d/src/solvepnp.cpp version 2.4.9) + - The P3P algorithm requires image points to be in an array of shape (N,1,2) due + to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9) + which requires 2-channel information. + - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of + it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = + np.ascontiguousarray(D[:,:2]).reshape((N,1,2)) + - The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are + unstable and sometimes give completly wrong results. If you pass one of these two flags, + **SOLVEPNP_EPNP** method will be used instead. + */ +CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, + bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE ); + +/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme. + +@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or +1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here. +@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, +where N is the number of points. vector\<Point2f\> can be also passed here. +@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are +assumed. +@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from +the model coordinate system to the camera coordinate system. +@param tvec Output translation vector. +@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses +the provided rvec and tvec values as initial approximations of the rotation and translation +vectors, respectively, and further optimizes them. +@param iterationsCount Number of iterations. +@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value +is the maximum allowed distance between the observed and computed point projections to consider it +an inlier. +@param confidence The probability that the algorithm produces a useful result. +@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints . +@param flags Method for solving a PnP problem (see solvePnP ). + +The function estimates an object pose given a set of object points, their corresponding image +projections, as well as the camera matrix and the distortion coefficients. This function finds such +a pose that minimizes reprojection error, that is, the sum of squared distances between the observed +projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC +makes the function resistant to outliers. + +@note + - An example of how to use solvePNPRansac for object detection can be found at + opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/ + */ +CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, + bool useExtrinsicGuess = false, int iterationsCount = 100, + float reprojectionError = 8.0, double confidence = 0.99, + OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE ); + +/** @brief Finds an initial camera matrix from 3D-2D point correspondences. + +@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern +coordinate space. In the old interface all the per-view vectors are concatenated. See +calibrateCamera for details. +@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the +old interface all the per-view vectors are concatenated. +@param imageSize Image size in pixels used to initialize the principal point. +@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently. +Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ . + +The function estimates and returns an initial camera matrix for the camera calibration process. +Currently, the function only supports planar calibration patterns, which are patterns where each +object point has z-coordinate =0. + */ +CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, + Size imageSize, double aspectRatio = 1.0 ); + +/** @brief Finds the positions of internal corners of the chessboard. + +@param image Source chessboard view. It must be an 8-bit grayscale or color image. +@param patternSize Number of inner corners per a chessboard row and column +( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ). +@param corners Output array of detected corners. +@param flags Various operation flags that can be zero or a combination of the following values: +- **CV_CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black +and white, rather than a fixed threshold level (computed from the average image brightness). +- **CV_CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before +applying fixed or adaptive thresholding. +- **CV_CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter, +square-like shape) to filter out false quads extracted at the contour retrieval stage. +- **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners, +and shortcut the call if none is found. This can drastically speed up the call in the +degenerate condition when no chessboard is observed. + +The function attempts to determine whether the input image is a view of the chessboard pattern and +locate the internal chessboard corners. The function returns a non-zero value if all of the corners +are found and they are placed in a certain order (row by row, left to right in every row). +Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example, +a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black +squares touch each other. The detected coordinates are approximate, and to determine their positions +more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with +different parameters if returned coordinates are not accurate enough. + +Sample usage of detecting and drawing chessboard corners: : +@code + Size patternsize(8,6); //interior number of corners + Mat gray = ....; //source image + vector<Point2f> corners; //this will be filled by the detected corners + + //CALIB_CB_FAST_CHECK saves a lot of time on images + //that do not contain any chessboard corners + bool patternfound = findChessboardCorners(gray, patternsize, corners, + CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + + CALIB_CB_FAST_CHECK); + + if(patternfound) + cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1), + TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1)); + + drawChessboardCorners(img, patternsize, Mat(corners), patternfound); +@endcode +@note The function requires white space (like a square-thick border, the wider the better) around +the board to make the detection more robust in various environments. Otherwise, if there is no +border and the background is dark, the outer black squares cannot be segmented properly and so the +square grouping and ordering algorithm fails. + */ +CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, + int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE ); + +//! finds subpixel-accurate positions of the chessboard corners +CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size ); + +/** @brief Renders the detected chessboard corners. + +@param image Destination image. It must be an 8-bit color image. +@param patternSize Number of inner corners per a chessboard row and column +(patternSize = cv::Size(points_per_row,points_per_column)). +@param corners Array of detected corners, the output of findChessboardCorners. +@param patternWasFound Parameter indicating whether the complete board was found or not. The +return value of findChessboardCorners should be passed here. + +The function draws individual chessboard corners detected either as red circles if the board was not +found, or as colored corners connected with lines if the board was found. + */ +CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize, + InputArray corners, bool patternWasFound ); + +/** @brief Finds centers in the grid of circles. + +@param image grid view of input circles; it must be an 8-bit grayscale or color image. +@param patternSize number of circles per row and column +( patternSize = Size(points_per_row, points_per_colum) ). +@param centers output array of detected centers. +@param flags various operation flags that can be one of the following values: +- **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles. +- **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles. +- **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to +perspective distortions but much more sensitive to background clutter. +@param blobDetector feature detector that finds blobs like dark circles on light background. + +The function attempts to determine whether the input image contains a grid of circles. If it is, the +function locates centers of the circles. The function returns a non-zero value if all of the centers +have been found and they have been placed in a certain order (row by row, left to right in every +row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0. + +Sample usage of detecting and drawing the centers of circles: : +@code + Size patternsize(7,7); //number of centers + Mat gray = ....; //source image + vector<Point2f> centers; //this will be filled by the detected centers + + bool patternfound = findCirclesGrid(gray, patternsize, centers); + + drawChessboardCorners(img, patternsize, Mat(centers), patternfound); +@endcode +@note The function requires white space (like a square-thick border, the wider the better) around +the board to make the detection more robust in various environments. + */ +CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize, + OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID, + const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create()); + +/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern. + +@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in +the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer +vector contains as many elements as the number of the pattern views. If the same calibration pattern +is shown in each view and it is fully visible, all the vectors will be the same. Although, it is +possible to use partially occluded patterns, or even different patterns in different views. Then, +the vectors will be different. The points are 3D, but since they are in a pattern coordinate system, +then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that +Z-coordinate of each input object point is 0. +In the old interface all the vectors of object points from different views are concatenated +together. +@param imagePoints In the new interface it is a vector of vectors of the projections of calibration +pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and +objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i. +In the old interface all the vectors of object points from different views are concatenated +together. +@param imageSize Size of the image used only to initialize the intrinsic camera matrix. +@param cameraMatrix Output 3x3 floating-point camera matrix +\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS +and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be +initialized before calling the function. +@param distCoeffs Output vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. +@param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view +(e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding +k-th translation vector (see the next output parameter description) brings the calibration pattern +from the model coordinate space (in which object points are specified) to the world coordinate +space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). +@param tvecs Output vector of translation vectors estimated for each pattern view. +@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. + Order of deviations values: +\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3, + s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero. +@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. + Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views, + \f$R_i, T_i\f$ are concatenated 1x3 vectors. + @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. +@param flags Different flags that may be zero or a combination of the following values: +- **CV_CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of +fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image +center ( imageSize is used), and focal distances are computed in a least-squares fashion. +Note, that if intrinsic parameters are known, there is no need to use this function just to +estimate extrinsic parameters. Use solvePnP instead. +- **CV_CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global +optimization. It stays at the center or at a different location specified when +CV_CALIB_USE_INTRINSIC_GUESS is set too. +- **CV_CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The +ratio fx/fy stays the same as in the input cameraMatrix . When +CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are +ignored, only their ratio is computed and used further. +- **CV_CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set +to zeros and stay zero. +- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** The corresponding radial distortion +coefficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is +set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CV_CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the rational model and return 8 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the thin prism model and return 12 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the tilted sensor model and return 14 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +@param criteria Termination criteria for the iterative optimization algorithm. + +@return the overall RMS re-projection error. + +The function estimates the intrinsic camera parameters and extrinsic parameters for each of the +views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object +points and their corresponding 2D projections in each view must be specified. That may be achieved +by using an object with a known geometry and easily detectable feature points. Such an object is +called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as +a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters +(when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration +patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also +be used as long as initial cameraMatrix is provided. + +The algorithm performs the following steps: + +- Compute the initial intrinsic parameters (the option only available for planar calibration + patterns) or read them from the input parameters. The distortion coefficients are all set to + zeros initially unless some of CV_CALIB_FIX_K? are specified. + +- Estimate the initial camera pose as if the intrinsic parameters have been already known. This is + done using solvePnP . + +- Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error, + that is, the total sum of squared distances between the observed feature points imagePoints and + the projected (using the current estimates for camera parameters and the poses) object points + objectPoints. See projectPoints for details. + +@note + If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and + calibrateCamera returns bad values (zero distortion coefficients, an image center very far from + (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)), + then you have probably used patternSize=cvSize(rows,cols) instead of using + patternSize=cvSize(cols,rows) in findChessboardCorners . + +@sa + findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort + */ +CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, Size imageSize, + InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + OutputArray stdDeviationsIntrinsics, + OutputArray stdDeviationsExtrinsics, + OutputArray perViewErrors, + int flags = 0, TermCriteria criteria = TermCriteria( + TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); + +/** @overload double calibrateCamera( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, Size imageSize, + InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + OutputArray stdDeviations, OutputArray perViewErrors, + int flags = 0, TermCriteria criteria = TermCriteria( + TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ) + */ +CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, Size imageSize, + InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + int flags = 0, TermCriteria criteria = TermCriteria( + TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); + +/** @brief Computes useful camera characteristics from the camera matrix. + +@param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or +stereoCalibrate . +@param imageSize Input image size in pixels. +@param apertureWidth Physical width in mm of the sensor. +@param apertureHeight Physical height in mm of the sensor. +@param fovx Output field of view in degrees along the horizontal sensor axis. +@param fovy Output field of view in degrees along the vertical sensor axis. +@param focalLength Focal length of the lens in mm. +@param principalPoint Principal point in mm. +@param aspectRatio \f$f_y/f_x\f$ + +The function computes various useful camera characteristics from the previously estimated camera +matrix. + +@note + Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for + the chessboard pitch (it can thus be any value). + */ +CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize, + double apertureWidth, double apertureHeight, + CV_OUT double& fovx, CV_OUT double& fovy, + CV_OUT double& focalLength, CV_OUT Point2d& principalPoint, + CV_OUT double& aspectRatio ); + +/** @brief Calibrates the stereo camera. + +@param objectPoints Vector of vectors of the calibration pattern points. +@param imagePoints1 Vector of vectors of the projections of the calibration pattern points, +observed by the first camera. +@param imagePoints2 Vector of vectors of the projections of the calibration pattern points, +observed by the second camera. +@param cameraMatrix1 Input/output first camera matrix: +\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If +any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO , +CV_CALIB_FIX_INTRINSIC , or CV_CALIB_FIX_FOCAL_LENGTH are specified, some or all of the +matrix components must be initialized. See the flags description for details. +@param distCoeffs1 Input/output vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. The output vector length depends on the flags. +@param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1 +@param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter +is similar to distCoeffs1 . +@param imageSize Size of the image used only to initialize intrinsic camera matrix. +@param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. +@param T Output translation vector between the coordinate systems of the cameras. +@param E Output essential matrix. +@param F Output fundamental matrix. +@param flags Different flags that may be zero or a combination of the following values: +- **CV_CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F +matrices are estimated. +- **CV_CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters +according to the specified flags. Initial values are provided by the user. +- **CV_CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization. +- **CV_CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ . +- **CV_CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$ +. +- **CV_CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ . +- **CV_CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to +zeros and fix there. +- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** Do not change the corresponding radial +distortion coefficient during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, +the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CV_CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward +compatibility, this extra flag should be explicitly specified to make the calibration +function use the rational model and return 8 coefficients. If the flag is not set, the +function computes and returns only 5 distortion coefficients. +- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the thin prism model and return 12 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the tilted sensor model and return 14 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +@param criteria Termination criteria for the iterative optimization algorithm. + +The function estimates transformation between two cameras making a stereo pair. If you have a stereo +camera where the relative position and orientation of two cameras is fixed, and if you computed +poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2), +respectively (this can be done with solvePnP ), then those poses definitely relate to each other. +This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only +need to know the position and orientation of the second camera relative to the first camera. This is +what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that: + +\f[R_2=R*R_1 +T_2=R*T_1 + T,\f] + +Optionally, it computes the essential matrix E: + +\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f] + +where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function +can also compute the fundamental matrix F: + +\f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f] + +Besides the stereo-related information, the function can also perform a full calibration of each of +two cameras. However, due to the high dimensionality of the parameter space and noise in the input +data, the function can diverge from the correct solution. If the intrinsic parameters can be +estimated with high accuracy for each of the cameras individually (for example, using +calibrateCamera ), you are recommended to do so and then pass CV_CALIB_FIX_INTRINSIC flag to the +function along with the computed intrinsic parameters. Otherwise, if all the parameters are +estimated at once, it makes sense to restrict some parameters, for example, pass +CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST flags, which is usually a +reasonable assumption. + +Similarly to calibrateCamera , the function minimizes the total re-projection error for all the +points in all the available views from both cameras. The function returns the final value of the +re-projection error. + */ +CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, + InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1, + InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2, + Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F, + int flags = CALIB_FIX_INTRINSIC, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) ); + + +/** @brief Computes rectification transforms for each head of a calibrated stereo camera. + +@param cameraMatrix1 First camera matrix. +@param distCoeffs1 First camera distortion parameters. +@param cameraMatrix2 Second camera matrix. +@param distCoeffs2 Second camera distortion parameters. +@param imageSize Size of the image used for stereo calibration. +@param R Rotation matrix between the coordinate systems of the first and the second cameras. +@param T Translation vector between coordinate systems of the cameras. +@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. +@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. +@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first +camera. +@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second +camera. +@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). +@param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set, +the function makes the principal points of each camera have the same pixel coordinates in the +rectified views. And if the flag is not set, the function may still shift the images in the +horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the +useful image area. +@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default +scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified +images are zoomed and shifted so that only valid pixels are visible (no black areas after +rectification). alpha=1 means that the rectified image is decimated and shifted so that all the +pixels from the original images from the cameras are retained in the rectified images (no source +image pixels are lost). Obviously, any intermediate value yields an intermediate result between +those two extreme cases. +@param newImageSize New image resolution after rectification. The same size should be passed to +initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) +is passed (default), it is set to the original imageSize . Setting it to larger value can help you +preserve details in the original image, especially when there is a big radial distortion. +@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels +are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller +(see the picture below). +@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels +are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller +(see the picture below). + +The function computes the rotation matrices for each camera that (virtually) make both camera image +planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies +the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate +as input. As output, it provides two rotation matrices and also two projection matrices in the new +coordinates. The function distinguishes the following two cases: + +- **Horizontal stereo**: the first and the second camera views are shifted relative to each other + mainly along the x axis (with possible small vertical shift). In the rectified images, the + corresponding epipolar lines in the left and right cameras are horizontal and have the same + y-coordinate. P1 and P2 look like: + + \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f] + + \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f] + + where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if + CV_CALIB_ZERO_DISPARITY is set. + +- **Vertical stereo**: the first and the second camera views are shifted relative to each other + mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar + lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like: + + \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f] + + \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f] + + where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is + set. + +As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera +matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to +initialize the rectification map for each camera. + +See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through +the corresponding image regions. This means that the images are well rectified, which is what most +stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that +their interiors are all valid pixels. + +![image](pics/stereo_undistort.jpg) + */ +CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1, + InputArray cameraMatrix2, InputArray distCoeffs2, + Size imageSize, InputArray R, InputArray T, + OutputArray R1, OutputArray R2, + OutputArray P1, OutputArray P2, + OutputArray Q, int flags = CALIB_ZERO_DISPARITY, + double alpha = -1, Size newImageSize = Size(), + CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 ); + +/** @brief Computes a rectification transform for an uncalibrated stereo camera. + +@param points1 Array of feature points in the first image. +@param points2 The corresponding points in the second image. The same formats as in +findFundamentalMat are supported. +@param F Input fundamental matrix. It can be computed from the same set of point pairs using +findFundamentalMat . +@param imgSize Size of the image. +@param H1 Output rectification homography matrix for the first image. +@param H2 Output rectification homography matrix for the second image. +@param threshold Optional threshold used to filter out the outliers. If the parameter is greater +than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points +for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are +rejected prior to computing the homographies. Otherwise,all the points are considered inliers. + +The function computes the rectification transformations without knowing intrinsic parameters of the +cameras and their relative position in the space, which explains the suffix "uncalibrated". Another +related difference from stereoRectify is that the function outputs not the rectification +transformations in the object (3D) space, but the planar perspective transformations encoded by the +homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 . + +@note + While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily + depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion, + it would be better to correct it before computing the fundamental matrix and calling this + function. For example, distortion coefficients can be estimated for each head of stereo camera + separately by using calibrateCamera . Then, the images can be corrected using undistort , or + just the point coordinates can be corrected with undistortPoints . + */ +CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2, + InputArray F, Size imgSize, + OutputArray H1, OutputArray H2, + double threshold = 5 ); + +//! computes the rectification transformations for 3-head camera, where all the heads are on the same line. +CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1, + InputArray cameraMatrix2, InputArray distCoeffs2, + InputArray cameraMatrix3, InputArray distCoeffs3, + InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3, + Size imageSize, InputArray R12, InputArray T12, + InputArray R13, InputArray T13, + OutputArray R1, OutputArray R2, OutputArray R3, + OutputArray P1, OutputArray P2, OutputArray P3, + OutputArray Q, double alpha, Size newImgSize, + CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags ); + +/** @brief Returns the new camera matrix based on the free scaling parameter. + +@param cameraMatrix Input camera matrix. +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are +assumed. +@param imageSize Original image size. +@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are +valid) and 1 (when all the source image pixels are retained in the undistorted image). See +stereoRectify for details. +@param newImgSize Image size after rectification. By default,it is set to imageSize . +@param validPixROI Optional output rectangle that outlines all-good-pixels region in the +undistorted image. See roi1, roi2 description in stereoRectify . +@param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the +principal point should be at the image center or not. By default, the principal point is chosen to +best fit a subset of the source image (determined by alpha) to the corrected image. +@return new_camera_matrix Output new camera matrix. + +The function computes and returns the optimal new camera matrix based on the free scaling parameter. +By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original +image pixels if there is valuable information in the corners alpha=1 , or get something in between. +When alpha\>0 , the undistortion result is likely to have some black pixels corresponding to +"virtual" pixels outside of the captured distorted image. The original camera matrix, distortion +coefficients, the computed new camera matrix, and newImageSize should be passed to +initUndistortRectifyMap to produce the maps for remap . + */ +CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs, + Size imageSize, double alpha, Size newImgSize = Size(), + CV_OUT Rect* validPixROI = 0, + bool centerPrincipalPoint = false); + +/** @brief Converts points from Euclidean to homogeneous space. + +@param src Input vector of N-dimensional points. +@param dst Output vector of N+1-dimensional points. + +The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of +point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1). + */ +CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst ); + +/** @brief Converts points from homogeneous to Euclidean space. + +@param src Input vector of N-dimensional points. +@param dst Output vector of N-1-dimensional points. + +The function converts points homogeneous to Euclidean space using perspective projection. That is, +each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the +output point coordinates will be (0,0,0,...). + */ +CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst ); + +/** @brief Converts points to/from homogeneous coordinates. + +@param src Input array or vector of 2D, 3D, or 4D points. +@param dst Output vector of 2D, 3D, or 4D points. + +The function converts 2D or 3D points from/to homogeneous coordinates by calling either +convertPointsToHomogeneous or convertPointsFromHomogeneous. + +@note The function is obsolete. Use one of the previous two functions instead. + */ +CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst ); + +/** @brief Calculates a fundamental matrix from the corresponding points in two images. + +@param points1 Array of N points from the first image. The point coordinates should be +floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param method Method for computing a fundamental matrix. +- **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$ +- **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$ +- **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$ +- **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$ +@param param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar +line in pixels, beyond which the point is considered an outlier and is not used for computing the +final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the +point localization, image resolution, and the image noise. +@param param2 Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level +of confidence (probability) that the estimated matrix is correct. +@param mask + +The epipolar geometry is described by the following equation: + +\f[[p_2; 1]^T F [p_1; 1] = 0\f] + +where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the +second images, respectively. + +The function calculates the fundamental matrix using one of four methods listed above and returns +the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point +algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3 +matrices sequentially). + +The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the +epipolar lines corresponding to the specified points. It can also be passed to +stereoRectifyUncalibrated to compute the rectification transformation. : +@code + // Example. Estimation of fundamental matrix using the RANSAC algorithm + int point_count = 100; + vector<Point2f> points1(point_count); + vector<Point2f> points2(point_count); + + // initialize the points here ... + for( int i = 0; i < point_count; i++ ) + { + points1[i] = ...; + points2[i] = ...; + } + + Mat fundamental_matrix = + findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99); +@endcode + */ +CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, + int method = FM_RANSAC, + double param1 = 3., double param2 = 0.99, + OutputArray mask = noArray() ); + +/** @overload */ +CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2, + OutputArray mask, int method = FM_RANSAC, + double param1 = 3., double param2 = 0.99 ); + +/** @brief Calculates an essential matrix from the corresponding points in two images. + +@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should +be floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +Note that this function assumes that points1 and points2 are feature points from cameras with the +same camera matrix. +@param method Method for computing a fundamental matrix. +- **RANSAC** for the RANSAC algorithm. +- **MEDS** for the LMedS algorithm. +@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of +confidence (probability) that the estimated matrix is correct. +@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar +line in pixels, beyond which the point is considered an outlier and is not used for computing the +final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the +point localization, image resolution, and the image noise. +@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 +for the other points. The array is computed only in the RANSAC and LMedS methods. + +This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 . +@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation: + +\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f] + +where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the +second images, respectively. The result of this function may be passed further to +decomposeEssentialMat or recoverPose to recover the relative pose between cameras. + */ +CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, + InputArray cameraMatrix, int method = RANSAC, + double prob = 0.999, double threshold = 1.0, + OutputArray mask = noArray() ); + +/** @overload +@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should +be floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param focal focal length of the camera. Note that this function assumes that points1 and points2 +are feature points from cameras with same focal length and principal point. +@param pp principal point of the camera. +@param method Method for computing a fundamental matrix. +- **RANSAC** for the RANSAC algorithm. +- **LMEDS** for the LMedS algorithm. +@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar +line in pixels, beyond which the point is considered an outlier and is not used for computing the +final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the +point localization, image resolution, and the image noise. +@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of +confidence (probability) that the estimated matrix is correct. +@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 +for the other points. The array is computed only in the RANSAC and LMedS methods. + +This function differs from the one above that it computes camera matrix from focal length and +principal point: + +\f[K = +\begin{bmatrix} +f & 0 & x_{pp} \\ +0 & f & y_{pp} \\ +0 & 0 & 1 +\end{bmatrix}\f] + */ +CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, + double focal = 1.0, Point2d pp = Point2d(0, 0), + int method = RANSAC, double prob = 0.999, + double threshold = 1.0, OutputArray mask = noArray() ); + +/** @brief Decompose an essential matrix to possible rotations and translation. + +@param E The input essential matrix. +@param R1 One possible rotation matrix. +@param R2 Another possible rotation matrix. +@param t One possible translation. + +This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4 +possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By +decomposing E, you can only get the direction of the translation, so the function returns unit t. + */ +CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t ); + +/** @brief Recover relative camera rotation and translation from an estimated essential matrix and the +corresponding points in two images, using cheirality check. Returns the number of inliers which pass +the check. + +@param E The input essential matrix. +@param points1 Array of N 2D points from the first image. The point coordinates should be +floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +Note that this function assumes that points1 and points2 are feature points from cameras with the +same camera matrix. +@param R Recovered relative rotation. +@param t Recoverd relative translation. +@param mask Input/output mask for inliers in points1 and points2. +: If it is not empty, then it marks inliers in points1 and points2 for then given essential +matrix E. Only these inliers will be used to recover pose. In the output mask only inliers +which pass the cheirality check. +This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible +pose hypotheses by doing cheirality check. The cheirality check basically means that the +triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 . + +This function can be used to process output E and mask from findEssentialMat. In this scenario, +points1 and points2 are the same input for findEssentialMat. : +@code + // Example. Estimation of fundamental matrix using the RANSAC algorithm + int point_count = 100; + vector<Point2f> points1(point_count); + vector<Point2f> points2(point_count); + + // initialize the points here ... + for( int i = 0; i < point_count; i++ ) + { + points1[i] = ...; + points2[i] = ...; + } + + // cametra matrix with both focal lengths = 1, and principal point = (0, 0) + Mat cameraMatrix = Mat::eye(3, 3, CV_64F); + + Mat E, R, t, mask; + + E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask); + recoverPose(E, points1, points2, cameraMatrix, R, t, mask); +@endcode + */ +CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, + InputArray cameraMatrix, OutputArray R, OutputArray t, + InputOutputArray mask = noArray() ); + +/** @overload +@param E The input essential matrix. +@param points1 Array of N 2D points from the first image. The point coordinates should be +floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param R Recovered relative rotation. +@param t Recoverd relative translation. +@param focal Focal length of the camera. Note that this function assumes that points1 and points2 +are feature points from cameras with same focal length and principal point. +@param pp principal point of the camera. +@param mask Input/output mask for inliers in points1 and points2. +: If it is not empty, then it marks inliers in points1 and points2 for then given essential +matrix E. Only these inliers will be used to recover pose. In the output mask only inliers +which pass the cheirality check. + +This function differs from the one above that it computes camera matrix from focal length and +principal point: + +\f[K = +\begin{bmatrix} +f & 0 & x_{pp} \\ +0 & f & y_{pp} \\ +0 & 0 & 1 +\end{bmatrix}\f] + */ +CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, + OutputArray R, OutputArray t, + double focal = 1.0, Point2d pp = Point2d(0, 0), + InputOutputArray mask = noArray() ); + +/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image. + +@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or +vector\<Point2f\> . +@param whichImage Index of the image (1 or 2) that contains the points . +@param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify . +@param lines Output vector of the epipolar lines corresponding to the points in the other image. +Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ . + +For every point in one of the two images of a stereo pair, the function finds the equation of the +corresponding epipolar line in the other image. + +From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second +image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as: + +\f[l^{(2)}_i = F p^{(1)}_i\f] + +And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as: + +\f[l^{(1)}_i = F^T p^{(2)}_i\f] + +Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ . + */ +CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage, + InputArray F, OutputArray lines ); + +/** @brief Reconstructs points by triangulation. + +@param projMatr1 3x4 projection matrix of the first camera. +@param projMatr2 3x4 projection matrix of the second camera. +@param projPoints1 2xN array of feature points in the first image. In case of c++ version it can +be also a vector of feature points or two-channel matrix of size 1xN or Nx1. +@param projPoints2 2xN array of corresponding points in the second image. In case of c++ version +it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. +@param points4D 4xN array of reconstructed points in homogeneous coordinates. + +The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their +observations with a stereo camera. Projections matrices can be obtained from stereoRectify. + +@note + Keep in mind that all input data should be of float type in order for this function to work. + +@sa + reprojectImageTo3D + */ +CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2, + InputArray projPoints1, InputArray projPoints2, + OutputArray points4D ); + +/** @brief Refines coordinates of corresponding points. + +@param F 3x3 fundamental matrix. +@param points1 1xN array containing the first set of points. +@param points2 1xN array containing the second set of points. +@param newPoints1 The optimized points1. +@param newPoints2 The optimized points2. + +The function implements the Optimal Triangulation Method (see Multiple View Geometry for details). +For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it +computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric +error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the +geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint +\f$newPoints2^T * F * newPoints1 = 0\f$ . + */ +CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2, + OutputArray newPoints1, OutputArray newPoints2 ); + +/** @brief Filters off small noise blobs (speckles) in the disparity map + +@param img The input 16-bit signed disparity image +@param newVal The disparity value used to paint-off the speckles +@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not +affected by the algorithm +@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same +blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point +disparity map, where disparity values are multiplied by 16, this scale factor should be taken into +account when specifying this parameter value. +@param buf The optional temporary buffer to avoid memory allocation within the function. + */ +CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal, + int maxSpeckleSize, double maxDiff, + InputOutputArray buf = noArray() ); + +//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify()) +CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2, + int minDisparity, int numberOfDisparities, + int SADWindowSize ); + +//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm +CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost, + int minDisparity, int numberOfDisparities, + int disp12MaxDisp = 1 ); + +/** @brief Reprojects a disparity image to 3D space. + +@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit +floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no +fractional bits. +@param _3dImage Output 3-channel floating-point image of the same size as disparity . Each +element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity +map. +@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify. +@param handleMissingValues Indicates, whether the function should handle missing values (i.e. +points where the disparity was not computed). If handleMissingValues=true, then pixels with the +minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed +to 3D points with a very large Z value (currently set to 10000). +@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F +depth. ddepth can also be set to CV_16S, CV_32S or CV_32F. + +The function transforms a single-channel disparity map to a 3-channel image representing a 3D +surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it +computes: + +\f[\begin{array}{l} [X \; Y \; Z \; W]^T = \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f] + +The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by +stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use +perspectiveTransform . + */ +CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity, + OutputArray _3dImage, InputArray Q, + bool handleMissingValues = false, + int ddepth = -1 ); + +/** @brief Calculates the Sampson Distance between two points. + +The function sampsonDistance calculates and returns the first order approximation of the geometric error as: +\f[sd( \texttt{pt1} , \texttt{pt2} )= \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}{(\texttt{F} \cdot \texttt{pt1})(0) + (\texttt{F} \cdot \texttt{pt1})(1) + (\texttt{F}^t \cdot \texttt{pt2})(0) + (\texttt{F}^t \cdot \texttt{pt2})(1)}\f] +The fundamental matrix may be calculated using the cv::findFundamentalMat function. See HZ 11.4.3 for details. +@param pt1 first homogeneous 2d point +@param pt2 second homogeneous 2d point +@param F fundamental matrix +*/ +CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F); + +/** @brief Computes an optimal affine transformation between two 3D point sets. + +@param src First input 3D point set. +@param dst Second input 3D point set. +@param out Output 3D affine transformation matrix \f$3 \times 4\f$ . +@param inliers Output vector indicating which points are inliers. +@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as +an inlier. +@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything +between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation +significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. + +The function estimates an optimal 3D affine transformation between two 3D point sets using the +RANSAC algorithm. + */ +CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst, + OutputArray out, OutputArray inliers, + double ransacThreshold = 3, double confidence = 0.99); + +/** @brief Computes an optimal affine transformation between two 2D point sets. + +@param from First input 2D point set. +@param to Second input 2D point set. +@param inliers Output vector indicating which points are inliers. +@param method Robust method used to compute tranformation. The following methods are possible: +- cv::RANSAC - RANSAC-based robust method +- cv::LMEDS - Least-Median robust method +RANSAC is the default method. +@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider +a point as an inlier. Applies only to RANSAC. +@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be. +@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything +between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation +significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. +@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). +Passing 0 will disable refining, so the output matrix will be output of robust method. + +@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation +could not be estimated. + +The function estimates an optimal 2D affine transformation between two 2D point sets using the +selected robust algorithm. + +The computed transformation is then refined further (using only inliers) with the +Levenberg-Marquardt method to reduce the re-projection error even more. + +@note +The RANSAC method can handle practically any ratio of outliers but need a threshold to +distinguish inliers from outliers. The method LMeDS does not need any threshold but it works +correctly only when there are more than 50% of inliers. + +@sa estimateAffinePartial2D, getAffineTransform +*/ +CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(), + int method = RANSAC, double ransacReprojThreshold = 3, + size_t maxIters = 2000, double confidence = 0.99, + size_t refineIters = 10); + +/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between +two 2D point sets. + +@param from First input 2D point set. +@param to Second input 2D point set. +@param inliers Output vector indicating which points are inliers. +@param method Robust method used to compute tranformation. The following methods are possible: +- cv::RANSAC - RANSAC-based robust method +- cv::LMEDS - Least-Median robust method +RANSAC is the default method. +@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider +a point as an inlier. Applies only to RANSAC. +@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be. +@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything +between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation +significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. +@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). +Passing 0 will disable refining, so the output matrix will be output of robust method. + +@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or +empty matrix if transformation could not be estimated. + +The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to +combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust +estimation. + +The computed transformation is then refined further (using only inliers) with the +Levenberg-Marquardt method to reduce the re-projection error even more. + +Estimated transformation matrix is: +\f[ \begin{bmatrix} \cos(\theta)s & -\sin(\theta)s & tx \\ + \sin(\theta)s & \cos(\theta)s & ty +\end{bmatrix} \f] +Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ tx, ty \f$ are +translations in \f$ x, y \f$ axes respectively. + +@note +The RANSAC method can handle practically any ratio of outliers but need a threshold to +distinguish inliers from outliers. The method LMeDS does not need any threshold but it works +correctly only when there are more than 50% of inliers. + +@sa estimateAffine2D, getAffineTransform +*/ +CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(), + int method = RANSAC, double ransacReprojThreshold = 3, + size_t maxIters = 2000, double confidence = 0.99, + size_t refineIters = 10); + +/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s). + +@param H The input homography matrix between two images. +@param K The input intrinsic camera calibration matrix. +@param rotations Array of rotation matrices. +@param translations Array of translation matrices. +@param normals Array of plane normal matrices. + +This function extracts relative camera motion between two views observing a planar object from the +homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function +may return up to four mathematical solution sets. At least two of the solutions may further be +invalidated if point correspondences are available by applying positive depth constraint (all points +must be in front of the camera). The decomposition method is described in detail in @cite Malis . + */ +CV_EXPORTS_W int decomposeHomographyMat(InputArray H, + InputArray K, + OutputArrayOfArrays rotations, + OutputArrayOfArrays translations, + OutputArrayOfArrays normals); + +/** @brief The base class for stereo correspondence algorithms. + */ +class CV_EXPORTS_W StereoMatcher : public Algorithm +{ +public: + enum { DISP_SHIFT = 4, + DISP_SCALE = (1 << DISP_SHIFT) + }; + + /** @brief Computes disparity map for the specified stereo pair + + @param left Left 8-bit single-channel image. + @param right Right image of the same size and the same type as the left one. + @param disparity Output disparity map. It has the same size as the input images. Some algorithms, + like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value + has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map. + */ + CV_WRAP virtual void compute( InputArray left, InputArray right, + OutputArray disparity ) = 0; + + CV_WRAP virtual int getMinDisparity() const = 0; + CV_WRAP virtual void setMinDisparity(int minDisparity) = 0; + + CV_WRAP virtual int getNumDisparities() const = 0; + CV_WRAP virtual void setNumDisparities(int numDisparities) = 0; + + CV_WRAP virtual int getBlockSize() const = 0; + CV_WRAP virtual void setBlockSize(int blockSize) = 0; + + CV_WRAP virtual int getSpeckleWindowSize() const = 0; + CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0; + + CV_WRAP virtual int getSpeckleRange() const = 0; + CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0; + + CV_WRAP virtual int getDisp12MaxDiff() const = 0; + CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0; +}; + + +/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and +contributed to OpenCV by K. Konolige. + */ +class CV_EXPORTS_W StereoBM : public StereoMatcher +{ +public: + enum { PREFILTER_NORMALIZED_RESPONSE = 0, + PREFILTER_XSOBEL = 1 + }; + + CV_WRAP virtual int getPreFilterType() const = 0; + CV_WRAP virtual void setPreFilterType(int preFilterType) = 0; + + CV_WRAP virtual int getPreFilterSize() const = 0; + CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0; + + CV_WRAP virtual int getPreFilterCap() const = 0; + CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; + + CV_WRAP virtual int getTextureThreshold() const = 0; + CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0; + + CV_WRAP virtual int getUniquenessRatio() const = 0; + CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; + + CV_WRAP virtual int getSmallerBlockSize() const = 0; + CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0; + + CV_WRAP virtual Rect getROI1() const = 0; + CV_WRAP virtual void setROI1(Rect roi1) = 0; + + CV_WRAP virtual Rect getROI2() const = 0; + CV_WRAP virtual void setROI2(Rect roi2) = 0; + + /** @brief Creates StereoBM object + + @param numDisparities the disparity search range. For each pixel algorithm will find the best + disparity from 0 (default minimum disparity) to numDisparities. The search range can then be + shifted by changing the minimum disparity. + @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd + (as the block is centered at the current pixel). Larger block size implies smoother, though less + accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher + chance for algorithm to find a wrong correspondence. + + The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for + a specific stereo pair. + */ + CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21); +}; + +/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original +one as follows: + +- By default, the algorithm is single-pass, which means that you consider only 5 directions +instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the +algorithm but beware that it may consume a lot of memory. +- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the +blocks to single pixels. +- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi +sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well. +- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for +example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness +check, quadratic interpolation and speckle filtering). + +@note + - (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found + at opencv_source_code/samples/python/stereo_match.py + */ +class CV_EXPORTS_W StereoSGBM : public StereoMatcher +{ +public: + enum + { + MODE_SGBM = 0, + MODE_HH = 1, + MODE_SGBM_3WAY = 2 + }; + + CV_WRAP virtual int getPreFilterCap() const = 0; + CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; + + CV_WRAP virtual int getUniquenessRatio() const = 0; + CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; + + CV_WRAP virtual int getP1() const = 0; + CV_WRAP virtual void setP1(int P1) = 0; + + CV_WRAP virtual int getP2() const = 0; + CV_WRAP virtual void setP2(int P2) = 0; + + CV_WRAP virtual int getMode() const = 0; + CV_WRAP virtual void setMode(int mode) = 0; + + /** @brief Creates StereoSGBM object + + @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes + rectification algorithms can shift images, so this parameter needs to be adjusted accordingly. + @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than + zero. In the current implementation, this parameter must be divisible by 16. + @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be + somewhere in the 3..11 range. + @param P1 The first parameter controlling the disparity smoothness. See below. + @param P2 The second parameter controlling the disparity smoothness. The larger the values are, + the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 + between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor + pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good + P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and + 32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively). + @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right + disparity check. Set it to a non-positive value to disable the check. + @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first + computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. + The result values are passed to the Birchfield-Tomasi pixel cost function. + @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function + value should "win" the second best value to consider the found match correct. Normally, a value + within the 5-15 range is good enough. + @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles + and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the + 50-200 range. + @param speckleRange Maximum disparity variation within each connected component. If you do speckle + filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. + Normally, 1 or 2 is good enough. + @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming + algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and + huge for HD-size pictures. By default, it is set to false . + + The first constructor initializes StereoSGBM with all the default parameters. So, you only have to + set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter + to a custom value. + */ + CV_WRAP static Ptr<StereoSGBM> create(int minDisparity, int numDisparities, int blockSize, + int P1 = 0, int P2 = 0, int disp12MaxDiff = 0, + int preFilterCap = 0, int uniquenessRatio = 0, + int speckleWindowSize = 0, int speckleRange = 0, + int mode = StereoSGBM::MODE_SGBM); +}; + +//! @} calib3d + +/** @brief The methods in this namespace use a so-called fisheye camera model. + @ingroup calib3d_fisheye +*/ +namespace fisheye +{ +//! @addtogroup calib3d_fisheye +//! @{ + + enum{ + CALIB_USE_INTRINSIC_GUESS = 1 << 0, + CALIB_RECOMPUTE_EXTRINSIC = 1 << 1, + CALIB_CHECK_COND = 1 << 2, + CALIB_FIX_SKEW = 1 << 3, + CALIB_FIX_K1 = 1 << 4, + CALIB_FIX_K2 = 1 << 5, + CALIB_FIX_K3 = 1 << 6, + CALIB_FIX_K4 = 1 << 7, + CALIB_FIX_INTRINSIC = 1 << 8, + CALIB_FIX_PRINCIPAL_POINT = 1 << 9 + }; + + /** @brief Projects points using fisheye model + + @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is + the number of points in the view. + @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or + vector\<Point2f\>. + @param affine + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param alpha The skew coefficient. + @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect + to components of the focal lengths, coordinates of the principal point, distortion coefficients, + rotation vector, translation vector, and the skew. In the old interface different components of + the jacobian are returned via different output parameters. + + The function computes projections of 3D points to the image plane given intrinsic and extrinsic + camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of + image points coordinates (as functions of all the input parameters) with respect to the particular + parameters, intrinsic and/or extrinsic. + */ + CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine, + InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); + + /** @overload */ + CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec, + InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); + + /** @brief Distorts 2D points using fisheye model. + + @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is + the number of points in the view. + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param alpha The skew coefficient. + @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . + + Note that the function assumes the camera matrix of the undistorted points to be indentity. + This means if you want to transform back points undistorted with undistortPoints() you have to + multiply them with \f$P^{-1}\f$. + */ + CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0); + + /** @brief Undistorts 2D points using fisheye model + + @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the + number of points in the view. + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . + */ + CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted, + InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray()); + + /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero + distortion is used, if R or P is empty identity matrixes are used. + + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param size Undistorted image size. + @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps() + for details. + @param map1 The first output map. + @param map2 The second output map. + */ + CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P, + const cv::Size& size, int m1type, OutputArray map1, OutputArray map2); + + /** @brief Transforms an image to compensate for fisheye lens distortion. + + @param distorted image with fisheye lens distortion. + @param undistorted Output image with compensated fisheye lens distortion. + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you + may additionally scale and shift the result by using a different matrix. + @param new_size + + The function transforms an image to compensate radial and tangential lens distortion. + + The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap + (with bilinear interpolation). See the former function for details of the transformation being + performed. + + See below the results of undistortImage. + - a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3, + k_4, k_5, k_6) of distortion were optimized under calibration) + - b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2, + k_3, k_4) of fisheye distortion were optimized under calibration) + - c\) original image was captured with fisheye lens + + Pictures a) and b) almost the same. But if we consider points of image located far from the center + of image, we can notice that on image a) these points are distorted. + + ![image](pics/fisheye_undistorted.jpg) + */ + CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted, + InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size()); + + /** @brief Estimates new camera matrix for undistortion or rectification. + + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param image_size + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param balance Sets the new focal length in range between the min focal length and the max focal + length. Balance is in range of [0, 1]. + @param new_size + @param fov_scale Divisor for new focal length. + */ + CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R, + OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0); + + /** @brief Performs camera calibaration + + @param objectPoints vector of vectors of calibration pattern points in the calibration pattern + coordinate space. + @param imagePoints vector of vectors of the projections of calibration pattern points. + imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to + objectPoints[i].size() for each i. + @param image_size Size of the image used only to initialize the intrinsic camera matrix. + @param K Output 3x3 floating-point camera matrix + \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If + fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be + initialized before calling the function. + @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view. + That is, each k-th rotation vector together with the corresponding k-th translation vector (see + the next output parameter description) brings the calibration pattern from the model coordinate + space (in which object points are specified) to the world coordinate space, that is, a real + position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). + @param tvecs Output vector of translation vectors estimated for each pattern view. + @param flags Different flags that may be zero or a combination of the following values: + - **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of + fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image + center ( imageSize is used), and focal distances are computed in a least-squares fashion. + - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration + of intrinsic optimization. + - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. + - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. + - **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients + are set to zeros and stay zero. + - **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global +optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too. + @param criteria Termination criteria for the iterative optimization algorithm. + */ + CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size, + InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); + + /** @brief Stereo rectification for fisheye camera model + + @param K1 First camera matrix. + @param D1 First camera distortion parameters. + @param K2 Second camera matrix. + @param D2 Second camera distortion parameters. + @param imageSize Size of the image used for stereo calibration. + @param R Rotation matrix between the coordinate systems of the first and the second + cameras. + @param tvec Translation vector between coordinate systems of the cameras. + @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. + @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. + @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first + camera. + @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second + camera. + @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). + @param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set, + the function makes the principal points of each camera have the same pixel coordinates in the + rectified views. And if the flag is not set, the function may still shift the images in the + horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the + useful image area. + @param newImageSize New image resolution after rectification. The same size should be passed to + initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) + is passed (default), it is set to the original imageSize . Setting it to larger value can help you + preserve details in the original image, especially when there is a big radial distortion. + @param balance Sets the new focal length in range between the min focal length and the max focal + length. Balance is in range of [0, 1]. + @param fov_scale Divisor for new focal length. + */ + CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec, + OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(), + double balance = 0.0, double fov_scale = 1.0); + + /** @brief Performs stereo calibration + + @param objectPoints Vector of vectors of the calibration pattern points. + @param imagePoints1 Vector of vectors of the projections of the calibration pattern points, + observed by the first camera. + @param imagePoints2 Vector of vectors of the projections of the calibration pattern points, + observed by the second camera. + @param K1 Input/output first camera matrix: + \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If + any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CV_CALIB_FIX_INTRINSIC are specified, + some or all of the matrix components must be initialized. + @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements. + @param K2 Input/output second camera matrix. The parameter is similar to K1 . + @param D2 Input/output lens distortion coefficients for the second camera. The parameter is + similar to D1 . + @param imageSize Size of the image used only to initialize intrinsic camera matrix. + @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. + @param T Output translation vector between the coordinate systems of the cameras. + @param flags Different flags that may be zero or a combination of the following values: + - **fisheye::CV_CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices + are estimated. + - **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of + fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image + center (imageSize is used), and focal distances are computed in a least-squares fashion. + - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration + of intrinsic optimization. + - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. + - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. + - **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay + zero. + @param criteria Termination criteria for the iterative optimization algorithm. + */ + CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, + InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize, + OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); + +//! @} calib3d_fisheye +} + +} // cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/calib3d/calib3d_c.h" +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/calib3d/calib3d.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/calib3d.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/calib3d/calib3d_c.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,426 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CALIB3D_C_H +#define OPENCV_CALIB3D_C_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup calib3d_c + @{ + */ + +/****************************************************************************************\ +* Camera Calibration, Pose Estimation and Stereo * +\****************************************************************************************/ + +typedef struct CvPOSITObject CvPOSITObject; + +/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */ +CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count ); + + +/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of + an object given its model and projection in a weak-perspective case */ +CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points, + double focal_length, CvTermCriteria criteria, + float* rotation_matrix, float* translation_vector); + +/* Releases CvPOSITObject structure */ +CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object ); + +/* updates the number of RANSAC iterations */ +CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob, + int model_points, int max_iters ); + +CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst ); + +/* Calculates fundamental matrix given a set of corresponding points */ +#define CV_FM_7POINT 1 +#define CV_FM_8POINT 2 + +#define CV_LMEDS 4 +#define CV_RANSAC 8 + +#define CV_FM_LMEDS_ONLY CV_LMEDS +#define CV_FM_RANSAC_ONLY CV_RANSAC +#define CV_FM_LMEDS CV_LMEDS +#define CV_FM_RANSAC CV_RANSAC + +enum +{ + CV_ITERATIVE = 0, + CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" + CV_P3P = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem" + CV_DLS = 3 // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP" +}; + +CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2, + CvMat* fundamental_matrix, + int method CV_DEFAULT(CV_FM_RANSAC), + double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99), + CvMat* status CV_DEFAULT(NULL) ); + +/* For each input point on one of images + computes parameters of the corresponding + epipolar line on the other image */ +CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points, + int which_image, + const CvMat* fundamental_matrix, + CvMat* correspondent_lines ); + +/* Triangulation functions */ + +CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, + CvMat* projPoints1, CvMat* projPoints2, + CvMat* points4D); + +CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2, + CvMat* new_points1, CvMat* new_points2); + + +/* Computes the optimal new camera matrix according to the free scaling parameter alpha: + alpha=0 - only valid pixels will be retained in the undistorted image + alpha=1 - all the source image pixels will be retained in the undistorted image +*/ +CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix, + const CvMat* dist_coeffs, + CvSize image_size, double alpha, + CvMat* new_camera_matrix, + CvSize new_imag_size CV_DEFAULT(cvSize(0,0)), + CvRect* valid_pixel_ROI CV_DEFAULT(0), + int center_principal_point CV_DEFAULT(0)); + +/* Converts rotation vector to rotation matrix or vice versa */ +CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst, + CvMat* jacobian CV_DEFAULT(0) ); + +/* Finds perspective transformation between the object plane and image (view) plane */ +CVAPI(int) cvFindHomography( const CvMat* src_points, + const CvMat* dst_points, + CvMat* homography, + int method CV_DEFAULT(0), + double ransacReprojThreshold CV_DEFAULT(3), + CvMat* mask CV_DEFAULT(0), + int maxIters CV_DEFAULT(2000), + double confidence CV_DEFAULT(0.995)); + +/* Computes RQ decomposition for 3x3 matrices */ +CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ, + CvMat *matrixQx CV_DEFAULT(NULL), + CvMat *matrixQy CV_DEFAULT(NULL), + CvMat *matrixQz CV_DEFAULT(NULL), + CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); + +/* Computes projection matrix decomposition */ +CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr, + CvMat *rotMatr, CvMat *posVect, + CvMat *rotMatrX CV_DEFAULT(NULL), + CvMat *rotMatrY CV_DEFAULT(NULL), + CvMat *rotMatrZ CV_DEFAULT(NULL), + CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); + +/* Computes d(AB)/dA and d(AB)/dB */ +CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB ); + +/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)), + t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */ +CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1, + const CvMat* _rvec2, const CvMat* _tvec2, + CvMat* _rvec3, CvMat* _tvec3, + CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0), + CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0), + CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0), + CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) ); + +/* Projects object points to the view plane using + the specified extrinsic and intrinsic camera parameters */ +CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector, + const CvMat* translation_vector, const CvMat* camera_matrix, + const CvMat* distortion_coeffs, CvMat* image_points, + CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL), + CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL), + CvMat* dpddist CV_DEFAULT(NULL), + double aspect_ratio CV_DEFAULT(0)); + +/* Finds extrinsic camera parameters from + a few known corresponding point pairs and intrinsic parameters */ +CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points, + const CvMat* image_points, + const CvMat* camera_matrix, + const CvMat* distortion_coeffs, + CvMat* rotation_vector, + CvMat* translation_vector, + int use_extrinsic_guess CV_DEFAULT(0) ); + +/* Computes initial estimate of the intrinsic camera parameters + in case of planar calibration target (e.g. chessboard) */ +CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points, + const CvMat* image_points, + const CvMat* npoints, CvSize image_size, + CvMat* camera_matrix, + double aspect_ratio CV_DEFAULT(1.) ); + +#define CV_CALIB_CB_ADAPTIVE_THRESH 1 +#define CV_CALIB_CB_NORMALIZE_IMAGE 2 +#define CV_CALIB_CB_FILTER_QUADS 4 +#define CV_CALIB_CB_FAST_CHECK 8 + +// Performs a fast check if a chessboard is in the input image. This is a workaround to +// a problem of cvFindChessboardCorners being slow on images with no chessboard +// - src: input image +// - size: chessboard size +// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called, +// 0 if there is no chessboard, -1 in case of error +CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size); + + /* Detects corners on a chessboard calibration pattern */ +CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size, + CvPoint2D32f* corners, + int* corner_count CV_DEFAULT(NULL), + int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) ); + +/* Draws individual chessboard corners or the whole chessboard detected */ +CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size, + CvPoint2D32f* corners, + int count, int pattern_was_found ); + +#define CV_CALIB_USE_INTRINSIC_GUESS 1 +#define CV_CALIB_FIX_ASPECT_RATIO 2 +#define CV_CALIB_FIX_PRINCIPAL_POINT 4 +#define CV_CALIB_ZERO_TANGENT_DIST 8 +#define CV_CALIB_FIX_FOCAL_LENGTH 16 +#define CV_CALIB_FIX_K1 32 +#define CV_CALIB_FIX_K2 64 +#define CV_CALIB_FIX_K3 128 +#define CV_CALIB_FIX_K4 2048 +#define CV_CALIB_FIX_K5 4096 +#define CV_CALIB_FIX_K6 8192 +#define CV_CALIB_RATIONAL_MODEL 16384 +#define CV_CALIB_THIN_PRISM_MODEL 32768 +#define CV_CALIB_FIX_S1_S2_S3_S4 65536 +#define CV_CALIB_TILTED_MODEL 262144 +#define CV_CALIB_FIX_TAUX_TAUY 524288 + +#define CV_CALIB_NINTRINSIC 18 + +/* Finds intrinsic and extrinsic camera parameters + from a few views of known calibration pattern */ +CVAPI(double) cvCalibrateCamera2( const CvMat* object_points, + const CvMat* image_points, + const CvMat* point_counts, + CvSize image_size, + CvMat* camera_matrix, + CvMat* distortion_coeffs, + CvMat* rotation_vectors CV_DEFAULT(NULL), + CvMat* translation_vectors CV_DEFAULT(NULL), + int flags CV_DEFAULT(0), + CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria( + CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) ); + +/* Computes various useful characteristics of the camera from the data computed by + cvCalibrateCamera2 */ +CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix, + CvSize image_size, + double aperture_width CV_DEFAULT(0), + double aperture_height CV_DEFAULT(0), + double *fovx CV_DEFAULT(NULL), + double *fovy CV_DEFAULT(NULL), + double *focal_length CV_DEFAULT(NULL), + CvPoint2D64f *principal_point CV_DEFAULT(NULL), + double *pixel_aspect_ratio CV_DEFAULT(NULL)); + +#define CV_CALIB_FIX_INTRINSIC 256 +#define CV_CALIB_SAME_FOCAL_LENGTH 512 + +/* Computes the transformation from one camera coordinate system to another one + from a few correspondent views of the same calibration target. Optionally, calibrates + both cameras */ +CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1, + const CvMat* image_points2, const CvMat* npoints, + CvMat* camera_matrix1, CvMat* dist_coeffs1, + CvMat* camera_matrix2, CvMat* dist_coeffs2, + CvSize image_size, CvMat* R, CvMat* T, + CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0), + int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC), + CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria( + CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)) ); + +#define CV_CALIB_ZERO_DISPARITY 1024 + +/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both + views parallel (=> to make all the epipolar lines horizontal or vertical) */ +CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2, + const CvMat* dist_coeffs1, const CvMat* dist_coeffs2, + CvSize image_size, const CvMat* R, const CvMat* T, + CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2, + CvMat* Q CV_DEFAULT(0), + int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY), + double alpha CV_DEFAULT(-1), + CvSize new_image_size CV_DEFAULT(cvSize(0,0)), + CvRect* valid_pix_ROI1 CV_DEFAULT(0), + CvRect* valid_pix_ROI2 CV_DEFAULT(0)); + +/* Computes rectification transformations for uncalibrated pair of images using a set + of point correspondences */ +CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2, + const CvMat* F, CvSize img_size, + CvMat* H1, CvMat* H2, + double threshold CV_DEFAULT(5)); + + + +/* stereo correspondence parameters and functions */ + +#define CV_STEREO_BM_NORMALIZED_RESPONSE 0 +#define CV_STEREO_BM_XSOBEL 1 + +/* Block matching algorithm structure */ +typedef struct CvStereoBMState +{ + // pre-filtering (normalization of input images) + int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now + int preFilterSize; // averaging window size: ~5x5..21x21 + int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap] + + // correspondence using Sum of Absolute Difference (SAD) + int SADWindowSize; // ~5x5..21x21 + int minDisparity; // minimum disparity (can be negative) + int numberOfDisparities; // maximum disparity - minimum disparity (> 0) + + // post-filtering + int textureThreshold; // the disparity is only computed for pixels + // with textured enough neighborhood + int uniquenessRatio; // accept the computed disparity d* only if + // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.) + // for any d != d*+/-1 within the search range. + int speckleWindowSize; // disparity variation window + int speckleRange; // acceptable range of variation in window + + int trySmallerWindows; // if 1, the results may be more accurate, + // at the expense of slower processing + CvRect roi1, roi2; + int disp12MaxDiff; + + // temporary buffers + CvMat* preFilteredImg0; + CvMat* preFilteredImg1; + CvMat* slidingSumBuf; + CvMat* cost; + CvMat* disp; +} CvStereoBMState; + +#define CV_STEREO_BM_BASIC 0 +#define CV_STEREO_BM_FISH_EYE 1 +#define CV_STEREO_BM_NARROW 2 + +CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC), + int numberOfDisparities CV_DEFAULT(0)); + +CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state ); + +CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right, + CvArr* disparity, CvStereoBMState* state ); + +CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity, + int numberOfDisparities, int SADWindowSize ); + +CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost, + int minDisparity, int numberOfDisparities, + int disp12MaxDiff CV_DEFAULT(1) ); + +/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */ +CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage, + CvArr* _3dImage, const CvMat* Q, + int handleMissingValues CV_DEFAULT(0) ); + +/** @} calib3d_c */ + +#ifdef __cplusplus +} // extern "C" + +////////////////////////////////////////////////////////////////////////////////////////// +class CV_EXPORTS CvLevMarq +{ +public: + CvLevMarq(); + CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria= + cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), + bool completeSymmFlag=false ); + ~CvLevMarq(); + void init( int nparams, int nerrs, CvTermCriteria criteria= + cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), + bool completeSymmFlag=false ); + bool update( const CvMat*& param, CvMat*& J, CvMat*& err ); + bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm ); + + void clear(); + void step(); + enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 }; + + cv::Ptr<CvMat> mask; + cv::Ptr<CvMat> prevParam; + cv::Ptr<CvMat> param; + cv::Ptr<CvMat> J; + cv::Ptr<CvMat> err; + cv::Ptr<CvMat> JtJ; + cv::Ptr<CvMat> JtJN; + cv::Ptr<CvMat> JtErr; + cv::Ptr<CvMat> JtJV; + cv::Ptr<CvMat> JtJW; + double prevErrNorm, errNorm; + int lambdaLg10; + CvTermCriteria criteria; + int state; + int iters; + bool completeSymmFlag; + int solveMethod; +}; + +#endif + +#endif /* OPENCV_CALIB3D_C_H */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,3220 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2015, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Copyright (C) 2015, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_HPP +#define OPENCV_CORE_HPP + +#ifndef __cplusplus +# error core.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/version.hpp" +#include "opencv2/core/base.hpp" +#include "opencv2/core/cvstd.hpp" +#include "opencv2/core/traits.hpp" +#include "opencv2/core/matx.hpp" +#include "opencv2/core/types.hpp" +#include "opencv2/core/mat.hpp" +#include "opencv2/core/persistence.hpp" + +/** +@defgroup core Core functionality +@{ + @defgroup core_basic Basic structures + @defgroup core_c C structures and operations + @{ + @defgroup core_c_glue Connections with C++ + @} + @defgroup core_array Operations on arrays + @defgroup core_xml XML/YAML Persistence + @defgroup core_cluster Clustering + @defgroup core_utils Utility and system functions and macros + @{ + @defgroup core_utils_sse SSE utilities + @defgroup core_utils_neon NEON utilities + @} + @defgroup core_opengl OpenGL interoperability + @defgroup core_ipp Intel IPP Asynchronous C/C++ Converters + @defgroup core_optim Optimization Algorithms + @defgroup core_directx DirectX interoperability + @defgroup core_eigen Eigen support + @defgroup core_opencl OpenCL support + @defgroup core_va_intel Intel VA-API/OpenCL (CL-VA) interoperability + @defgroup core_hal Hardware Acceleration Layer + @{ + @defgroup core_hal_functions Functions + @defgroup core_hal_interface Interface + @defgroup core_hal_intrin Universal intrinsics + @{ + @defgroup core_hal_intrin_impl Private implementation helpers + @} + @} +@} + */ + +namespace cv { + +//! @addtogroup core_utils +//! @{ + +/*! @brief Class passed to an error. + +This class encapsulates all or almost all necessary +information about the error happened in the program. The exception is +usually constructed and thrown implicitly via CV_Error and CV_Error_ macros. +@see error + */ +class CV_EXPORTS Exception : public std::exception +{ +public: + /*! + Default constructor + */ + Exception(); + /*! + Full constructor. Normally the constuctor is not called explicitly. + Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used. + */ + Exception(int _code, const String& _err, const String& _func, const String& _file, int _line); + virtual ~Exception() throw(); + + /*! + \return the error description and the context as a text string. + */ + virtual const char *what() const throw(); + void formatMessage(); + + String msg; ///< the formatted error message + + int code; ///< error code @see CVStatus + String err; ///< error description + String func; ///< function name. Available only when the compiler supports getting it + String file; ///< source file name where the error has occured + int line; ///< line number in the source file where the error has occured +}; + +/*! @brief Signals an error and raises the exception. + +By default the function prints information about the error to stderr, +then it either stops if cv::setBreakOnError() had been called before or raises the exception. +It is possible to alternate error processing by using cv::redirectError(). +@param exc the exception raisen. +@deprecated drop this version + */ +CV_EXPORTS void error( const Exception& exc ); + +enum SortFlags { SORT_EVERY_ROW = 0, //!< each matrix row is sorted independently + SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted + //!< independently; this flag and the previous one are + //!< mutually exclusive. + SORT_ASCENDING = 0, //!< each matrix row is sorted in the ascending + //!< order. + SORT_DESCENDING = 16 //!< each matrix row is sorted in the + //!< descending order; this flag and the previous one are also + //!< mutually exclusive. + }; + +//! @} core_utils + +//! @addtogroup core +//! @{ + +//! Covariation flags +enum CovarFlags { + /** The output covariance matrix is calculated as: + \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...],\f] + The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used + for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for + face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true + covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of + the "scrambled" covariance matrix. */ + COVAR_SCRAMBLED = 0, + /**The output covariance matrix is calculated as: + \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...] \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T,\f] + covar will be a square matrix of the same size as the total number of elements in each input + vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/ + COVAR_NORMAL = 1, + /** If the flag is specified, the function does not calculate mean from + the input vectors but, instead, uses the passed mean vector. This is useful if mean has been + pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In + this case, mean is not a mean vector of the input sub-set of vectors but rather the mean + vector of the whole set.*/ + COVAR_USE_AVG = 2, + /** If the flag is specified, the covariance matrix is scaled. In the + "normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the + total number of elements in each input vector. By default (if the flag is not specified), the + covariance matrix is not scaled ( scale=1 ).*/ + COVAR_SCALE = 4, + /** If the flag is + specified, all the input vectors are stored as rows of the samples matrix. mean should be a + single-row vector in this case.*/ + COVAR_ROWS = 8, + /** If the flag is + specified, all the input vectors are stored as columns of the samples matrix. mean should be a + single-column vector in this case.*/ + COVAR_COLS = 16 +}; + +//! k-Means flags +enum KmeansFlags { + /** Select random initial centers in each attempt.*/ + KMEANS_RANDOM_CENTERS = 0, + /** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/ + KMEANS_PP_CENTERS = 2, + /** During the first (and possibly the only) attempt, use the + user-supplied labels instead of computing them from the initial centers. For the second and + further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag + to specify the exact method.*/ + KMEANS_USE_INITIAL_LABELS = 1 +}; + +//! type of line +enum LineTypes { + FILLED = -1, + LINE_4 = 4, //!< 4-connected line + LINE_8 = 8, //!< 8-connected line + LINE_AA = 16 //!< antialiased line +}; + +//! Only a subset of Hershey fonts +//! <http://sources.isc.org/utils/misc/hershey-font.txt> are supported +enum HersheyFonts { + FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font + FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font + FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX) + FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font + FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX) + FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX + FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font + FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX + FONT_ITALIC = 16 //!< flag for italic font +}; + +enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix. + REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix. + REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix. + REDUCE_MIN = 3 //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix. + }; + + +/** @brief Swaps two matrices +*/ +CV_EXPORTS void swap(Mat& a, Mat& b); +/** @overload */ +CV_EXPORTS void swap( UMat& a, UMat& b ); + +//! @} core + +//! @addtogroup core_array +//! @{ + +/** @brief Computes the source location of an extrapolated pixel. + +The function computes and returns the coordinate of a donor pixel corresponding to the specified +extrapolated pixel when using the specified extrapolation border mode. For example, if you use +cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and +want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it +looks like: +@code{.cpp} + float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101), + borderInterpolate(-5, img.cols, cv::BORDER_WRAP)); +@endcode +Normally, the function is not called directly. It is used inside filtering functions and also in +copyMakeBorder. +@param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len +@param len Length of the array along the corresponding axis. +@param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and +cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless +of p and len. + +@sa copyMakeBorder +*/ +CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType); + +/** @brief Forms a border around an image. + +The function copies the source image into the middle of the destination image. The areas to the +left, to the right, above and below the copied source image will be filled with extrapolated +pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but +what other more complex functions, including your own, may do to simplify image boundary handling. + +The function supports the mode when src is already in the middle of dst . In this case, the +function does not copy src itself but simply constructs the border, for example: + +@code{.cpp} + // let border be the same in all directions + int border=2; + // constructs a larger image to fit both the image and the border + Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth()); + // select the middle part of it w/o copying data + Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows)); + // convert image from RGB to grayscale + cvtColor(rgb, gray, COLOR_RGB2GRAY); + // form a border in-place + copyMakeBorder(gray, gray_buf, border, border, + border, border, BORDER_REPLICATE); + // now do some custom filtering ... + ... +@endcode +@note When the source image is a part (ROI) of a bigger image, the function will try to use the +pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as +if src was not a ROI, use borderType | BORDER_ISOLATED. + +@param src Source image. +@param dst Destination image of the same type as src and the size Size(src.cols+left+right, +src.rows+top+bottom) . +@param top +@param bottom +@param left +@param right Parameter specifying how many pixels in each direction from the source image rectangle +to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs +to be built. +@param borderType Border type. See borderInterpolate for details. +@param value Border value if borderType==BORDER_CONSTANT . + +@sa borderInterpolate +*/ +CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst, + int top, int bottom, int left, int right, + int borderType, const Scalar& value = Scalar() ); + +/** @brief Calculates the per-element sum of two arrays or an array and a scalar. + +The function add calculates: +- Sum of two arrays when both input arrays have the same size and the same number of channels: +\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f] +- Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of +elements as `src1.channels()`: +\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f] +- Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of +elements as `src2.channels()`: +\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f] +where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each +channel is processed independently. + +The first function in the list above can be replaced with matrix expressions: +@code{.cpp} + dst = src1 + src2; + dst += src1; // equivalent to add(dst, src1, dst); +@endcode +The input arrays and the output array can all have the same or different depths. For example, you +can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit +floating-point array. Depth of the output array is determined by the dtype parameter. In the second +and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can +be set to the default -1. In this case, the output array will have the same depth as the input +array, be it src1, src2 or both. +@note Saturation is not applied when the output array has the depth CV_32S. You may even get +result of an incorrect sign in the case of overflow. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and number of channels as the input array(s); the +depth is defined by dtype or src1/src2. +@param mask optional operation mask - 8-bit single channel array, that specifies elements of the +output array to be changed. +@param dtype optional depth of the output array (see the discussion below). +@sa subtract, addWeighted, scaleAdd, Mat::convertTo +*/ +CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst, + InputArray mask = noArray(), int dtype = -1); + +/** @brief Calculates the per-element difference between two arrays or array and a scalar. + +The function subtract calculates: +- Difference between two arrays, when both input arrays have the same size and the same number of +channels: + \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f] +- Difference between an array and a scalar, when src2 is constructed from Scalar or has the same +number of elements as `src1.channels()`: + \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f] +- Difference between a scalar and an array, when src1 is constructed from Scalar or has the same +number of elements as `src2.channels()`: + \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f] +- The reverse difference between a scalar and an array in the case of `SubRS`: + \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f] +where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each +channel is processed independently. + +The first function in the list above can be replaced with matrix expressions: +@code{.cpp} + dst = src1 - src2; + dst -= src1; // equivalent to subtract(dst, src1, dst); +@endcode +The input arrays and the output array can all have the same or different depths. For example, you +can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of +the output array is determined by dtype parameter. In the second and third cases above, as well as +in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this +case the output array will have the same depth as the input array, be it src1, src2 or both. +@note Saturation is not applied when the output array has the depth CV_32S. You may even get +result of an incorrect sign in the case of overflow. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array of the same size and the same number of channels as the input array. +@param mask optional operation mask; this is an 8-bit single channel array that specifies elements +of the output array to be changed. +@param dtype optional depth of the output array +@sa add, addWeighted, scaleAdd, Mat::convertTo + */ +CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst, + InputArray mask = noArray(), int dtype = -1); + + +/** @brief Calculates the per-element scaled product of two arrays. + +The function multiply calculates the per-element product of two arrays: + +\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f] + +There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul . + +For a not-per-element matrix product, see gemm . + +@note Saturation is not applied when the output array has the depth +CV_32S. You may even get result of an incorrect sign in the case of +overflow. +@param src1 first input array. +@param src2 second input array of the same size and the same type as src1. +@param dst output array of the same size and type as src1. +@param scale optional scale factor. +@param dtype optional depth of the output array +@sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare, +Mat::convertTo +*/ +CV_EXPORTS_W void multiply(InputArray src1, InputArray src2, + OutputArray dst, double scale = 1, int dtype = -1); + +/** @brief Performs per-element division of two arrays or a scalar by an array. + +The function cv::divide divides one array by another: +\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f] +or a scalar by an array when there is no src1 : +\f[\texttt{dst(I) = saturate(scale/src2(I))}\f] + +When src2(I) is zero, dst(I) will also be zero. Different channels of +multi-channel arrays are processed independently. + +@note Saturation is not applied when the output array has the depth CV_32S. You may even get +result of an incorrect sign in the case of overflow. +@param src1 first input array. +@param src2 second input array of the same size and type as src1. +@param scale scalar factor. +@param dst output array of the same size and type as src2. +@param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in +case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth(). +@sa multiply, add, subtract +*/ +CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst, + double scale = 1, int dtype = -1); + +/** @overload */ +CV_EXPORTS_W void divide(double scale, InputArray src2, + OutputArray dst, int dtype = -1); + +/** @brief Calculates the sum of a scaled array and another array. + +The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY +or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates +the sum of a scaled array and another array: +\f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\f] +The function can also be emulated with a matrix expression, for example: +@code{.cpp} + Mat A(3, 3, CV_64F); + ... + A.row(0) = A.row(1)*2 + A.row(2); +@endcode +@param src1 first input array. +@param alpha scale factor for the first array. +@param src2 second input array of the same size and type as src1. +@param dst output array of the same size and type as src1. +@sa add, addWeighted, subtract, Mat::dot, Mat::convertTo +*/ +CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst); + +/** @brief Calculates the weighted sum of two arrays. + +The function addWeighted calculates the weighted sum of two arrays as follows: +\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f] +where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each +channel is processed independently. +The function can be replaced with a matrix expression: +@code{.cpp} + dst = src1*alpha + src2*beta + gamma; +@endcode +@note Saturation is not applied when the output array has the depth CV_32S. You may even get +result of an incorrect sign in the case of overflow. +@param src1 first input array. +@param alpha weight of the first array elements. +@param src2 second input array of the same size and channel number as src1. +@param beta weight of the second array elements. +@param gamma scalar added to each sum. +@param dst output array that has the same size and number of channels as the input arrays. +@param dtype optional depth of the output array; when both input arrays have the same depth, dtype +can be set to -1, which will be equivalent to src1.depth(). +@sa add, subtract, scaleAdd, Mat::convertTo +*/ +CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, + double beta, double gamma, OutputArray dst, int dtype = -1); + +/** @brief Scales, calculates absolute values, and converts the result to 8-bit. + +On each element of the input array, the function convertScaleAbs +performs three operations sequentially: scaling, taking an absolute +value, conversion to an unsigned 8-bit type: +\f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\f] +In case of multi-channel arrays, the function processes each channel +independently. When the output is not 8-bit, the operation can be +emulated by calling the Mat::convertTo method (or by using matrix +expressions) and then by calculating an absolute value of the result. +For example: +@code{.cpp} + Mat_<float> A(30,30); + randu(A, Scalar(-100), Scalar(100)); + Mat_<float> B = A*5 + 3; + B = abs(B); + // Mat_<float> B = abs(A*5+3) will also do the job, + // but it will allocate a temporary matrix +@endcode +@param src input array. +@param dst output array. +@param alpha optional scale factor. +@param beta optional delta added to the scaled values. +@sa Mat::convertTo, cv::abs(const Mat&) +*/ +CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst, + double alpha = 1, double beta = 0); + +/** @brief Converts an array to half precision floating number. + +This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). The input array has to have type of CV_32F or +CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error. +The format of half precision floating point is defined in IEEE 754-2008. + +@param src input array. +@param dst output array. +*/ +CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst); + +/** @brief Performs a look-up table transform of an array. + +The function LUT fills the output array with values from the look-up table. Indices of the entries +are taken from the input array. That is, the function processes each element of src as follows: +\f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\f] +where +\f[d = \fork{0}{if \(\texttt{src}\) has depth \(\texttt{CV_8U}\)}{128}{if \(\texttt{src}\) has depth \(\texttt{CV_8S}\)}\f] +@param src input array of 8-bit elements. +@param lut look-up table of 256 elements; in case of multi-channel input array, the table should +either have a single channel (in this case the same table is used for all channels) or the same +number of channels as in the input array. +@param dst output array of the same size and number of channels as src, and the same depth as lut. +@sa convertScaleAbs, Mat::convertTo +*/ +CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst); + +/** @brief Calculates the sum of array elements. + +The function cv::sum calculates and returns the sum of array elements, +independently for each channel. +@param src input array that must have from 1 to 4 channels. +@sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce +*/ +CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src); + +/** @brief Counts non-zero array elements. + +The function returns the number of non-zero elements in src : +\f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f] +@param src single-channel array. +@sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix +*/ +CV_EXPORTS_W int countNonZero( InputArray src ); + +/** @brief Returns the list of locations of non-zero pixels + +Given a binary matrix (likely returned from an operation such +as threshold(), compare(), >, ==, etc, return all of +the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y) +For example: +@code{.cpp} + cv::Mat binaryImage; // input, binary image + cv::Mat locations; // output, locations of non-zero pixels + cv::findNonZero(binaryImage, locations); + + // access pixel coordinates + Point pnt = locations.at<Point>(i); +@endcode +or +@code{.cpp} + cv::Mat binaryImage; // input, binary image + vector<Point> locations; // output, locations of non-zero pixels + cv::findNonZero(binaryImage, locations); + + // access pixel coordinates + Point pnt = locations[i]; +@endcode +@param src single-channel array (type CV_8UC1) +@param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input +*/ +CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx ); + +/** @brief Calculates an average (mean) of array elements. + +The function cv::mean calculates the mean value M of array elements, +independently for each channel, and return it: +\f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f] +When all the mask elements are 0's, the function returns Scalar::all(0) +@param src input array that should have from 1 to 4 channels so that the result can be stored in +Scalar_ . +@param mask optional operation mask. +@sa countNonZero, meanStdDev, norm, minMaxLoc +*/ +CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray()); + +/** Calculates a mean and standard deviation of array elements. + +The function cv::meanStdDev calculates the mean and the standard deviation M +of array elements independently for each channel and returns it via the +output parameters: +\f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\f] +When all the mask elements are 0's, the function returns +mean=stddev=Scalar::all(0). +@note The calculated standard deviation is only the diagonal of the +complete normalized covariance matrix. If the full matrix is needed, you +can reshape the multi-channel array M x N to the single-channel array +M\*N x mtx.channels() (only possible when the matrix is continuous) and +then pass the matrix to calcCovarMatrix . +@param src input array that should have from 1 to 4 channels so that the results can be stored in +Scalar_ 's. +@param mean output parameter: calculated mean value. +@param stddev output parameter: calculateded standard deviation. +@param mask optional operation mask. +@sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix +*/ +CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, + InputArray mask=noArray()); + +/** @brief Calculates an absolute array norm, an absolute difference norm, or a +relative difference norm. + +The function cv::norm calculates an absolute norm of src1 (when there is no +src2 ): + +\f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) } +{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) } +{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f] + +or an absolute or relative difference norm if src2 is there: + +\f[norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) } +{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) } +{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f] + +or + +\f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) } +{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) } +{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f] + +The function cv::norm returns the calculated norm. + +When the mask parameter is specified and it is not empty, the norm is +calculated only over the region specified by the mask. + +A multi-channel input arrays are treated as a single-channel, that is, +the results for all channels are combined. + +@param src1 first input array. +@param normType type of the norm (see cv::NormTypes). +@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. +*/ +CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray()); + +/** @overload +@param src1 first input array. +@param src2 second input array of the same size and the same type as src1. +@param normType type of the norm (cv::NormTypes). +@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. +*/ +CV_EXPORTS_W double norm(InputArray src1, InputArray src2, + int normType = NORM_L2, InputArray mask = noArray()); +/** @overload +@param src first input array. +@param normType type of the norm (see cv::NormTypes). +*/ +CV_EXPORTS double norm( const SparseMat& src, int normType ); + +/** @brief computes PSNR image/video quality metric + +see http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for details +@todo document + */ +CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2); + +/** @brief naive nearest neighbor finder + +see http://en.wikipedia.org/wiki/Nearest_neighbor_search +@todo document + */ +CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2, + OutputArray dist, int dtype, OutputArray nidx, + int normType = NORM_L2, int K = 0, + InputArray mask = noArray(), int update = 0, + bool crosscheck = false); + +/** @brief Normalizes the norm or value range of an array. + +The function cv::normalize normalizes scale and shift the input array elements so that +\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f] +(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that +\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f] + +when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be +normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this +sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or +min-max but modify the whole array, you can use norm and Mat::convertTo. + +In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, +the range transformation for sparse matrices is not allowed since it can shift the zero level. + +Possible usage with some positive example data: +@code{.cpp} + vector<double> positiveData = { 2.0, 8.0, 10.0 }; + vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax; + + // Norm to probability (total count) + // sum(numbers) = 20.0 + // 2.0 0.1 (2.0/20.0) + // 8.0 0.4 (8.0/20.0) + // 10.0 0.5 (10.0/20.0) + normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1); + + // Norm to unit vector: ||positiveData|| = 1.0 + // 2.0 0.15 + // 8.0 0.62 + // 10.0 0.77 + normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2); + + // Norm to max element + // 2.0 0.2 (2.0/10.0) + // 8.0 0.8 (8.0/10.0) + // 10.0 1.0 (10.0/10.0) + normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF); + + // Norm to range [0.0;1.0] + // 2.0 0.0 (shift to left border) + // 8.0 0.75 (6.0/8.0) + // 10.0 1.0 (shift to right border) + normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX); +@endcode + +@param src input array. +@param dst output array of the same size as src . +@param alpha norm value to normalize to or the lower range boundary in case of the range +normalization. +@param beta upper range boundary in case of the range normalization; it is not used for the norm +normalization. +@param norm_type normalization type (see cv::NormTypes). +@param dtype when negative, the output array has the same type as src; otherwise, it has the same +number of channels as src and the depth =CV_MAT_DEPTH(dtype). +@param mask optional operation mask. +@sa norm, Mat::convertTo, SparseMat::convertTo +*/ +CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0, + int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray()); + +/** @overload +@param src input array. +@param dst output array of the same size as src . +@param alpha norm value to normalize to or the lower range boundary in case of the range +normalization. +@param normType normalization type (see cv::NormTypes). +*/ +CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType ); + +/** @brief Finds the global minimum and maximum in an array. + +The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The +extremums are searched across the whole array or, if mask is not an empty array, in the specified +array region. + +The function do not work with multi-channel arrays. If you need to find minimum or maximum +elements across all the channels, use Mat::reshape first to reinterpret the array as +single-channel. Or you may extract the particular channel using either extractImageCOI , or +mixChannels , or split . +@param src input single-channel array. +@param minVal pointer to the returned minimum value; NULL is used if not required. +@param maxVal pointer to the returned maximum value; NULL is used if not required. +@param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required. +@param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required. +@param mask optional mask used to select a sub-array. +@sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape +*/ +CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal, + CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0, + CV_OUT Point* maxLoc = 0, InputArray mask = noArray()); + + +/** @brief Finds the global minimum and maximum in an array + +The function cv::minMaxIdx finds the minimum and maximum element values and their positions. The +extremums are searched across the whole array or, if mask is not an empty array, in the specified +array region. The function does not work with multi-channel arrays. If you need to find minimum or +maximum elements across all the channels, use Mat::reshape first to reinterpret the array as +single-channel. Or you may extract the particular channel using either extractImageCOI , or +mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements +only. +@note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is +a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2 +dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be +(i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be +(0,j1)/(0,j2)). +@param src input single-channel array. +@param minVal pointer to the returned minimum value; NULL is used if not required. +@param maxVal pointer to the returned maximum value; NULL is used if not required. +@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required; +Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element +in each dimension are stored there sequentially. +@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required. +@param mask specified array region +*/ +CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0, + int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray()); + +/** @overload +@param a input single-channel array. +@param minVal pointer to the returned minimum value; NULL is used if not required. +@param maxVal pointer to the returned maximum value; NULL is used if not required. +@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required; +Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element +in each dimension are stored there sequentially. +@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required. +*/ +CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal, + double* maxVal, int* minIdx = 0, int* maxIdx = 0); + +/** @brief Reduces a matrix to a vector. + +The function cv::reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of +1D vectors and performing the specified operation on the vectors until a single row/column is +obtained. For example, the function can be used to compute horizontal and vertical projections of a +raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one. +In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy. +And multi-channel arrays are also supported in these two reduction modes. +@param src input 2D matrix. +@param dst output vector. Its size and type is defined by dim and dtype parameters. +@param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to +a single row. 1 means that the matrix is reduced to a single column. +@param rtype reduction operation that could be one of cv::ReduceTypes +@param dtype when negative, the output vector will have the same type as the input matrix, +otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()). +@sa repeat +*/ +CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1); + +/** @brief Creates one multi-channel array out of several single-channel ones. + +The function cv::merge merges several arrays to make a single multi-channel array. That is, each +element of the output array will be a concatenation of the elements of the input arrays, where +elements of i-th input array are treated as mv[i].channels()-element vectors. + +The function cv::split does the reverse operation. If you need to shuffle channels in some other +advanced way, use cv::mixChannels. +@param mv input array of matrices to be merged; all the matrices in mv must have the same +size and the same depth. +@param count number of input matrices when mv is a plain C array; it must be greater than zero. +@param dst output array of the same size and the same depth as mv[0]; The number of channels will +be equal to the parameter count. +@sa mixChannels, split, Mat::reshape +*/ +CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst); + +/** @overload +@param mv input vector of matrices to be merged; all the matrices in mv must have the same +size and the same depth. +@param dst output array of the same size and the same depth as mv[0]; The number of channels will +be the total number of channels in the matrix array. + */ +CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst); + +/** @brief Divides a multi-channel array into several single-channel arrays. + +The function cv::split splits a multi-channel array into separate single-channel arrays: +\f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f] +If you need to extract a single channel or do some other sophisticated channel permutation, use +mixChannels . +@param src input multi-channel array. +@param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are +reallocated, if needed. +@sa merge, mixChannels, cvtColor +*/ +CV_EXPORTS void split(const Mat& src, Mat* mvbegin); + +/** @overload +@param m input multi-channel array. +@param mv output vector of arrays; the arrays themselves are reallocated, if needed. +*/ +CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv); + +/** @brief Copies specified channels from input arrays to the specified channels of +output arrays. + +The function cv::mixChannels provides an advanced mechanism for shuffling image channels. + +cv::split,cv::merge,cv::extractChannel,cv::insertChannel and some forms of cv::cvtColor are partial cases of cv::mixChannels. + +In the example below, the code splits a 4-channel BGRA image into a 3-channel BGR (with B and R +channels swapped) and a separate alpha-channel image: +@code{.cpp} + Mat bgra( 100, 100, CV_8UC4, Scalar(255,0,0,255) ); + Mat bgr( bgra.rows, bgra.cols, CV_8UC3 ); + Mat alpha( bgra.rows, bgra.cols, CV_8UC1 ); + + // forming an array of matrices is a quite efficient operation, + // because the matrix data is not copied, only the headers + Mat out[] = { bgr, alpha }; + // bgra[0] -> bgr[2], bgra[1] -> bgr[1], + // bgra[2] -> bgr[0], bgra[3] -> alpha[0] + int from_to[] = { 0,2, 1,1, 2,0, 3,3 }; + mixChannels( &bgra, 1, out, 2, from_to, 4 ); +@endcode +@note Unlike many other new-style C++ functions in OpenCV (see the introduction section and +Mat::create ), cv::mixChannels requires the output arrays to be pre-allocated before calling the +function. +@param src input array or vector of matrices; all of the matrices must have the same size and the +same depth. +@param nsrcs number of matrices in `src`. +@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and +depth must be the same as in `src[0]`. +@param ndsts number of matrices in `dst`. +@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is +a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in +dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to +src[0].channels()-1, the second input image channels are indexed from src[0].channels() to +src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image +channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is +filled with zero . +@param npairs number of index pairs in `fromTo`. +@sa split, merge, extractChannel, insertChannel, cvtColor +*/ +CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, + const int* fromTo, size_t npairs); + +/** @overload +@param src input array or vector of matrices; all of the matrices must have the same size and the +same depth. +@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and +depth must be the same as in src[0]. +@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is +a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in +dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to +src[0].channels()-1, the second input image channels are indexed from src[0].channels() to +src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image +channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is +filled with zero . +@param npairs number of index pairs in fromTo. +*/ +CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, + const int* fromTo, size_t npairs); + +/** @overload +@param src input array or vector of matrices; all of the matrices must have the same size and the +same depth. +@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and +depth must be the same as in src[0]. +@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is +a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in +dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to +src[0].channels()-1, the second input image channels are indexed from src[0].channels() to +src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image +channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is +filled with zero . +*/ +CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, + const std::vector<int>& fromTo); + +/** @brief Extracts a single channel from src (coi is 0-based index) +@param src input array +@param dst output array +@param coi index of channel to extract +@sa mixChannels, split +*/ +CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi); + +/** @brief Inserts a single channel to dst (coi is 0-based index) +@param src input array +@param dst output array +@param coi index of channel for insertion +@sa mixChannels, merge +*/ +CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi); + +/** @brief Flips a 2D array around vertical, horizontal, or both axes. + +The function cv::flip flips the array in one of three different ways (row +and column indices are 0-based): +\f[\texttt{dst} _{ij} = +\left\{ +\begin{array}{l l} +\texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\ +\texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\ +\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\ +\end{array} +\right.\f] +The example scenarios of using the function are the following: +* Vertical flipping of the image (flipCode == 0) to switch between + top-left and bottom-left image origin. This is a typical operation + in video processing on Microsoft Windows\* OS. +* Horizontal flipping of the image with the subsequent horizontal + shift and absolute difference calculation to check for a + vertical-axis symmetry (flipCode \> 0). +* Simultaneous horizontal and vertical flipping of the image with + the subsequent shift and absolute difference calculation to check + for a central symmetry (flipCode \< 0). +* Reversing the order of point arrays (flipCode \> 0 or + flipCode == 0). +@param src input array. +@param dst output array of the same size and type as src. +@param flipCode a flag to specify how to flip the array; 0 means +flipping around the x-axis and positive value (for example, 1) means +flipping around y-axis. Negative value (for example, -1) means flipping +around both axes. +@sa transpose , repeat , completeSymm +*/ +CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode); + +enum RotateFlags { + ROTATE_90_CLOCKWISE = 0, //Rotate 90 degrees clockwise + ROTATE_180 = 1, //Rotate 180 degrees clockwise + ROTATE_90_COUNTERCLOCKWISE = 2, //Rotate 270 degrees clockwise +}; +/** @brief Rotates a 2D array in multiples of 90 degrees. +The function rotate rotates the array in one of three different ways: +* Rotate by 90 degrees clockwise (rotateCode = ROTATE_90). +* Rotate by 180 degrees clockwise (rotateCode = ROTATE_180). +* Rotate by 270 degrees clockwise (rotateCode = ROTATE_270). +@param src input array. +@param dst output array of the same type as src. The size is the same with ROTATE_180, +and the rows and cols are switched for ROTATE_90 and ROTATE_270. +@param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags +@sa transpose , repeat , completeSymm, flip, RotateFlags +*/ +CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode); + +/** @brief Fills the output array with repeated copies of the input array. + +The function cv::repeat duplicates the input array one or more times along each of the two axes: +\f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f] +The second variant of the function is more convenient to use with @ref MatrixExpressions. +@param src input array to replicate. +@param ny Flag to specify how many times the `src` is repeated along the +vertical axis. +@param nx Flag to specify how many times the `src` is repeated along the +horizontal axis. +@param dst output array of the same type as `src`. +@sa cv::reduce +*/ +CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst); + +/** @overload +@param src input array to replicate. +@param ny Flag to specify how many times the `src` is repeated along the +vertical axis. +@param nx Flag to specify how many times the `src` is repeated along the +horizontal axis. + */ +CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx); + +/** @brief Applies horizontal concatenation to given matrices. + +The function horizontally concatenates two or more cv::Mat matrices (with the same number of rows). +@code{.cpp} + cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)), + cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)), + cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),}; + + cv::Mat out; + cv::hconcat( matArray, 3, out ); + //out: + //[1, 2, 3; + // 1, 2, 3; + // 1, 2, 3; + // 1, 2, 3] +@endcode +@param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth. +@param nsrc number of matrices in src. +@param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src. +@sa cv::vconcat(const Mat*, size_t, OutputArray), @sa cv::vconcat(InputArrayOfArrays, OutputArray) and @sa cv::vconcat(InputArray, InputArray, OutputArray) +*/ +CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst); +/** @overload + @code{.cpp} + cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 4, + 2, 5, + 3, 6); + cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 7, 10, + 8, 11, + 9, 12); + + cv::Mat C; + cv::hconcat(A, B, C); + //C: + //[1, 4, 7, 10; + // 2, 5, 8, 11; + // 3, 6, 9, 12] + @endcode + @param src1 first input array to be considered for horizontal concatenation. + @param src2 second input array to be considered for horizontal concatenation. + @param dst output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2. + */ +CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst); +/** @overload + @code{.cpp} + std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)), + cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)), + cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),}; + + cv::Mat out; + cv::hconcat( matrices, out ); + //out: + //[1, 2, 3; + // 1, 2, 3; + // 1, 2, 3; + // 1, 2, 3] + @endcode + @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth. + @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src. +same depth. + */ +CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst); + +/** @brief Applies vertical concatenation to given matrices. + +The function vertically concatenates two or more cv::Mat matrices (with the same number of cols). +@code{.cpp} + cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)), + cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)), + cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),}; + + cv::Mat out; + cv::vconcat( matArray, 3, out ); + //out: + //[1, 1, 1, 1; + // 2, 2, 2, 2; + // 3, 3, 3, 3] +@endcode +@param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth. +@param nsrc number of matrices in src. +@param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src. +@sa cv::hconcat(const Mat*, size_t, OutputArray), @sa cv::hconcat(InputArrayOfArrays, OutputArray) and @sa cv::hconcat(InputArray, InputArray, OutputArray) +*/ +CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst); +/** @overload + @code{.cpp} + cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 7, + 2, 8, + 3, 9); + cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 4, 10, + 5, 11, + 6, 12); + + cv::Mat C; + cv::vconcat(A, B, C); + //C: + //[1, 7; + // 2, 8; + // 3, 9; + // 4, 10; + // 5, 11; + // 6, 12] + @endcode + @param src1 first input array to be considered for vertical concatenation. + @param src2 second input array to be considered for vertical concatenation. + @param dst output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2. + */ +CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst); +/** @overload + @code{.cpp} + std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)), + cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)), + cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),}; + + cv::Mat out; + cv::vconcat( matrices, out ); + //out: + //[1, 1, 1, 1; + // 2, 2, 2, 2; + // 3, 3, 3, 3] + @endcode + @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth + @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src. +same depth. + */ +CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst); + +/** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2) +Calculates the per-element bit-wise conjunction of two arrays or an +array and a scalar. + +The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for: +* Two arrays when src1 and src2 have the same size: + \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +* An array and a scalar when src2 is constructed from Scalar or has + the same number of elements as `src1.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f] +* A scalar and an array when src1 is constructed from Scalar or has + the same number of elements as `src2.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +In case of floating-point arrays, their machine-specific bit +representations (usually IEEE754-compliant) are used for the operation. +In case of multi-channel arrays, each channel is processed +independently. In the second and third cases above, the scalar is first +converted to the array type. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and type as the input +arrays. +@param mask optional operation mask, 8-bit single channel array, that +specifies elements of the output array to be changed. +*/ +CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2, + OutputArray dst, InputArray mask = noArray()); + +/** @brief Calculates the per-element bit-wise disjunction of two arrays or an +array and a scalar. + +The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for: +* Two arrays when src1 and src2 have the same size: + \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +* An array and a scalar when src2 is constructed from Scalar or has + the same number of elements as `src1.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f] +* A scalar and an array when src1 is constructed from Scalar or has + the same number of elements as `src2.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +In case of floating-point arrays, their machine-specific bit +representations (usually IEEE754-compliant) are used for the operation. +In case of multi-channel arrays, each channel is processed +independently. In the second and third cases above, the scalar is first +converted to the array type. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and type as the input +arrays. +@param mask optional operation mask, 8-bit single channel array, that +specifies elements of the output array to be changed. +*/ +CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2, + OutputArray dst, InputArray mask = noArray()); + +/** @brief Calculates the per-element bit-wise "exclusive or" operation on two +arrays or an array and a scalar. + +The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or" +operation for: +* Two arrays when src1 and src2 have the same size: + \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +* An array and a scalar when src2 is constructed from Scalar or has + the same number of elements as `src1.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f] +* A scalar and an array when src1 is constructed from Scalar or has + the same number of elements as `src2.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +In case of floating-point arrays, their machine-specific bit +representations (usually IEEE754-compliant) are used for the operation. +In case of multi-channel arrays, each channel is processed +independently. In the 2nd and 3rd cases above, the scalar is first +converted to the array type. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and type as the input +arrays. +@param mask optional operation mask, 8-bit single channel array, that +specifies elements of the output array to be changed. +*/ +CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2, + OutputArray dst, InputArray mask = noArray()); + +/** @brief Inverts every bit of an array. + +The function cv::bitwise_not calculates per-element bit-wise inversion of the input +array: +\f[\texttt{dst} (I) = \neg \texttt{src} (I)\f] +In case of a floating-point input array, its machine-specific bit +representation (usually IEEE754-compliant) is used for the operation. In +case of multi-channel arrays, each channel is processed independently. +@param src input array. +@param dst output array that has the same size and type as the input +array. +@param mask optional operation mask, 8-bit single channel array, that +specifies elements of the output array to be changed. +*/ +CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst, + InputArray mask = noArray()); + +/** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar. + +The function cv::absdiff calculates: +* Absolute difference between two arrays when they have the same + size and type: + \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f] +* Absolute difference between an array and a scalar when the second + array is constructed from Scalar or has as many elements as the + number of channels in `src1`: + \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\f] +* Absolute difference between a scalar and an array when the first + array is constructed from Scalar or has as many elements as the + number of channels in `src2`: + \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\f] + where I is a multi-dimensional index of array elements. In case of + multi-channel arrays, each channel is processed independently. +@note Saturation is not applied when the arrays have the depth CV_32S. +You may even get a negative value in the case of overflow. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and type as input arrays. +@sa cv::abs(const Mat&) +*/ +CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst); + +/** @brief Checks if array elements lie between the elements of two other arrays. + +The function checks the range as follows: +- For every element of a single-channel input array: + \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\f] +- For two-channel arrays: + \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\f] +- and so forth. + +That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the +specified 1D, 2D, 3D, ... box and 0 otherwise. + +When the lower and/or upper boundary parameters are scalars, the indexes +(I) at lowerb and upperb in the above formulas should be omitted. +@param src first input array. +@param lowerb inclusive lower boundary array or a scalar. +@param upperb inclusive upper boundary array or a scalar. +@param dst output array of the same size as src and CV_8U type. +*/ +CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb, + InputArray upperb, OutputArray dst); + +/** @brief Performs the per-element comparison of two arrays or an array and scalar value. + +The function compares: +* Elements of two arrays when src1 and src2 have the same size: + \f[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\f] +* Elements of src1 with a scalar src2 when src2 is constructed from + Scalar or has a single element: + \f[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\f] +* src1 with elements of src2 when src1 is constructed from Scalar or + has a single element: + \f[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\f] +When the comparison result is true, the corresponding element of output +array is set to 255. The comparison operations can be replaced with the +equivalent matrix expressions: +@code{.cpp} + Mat dst1 = src1 >= src2; + Mat dst2 = src1 < 8; + ... +@endcode +@param src1 first input array or a scalar; when it is an array, it must have a single channel. +@param src2 second input array or a scalar; when it is an array, it must have a single channel. +@param dst output array of type ref CV_8U that has the same size and the same number of channels as + the input arrays. +@param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes) +@sa checkRange, min, max, threshold +*/ +CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop); + +/** @brief Calculates per-element minimum of two arrays or an array and a scalar. + +The function cv::min calculates the per-element minimum of two arrays: +\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f] +or array and a scalar: +\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f] +@param src1 first input array. +@param src2 second input array of the same size and type as src1. +@param dst output array of the same size and type as src1. +@sa max, compare, inRange, minMaxLoc +*/ +CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst); +/** @overload +needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) +*/ +CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst); +/** @overload +needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) +*/ +CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst); + +/** @brief Calculates per-element maximum of two arrays or an array and a scalar. + +The function cv::max calculates the per-element maximum of two arrays: +\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f] +or array and a scalar: +\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f] +@param src1 first input array. +@param src2 second input array of the same size and type as src1 . +@param dst output array of the same size and type as src1. +@sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions +*/ +CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst); +/** @overload +needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) +*/ +CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst); +/** @overload +needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) +*/ +CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst); + +/** @brief Calculates a square root of array elements. + +The function cv::sqrt calculates a square root of each input array element. +In case of multi-channel arrays, each channel is processed +independently. The accuracy is approximately the same as of the built-in +std::sqrt . +@param src input floating-point array. +@param dst output array of the same size and type as src. +*/ +CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst); + +/** @brief Raises every array element to a power. + +The function cv::pow raises every element of the input array to power : +\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f] + +So, for a non-integer power exponent, the absolute values of input array +elements are used. However, it is possible to get true values for +negative values using some extra operations. In the example below, +computing the 5th root of array src shows: +@code{.cpp} + Mat mask = src < 0; + pow(src, 1./5, dst); + subtract(Scalar::all(0), dst, dst, mask); +@endcode +For some values of power, such as integer values, 0.5 and -0.5, +specialized faster algorithms are used. + +Special values (NaN, Inf) are not handled. +@param src input array. +@param power exponent of power. +@param dst output array of the same size and type as src. +@sa sqrt, exp, log, cartToPolar, polarToCart +*/ +CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst); + +/** @brief Calculates the exponent of every array element. + +The function cv::exp calculates the exponent of every element of the input +array: +\f[\texttt{dst} [I] = e^{ src(I) }\f] + +The maximum relative error is about 7e-6 for single-precision input and +less than 1e-10 for double-precision input. Currently, the function +converts denormalized values to zeros on output. Special values (NaN, +Inf) are not handled. +@param src input array. +@param dst output array of the same size and type as src. +@sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude +*/ +CV_EXPORTS_W void exp(InputArray src, OutputArray dst); + +/** @brief Calculates the natural logarithm of every array element. + +The function cv::log calculates the natural logarithm of every element of the input array: +\f[\texttt{dst} (I) = \log (\texttt{src}(I)) \f] + +Output on zero, negative and special (NaN, Inf) values is undefined. + +@param src input array. +@param dst output array of the same size and type as src . +@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude +*/ +CV_EXPORTS_W void log(InputArray src, OutputArray dst); + +/** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle. + +The function cv::polarToCart calculates the Cartesian coordinates of each 2D +vector represented by the corresponding elements of magnitude and angle: +\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f] + +The relative accuracy of the estimated coordinates is about 1e-6. +@param magnitude input floating-point array of magnitudes of 2D vectors; +it can be an empty matrix (=Mat()), in this case, the function assumes +that all the magnitudes are =1; if it is not empty, it must have the +same size and type as angle. +@param angle input floating-point array of angles of 2D vectors. +@param x output array of x-coordinates of 2D vectors; it has the same +size and type as angle. +@param y output array of y-coordinates of 2D vectors; it has the same +size and type as angle. +@param angleInDegrees when true, the input angles are measured in +degrees, otherwise, they are measured in radians. +@sa cartToPolar, magnitude, phase, exp, log, pow, sqrt +*/ +CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle, + OutputArray x, OutputArray y, bool angleInDegrees = false); + +/** @brief Calculates the magnitude and angle of 2D vectors. + +The function cv::cartToPolar calculates either the magnitude, angle, or both +for every 2D vector (x(I),y(I)): +\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f] + +The angles are calculated with accuracy about 0.3 degrees. For the point +(0,0), the angle is set to 0. +@param x array of x-coordinates; this must be a single-precision or +double-precision floating-point array. +@param y array of y-coordinates, that must have the same size and same type as x. +@param magnitude output array of magnitudes of the same size and type as x. +@param angle output array of angles that has the same size and type as +x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees). +@param angleInDegrees a flag, indicating whether the angles are measured +in radians (which is by default), or in degrees. +@sa Sobel, Scharr +*/ +CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y, + OutputArray magnitude, OutputArray angle, + bool angleInDegrees = false); + +/** @brief Calculates the rotation angle of 2D vectors. + +The function cv::phase calculates the rotation angle of each 2D vector that +is formed from the corresponding elements of x and y : +\f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f] + +The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 , +the corresponding angle(I) is set to 0. +@param x input floating-point array of x-coordinates of 2D vectors. +@param y input array of y-coordinates of 2D vectors; it must have the +same size and the same type as x. +@param angle output array of vector angles; it has the same size and +same type as x . +@param angleInDegrees when true, the function calculates the angle in +degrees, otherwise, they are measured in radians. +*/ +CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle, + bool angleInDegrees = false); + +/** @brief Calculates the magnitude of 2D vectors. + +The function cv::magnitude calculates the magnitude of 2D vectors formed +from the corresponding elements of x and y arrays: +\f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f] +@param x floating-point array of x-coordinates of the vectors. +@param y floating-point array of y-coordinates of the vectors; it must +have the same size as x. +@param magnitude output array of the same size and type as x. +@sa cartToPolar, polarToCart, phase, sqrt +*/ +CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude); + +/** @brief Checks every element of an input array for invalid values. + +The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \> +-DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and +maxVal. In case of multi-channel arrays, each channel is processed independently. If some values +are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the +function either returns false (when quiet=true) or throws an exception. +@param a input array. +@param quiet a flag, indicating whether the functions quietly return false when the array elements +are out of range or they throw an exception. +@param pos optional output parameter, when not NULL, must be a pointer to array of src.dims +elements. +@param minVal inclusive lower boundary of valid values range. +@param maxVal exclusive upper boundary of valid values range. +*/ +CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0, + double minVal = -DBL_MAX, double maxVal = DBL_MAX); + +/** @brief converts NaN's to the given number +*/ +CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0); + +/** @brief Performs generalized matrix multiplication. + +The function cv::gemm performs generalized matrix multiplication similar to the +gemm functions in BLAS level 3. For example, +`gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)` +corresponds to +\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f] + +In case of complex (two-channel) data, performed a complex matrix +multiplication. + +The function can be replaced with a matrix expression. For example, the +above call can be replaced with: +@code{.cpp} + dst = alpha*src1.t()*src2 + beta*src3.t(); +@endcode +@param src1 first multiplied input matrix that could be real(CV_32FC1, +CV_64FC1) or complex(CV_32FC2, CV_64FC2). +@param src2 second multiplied input matrix of the same type as src1. +@param alpha weight of the matrix product. +@param src3 third optional delta matrix added to the matrix product; it +should have the same type as src1 and src2. +@param beta weight of src3. +@param dst output matrix; it has the proper size and the same type as +input matrices. +@param flags operation flags (cv::GemmFlags) +@sa mulTransposed , transform +*/ +CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha, + InputArray src3, double beta, OutputArray dst, int flags = 0); + +/** @brief Calculates the product of a matrix and its transposition. + +The function cv::mulTransposed calculates the product of src and its +transposition: +\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f] +if aTa=true , and +\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f] +otherwise. The function is used to calculate the covariance matrix. With +zero delta, it can be used as a faster substitute for general matrix +product A\*B when B=A' +@param src input single-channel matrix. Note that unlike gemm, the +function can multiply not only floating-point matrices. +@param dst output square matrix. +@param aTa Flag specifying the multiplication ordering. See the +description below. +@param delta Optional delta matrix subtracted from src before the +multiplication. When the matrix is empty ( delta=noArray() ), it is +assumed to be zero, that is, nothing is subtracted. If it has the same +size as src , it is simply subtracted. Otherwise, it is "repeated" (see +repeat ) to cover the full src and then subtracted. Type of the delta +matrix, when it is not empty, must be the same as the type of created +output matrix. See the dtype parameter description below. +@param scale Optional scale factor for the matrix product. +@param dtype Optional type of the output matrix. When it is negative, +the output matrix will have the same type as src . Otherwise, it will be +type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F . +@sa calcCovarMatrix, gemm, repeat, reduce +*/ +CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa, + InputArray delta = noArray(), + double scale = 1, int dtype = -1 ); + +/** @brief Transposes a matrix. + +The function cv::transpose transposes the matrix src : +\f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f] +@note No complex conjugation is done in case of a complex matrix. It it +should be done separately if needed. +@param src input array. +@param dst output array of the same type as src. +*/ +CV_EXPORTS_W void transpose(InputArray src, OutputArray dst); + +/** @brief Performs the matrix transformation of every array element. + +The function cv::transform performs the matrix transformation of every +element of the array src and stores the results in dst : +\f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f] +(when m.cols=src.channels() ), or +\f[\texttt{dst} (I) = \texttt{m} \cdot [ \texttt{src} (I); 1]\f] +(when m.cols=src.channels()+1 ) + +Every element of the N -channel array src is interpreted as N -element +vector that is transformed using the M x N or M x (N+1) matrix m to +M-element vector - the corresponding element of the output array dst . + +The function may be used for geometrical transformation of +N -dimensional points, arbitrary linear color space transformation (such +as various kinds of RGB to YUV transforms), shuffling the image +channels, and so forth. +@param src input array that must have as many channels (1 to 4) as +m.cols or m.cols-1. +@param dst output array of the same size and depth as src; it has as +many channels as m.rows. +@param m transformation 2x2 or 2x3 floating-point matrix. +@sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective +*/ +CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m ); + +/** @brief Performs the perspective matrix transformation of vectors. + +The function cv::perspectiveTransform transforms every element of src by +treating it as a 2D or 3D vector, in the following way: +\f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f] +where +\f[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\f] +and +\f[w = \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f] + +Here a 3D vector transformation is shown. In case of a 2D vector +transformation, the z component is omitted. + +@note The function transforms a sparse set of 2D or 3D vectors. If you +want to transform an image using perspective transformation, use +warpPerspective . If you have an inverse problem, that is, you want to +compute the most probable perspective transformation out of several +pairs of corresponding points, you can use getPerspectiveTransform or +findHomography . +@param src input two-channel or three-channel floating-point array; each +element is a 2D/3D vector to be transformed. +@param dst output array of the same size and type as src. +@param m 3x3 or 4x4 floating-point transformation matrix. +@sa transform, warpPerspective, getPerspectiveTransform, findHomography +*/ +CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m ); + +/** @brief Copies the lower or the upper half of a square matrix to another half. + +The function cv::completeSymm copies the lower half of a square matrix to +its another half. The matrix diagonal remains unchanged: +* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if + lowerToUpper=false +* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if + lowerToUpper=true +@param mtx input-output floating-point square matrix. +@param lowerToUpper operation flag; if true, the lower half is copied to +the upper half. Otherwise, the upper half is copied to the lower half. +@sa flip, transpose +*/ +CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false); + +/** @brief Initializes a scaled identity matrix. + +The function cv::setIdentity initializes a scaled identity matrix: +\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f] + +The function can also be emulated using the matrix initializers and the +matrix expressions: +@code + Mat A = Mat::eye(4, 3, CV_32F)*5; + // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]] +@endcode +@param mtx matrix to initialize (not necessarily square). +@param s value to assign to diagonal elements. +@sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator= +*/ +CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1)); + +/** @brief Returns the determinant of a square floating-point matrix. + +The function cv::determinant calculates and returns the determinant of the +specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the +direct method is used. For larger matrices, the function uses LU +factorization with partial pivoting. + +For symmetric positively-determined matrices, it is also possible to use +eigen decomposition to calculate the determinant. +@param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and +square size. +@sa trace, invert, solve, eigen, @ref MatrixExpressions +*/ +CV_EXPORTS_W double determinant(InputArray mtx); + +/** @brief Returns the trace of a matrix. + +The function cv::trace returns the sum of the diagonal elements of the +matrix mtx . +\f[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\f] +@param mtx input matrix. +*/ +CV_EXPORTS_W Scalar trace(InputArray mtx); + +/** @brief Finds the inverse or pseudo-inverse of a matrix. + +The function cv::invert inverts the matrix src and stores the result in dst +. When the matrix src is singular or non-square, the function calculates +the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is +minimal, where I is an identity matrix. + +In case of the DECOMP_LU method, the function returns non-zero value if +the inverse has been successfully calculated and 0 if src is singular. + +In case of the DECOMP_SVD method, the function returns the inverse +condition number of src (the ratio of the smallest singular value to the +largest singular value) and 0 if src is singular. The SVD method +calculates a pseudo-inverse matrix if src is singular. + +Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with +non-singular square matrices that should also be symmetrical and +positively defined. In this case, the function stores the inverted +matrix in dst and returns non-zero. Otherwise, it returns 0. + +@param src input floating-point M x N matrix. +@param dst output matrix of N x M size and the same type as src. +@param flags inversion method (cv::DecompTypes) +@sa solve, SVD +*/ +CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU); + +/** @brief Solves one or more linear systems or least-squares problems. + +The function cv::solve solves a linear system or least-squares problem (the +latter is possible with SVD or QR methods, or by specifying the flag +DECOMP_NORMAL ): +\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f] + +If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1 +if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise, +it returns 0. In the latter case, dst is not valid. Other methods find a +pseudo-solution in case of a singular left-hand side part. + +@note If you want to find a unity-norm solution of an under-defined +singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve +will not do the work. Use SVD::solveZ instead. + +@param src1 input matrix on the left-hand side of the system. +@param src2 input matrix on the right-hand side of the system. +@param dst output solution. +@param flags solution (matrix inversion) method (cv::DecompTypes) +@sa invert, SVD, eigen +*/ +CV_EXPORTS_W bool solve(InputArray src1, InputArray src2, + OutputArray dst, int flags = DECOMP_LU); + +/** @brief Sorts each row or each column of a matrix. + +The function cv::sort sorts each matrix row or each matrix column in +ascending or descending order. So you should pass two operation flags to +get desired behaviour. If you want to sort matrix rows or columns +lexicographically, you can use STL std::sort generic function with the +proper comparison predicate. + +@param src input single-channel array. +@param dst output array of the same size and type as src. +@param flags operation flags, a combination of cv::SortFlags +@sa sortIdx, randShuffle +*/ +CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags); + +/** @brief Sorts each row or each column of a matrix. + +The function cv::sortIdx sorts each matrix row or each matrix column in the +ascending or descending order. So you should pass two operation flags to +get desired behaviour. Instead of reordering the elements themselves, it +stores the indices of sorted elements in the output array. For example: +@code + Mat A = Mat::eye(3,3,CV_32F), B; + sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING); + // B will probably contain + // (because of equal elements in A some permutations are possible): + // [[1, 2, 0], [0, 2, 1], [0, 1, 2]] +@endcode +@param src input single-channel array. +@param dst output integer array of the same size as src. +@param flags operation flags that could be a combination of cv::SortFlags +@sa sort, randShuffle +*/ +CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags); + +/** @brief Finds the real roots of a cubic equation. + +The function solveCubic finds the real roots of a cubic equation: +- if coeffs is a 4-element vector: +\f[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\f] +- if coeffs is a 3-element vector: +\f[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\f] + +The roots are stored in the roots array. +@param coeffs equation coefficients, an array of 3 or 4 elements. +@param roots output array of real roots that has 1 or 3 elements. +*/ +CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots); + +/** @brief Finds the real or complex roots of a polynomial equation. + +The function cv::solvePoly finds real and complex roots of a polynomial equation: +\f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f] +@param coeffs array of polynomial coefficients. +@param roots output (complex) array of roots. +@param maxIters maximum number of iterations the algorithm does. +*/ +CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300); + +/** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix. + +The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric +matrix src: +@code + src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t() +@endcode +@note in the new and the old interfaces different ordering of eigenvalues and eigenvectors +parameters is used. +@param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical +(src ^T^ == src). +@param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored +in the descending order. +@param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the +eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding +eigenvalues. +@sa completeSymm , PCA +*/ +CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues, + OutputArray eigenvectors = noArray()); + +/** @brief Calculates the covariance matrix of a set of vectors. + +The function cv::calcCovarMatrix calculates the covariance matrix and, optionally, the mean vector of +the set of input vectors. +@param samples samples stored as separate matrices +@param nsamples number of samples +@param covar output covariance matrix of the type ctype and square size. +@param mean input or output (depending on the flags) array as the average value of the input vectors. +@param flags operation flags as a combination of cv::CovarFlags +@param ctype type of the matrixl; it equals 'CV_64F' by default. +@sa PCA, mulTransposed, Mahalanobis +@todo InputArrayOfArrays +*/ +CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean, + int flags, int ctype = CV_64F); + +/** @overload +@note use cv::COVAR_ROWS or cv::COVAR_COLS flag +@param samples samples stored as rows/columns of a single matrix. +@param covar output covariance matrix of the type ctype and square size. +@param mean input or output (depending on the flags) array as the average value of the input vectors. +@param flags operation flags as a combination of cv::CovarFlags +@param ctype type of the matrixl; it equals 'CV_64F' by default. +*/ +CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar, + InputOutputArray mean, int flags, int ctype = CV_64F); + +/** wrap PCA::operator() */ +CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean, + OutputArray eigenvectors, int maxComponents = 0); + +/** wrap PCA::operator() */ +CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean, + OutputArray eigenvectors, double retainedVariance); + +/** wrap PCA::project */ +CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean, + InputArray eigenvectors, OutputArray result); + +/** wrap PCA::backProject */ +CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean, + InputArray eigenvectors, OutputArray result); + +/** wrap SVD::compute */ +CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 ); + +/** wrap SVD::backSubst */ +CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt, + InputArray rhs, OutputArray dst ); + +/** @brief Calculates the Mahalanobis distance between two vectors. + +The function cv::Mahalanobis calculates and returns the weighted distance between two vectors: +\f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f] +The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using +the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate). +@param v1 first 1D input vector. +@param v2 second 1D input vector. +@param icovar inverse covariance matrix. +*/ +CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar); + +/** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array. + +The function cv::dft performs one of the following: +- Forward the Fourier transform of a 1D vector of N elements: + \f[Y = F^{(N)} \cdot X,\f] + where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$ +- Inverse the Fourier transform of a 1D vector of N elements: + \f[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\f] + where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$ +- Forward the 2D Fourier transform of a M x N matrix: + \f[Y = F^{(M)} \cdot X \cdot F^{(N)}\f] +- Inverse the 2D Fourier transform of a M x N matrix: + \f[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\f] + +In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input +spectrum of the inverse Fourier transform can be represented in a packed format called *CCS* +(complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here +is how 2D *CCS* spectrum looks: +\f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f] + +In case of 1D transform of a real vector, the output looks like the first row of the matrix above. + +So, the function chooses an operation mode depending on the flags and size of the input array: +- If DFT_ROWS is set or the input array has a single row or single column, the function + performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set. + Otherwise, it performs a 2D transform. +- If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or + 2D transform: + - When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as + input. + - When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as + input. In case of 2D transform, it uses the packed format as shown above. In case of a + single 1D transform, it looks like the first row of the matrix above. In case of + multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix + looks like the first row of the matrix above. +- If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the + output is a complex array of the same size as input. The function performs a forward or + inverse 1D or 2D transform of the whole input array or each row of the input array + independently, depending on the flags DFT_INVERSE and DFT_ROWS. +- When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT + is set, the output is a real array of the same size as input. The function performs a 1D or 2D + inverse transformation of the whole input array or each individual row, depending on the flags + DFT_INVERSE and DFT_ROWS. + +If DFT_SCALE is set, the scaling is done after the transformation. + +Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed +efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the +current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize +method. + +The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays: +@code + void convolveDFT(InputArray A, InputArray B, OutputArray C) + { + // reallocate the output array if needed + C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type()); + Size dftSize; + // calculate the size of DFT transform + dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1); + dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1); + + // allocate temporary buffers and initialize them with 0's + Mat tempA(dftSize, A.type(), Scalar::all(0)); + Mat tempB(dftSize, B.type(), Scalar::all(0)); + + // copy A and B to the top-left corners of tempA and tempB, respectively + Mat roiA(tempA, Rect(0,0,A.cols,A.rows)); + A.copyTo(roiA); + Mat roiB(tempB, Rect(0,0,B.cols,B.rows)); + B.copyTo(roiB); + + // now transform the padded A & B in-place; + // use "nonzeroRows" hint for faster processing + dft(tempA, tempA, 0, A.rows); + dft(tempB, tempB, 0, B.rows); + + // multiply the spectrums; + // the function handles packed spectrum representations well + mulSpectrums(tempA, tempB, tempA); + + // transform the product back from the frequency domain. + // Even though all the result rows will be non-zero, + // you need only the first C.rows of them, and thus you + // pass nonzeroRows == C.rows + dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows); + + // now copy the result back to C. + tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C); + + // all the temporary buffers will be deallocated automatically + } +@endcode +To optimize this sample, consider the following approaches: +- Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to + the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole + tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols) + rightmost columns of the matrices. +- This DFT-based convolution does not have to be applied to the whole big arrays, especially if B + is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts. + To do this, you need to split the output array C into multiple tiles. For each tile, estimate + which parts of A and B are required to calculate convolution in this tile. If the tiles in C are + too small, the speed will decrease a lot because of repeated work. In the ultimate case, when + each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution + algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and + there is also a slowdown because of bad cache locality. So, there is an optimal tile size + somewhere in the middle. +- If different tiles in C can be calculated in parallel and, thus, the convolution is done by + parts, the loop can be threaded. + +All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by +using them, you can get the performance even better than with the above theoretically optimal +implementation. Though, those two functions actually calculate cross-correlation, not convolution, +so you need to "flip" the second convolution operand B vertically and horizontally using flip . +@note +- An example using the discrete fourier transform can be found at + opencv_source_code/samples/cpp/dft.cpp +- (Python) An example using the dft functionality to perform Wiener deconvolution can be found + at opencv_source/samples/python/deconvolution.py +- (Python) An example rearranging the quadrants of a Fourier image can be found at + opencv_source/samples/python/dft.py +@param src input array that could be real or complex. +@param dst output array whose size and type depends on the flags . +@param flags transformation flags, representing a combination of the cv::DftFlags +@param nonzeroRows when the parameter is not zero, the function assumes that only the first +nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the +output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the +rows more efficiently and save some time; this technique is very useful for calculating array +cross-correlation or convolution using DFT. +@sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar , +magnitude , phase +*/ +CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0); + +/** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array. + +idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) . +@note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of +dft or idft explicitly to make these transforms mutually inverse. +@sa dft, dct, idct, mulSpectrums, getOptimalDFTSize +@param src input floating-point real or complex array. +@param dst output array whose size and type depend on the flags. +@param flags operation flags (see dft and cv::DftFlags). +@param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see +the convolution sample in dft description. +*/ +CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0); + +/** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array. + +The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D +floating-point array: +- Forward Cosine transform of a 1D vector of N elements: + \f[Y = C^{(N)} \cdot X\f] + where + \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f] + and + \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*. +- Inverse Cosine transform of a 1D vector of N elements: + \f[X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y\f] + (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ ) +- Forward 2D Cosine transform of M x N matrix: + \f[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T\f] +- Inverse 2D Cosine transform of M x N matrix: + \f[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\f] + +The function chooses the mode of operation by looking at the flags and size of the input array: +- If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it + is an inverse 1D or 2D transform. +- If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row. +- If the array is a single column or a single row, the function performs a 1D transform. +- If none of the above is true, the function performs a 2D transform. + +@note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you +can pad the array when necessary. +Also, the function performance depends very much, and not monotonically, on the array size (see +getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT +of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as: +@code + size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); } + N1 = getOptimalDCTSize(N); +@endcode +@param src input floating-point array. +@param dst output array of the same size and type as src . +@param flags transformation flags as a combination of cv::DftFlags (DCT_*) +@sa dft , getOptimalDFTSize , idct +*/ +CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0); + +/** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array. + +idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE). +@param src input floating-point single-channel array. +@param dst output array of the same size and type as src. +@param flags operation flags. +@sa dct, dft, idft, getOptimalDFTSize +*/ +CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0); + +/** @brief Performs the per-element multiplication of two Fourier spectrums. + +The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex +matrices that are results of a real or complex Fourier transform. + +The function, together with dft and idft , may be used to calculate convolution (pass conjB=false ) +or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are +simply multiplied (per element) with an optional conjugation of the second-array elements. When the +arrays are real, they are assumed to be CCS-packed (see dft for details). +@param a first input array. +@param b second input array of the same size and type as src1 . +@param c output array of the same size and type as src1 . +@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that +each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value. +@param conjB optional flag that conjugates the second input array before the multiplication (true) +or not (false). +*/ +CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c, + int flags, bool conjB = false); + +/** @brief Returns the optimal DFT size for a given vector size. + +DFT performance is not a monotonic function of a vector size. Therefore, when you calculate +convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to +pad the input data with zeros to get a bit larger array that can be transformed much faster than the +original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process. +Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2) +are also processed quite efficiently. + +The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize +so that the DFT of a vector of size N can be processed efficiently. In the current implementation N += 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r. + +The function returns a negative number if vecsize is too large (very close to INT_MAX ). + +While the function cannot be used directly to estimate the optimal vector size for DCT transform +(since the current DCT implementation supports only even-size vectors), it can be easily processed +as getOptimalDFTSize((vecsize+1)/2)\*2. +@param vecsize vector size. +@sa dft , dct , idft , idct , mulSpectrums +*/ +CV_EXPORTS_W int getOptimalDFTSize(int vecsize); + +/** @brief Returns the default random number generator. + +The function cv::theRNG returns the default random number generator. For each thread, there is a +separate random number generator, so you can use the function safely in multi-thread environments. +If you just need to get a single random number using this generator or initialize an array, you can +use randu or randn instead. But if you are going to generate many random numbers inside a loop, it +is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() . +@sa RNG, randu, randn +*/ +CV_EXPORTS RNG& theRNG(); + +/** @brief Sets state of default random number generator. + +The function cv::setRNGSeed sets state of default random number generator to custom value. +@param seed new state for default random number generator +@sa RNG, randu, randn +*/ +CV_EXPORTS_W void setRNGSeed(int seed); + +/** @brief Generates a single uniformly-distributed random number or an array of random numbers. + +Non-template variant of the function fills the matrix dst with uniformly-distributed +random numbers from the specified range: +\f[\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c\f] +@param dst output array of random numbers; the array must be pre-allocated. +@param low inclusive lower boundary of the generated random numbers. +@param high exclusive upper boundary of the generated random numbers. +@sa RNG, randn, theRNG +*/ +CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high); + +/** @brief Fills the array with normally distributed random numbers. + +The function cv::randn fills the matrix dst with normally distributed random numbers with the specified +mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the +value range of the output array data type. +@param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels. +@param mean mean value (expectation) of the generated random numbers. +@param stddev standard deviation of the generated random numbers; it can be either a vector (in +which case a diagonal standard deviation matrix is assumed) or a square matrix. +@sa RNG, randu +*/ +CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev); + +/** @brief Shuffles the array elements randomly. + +The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and +swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor . +@param dst input/output numerical 1D array. +@param iterFactor scale factor that determines the number of random swap operations (see the details +below). +@param rng optional random number generator used for shuffling; if it is zero, theRNG () is used +instead. +@sa RNG, sort +*/ +CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0); + +/** @brief Principal Component Analysis + +The class is used to calculate a special basis for a set of vectors. The +basis will consist of eigenvectors of the covariance matrix calculated +from the input set of vectors. The class %PCA can also transform +vectors to/from the new coordinate space defined by the basis. Usually, +in this new coordinate system, each vector from the original set (and +any linear combination of such vectors) can be quite accurately +approximated by taking its first few components, corresponding to the +eigenvectors of the largest eigenvalues of the covariance matrix. +Geometrically it means that you calculate a projection of the vector to +a subspace formed by a few eigenvectors corresponding to the dominant +eigenvalues of the covariance matrix. And usually such a projection is +very close to the original vector. So, you can represent the original +vector from a high-dimensional space with a much shorter vector +consisting of the projected vector's coordinates in the subspace. Such a +transformation is also known as Karhunen-Loeve Transform, or KLT. +See http://en.wikipedia.org/wiki/Principal_component_analysis + +The sample below is the function that takes two matrices. The first +function stores a set of vectors (a row per vector) that is used to +calculate PCA. The second function stores another "test" set of vectors +(a row per vector). First, these vectors are compressed with PCA, then +reconstructed back, and then the reconstruction error norm is computed +and printed for each vector. : + +@code{.cpp} +using namespace cv; + +PCA compressPCA(const Mat& pcaset, int maxComponents, + const Mat& testset, Mat& compressed) +{ + PCA pca(pcaset, // pass the data + Mat(), // we do not have a pre-computed mean vector, + // so let the PCA engine to compute it + PCA::DATA_AS_ROW, // indicate that the vectors + // are stored as matrix rows + // (use PCA::DATA_AS_COL if the vectors are + // the matrix columns) + maxComponents // specify, how many principal components to retain + ); + // if there is no test data, just return the computed basis, ready-to-use + if( !testset.data ) + return pca; + CV_Assert( testset.cols == pcaset.cols ); + + compressed.create(testset.rows, maxComponents, testset.type()); + + Mat reconstructed; + for( int i = 0; i < testset.rows; i++ ) + { + Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed; + // compress the vector, the result will be stored + // in the i-th row of the output matrix + pca.project(vec, coeffs); + // and then reconstruct it + pca.backProject(coeffs, reconstructed); + // and measure the error + printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2)); + } + return pca; +} +@endcode +@sa calcCovarMatrix, mulTransposed, SVD, dft, dct +*/ +class CV_EXPORTS PCA +{ +public: + enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows + DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns + USE_AVG = 2 //! + }; + + /** @brief default constructor + + The default constructor initializes an empty %PCA structure. The other + constructors initialize the structure and call PCA::operator()(). + */ + PCA(); + + /** @overload + @param data input samples stored as matrix rows or matrix columns. + @param mean optional mean value; if the matrix is empty (@c noArray()), + the mean is computed from the data. + @param flags operation flags; currently the parameter is only used to + specify the data layout (PCA::Flags) + @param maxComponents maximum number of components that %PCA should + retain; by default, all the components are retained. + */ + PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0); + + /** @overload + @param data input samples stored as matrix rows or matrix columns. + @param mean optional mean value; if the matrix is empty (noArray()), + the mean is computed from the data. + @param flags operation flags; currently the parameter is only used to + specify the data layout (PCA::Flags) + @param retainedVariance Percentage of variance that PCA should retain. + Using this parameter will let the PCA decided how many components to + retain but it will always keep at least 2. + */ + PCA(InputArray data, InputArray mean, int flags, double retainedVariance); + + /** @brief performs %PCA + + The operator performs %PCA of the supplied dataset. It is safe to reuse + the same PCA structure for multiple datasets. That is, if the structure + has been previously used with another dataset, the existing internal + data is reclaimed and the new @ref eigenvalues, @ref eigenvectors and @ref + mean are allocated and computed. + + The computed @ref eigenvalues are sorted from the largest to the smallest and + the corresponding @ref eigenvectors are stored as eigenvectors rows. + + @param data input samples stored as the matrix rows or as the matrix + columns. + @param mean optional mean value; if the matrix is empty (noArray()), + the mean is computed from the data. + @param flags operation flags; currently the parameter is only used to + specify the data layout. (Flags) + @param maxComponents maximum number of components that PCA should + retain; by default, all the components are retained. + */ + PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0); + + /** @overload + @param data input samples stored as the matrix rows or as the matrix + columns. + @param mean optional mean value; if the matrix is empty (noArray()), + the mean is computed from the data. + @param flags operation flags; currently the parameter is only used to + specify the data layout. (PCA::Flags) + @param retainedVariance Percentage of variance that %PCA should retain. + Using this parameter will let the %PCA decided how many components to + retain but it will always keep at least 2. + */ + PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance); + + /** @brief Projects vector(s) to the principal component subspace. + + The methods project one or more vectors to the principal component + subspace, where each vector projection is represented by coefficients in + the principal component basis. The first form of the method returns the + matrix that the second form writes to the result. So the first form can + be used as a part of expression while the second form can be more + efficient in a processing loop. + @param vec input vector(s); must have the same dimensionality and the + same layout as the input data used at %PCA phase, that is, if + DATA_AS_ROW are specified, then `vec.cols==data.cols` + (vector dimensionality) and `vec.rows` is the number of vectors to + project, and the same is true for the PCA::DATA_AS_COL case. + */ + Mat project(InputArray vec) const; + + /** @overload + @param vec input vector(s); must have the same dimensionality and the + same layout as the input data used at PCA phase, that is, if + DATA_AS_ROW are specified, then `vec.cols==data.cols` + (vector dimensionality) and `vec.rows` is the number of vectors to + project, and the same is true for the PCA::DATA_AS_COL case. + @param result output vectors; in case of PCA::DATA_AS_COL, the + output matrix has as many columns as the number of input vectors, this + means that `result.cols==vec.cols` and the number of rows match the + number of principal components (for example, `maxComponents` parameter + passed to the constructor). + */ + void project(InputArray vec, OutputArray result) const; + + /** @brief Reconstructs vectors from their PC projections. + + The methods are inverse operations to PCA::project. They take PC + coordinates of projected vectors and reconstruct the original vectors. + Unless all the principal components have been retained, the + reconstructed vectors are different from the originals. But typically, + the difference is small if the number of components is large enough (but + still much smaller than the original vector dimensionality). As a + result, PCA is used. + @param vec coordinates of the vectors in the principal component + subspace, the layout and size are the same as of PCA::project output + vectors. + */ + Mat backProject(InputArray vec) const; + + /** @overload + @param vec coordinates of the vectors in the principal component + subspace, the layout and size are the same as of PCA::project output + vectors. + @param result reconstructed vectors; the layout and size are the same as + of PCA::project input vectors. + */ + void backProject(InputArray vec, OutputArray result) const; + + /** @brief write PCA objects + + Writes @ref eigenvalues @ref eigenvectors and @ref mean to specified FileStorage + */ + void write(FileStorage& fs) const; + + /** @brief load PCA objects + + Loads @ref eigenvalues @ref eigenvectors and @ref mean from specified FileNode + */ + void read(const FileNode& fn); + + Mat eigenvectors; //!< eigenvectors of the covariation matrix + Mat eigenvalues; //!< eigenvalues of the covariation matrix + Mat mean; //!< mean value subtracted before the projection and added after the back projection +}; + +/** @example pca.cpp + An example using %PCA for dimensionality reduction while maintaining an amount of variance + */ + +/** + @brief Linear Discriminant Analysis + @todo document this class + */ +class CV_EXPORTS LDA +{ +public: + /** @brief constructor + Initializes a LDA with num_components (default 0). + */ + explicit LDA(int num_components = 0); + + /** Initializes and performs a Discriminant Analysis with Fisher's + Optimization Criterion on given data in src and corresponding labels + in labels. If 0 (or less) number of components are given, they are + automatically determined for given data in computation. + */ + LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0); + + /** Serializes this object to a given filename. + */ + void save(const String& filename) const; + + /** Deserializes this object from a given filename. + */ + void load(const String& filename); + + /** Serializes this object to a given cv::FileStorage. + */ + void save(FileStorage& fs) const; + + /** Deserializes this object from a given cv::FileStorage. + */ + void load(const FileStorage& node); + + /** destructor + */ + ~LDA(); + + /** Compute the discriminants for data in src (row aligned) and labels. + */ + void compute(InputArrayOfArrays src, InputArray labels); + + /** Projects samples into the LDA subspace. + src may be one or more row aligned samples. + */ + Mat project(InputArray src); + + /** Reconstructs projections from the LDA subspace. + src may be one or more row aligned projections. + */ + Mat reconstruct(InputArray src); + + /** Returns the eigenvectors of this LDA. + */ + Mat eigenvectors() const { return _eigenvectors; } + + /** Returns the eigenvalues of this LDA. + */ + Mat eigenvalues() const { return _eigenvalues; } + + static Mat subspaceProject(InputArray W, InputArray mean, InputArray src); + static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src); + +protected: + bool _dataAsRow; // unused, but needed for 3.0 ABI compatibility. + int _num_components; + Mat _eigenvectors; + Mat _eigenvalues; + void lda(InputArrayOfArrays src, InputArray labels); +}; + +/** @brief Singular Value Decomposition + +Class for computing Singular Value Decomposition of a floating-point +matrix. The Singular Value Decomposition is used to solve least-square +problems, under-determined linear systems, invert matrices, compute +condition numbers, and so on. + +If you want to compute a condition number of a matrix or an absolute value of +its determinant, you do not need `u` and `vt`. You can pass +flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u +and vt must be computed, which is not necessary most of the time. + +@sa invert, solve, eigen, determinant +*/ +class CV_EXPORTS SVD +{ +public: + enum Flags { + /** allow the algorithm to modify the decomposed matrix; it can save space and speed up + processing. currently ignored. */ + MODIFY_A = 1, + /** indicates that only a vector of singular values `w` is to be processed, while u and vt + will be set to empty matrices */ + NO_UV = 2, + /** when the matrix is not square, by default the algorithm produces u and vt matrices of + sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is + specified, u and vt will be full-size square orthogonal matrices.*/ + FULL_UV = 4 + }; + + /** @brief the default constructor + + initializes an empty SVD structure + */ + SVD(); + + /** @overload + initializes an empty SVD structure and then calls SVD::operator() + @param src decomposed matrix. + @param flags operation flags (SVD::Flags) + */ + SVD( InputArray src, int flags = 0 ); + + /** @brief the operator that performs SVD. The previously allocated u, w and vt are released. + + The operator performs the singular value decomposition of the supplied + matrix. The u,`vt` , and the vector of singular values w are stored in + the structure. The same SVD structure can be reused many times with + different matrices. Each time, if needed, the previous u,`vt` , and w + are reclaimed and the new matrices are created, which is all handled by + Mat::create. + @param src decomposed matrix. + @param flags operation flags (SVD::Flags) + */ + SVD& operator ()( InputArray src, int flags = 0 ); + + /** @brief decomposes matrix and stores the results to user-provided matrices + + The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor + and SVD::operator(), they store the results to the user-provided + matrices: + + @code{.cpp} + Mat A, w, u, vt; + SVD::compute(A, w, u, vt); + @endcode + + @param src decomposed matrix + @param w calculated singular values + @param u calculated left singular vectors + @param vt transposed matrix of right singular values + @param flags operation flags - see SVD::SVD. + */ + static void compute( InputArray src, OutputArray w, + OutputArray u, OutputArray vt, int flags = 0 ); + + /** @overload + computes singular values of a matrix + @param src decomposed matrix + @param w calculated singular values + @param flags operation flags - see SVD::Flags. + */ + static void compute( InputArray src, OutputArray w, int flags = 0 ); + + /** @brief performs back substitution + */ + static void backSubst( InputArray w, InputArray u, + InputArray vt, InputArray rhs, + OutputArray dst ); + + /** @brief solves an under-determined singular linear system + + The method finds a unit-length solution x of a singular linear system + A\*x = 0. Depending on the rank of A, there can be no solutions, a + single solution or an infinite number of solutions. In general, the + algorithm solves the following problem: + \f[dst = \arg \min _{x: \| x \| =1} \| src \cdot x \|\f] + @param src left-hand-side matrix. + @param dst found solution. + */ + static void solveZ( InputArray src, OutputArray dst ); + + /** @brief performs a singular value back substitution. + + The method calculates a back substitution for the specified right-hand + side: + + \f[\texttt{x} = \texttt{vt} ^T \cdot diag( \texttt{w} )^{-1} \cdot \texttt{u} ^T \cdot \texttt{rhs} \sim \texttt{A} ^{-1} \cdot \texttt{rhs}\f] + + Using this technique you can either get a very accurate solution of the + convenient linear system, or the best (in the least-squares terms) + pseudo-solution of an overdetermined linear system. + + @param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to + be solved, where A has been previously decomposed. + + @param dst found solution of the system. + + @note Explicit SVD with the further back substitution only makes sense + if you need to solve many linear systems with the same left-hand side + (for example, src ). If all you need is to solve a single system + (possibly with multiple rhs immediately available), simply call solve + add pass DECOMP_SVD there. It does absolutely the same thing. + */ + void backSubst( InputArray rhs, OutputArray dst ) const; + + /** @todo document */ + template<typename _Tp, int m, int n, int nm> static + void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt ); + + /** @todo document */ + template<typename _Tp, int m, int n, int nm> static + void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w ); + + /** @todo document */ + template<typename _Tp, int m, int n, int nm, int nb> static + void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst ); + + Mat u, w, vt; +}; + +/** @brief Random Number Generator + +Random number generator. It encapsulates the state (currently, a 64-bit +integer) and has methods to return scalar random values and to fill +arrays with random values. Currently it supports uniform and Gaussian +(normal) distributions. The generator uses Multiply-With-Carry +algorithm, introduced by G. Marsaglia ( +<http://en.wikipedia.org/wiki/Multiply-with-carry> ). +Gaussian-distribution random numbers are generated using the Ziggurat +algorithm ( <http://en.wikipedia.org/wiki/Ziggurat_algorithm> ), +introduced by G. Marsaglia and W. W. Tsang. +*/ +class CV_EXPORTS RNG +{ +public: + enum { UNIFORM = 0, + NORMAL = 1 + }; + + /** @brief constructor + + These are the RNG constructors. The first form sets the state to some + pre-defined value, equal to 2\*\*32-1 in the current implementation. The + second form sets the state to the specified value. If you passed state=0 + , the constructor uses the above default value instead to avoid the + singular random number sequence, consisting of all zeros. + */ + RNG(); + /** @overload + @param state 64-bit value used to initialize the RNG. + */ + RNG(uint64 state); + /**The method updates the state using the MWC algorithm and returns the + next 32-bit random number.*/ + unsigned next(); + + /**Each of the methods updates the state using the MWC algorithm and + returns the next random number of the specified type. In case of integer + types, the returned number is from the available value range for the + specified type. In case of floating-point types, the returned value is + from [0,1) range. + */ + operator uchar(); + /** @overload */ + operator schar(); + /** @overload */ + operator ushort(); + /** @overload */ + operator short(); + /** @overload */ + operator unsigned(); + /** @overload */ + operator int(); + /** @overload */ + operator float(); + /** @overload */ + operator double(); + + /** @brief returns a random integer sampled uniformly from [0, N). + + The methods transform the state using the MWC algorithm and return the + next random number. The first form is equivalent to RNG::next . The + second form returns the random number modulo N , which means that the + result is in the range [0, N) . + */ + unsigned operator ()(); + /** @overload + @param N upper non-inclusive boundary of the returned random number. + */ + unsigned operator ()(unsigned N); + + /** @brief returns uniformly distributed integer random number from [a,b) range + + The methods transform the state using the MWC algorithm and return the + next uniformly-distributed random number of the specified type, deduced + from the input parameter type, from the range [a, b) . There is a nuance + illustrated by the following sample: + + @code{.cpp} + RNG rng; + + // always produces 0 + double a = rng.uniform(0, 1); + + // produces double from [0, 1) + double a1 = rng.uniform((double)0, (double)1); + + // produces float from [0, 1) + double b = rng.uniform(0.f, 1.f); + + // produces double from [0, 1) + double c = rng.uniform(0., 1.); + + // may cause compiler error because of ambiguity: + // RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)? + double d = rng.uniform(0, 0.999999); + @endcode + + The compiler does not take into account the type of the variable to + which you assign the result of RNG::uniform . The only thing that + matters to the compiler is the type of a and b parameters. So, if you + want a floating-point random number, but the range boundaries are + integer numbers, either put dots in the end, if they are constants, or + use explicit type cast operators, as in the a1 initialization above. + @param a lower inclusive boundary of the returned random numbers. + @param b upper non-inclusive boundary of the returned random numbers. + */ + int uniform(int a, int b); + /** @overload */ + float uniform(float a, float b); + /** @overload */ + double uniform(double a, double b); + + /** @brief Fills arrays with random numbers. + + @param mat 2D or N-dimensional matrix; currently matrices with more than + 4 channels are not supported by the methods, use Mat::reshape as a + possible workaround. + @param distType distribution type, RNG::UNIFORM or RNG::NORMAL. + @param a first distribution parameter; in case of the uniform + distribution, this is an inclusive lower boundary, in case of the normal + distribution, this is a mean value. + @param b second distribution parameter; in case of the uniform + distribution, this is a non-inclusive upper boundary, in case of the + normal distribution, this is a standard deviation (diagonal of the + standard deviation matrix or the full standard deviation matrix). + @param saturateRange pre-saturation flag; for uniform distribution only; + if true, the method will first convert a and b to the acceptable value + range (according to the mat datatype) and then will generate uniformly + distributed random numbers within the range [saturate(a), saturate(b)), + if saturateRange=false, the method will generate uniformly distributed + random numbers in the original range [a, b) and then will saturate them, + it means, for example, that + <tt>theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)</tt> will likely + produce array mostly filled with 0's and 255's, since the range (0, 255) + is significantly smaller than [-DBL_MAX, DBL_MAX). + + Each of the methods fills the matrix with the random values from the + specified distribution. As the new numbers are generated, the RNG state + is updated accordingly. In case of multiple-channel images, every + channel is filled independently, which means that RNG cannot generate + samples from the multi-dimensional Gaussian distribution with + non-diagonal covariance matrix directly. To do that, the method + generates samples from multi-dimensional standard Gaussian distribution + with zero mean and identity covariation matrix, and then transforms them + using transform to get samples from the specified Gaussian distribution. + */ + void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false ); + + /** @brief Returns the next random number sampled from the Gaussian distribution + @param sigma standard deviation of the distribution. + + The method transforms the state using the MWC algorithm and returns the + next random number from the Gaussian distribution N(0,sigma) . That is, + the mean value of the returned random numbers is zero and the standard + deviation is the specified sigma . + */ + double gaussian(double sigma); + + uint64 state; +}; + +/** @brief Mersenne Twister random number generator + +Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c +@todo document + */ +class CV_EXPORTS RNG_MT19937 +{ +public: + RNG_MT19937(); + RNG_MT19937(unsigned s); + void seed(unsigned s); + + unsigned next(); + + operator int(); + operator unsigned(); + operator float(); + operator double(); + + unsigned operator ()(unsigned N); + unsigned operator ()(); + + /** @brief returns uniformly distributed integer random number from [a,b) range + +*/ + int uniform(int a, int b); + /** @brief returns uniformly distributed floating-point random number from [a,b) range + +*/ + float uniform(float a, float b); + /** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range + +*/ + double uniform(double a, double b); + +private: + enum PeriodParameters {N = 624, M = 397}; + unsigned state[N]; + int mti; +}; + +//! @} core_array + +//! @addtogroup core_cluster +//! @{ + +/** @example kmeans.cpp + An example on K-means clustering +*/ + +/** @brief Finds centers of clusters and groups input samples around the clusters. + +The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters +and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a +0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix. + +@note +- (Python) An example on K-means clustering can be found at + opencv_source_code/samples/python/kmeans.py +@param data Data for clustering. An array of N-Dimensional points with float coordinates is needed. +Examples of this array can be: +- Mat points(count, 2, CV_32F); +- Mat points(count, 1, CV_32FC2); +- Mat points(1, count, CV_32FC2); +- std::vector\<cv::Point2f\> points(sampleCount); +@param K Number of clusters to split the set by. +@param bestLabels Input/output integer array that stores the cluster indices for every sample. +@param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or +the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster +centers moves by less than criteria.epsilon on some iteration, the algorithm stops. +@param attempts Flag to specify the number of times the algorithm is executed using different +initial labellings. The algorithm returns the labels that yield the best compactness (see the last +function parameter). +@param flags Flag that can take values of cv::KmeansFlags +@param centers Output matrix of the cluster centers, one row per each cluster center. +@return The function returns the compactness measure that is computed as +\f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f] +after every attempt. The best (minimum) value is chosen and the corresponding labels and the +compactness value are returned by the function. Basically, you can use only the core of the +function, set the number of attempts to 1, initialize labels each time using a custom algorithm, +pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best +(most-compact) clustering. +*/ +CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels, + TermCriteria criteria, int attempts, + int flags, OutputArray centers = noArray() ); + +//! @} core_cluster + +//! @addtogroup core_basic +//! @{ + +/////////////////////////////// Formatted output of cv::Mat /////////////////////////// + +/** @todo document */ +class CV_EXPORTS Formatted +{ +public: + virtual const char* next() = 0; + virtual void reset() = 0; + virtual ~Formatted(); +}; + +/** @todo document */ +class CV_EXPORTS Formatter +{ +public: + enum { FMT_DEFAULT = 0, + FMT_MATLAB = 1, + FMT_CSV = 2, + FMT_PYTHON = 3, + FMT_NUMPY = 4, + FMT_C = 5 + }; + + virtual ~Formatter(); + + virtual Ptr<Formatted> format(const Mat& mtx) const = 0; + + virtual void set32fPrecision(int p = 8) = 0; + virtual void set64fPrecision(int p = 16) = 0; + virtual void setMultiline(bool ml = true) = 0; + + static Ptr<Formatter> get(int fmt = FMT_DEFAULT); + +}; + +static inline +String& operator << (String& out, Ptr<Formatted> fmtd) +{ + fmtd->reset(); + for(const char* str = fmtd->next(); str; str = fmtd->next()) + out += cv::String(str); + return out; +} + +static inline +String& operator << (String& out, const Mat& mtx) +{ + return out << Formatter::get()->format(mtx); +} + +//////////////////////////////////////// Algorithm //////////////////////////////////// + +class CV_EXPORTS Algorithm; + +template<typename _Tp> struct ParamType {}; + + +/** @brief This is a base class for all more or less complex algorithms in OpenCV + +especially for classes of algorithms, for which there can be multiple implementations. The examples +are stereo correspondence (for which there are algorithms like block matching, semi-global block +matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians +models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck +etc.). + +Here is example of SIFT use in your application via Algorithm interface: +@code + #include "opencv2/opencv.hpp" + #include "opencv2/xfeatures2d.hpp" + using namespace cv::xfeatures2d; + + Ptr<Feature2D> sift = SIFT::create(); + FileStorage fs("sift_params.xml", FileStorage::READ); + if( fs.isOpened() ) // if we have file with parameters, read them + { + sift->read(fs["sift_params"]); + fs.release(); + } + else // else modify the parameters and store them; user can later edit the file to use different parameters + { + sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value + { + WriteStructContext ws(fs, "sift_params", CV_NODE_MAP); + sift->write(fs); + } + } + Mat image = imread("myimage.png", 0), descriptors; + vector<KeyPoint> keypoints; + sift->detectAndCompute(image, noArray(), keypoints, descriptors); +@endcode + */ +class CV_EXPORTS_W Algorithm +{ +public: + Algorithm(); + virtual ~Algorithm(); + + /** @brief Clears the algorithm state + */ + CV_WRAP virtual void clear() {} + + /** @brief Stores algorithm parameters in a file storage + */ + virtual void write(FileStorage& fs) const { (void)fs; } + + /** @brief Reads algorithm parameters from a file storage + */ + virtual void read(const FileNode& fn) { (void)fn; } + + /** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read + */ + virtual bool empty() const { return false; } + + /** @brief Reads algorithm from the file node + + This is static template method of Algorithm. It's usage is following (in the case of SVM): + @code + cv::FileStorage fsRead("example.xml", FileStorage::READ); + Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root()); + @endcode + In order to make this method work, the derived class must overwrite Algorithm::read(const + FileNode& fn) and also have static create() method without parameters + (or with all the optional parameters) + */ + template<typename _Tp> static Ptr<_Tp> read(const FileNode& fn) + { + Ptr<_Tp> obj = _Tp::create(); + obj->read(fn); + return !obj->empty() ? obj : Ptr<_Tp>(); + } + + /** @brief Loads algorithm from the file + + @param filename Name of the file to read. + @param objname The optional name of the node to read (if empty, the first top-level node will be used) + + This is static template method of Algorithm. It's usage is following (in the case of SVM): + @code + Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml"); + @endcode + In order to make this method work, the derived class must overwrite Algorithm::read(const + FileNode& fn). + */ + template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String()) + { + FileStorage fs(filename, FileStorage::READ); + FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname]; + if (fn.empty()) return Ptr<_Tp>(); + Ptr<_Tp> obj = _Tp::create(); + obj->read(fn); + return !obj->empty() ? obj : Ptr<_Tp>(); + } + + /** @brief Loads algorithm from a String + + @param strModel The string variable containing the model you want to load. + @param objname The optional name of the node to read (if empty, the first top-level node will be used) + + This is static template method of Algorithm. It's usage is following (in the case of SVM): + @code + Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel); + @endcode + */ + template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String()) + { + FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY); + FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname]; + Ptr<_Tp> obj = _Tp::create(); + obj->read(fn); + return !obj->empty() ? obj : Ptr<_Tp>(); + } + + /** Saves the algorithm to a file. + In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). */ + CV_WRAP virtual void save(const String& filename) const; + + /** Returns the algorithm string identifier. + This string is used as top level xml/yml node tag when the object is saved to a file or string. */ + CV_WRAP virtual String getDefaultName() const; + +protected: + void writeFormat(FileStorage& fs) const; +}; + +struct Param { + enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7, + UNSIGNED_INT=8, UINT64=9, UCHAR=11 }; +}; + + + +template<> struct ParamType<bool> +{ + typedef bool const_param_type; + typedef bool member_type; + + enum { type = Param::BOOLEAN }; +}; + +template<> struct ParamType<int> +{ + typedef int const_param_type; + typedef int member_type; + + enum { type = Param::INT }; +}; + +template<> struct ParamType<double> +{ + typedef double const_param_type; + typedef double member_type; + + enum { type = Param::REAL }; +}; + +template<> struct ParamType<String> +{ + typedef const String& const_param_type; + typedef String member_type; + + enum { type = Param::STRING }; +}; + +template<> struct ParamType<Mat> +{ + typedef const Mat& const_param_type; + typedef Mat member_type; + + enum { type = Param::MAT }; +}; + +template<> struct ParamType<std::vector<Mat> > +{ + typedef const std::vector<Mat>& const_param_type; + typedef std::vector<Mat> member_type; + + enum { type = Param::MAT_VECTOR }; +}; + +template<> struct ParamType<Algorithm> +{ + typedef const Ptr<Algorithm>& const_param_type; + typedef Ptr<Algorithm> member_type; + + enum { type = Param::ALGORITHM }; +}; + +template<> struct ParamType<float> +{ + typedef float const_param_type; + typedef float member_type; + + enum { type = Param::FLOAT }; +}; + +template<> struct ParamType<unsigned> +{ + typedef unsigned const_param_type; + typedef unsigned member_type; + + enum { type = Param::UNSIGNED_INT }; +}; + +template<> struct ParamType<uint64> +{ + typedef uint64 const_param_type; + typedef uint64 member_type; + + enum { type = Param::UINT64 }; +}; + +template<> struct ParamType<uchar> +{ + typedef uchar const_param_type; + typedef uchar member_type; + + enum { type = Param::UCHAR }; +}; + +//! @} core_basic + +} //namespace cv + +#include "opencv2/core/operations.hpp" +#include "opencv2/core/cvstd.inl.hpp" +#include "opencv2/core/utility.hpp" +#include "opencv2/core/optim.hpp" +#include "opencv2/core/ovx.hpp" + +#endif /*OPENCV_CORE_HPP*/
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/affine.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,517 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_AFFINE3_HPP +#define OPENCV_CORE_AFFINE3_HPP + +#ifdef __cplusplus + +#include <opencv2/core.hpp> + +namespace cv +{ + +//! @addtogroup core +//! @{ + + /** @brief Affine transform + @todo document + */ + template<typename T> + class Affine3 + { + public: + typedef T float_type; + typedef Matx<float_type, 3, 3> Mat3; + typedef Matx<float_type, 4, 4> Mat4; + typedef Vec<float_type, 3> Vec3; + + Affine3(); + + //! Augmented affine matrix + Affine3(const Mat4& affine); + + //! Rotation matrix + Affine3(const Mat3& R, const Vec3& t = Vec3::all(0)); + + //! Rodrigues vector + Affine3(const Vec3& rvec, const Vec3& t = Vec3::all(0)); + + //! Combines all contructors above. Supports 4x4, 4x3, 3x3, 1x3, 3x1 sizes of data matrix + explicit Affine3(const Mat& data, const Vec3& t = Vec3::all(0)); + + //! From 16th element array + explicit Affine3(const float_type* vals); + + //! Create identity transform + static Affine3 Identity(); + + //! Rotation matrix + void rotation(const Mat3& R); + + //! Rodrigues vector + void rotation(const Vec3& rvec); + + //! Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix; + void rotation(const Mat& data); + + void linear(const Mat3& L); + void translation(const Vec3& t); + + Mat3 rotation() const; + Mat3 linear() const; + Vec3 translation() const; + + //! Rodrigues vector + Vec3 rvec() const; + + Affine3 inv(int method = cv::DECOMP_SVD) const; + + //! a.rotate(R) is equivalent to Affine(R, 0) * a; + Affine3 rotate(const Mat3& R) const; + + //! a.rotate(rvec) is equivalent to Affine(rvec, 0) * a; + Affine3 rotate(const Vec3& rvec) const; + + //! a.translate(t) is equivalent to Affine(E, t) * a; + Affine3 translate(const Vec3& t) const; + + //! a.concatenate(affine) is equivalent to affine * a; + Affine3 concatenate(const Affine3& affine) const; + + template <typename Y> operator Affine3<Y>() const; + + template <typename Y> Affine3<Y> cast() const; + + Mat4 matrix; + +#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H + Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine); + Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine); + operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const; + operator Eigen::Transform<T, 3, Eigen::Affine>() const; +#endif + }; + + template<typename T> static + Affine3<T> operator*(const Affine3<T>& affine1, const Affine3<T>& affine2); + + template<typename T, typename V> static + V operator*(const Affine3<T>& affine, const V& vector); + + typedef Affine3<float> Affine3f; + typedef Affine3<double> Affine3d; + + static Vec3f operator*(const Affine3f& affine, const Vec3f& vector); + static Vec3d operator*(const Affine3d& affine, const Vec3d& vector); + + template<typename _Tp> class DataType< Affine3<_Tp> > + { + public: + typedef Affine3<_Tp> value_type; + typedef Affine3<typename DataType<_Tp>::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = 16, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; + }; + +//! @} core + +} + +//! @cond IGNORED + +/////////////////////////////////////////////////////////////////////////////////// +// Implementaiton + +template<typename T> inline +cv::Affine3<T>::Affine3() + : matrix(Mat4::eye()) +{} + +template<typename T> inline +cv::Affine3<T>::Affine3(const Mat4& affine) + : matrix(affine) +{} + +template<typename T> inline +cv::Affine3<T>::Affine3(const Mat3& R, const Vec3& t) +{ + rotation(R); + translation(t); + matrix.val[12] = matrix.val[13] = matrix.val[14] = 0; + matrix.val[15] = 1; +} + +template<typename T> inline +cv::Affine3<T>::Affine3(const Vec3& _rvec, const Vec3& t) +{ + rotation(_rvec); + translation(t); + matrix.val[12] = matrix.val[13] = matrix.val[14] = 0; + matrix.val[15] = 1; +} + +template<typename T> inline +cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t) +{ + CV_Assert(data.type() == cv::DataType<T>::type); + + if (data.cols == 4 && data.rows == 4) + { + data.copyTo(matrix); + return; + } + else if (data.cols == 4 && data.rows == 3) + { + rotation(data(Rect(0, 0, 3, 3))); + translation(data(Rect(3, 0, 1, 3))); + return; + } + + rotation(data); + translation(t); + matrix.val[12] = matrix.val[13] = matrix.val[14] = 0; + matrix.val[15] = 1; +} + +template<typename T> inline +cv::Affine3<T>::Affine3(const float_type* vals) : matrix(vals) +{} + +template<typename T> inline +cv::Affine3<T> cv::Affine3<T>::Identity() +{ + return Affine3<T>(cv::Affine3<T>::Mat4::eye()); +} + +template<typename T> inline +void cv::Affine3<T>::rotation(const Mat3& R) +{ + linear(R); +} + +template<typename T> inline +void cv::Affine3<T>::rotation(const Vec3& _rvec) +{ + double theta = norm(_rvec); + + if (theta < DBL_EPSILON) + rotation(Mat3::eye()); + else + { + double c = std::cos(theta); + double s = std::sin(theta); + double c1 = 1. - c; + double itheta = (theta != 0) ? 1./theta : 0.; + + Point3_<T> r = _rvec*itheta; + + Mat3 rrt( r.x*r.x, r.x*r.y, r.x*r.z, r.x*r.y, r.y*r.y, r.y*r.z, r.x*r.z, r.y*r.z, r.z*r.z ); + Mat3 r_x( 0, -r.z, r.y, r.z, 0, -r.x, -r.y, r.x, 0 ); + + // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x] + // where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0] + Mat3 R = c*Mat3::eye() + c1*rrt + s*r_x; + + rotation(R); + } +} + +//Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix; +template<typename T> inline +void cv::Affine3<T>::rotation(const cv::Mat& data) +{ + CV_Assert(data.type() == cv::DataType<T>::type); + + if (data.cols == 3 && data.rows == 3) + { + Mat3 R; + data.copyTo(R); + rotation(R); + } + else if ((data.cols == 3 && data.rows == 1) || (data.cols == 1 && data.rows == 3)) + { + Vec3 _rvec; + data.reshape(1, 3).copyTo(_rvec); + rotation(_rvec); + } + else + CV_Assert(!"Input marix can be 3x3, 1x3 or 3x1"); +} + +template<typename T> inline +void cv::Affine3<T>::linear(const Mat3& L) +{ + matrix.val[0] = L.val[0]; matrix.val[1] = L.val[1]; matrix.val[ 2] = L.val[2]; + matrix.val[4] = L.val[3]; matrix.val[5] = L.val[4]; matrix.val[ 6] = L.val[5]; + matrix.val[8] = L.val[6]; matrix.val[9] = L.val[7]; matrix.val[10] = L.val[8]; +} + +template<typename T> inline +void cv::Affine3<T>::translation(const Vec3& t) +{ + matrix.val[3] = t[0]; matrix.val[7] = t[1]; matrix.val[11] = t[2]; +} + +template<typename T> inline +typename cv::Affine3<T>::Mat3 cv::Affine3<T>::rotation() const +{ + return linear(); +} + +template<typename T> inline +typename cv::Affine3<T>::Mat3 cv::Affine3<T>::linear() const +{ + typename cv::Affine3<T>::Mat3 R; + R.val[0] = matrix.val[0]; R.val[1] = matrix.val[1]; R.val[2] = matrix.val[ 2]; + R.val[3] = matrix.val[4]; R.val[4] = matrix.val[5]; R.val[5] = matrix.val[ 6]; + R.val[6] = matrix.val[8]; R.val[7] = matrix.val[9]; R.val[8] = matrix.val[10]; + return R; +} + +template<typename T> inline +typename cv::Affine3<T>::Vec3 cv::Affine3<T>::translation() const +{ + return Vec3(matrix.val[3], matrix.val[7], matrix.val[11]); +} + +template<typename T> inline +typename cv::Affine3<T>::Vec3 cv::Affine3<T>::rvec() const +{ + cv::Vec3d w; + cv::Matx33d u, vt, R = rotation(); + cv::SVD::compute(R, w, u, vt, cv::SVD::FULL_UV + cv::SVD::MODIFY_A); + R = u * vt; + + double rx = R.val[7] - R.val[5]; + double ry = R.val[2] - R.val[6]; + double rz = R.val[3] - R.val[1]; + + double s = std::sqrt((rx*rx + ry*ry + rz*rz)*0.25); + double c = (R.val[0] + R.val[4] + R.val[8] - 1) * 0.5; + c = c > 1.0 ? 1.0 : c < -1.0 ? -1.0 : c; + double theta = acos(c); + + if( s < 1e-5 ) + { + if( c > 0 ) + rx = ry = rz = 0; + else + { + double t; + t = (R.val[0] + 1) * 0.5; + rx = std::sqrt(std::max(t, 0.0)); + t = (R.val[4] + 1) * 0.5; + ry = std::sqrt(std::max(t, 0.0)) * (R.val[1] < 0 ? -1.0 : 1.0); + t = (R.val[8] + 1) * 0.5; + rz = std::sqrt(std::max(t, 0.0)) * (R.val[2] < 0 ? -1.0 : 1.0); + + if( fabs(rx) < fabs(ry) && fabs(rx) < fabs(rz) && (R.val[5] > 0) != (ry*rz > 0) ) + rz = -rz; + theta /= std::sqrt(rx*rx + ry*ry + rz*rz); + rx *= theta; + ry *= theta; + rz *= theta; + } + } + else + { + double vth = 1/(2*s); + vth *= theta; + rx *= vth; ry *= vth; rz *= vth; + } + + return cv::Vec3d(rx, ry, rz); +} + +template<typename T> inline +cv::Affine3<T> cv::Affine3<T>::inv(int method) const +{ + return matrix.inv(method); +} + +template<typename T> inline +cv::Affine3<T> cv::Affine3<T>::rotate(const Mat3& R) const +{ + Mat3 Lc = linear(); + Vec3 tc = translation(); + Mat4 result; + result.val[12] = result.val[13] = result.val[14] = 0; + result.val[15] = 1; + + for(int j = 0; j < 3; ++j) + { + for(int i = 0; i < 3; ++i) + { + float_type value = 0; + for(int k = 0; k < 3; ++k) + value += R(j, k) * Lc(k, i); + result(j, i) = value; + } + + result(j, 3) = R.row(j).dot(tc.t()); + } + return result; +} + +template<typename T> inline +cv::Affine3<T> cv::Affine3<T>::rotate(const Vec3& _rvec) const +{ + return rotate(Affine3f(_rvec).rotation()); +} + +template<typename T> inline +cv::Affine3<T> cv::Affine3<T>::translate(const Vec3& t) const +{ + Mat4 m = matrix; + m.val[ 3] += t[0]; + m.val[ 7] += t[1]; + m.val[11] += t[2]; + return m; +} + +template<typename T> inline +cv::Affine3<T> cv::Affine3<T>::concatenate(const Affine3<T>& affine) const +{ + return (*this).rotate(affine.rotation()).translate(affine.translation()); +} + +template<typename T> template <typename Y> inline +cv::Affine3<T>::operator Affine3<Y>() const +{ + return Affine3<Y>(matrix); +} + +template<typename T> template <typename Y> inline +cv::Affine3<Y> cv::Affine3<T>::cast() const +{ + return Affine3<Y>(matrix); +} + +template<typename T> inline +cv::Affine3<T> cv::operator*(const cv::Affine3<T>& affine1, const cv::Affine3<T>& affine2) +{ + return affine2.concatenate(affine1); +} + +template<typename T, typename V> inline +V cv::operator*(const cv::Affine3<T>& affine, const V& v) +{ + const typename Affine3<T>::Mat4& m = affine.matrix; + + V r; + r.x = m.val[0] * v.x + m.val[1] * v.y + m.val[ 2] * v.z + m.val[ 3]; + r.y = m.val[4] * v.x + m.val[5] * v.y + m.val[ 6] * v.z + m.val[ 7]; + r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11]; + return r; +} + +static inline +cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v) +{ + const cv::Matx44f& m = affine.matrix; + cv::Vec3f r; + r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3]; + r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7]; + r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11]; + return r; +} + +static inline +cv::Vec3d cv::operator*(const cv::Affine3d& affine, const cv::Vec3d& v) +{ + const cv::Matx44d& m = affine.matrix; + cv::Vec3d r; + r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3]; + r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7]; + r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11]; + return r; +} + + + +#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H + +template<typename T> inline +cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine) +{ + cv::Mat(4, 4, cv::DataType<T>::type, affine.matrix().data()).copyTo(matrix); +} + +template<typename T> inline +cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine) +{ + Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> a = affine; + cv::Mat(4, 4, cv::DataType<T>::type, a.matrix().data()).copyTo(matrix); +} + +template<typename T> inline +cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const +{ + Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> r; + cv::Mat hdr(4, 4, cv::DataType<T>::type, r.matrix().data()); + cv::Mat(matrix, false).copyTo(hdr); + return r; +} + +template<typename T> inline +cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine>() const +{ + return this->operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>(); +} + +#endif /* defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H */ + +//! @endcond + +#endif /* __cplusplus */ + +#endif /* OPENCV_CORE_AFFINE3_HPP */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/base.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,691 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2014, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_BASE_HPP +#define OPENCV_CORE_BASE_HPP + +#ifndef __cplusplus +# error base.hpp header must be compiled as C++ +#endif + +#include "opencv2/opencv_modules.hpp" + +#include <climits> +#include <algorithm> + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/cvstd.hpp" + +namespace cv +{ + +//! @addtogroup core_utils +//! @{ + +namespace Error { +//! error codes +enum Code { + StsOk= 0, //!< everithing is ok + StsBackTrace= -1, //!< pseudo error for back trace + StsError= -2, //!< unknown /unspecified error + StsInternal= -3, //!< internal error (bad state) + StsNoMem= -4, //!< insufficient memory + StsBadArg= -5, //!< function arg/param is bad + StsBadFunc= -6, //!< unsupported function + StsNoConv= -7, //!< iter. didn't converge + StsAutoTrace= -8, //!< tracing + HeaderIsNull= -9, //!< image header is NULL + BadImageSize= -10, //!< image size is invalid + BadOffset= -11, //!< offset is invalid + BadDataPtr= -12, //!< + BadStep= -13, //!< + BadModelOrChSeq= -14, //!< + BadNumChannels= -15, //!< + BadNumChannel1U= -16, //!< + BadDepth= -17, //!< + BadAlphaChannel= -18, //!< + BadOrder= -19, //!< + BadOrigin= -20, //!< + BadAlign= -21, //!< + BadCallBack= -22, //!< + BadTileSize= -23, //!< + BadCOI= -24, //!< + BadROISize= -25, //!< + MaskIsTiled= -26, //!< + StsNullPtr= -27, //!< null pointer + StsVecLengthErr= -28, //!< incorrect vector length + StsFilterStructContentErr= -29, //!< incorr. filter structure content + StsKernelStructContentErr= -30, //!< incorr. transform kernel content + StsFilterOffsetErr= -31, //!< incorrect filter ofset value + StsBadSize= -201, //!< the input/output structure size is incorrect + StsDivByZero= -202, //!< division by zero + StsInplaceNotSupported= -203, //!< in-place operation is not supported + StsObjectNotFound= -204, //!< request can't be completed + StsUnmatchedFormats= -205, //!< formats of input/output arrays differ + StsBadFlag= -206, //!< flag is wrong or not supported + StsBadPoint= -207, //!< bad CvPoint + StsBadMask= -208, //!< bad format of mask (neither 8uC1 nor 8sC1) + StsUnmatchedSizes= -209, //!< sizes of input/output structures do not match + StsUnsupportedFormat= -210, //!< the data format/type is not supported by the function + StsOutOfRange= -211, //!< some of parameters are out of range + StsParseError= -212, //!< invalid syntax/structure of the parsed file + StsNotImplemented= -213, //!< the requested function/feature is not implemented + StsBadMemBlock= -214, //!< an allocated block has been corrupted + StsAssert= -215, //!< assertion failed + GpuNotSupported= -216, + GpuApiCallError= -217, + OpenGlNotSupported= -218, + OpenGlApiCallError= -219, + OpenCLApiCallError= -220, + OpenCLDoubleNotSupported= -221, + OpenCLInitError= -222, + OpenCLNoAMDBlasFft= -223 +}; +} //Error + +//! @} core_utils + +//! @addtogroup core_array +//! @{ + +//! matrix decomposition types +enum DecompTypes { + /** Gaussian elimination with the optimal pivot element chosen. */ + DECOMP_LU = 0, + /** singular value decomposition (SVD) method; the system can be over-defined and/or the matrix + src1 can be singular */ + DECOMP_SVD = 1, + /** eigenvalue decomposition; the matrix src1 must be symmetrical */ + DECOMP_EIG = 2, + /** Cholesky \f$LL^T\f$ factorization; the matrix src1 must be symmetrical and positively + defined */ + DECOMP_CHOLESKY = 3, + /** QR factorization; the system can be over-defined and/or the matrix src1 can be singular */ + DECOMP_QR = 4, + /** while all the previous flags are mutually exclusive, this flag can be used together with + any of the previous; it means that the normal equations + \f$\texttt{src1}^T\cdot\texttt{src1}\cdot\texttt{dst}=\texttt{src1}^T\texttt{src2}\f$ are + solved instead of the original system + \f$\texttt{src1}\cdot\texttt{dst}=\texttt{src2}\f$ */ + DECOMP_NORMAL = 16 +}; + +/** norm types +- For one array: +\f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) } +{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) } +{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f] + +- Absolute norm for two arrays +\f[norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) } +{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) } +{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f] + +- Relative norm for two arrays +\f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) } +{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) } +{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f] + +As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$. +The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$ +is calculated as follows +\f{align*} + \| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\ + \| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\ + \| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2 +\f} +and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is +\f{align*} + \| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\ + \| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\ + \| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5. +\f} +The following graphic shows all values for the three norm functions \f$\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$. +It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$. +![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png) + */ +enum NormTypes { NORM_INF = 1, + NORM_L1 = 2, + NORM_L2 = 4, + NORM_L2SQR = 5, + NORM_HAMMING = 6, + NORM_HAMMING2 = 7, + NORM_TYPE_MASK = 7, + NORM_RELATIVE = 8, //!< flag + NORM_MINMAX = 32 //!< flag + }; + +//! comparison types +enum CmpTypes { CMP_EQ = 0, //!< src1 is equal to src2. + CMP_GT = 1, //!< src1 is greater than src2. + CMP_GE = 2, //!< src1 is greater than or equal to src2. + CMP_LT = 3, //!< src1 is less than src2. + CMP_LE = 4, //!< src1 is less than or equal to src2. + CMP_NE = 5 //!< src1 is unequal to src2. + }; + +//! generalized matrix multiplication flags +enum GemmFlags { GEMM_1_T = 1, //!< transposes src1 + GEMM_2_T = 2, //!< transposes src2 + GEMM_3_T = 4 //!< transposes src3 + }; + +enum DftFlags { + /** performs an inverse 1D or 2D transform instead of the default forward + transform. */ + DFT_INVERSE = 1, + /** scales the result: divide it by the number of array elements. Normally, it is + combined with DFT_INVERSE. */ + DFT_SCALE = 2, + /** performs a forward or inverse transform of every individual row of the input + matrix; this flag enables you to transform multiple vectors simultaneously and can be used to + decrease the overhead (which is sometimes several times larger than the processing itself) to + perform 3D and higher-dimensional transformations and so forth.*/ + DFT_ROWS = 4, + /** performs a forward transformation of 1D or 2D real array; the result, + though being a complex array, has complex-conjugate symmetry (*CCS*, see the function + description below for details), and such an array can be packed into a real array of the same + size as input, which is the fastest option and which is what the function does by default; + however, you may wish to get a full complex array (for simpler spectrum analysis, and so on) - + pass the flag to enable the function to produce a full-size complex output array. */ + DFT_COMPLEX_OUTPUT = 16, + /** performs an inverse transformation of a 1D or 2D complex array; the + result is normally a complex array of the same size, however, if the input array has + conjugate-complex symmetry (for example, it is a result of forward transformation with + DFT_COMPLEX_OUTPUT flag), the output is a real array; while the function itself does not + check whether the input is symmetrical or not, you can pass the flag and then the function + will assume the symmetry and produce the real output array (note that when the input is packed + into a real array and inverse transformation is executed, the function treats the input as a + packed complex-conjugate symmetrical array, and the output will also be a real array). */ + DFT_REAL_OUTPUT = 32, + /** performs an inverse 1D or 2D transform instead of the default forward transform. */ + DCT_INVERSE = DFT_INVERSE, + /** performs a forward or inverse transform of every individual row of the input + matrix. This flag enables you to transform multiple vectors simultaneously and can be used to + decrease the overhead (which is sometimes several times larger than the processing itself) to + perform 3D and higher-dimensional transforms and so forth.*/ + DCT_ROWS = DFT_ROWS +}; + +//! Various border types, image boundaries are denoted with `|` +//! @see borderInterpolate, copyMakeBorder +enum BorderTypes { + BORDER_CONSTANT = 0, //!< `iiiiii|abcdefgh|iiiiiii` with some specified `i` + BORDER_REPLICATE = 1, //!< `aaaaaa|abcdefgh|hhhhhhh` + BORDER_REFLECT = 2, //!< `fedcba|abcdefgh|hgfedcb` + BORDER_WRAP = 3, //!< `cdefgh|abcdefgh|abcdefg` + BORDER_REFLECT_101 = 4, //!< `gfedcb|abcdefgh|gfedcba` + BORDER_TRANSPARENT = 5, //!< `uvwxyz|absdefgh|ijklmno` + + BORDER_REFLECT101 = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101 + BORDER_DEFAULT = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101 + BORDER_ISOLATED = 16 //!< do not look outside of ROI +}; + +//! @} core_array + +//! @addtogroup core_utils +//! @{ + +//! @cond IGNORED + +//////////////// static assert ///////////////// +#define CVAUX_CONCAT_EXP(a, b) a##b +#define CVAUX_CONCAT(a, b) CVAUX_CONCAT_EXP(a,b) + +#if defined(__clang__) +# ifndef __has_extension +# define __has_extension __has_feature /* compatibility, for older versions of clang */ +# endif +# if __has_extension(cxx_static_assert) +# define CV_StaticAssert(condition, reason) static_assert((condition), reason " " #condition) +# elif __has_extension(c_static_assert) +# define CV_StaticAssert(condition, reason) _Static_assert((condition), reason " " #condition) +# endif +#elif defined(__GNUC__) +# if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) +# define CV_StaticAssert(condition, reason) static_assert((condition), reason " " #condition) +# endif +#elif defined(_MSC_VER) +# if _MSC_VER >= 1600 /* MSVC 10 */ +# define CV_StaticAssert(condition, reason) static_assert((condition), reason " " #condition) +# endif +#endif +#ifndef CV_StaticAssert +# if !defined(__clang__) && defined(__GNUC__) && (__GNUC__*100 + __GNUC_MINOR__ > 302) +# define CV_StaticAssert(condition, reason) ({ extern int __attribute__((error("CV_StaticAssert: " reason " " #condition))) CV_StaticAssert(); ((condition) ? 0 : CV_StaticAssert()); }) +# else + template <bool x> struct CV_StaticAssert_failed; + template <> struct CV_StaticAssert_failed<true> { enum { val = 1 }; }; + template<int x> struct CV_StaticAssert_test {}; +# define CV_StaticAssert(condition, reason)\ + typedef cv::CV_StaticAssert_test< sizeof(cv::CV_StaticAssert_failed< static_cast<bool>(condition) >) > CVAUX_CONCAT(CV_StaticAssert_failed_at_, __LINE__) +# endif +#endif + +// Suppress warning "-Wdeprecated-declarations" / C4996 +#if defined(_MSC_VER) + #define CV_DO_PRAGMA(x) __pragma(x) +#elif defined(__GNUC__) + #define CV_DO_PRAGMA(x) _Pragma (#x) +#else + #define CV_DO_PRAGMA(x) +#endif + +#ifdef _MSC_VER +#define CV_SUPPRESS_DEPRECATED_START \ + CV_DO_PRAGMA(warning(push)) \ + CV_DO_PRAGMA(warning(disable: 4996)) +#define CV_SUPPRESS_DEPRECATED_END CV_DO_PRAGMA(warning(pop)) +#elif defined (__clang__) || ((__GNUC__) && (__GNUC__*100 + __GNUC_MINOR__ > 405)) +#define CV_SUPPRESS_DEPRECATED_START \ + CV_DO_PRAGMA(GCC diagnostic push) \ + CV_DO_PRAGMA(GCC diagnostic ignored "-Wdeprecated-declarations") +#define CV_SUPPRESS_DEPRECATED_END CV_DO_PRAGMA(GCC diagnostic pop) +#else +#define CV_SUPPRESS_DEPRECATED_START +#define CV_SUPPRESS_DEPRECATED_END +#endif +#define CV_UNUSED(name) (void)name +//! @endcond + +/*! @brief Signals an error and raises the exception. + +By default the function prints information about the error to stderr, +then it either stops if setBreakOnError() had been called before or raises the exception. +It is possible to alternate error processing by using redirectError(). +@param _code - error code (Error::Code) +@param _err - error description +@param _func - function name. Available only when the compiler supports getting it +@param _file - source file name where the error has occured +@param _line - line number in the source file where the error has occured +@see CV_Error, CV_Error_, CV_ErrorNoReturn, CV_ErrorNoReturn_, CV_Assert, CV_DbgAssert + */ +CV_EXPORTS void error(int _code, const String& _err, const char* _func, const char* _file, int _line); + +#ifdef __GNUC__ +# if defined __clang__ || defined __APPLE__ +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Winvalid-noreturn" +# endif +#endif + +/** same as cv::error, but does not return */ +CV_INLINE CV_NORETURN void errorNoReturn(int _code, const String& _err, const char* _func, const char* _file, int _line) +{ + error(_code, _err, _func, _file, _line); +#ifdef __GNUC__ +# if !defined __clang__ && !defined __APPLE__ + // this suppresses this warning: "noreturn" function does return [enabled by default] + __builtin_trap(); + // or use infinite loop: for (;;) {} +# endif +#endif +} +#ifdef __GNUC__ +# if defined __clang__ || defined __APPLE__ +# pragma GCC diagnostic pop +# endif +#endif + +#if defined __GNUC__ +#define CV_Func __func__ +#elif defined _MSC_VER +#define CV_Func __FUNCTION__ +#else +#define CV_Func "" +#endif + +/** @brief Call the error handler. + +Currently, the error handler prints the error code and the error message to the standard +error stream `stderr`. In the Debug configuration, it then provokes memory access violation, so that +the execution stack and all the parameters can be analyzed by the debugger. In the Release +configuration, the exception is thrown. + +@param code one of Error::Code +@param msg error message +*/ +#define CV_Error( code, msg ) cv::error( code, msg, CV_Func, __FILE__, __LINE__ ) + +/** @brief Call the error handler. + +This macro can be used to construct an error message on-fly to include some dynamic information, +for example: +@code + // note the extra parentheses around the formatted text message + CV_Error_( CV_StsOutOfRange, + ("the value at (%d, %d)=%g is out of range", badPt.x, badPt.y, badValue)); +@endcode +@param code one of Error::Code +@param args printf-like formatted error message in parentheses +*/ +#define CV_Error_( code, args ) cv::error( code, cv::format args, CV_Func, __FILE__, __LINE__ ) + +/** @brief Checks a condition at runtime and throws exception if it fails + +The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros +raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release +configurations while CV_DbgAssert is only retained in the Debug configuration. +*/ +#define CV_Assert( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ) + +/** same as CV_Error(code,msg), but does not return */ +#define CV_ErrorNoReturn( code, msg ) cv::errorNoReturn( code, msg, CV_Func, __FILE__, __LINE__ ) + +/** same as CV_Error_(code,args), but does not return */ +#define CV_ErrorNoReturn_( code, args ) cv::errorNoReturn( code, cv::format args, CV_Func, __FILE__, __LINE__ ) + +/** replaced with CV_Assert(expr) in Debug configuration */ +#ifdef _DEBUG +# define CV_DbgAssert(expr) CV_Assert(expr) +#else +# define CV_DbgAssert(expr) +#endif + +/* + * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor + * bit count of A exclusive XOR'ed with B + */ +struct CV_EXPORTS Hamming +{ + enum { normType = NORM_HAMMING }; + typedef unsigned char ValueType; + typedef int ResultType; + + /** this will count the bits in a ^ b + */ + ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const; +}; + +typedef Hamming HammingLUT; + +/////////////////////////////////// inline norms //////////////////////////////////// + +template<typename _Tp> inline _Tp cv_abs(_Tp x) { return std::abs(x); } +inline int cv_abs(uchar x) { return x; } +inline int cv_abs(schar x) { return std::abs(x); } +inline int cv_abs(ushort x) { return x; } +inline int cv_abs(short x) { return std::abs(x); } + +template<typename _Tp, typename _AccTp> static inline +_AccTp normL2Sqr(const _Tp* a, int n) +{ + _AccTp s = 0; + int i=0; +#if CV_ENABLE_UNROLLED + for( ; i <= n - 4; i += 4 ) + { + _AccTp v0 = a[i], v1 = a[i+1], v2 = a[i+2], v3 = a[i+3]; + s += v0*v0 + v1*v1 + v2*v2 + v3*v3; + } +#endif + for( ; i < n; i++ ) + { + _AccTp v = a[i]; + s += v*v; + } + return s; +} + +template<typename _Tp, typename _AccTp> static inline +_AccTp normL1(const _Tp* a, int n) +{ + _AccTp s = 0; + int i = 0; +#if CV_ENABLE_UNROLLED + for(; i <= n - 4; i += 4 ) + { + s += (_AccTp)cv_abs(a[i]) + (_AccTp)cv_abs(a[i+1]) + + (_AccTp)cv_abs(a[i+2]) + (_AccTp)cv_abs(a[i+3]); + } +#endif + for( ; i < n; i++ ) + s += cv_abs(a[i]); + return s; +} + +template<typename _Tp, typename _AccTp> static inline +_AccTp normInf(const _Tp* a, int n) +{ + _AccTp s = 0; + for( int i = 0; i < n; i++ ) + s = std::max(s, (_AccTp)cv_abs(a[i])); + return s; +} + +template<typename _Tp, typename _AccTp> static inline +_AccTp normL2Sqr(const _Tp* a, const _Tp* b, int n) +{ + _AccTp s = 0; + int i= 0; +#if CV_ENABLE_UNROLLED + for(; i <= n - 4; i += 4 ) + { + _AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]); + s += v0*v0 + v1*v1 + v2*v2 + v3*v3; + } +#endif + for( ; i < n; i++ ) + { + _AccTp v = _AccTp(a[i] - b[i]); + s += v*v; + } + return s; +} + +static inline float normL2Sqr(const float* a, const float* b, int n) +{ + float s = 0.f; + for( int i = 0; i < n; i++ ) + { + float v = a[i] - b[i]; + s += v*v; + } + return s; +} + +template<typename _Tp, typename _AccTp> static inline +_AccTp normL1(const _Tp* a, const _Tp* b, int n) +{ + _AccTp s = 0; + int i= 0; +#if CV_ENABLE_UNROLLED + for(; i <= n - 4; i += 4 ) + { + _AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]); + s += std::abs(v0) + std::abs(v1) + std::abs(v2) + std::abs(v3); + } +#endif + for( ; i < n; i++ ) + { + _AccTp v = _AccTp(a[i] - b[i]); + s += std::abs(v); + } + return s; +} + +inline float normL1(const float* a, const float* b, int n) +{ + float s = 0.f; + for( int i = 0; i < n; i++ ) + { + s += std::abs(a[i] - b[i]); + } + return s; +} + +inline int normL1(const uchar* a, const uchar* b, int n) +{ + int s = 0; + for( int i = 0; i < n; i++ ) + { + s += std::abs(a[i] - b[i]); + } + return s; +} + +template<typename _Tp, typename _AccTp> static inline +_AccTp normInf(const _Tp* a, const _Tp* b, int n) +{ + _AccTp s = 0; + for( int i = 0; i < n; i++ ) + { + _AccTp v0 = a[i] - b[i]; + s = std::max(s, std::abs(v0)); + } + return s; +} + +/** @brief Computes the cube root of an argument. + + The function cubeRoot computes \f$\sqrt[3]{\texttt{val}}\f$. Negative arguments are handled correctly. + NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for + single-precision data. + @param val A function argument. + */ +CV_EXPORTS_W float cubeRoot(float val); + +/** @brief Calculates the angle of a 2D vector in degrees. + + The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured + in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees. + @param x x-coordinate of the vector. + @param y y-coordinate of the vector. + */ +CV_EXPORTS_W float fastAtan2(float y, float x); + +/** proxy for hal::LU */ +CV_EXPORTS int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n); +/** proxy for hal::LU */ +CV_EXPORTS int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n); +/** proxy for hal::Cholesky */ +CV_EXPORTS bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n); +/** proxy for hal::Cholesky */ +CV_EXPORTS bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n); + +////////////////// forward declarations for important OpenCV types ////////////////// + +//! @cond IGNORED + +template<typename _Tp, int cn> class Vec; +template<typename _Tp, int m, int n> class Matx; + +template<typename _Tp> class Complex; +template<typename _Tp> class Point_; +template<typename _Tp> class Point3_; +template<typename _Tp> class Size_; +template<typename _Tp> class Rect_; +template<typename _Tp> class Scalar_; + +class CV_EXPORTS RotatedRect; +class CV_EXPORTS Range; +class CV_EXPORTS TermCriteria; +class CV_EXPORTS KeyPoint; +class CV_EXPORTS DMatch; +class CV_EXPORTS RNG; + +class CV_EXPORTS Mat; +class CV_EXPORTS MatExpr; + +class CV_EXPORTS UMat; + +class CV_EXPORTS SparseMat; +typedef Mat MatND; + +template<typename _Tp> class Mat_; +template<typename _Tp> class SparseMat_; + +class CV_EXPORTS MatConstIterator; +class CV_EXPORTS SparseMatIterator; +class CV_EXPORTS SparseMatConstIterator; +template<typename _Tp> class MatIterator_; +template<typename _Tp> class MatConstIterator_; +template<typename _Tp> class SparseMatIterator_; +template<typename _Tp> class SparseMatConstIterator_; + +namespace ogl +{ + class CV_EXPORTS Buffer; + class CV_EXPORTS Texture2D; + class CV_EXPORTS Arrays; +} + +namespace cuda +{ + class CV_EXPORTS GpuMat; + class CV_EXPORTS HostMem; + class CV_EXPORTS Stream; + class CV_EXPORTS Event; +} + +namespace cudev +{ + template <typename _Tp> class GpuMat_; +} + +namespace ipp +{ +CV_EXPORTS int getIppFeatures(); +CV_EXPORTS void setIppStatus(int status, const char * const funcname = NULL, const char * const filename = NULL, + int line = 0); +CV_EXPORTS int getIppStatus(); +CV_EXPORTS String getIppErrorLocation(); +CV_EXPORTS bool useIPP(); +CV_EXPORTS void setUseIPP(bool flag); + +} // ipp + +//! @endcond + +//! @} core_utils + + + + +} // cv + +#include "opencv2/core/neon_utils.hpp" + +#endif //OPENCV_CORE_BASE_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/bufferpool.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,31 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. +// +// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved. + +#ifndef OPENCV_CORE_BUFFER_POOL_HPP +#define OPENCV_CORE_BUFFER_POOL_HPP + +namespace cv +{ + +//! @addtogroup core +//! @{ + +class BufferPoolController +{ +protected: + ~BufferPoolController() { } +public: + virtual size_t getReservedSize() const = 0; + virtual size_t getMaxReservedSize() const = 0; + virtual void setMaxReservedSize(size_t size) = 0; + virtual void freeAllReservedBuffers() = 0; +}; + +//! @} + +} + +#endif // OPENCV_CORE_BUFFER_POOL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/core.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/core.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/core_c.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,3184 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + + +#ifndef OPENCV_CORE_C_H +#define OPENCV_CORE_C_H + +#include "opencv2/core/types_c.h" + +#ifdef __cplusplus +# ifdef _MSC_VER +/* disable warning C4190: 'function' has C-linkage specified, but returns UDT 'typename' + which is incompatible with C + + It is OK to disable it because we only extend few plain structures with + C++ construrtors for simpler interoperability with C++ API of the library +*/ +# pragma warning(disable:4190) +# elif defined __clang__ && __clang_major__ >= 3 +# pragma GCC diagnostic ignored "-Wreturn-type-c-linkage" +# endif +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup core_c + @{ +*/ + +/****************************************************************************************\ +* Array allocation, deallocation, initialization and access to elements * +\****************************************************************************************/ + +/** `malloc` wrapper. + If there is no enough memory, the function + (as well as other OpenCV functions that call cvAlloc) + raises an error. */ +CVAPI(void*) cvAlloc( size_t size ); + +/** `free` wrapper. + Here and further all the memory releasing functions + (that all call cvFree) take double pointer in order to + to clear pointer to the data after releasing it. + Passing pointer to NULL pointer is Ok: nothing happens in this case +*/ +CVAPI(void) cvFree_( void* ptr ); +#define cvFree(ptr) (cvFree_(*(ptr)), *(ptr)=0) + +/** @brief Creates an image header but does not allocate the image data. + +@param size Image width and height +@param depth Image depth (see cvCreateImage ) +@param channels Number of channels (see cvCreateImage ) + */ +CVAPI(IplImage*) cvCreateImageHeader( CvSize size, int depth, int channels ); + +/** @brief Initializes an image header that was previously allocated. + +The returned IplImage\* points to the initialized header. +@param image Image header to initialize +@param size Image width and height +@param depth Image depth (see cvCreateImage ) +@param channels Number of channels (see cvCreateImage ) +@param origin Top-left IPL_ORIGIN_TL or bottom-left IPL_ORIGIN_BL +@param align Alignment for image rows, typically 4 or 8 bytes + */ +CVAPI(IplImage*) cvInitImageHeader( IplImage* image, CvSize size, int depth, + int channels, int origin CV_DEFAULT(0), + int align CV_DEFAULT(4)); + +/** @brief Creates an image header and allocates the image data. + +This function call is equivalent to the following code: +@code + header = cvCreateImageHeader(size, depth, channels); + cvCreateData(header); +@endcode +@param size Image width and height +@param depth Bit depth of image elements. See IplImage for valid depths. +@param channels Number of channels per pixel. See IplImage for details. This function only creates +images with interleaved channels. + */ +CVAPI(IplImage*) cvCreateImage( CvSize size, int depth, int channels ); + +/** @brief Deallocates an image header. + +This call is an analogue of : +@code + if(image ) + { + iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI); + *image = 0; + } +@endcode +but it does not use IPL functions by default (see the CV_TURN_ON_IPL_COMPATIBILITY macro). +@param image Double pointer to the image header + */ +CVAPI(void) cvReleaseImageHeader( IplImage** image ); + +/** @brief Deallocates the image header and the image data. + +This call is a shortened form of : +@code + if(*image ) + { + cvReleaseData(*image); + cvReleaseImageHeader(image); + } +@endcode +@param image Double pointer to the image header +*/ +CVAPI(void) cvReleaseImage( IplImage** image ); + +/** Creates a copy of IPL image (widthStep may differ) */ +CVAPI(IplImage*) cvCloneImage( const IplImage* image ); + +/** @brief Sets the channel of interest in an IplImage. + +If the ROI is set to NULL and the coi is *not* 0, the ROI is allocated. Most OpenCV functions do +*not* support the COI setting, so to process an individual image/matrix channel one may copy (via +cvCopy or cvSplit) the channel to a separate image/matrix, process it and then copy the result +back (via cvCopy or cvMerge) if needed. +@param image A pointer to the image header +@param coi The channel of interest. 0 - all channels are selected, 1 - first channel is selected, +etc. Note that the channel indices become 1-based. + */ +CVAPI(void) cvSetImageCOI( IplImage* image, int coi ); + +/** @brief Returns the index of the channel of interest. + +Returns the channel of interest of in an IplImage. Returned values correspond to the coi in +cvSetImageCOI. +@param image A pointer to the image header + */ +CVAPI(int) cvGetImageCOI( const IplImage* image ); + +/** @brief Sets an image Region Of Interest (ROI) for a given rectangle. + +If the original image ROI was NULL and the rect is not the whole image, the ROI structure is +allocated. + +Most OpenCV functions support the use of ROI and treat the image rectangle as a separate image. For +example, all of the pixel coordinates are counted from the top-left (or bottom-left) corner of the +ROI, not the original image. +@param image A pointer to the image header +@param rect The ROI rectangle + */ +CVAPI(void) cvSetImageROI( IplImage* image, CvRect rect ); + +/** @brief Resets the image ROI to include the entire image and releases the ROI structure. + +This produces a similar result to the following, but in addition it releases the ROI structure. : +@code + cvSetImageROI(image, cvRect(0, 0, image->width, image->height )); + cvSetImageCOI(image, 0); +@endcode +@param image A pointer to the image header + */ +CVAPI(void) cvResetImageROI( IplImage* image ); + +/** @brief Returns the image ROI. + +If there is no ROI set, cvRect(0,0,image-\>width,image-\>height) is returned. +@param image A pointer to the image header + */ +CVAPI(CvRect) cvGetImageROI( const IplImage* image ); + +/** @brief Creates a matrix header but does not allocate the matrix data. + +The function allocates a new matrix header and returns a pointer to it. The matrix data can then be +allocated using cvCreateData or set explicitly to user-allocated data via cvSetData. +@param rows Number of rows in the matrix +@param cols Number of columns in the matrix +@param type Type of the matrix elements, see cvCreateMat + */ +CVAPI(CvMat*) cvCreateMatHeader( int rows, int cols, int type ); + +#define CV_AUTOSTEP 0x7fffffff + +/** @brief Initializes a pre-allocated matrix header. + +This function is often used to process raw data with OpenCV matrix functions. For example, the +following code computes the matrix product of two matrices, stored as ordinary arrays: +@code + double a[] = { 1, 2, 3, 4, + 5, 6, 7, 8, + 9, 10, 11, 12 }; + + double b[] = { 1, 5, 9, + 2, 6, 10, + 3, 7, 11, + 4, 8, 12 }; + + double c[9]; + CvMat Ma, Mb, Mc ; + + cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a); + cvInitMatHeader(&Mb, 4, 3, CV_64FC1, b); + cvInitMatHeader(&Mc, 3, 3, CV_64FC1, c); + + cvMatMulAdd(&Ma, &Mb, 0, &Mc); + // the c array now contains the product of a (3x4) and b (4x3) +@endcode +@param mat A pointer to the matrix header to be initialized +@param rows Number of rows in the matrix +@param cols Number of columns in the matrix +@param type Type of the matrix elements, see cvCreateMat . +@param data Optional: data pointer assigned to the matrix header +@param step Optional: full row width in bytes of the assigned data. By default, the minimal +possible step is used which assumes there are no gaps between subsequent rows of the matrix. + */ +CVAPI(CvMat*) cvInitMatHeader( CvMat* mat, int rows, int cols, + int type, void* data CV_DEFAULT(NULL), + int step CV_DEFAULT(CV_AUTOSTEP) ); + +/** @brief Creates a matrix header and allocates the matrix data. + +The function call is equivalent to the following code: +@code + CvMat* mat = cvCreateMatHeader(rows, cols, type); + cvCreateData(mat); +@endcode +@param rows Number of rows in the matrix +@param cols Number of columns in the matrix +@param type The type of the matrix elements in the form +CV_\<bit depth\>\<S|U|F\>C\<number of channels\> , where S=signed, U=unsigned, F=float. For +example, CV _ 8UC1 means the elements are 8-bit unsigned and the there is 1 channel, and CV _ +32SC2 means the elements are 32-bit signed and there are 2 channels. + */ +CVAPI(CvMat*) cvCreateMat( int rows, int cols, int type ); + +/** @brief Deallocates a matrix. + +The function decrements the matrix data reference counter and deallocates matrix header. If the data +reference counter is 0, it also deallocates the data. : +@code + if(*mat ) + cvDecRefData(*mat); + cvFree((void**)mat); +@endcode +@param mat Double pointer to the matrix + */ +CVAPI(void) cvReleaseMat( CvMat** mat ); + +/** @brief Decrements an array data reference counter. + +The function decrements the data reference counter in a CvMat or CvMatND if the reference counter + +pointer is not NULL. If the counter reaches zero, the data is deallocated. In the current +implementation the reference counter is not NULL only if the data was allocated using the +cvCreateData function. The counter will be NULL in other cases such as: external data was assigned +to the header using cvSetData, header is part of a larger matrix or image, or the header was +converted from an image or n-dimensional matrix header. +@param arr Pointer to an array header + */ +CV_INLINE void cvDecRefData( CvArr* arr ) +{ + if( CV_IS_MAT( arr )) + { + CvMat* mat = (CvMat*)arr; + mat->data.ptr = NULL; + if( mat->refcount != NULL && --*mat->refcount == 0 ) + cvFree( &mat->refcount ); + mat->refcount = NULL; + } + else if( CV_IS_MATND( arr )) + { + CvMatND* mat = (CvMatND*)arr; + mat->data.ptr = NULL; + if( mat->refcount != NULL && --*mat->refcount == 0 ) + cvFree( &mat->refcount ); + mat->refcount = NULL; + } +} + +/** @brief Increments array data reference counter. + +The function increments CvMat or CvMatND data reference counter and returns the new counter value if +the reference counter pointer is not NULL, otherwise it returns zero. +@param arr Array header + */ +CV_INLINE int cvIncRefData( CvArr* arr ) +{ + int refcount = 0; + if( CV_IS_MAT( arr )) + { + CvMat* mat = (CvMat*)arr; + if( mat->refcount != NULL ) + refcount = ++*mat->refcount; + } + else if( CV_IS_MATND( arr )) + { + CvMatND* mat = (CvMatND*)arr; + if( mat->refcount != NULL ) + refcount = ++*mat->refcount; + } + return refcount; +} + + +/** Creates an exact copy of the input matrix (except, may be, step value) */ +CVAPI(CvMat*) cvCloneMat( const CvMat* mat ); + + +/** @brief Returns matrix header corresponding to the rectangular sub-array of input image or matrix. + +The function returns header, corresponding to a specified rectangle of the input array. In other + +words, it allows the user to treat a rectangular part of input array as a stand-alone array. ROI is +taken into account by the function so the sub-array of ROI is actually extracted. +@param arr Input array +@param submat Pointer to the resultant sub-array header +@param rect Zero-based coordinates of the rectangle of interest + */ +CVAPI(CvMat*) cvGetSubRect( const CvArr* arr, CvMat* submat, CvRect rect ); +#define cvGetSubArr cvGetSubRect + +/** @brief Returns array row or row span. + +The functions return the header, corresponding to a specified row/row span of the input array. +cvGetRow(arr, submat, row) is a shortcut for cvGetRows(arr, submat, row, row+1). +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param start_row Zero-based index of the starting row (inclusive) of the span +@param end_row Zero-based index of the ending row (exclusive) of the span +@param delta_row Index step in the row span. That is, the function extracts every delta_row -th +row from start_row and up to (but not including) end_row . + */ +CVAPI(CvMat*) cvGetRows( const CvArr* arr, CvMat* submat, + int start_row, int end_row, + int delta_row CV_DEFAULT(1)); + +/** @overload +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param row Zero-based index of the selected row +*/ +CV_INLINE CvMat* cvGetRow( const CvArr* arr, CvMat* submat, int row ) +{ + return cvGetRows( arr, submat, row, row + 1, 1 ); +} + + +/** @brief Returns one of more array columns. + +The functions return the header, corresponding to a specified column span of the input array. That + +is, no data is copied. Therefore, any modifications of the submatrix will affect the original array. +If you need to copy the columns, use cvCloneMat. cvGetCol(arr, submat, col) is a shortcut for +cvGetCols(arr, submat, col, col+1). +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param start_col Zero-based index of the starting column (inclusive) of the span +@param end_col Zero-based index of the ending column (exclusive) of the span + */ +CVAPI(CvMat*) cvGetCols( const CvArr* arr, CvMat* submat, + int start_col, int end_col ); + +/** @overload +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param col Zero-based index of the selected column +*/ +CV_INLINE CvMat* cvGetCol( const CvArr* arr, CvMat* submat, int col ) +{ + return cvGetCols( arr, submat, col, col + 1 ); +} + +/** @brief Returns one of array diagonals. + +The function returns the header, corresponding to a specified diagonal of the input array. +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param diag Index of the array diagonal. Zero value corresponds to the main diagonal, -1 +corresponds to the diagonal above the main, 1 corresponds to the diagonal below the main, and so +forth. + */ +CVAPI(CvMat*) cvGetDiag( const CvArr* arr, CvMat* submat, + int diag CV_DEFAULT(0)); + +/** low-level scalar <-> raw data conversion functions */ +CVAPI(void) cvScalarToRawData( const CvScalar* scalar, void* data, int type, + int extend_to_12 CV_DEFAULT(0) ); + +CVAPI(void) cvRawDataToScalar( const void* data, int type, CvScalar* scalar ); + +/** @brief Creates a new matrix header but does not allocate the matrix data. + +The function allocates a header for a multi-dimensional dense array. The array data can further be +allocated using cvCreateData or set explicitly to user-allocated data via cvSetData. +@param dims Number of array dimensions +@param sizes Array of dimension sizes +@param type Type of array elements, see cvCreateMat + */ +CVAPI(CvMatND*) cvCreateMatNDHeader( int dims, const int* sizes, int type ); + +/** @brief Creates the header and allocates the data for a multi-dimensional dense array. + +This function call is equivalent to the following code: +@code + CvMatND* mat = cvCreateMatNDHeader(dims, sizes, type); + cvCreateData(mat); +@endcode +@param dims Number of array dimensions. This must not exceed CV_MAX_DIM (32 by default, but can be +changed at build time). +@param sizes Array of dimension sizes. +@param type Type of array elements, see cvCreateMat . + */ +CVAPI(CvMatND*) cvCreateMatND( int dims, const int* sizes, int type ); + +/** @brief Initializes a pre-allocated multi-dimensional array header. + +@param mat A pointer to the array header to be initialized +@param dims The number of array dimensions +@param sizes An array of dimension sizes +@param type Type of array elements, see cvCreateMat +@param data Optional data pointer assigned to the matrix header + */ +CVAPI(CvMatND*) cvInitMatNDHeader( CvMatND* mat, int dims, const int* sizes, + int type, void* data CV_DEFAULT(NULL) ); + +/** @brief Deallocates a multi-dimensional array. + +The function decrements the array data reference counter and releases the array header. If the +reference counter reaches 0, it also deallocates the data. : +@code + if(*mat ) + cvDecRefData(*mat); + cvFree((void**)mat); +@endcode +@param mat Double pointer to the array + */ +CV_INLINE void cvReleaseMatND( CvMatND** mat ) +{ + cvReleaseMat( (CvMat**)mat ); +} + +/** Creates a copy of CvMatND (except, may be, steps) */ +CVAPI(CvMatND*) cvCloneMatND( const CvMatND* mat ); + +/** @brief Creates sparse array. + +The function allocates a multi-dimensional sparse array. Initially the array contain no elements, +that is PtrND and other related functions will return 0 for every index. +@param dims Number of array dimensions. In contrast to the dense matrix, the number of dimensions is +practically unlimited (up to \f$2^{16}\f$ ). +@param sizes Array of dimension sizes +@param type Type of array elements. The same as for CvMat + */ +CVAPI(CvSparseMat*) cvCreateSparseMat( int dims, const int* sizes, int type ); + +/** @brief Deallocates sparse array. + +The function releases the sparse array and clears the array pointer upon exit. +@param mat Double pointer to the array + */ +CVAPI(void) cvReleaseSparseMat( CvSparseMat** mat ); + +/** Creates a copy of CvSparseMat (except, may be, zero items) */ +CVAPI(CvSparseMat*) cvCloneSparseMat( const CvSparseMat* mat ); + +/** @brief Initializes sparse array elements iterator. + +The function initializes iterator of sparse array elements and returns pointer to the first element, +or NULL if the array is empty. +@param mat Input array +@param mat_iterator Initialized iterator + */ +CVAPI(CvSparseNode*) cvInitSparseMatIterator( const CvSparseMat* mat, + CvSparseMatIterator* mat_iterator ); + +/** @brief Returns the next sparse matrix element + +The function moves iterator to the next sparse matrix element and returns pointer to it. In the +current version there is no any particular order of the elements, because they are stored in the +hash table. The sample below demonstrates how to iterate through the sparse matrix: +@code + // print all the non-zero sparse matrix elements and compute their sum + double sum = 0; + int i, dims = cvGetDims(sparsemat); + CvSparseMatIterator it; + CvSparseNode* node = cvInitSparseMatIterator(sparsemat, &it); + + for(; node != 0; node = cvGetNextSparseNode(&it)) + { + int* idx = CV_NODE_IDX(array, node); + float val = *(float*)CV_NODE_VAL(array, node); + printf("M"); + for(i = 0; i < dims; i++ ) + printf("[%d]", idx[i]); + printf("=%g\n", val); + + sum += val; + } + + printf("nTotal sum = %g\n", sum); +@endcode +@param mat_iterator Sparse array iterator + */ +CV_INLINE CvSparseNode* cvGetNextSparseNode( CvSparseMatIterator* mat_iterator ) +{ + if( mat_iterator->node->next ) + return mat_iterator->node = mat_iterator->node->next; + else + { + int idx; + for( idx = ++mat_iterator->curidx; idx < mat_iterator->mat->hashsize; idx++ ) + { + CvSparseNode* node = (CvSparseNode*)mat_iterator->mat->hashtable[idx]; + if( node ) + { + mat_iterator->curidx = idx; + return mat_iterator->node = node; + } + } + return NULL; + } +} + + +#define CV_MAX_ARR 10 + +/** matrix iterator: used for n-ary operations on dense arrays */ +typedef struct CvNArrayIterator +{ + int count; /**< number of arrays */ + int dims; /**< number of dimensions to iterate */ + CvSize size; /**< maximal common linear size: { width = size, height = 1 } */ + uchar* ptr[CV_MAX_ARR]; /**< pointers to the array slices */ + int stack[CV_MAX_DIM]; /**< for internal use */ + CvMatND* hdr[CV_MAX_ARR]; /**< pointers to the headers of the + matrices that are processed */ +} +CvNArrayIterator; + +#define CV_NO_DEPTH_CHECK 1 +#define CV_NO_CN_CHECK 2 +#define CV_NO_SIZE_CHECK 4 + +/** initializes iterator that traverses through several arrays simulteneously + (the function together with cvNextArraySlice is used for + N-ari element-wise operations) */ +CVAPI(int) cvInitNArrayIterator( int count, CvArr** arrs, + const CvArr* mask, CvMatND* stubs, + CvNArrayIterator* array_iterator, + int flags CV_DEFAULT(0) ); + +/** returns zero value if iteration is finished, non-zero (slice length) otherwise */ +CVAPI(int) cvNextNArraySlice( CvNArrayIterator* array_iterator ); + + +/** @brief Returns type of array elements. + +The function returns type of the array elements. In the case of IplImage the type is converted to +CvMat-like representation. For example, if the image has been created as: +@code + IplImage* img = cvCreateImage(cvSize(640, 480), IPL_DEPTH_8U, 3); +@endcode +The code cvGetElemType(img) will return CV_8UC3. +@param arr Input array + */ +CVAPI(int) cvGetElemType( const CvArr* arr ); + +/** @brief Return number of array dimensions + +The function returns the array dimensionality and the array of dimension sizes. In the case of +IplImage or CvMat it always returns 2 regardless of number of image/matrix rows. For example, the +following code calculates total number of array elements: +@code + int sizes[CV_MAX_DIM]; + int i, total = 1; + int dims = cvGetDims(arr, size); + for(i = 0; i < dims; i++ ) + total *= sizes[i]; +@endcode +@param arr Input array +@param sizes Optional output vector of the array dimension sizes. For 2d arrays the number of rows +(height) goes first, number of columns (width) next. + */ +CVAPI(int) cvGetDims( const CvArr* arr, int* sizes CV_DEFAULT(NULL) ); + + +/** @brief Returns array size along the specified dimension. + +@param arr Input array +@param index Zero-based dimension index (for matrices 0 means number of rows, 1 means number of +columns; for images 0 means height, 1 means width) + */ +CVAPI(int) cvGetDimSize( const CvArr* arr, int index ); + + +/** @brief Return pointer to a particular array element. + +The functions return a pointer to a specific array element. Number of array dimension should match +to the number of indices passed to the function except for cvPtr1D function that can be used for +sequential access to 1D, 2D or nD dense arrays. + +The functions can be used for sparse arrays as well - if the requested node does not exist they +create it and set it to zero. + +All these as well as other functions accessing array elements ( cvGetND , cvGetRealND , cvSet +, cvSetND , cvSetRealND ) raise an error in case if the element index is out of range. +@param arr Input array +@param idx0 The first zero-based component of the element index +@param type Optional output parameter: type of matrix elements + */ +CVAPI(uchar*) cvPtr1D( const CvArr* arr, int idx0, int* type CV_DEFAULT(NULL)); +/** @overload */ +CVAPI(uchar*) cvPtr2D( const CvArr* arr, int idx0, int idx1, int* type CV_DEFAULT(NULL) ); +/** @overload */ +CVAPI(uchar*) cvPtr3D( const CvArr* arr, int idx0, int idx1, int idx2, + int* type CV_DEFAULT(NULL)); +/** @overload +@param arr Input array +@param idx Array of the element indices +@param type Optional output parameter: type of matrix elements +@param create_node Optional input parameter for sparse matrices. Non-zero value of the parameter +means that the requested element is created if it does not exist already. +@param precalc_hashval Optional input parameter for sparse matrices. If the pointer is not NULL, +the function does not recalculate the node hash value, but takes it from the specified location. +It is useful for speeding up pair-wise operations (TODO: provide an example) +*/ +CVAPI(uchar*) cvPtrND( const CvArr* arr, const int* idx, int* type CV_DEFAULT(NULL), + int create_node CV_DEFAULT(1), + unsigned* precalc_hashval CV_DEFAULT(NULL)); + +/** @brief Return a specific array element. + +The functions return a specific array element. In the case of a sparse array the functions return 0 +if the requested node does not exist (no new node is created by the functions). +@param arr Input array +@param idx0 The first zero-based component of the element index + */ +CVAPI(CvScalar) cvGet1D( const CvArr* arr, int idx0 ); +/** @overload */ +CVAPI(CvScalar) cvGet2D( const CvArr* arr, int idx0, int idx1 ); +/** @overload */ +CVAPI(CvScalar) cvGet3D( const CvArr* arr, int idx0, int idx1, int idx2 ); +/** @overload +@param arr Input array +@param idx Array of the element indices +*/ +CVAPI(CvScalar) cvGetND( const CvArr* arr, const int* idx ); + +/** @brief Return a specific element of single-channel 1D, 2D, 3D or nD array. + +Returns a specific element of a single-channel array. If the array has multiple channels, a runtime +error is raised. Note that Get?D functions can be used safely for both single-channel and +multiple-channel arrays though they are a bit slower. + +In the case of a sparse array the functions return 0 if the requested node does not exist (no new +node is created by the functions). +@param arr Input array. Must have a single channel. +@param idx0 The first zero-based component of the element index + */ +CVAPI(double) cvGetReal1D( const CvArr* arr, int idx0 ); +/** @overload */ +CVAPI(double) cvGetReal2D( const CvArr* arr, int idx0, int idx1 ); +/** @overload */ +CVAPI(double) cvGetReal3D( const CvArr* arr, int idx0, int idx1, int idx2 ); +/** @overload +@param arr Input array. Must have a single channel. +@param idx Array of the element indices +*/ +CVAPI(double) cvGetRealND( const CvArr* arr, const int* idx ); + +/** @brief Change the particular array element. + +The functions assign the new value to a particular array element. In the case of a sparse array the +functions create the node if it does not exist yet. +@param arr Input array +@param idx0 The first zero-based component of the element index +@param value The assigned value + */ +CVAPI(void) cvSet1D( CvArr* arr, int idx0, CvScalar value ); +/** @overload */ +CVAPI(void) cvSet2D( CvArr* arr, int idx0, int idx1, CvScalar value ); +/** @overload */ +CVAPI(void) cvSet3D( CvArr* arr, int idx0, int idx1, int idx2, CvScalar value ); +/** @overload +@param arr Input array +@param idx Array of the element indices +@param value The assigned value +*/ +CVAPI(void) cvSetND( CvArr* arr, const int* idx, CvScalar value ); + +/** @brief Change a specific array element. + +The functions assign a new value to a specific element of a single-channel array. If the array has +multiple channels, a runtime error is raised. Note that the Set\*D function can be used safely for +both single-channel and multiple-channel arrays, though they are a bit slower. + +In the case of a sparse array the functions create the node if it does not yet exist. +@param arr Input array +@param idx0 The first zero-based component of the element index +@param value The assigned value + */ +CVAPI(void) cvSetReal1D( CvArr* arr, int idx0, double value ); +/** @overload */ +CVAPI(void) cvSetReal2D( CvArr* arr, int idx0, int idx1, double value ); +/** @overload */ +CVAPI(void) cvSetReal3D( CvArr* arr, int idx0, + int idx1, int idx2, double value ); +/** @overload +@param arr Input array +@param idx Array of the element indices +@param value The assigned value +*/ +CVAPI(void) cvSetRealND( CvArr* arr, const int* idx, double value ); + +/** clears element of ND dense array, + in case of sparse arrays it deletes the specified node */ +CVAPI(void) cvClearND( CvArr* arr, const int* idx ); + +/** @brief Returns matrix header for arbitrary array. + +The function returns a matrix header for the input array that can be a matrix - CvMat, an image - +IplImage, or a multi-dimensional dense array - CvMatND (the third option is allowed only if +allowND != 0) . In the case of matrix the function simply returns the input pointer. In the case of +IplImage\* or CvMatND it initializes the header structure with parameters of the current image ROI +and returns &header. Because COI is not supported by CvMat, it is returned separately. + +The function provides an easy way to handle both types of arrays - IplImage and CvMat using the same +code. Input array must have non-zero data pointer, otherwise the function will report an error. + +@note If the input array is IplImage with planar data layout and COI set, the function returns the +pointer to the selected plane and COI == 0. This feature allows user to process IplImage structures +with planar data layout, even though OpenCV does not support such images. +@param arr Input array +@param header Pointer to CvMat structure used as a temporary buffer +@param coi Optional output parameter for storing COI +@param allowND If non-zero, the function accepts multi-dimensional dense arrays (CvMatND\*) and +returns 2D matrix (if CvMatND has two dimensions) or 1D matrix (when CvMatND has 1 dimension or +more than 2 dimensions). The CvMatND array must be continuous. +@sa cvGetImage, cvarrToMat. + */ +CVAPI(CvMat*) cvGetMat( const CvArr* arr, CvMat* header, + int* coi CV_DEFAULT(NULL), + int allowND CV_DEFAULT(0)); + +/** @brief Returns image header for arbitrary array. + +The function returns the image header for the input array that can be a matrix (CvMat) or image +(IplImage). In the case of an image the function simply returns the input pointer. In the case of +CvMat it initializes an image_header structure with the parameters of the input matrix. Note that +if we transform IplImage to CvMat using cvGetMat and then transform CvMat back to IplImage using +this function, we will get different headers if the ROI is set in the original image. +@param arr Input array +@param image_header Pointer to IplImage structure used as a temporary buffer + */ +CVAPI(IplImage*) cvGetImage( const CvArr* arr, IplImage* image_header ); + + +/** @brief Changes the shape of a multi-dimensional array without copying the data. + +The function is an advanced version of cvReshape that can work with multi-dimensional arrays as +well (though it can work with ordinary images and matrices) and change the number of dimensions. + +Below are the two samples from the cvReshape description rewritten using cvReshapeMatND: +@code + IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3); + IplImage gray_img_hdr, *gray_img; + gray_img = (IplImage*)cvReshapeMatND(color_img, sizeof(gray_img_hdr), &gray_img_hdr, 1, 0, 0); + ... + int size[] = { 2, 2, 2 }; + CvMatND* mat = cvCreateMatND(3, size, CV_32F); + CvMat row_header, *row; + row = (CvMat*)cvReshapeMatND(mat, sizeof(row_header), &row_header, 0, 1, 0); +@endcode +In C, the header file for this function includes a convenient macro cvReshapeND that does away with +the sizeof_header parameter. So, the lines containing the call to cvReshapeMatND in the examples +may be replaced as follow: +@code + gray_img = (IplImage*)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0); + ... + row = (CvMat*)cvReshapeND(mat, &row_header, 0, 1, 0); +@endcode +@param arr Input array +@param sizeof_header Size of output header to distinguish between IplImage, CvMat and CvMatND +output headers +@param header Output header to be filled +@param new_cn New number of channels. new_cn = 0 means that the number of channels remains +unchanged. +@param new_dims New number of dimensions. new_dims = 0 means that the number of dimensions +remains the same. +@param new_sizes Array of new dimension sizes. Only new_dims-1 values are used, because the +total number of elements must remain the same. Thus, if new_dims = 1, new_sizes array is not +used. + */ +CVAPI(CvArr*) cvReshapeMatND( const CvArr* arr, + int sizeof_header, CvArr* header, + int new_cn, int new_dims, int* new_sizes ); + +#define cvReshapeND( arr, header, new_cn, new_dims, new_sizes ) \ + cvReshapeMatND( (arr), sizeof(*(header)), (header), \ + (new_cn), (new_dims), (new_sizes)) + +/** @brief Changes shape of matrix/image without copying data. + +The function initializes the CvMat header so that it points to the same data as the original array +but has a different shape - different number of channels, different number of rows, or both. + +The following example code creates one image buffer and two image headers, the first is for a +320x240x3 image and the second is for a 960x240x1 image: +@code + IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3); + CvMat gray_mat_hdr; + IplImage gray_img_hdr, *gray_img; + cvReshape(color_img, &gray_mat_hdr, 1); + gray_img = cvGetImage(&gray_mat_hdr, &gray_img_hdr); +@endcode +And the next example converts a 3x3 matrix to a single 1x9 vector: +@code + CvMat* mat = cvCreateMat(3, 3, CV_32F); + CvMat row_header, *row; + row = cvReshape(mat, &row_header, 0, 1); +@endcode +@param arr Input array +@param header Output header to be filled +@param new_cn New number of channels. 'new_cn = 0' means that the number of channels remains +unchanged. +@param new_rows New number of rows. 'new_rows = 0' means that the number of rows remains +unchanged unless it needs to be changed according to new_cn value. +*/ +CVAPI(CvMat*) cvReshape( const CvArr* arr, CvMat* header, + int new_cn, int new_rows CV_DEFAULT(0) ); + +/** Repeats source 2d array several times in both horizontal and + vertical direction to fill destination array */ +CVAPI(void) cvRepeat( const CvArr* src, CvArr* dst ); + +/** @brief Allocates array data + +The function allocates image, matrix or multi-dimensional dense array data. Note that in the case of +matrix types OpenCV allocation functions are used. In the case of IplImage they are used unless +CV_TURN_ON_IPL_COMPATIBILITY() has been called before. In the latter case IPL functions are used +to allocate the data. +@param arr Array header + */ +CVAPI(void) cvCreateData( CvArr* arr ); + +/** @brief Releases array data. + +The function releases the array data. In the case of CvMat or CvMatND it simply calls +cvDecRefData(), that is the function can not deallocate external data. See also the note to +cvCreateData . +@param arr Array header + */ +CVAPI(void) cvReleaseData( CvArr* arr ); + +/** @brief Assigns user data to the array header. + +The function assigns user data to the array header. Header should be initialized before using +cvCreateMatHeader, cvCreateImageHeader, cvCreateMatNDHeader, cvInitMatHeader, +cvInitImageHeader or cvInitMatNDHeader. +@param arr Array header +@param data User data +@param step Full row length in bytes + */ +CVAPI(void) cvSetData( CvArr* arr, void* data, int step ); + +/** @brief Retrieves low-level information about the array. + +The function fills output variables with low-level information about the array data. All output + +parameters are optional, so some of the pointers may be set to NULL. If the array is IplImage with +ROI set, the parameters of ROI are returned. + +The following example shows how to get access to array elements. It computes absolute values of the +array elements : +@code + float* data; + int step; + CvSize size; + + cvGetRawData(array, (uchar**)&data, &step, &size); + step /= sizeof(data[0]); + + for(int y = 0; y < size.height; y++, data += step ) + for(int x = 0; x < size.width; x++ ) + data[x] = (float)fabs(data[x]); +@endcode +@param arr Array header +@param data Output pointer to the whole image origin or ROI origin if ROI is set +@param step Output full row length in bytes +@param roi_size Output ROI size + */ +CVAPI(void) cvGetRawData( const CvArr* arr, uchar** data, + int* step CV_DEFAULT(NULL), + CvSize* roi_size CV_DEFAULT(NULL)); + +/** @brief Returns size of matrix or image ROI. + +The function returns number of rows (CvSize::height) and number of columns (CvSize::width) of the +input matrix or image. In the case of image the size of ROI is returned. +@param arr array header + */ +CVAPI(CvSize) cvGetSize( const CvArr* arr ); + +/** @brief Copies one array to another. + +The function copies selected elements from an input array to an output array: + +\f[\texttt{dst} (I)= \texttt{src} (I) \quad \text{if} \quad \texttt{mask} (I) \ne 0.\f] + +If any of the passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays +must have the same type, the same number of dimensions, and the same size. The function can also +copy sparse arrays (mask is not supported in this case). +@param src The source array +@param dst The destination array +@param mask Operation mask, 8-bit single channel array; specifies elements of the destination array +to be changed + */ +CVAPI(void) cvCopy( const CvArr* src, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Sets every element of an array to a given value. + +The function copies the scalar value to every selected element of the destination array: +\f[\texttt{arr} (I)= \texttt{value} \quad \text{if} \quad \texttt{mask} (I) \ne 0\f] +If array arr is of IplImage type, then is ROI used, but COI must not be set. +@param arr The destination array +@param value Fill value +@param mask Operation mask, 8-bit single channel array; specifies elements of the destination +array to be changed + */ +CVAPI(void) cvSet( CvArr* arr, CvScalar value, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Clears the array. + +The function clears the array. In the case of dense arrays (CvMat, CvMatND or IplImage), +cvZero(array) is equivalent to cvSet(array,cvScalarAll(0),0). In the case of sparse arrays all the +elements are removed. +@param arr Array to be cleared + */ +CVAPI(void) cvSetZero( CvArr* arr ); +#define cvZero cvSetZero + + +/** Splits a multi-channel array into the set of single-channel arrays or + extracts particular [color] plane */ +CVAPI(void) cvSplit( const CvArr* src, CvArr* dst0, CvArr* dst1, + CvArr* dst2, CvArr* dst3 ); + +/** Merges a set of single-channel arrays into the single multi-channel array + or inserts one particular [color] plane to the array */ +CVAPI(void) cvMerge( const CvArr* src0, const CvArr* src1, + const CvArr* src2, const CvArr* src3, + CvArr* dst ); + +/** Copies several channels from input arrays to + certain channels of output arrays */ +CVAPI(void) cvMixChannels( const CvArr** src, int src_count, + CvArr** dst, int dst_count, + const int* from_to, int pair_count ); + +/** @brief Converts one array to another with optional linear transformation. + +The function has several different purposes, and thus has several different names. It copies one +array to another with optional scaling, which is performed first, and/or optional type conversion, +performed after: + +\f[\texttt{dst} (I) = \texttt{scale} \texttt{src} (I) + ( \texttt{shift} _0, \texttt{shift} _1,...)\f] + +All the channels of multi-channel arrays are processed independently. + +The type of conversion is done with rounding and saturation, that is if the result of scaling + +conversion can not be represented exactly by a value of the destination array element type, it is +set to the nearest representable value on the real axis. +@param src Source array +@param dst Destination array +@param scale Scale factor +@param shift Value added to the scaled source array elements + */ +CVAPI(void) cvConvertScale( const CvArr* src, CvArr* dst, + double scale CV_DEFAULT(1), + double shift CV_DEFAULT(0) ); +#define cvCvtScale cvConvertScale +#define cvScale cvConvertScale +#define cvConvert( src, dst ) cvConvertScale( (src), (dst), 1, 0 ) + + +/** Performs linear transformation on every source array element, + stores absolute value of the result: + dst(x,y,c) = abs(scale*src(x,y,c)+shift). + destination array must have 8u type. + In other cases one may use cvConvertScale + cvAbsDiffS */ +CVAPI(void) cvConvertScaleAbs( const CvArr* src, CvArr* dst, + double scale CV_DEFAULT(1), + double shift CV_DEFAULT(0) ); +#define cvCvtScaleAbs cvConvertScaleAbs + + +/** checks termination criteria validity and + sets eps to default_eps (if it is not set), + max_iter to default_max_iters (if it is not set) +*/ +CVAPI(CvTermCriteria) cvCheckTermCriteria( CvTermCriteria criteria, + double default_eps, + int default_max_iters ); + +/****************************************************************************************\ +* Arithmetic, logic and comparison operations * +\****************************************************************************************/ + +/** dst(mask) = src1(mask) + src2(mask) */ +CVAPI(void) cvAdd( const CvArr* src1, const CvArr* src2, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(mask) = src(mask) + value */ +CVAPI(void) cvAddS( const CvArr* src, CvScalar value, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(mask) = src1(mask) - src2(mask) */ +CVAPI(void) cvSub( const CvArr* src1, const CvArr* src2, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(mask) = src(mask) - value = src(mask) + (-value) */ +CV_INLINE void cvSubS( const CvArr* src, CvScalar value, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)) +{ + cvAddS( src, cvScalar( -value.val[0], -value.val[1], -value.val[2], -value.val[3]), + dst, mask ); +} + +/** dst(mask) = value - src(mask) */ +CVAPI(void) cvSubRS( const CvArr* src, CvScalar value, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src1(idx) * src2(idx) * scale + (scaled element-wise multiplication of 2 arrays) */ +CVAPI(void) cvMul( const CvArr* src1, const CvArr* src2, + CvArr* dst, double scale CV_DEFAULT(1) ); + +/** element-wise division/inversion with scaling: + dst(idx) = src1(idx) * scale / src2(idx) + or dst(idx) = scale / src2(idx) if src1 == 0 */ +CVAPI(void) cvDiv( const CvArr* src1, const CvArr* src2, + CvArr* dst, double scale CV_DEFAULT(1)); + +/** dst = src1 * scale + src2 */ +CVAPI(void) cvScaleAdd( const CvArr* src1, CvScalar scale, + const CvArr* src2, CvArr* dst ); +#define cvAXPY( A, real_scalar, B, C ) cvScaleAdd(A, cvRealScalar(real_scalar), B, C) + +/** dst = src1 * alpha + src2 * beta + gamma */ +CVAPI(void) cvAddWeighted( const CvArr* src1, double alpha, + const CvArr* src2, double beta, + double gamma, CvArr* dst ); + +/** @brief Calculates the dot product of two arrays in Euclidean metrics. + +The function calculates and returns the Euclidean dot product of two arrays. + +\f[src1 \bullet src2 = \sum _I ( \texttt{src1} (I) \texttt{src2} (I))\f] + +In the case of multiple channel arrays, the results for all channels are accumulated. In particular, +cvDotProduct(a,a) where a is a complex vector, will return \f$||\texttt{a}||^2\f$. The function can +process multi-dimensional arrays, row by row, layer by layer, and so on. +@param src1 The first source array +@param src2 The second source array + */ +CVAPI(double) cvDotProduct( const CvArr* src1, const CvArr* src2 ); + +/** dst(idx) = src1(idx) & src2(idx) */ +CVAPI(void) cvAnd( const CvArr* src1, const CvArr* src2, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src(idx) & value */ +CVAPI(void) cvAndS( const CvArr* src, CvScalar value, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src1(idx) | src2(idx) */ +CVAPI(void) cvOr( const CvArr* src1, const CvArr* src2, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src(idx) | value */ +CVAPI(void) cvOrS( const CvArr* src, CvScalar value, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src1(idx) ^ src2(idx) */ +CVAPI(void) cvXor( const CvArr* src1, const CvArr* src2, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src(idx) ^ value */ +CVAPI(void) cvXorS( const CvArr* src, CvScalar value, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = ~src(idx) */ +CVAPI(void) cvNot( const CvArr* src, CvArr* dst ); + +/** dst(idx) = lower(idx) <= src(idx) < upper(idx) */ +CVAPI(void) cvInRange( const CvArr* src, const CvArr* lower, + const CvArr* upper, CvArr* dst ); + +/** dst(idx) = lower <= src(idx) < upper */ +CVAPI(void) cvInRangeS( const CvArr* src, CvScalar lower, + CvScalar upper, CvArr* dst ); + +#define CV_CMP_EQ 0 +#define CV_CMP_GT 1 +#define CV_CMP_GE 2 +#define CV_CMP_LT 3 +#define CV_CMP_LE 4 +#define CV_CMP_NE 5 + +/** The comparison operation support single-channel arrays only. + Destination image should be 8uC1 or 8sC1 */ + +/** dst(idx) = src1(idx) _cmp_op_ src2(idx) */ +CVAPI(void) cvCmp( const CvArr* src1, const CvArr* src2, CvArr* dst, int cmp_op ); + +/** dst(idx) = src1(idx) _cmp_op_ value */ +CVAPI(void) cvCmpS( const CvArr* src, double value, CvArr* dst, int cmp_op ); + +/** dst(idx) = min(src1(idx),src2(idx)) */ +CVAPI(void) cvMin( const CvArr* src1, const CvArr* src2, CvArr* dst ); + +/** dst(idx) = max(src1(idx),src2(idx)) */ +CVAPI(void) cvMax( const CvArr* src1, const CvArr* src2, CvArr* dst ); + +/** dst(idx) = min(src(idx),value) */ +CVAPI(void) cvMinS( const CvArr* src, double value, CvArr* dst ); + +/** dst(idx) = max(src(idx),value) */ +CVAPI(void) cvMaxS( const CvArr* src, double value, CvArr* dst ); + +/** dst(x,y,c) = abs(src1(x,y,c) - src2(x,y,c)) */ +CVAPI(void) cvAbsDiff( const CvArr* src1, const CvArr* src2, CvArr* dst ); + +/** dst(x,y,c) = abs(src(x,y,c) - value(c)) */ +CVAPI(void) cvAbsDiffS( const CvArr* src, CvArr* dst, CvScalar value ); +#define cvAbs( src, dst ) cvAbsDiffS( (src), (dst), cvScalarAll(0)) + +/****************************************************************************************\ +* Math operations * +\****************************************************************************************/ + +/** Does cartesian->polar coordinates conversion. + Either of output components (magnitude or angle) is optional */ +CVAPI(void) cvCartToPolar( const CvArr* x, const CvArr* y, + CvArr* magnitude, CvArr* angle CV_DEFAULT(NULL), + int angle_in_degrees CV_DEFAULT(0)); + +/** Does polar->cartesian coordinates conversion. + Either of output components (magnitude or angle) is optional. + If magnitude is missing it is assumed to be all 1's */ +CVAPI(void) cvPolarToCart( const CvArr* magnitude, const CvArr* angle, + CvArr* x, CvArr* y, + int angle_in_degrees CV_DEFAULT(0)); + +/** Does powering: dst(idx) = src(idx)^power */ +CVAPI(void) cvPow( const CvArr* src, CvArr* dst, double power ); + +/** Does exponention: dst(idx) = exp(src(idx)). + Overflow is not handled yet. Underflow is handled. + Maximal relative error is ~7e-6 for single-precision input */ +CVAPI(void) cvExp( const CvArr* src, CvArr* dst ); + +/** Calculates natural logarithms: dst(idx) = log(abs(src(idx))). + Logarithm of 0 gives large negative number(~-700) + Maximal relative error is ~3e-7 for single-precision output +*/ +CVAPI(void) cvLog( const CvArr* src, CvArr* dst ); + +/** Fast arctangent calculation */ +CVAPI(float) cvFastArctan( float y, float x ); + +/** Fast cubic root calculation */ +CVAPI(float) cvCbrt( float value ); + +#define CV_CHECK_RANGE 1 +#define CV_CHECK_QUIET 2 +/** Checks array values for NaNs, Infs or simply for too large numbers + (if CV_CHECK_RANGE is set). If CV_CHECK_QUIET is set, + no runtime errors is raised (function returns zero value in case of "bad" values). + Otherwise cvError is called */ +CVAPI(int) cvCheckArr( const CvArr* arr, int flags CV_DEFAULT(0), + double min_val CV_DEFAULT(0), double max_val CV_DEFAULT(0)); +#define cvCheckArray cvCheckArr + +#define CV_RAND_UNI 0 +#define CV_RAND_NORMAL 1 + +/** @brief Fills an array with random numbers and updates the RNG state. + +The function fills the destination array with uniformly or normally distributed random numbers. +@param rng CvRNG state initialized by cvRNG +@param arr The destination array +@param dist_type Distribution type +> - **CV_RAND_UNI** uniform distribution +> - **CV_RAND_NORMAL** normal or Gaussian distribution +@param param1 The first parameter of the distribution. In the case of a uniform distribution it is +the inclusive lower boundary of the random numbers range. In the case of a normal distribution it +is the mean value of the random numbers. +@param param2 The second parameter of the distribution. In the case of a uniform distribution it +is the exclusive upper boundary of the random numbers range. In the case of a normal distribution +it is the standard deviation of the random numbers. +@sa randu, randn, RNG::fill. + */ +CVAPI(void) cvRandArr( CvRNG* rng, CvArr* arr, int dist_type, + CvScalar param1, CvScalar param2 ); + +CVAPI(void) cvRandShuffle( CvArr* mat, CvRNG* rng, + double iter_factor CV_DEFAULT(1.)); + +#define CV_SORT_EVERY_ROW 0 +#define CV_SORT_EVERY_COLUMN 1 +#define CV_SORT_ASCENDING 0 +#define CV_SORT_DESCENDING 16 + +CVAPI(void) cvSort( const CvArr* src, CvArr* dst CV_DEFAULT(NULL), + CvArr* idxmat CV_DEFAULT(NULL), + int flags CV_DEFAULT(0)); + +/** Finds real roots of a cubic equation */ +CVAPI(int) cvSolveCubic( const CvMat* coeffs, CvMat* roots ); + +/** Finds all real and complex roots of a polynomial equation */ +CVAPI(void) cvSolvePoly(const CvMat* coeffs, CvMat *roots2, + int maxiter CV_DEFAULT(20), int fig CV_DEFAULT(100)); + +/****************************************************************************************\ +* Matrix operations * +\****************************************************************************************/ + +/** @brief Calculates the cross product of two 3D vectors. + +The function calculates the cross product of two 3D vectors: +\f[\texttt{dst} = \texttt{src1} \times \texttt{src2}\f] +or: +\f[\begin{array}{l} \texttt{dst} _1 = \texttt{src1} _2 \texttt{src2} _3 - \texttt{src1} _3 \texttt{src2} _2 \\ \texttt{dst} _2 = \texttt{src1} _3 \texttt{src2} _1 - \texttt{src1} _1 \texttt{src2} _3 \\ \texttt{dst} _3 = \texttt{src1} _1 \texttt{src2} _2 - \texttt{src1} _2 \texttt{src2} _1 \end{array}\f] +@param src1 The first source vector +@param src2 The second source vector +@param dst The destination vector + */ +CVAPI(void) cvCrossProduct( const CvArr* src1, const CvArr* src2, CvArr* dst ); + +/** Matrix transform: dst = A*B + C, C is optional */ +#define cvMatMulAdd( src1, src2, src3, dst ) cvGEMM( (src1), (src2), 1., (src3), 1., (dst), 0 ) +#define cvMatMul( src1, src2, dst ) cvMatMulAdd( (src1), (src2), NULL, (dst)) + +#define CV_GEMM_A_T 1 +#define CV_GEMM_B_T 2 +#define CV_GEMM_C_T 4 +/** Extended matrix transform: + dst = alpha*op(A)*op(B) + beta*op(C), where op(X) is X or X^T */ +CVAPI(void) cvGEMM( const CvArr* src1, const CvArr* src2, double alpha, + const CvArr* src3, double beta, CvArr* dst, + int tABC CV_DEFAULT(0)); +#define cvMatMulAddEx cvGEMM + +/** Transforms each element of source array and stores + resultant vectors in destination array */ +CVAPI(void) cvTransform( const CvArr* src, CvArr* dst, + const CvMat* transmat, + const CvMat* shiftvec CV_DEFAULT(NULL)); +#define cvMatMulAddS cvTransform + +/** Does perspective transform on every element of input array */ +CVAPI(void) cvPerspectiveTransform( const CvArr* src, CvArr* dst, + const CvMat* mat ); + +/** Calculates (A-delta)*(A-delta)^T (order=0) or (A-delta)^T*(A-delta) (order=1) */ +CVAPI(void) cvMulTransposed( const CvArr* src, CvArr* dst, int order, + const CvArr* delta CV_DEFAULT(NULL), + double scale CV_DEFAULT(1.) ); + +/** Tranposes matrix. Square matrices can be transposed in-place */ +CVAPI(void) cvTranspose( const CvArr* src, CvArr* dst ); +#define cvT cvTranspose + +/** Completes the symmetric matrix from the lower (LtoR=0) or from the upper (LtoR!=0) part */ +CVAPI(void) cvCompleteSymm( CvMat* matrix, int LtoR CV_DEFAULT(0) ); + +/** Mirror array data around horizontal (flip=0), + vertical (flip=1) or both(flip=-1) axises: + cvFlip(src) flips images vertically and sequences horizontally (inplace) */ +CVAPI(void) cvFlip( const CvArr* src, CvArr* dst CV_DEFAULT(NULL), + int flip_mode CV_DEFAULT(0)); +#define cvMirror cvFlip + + +#define CV_SVD_MODIFY_A 1 +#define CV_SVD_U_T 2 +#define CV_SVD_V_T 4 + +/** Performs Singular Value Decomposition of a matrix */ +CVAPI(void) cvSVD( CvArr* A, CvArr* W, CvArr* U CV_DEFAULT(NULL), + CvArr* V CV_DEFAULT(NULL), int flags CV_DEFAULT(0)); + +/** Performs Singular Value Back Substitution (solves A*X = B): + flags must be the same as in cvSVD */ +CVAPI(void) cvSVBkSb( const CvArr* W, const CvArr* U, + const CvArr* V, const CvArr* B, + CvArr* X, int flags ); + +#define CV_LU 0 +#define CV_SVD 1 +#define CV_SVD_SYM 2 +#define CV_CHOLESKY 3 +#define CV_QR 4 +#define CV_NORMAL 16 + +/** Inverts matrix */ +CVAPI(double) cvInvert( const CvArr* src, CvArr* dst, + int method CV_DEFAULT(CV_LU)); +#define cvInv cvInvert + +/** Solves linear system (src1)*(dst) = (src2) + (returns 0 if src1 is a singular and CV_LU method is used) */ +CVAPI(int) cvSolve( const CvArr* src1, const CvArr* src2, CvArr* dst, + int method CV_DEFAULT(CV_LU)); + +/** Calculates determinant of input matrix */ +CVAPI(double) cvDet( const CvArr* mat ); + +/** Calculates trace of the matrix (sum of elements on the main diagonal) */ +CVAPI(CvScalar) cvTrace( const CvArr* mat ); + +/** Finds eigen values and vectors of a symmetric matrix */ +CVAPI(void) cvEigenVV( CvArr* mat, CvArr* evects, CvArr* evals, + double eps CV_DEFAULT(0), + int lowindex CV_DEFAULT(-1), + int highindex CV_DEFAULT(-1)); + +///* Finds selected eigen values and vectors of a symmetric matrix */ +//CVAPI(void) cvSelectedEigenVV( CvArr* mat, CvArr* evects, CvArr* evals, +// int lowindex, int highindex ); + +/** Makes an identity matrix (mat_ij = i == j) */ +CVAPI(void) cvSetIdentity( CvArr* mat, CvScalar value CV_DEFAULT(cvRealScalar(1)) ); + +/** Fills matrix with given range of numbers */ +CVAPI(CvArr*) cvRange( CvArr* mat, double start, double end ); + +/** @anchor core_c_CovarFlags +@name Flags for cvCalcCovarMatrix +@see cvCalcCovarMatrix + @{ +*/ + +/** flag for cvCalcCovarMatrix, transpose([v1-avg, v2-avg,...]) * [v1-avg,v2-avg,...] */ +#define CV_COVAR_SCRAMBLED 0 + +/** flag for cvCalcCovarMatrix, [v1-avg, v2-avg,...] * transpose([v1-avg,v2-avg,...]) */ +#define CV_COVAR_NORMAL 1 + +/** flag for cvCalcCovarMatrix, do not calc average (i.e. mean vector) - use the input vector instead + (useful for calculating covariance matrix by parts) */ +#define CV_COVAR_USE_AVG 2 + +/** flag for cvCalcCovarMatrix, scale the covariance matrix coefficients by number of the vectors */ +#define CV_COVAR_SCALE 4 + +/** flag for cvCalcCovarMatrix, all the input vectors are stored in a single matrix, as its rows */ +#define CV_COVAR_ROWS 8 + +/** flag for cvCalcCovarMatrix, all the input vectors are stored in a single matrix, as its columns */ +#define CV_COVAR_COLS 16 + +/** @} */ + +/** Calculates covariation matrix for a set of vectors +@see @ref core_c_CovarFlags "flags" +*/ +CVAPI(void) cvCalcCovarMatrix( const CvArr** vects, int count, + CvArr* cov_mat, CvArr* avg, int flags ); + +#define CV_PCA_DATA_AS_ROW 0 +#define CV_PCA_DATA_AS_COL 1 +#define CV_PCA_USE_AVG 2 +CVAPI(void) cvCalcPCA( const CvArr* data, CvArr* mean, + CvArr* eigenvals, CvArr* eigenvects, int flags ); + +CVAPI(void) cvProjectPCA( const CvArr* data, const CvArr* mean, + const CvArr* eigenvects, CvArr* result ); + +CVAPI(void) cvBackProjectPCA( const CvArr* proj, const CvArr* mean, + const CvArr* eigenvects, CvArr* result ); + +/** Calculates Mahalanobis(weighted) distance */ +CVAPI(double) cvMahalanobis( const CvArr* vec1, const CvArr* vec2, const CvArr* mat ); +#define cvMahalonobis cvMahalanobis + +/****************************************************************************************\ +* Array Statistics * +\****************************************************************************************/ + +/** Finds sum of array elements */ +CVAPI(CvScalar) cvSum( const CvArr* arr ); + +/** Calculates number of non-zero pixels */ +CVAPI(int) cvCountNonZero( const CvArr* arr ); + +/** Calculates mean value of array elements */ +CVAPI(CvScalar) cvAvg( const CvArr* arr, const CvArr* mask CV_DEFAULT(NULL) ); + +/** Calculates mean and standard deviation of pixel values */ +CVAPI(void) cvAvgSdv( const CvArr* arr, CvScalar* mean, CvScalar* std_dev, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** Finds global minimum, maximum and their positions */ +CVAPI(void) cvMinMaxLoc( const CvArr* arr, double* min_val, double* max_val, + CvPoint* min_loc CV_DEFAULT(NULL), + CvPoint* max_loc CV_DEFAULT(NULL), + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @anchor core_c_NormFlags + @name Flags for cvNorm and cvNormalize + @{ +*/ +#define CV_C 1 +#define CV_L1 2 +#define CV_L2 4 +#define CV_NORM_MASK 7 +#define CV_RELATIVE 8 +#define CV_DIFF 16 +#define CV_MINMAX 32 + +#define CV_DIFF_C (CV_DIFF | CV_C) +#define CV_DIFF_L1 (CV_DIFF | CV_L1) +#define CV_DIFF_L2 (CV_DIFF | CV_L2) +#define CV_RELATIVE_C (CV_RELATIVE | CV_C) +#define CV_RELATIVE_L1 (CV_RELATIVE | CV_L1) +#define CV_RELATIVE_L2 (CV_RELATIVE | CV_L2) +/** @} */ + +/** Finds norm, difference norm or relative difference norm for an array (or two arrays) +@see ref core_c_NormFlags "flags" +*/ +CVAPI(double) cvNorm( const CvArr* arr1, const CvArr* arr2 CV_DEFAULT(NULL), + int norm_type CV_DEFAULT(CV_L2), + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @see ref core_c_NormFlags "flags" */ +CVAPI(void) cvNormalize( const CvArr* src, CvArr* dst, + double a CV_DEFAULT(1.), double b CV_DEFAULT(0.), + int norm_type CV_DEFAULT(CV_L2), + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @anchor core_c_ReduceFlags + @name Flags for cvReduce + @{ +*/ +#define CV_REDUCE_SUM 0 +#define CV_REDUCE_AVG 1 +#define CV_REDUCE_MAX 2 +#define CV_REDUCE_MIN 3 +/** @} */ + +/** @see @ref core_c_ReduceFlags "flags" */ +CVAPI(void) cvReduce( const CvArr* src, CvArr* dst, int dim CV_DEFAULT(-1), + int op CV_DEFAULT(CV_REDUCE_SUM) ); + +/****************************************************************************************\ +* Discrete Linear Transforms and Related Functions * +\****************************************************************************************/ + +/** @anchor core_c_DftFlags + @name Flags for cvDFT, cvDCT and cvMulSpectrums + @{ + */ +#define CV_DXT_FORWARD 0 +#define CV_DXT_INVERSE 1 +#define CV_DXT_SCALE 2 /**< divide result by size of array */ +#define CV_DXT_INV_SCALE (CV_DXT_INVERSE + CV_DXT_SCALE) +#define CV_DXT_INVERSE_SCALE CV_DXT_INV_SCALE +#define CV_DXT_ROWS 4 /**< transform each row individually */ +#define CV_DXT_MUL_CONJ 8 /**< conjugate the second argument of cvMulSpectrums */ +/** @} */ + +/** Discrete Fourier Transform: + complex->complex, + real->ccs (forward), + ccs->real (inverse) +@see core_c_DftFlags "flags" +*/ +CVAPI(void) cvDFT( const CvArr* src, CvArr* dst, int flags, + int nonzero_rows CV_DEFAULT(0) ); +#define cvFFT cvDFT + +/** Multiply results of DFTs: DFT(X)*DFT(Y) or DFT(X)*conj(DFT(Y)) +@see core_c_DftFlags "flags" +*/ +CVAPI(void) cvMulSpectrums( const CvArr* src1, const CvArr* src2, + CvArr* dst, int flags ); + +/** Finds optimal DFT vector size >= size0 */ +CVAPI(int) cvGetOptimalDFTSize( int size0 ); + +/** Discrete Cosine Transform +@see core_c_DftFlags "flags" +*/ +CVAPI(void) cvDCT( const CvArr* src, CvArr* dst, int flags ); + +/****************************************************************************************\ +* Dynamic data structures * +\****************************************************************************************/ + +/** Calculates length of sequence slice (with support of negative indices). */ +CVAPI(int) cvSliceLength( CvSlice slice, const CvSeq* seq ); + + +/** Creates new memory storage. + block_size == 0 means that default, + somewhat optimal size, is used (currently, it is 64K) */ +CVAPI(CvMemStorage*) cvCreateMemStorage( int block_size CV_DEFAULT(0)); + + +/** Creates a memory storage that will borrow memory blocks from parent storage */ +CVAPI(CvMemStorage*) cvCreateChildMemStorage( CvMemStorage* parent ); + + +/** Releases memory storage. All the children of a parent must be released before + the parent. A child storage returns all the blocks to parent when it is released */ +CVAPI(void) cvReleaseMemStorage( CvMemStorage** storage ); + + +/** Clears memory storage. This is the only way(!!!) (besides cvRestoreMemStoragePos) + to reuse memory allocated for the storage - cvClearSeq,cvClearSet ... + do not free any memory. + A child storage returns all the blocks to the parent when it is cleared */ +CVAPI(void) cvClearMemStorage( CvMemStorage* storage ); + +/** Remember a storage "free memory" position */ +CVAPI(void) cvSaveMemStoragePos( const CvMemStorage* storage, CvMemStoragePos* pos ); + +/** Restore a storage "free memory" position */ +CVAPI(void) cvRestoreMemStoragePos( CvMemStorage* storage, CvMemStoragePos* pos ); + +/** Allocates continuous buffer of the specified size in the storage */ +CVAPI(void*) cvMemStorageAlloc( CvMemStorage* storage, size_t size ); + +/** Allocates string in memory storage */ +CVAPI(CvString) cvMemStorageAllocString( CvMemStorage* storage, const char* ptr, + int len CV_DEFAULT(-1) ); + +/** Creates new empty sequence that will reside in the specified storage */ +CVAPI(CvSeq*) cvCreateSeq( int seq_flags, size_t header_size, + size_t elem_size, CvMemStorage* storage ); + +/** Changes default size (granularity) of sequence blocks. + The default size is ~1Kbyte */ +CVAPI(void) cvSetSeqBlockSize( CvSeq* seq, int delta_elems ); + + +/** Adds new element to the end of sequence. Returns pointer to the element */ +CVAPI(schar*) cvSeqPush( CvSeq* seq, const void* element CV_DEFAULT(NULL)); + + +/** Adds new element to the beginning of sequence. Returns pointer to it */ +CVAPI(schar*) cvSeqPushFront( CvSeq* seq, const void* element CV_DEFAULT(NULL)); + + +/** Removes the last element from sequence and optionally saves it */ +CVAPI(void) cvSeqPop( CvSeq* seq, void* element CV_DEFAULT(NULL)); + + +/** Removes the first element from sequence and optioanally saves it */ +CVAPI(void) cvSeqPopFront( CvSeq* seq, void* element CV_DEFAULT(NULL)); + + +#define CV_FRONT 1 +#define CV_BACK 0 +/** Adds several new elements to the end of sequence */ +CVAPI(void) cvSeqPushMulti( CvSeq* seq, const void* elements, + int count, int in_front CV_DEFAULT(0) ); + +/** Removes several elements from the end of sequence and optionally saves them */ +CVAPI(void) cvSeqPopMulti( CvSeq* seq, void* elements, + int count, int in_front CV_DEFAULT(0) ); + +/** Inserts a new element in the middle of sequence. + cvSeqInsert(seq,0,elem) == cvSeqPushFront(seq,elem) */ +CVAPI(schar*) cvSeqInsert( CvSeq* seq, int before_index, + const void* element CV_DEFAULT(NULL)); + +/** Removes specified sequence element */ +CVAPI(void) cvSeqRemove( CvSeq* seq, int index ); + + +/** Removes all the elements from the sequence. The freed memory + can be reused later only by the same sequence unless cvClearMemStorage + or cvRestoreMemStoragePos is called */ +CVAPI(void) cvClearSeq( CvSeq* seq ); + + +/** Retrieves pointer to specified sequence element. + Negative indices are supported and mean counting from the end + (e.g -1 means the last sequence element) */ +CVAPI(schar*) cvGetSeqElem( const CvSeq* seq, int index ); + +/** Calculates index of the specified sequence element. + Returns -1 if element does not belong to the sequence */ +CVAPI(int) cvSeqElemIdx( const CvSeq* seq, const void* element, + CvSeqBlock** block CV_DEFAULT(NULL) ); + +/** Initializes sequence writer. The new elements will be added to the end of sequence */ +CVAPI(void) cvStartAppendToSeq( CvSeq* seq, CvSeqWriter* writer ); + + +/** Combination of cvCreateSeq and cvStartAppendToSeq */ +CVAPI(void) cvStartWriteSeq( int seq_flags, int header_size, + int elem_size, CvMemStorage* storage, + CvSeqWriter* writer ); + +/** Closes sequence writer, updates sequence header and returns pointer + to the resultant sequence + (which may be useful if the sequence was created using cvStartWriteSeq)) +*/ +CVAPI(CvSeq*) cvEndWriteSeq( CvSeqWriter* writer ); + + +/** Updates sequence header. May be useful to get access to some of previously + written elements via cvGetSeqElem or sequence reader */ +CVAPI(void) cvFlushSeqWriter( CvSeqWriter* writer ); + + +/** Initializes sequence reader. + The sequence can be read in forward or backward direction */ +CVAPI(void) cvStartReadSeq( const CvSeq* seq, CvSeqReader* reader, + int reverse CV_DEFAULT(0) ); + + +/** Returns current sequence reader position (currently observed sequence element) */ +CVAPI(int) cvGetSeqReaderPos( CvSeqReader* reader ); + + +/** Changes sequence reader position. It may seek to an absolute or + to relative to the current position */ +CVAPI(void) cvSetSeqReaderPos( CvSeqReader* reader, int index, + int is_relative CV_DEFAULT(0)); + +/** Copies sequence content to a continuous piece of memory */ +CVAPI(void*) cvCvtSeqToArray( const CvSeq* seq, void* elements, + CvSlice slice CV_DEFAULT(CV_WHOLE_SEQ) ); + +/** Creates sequence header for array. + After that all the operations on sequences that do not alter the content + can be applied to the resultant sequence */ +CVAPI(CvSeq*) cvMakeSeqHeaderForArray( int seq_type, int header_size, + int elem_size, void* elements, int total, + CvSeq* seq, CvSeqBlock* block ); + +/** Extracts sequence slice (with or without copying sequence elements) */ +CVAPI(CvSeq*) cvSeqSlice( const CvSeq* seq, CvSlice slice, + CvMemStorage* storage CV_DEFAULT(NULL), + int copy_data CV_DEFAULT(0)); + +CV_INLINE CvSeq* cvCloneSeq( const CvSeq* seq, CvMemStorage* storage CV_DEFAULT(NULL)) +{ + return cvSeqSlice( seq, CV_WHOLE_SEQ, storage, 1 ); +} + +/** Removes sequence slice */ +CVAPI(void) cvSeqRemoveSlice( CvSeq* seq, CvSlice slice ); + +/** Inserts a sequence or array into another sequence */ +CVAPI(void) cvSeqInsertSlice( CvSeq* seq, int before_index, const CvArr* from_arr ); + +/** a < b ? -1 : a > b ? 1 : 0 */ +typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata ); + +/** Sorts sequence in-place given element comparison function */ +CVAPI(void) cvSeqSort( CvSeq* seq, CvCmpFunc func, void* userdata CV_DEFAULT(NULL) ); + +/** Finds element in a [sorted] sequence */ +CVAPI(schar*) cvSeqSearch( CvSeq* seq, const void* elem, CvCmpFunc func, + int is_sorted, int* elem_idx, + void* userdata CV_DEFAULT(NULL) ); + +/** Reverses order of sequence elements in-place */ +CVAPI(void) cvSeqInvert( CvSeq* seq ); + +/** Splits sequence into one or more equivalence classes using the specified criteria */ +CVAPI(int) cvSeqPartition( const CvSeq* seq, CvMemStorage* storage, + CvSeq** labels, CvCmpFunc is_equal, void* userdata ); + +/************ Internal sequence functions ************/ +CVAPI(void) cvChangeSeqBlock( void* reader, int direction ); +CVAPI(void) cvCreateSeqBlock( CvSeqWriter* writer ); + + +/** Creates a new set */ +CVAPI(CvSet*) cvCreateSet( int set_flags, int header_size, + int elem_size, CvMemStorage* storage ); + +/** Adds new element to the set and returns pointer to it */ +CVAPI(int) cvSetAdd( CvSet* set_header, CvSetElem* elem CV_DEFAULT(NULL), + CvSetElem** inserted_elem CV_DEFAULT(NULL) ); + +/** Fast variant of cvSetAdd */ +CV_INLINE CvSetElem* cvSetNew( CvSet* set_header ) +{ + CvSetElem* elem = set_header->free_elems; + if( elem ) + { + set_header->free_elems = elem->next_free; + elem->flags = elem->flags & CV_SET_ELEM_IDX_MASK; + set_header->active_count++; + } + else + cvSetAdd( set_header, NULL, &elem ); + return elem; +} + +/** Removes set element given its pointer */ +CV_INLINE void cvSetRemoveByPtr( CvSet* set_header, void* elem ) +{ + CvSetElem* _elem = (CvSetElem*)elem; + assert( _elem->flags >= 0 /*&& (elem->flags & CV_SET_ELEM_IDX_MASK) < set_header->total*/ ); + _elem->next_free = set_header->free_elems; + _elem->flags = (_elem->flags & CV_SET_ELEM_IDX_MASK) | CV_SET_ELEM_FREE_FLAG; + set_header->free_elems = _elem; + set_header->active_count--; +} + +/** Removes element from the set by its index */ +CVAPI(void) cvSetRemove( CvSet* set_header, int index ); + +/** Returns a set element by index. If the element doesn't belong to the set, + NULL is returned */ +CV_INLINE CvSetElem* cvGetSetElem( const CvSet* set_header, int idx ) +{ + CvSetElem* elem = (CvSetElem*)(void *)cvGetSeqElem( (CvSeq*)set_header, idx ); + return elem && CV_IS_SET_ELEM( elem ) ? elem : 0; +} + +/** Removes all the elements from the set */ +CVAPI(void) cvClearSet( CvSet* set_header ); + +/** Creates new graph */ +CVAPI(CvGraph*) cvCreateGraph( int graph_flags, int header_size, + int vtx_size, int edge_size, + CvMemStorage* storage ); + +/** Adds new vertex to the graph */ +CVAPI(int) cvGraphAddVtx( CvGraph* graph, const CvGraphVtx* vtx CV_DEFAULT(NULL), + CvGraphVtx** inserted_vtx CV_DEFAULT(NULL) ); + + +/** Removes vertex from the graph together with all incident edges */ +CVAPI(int) cvGraphRemoveVtx( CvGraph* graph, int index ); +CVAPI(int) cvGraphRemoveVtxByPtr( CvGraph* graph, CvGraphVtx* vtx ); + + +/** Link two vertices specifed by indices or pointers if they + are not connected or return pointer to already existing edge + connecting the vertices. + Functions return 1 if a new edge was created, 0 otherwise */ +CVAPI(int) cvGraphAddEdge( CvGraph* graph, + int start_idx, int end_idx, + const CvGraphEdge* edge CV_DEFAULT(NULL), + CvGraphEdge** inserted_edge CV_DEFAULT(NULL) ); + +CVAPI(int) cvGraphAddEdgeByPtr( CvGraph* graph, + CvGraphVtx* start_vtx, CvGraphVtx* end_vtx, + const CvGraphEdge* edge CV_DEFAULT(NULL), + CvGraphEdge** inserted_edge CV_DEFAULT(NULL) ); + +/** Remove edge connecting two vertices */ +CVAPI(void) cvGraphRemoveEdge( CvGraph* graph, int start_idx, int end_idx ); +CVAPI(void) cvGraphRemoveEdgeByPtr( CvGraph* graph, CvGraphVtx* start_vtx, + CvGraphVtx* end_vtx ); + +/** Find edge connecting two vertices */ +CVAPI(CvGraphEdge*) cvFindGraphEdge( const CvGraph* graph, int start_idx, int end_idx ); +CVAPI(CvGraphEdge*) cvFindGraphEdgeByPtr( const CvGraph* graph, + const CvGraphVtx* start_vtx, + const CvGraphVtx* end_vtx ); +#define cvGraphFindEdge cvFindGraphEdge +#define cvGraphFindEdgeByPtr cvFindGraphEdgeByPtr + +/** Remove all vertices and edges from the graph */ +CVAPI(void) cvClearGraph( CvGraph* graph ); + + +/** Count number of edges incident to the vertex */ +CVAPI(int) cvGraphVtxDegree( const CvGraph* graph, int vtx_idx ); +CVAPI(int) cvGraphVtxDegreeByPtr( const CvGraph* graph, const CvGraphVtx* vtx ); + + +/** Retrieves graph vertex by given index */ +#define cvGetGraphVtx( graph, idx ) (CvGraphVtx*)cvGetSetElem((CvSet*)(graph), (idx)) + +/** Retrieves index of a graph vertex given its pointer */ +#define cvGraphVtxIdx( graph, vtx ) ((vtx)->flags & CV_SET_ELEM_IDX_MASK) + +/** Retrieves index of a graph edge given its pointer */ +#define cvGraphEdgeIdx( graph, edge ) ((edge)->flags & CV_SET_ELEM_IDX_MASK) + +#define cvGraphGetVtxCount( graph ) ((graph)->active_count) +#define cvGraphGetEdgeCount( graph ) ((graph)->edges->active_count) + +#define CV_GRAPH_VERTEX 1 +#define CV_GRAPH_TREE_EDGE 2 +#define CV_GRAPH_BACK_EDGE 4 +#define CV_GRAPH_FORWARD_EDGE 8 +#define CV_GRAPH_CROSS_EDGE 16 +#define CV_GRAPH_ANY_EDGE 30 +#define CV_GRAPH_NEW_TREE 32 +#define CV_GRAPH_BACKTRACKING 64 +#define CV_GRAPH_OVER -1 + +#define CV_GRAPH_ALL_ITEMS -1 + +/** flags for graph vertices and edges */ +#define CV_GRAPH_ITEM_VISITED_FLAG (1 << 30) +#define CV_IS_GRAPH_VERTEX_VISITED(vtx) \ + (((CvGraphVtx*)(vtx))->flags & CV_GRAPH_ITEM_VISITED_FLAG) +#define CV_IS_GRAPH_EDGE_VISITED(edge) \ + (((CvGraphEdge*)(edge))->flags & CV_GRAPH_ITEM_VISITED_FLAG) +#define CV_GRAPH_SEARCH_TREE_NODE_FLAG (1 << 29) +#define CV_GRAPH_FORWARD_EDGE_FLAG (1 << 28) + +typedef struct CvGraphScanner +{ + CvGraphVtx* vtx; /* current graph vertex (or current edge origin) */ + CvGraphVtx* dst; /* current graph edge destination vertex */ + CvGraphEdge* edge; /* current edge */ + + CvGraph* graph; /* the graph */ + CvSeq* stack; /* the graph vertex stack */ + int index; /* the lower bound of certainly visited vertices */ + int mask; /* event mask */ +} +CvGraphScanner; + +/** Creates new graph scanner. */ +CVAPI(CvGraphScanner*) cvCreateGraphScanner( CvGraph* graph, + CvGraphVtx* vtx CV_DEFAULT(NULL), + int mask CV_DEFAULT(CV_GRAPH_ALL_ITEMS)); + +/** Releases graph scanner. */ +CVAPI(void) cvReleaseGraphScanner( CvGraphScanner** scanner ); + +/** Get next graph element */ +CVAPI(int) cvNextGraphItem( CvGraphScanner* scanner ); + +/** Creates a copy of graph */ +CVAPI(CvGraph*) cvCloneGraph( const CvGraph* graph, CvMemStorage* storage ); + + +/** Does look-up transformation. Elements of the source array + (that should be 8uC1 or 8sC1) are used as indexes in lutarr 256-element table */ +CVAPI(void) cvLUT( const CvArr* src, CvArr* dst, const CvArr* lut ); + + +/******************* Iteration through the sequence tree *****************/ +typedef struct CvTreeNodeIterator +{ + const void* node; + int level; + int max_level; +} +CvTreeNodeIterator; + +CVAPI(void) cvInitTreeNodeIterator( CvTreeNodeIterator* tree_iterator, + const void* first, int max_level ); +CVAPI(void*) cvNextTreeNode( CvTreeNodeIterator* tree_iterator ); +CVAPI(void*) cvPrevTreeNode( CvTreeNodeIterator* tree_iterator ); + +/** Inserts sequence into tree with specified "parent" sequence. + If parent is equal to frame (e.g. the most external contour), + then added contour will have null pointer to parent. */ +CVAPI(void) cvInsertNodeIntoTree( void* node, void* parent, void* frame ); + +/** Removes contour from tree (together with the contour children). */ +CVAPI(void) cvRemoveNodeFromTree( void* node, void* frame ); + +/** Gathers pointers to all the sequences, + accessible from the `first`, to the single sequence */ +CVAPI(CvSeq*) cvTreeToNodeSeq( const void* first, int header_size, + CvMemStorage* storage ); + +/** The function implements the K-means algorithm for clustering an array of sample + vectors in a specified number of classes */ +#define CV_KMEANS_USE_INITIAL_LABELS 1 +CVAPI(int) cvKMeans2( const CvArr* samples, int cluster_count, CvArr* labels, + CvTermCriteria termcrit, int attempts CV_DEFAULT(1), + CvRNG* rng CV_DEFAULT(0), int flags CV_DEFAULT(0), + CvArr* _centers CV_DEFAULT(0), double* compactness CV_DEFAULT(0) ); + +/****************************************************************************************\ +* System functions * +\****************************************************************************************/ + +/** Loads optimized functions from IPP, MKL etc. or switches back to pure C code */ +CVAPI(int) cvUseOptimized( int on_off ); + +typedef IplImage* (CV_STDCALL* Cv_iplCreateImageHeader) + (int,int,int,char*,char*,int,int,int,int,int, + IplROI*,IplImage*,void*,IplTileInfo*); +typedef void (CV_STDCALL* Cv_iplAllocateImageData)(IplImage*,int,int); +typedef void (CV_STDCALL* Cv_iplDeallocate)(IplImage*,int); +typedef IplROI* (CV_STDCALL* Cv_iplCreateROI)(int,int,int,int,int); +typedef IplImage* (CV_STDCALL* Cv_iplCloneImage)(const IplImage*); + +/** @brief Makes OpenCV use IPL functions for allocating IplImage and IplROI structures. + +Normally, the function is not called directly. Instead, a simple macro +CV_TURN_ON_IPL_COMPATIBILITY() is used that calls cvSetIPLAllocators and passes there pointers +to IPL allocation functions. : +@code + ... + CV_TURN_ON_IPL_COMPATIBILITY() + ... +@endcode +@param create_header pointer to a function, creating IPL image header. +@param allocate_data pointer to a function, allocating IPL image data. +@param deallocate pointer to a function, deallocating IPL image. +@param create_roi pointer to a function, creating IPL image ROI (i.e. Region of Interest). +@param clone_image pointer to a function, cloning an IPL image. + */ +CVAPI(void) cvSetIPLAllocators( Cv_iplCreateImageHeader create_header, + Cv_iplAllocateImageData allocate_data, + Cv_iplDeallocate deallocate, + Cv_iplCreateROI create_roi, + Cv_iplCloneImage clone_image ); + +#define CV_TURN_ON_IPL_COMPATIBILITY() \ + cvSetIPLAllocators( iplCreateImageHeader, iplAllocateImage, \ + iplDeallocate, iplCreateROI, iplCloneImage ) + +/****************************************************************************************\ +* Data Persistence * +\****************************************************************************************/ + +/********************************** High-level functions ********************************/ + +/** @brief Opens file storage for reading or writing data. + +The function opens file storage for reading or writing data. In the latter case, a new file is +created or an existing file is rewritten. The type of the read or written file is determined by the +filename extension: .xml for XML, .yml or .yaml for YAML and .json for JSON. + +At the same time, it also supports adding parameters like "example.xml?base64". The three ways +are the same: +@snippet samples/cpp/filestorage_base64.cpp suffix_in_file_name +@snippet samples/cpp/filestorage_base64.cpp flag_write_base64 +@snippet samples/cpp/filestorage_base64.cpp flag_write_and_flag_base64 + +The function returns a pointer to the CvFileStorage structure. +If the file cannot be opened then the function returns NULL. +@param filename Name of the file associated with the storage +@param memstorage Memory storage used for temporary data and for +: storing dynamic structures, such as CvSeq or CvGraph . If it is NULL, a temporary memory + storage is created and used. +@param flags Can be one of the following: +> - **CV_STORAGE_READ** the storage is open for reading +> - **CV_STORAGE_WRITE** the storage is open for writing + (use **CV_STORAGE_WRITE | CV_STORAGE_WRITE_BASE64** to write rawdata in Base64) +@param encoding + */ +CVAPI(CvFileStorage*) cvOpenFileStorage( const char* filename, CvMemStorage* memstorage, + int flags, const char* encoding CV_DEFAULT(NULL) ); + +/** @brief Releases file storage. + +The function closes the file associated with the storage and releases all the temporary structures. +It must be called after all I/O operations with the storage are finished. +@param fs Double pointer to the released file storage + */ +CVAPI(void) cvReleaseFileStorage( CvFileStorage** fs ); + +/** returns attribute value or 0 (NULL) if there is no such attribute */ +CVAPI(const char*) cvAttrValue( const CvAttrList* attr, const char* attr_name ); + +/** @brief Starts writing a new structure. + +The function starts writing a compound structure (collection) that can be a sequence or a map. After +all the structure fields, which can be scalars or structures, are written, cvEndWriteStruct should +be called. The function can be used to group some objects or to implement the write function for a +some user object (see CvTypeInfo). +@param fs File storage +@param name Name of the written structure. The structure can be accessed by this name when the +storage is read. +@param struct_flags A combination one of the following values: +- **CV_NODE_SEQ** the written structure is a sequence (see discussion of CvFileStorage ), + that is, its elements do not have a name. +- **CV_NODE_MAP** the written structure is a map (see discussion of CvFileStorage ), that + is, all its elements have names. +One and only one of the two above flags must be specified +- **CV_NODE_FLOW** the optional flag that makes sense only for YAML streams. It means that + the structure is written as a flow (not as a block), which is more compact. It is + recommended to use this flag for structures or arrays whose elements are all scalars. +@param type_name Optional parameter - the object type name. In + case of XML it is written as a type_id attribute of the structure opening tag. In the case of + YAML it is written after a colon following the structure name (see the example in + CvFileStorage description). In case of JSON it is written as a name/value pair. + Mainly it is used with user objects. When the storage is read, the + encoded type name is used to determine the object type (see CvTypeInfo and cvFindType ). +@param attributes This parameter is not used in the current implementation + */ +CVAPI(void) cvStartWriteStruct( CvFileStorage* fs, const char* name, + int struct_flags, const char* type_name CV_DEFAULT(NULL), + CvAttrList attributes CV_DEFAULT(cvAttrList())); + +/** @brief Finishes writing to a file node collection. +@param fs File storage +@sa cvStartWriteStruct. + */ +CVAPI(void) cvEndWriteStruct( CvFileStorage* fs ); + +/** @brief Writes an integer value. + +The function writes a single integer value (with or without a name) to the file storage. +@param fs File storage +@param name Name of the written value. Should be NULL if and only if the parent structure is a +sequence. +@param value The written value + */ +CVAPI(void) cvWriteInt( CvFileStorage* fs, const char* name, int value ); + +/** @brief Writes a floating-point value. + +The function writes a single floating-point value (with or without a name) to file storage. Special +values are encoded as follows: NaN (Not A Number) as .NaN, infinity as +.Inf or -.Inf. + +The following example shows how to use the low-level writing functions to store custom structures, +such as termination criteria, without registering a new type. : +@code + void write_termcriteria( CvFileStorage* fs, const char* struct_name, + CvTermCriteria* termcrit ) + { + cvStartWriteStruct( fs, struct_name, CV_NODE_MAP, NULL, cvAttrList(0,0)); + cvWriteComment( fs, "termination criteria", 1 ); // just a description + if( termcrit->type & CV_TERMCRIT_ITER ) + cvWriteInteger( fs, "max_iterations", termcrit->max_iter ); + if( termcrit->type & CV_TERMCRIT_EPS ) + cvWriteReal( fs, "accuracy", termcrit->epsilon ); + cvEndWriteStruct( fs ); + } +@endcode +@param fs File storage +@param name Name of the written value. Should be NULL if and only if the parent structure is a +sequence. +@param value The written value +*/ +CVAPI(void) cvWriteReal( CvFileStorage* fs, const char* name, double value ); + +/** @brief Writes a text string. + +The function writes a text string to file storage. +@param fs File storage +@param name Name of the written string . Should be NULL if and only if the parent structure is a +sequence. +@param str The written text string +@param quote If non-zero, the written string is put in quotes, regardless of whether they are +required. Otherwise, if the flag is zero, quotes are used only when they are required (e.g. when +the string starts with a digit or contains spaces). + */ +CVAPI(void) cvWriteString( CvFileStorage* fs, const char* name, + const char* str, int quote CV_DEFAULT(0) ); + +/** @brief Writes a comment. + +The function writes a comment into file storage. The comments are skipped when the storage is read. +@param fs File storage +@param comment The written comment, single-line or multi-line +@param eol_comment If non-zero, the function tries to put the comment at the end of current line. +If the flag is zero, if the comment is multi-line, or if it does not fit at the end of the current +line, the comment starts a new line. + */ +CVAPI(void) cvWriteComment( CvFileStorage* fs, const char* comment, + int eol_comment ); + +/** @brief Writes an object to file storage. + +The function writes an object to file storage. First, the appropriate type info is found using +cvTypeOf. Then, the write method associated with the type info is called. + +Attributes are used to customize the writing procedure. The standard types support the following +attributes (all the dt attributes have the same format as in cvWriteRawData): + +-# CvSeq + - **header_dt** description of user fields of the sequence header that follow CvSeq, or + CvChain (if the sequence is a Freeman chain) or CvContour (if the sequence is a contour or + point sequence) + - **dt** description of the sequence elements. + - **recursive** if the attribute is present and is not equal to "0" or "false", the whole + tree of sequences (contours) is stored. +-# CvGraph + - **header_dt** description of user fields of the graph header that follows CvGraph; + - **vertex_dt** description of user fields of graph vertices + - **edge_dt** description of user fields of graph edges (note that the edge weight is + always written, so there is no need to specify it explicitly) + +Below is the code that creates the YAML file shown in the CvFileStorage description: +@code + #include "cxcore.h" + + int main( int argc, char** argv ) + { + CvMat* mat = cvCreateMat( 3, 3, CV_32F ); + CvFileStorage* fs = cvOpenFileStorage( "example.yml", 0, CV_STORAGE_WRITE ); + + cvSetIdentity( mat ); + cvWrite( fs, "A", mat, cvAttrList(0,0) ); + + cvReleaseFileStorage( &fs ); + cvReleaseMat( &mat ); + return 0; + } +@endcode +@param fs File storage +@param name Name of the written object. Should be NULL if and only if the parent structure is a +sequence. +@param ptr Pointer to the object +@param attributes The attributes of the object. They are specific for each particular type (see +the discussion below). + */ +CVAPI(void) cvWrite( CvFileStorage* fs, const char* name, const void* ptr, + CvAttrList attributes CV_DEFAULT(cvAttrList())); + +/** @brief Starts the next stream. + +The function finishes the currently written stream and starts the next stream. In the case of XML +the file with multiple streams looks like this: +@code{.xml} + <opencv_storage> + <!-- stream #1 data --> + </opencv_storage> + <opencv_storage> + <!-- stream #2 data --> + </opencv_storage> + ... +@endcode +The YAML file will look like this: +@code{.yaml} + %YAML 1.0 + # stream #1 data + ... + --- + # stream #2 data +@endcode +This is useful for concatenating files or for resuming the writing process. +@param fs File storage + */ +CVAPI(void) cvStartNextStream( CvFileStorage* fs ); + +/** @brief Writes multiple numbers. + +The function writes an array, whose elements consist of single or multiple numbers. The function +call can be replaced with a loop containing a few cvWriteInt and cvWriteReal calls, but a single +call is more efficient. Note that because none of the elements have a name, they should be written +to a sequence rather than a map. +@param fs File storage +@param src Pointer to the written array +@param len Number of the array elements to write +@param dt Specification of each array element, see @ref format_spec "format specification" + */ +CVAPI(void) cvWriteRawData( CvFileStorage* fs, const void* src, + int len, const char* dt ); + +/** @brief Writes multiple numbers in Base64. + +If either CV_STORAGE_WRITE_BASE64 or cv::FileStorage::WRITE_BASE64 is used, +this function will be the same as cvWriteRawData. If neither, the main +difference is that it outputs a sequence in Base64 encoding rather than +in plain text. + +This function can only be used to write a sequence with a type "binary". + +Consider the following two examples where their output is the same: +@snippet samples/cpp/filestorage_base64.cpp without_base64_flag +and +@snippet samples/cpp/filestorage_base64.cpp with_write_base64_flag + +@param fs File storage +@param src Pointer to the written array +@param len Number of the array elements to write +@param dt Specification of each array element, see @ref format_spec "format specification" +*/ +CVAPI(void) cvWriteRawDataBase64( CvFileStorage* fs, const void* src, + int len, const char* dt ); + +/** @brief Returns a unique pointer for a given name. + +The function returns a unique pointer for each particular file node name. This pointer can be then +passed to the cvGetFileNode function that is faster than cvGetFileNodeByName because it compares +text strings by comparing pointers rather than the strings' content. + +Consider the following example where an array of points is encoded as a sequence of 2-entry maps: +@code + points: + - { x: 10, y: 10 } + - { x: 20, y: 20 } + - { x: 30, y: 30 } + # ... +@endcode +Then, it is possible to get hashed "x" and "y" pointers to speed up decoding of the points. : +@code + #include "cxcore.h" + + int main( int argc, char** argv ) + { + CvFileStorage* fs = cvOpenFileStorage( "points.yml", 0, CV_STORAGE_READ ); + CvStringHashNode* x_key = cvGetHashedNode( fs, "x", -1, 1 ); + CvStringHashNode* y_key = cvGetHashedNode( fs, "y", -1, 1 ); + CvFileNode* points = cvGetFileNodeByName( fs, 0, "points" ); + + if( CV_NODE_IS_SEQ(points->tag) ) + { + CvSeq* seq = points->data.seq; + int i, total = seq->total; + CvSeqReader reader; + cvStartReadSeq( seq, &reader, 0 ); + for( i = 0; i < total; i++ ) + { + CvFileNode* pt = (CvFileNode*)reader.ptr; + #if 1 // faster variant + CvFileNode* xnode = cvGetFileNode( fs, pt, x_key, 0 ); + CvFileNode* ynode = cvGetFileNode( fs, pt, y_key, 0 ); + assert( xnode && CV_NODE_IS_INT(xnode->tag) && + ynode && CV_NODE_IS_INT(ynode->tag)); + int x = xnode->data.i; // or x = cvReadInt( xnode, 0 ); + int y = ynode->data.i; // or y = cvReadInt( ynode, 0 ); + #elif 1 // slower variant; does not use x_key & y_key + CvFileNode* xnode = cvGetFileNodeByName( fs, pt, "x" ); + CvFileNode* ynode = cvGetFileNodeByName( fs, pt, "y" ); + assert( xnode && CV_NODE_IS_INT(xnode->tag) && + ynode && CV_NODE_IS_INT(ynode->tag)); + int x = xnode->data.i; // or x = cvReadInt( xnode, 0 ); + int y = ynode->data.i; // or y = cvReadInt( ynode, 0 ); + #else // the slowest yet the easiest to use variant + int x = cvReadIntByName( fs, pt, "x", 0 ); + int y = cvReadIntByName( fs, pt, "y", 0 ); + #endif + CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); + printf(" + } + } + cvReleaseFileStorage( &fs ); + return 0; + } +@endcode +Please note that whatever method of accessing a map you are using, it is still much slower than +using plain sequences; for example, in the above example, it is more efficient to encode the points +as pairs of integers in a single numeric sequence. +@param fs File storage +@param name Literal node name +@param len Length of the name (if it is known apriori), or -1 if it needs to be calculated +@param create_missing Flag that specifies, whether an absent key should be added into the hash table +*/ +CVAPI(CvStringHashNode*) cvGetHashedKey( CvFileStorage* fs, const char* name, + int len CV_DEFAULT(-1), + int create_missing CV_DEFAULT(0)); + +/** @brief Retrieves one of the top-level nodes of the file storage. + +The function returns one of the top-level file nodes. The top-level nodes do not have a name, they +correspond to the streams that are stored one after another in the file storage. If the index is out +of range, the function returns a NULL pointer, so all the top-level nodes can be iterated by +subsequent calls to the function with stream_index=0,1,..., until the NULL pointer is returned. +This function can be used as a base for recursive traversal of the file storage. +@param fs File storage +@param stream_index Zero-based index of the stream. See cvStartNextStream . In most cases, +there is only one stream in the file; however, there can be several. + */ +CVAPI(CvFileNode*) cvGetRootFileNode( const CvFileStorage* fs, + int stream_index CV_DEFAULT(0) ); + +/** @brief Finds a node in a map or file storage. + +The function finds a file node. It is a faster version of cvGetFileNodeByName (see +cvGetHashedKey discussion). Also, the function can insert a new node, if it is not in the map yet. +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. If both map and +key are NULLs, the function returns the root file node - a map that contains top-level nodes. +@param key Unique pointer to the node name, retrieved with cvGetHashedKey +@param create_missing Flag that specifies whether an absent node should be added to the map + */ +CVAPI(CvFileNode*) cvGetFileNode( CvFileStorage* fs, CvFileNode* map, + const CvStringHashNode* key, + int create_missing CV_DEFAULT(0) ); + +/** @brief Finds a node in a map or file storage. + +The function finds a file node by name. The node is searched either in map or, if the pointer is +NULL, among the top-level file storage nodes. Using this function for maps and cvGetSeqElem (or +sequence reader) for sequences, it is possible to navigate through the file storage. To speed up +multiple queries for a certain key (e.g., in the case of an array of structures) one may use a +combination of cvGetHashedKey and cvGetFileNode. +@param fs File storage +@param map The parent map. If it is NULL, the function searches in all the top-level nodes +(streams), starting with the first one. +@param name The file node name + */ +CVAPI(CvFileNode*) cvGetFileNodeByName( const CvFileStorage* fs, + const CvFileNode* map, + const char* name ); + +/** @brief Retrieves an integer value from a file node. + +The function returns an integer that is represented by the file node. If the file node is NULL, the +default_value is returned (thus, it is convenient to call the function right after cvGetFileNode +without checking for a NULL pointer). If the file node has type CV_NODE_INT, then node-\>data.i is +returned. If the file node has type CV_NODE_REAL, then node-\>data.f is converted to an integer +and returned. Otherwise the error is reported. +@param node File node +@param default_value The value that is returned if node is NULL + */ +CV_INLINE int cvReadInt( const CvFileNode* node, int default_value CV_DEFAULT(0) ) +{ + return !node ? default_value : + CV_NODE_IS_INT(node->tag) ? node->data.i : + CV_NODE_IS_REAL(node->tag) ? cvRound(node->data.f) : 0x7fffffff; +} + +/** @brief Finds a file node and returns its value. + +The function is a simple superposition of cvGetFileNodeByName and cvReadInt. +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. +@param name The node name +@param default_value The value that is returned if the file node is not found + */ +CV_INLINE int cvReadIntByName( const CvFileStorage* fs, const CvFileNode* map, + const char* name, int default_value CV_DEFAULT(0) ) +{ + return cvReadInt( cvGetFileNodeByName( fs, map, name ), default_value ); +} + +/** @brief Retrieves a floating-point value from a file node. + +The function returns a floating-point value that is represented by the file node. If the file node +is NULL, the default_value is returned (thus, it is convenient to call the function right after +cvGetFileNode without checking for a NULL pointer). If the file node has type CV_NODE_REAL , +then node-\>data.f is returned. If the file node has type CV_NODE_INT , then node-:math:\>data.f +is converted to floating-point and returned. Otherwise the result is not determined. +@param node File node +@param default_value The value that is returned if node is NULL + */ +CV_INLINE double cvReadReal( const CvFileNode* node, double default_value CV_DEFAULT(0.) ) +{ + return !node ? default_value : + CV_NODE_IS_INT(node->tag) ? (double)node->data.i : + CV_NODE_IS_REAL(node->tag) ? node->data.f : 1e300; +} + +/** @brief Finds a file node and returns its value. + +The function is a simple superposition of cvGetFileNodeByName and cvReadReal . +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. +@param name The node name +@param default_value The value that is returned if the file node is not found + */ +CV_INLINE double cvReadRealByName( const CvFileStorage* fs, const CvFileNode* map, + const char* name, double default_value CV_DEFAULT(0.) ) +{ + return cvReadReal( cvGetFileNodeByName( fs, map, name ), default_value ); +} + +/** @brief Retrieves a text string from a file node. + +The function returns a text string that is represented by the file node. If the file node is NULL, +the default_value is returned (thus, it is convenient to call the function right after +cvGetFileNode without checking for a NULL pointer). If the file node has type CV_NODE_STR , then +node-:math:\>data.str.ptr is returned. Otherwise the result is not determined. +@param node File node +@param default_value The value that is returned if node is NULL + */ +CV_INLINE const char* cvReadString( const CvFileNode* node, + const char* default_value CV_DEFAULT(NULL) ) +{ + return !node ? default_value : CV_NODE_IS_STRING(node->tag) ? node->data.str.ptr : 0; +} + +/** @brief Finds a file node by its name and returns its value. + +The function is a simple superposition of cvGetFileNodeByName and cvReadString . +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. +@param name The node name +@param default_value The value that is returned if the file node is not found + */ +CV_INLINE const char* cvReadStringByName( const CvFileStorage* fs, const CvFileNode* map, + const char* name, const char* default_value CV_DEFAULT(NULL) ) +{ + return cvReadString( cvGetFileNodeByName( fs, map, name ), default_value ); +} + + +/** @brief Decodes an object and returns a pointer to it. + +The function decodes a user object (creates an object in a native representation from the file +storage subtree) and returns it. The object to be decoded must be an instance of a registered type +that supports the read method (see CvTypeInfo). The type of the object is determined by the type +name that is encoded in the file. If the object is a dynamic structure, it is created either in +memory storage and passed to cvOpenFileStorage or, if a NULL pointer was passed, in temporary +memory storage, which is released when cvReleaseFileStorage is called. Otherwise, if the object is +not a dynamic structure, it is created in a heap and should be released with a specialized function +or by using the generic cvRelease. +@param fs File storage +@param node The root object node +@param attributes Unused parameter + */ +CVAPI(void*) cvRead( CvFileStorage* fs, CvFileNode* node, + CvAttrList* attributes CV_DEFAULT(NULL)); + +/** @brief Finds an object by name and decodes it. + +The function is a simple superposition of cvGetFileNodeByName and cvRead. +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. +@param name The node name +@param attributes Unused parameter + */ +CV_INLINE void* cvReadByName( CvFileStorage* fs, const CvFileNode* map, + const char* name, CvAttrList* attributes CV_DEFAULT(NULL) ) +{ + return cvRead( fs, cvGetFileNodeByName( fs, map, name ), attributes ); +} + + +/** @brief Initializes the file node sequence reader. + +The function initializes the sequence reader to read data from a file node. The initialized reader +can be then passed to cvReadRawDataSlice. +@param fs File storage +@param src The file node (a sequence) to read numbers from +@param reader Pointer to the sequence reader + */ +CVAPI(void) cvStartReadRawData( const CvFileStorage* fs, const CvFileNode* src, + CvSeqReader* reader ); + +/** @brief Initializes file node sequence reader. + +The function reads one or more elements from the file node, representing a sequence, to a +user-specified array. The total number of read sequence elements is a product of total and the +number of components in each array element. For example, if dt=2if, the function will read total\*3 +sequence elements. As with any sequence, some parts of the file node sequence can be skipped or read +repeatedly by repositioning the reader using cvSetSeqReaderPos. +@param fs File storage +@param reader The sequence reader. Initialize it with cvStartReadRawData . +@param count The number of elements to read +@param dst Pointer to the destination array +@param dt Specification of each array element. It has the same format as in cvWriteRawData . + */ +CVAPI(void) cvReadRawDataSlice( const CvFileStorage* fs, CvSeqReader* reader, + int count, void* dst, const char* dt ); + +/** @brief Reads multiple numbers. + +The function reads elements from a file node that represents a sequence of scalars. +@param fs File storage +@param src The file node (a sequence) to read numbers from +@param dst Pointer to the destination array +@param dt Specification of each array element. It has the same format as in cvWriteRawData . + */ +CVAPI(void) cvReadRawData( const CvFileStorage* fs, const CvFileNode* src, + void* dst, const char* dt ); + +/** @brief Writes a file node to another file storage. + +The function writes a copy of a file node to file storage. Possible applications of the function are +merging several file storages into one and conversion between XML, YAML and JSON formats. +@param fs Destination file storage +@param new_node_name New name of the file node in the destination file storage. To keep the +existing name, use cvcvGetFileNodeName +@param node The written node +@param embed If the written node is a collection and this parameter is not zero, no extra level of +hierarchy is created. Instead, all the elements of node are written into the currently written +structure. Of course, map elements can only be embedded into another map, and sequence elements +can only be embedded into another sequence. + */ +CVAPI(void) cvWriteFileNode( CvFileStorage* fs, const char* new_node_name, + const CvFileNode* node, int embed ); + +/** @brief Returns the name of a file node. + +The function returns the name of a file node or NULL, if the file node does not have a name or if +node is NULL. +@param node File node + */ +CVAPI(const char*) cvGetFileNodeName( const CvFileNode* node ); + +/*********************************** Adding own types ***********************************/ + +/** @brief Registers a new type. + +The function registers a new type, which is described by info . The function creates a copy of the +structure, so the user should delete it after calling the function. +@param info Type info structure + */ +CVAPI(void) cvRegisterType( const CvTypeInfo* info ); + +/** @brief Unregisters the type. + +The function unregisters a type with a specified name. If the name is unknown, it is possible to +locate the type info by an instance of the type using cvTypeOf or by iterating the type list, +starting from cvFirstType, and then calling cvUnregisterType(info-\>typeName). +@param type_name Name of an unregistered type + */ +CVAPI(void) cvUnregisterType( const char* type_name ); + +/** @brief Returns the beginning of a type list. + +The function returns the first type in the list of registered types. Navigation through the list can +be done via the prev and next fields of the CvTypeInfo structure. + */ +CVAPI(CvTypeInfo*) cvFirstType(void); + +/** @brief Finds a type by its name. + +The function finds a registered type by its name. It returns NULL if there is no type with the +specified name. +@param type_name Type name + */ +CVAPI(CvTypeInfo*) cvFindType( const char* type_name ); + +/** @brief Returns the type of an object. + +The function finds the type of a given object. It iterates through the list of registered types and +calls the is_instance function/method for every type info structure with that object until one of +them returns non-zero or until the whole list has been traversed. In the latter case, the function +returns NULL. +@param struct_ptr The object pointer + */ +CVAPI(CvTypeInfo*) cvTypeOf( const void* struct_ptr ); + +/** @brief Releases an object. + +The function finds the type of a given object and calls release with the double pointer. +@param struct_ptr Double pointer to the object + */ +CVAPI(void) cvRelease( void** struct_ptr ); + +/** @brief Makes a clone of an object. + +The function finds the type of a given object and calls clone with the passed object. Of course, if +you know the object type, for example, struct_ptr is CvMat\*, it is faster to call the specific +function, like cvCloneMat. +@param struct_ptr The object to clone + */ +CVAPI(void*) cvClone( const void* struct_ptr ); + +/** @brief Saves an object to a file. + +The function saves an object to a file. It provides a simple interface to cvWrite . +@param filename File name +@param struct_ptr Object to save +@param name Optional object name. If it is NULL, the name will be formed from filename . +@param comment Optional comment to put in the beginning of the file +@param attributes Optional attributes passed to cvWrite + */ +CVAPI(void) cvSave( const char* filename, const void* struct_ptr, + const char* name CV_DEFAULT(NULL), + const char* comment CV_DEFAULT(NULL), + CvAttrList attributes CV_DEFAULT(cvAttrList())); + +/** @brief Loads an object from a file. + +The function loads an object from a file. It basically reads the specified file, find the first +top-level node and calls cvRead for that node. If the file node does not have type information or +the type information can not be found by the type name, the function returns NULL. After the object +is loaded, the file storage is closed and all the temporary buffers are deleted. Thus, to load a +dynamic structure, such as a sequence, contour, or graph, one should pass a valid memory storage +destination to the function. +@param filename File name +@param memstorage Memory storage for dynamic structures, such as CvSeq or CvGraph . It is not used +for matrices or images. +@param name Optional object name. If it is NULL, the first top-level object in the storage will be +loaded. +@param real_name Optional output parameter that will contain the name of the loaded object +(useful if name=NULL ) + */ +CVAPI(void*) cvLoad( const char* filename, + CvMemStorage* memstorage CV_DEFAULT(NULL), + const char* name CV_DEFAULT(NULL), + const char** real_name CV_DEFAULT(NULL) ); + +/*********************************** Measuring Execution Time ***************************/ + +/** helper functions for RNG initialization and accurate time measurement: + uses internal clock counter on x86 */ +CVAPI(int64) cvGetTickCount( void ); +CVAPI(double) cvGetTickFrequency( void ); + +/*********************************** CPU capabilities ***********************************/ + +CVAPI(int) cvCheckHardwareSupport(int feature); + +/*********************************** Multi-Threading ************************************/ + +/** retrieve/set the number of threads used in OpenMP implementations */ +CVAPI(int) cvGetNumThreads( void ); +CVAPI(void) cvSetNumThreads( int threads CV_DEFAULT(0) ); +/** get index of the thread being executed */ +CVAPI(int) cvGetThreadNum( void ); + + +/********************************** Error Handling **************************************/ + +/** Get current OpenCV error status */ +CVAPI(int) cvGetErrStatus( void ); + +/** Sets error status silently */ +CVAPI(void) cvSetErrStatus( int status ); + +#define CV_ErrModeLeaf 0 /* Print error and exit program */ +#define CV_ErrModeParent 1 /* Print error and continue */ +#define CV_ErrModeSilent 2 /* Don't print and continue */ + +/** Retrives current error processing mode */ +CVAPI(int) cvGetErrMode( void ); + +/** Sets error processing mode, returns previously used mode */ +CVAPI(int) cvSetErrMode( int mode ); + +/** Sets error status and performs some additonal actions (displaying message box, + writing message to stderr, terminating application etc.) + depending on the current error mode */ +CVAPI(void) cvError( int status, const char* func_name, + const char* err_msg, const char* file_name, int line ); + +/** Retrieves textual description of the error given its code */ +CVAPI(const char*) cvErrorStr( int status ); + +/** Retrieves detailed information about the last error occured */ +CVAPI(int) cvGetErrInfo( const char** errcode_desc, const char** description, + const char** filename, int* line ); + +/** Maps IPP error codes to the counterparts from OpenCV */ +CVAPI(int) cvErrorFromIppStatus( int ipp_status ); + +typedef int (CV_CDECL *CvErrorCallback)( int status, const char* func_name, + const char* err_msg, const char* file_name, int line, void* userdata ); + +/** Assigns a new error-handling function */ +CVAPI(CvErrorCallback) cvRedirectError( CvErrorCallback error_handler, + void* userdata CV_DEFAULT(NULL), + void** prev_userdata CV_DEFAULT(NULL) ); + +/** Output nothing */ +CVAPI(int) cvNulDevReport( int status, const char* func_name, const char* err_msg, + const char* file_name, int line, void* userdata ); + +/** Output to console(fprintf(stderr,...)) */ +CVAPI(int) cvStdErrReport( int status, const char* func_name, const char* err_msg, + const char* file_name, int line, void* userdata ); + +/** Output to MessageBox(WIN32) */ +CVAPI(int) cvGuiBoxReport( int status, const char* func_name, const char* err_msg, + const char* file_name, int line, void* userdata ); + +#define OPENCV_ERROR(status,func,context) \ +cvError((status),(func),(context),__FILE__,__LINE__) + +#define OPENCV_ASSERT(expr,func,context) \ +{if (! (expr)) \ +{OPENCV_ERROR(CV_StsInternal,(func),(context));}} + +#define OPENCV_CALL( Func ) \ +{ \ +Func; \ +} + + +/** CV_FUNCNAME macro defines icvFuncName constant which is used by CV_ERROR macro */ +#ifdef CV_NO_FUNC_NAMES +#define CV_FUNCNAME( Name ) +#define cvFuncName "" +#else +#define CV_FUNCNAME( Name ) \ +static char cvFuncName[] = Name +#endif + + +/** + CV_ERROR macro unconditionally raises error with passed code and message. + After raising error, control will be transferred to the exit label. + */ +#define CV_ERROR( Code, Msg ) \ +{ \ + cvError( (Code), cvFuncName, Msg, __FILE__, __LINE__ ); \ + __CV_EXIT__; \ +} + +/** + CV_CHECK macro checks error status after CV (or IPL) + function call. If error detected, control will be transferred to the exit + label. + */ +#define CV_CHECK() \ +{ \ + if( cvGetErrStatus() < 0 ) \ + CV_ERROR( CV_StsBackTrace, "Inner function failed." ); \ +} + + +/** + CV_CALL macro calls CV (or IPL) function, checks error status and + signals a error if the function failed. Useful in "parent node" + error procesing mode + */ +#define CV_CALL( Func ) \ +{ \ + Func; \ + CV_CHECK(); \ +} + + +/** Runtime assertion macro */ +#define CV_ASSERT( Condition ) \ +{ \ + if( !(Condition) ) \ + CV_ERROR( CV_StsInternal, "Assertion: " #Condition " failed" ); \ +} + +#define __CV_BEGIN__ { +#define __CV_END__ goto exit; exit: ; } +#define __CV_EXIT__ goto exit + +/** @} core_c */ + +#ifdef __cplusplus +} // extern "C" +#endif + +#ifdef __cplusplus + +//! @addtogroup core_c_glue +//! @{ + +//! class for automatic module/RTTI data registration/unregistration +struct CV_EXPORTS CvType +{ + CvType( const char* type_name, + CvIsInstanceFunc is_instance, CvReleaseFunc release=0, + CvReadFunc read=0, CvWriteFunc write=0, CvCloneFunc clone=0 ); + ~CvType(); + CvTypeInfo* info; + + static CvTypeInfo* first; + static CvTypeInfo* last; +}; + +//! @} + +#include "opencv2/core/utility.hpp" + +namespace cv +{ + +//! @addtogroup core_c_glue +//! @{ + +/////////////////////////////////////////// glue /////////////////////////////////////////// + +//! converts array (CvMat or IplImage) to cv::Mat +CV_EXPORTS Mat cvarrToMat(const CvArr* arr, bool copyData=false, + bool allowND=true, int coiMode=0, + AutoBuffer<double>* buf=0); + +static inline Mat cvarrToMatND(const CvArr* arr, bool copyData=false, int coiMode=0) +{ + return cvarrToMat(arr, copyData, true, coiMode); +} + + +//! extracts Channel of Interest from CvMat or IplImage and makes cv::Mat out of it. +CV_EXPORTS void extractImageCOI(const CvArr* arr, OutputArray coiimg, int coi=-1); +//! inserts single-channel cv::Mat into a multi-channel CvMat or IplImage +CV_EXPORTS void insertImageCOI(InputArray coiimg, CvArr* arr, int coi=-1); + + + +////// specialized implementations of DefaultDeleter::operator() for classic OpenCV types ////// + +template<> CV_EXPORTS void DefaultDeleter<CvMat>::operator ()(CvMat* obj) const; +template<> CV_EXPORTS void DefaultDeleter<IplImage>::operator ()(IplImage* obj) const; +template<> CV_EXPORTS void DefaultDeleter<CvMatND>::operator ()(CvMatND* obj) const; +template<> CV_EXPORTS void DefaultDeleter<CvSparseMat>::operator ()(CvSparseMat* obj) const; +template<> CV_EXPORTS void DefaultDeleter<CvMemStorage>::operator ()(CvMemStorage* obj) const; + +////////////// convenient wrappers for operating old-style dynamic structures ////////////// + +template<typename _Tp> class SeqIterator; + +typedef Ptr<CvMemStorage> MemStorage; + +/*! + Template Sequence Class derived from CvSeq + + The class provides more convenient access to sequence elements, + STL-style operations and iterators. + + \note The class is targeted for simple data types, + i.e. no constructors or destructors + are called for the sequence elements. +*/ +template<typename _Tp> class Seq +{ +public: + typedef SeqIterator<_Tp> iterator; + typedef SeqIterator<_Tp> const_iterator; + + //! the default constructor + Seq(); + //! the constructor for wrapping CvSeq structure. The real element type in CvSeq should match _Tp. + Seq(const CvSeq* seq); + //! creates the empty sequence that resides in the specified storage + Seq(MemStorage& storage, int headerSize = sizeof(CvSeq)); + //! returns read-write reference to the specified element + _Tp& operator [](int idx); + //! returns read-only reference to the specified element + const _Tp& operator[](int idx) const; + //! returns iterator pointing to the beginning of the sequence + SeqIterator<_Tp> begin() const; + //! returns iterator pointing to the element following the last sequence element + SeqIterator<_Tp> end() const; + //! returns the number of elements in the sequence + size_t size() const; + //! returns the type of sequence elements (CV_8UC1 ... CV_64FC(CV_CN_MAX) ...) + int type() const; + //! returns the depth of sequence elements (CV_8U ... CV_64F) + int depth() const; + //! returns the number of channels in each sequence element + int channels() const; + //! returns the size of each sequence element + size_t elemSize() const; + //! returns index of the specified sequence element + size_t index(const _Tp& elem) const; + //! appends the specified element to the end of the sequence + void push_back(const _Tp& elem); + //! appends the specified element to the front of the sequence + void push_front(const _Tp& elem); + //! appends zero or more elements to the end of the sequence + void push_back(const _Tp* elems, size_t count); + //! appends zero or more elements to the front of the sequence + void push_front(const _Tp* elems, size_t count); + //! inserts the specified element to the specified position + void insert(int idx, const _Tp& elem); + //! inserts zero or more elements to the specified position + void insert(int idx, const _Tp* elems, size_t count); + //! removes element at the specified position + void remove(int idx); + //! removes the specified subsequence + void remove(const Range& r); + + //! returns reference to the first sequence element + _Tp& front(); + //! returns read-only reference to the first sequence element + const _Tp& front() const; + //! returns reference to the last sequence element + _Tp& back(); + //! returns read-only reference to the last sequence element + const _Tp& back() const; + //! returns true iff the sequence contains no elements + bool empty() const; + + //! removes all the elements from the sequence + void clear(); + //! removes the first element from the sequence + void pop_front(); + //! removes the last element from the sequence + void pop_back(); + //! removes zero or more elements from the beginning of the sequence + void pop_front(_Tp* elems, size_t count); + //! removes zero or more elements from the end of the sequence + void pop_back(_Tp* elems, size_t count); + + //! copies the whole sequence or the sequence slice to the specified vector + void copyTo(std::vector<_Tp>& vec, const Range& range=Range::all()) const; + //! returns the vector containing all the sequence elements + operator std::vector<_Tp>() const; + + CvSeq* seq; +}; + + +/*! + STL-style Sequence Iterator inherited from the CvSeqReader structure +*/ +template<typename _Tp> class SeqIterator : public CvSeqReader +{ +public: + //! the default constructor + SeqIterator(); + //! the constructor setting the iterator to the beginning or to the end of the sequence + SeqIterator(const Seq<_Tp>& seq, bool seekEnd=false); + //! positions the iterator within the sequence + void seek(size_t pos); + //! reports the current iterator position + size_t tell() const; + //! returns reference to the current sequence element + _Tp& operator *(); + //! returns read-only reference to the current sequence element + const _Tp& operator *() const; + //! moves iterator to the next sequence element + SeqIterator& operator ++(); + //! moves iterator to the next sequence element + SeqIterator operator ++(int) const; + //! moves iterator to the previous sequence element + SeqIterator& operator --(); + //! moves iterator to the previous sequence element + SeqIterator operator --(int) const; + + //! moves iterator forward by the specified offset (possibly negative) + SeqIterator& operator +=(int); + //! moves iterator backward by the specified offset (possibly negative) + SeqIterator& operator -=(int); + + // this is index of the current element module seq->total*2 + // (to distinguish between 0 and seq->total) + int index; +}; + + + +// bridge C++ => C Seq API +CV_EXPORTS schar* seqPush( CvSeq* seq, const void* element=0); +CV_EXPORTS schar* seqPushFront( CvSeq* seq, const void* element=0); +CV_EXPORTS void seqPop( CvSeq* seq, void* element=0); +CV_EXPORTS void seqPopFront( CvSeq* seq, void* element=0); +CV_EXPORTS void seqPopMulti( CvSeq* seq, void* elements, + int count, int in_front=0 ); +CV_EXPORTS void seqRemove( CvSeq* seq, int index ); +CV_EXPORTS void clearSeq( CvSeq* seq ); +CV_EXPORTS schar* getSeqElem( const CvSeq* seq, int index ); +CV_EXPORTS void seqRemoveSlice( CvSeq* seq, CvSlice slice ); +CV_EXPORTS void seqInsertSlice( CvSeq* seq, int before_index, const CvArr* from_arr ); + +template<typename _Tp> inline Seq<_Tp>::Seq() : seq(0) {} +template<typename _Tp> inline Seq<_Tp>::Seq( const CvSeq* _seq ) : seq((CvSeq*)_seq) +{ + CV_Assert(!_seq || _seq->elem_size == sizeof(_Tp)); +} + +template<typename _Tp> inline Seq<_Tp>::Seq( MemStorage& storage, + int headerSize ) +{ + CV_Assert(headerSize >= (int)sizeof(CvSeq)); + seq = cvCreateSeq(DataType<_Tp>::type, headerSize, sizeof(_Tp), storage); +} + +template<typename _Tp> inline _Tp& Seq<_Tp>::operator [](int idx) +{ return *(_Tp*)getSeqElem(seq, idx); } + +template<typename _Tp> inline const _Tp& Seq<_Tp>::operator [](int idx) const +{ return *(_Tp*)getSeqElem(seq, idx); } + +template<typename _Tp> inline SeqIterator<_Tp> Seq<_Tp>::begin() const +{ return SeqIterator<_Tp>(*this); } + +template<typename _Tp> inline SeqIterator<_Tp> Seq<_Tp>::end() const +{ return SeqIterator<_Tp>(*this, true); } + +template<typename _Tp> inline size_t Seq<_Tp>::size() const +{ return seq ? seq->total : 0; } + +template<typename _Tp> inline int Seq<_Tp>::type() const +{ return seq ? CV_MAT_TYPE(seq->flags) : 0; } + +template<typename _Tp> inline int Seq<_Tp>::depth() const +{ return seq ? CV_MAT_DEPTH(seq->flags) : 0; } + +template<typename _Tp> inline int Seq<_Tp>::channels() const +{ return seq ? CV_MAT_CN(seq->flags) : 0; } + +template<typename _Tp> inline size_t Seq<_Tp>::elemSize() const +{ return seq ? seq->elem_size : 0; } + +template<typename _Tp> inline size_t Seq<_Tp>::index(const _Tp& elem) const +{ return cvSeqElemIdx(seq, &elem); } + +template<typename _Tp> inline void Seq<_Tp>::push_back(const _Tp& elem) +{ cvSeqPush(seq, &elem); } + +template<typename _Tp> inline void Seq<_Tp>::push_front(const _Tp& elem) +{ cvSeqPushFront(seq, &elem); } + +template<typename _Tp> inline void Seq<_Tp>::push_back(const _Tp* elem, size_t count) +{ cvSeqPushMulti(seq, elem, (int)count, 0); } + +template<typename _Tp> inline void Seq<_Tp>::push_front(const _Tp* elem, size_t count) +{ cvSeqPushMulti(seq, elem, (int)count, 1); } + +template<typename _Tp> inline _Tp& Seq<_Tp>::back() +{ return *(_Tp*)getSeqElem(seq, -1); } + +template<typename _Tp> inline const _Tp& Seq<_Tp>::back() const +{ return *(const _Tp*)getSeqElem(seq, -1); } + +template<typename _Tp> inline _Tp& Seq<_Tp>::front() +{ return *(_Tp*)getSeqElem(seq, 0); } + +template<typename _Tp> inline const _Tp& Seq<_Tp>::front() const +{ return *(const _Tp*)getSeqElem(seq, 0); } + +template<typename _Tp> inline bool Seq<_Tp>::empty() const +{ return !seq || seq->total == 0; } + +template<typename _Tp> inline void Seq<_Tp>::clear() +{ if(seq) clearSeq(seq); } + +template<typename _Tp> inline void Seq<_Tp>::pop_back() +{ seqPop(seq); } + +template<typename _Tp> inline void Seq<_Tp>::pop_front() +{ seqPopFront(seq); } + +template<typename _Tp> inline void Seq<_Tp>::pop_back(_Tp* elem, size_t count) +{ seqPopMulti(seq, elem, (int)count, 0); } + +template<typename _Tp> inline void Seq<_Tp>::pop_front(_Tp* elem, size_t count) +{ seqPopMulti(seq, elem, (int)count, 1); } + +template<typename _Tp> inline void Seq<_Tp>::insert(int idx, const _Tp& elem) +{ seqInsert(seq, idx, &elem); } + +template<typename _Tp> inline void Seq<_Tp>::insert(int idx, const _Tp* elems, size_t count) +{ + CvMat m = cvMat(1, count, DataType<_Tp>::type, elems); + seqInsertSlice(seq, idx, &m); +} + +template<typename _Tp> inline void Seq<_Tp>::remove(int idx) +{ seqRemove(seq, idx); } + +template<typename _Tp> inline void Seq<_Tp>::remove(const Range& r) +{ seqRemoveSlice(seq, cvSlice(r.start, r.end)); } + +template<typename _Tp> inline void Seq<_Tp>::copyTo(std::vector<_Tp>& vec, const Range& range) const +{ + size_t len = !seq ? 0 : range == Range::all() ? seq->total : range.end - range.start; + vec.resize(len); + if( seq && len ) + cvCvtSeqToArray(seq, &vec[0], range); +} + +template<typename _Tp> inline Seq<_Tp>::operator std::vector<_Tp>() const +{ + std::vector<_Tp> vec; + copyTo(vec); + return vec; +} + +template<typename _Tp> inline SeqIterator<_Tp>::SeqIterator() +{ memset(this, 0, sizeof(*this)); } + +template<typename _Tp> inline SeqIterator<_Tp>::SeqIterator(const Seq<_Tp>& _seq, bool seekEnd) +{ + cvStartReadSeq(_seq.seq, this); + index = seekEnd ? _seq.seq->total : 0; +} + +template<typename _Tp> inline void SeqIterator<_Tp>::seek(size_t pos) +{ + cvSetSeqReaderPos(this, (int)pos, false); + index = pos; +} + +template<typename _Tp> inline size_t SeqIterator<_Tp>::tell() const +{ return index; } + +template<typename _Tp> inline _Tp& SeqIterator<_Tp>::operator *() +{ return *(_Tp*)ptr; } + +template<typename _Tp> inline const _Tp& SeqIterator<_Tp>::operator *() const +{ return *(const _Tp*)ptr; } + +template<typename _Tp> inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator ++() +{ + CV_NEXT_SEQ_ELEM(sizeof(_Tp), *this); + if( ++index >= seq->total*2 ) + index = 0; + return *this; +} + +template<typename _Tp> inline SeqIterator<_Tp> SeqIterator<_Tp>::operator ++(int) const +{ + SeqIterator<_Tp> it = *this; + ++*this; + return it; +} + +template<typename _Tp> inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator --() +{ + CV_PREV_SEQ_ELEM(sizeof(_Tp), *this); + if( --index < 0 ) + index = seq->total*2-1; + return *this; +} + +template<typename _Tp> inline SeqIterator<_Tp> SeqIterator<_Tp>::operator --(int) const +{ + SeqIterator<_Tp> it = *this; + --*this; + return it; +} + +template<typename _Tp> inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator +=(int delta) +{ + cvSetSeqReaderPos(this, delta, 1); + index += delta; + int n = seq->total*2; + if( index < 0 ) + index += n; + if( index >= n ) + index -= n; + return *this; +} + +template<typename _Tp> inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator -=(int delta) +{ + return (*this += -delta); +} + +template<typename _Tp> inline ptrdiff_t operator - (const SeqIterator<_Tp>& a, + const SeqIterator<_Tp>& b) +{ + ptrdiff_t delta = a.index - b.index, n = a.seq->total; + if( delta > n || delta < -n ) + delta += delta < 0 ? n : -n; + return delta; +} + +template<typename _Tp> inline bool operator == (const SeqIterator<_Tp>& a, + const SeqIterator<_Tp>& b) +{ + return a.seq == b.seq && a.index == b.index; +} + +template<typename _Tp> inline bool operator != (const SeqIterator<_Tp>& a, + const SeqIterator<_Tp>& b) +{ + return !(a == b); +} + +//! @} + +} // cv + +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/cuda.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,874 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CUDA_HPP +#define OPENCV_CORE_CUDA_HPP + +#ifndef __cplusplus +# error cuda.hpp header must be compiled as C++ +#endif + +#include "opencv2/core.hpp" +#include "opencv2/core/cuda_types.hpp" + +/** + @defgroup cuda CUDA-accelerated Computer Vision + @{ + @defgroup cudacore Core part + @{ + @defgroup cudacore_init Initalization and Information + @defgroup cudacore_struct Data Structures + @} + @} + */ + +namespace cv { namespace cuda { + +//! @addtogroup cudacore_struct +//! @{ + +//=================================================================================== +// GpuMat +//=================================================================================== + +/** @brief Base storage class for GPU memory with reference counting. + +Its interface matches the Mat interface with the following limitations: + +- no arbitrary dimensions support (only 2D) +- no functions that return references to their data (because references on GPU are not valid for + CPU) +- no expression templates technique support + +Beware that the latter limitation may lead to overloaded matrix operators that cause memory +allocations. The GpuMat class is convertible to cuda::PtrStepSz and cuda::PtrStep so it can be +passed directly to the kernel. + +@note In contrast with Mat, in most cases GpuMat::isContinuous() == false . This means that rows are +aligned to a size depending on the hardware. Single-row GpuMat is always a continuous matrix. + +@note You are not recommended to leave static or global GpuMat variables allocated, that is, to rely +on its destructor. The destruction order of such variables and CUDA context is undefined. GPU memory +release function returns error if the CUDA context has been destroyed before. + +@sa Mat + */ +class CV_EXPORTS GpuMat +{ +public: + class CV_EXPORTS Allocator + { + public: + virtual ~Allocator() {} + + // allocator must fill data, step and refcount fields + virtual bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize) = 0; + virtual void free(GpuMat* mat) = 0; + }; + + //! default allocator + static Allocator* defaultAllocator(); + static void setDefaultAllocator(Allocator* allocator); + + //! default constructor + explicit GpuMat(Allocator* allocator = defaultAllocator()); + + //! constructs GpuMat of the specified size and type + GpuMat(int rows, int cols, int type, Allocator* allocator = defaultAllocator()); + GpuMat(Size size, int type, Allocator* allocator = defaultAllocator()); + + //! constucts GpuMat and fills it with the specified value _s + GpuMat(int rows, int cols, int type, Scalar s, Allocator* allocator = defaultAllocator()); + GpuMat(Size size, int type, Scalar s, Allocator* allocator = defaultAllocator()); + + //! copy constructor + GpuMat(const GpuMat& m); + + //! constructor for GpuMat headers pointing to user-allocated data + GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP); + GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP); + + //! creates a GpuMat header for a part of the bigger matrix + GpuMat(const GpuMat& m, Range rowRange, Range colRange); + GpuMat(const GpuMat& m, Rect roi); + + //! builds GpuMat from host memory (Blocking call) + explicit GpuMat(InputArray arr, Allocator* allocator = defaultAllocator()); + + //! destructor - calls release() + ~GpuMat(); + + //! assignment operators + GpuMat& operator =(const GpuMat& m); + + //! allocates new GpuMat data unless the GpuMat already has specified size and type + void create(int rows, int cols, int type); + void create(Size size, int type); + + //! decreases reference counter, deallocate the data when reference counter reaches 0 + void release(); + + //! swaps with other smart pointer + void swap(GpuMat& mat); + + //! pefroms upload data to GpuMat (Blocking call) + void upload(InputArray arr); + + //! pefroms upload data to GpuMat (Non-Blocking call) + void upload(InputArray arr, Stream& stream); + + //! pefroms download data from device to host memory (Blocking call) + void download(OutputArray dst) const; + + //! pefroms download data from device to host memory (Non-Blocking call) + void download(OutputArray dst, Stream& stream) const; + + //! returns deep copy of the GpuMat, i.e. the data is copied + GpuMat clone() const; + + //! copies the GpuMat content to device memory (Blocking call) + void copyTo(OutputArray dst) const; + + //! copies the GpuMat content to device memory (Non-Blocking call) + void copyTo(OutputArray dst, Stream& stream) const; + + //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call) + void copyTo(OutputArray dst, InputArray mask) const; + + //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call) + void copyTo(OutputArray dst, InputArray mask, Stream& stream) const; + + //! sets some of the GpuMat elements to s (Blocking call) + GpuMat& setTo(Scalar s); + + //! sets some of the GpuMat elements to s (Non-Blocking call) + GpuMat& setTo(Scalar s, Stream& stream); + + //! sets some of the GpuMat elements to s, according to the mask (Blocking call) + GpuMat& setTo(Scalar s, InputArray mask); + + //! sets some of the GpuMat elements to s, according to the mask (Non-Blocking call) + GpuMat& setTo(Scalar s, InputArray mask, Stream& stream); + + //! converts GpuMat to another datatype (Blocking call) + void convertTo(OutputArray dst, int rtype) const; + + //! converts GpuMat to another datatype (Non-Blocking call) + void convertTo(OutputArray dst, int rtype, Stream& stream) const; + + //! converts GpuMat to another datatype with scaling (Blocking call) + void convertTo(OutputArray dst, int rtype, double alpha, double beta = 0.0) const; + + //! converts GpuMat to another datatype with scaling (Non-Blocking call) + void convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const; + + //! converts GpuMat to another datatype with scaling (Non-Blocking call) + void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const; + + void assignTo(GpuMat& m, int type=-1) const; + + //! returns pointer to y-th row + uchar* ptr(int y = 0); + const uchar* ptr(int y = 0) const; + + //! template version of the above method + template<typename _Tp> _Tp* ptr(int y = 0); + template<typename _Tp> const _Tp* ptr(int y = 0) const; + + template <typename _Tp> operator PtrStepSz<_Tp>() const; + template <typename _Tp> operator PtrStep<_Tp>() const; + + //! returns a new GpuMat header for the specified row + GpuMat row(int y) const; + + //! returns a new GpuMat header for the specified column + GpuMat col(int x) const; + + //! ... for the specified row span + GpuMat rowRange(int startrow, int endrow) const; + GpuMat rowRange(Range r) const; + + //! ... for the specified column span + GpuMat colRange(int startcol, int endcol) const; + GpuMat colRange(Range r) const; + + //! extracts a rectangular sub-GpuMat (this is a generalized form of row, rowRange etc.) + GpuMat operator ()(Range rowRange, Range colRange) const; + GpuMat operator ()(Rect roi) const; + + //! creates alternative GpuMat header for the same data, with different + //! number of channels and/or different number of rows + GpuMat reshape(int cn, int rows = 0) const; + + //! locates GpuMat header within a parent GpuMat + void locateROI(Size& wholeSize, Point& ofs) const; + + //! moves/resizes the current GpuMat ROI inside the parent GpuMat + GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright); + + //! returns true iff the GpuMat data is continuous + //! (i.e. when there are no gaps between successive rows) + bool isContinuous() const; + + //! returns element size in bytes + size_t elemSize() const; + + //! returns the size of element channel in bytes + size_t elemSize1() const; + + //! returns element type + int type() const; + + //! returns element type + int depth() const; + + //! returns number of channels + int channels() const; + + //! returns step/elemSize1() + size_t step1() const; + + //! returns GpuMat size : width == number of columns, height == number of rows + Size size() const; + + //! returns true if GpuMat data is NULL + bool empty() const; + + /*! includes several bit-fields: + - the magic signature + - continuity flag + - depth + - number of channels + */ + int flags; + + //! the number of rows and columns + int rows, cols; + + //! a distance between successive rows in bytes; includes the gap if any + size_t step; + + //! pointer to the data + uchar* data; + + //! pointer to the reference counter; + //! when GpuMat points to user-allocated data, the pointer is NULL + int* refcount; + + //! helper fields used in locateROI and adjustROI + uchar* datastart; + const uchar* dataend; + + //! allocator + Allocator* allocator; +}; + +/** @brief Creates a continuous matrix. + +@param rows Row count. +@param cols Column count. +@param type Type of the matrix. +@param arr Destination matrix. This parameter changes only if it has a proper type and area ( +\f$\texttt{rows} \times \texttt{cols}\f$ ). + +Matrix is called continuous if its elements are stored continuously, that is, without gaps at the +end of each row. + */ +CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr); + +/** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type. + +@param rows Minimum desired number of rows. +@param cols Minimum desired number of columns. +@param type Desired matrix type. +@param arr Destination matrix. + +The function does not reallocate memory if the matrix has proper attributes already. + */ +CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr); + +//! BufferPool management (must be called before Stream creation) +CV_EXPORTS void setBufferPoolUsage(bool on); +CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount); + +//=================================================================================== +// HostMem +//=================================================================================== + +/** @brief Class with reference counting wrapping special memory type allocation functions from CUDA. + +Its interface is also Mat-like but with additional memory type parameters. + +- **PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous + uploading/downloading data from/to GPU. +- **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU + address space, if supported. +- **WRITE_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are + used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache + utilization. + +@note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2 +Pinned Memory APIs* document or *CUDA C Programming Guide*. + */ +class CV_EXPORTS HostMem +{ +public: + enum AllocType { PAGE_LOCKED = 1, SHARED = 2, WRITE_COMBINED = 4 }; + + static MatAllocator* getAllocator(AllocType alloc_type = PAGE_LOCKED); + + explicit HostMem(AllocType alloc_type = PAGE_LOCKED); + + HostMem(const HostMem& m); + + HostMem(int rows, int cols, int type, AllocType alloc_type = PAGE_LOCKED); + HostMem(Size size, int type, AllocType alloc_type = PAGE_LOCKED); + + //! creates from host memory with coping data + explicit HostMem(InputArray arr, AllocType alloc_type = PAGE_LOCKED); + + ~HostMem(); + + HostMem& operator =(const HostMem& m); + + //! swaps with other smart pointer + void swap(HostMem& b); + + //! returns deep copy of the matrix, i.e. the data is copied + HostMem clone() const; + + //! allocates new matrix data unless the matrix already has specified size and type. + void create(int rows, int cols, int type); + void create(Size size, int type); + + //! creates alternative HostMem header for the same data, with different + //! number of channels and/or different number of rows + HostMem reshape(int cn, int rows = 0) const; + + //! decrements reference counter and released memory if needed. + void release(); + + //! returns matrix header with disabled reference counting for HostMem data. + Mat createMatHeader() const; + + /** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting + for it. + + This can be done only if memory was allocated with the SHARED flag and if it is supported by the + hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which + eliminates an extra copy. + */ + GpuMat createGpuMatHeader() const; + + // Please see cv::Mat for descriptions + bool isContinuous() const; + size_t elemSize() const; + size_t elemSize1() const; + int type() const; + int depth() const; + int channels() const; + size_t step1() const; + Size size() const; + bool empty() const; + + // Please see cv::Mat for descriptions + int flags; + int rows, cols; + size_t step; + + uchar* data; + int* refcount; + + uchar* datastart; + const uchar* dataend; + + AllocType alloc_type; +}; + +/** @brief Page-locks the memory of matrix and maps it for the device(s). + +@param m Input matrix. + */ +CV_EXPORTS void registerPageLocked(Mat& m); + +/** @brief Unmaps the memory of matrix and makes it pageable again. + +@param m Input matrix. + */ +CV_EXPORTS void unregisterPageLocked(Mat& m); + +//=================================================================================== +// Stream +//=================================================================================== + +/** @brief This class encapsulates a queue of asynchronous calls. + +@note Currently, you may face problems if an operation is enqueued twice with different data. Some +functions use the constant GPU memory, and next call may update the memory before the previous one +has been finished. But calling different operations asynchronously is safe because each operation +has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are +also safe. + +@note The Stream class is not thread-safe. Please use different Stream objects for different CPU threads. + +@code +void thread1() +{ + cv::cuda::Stream stream1; + cv::cuda::func1(..., stream1); +} + +void thread2() +{ + cv::cuda::Stream stream2; + cv::cuda::func2(..., stream2); +} +@endcode + +@note By default all CUDA routines are launched in Stream::Null() object, if the stream is not specified by user. +In multi-threading environment the stream objects must be passed explicitly (see previous note). + */ +class CV_EXPORTS Stream +{ + typedef void (Stream::*bool_type)() const; + void this_type_does_not_support_comparisons() const {} + +public: + typedef void (*StreamCallback)(int status, void* userData); + + //! creates a new asynchronous stream + Stream(); + + /** @brief Returns true if the current stream queue is finished. Otherwise, it returns false. + */ + bool queryIfComplete() const; + + /** @brief Blocks the current CPU thread until all operations in the stream are complete. + */ + void waitForCompletion(); + + /** @brief Makes a compute stream wait on an event. + */ + void waitEvent(const Event& event); + + /** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have + completed. + + @note Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization + that may depend on outstanding device work or other callbacks that are not mandated to run earlier. + Callbacks without a mandated order (in independent streams) execute in undefined order and may be + serialized. + */ + void enqueueHostCallback(StreamCallback callback, void* userData); + + //! return Stream object for default CUDA stream + static Stream& Null(); + + //! returns true if stream object is not default (!= 0) + operator bool_type() const; + + class Impl; + +private: + Ptr<Impl> impl_; + Stream(const Ptr<Impl>& impl); + + friend struct StreamAccessor; + friend class BufferPool; + friend class DefaultDeviceInitializer; +}; + +class CV_EXPORTS Event +{ +public: + enum CreateFlags + { + DEFAULT = 0x00, /**< Default event flag */ + BLOCKING_SYNC = 0x01, /**< Event uses blocking synchronization */ + DISABLE_TIMING = 0x02, /**< Event will not record timing data */ + INTERPROCESS = 0x04 /**< Event is suitable for interprocess use. DisableTiming must be set */ + }; + + explicit Event(CreateFlags flags = DEFAULT); + + //! records an event + void record(Stream& stream = Stream::Null()); + + //! queries an event's status + bool queryIfComplete() const; + + //! waits for an event to complete + void waitForCompletion(); + + //! computes the elapsed time between events + static float elapsedTime(const Event& start, const Event& end); + + class Impl; + +private: + Ptr<Impl> impl_; + Event(const Ptr<Impl>& impl); + + friend struct EventAccessor; +}; + +//! @} cudacore_struct + +//=================================================================================== +// Initialization & Info +//=================================================================================== + +//! @addtogroup cudacore_init +//! @{ + +/** @brief Returns the number of installed CUDA-enabled devices. + +Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support, +this function returns 0. + */ +CV_EXPORTS int getCudaEnabledDeviceCount(); + +/** @brief Sets a device and initializes it for the current thread. + +@param device System index of a CUDA device starting with 0. + +If the call of this function is omitted, a default device is initialized at the fist CUDA usage. + */ +CV_EXPORTS void setDevice(int device); + +/** @brief Returns the current device index set by cuda::setDevice or initialized by default. + */ +CV_EXPORTS int getDevice(); + +/** @brief Explicitly destroys and cleans up all resources associated with the current device in the current +process. + +Any subsequent API call to this device will reinitialize the device. + */ +CV_EXPORTS void resetDevice(); + +/** @brief Enumeration providing CUDA computing features. + */ +enum FeatureSet +{ + FEATURE_SET_COMPUTE_10 = 10, + FEATURE_SET_COMPUTE_11 = 11, + FEATURE_SET_COMPUTE_12 = 12, + FEATURE_SET_COMPUTE_13 = 13, + FEATURE_SET_COMPUTE_20 = 20, + FEATURE_SET_COMPUTE_21 = 21, + FEATURE_SET_COMPUTE_30 = 30, + FEATURE_SET_COMPUTE_32 = 32, + FEATURE_SET_COMPUTE_35 = 35, + FEATURE_SET_COMPUTE_50 = 50, + + GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11, + SHARED_ATOMICS = FEATURE_SET_COMPUTE_12, + NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13, + WARP_SHUFFLE_FUNCTIONS = FEATURE_SET_COMPUTE_30, + DYNAMIC_PARALLELISM = FEATURE_SET_COMPUTE_35 +}; + +//! checks whether current device supports the given feature +CV_EXPORTS bool deviceSupports(FeatureSet feature_set); + +/** @brief Class providing a set of static methods to check what NVIDIA\* card architecture the CUDA module was +built for. + +According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific compute +capability can always be compiled to binary code of greater or equal compute capability". + */ +class CV_EXPORTS TargetArchs +{ +public: + /** @brief The following method checks whether the module was built with the support of the given feature: + + @param feature_set Features to be checked. See :ocvcuda::FeatureSet. + */ + static bool builtWith(FeatureSet feature_set); + + /** @brief There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA + code for the given architecture(s): + + @param major Major compute capability version. + @param minor Minor compute capability version. + */ + static bool has(int major, int minor); + static bool hasPtx(int major, int minor); + static bool hasBin(int major, int minor); + + static bool hasEqualOrLessPtx(int major, int minor); + static bool hasEqualOrGreater(int major, int minor); + static bool hasEqualOrGreaterPtx(int major, int minor); + static bool hasEqualOrGreaterBin(int major, int minor); +}; + +/** @brief Class providing functionality for querying the specified GPU properties. + */ +class CV_EXPORTS DeviceInfo +{ +public: + //! creates DeviceInfo object for the current GPU + DeviceInfo(); + + /** @brief The constructors. + + @param device_id System index of the CUDA device starting with 0. + + Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it + constructs an object for the current device. + */ + DeviceInfo(int device_id); + + /** @brief Returns system index of the CUDA device starting with 0. + */ + int deviceID() const; + + //! ASCII string identifying device + const char* name() const; + + //! global memory available on device in bytes + size_t totalGlobalMem() const; + + //! shared memory available per block in bytes + size_t sharedMemPerBlock() const; + + //! 32-bit registers available per block + int regsPerBlock() const; + + //! warp size in threads + int warpSize() const; + + //! maximum pitch in bytes allowed by memory copies + size_t memPitch() const; + + //! maximum number of threads per block + int maxThreadsPerBlock() const; + + //! maximum size of each dimension of a block + Vec3i maxThreadsDim() const; + + //! maximum size of each dimension of a grid + Vec3i maxGridSize() const; + + //! clock frequency in kilohertz + int clockRate() const; + + //! constant memory available on device in bytes + size_t totalConstMem() const; + + //! major compute capability + int majorVersion() const; + + //! minor compute capability + int minorVersion() const; + + //! alignment requirement for textures + size_t textureAlignment() const; + + //! pitch alignment requirement for texture references bound to pitched memory + size_t texturePitchAlignment() const; + + //! number of multiprocessors on device + int multiProcessorCount() const; + + //! specified whether there is a run time limit on kernels + bool kernelExecTimeoutEnabled() const; + + //! device is integrated as opposed to discrete + bool integrated() const; + + //! device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer + bool canMapHostMemory() const; + + enum ComputeMode + { + ComputeModeDefault, /**< default compute mode (Multiple threads can use cudaSetDevice with this device) */ + ComputeModeExclusive, /**< compute-exclusive-thread mode (Only one thread in one process will be able to use cudaSetDevice with this device) */ + ComputeModeProhibited, /**< compute-prohibited mode (No threads can use cudaSetDevice with this device) */ + ComputeModeExclusiveProcess /**< compute-exclusive-process mode (Many threads in one process will be able to use cudaSetDevice with this device) */ + }; + + //! compute mode + ComputeMode computeMode() const; + + //! maximum 1D texture size + int maxTexture1D() const; + + //! maximum 1D mipmapped texture size + int maxTexture1DMipmap() const; + + //! maximum size for 1D textures bound to linear memory + int maxTexture1DLinear() const; + + //! maximum 2D texture dimensions + Vec2i maxTexture2D() const; + + //! maximum 2D mipmapped texture dimensions + Vec2i maxTexture2DMipmap() const; + + //! maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory + Vec3i maxTexture2DLinear() const; + + //! maximum 2D texture dimensions if texture gather operations have to be performed + Vec2i maxTexture2DGather() const; + + //! maximum 3D texture dimensions + Vec3i maxTexture3D() const; + + //! maximum Cubemap texture dimensions + int maxTextureCubemap() const; + + //! maximum 1D layered texture dimensions + Vec2i maxTexture1DLayered() const; + + //! maximum 2D layered texture dimensions + Vec3i maxTexture2DLayered() const; + + //! maximum Cubemap layered texture dimensions + Vec2i maxTextureCubemapLayered() const; + + //! maximum 1D surface size + int maxSurface1D() const; + + //! maximum 2D surface dimensions + Vec2i maxSurface2D() const; + + //! maximum 3D surface dimensions + Vec3i maxSurface3D() const; + + //! maximum 1D layered surface dimensions + Vec2i maxSurface1DLayered() const; + + //! maximum 2D layered surface dimensions + Vec3i maxSurface2DLayered() const; + + //! maximum Cubemap surface dimensions + int maxSurfaceCubemap() const; + + //! maximum Cubemap layered surface dimensions + Vec2i maxSurfaceCubemapLayered() const; + + //! alignment requirements for surfaces + size_t surfaceAlignment() const; + + //! device can possibly execute multiple kernels concurrently + bool concurrentKernels() const; + + //! device has ECC support enabled + bool ECCEnabled() const; + + //! PCI bus ID of the device + int pciBusID() const; + + //! PCI device ID of the device + int pciDeviceID() const; + + //! PCI domain ID of the device + int pciDomainID() const; + + //! true if device is a Tesla device using TCC driver, false otherwise + bool tccDriver() const; + + //! number of asynchronous engines + int asyncEngineCount() const; + + //! device shares a unified address space with the host + bool unifiedAddressing() const; + + //! peak memory clock frequency in kilohertz + int memoryClockRate() const; + + //! global memory bus width in bits + int memoryBusWidth() const; + + //! size of L2 cache in bytes + int l2CacheSize() const; + + //! maximum resident threads per multiprocessor + int maxThreadsPerMultiProcessor() const; + + //! gets free and total device memory + void queryMemory(size_t& totalMemory, size_t& freeMemory) const; + size_t freeMemory() const; + size_t totalMemory() const; + + /** @brief Provides information on CUDA feature support. + + @param feature_set Features to be checked. See cuda::FeatureSet. + + This function returns true if the device has the specified CUDA feature. Otherwise, it returns false + */ + bool supports(FeatureSet feature_set) const; + + /** @brief Checks the CUDA module and device compatibility. + + This function returns true if the CUDA module can be run on the specified device. Otherwise, it + returns false . + */ + bool isCompatible() const; + +private: + int device_id_; +}; + +CV_EXPORTS void printCudaDeviceInfo(int device); +CV_EXPORTS void printShortCudaDeviceInfo(int device); + +/** @brief Converts an array to half precision floating number. + +@param _src input array. +@param _dst output array. +@param stream Stream for the asynchronous version. +@sa convertFp16 +*/ +CV_EXPORTS void convertFp16(InputArray _src, OutputArray _dst, Stream& stream = Stream::Null()); + +//! @} cudacore_init + +}} // namespace cv { namespace cuda { + + +#include "opencv2/core/cuda.inl.hpp" + +#endif /* OPENCV_CORE_CUDA_HPP */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/cuda.inl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,631 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CUDAINL_HPP +#define OPENCV_CORE_CUDAINL_HPP + +#include "opencv2/core/cuda.hpp" + +//! @cond IGNORED + +namespace cv { namespace cuda { + +//=================================================================================== +// GpuMat +//=================================================================================== + +inline +GpuMat::GpuMat(Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{} + +inline +GpuMat::GpuMat(int rows_, int cols_, int type_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (rows_ > 0 && cols_ > 0) + create(rows_, cols_, type_); +} + +inline +GpuMat::GpuMat(Size size_, int type_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (size_.height > 0 && size_.width > 0) + create(size_.height, size_.width, type_); +} + +inline +GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (rows_ > 0 && cols_ > 0) + { + create(rows_, cols_, type_); + setTo(s_); + } +} + +inline +GpuMat::GpuMat(Size size_, int type_, Scalar s_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (size_.height > 0 && size_.width > 0) + { + create(size_.height, size_.width, type_); + setTo(s_); + } +} + +inline +GpuMat::GpuMat(const GpuMat& m) + : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), allocator(m.allocator) +{ + if (refcount) + CV_XADD(refcount, 1); +} + +inline +GpuMat::GpuMat(InputArray arr, Allocator* allocator_) : + flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + upload(arr); +} + +inline +GpuMat::~GpuMat() +{ + release(); +} + +inline +GpuMat& GpuMat::operator =(const GpuMat& m) +{ + if (this != &m) + { + GpuMat temp(m); + swap(temp); + } + + return *this; +} + +inline +void GpuMat::create(Size size_, int type_) +{ + create(size_.height, size_.width, type_); +} + +inline +void GpuMat::swap(GpuMat& b) +{ + std::swap(flags, b.flags); + std::swap(rows, b.rows); + std::swap(cols, b.cols); + std::swap(step, b.step); + std::swap(data, b.data); + std::swap(datastart, b.datastart); + std::swap(dataend, b.dataend); + std::swap(refcount, b.refcount); + std::swap(allocator, b.allocator); +} + +inline +GpuMat GpuMat::clone() const +{ + GpuMat m; + copyTo(m); + return m; +} + +inline +void GpuMat::copyTo(OutputArray dst, InputArray mask) const +{ + copyTo(dst, mask, Stream::Null()); +} + +inline +GpuMat& GpuMat::setTo(Scalar s) +{ + return setTo(s, Stream::Null()); +} + +inline +GpuMat& GpuMat::setTo(Scalar s, InputArray mask) +{ + return setTo(s, mask, Stream::Null()); +} + +inline +void GpuMat::convertTo(OutputArray dst, int rtype) const +{ + convertTo(dst, rtype, Stream::Null()); +} + +inline +void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, double beta) const +{ + convertTo(dst, rtype, alpha, beta, Stream::Null()); +} + +inline +void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const +{ + convertTo(dst, rtype, alpha, 0.0, stream); +} + +inline +void GpuMat::assignTo(GpuMat& m, int _type) const +{ + if (_type < 0) + m = *this; + else + convertTo(m, _type); +} + +inline +uchar* GpuMat::ptr(int y) +{ + CV_DbgAssert( (unsigned)y < (unsigned)rows ); + return data + step * y; +} + +inline +const uchar* GpuMat::ptr(int y) const +{ + CV_DbgAssert( (unsigned)y < (unsigned)rows ); + return data + step * y; +} + +template<typename _Tp> inline +_Tp* GpuMat::ptr(int y) +{ + return (_Tp*)ptr(y); +} + +template<typename _Tp> inline +const _Tp* GpuMat::ptr(int y) const +{ + return (const _Tp*)ptr(y); +} + +template <class T> inline +GpuMat::operator PtrStepSz<T>() const +{ + return PtrStepSz<T>(rows, cols, (T*)data, step); +} + +template <class T> inline +GpuMat::operator PtrStep<T>() const +{ + return PtrStep<T>((T*)data, step); +} + +inline +GpuMat GpuMat::row(int y) const +{ + return GpuMat(*this, Range(y, y+1), Range::all()); +} + +inline +GpuMat GpuMat::col(int x) const +{ + return GpuMat(*this, Range::all(), Range(x, x+1)); +} + +inline +GpuMat GpuMat::rowRange(int startrow, int endrow) const +{ + return GpuMat(*this, Range(startrow, endrow), Range::all()); +} + +inline +GpuMat GpuMat::rowRange(Range r) const +{ + return GpuMat(*this, r, Range::all()); +} + +inline +GpuMat GpuMat::colRange(int startcol, int endcol) const +{ + return GpuMat(*this, Range::all(), Range(startcol, endcol)); +} + +inline +GpuMat GpuMat::colRange(Range r) const +{ + return GpuMat(*this, Range::all(), r); +} + +inline +GpuMat GpuMat::operator ()(Range rowRange_, Range colRange_) const +{ + return GpuMat(*this, rowRange_, colRange_); +} + +inline +GpuMat GpuMat::operator ()(Rect roi) const +{ + return GpuMat(*this, roi); +} + +inline +bool GpuMat::isContinuous() const +{ + return (flags & Mat::CONTINUOUS_FLAG) != 0; +} + +inline +size_t GpuMat::elemSize() const +{ + return CV_ELEM_SIZE(flags); +} + +inline +size_t GpuMat::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int GpuMat::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int GpuMat::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int GpuMat::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t GpuMat::step1() const +{ + return step / elemSize1(); +} + +inline +Size GpuMat::size() const +{ + return Size(cols, rows); +} + +inline +bool GpuMat::empty() const +{ + return data == 0; +} + +static inline +GpuMat createContinuous(int rows, int cols, int type) +{ + GpuMat m; + createContinuous(rows, cols, type, m); + return m; +} + +static inline +void createContinuous(Size size, int type, OutputArray arr) +{ + createContinuous(size.height, size.width, type, arr); +} + +static inline +GpuMat createContinuous(Size size, int type) +{ + GpuMat m; + createContinuous(size, type, m); + return m; +} + +static inline +void ensureSizeIsEnough(Size size, int type, OutputArray arr) +{ + ensureSizeIsEnough(size.height, size.width, type, arr); +} + +static inline +void swap(GpuMat& a, GpuMat& b) +{ + a.swap(b); +} + +//=================================================================================== +// HostMem +//=================================================================================== + +inline +HostMem::HostMem(AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ +} + +inline +HostMem::HostMem(const HostMem& m) + : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type) +{ + if( refcount ) + CV_XADD(refcount, 1); +} + +inline +HostMem::HostMem(int rows_, int cols_, int type_, AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ + if (rows_ > 0 && cols_ > 0) + create(rows_, cols_, type_); +} + +inline +HostMem::HostMem(Size size_, int type_, AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ + if (size_.height > 0 && size_.width > 0) + create(size_.height, size_.width, type_); +} + +inline +HostMem::HostMem(InputArray arr, AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ + arr.getMat().copyTo(*this); +} + +inline +HostMem::~HostMem() +{ + release(); +} + +inline +HostMem& HostMem::operator =(const HostMem& m) +{ + if (this != &m) + { + HostMem temp(m); + swap(temp); + } + + return *this; +} + +inline +void HostMem::swap(HostMem& b) +{ + std::swap(flags, b.flags); + std::swap(rows, b.rows); + std::swap(cols, b.cols); + std::swap(step, b.step); + std::swap(data, b.data); + std::swap(datastart, b.datastart); + std::swap(dataend, b.dataend); + std::swap(refcount, b.refcount); + std::swap(alloc_type, b.alloc_type); +} + +inline +HostMem HostMem::clone() const +{ + HostMem m(size(), type(), alloc_type); + createMatHeader().copyTo(m); + return m; +} + +inline +void HostMem::create(Size size_, int type_) +{ + create(size_.height, size_.width, type_); +} + +inline +Mat HostMem::createMatHeader() const +{ + return Mat(size(), type(), data, step); +} + +inline +bool HostMem::isContinuous() const +{ + return (flags & Mat::CONTINUOUS_FLAG) != 0; +} + +inline +size_t HostMem::elemSize() const +{ + return CV_ELEM_SIZE(flags); +} + +inline +size_t HostMem::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int HostMem::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int HostMem::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int HostMem::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t HostMem::step1() const +{ + return step / elemSize1(); +} + +inline +Size HostMem::size() const +{ + return Size(cols, rows); +} + +inline +bool HostMem::empty() const +{ + return data == 0; +} + +static inline +void swap(HostMem& a, HostMem& b) +{ + a.swap(b); +} + +//=================================================================================== +// Stream +//=================================================================================== + +inline +Stream::Stream(const Ptr<Impl>& impl) + : impl_(impl) +{ +} + +//=================================================================================== +// Event +//=================================================================================== + +inline +Event::Event(const Ptr<Impl>& impl) + : impl_(impl) +{ +} + +//=================================================================================== +// Initialization & Info +//=================================================================================== + +inline +bool TargetArchs::has(int major, int minor) +{ + return hasPtx(major, minor) || hasBin(major, minor); +} + +inline +bool TargetArchs::hasEqualOrGreater(int major, int minor) +{ + return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor); +} + +inline +DeviceInfo::DeviceInfo() +{ + device_id_ = getDevice(); +} + +inline +DeviceInfo::DeviceInfo(int device_id) +{ + CV_Assert( device_id >= 0 && device_id < getCudaEnabledDeviceCount() ); + device_id_ = device_id; +} + +inline +int DeviceInfo::deviceID() const +{ + return device_id_; +} + +inline +size_t DeviceInfo::freeMemory() const +{ + size_t _totalMemory = 0, _freeMemory = 0; + queryMemory(_totalMemory, _freeMemory); + return _freeMemory; +} + +inline +size_t DeviceInfo::totalMemory() const +{ + size_t _totalMemory = 0, _freeMemory = 0; + queryMemory(_totalMemory, _freeMemory); + return _totalMemory; +} + +inline +bool DeviceInfo::supports(FeatureSet feature_set) const +{ + int version = majorVersion() * 10 + minorVersion(); + return version >= feature_set; +} + + +}} // namespace cv { namespace cuda { + +//=================================================================================== +// Mat +//=================================================================================== + +namespace cv { + +inline +Mat::Mat(const cuda::GpuMat& m) + : flags(0), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) +{ + m.download(*this); +} + +} + +//! @endcond + +#endif // OPENCV_CORE_CUDAINL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/cuda_stream_accessor.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,86 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP +#define OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP + +#ifndef __cplusplus +# error cuda_stream_accessor.hpp header must be compiled as C++ +#endif + +/** @file cuda_stream_accessor.hpp + * This is only header file that depends on CUDA Runtime API. All other headers are independent. + */ + +#include <cuda_runtime.h> +#include "opencv2/core/cuda.hpp" + +namespace cv +{ + namespace cuda + { + +//! @addtogroup cudacore_struct +//! @{ + + /** @brief Class that enables getting cudaStream_t from cuda::Stream + */ + struct StreamAccessor + { + CV_EXPORTS static cudaStream_t getStream(const Stream& stream); + CV_EXPORTS static Stream wrapStream(cudaStream_t stream); + }; + + /** @brief Class that enables getting cudaEvent_t from cuda::Event + */ + struct EventAccessor + { + CV_EXPORTS static cudaEvent_t getEvent(const Event& event); + CV_EXPORTS static Event wrapEvent(cudaEvent_t event); + }; + +//! @} + + } +} + +#endif /* OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/cuda_types.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,135 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CUDA_TYPES_HPP +#define OPENCV_CORE_CUDA_TYPES_HPP + +#ifndef __cplusplus +# error cuda_types.hpp header must be compiled as C++ +#endif + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +#ifdef __CUDACC__ + #define __CV_CUDA_HOST_DEVICE__ __host__ __device__ __forceinline__ +#else + #define __CV_CUDA_HOST_DEVICE__ +#endif + +namespace cv +{ + namespace cuda + { + + // Simple lightweight structures that encapsulates information about an image on device. + // It is intended to pass to nvcc-compiled code. GpuMat depends on headers that nvcc can't compile + + template <typename T> struct DevPtr + { + typedef T elem_type; + typedef int index_type; + + enum { elem_size = sizeof(elem_type) }; + + T* data; + + __CV_CUDA_HOST_DEVICE__ DevPtr() : data(0) {} + __CV_CUDA_HOST_DEVICE__ DevPtr(T* data_) : data(data_) {} + + __CV_CUDA_HOST_DEVICE__ size_t elemSize() const { return elem_size; } + __CV_CUDA_HOST_DEVICE__ operator T*() { return data; } + __CV_CUDA_HOST_DEVICE__ operator const T*() const { return data; } + }; + + template <typename T> struct PtrSz : public DevPtr<T> + { + __CV_CUDA_HOST_DEVICE__ PtrSz() : size(0) {} + __CV_CUDA_HOST_DEVICE__ PtrSz(T* data_, size_t size_) : DevPtr<T>(data_), size(size_) {} + + size_t size; + }; + + template <typename T> struct PtrStep : public DevPtr<T> + { + __CV_CUDA_HOST_DEVICE__ PtrStep() : step(0) {} + __CV_CUDA_HOST_DEVICE__ PtrStep(T* data_, size_t step_) : DevPtr<T>(data_), step(step_) {} + + size_t step; + + __CV_CUDA_HOST_DEVICE__ T* ptr(int y = 0) { return ( T*)( ( char*)DevPtr<T>::data + y * step); } + __CV_CUDA_HOST_DEVICE__ const T* ptr(int y = 0) const { return (const T*)( (const char*)DevPtr<T>::data + y * step); } + + __CV_CUDA_HOST_DEVICE__ T& operator ()(int y, int x) { return ptr(y)[x]; } + __CV_CUDA_HOST_DEVICE__ const T& operator ()(int y, int x) const { return ptr(y)[x]; } + }; + + template <typename T> struct PtrStepSz : public PtrStep<T> + { + __CV_CUDA_HOST_DEVICE__ PtrStepSz() : cols(0), rows(0) {} + __CV_CUDA_HOST_DEVICE__ PtrStepSz(int rows_, int cols_, T* data_, size_t step_) + : PtrStep<T>(data_, step_), cols(cols_), rows(rows_) {} + + template <typename U> + explicit PtrStepSz(const PtrStepSz<U>& d) : PtrStep<T>((T*)d.data, d.step), cols(d.cols), rows(d.rows){} + + int cols; + int rows; + }; + + typedef PtrStepSz<unsigned char> PtrStepSzb; + typedef PtrStepSz<float> PtrStepSzf; + typedef PtrStepSz<int> PtrStepSzi; + + typedef PtrStep<unsigned char> PtrStepb; + typedef PtrStep<float> PtrStepf; + typedef PtrStep<int> PtrStepi; + + } +} + +//! @endcond + +#endif /* OPENCV_CORE_CUDA_TYPES_HPP */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/cvdef.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,481 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CVDEF_H +#define OPENCV_CORE_CVDEF_H + +//! @addtogroup core_utils +//! @{ + +#if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300 +# define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */ +#endif + +// undef problematic defines sometimes defined by system headers (windows.h in particular) +#undef small +#undef min +#undef max +#undef abs +#undef Complex + +#if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300 +# define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */ +#endif + +#include <limits.h> +#include "opencv2/core/hal/interface.h" + +#if defined __ICL +# define CV_ICC __ICL +#elif defined __ICC +# define CV_ICC __ICC +#elif defined __ECL +# define CV_ICC __ECL +#elif defined __ECC +# define CV_ICC __ECC +#elif defined __INTEL_COMPILER +# define CV_ICC __INTEL_COMPILER +#endif + +#ifndef CV_INLINE +# if defined __cplusplus +# define CV_INLINE static inline +# elif defined _MSC_VER +# define CV_INLINE __inline +# else +# define CV_INLINE static +# endif +#endif + +#if defined CV_ICC && !defined CV_ENABLE_UNROLLED +# define CV_ENABLE_UNROLLED 0 +#else +# define CV_ENABLE_UNROLLED 1 +#endif + +#ifdef __GNUC__ +# define CV_DECL_ALIGNED(x) __attribute__ ((aligned (x))) +#elif defined _MSC_VER +# define CV_DECL_ALIGNED(x) __declspec(align(x)) +#else +# define CV_DECL_ALIGNED(x) +#endif + +/* CPU features and intrinsics support */ +#define CV_CPU_NONE 0 +#define CV_CPU_MMX 1 +#define CV_CPU_SSE 2 +#define CV_CPU_SSE2 3 +#define CV_CPU_SSE3 4 +#define CV_CPU_SSSE3 5 +#define CV_CPU_SSE4_1 6 +#define CV_CPU_SSE4_2 7 +#define CV_CPU_POPCNT 8 +#define CV_CPU_FP16 9 +#define CV_CPU_AVX 10 +#define CV_CPU_AVX2 11 +#define CV_CPU_FMA3 12 + +#define CV_CPU_AVX_512F 13 +#define CV_CPU_AVX_512BW 14 +#define CV_CPU_AVX_512CD 15 +#define CV_CPU_AVX_512DQ 16 +#define CV_CPU_AVX_512ER 17 +#define CV_CPU_AVX_512IFMA512 18 +#define CV_CPU_AVX_512PF 19 +#define CV_CPU_AVX_512VBMI 20 +#define CV_CPU_AVX_512VL 21 + +#define CV_CPU_NEON 100 + +// when adding to this list remember to update the following enum +#define CV_HARDWARE_MAX_FEATURE 255 + +/** @brief Available CPU features. +*/ +enum CpuFeatures { + CPU_MMX = 1, + CPU_SSE = 2, + CPU_SSE2 = 3, + CPU_SSE3 = 4, + CPU_SSSE3 = 5, + CPU_SSE4_1 = 6, + CPU_SSE4_2 = 7, + CPU_POPCNT = 8, + CPU_FP16 = 9, + CPU_AVX = 10, + CPU_AVX2 = 11, + CPU_FMA3 = 12, + + CPU_AVX_512F = 13, + CPU_AVX_512BW = 14, + CPU_AVX_512CD = 15, + CPU_AVX_512DQ = 16, + CPU_AVX_512ER = 17, + CPU_AVX_512IFMA512 = 18, + CPU_AVX_512PF = 19, + CPU_AVX_512VBMI = 20, + CPU_AVX_512VL = 21, + + CPU_NEON = 100 +}; + +// do not include SSE/AVX/NEON headers for NVCC compiler +#ifndef __CUDACC__ + +#if defined __SSE2__ || defined _M_X64 || (defined _M_IX86_FP && _M_IX86_FP >= 2) +# include <emmintrin.h> +# define CV_MMX 1 +# define CV_SSE 1 +# define CV_SSE2 1 +# if defined __SSE3__ || (defined _MSC_VER && _MSC_VER >= 1500) +# include <pmmintrin.h> +# define CV_SSE3 1 +# endif +# if defined __SSSE3__ || (defined _MSC_VER && _MSC_VER >= 1500) +# include <tmmintrin.h> +# define CV_SSSE3 1 +# endif +# if defined __SSE4_1__ || (defined _MSC_VER && _MSC_VER >= 1500) +# include <smmintrin.h> +# define CV_SSE4_1 1 +# endif +# if defined __SSE4_2__ || (defined _MSC_VER && _MSC_VER >= 1500) +# include <nmmintrin.h> +# define CV_SSE4_2 1 +# endif +# if defined __POPCNT__ || (defined _MSC_VER && _MSC_VER >= 1500) +# ifdef _MSC_VER +# include <nmmintrin.h> +# else +# include <popcntintrin.h> +# endif +# define CV_POPCNT 1 +# endif +# if defined __AVX__ || (defined _MSC_VER && _MSC_VER >= 1600 && 0) +// MS Visual Studio 2010 (2012?) has no macro pre-defined to identify the use of /arch:AVX +// See: http://connect.microsoft.com/VisualStudio/feedback/details/605858/arch-avx-should-define-a-predefined-macro-in-x64-and-set-a-unique-value-for-m-ix86-fp-in-win32 +# include <immintrin.h> +# define CV_AVX 1 +# if defined(_XCR_XFEATURE_ENABLED_MASK) +# define __xgetbv() _xgetbv(_XCR_XFEATURE_ENABLED_MASK) +# else +# define __xgetbv() 0 +# endif +# endif +# if defined __AVX2__ || (defined _MSC_VER && _MSC_VER >= 1800 && 0) +# include <immintrin.h> +# define CV_AVX2 1 +# if defined __FMA__ +# define CV_FMA3 1 +# endif +# endif +#endif + +#if (defined WIN32 || defined _WIN32) && defined(_M_ARM) +# include <Intrin.h> +# include <arm_neon.h> +# define CV_NEON 1 +# define CPU_HAS_NEON_FEATURE (true) +#elif defined(__ARM_NEON__) || (defined (__ARM_NEON) && defined(__aarch64__)) +# include <arm_neon.h> +# define CV_NEON 1 +#endif + +#if defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__ || defined __ARM_NEON__) && !defined __SOFTFP__ +# define CV_VFP 1 +#endif + +#endif // __CUDACC__ + +#ifndef CV_POPCNT +#define CV_POPCNT 0 +#endif +#ifndef CV_MMX +# define CV_MMX 0 +#endif +#ifndef CV_SSE +# define CV_SSE 0 +#endif +#ifndef CV_SSE2 +# define CV_SSE2 0 +#endif +#ifndef CV_SSE3 +# define CV_SSE3 0 +#endif +#ifndef CV_SSSE3 +# define CV_SSSE3 0 +#endif +#ifndef CV_SSE4_1 +# define CV_SSE4_1 0 +#endif +#ifndef CV_SSE4_2 +# define CV_SSE4_2 0 +#endif +#ifndef CV_AVX +# define CV_AVX 0 +#endif +#ifndef CV_AVX2 +# define CV_AVX2 0 +#endif +#ifndef CV_FMA3 +# define CV_FMA3 0 +#endif +#ifndef CV_AVX_512F +# define CV_AVX_512F 0 +#endif +#ifndef CV_AVX_512BW +# define CV_AVX_512BW 0 +#endif +#ifndef CV_AVX_512CD +# define CV_AVX_512CD 0 +#endif +#ifndef CV_AVX_512DQ +# define CV_AVX_512DQ 0 +#endif +#ifndef CV_AVX_512ER +# define CV_AVX_512ER 0 +#endif +#ifndef CV_AVX_512IFMA512 +# define CV_AVX_512IFMA512 0 +#endif +#ifndef CV_AVX_512PF +# define CV_AVX_512PF 0 +#endif +#ifndef CV_AVX_512VBMI +# define CV_AVX_512VBMI 0 +#endif +#ifndef CV_AVX_512VL +# define CV_AVX_512VL 0 +#endif + +#ifndef CV_NEON +# define CV_NEON 0 +#endif + +#ifndef CV_VFP +# define CV_VFP 0 +#endif + +/* fundamental constants */ +#define CV_PI 3.1415926535897932384626433832795 +#define CV_2PI 6.283185307179586476925286766559 +#define CV_LOG2 0.69314718055994530941723212145818 + +#if defined __ARM_FP16_FORMAT_IEEE \ + && !defined __CUDACC__ +# define CV_FP16_TYPE 1 +#else +# define CV_FP16_TYPE 0 +#endif + +typedef union Cv16suf +{ + short i; +#if CV_FP16_TYPE + __fp16 h; +#endif + struct _fp16Format + { + unsigned int significand : 10; + unsigned int exponent : 5; + unsigned int sign : 1; + } fmt; +} +Cv16suf; + +typedef union Cv32suf +{ + int i; + unsigned u; + float f; + struct _fp32Format + { + unsigned int significand : 23; + unsigned int exponent : 8; + unsigned int sign : 1; + } fmt; +} +Cv32suf; + +typedef union Cv64suf +{ + int64 i; + uint64 u; + double f; +} +Cv64suf; + +#define OPENCV_ABI_COMPATIBILITY 300 + +#ifdef __OPENCV_BUILD +# define DISABLE_OPENCV_24_COMPATIBILITY +#endif + +#if (defined WIN32 || defined _WIN32 || defined WINCE || defined __CYGWIN__) && defined CVAPI_EXPORTS +# define CV_EXPORTS __declspec(dllexport) +#elif defined __GNUC__ && __GNUC__ >= 4 +# define CV_EXPORTS __attribute__ ((visibility ("default"))) +#else +# define CV_EXPORTS +#endif + +#ifndef CV_EXTERN_C +# ifdef __cplusplus +# define CV_EXTERN_C extern "C" +# else +# define CV_EXTERN_C +# endif +#endif + +/* special informative macros for wrapper generators */ +#define CV_EXPORTS_W CV_EXPORTS +#define CV_EXPORTS_W_SIMPLE CV_EXPORTS +#define CV_EXPORTS_AS(synonym) CV_EXPORTS +#define CV_EXPORTS_W_MAP CV_EXPORTS +#define CV_IN_OUT +#define CV_OUT +#define CV_PROP +#define CV_PROP_RW +#define CV_WRAP +#define CV_WRAP_AS(synonym) + +/****************************************************************************************\ +* Matrix type (Mat) * +\****************************************************************************************/ + +#define CV_MAT_CN_MASK ((CV_CN_MAX - 1) << CV_CN_SHIFT) +#define CV_MAT_CN(flags) ((((flags) & CV_MAT_CN_MASK) >> CV_CN_SHIFT) + 1) +#define CV_MAT_TYPE_MASK (CV_DEPTH_MAX*CV_CN_MAX - 1) +#define CV_MAT_TYPE(flags) ((flags) & CV_MAT_TYPE_MASK) +#define CV_MAT_CONT_FLAG_SHIFT 14 +#define CV_MAT_CONT_FLAG (1 << CV_MAT_CONT_FLAG_SHIFT) +#define CV_IS_MAT_CONT(flags) ((flags) & CV_MAT_CONT_FLAG) +#define CV_IS_CONT_MAT CV_IS_MAT_CONT +#define CV_SUBMAT_FLAG_SHIFT 15 +#define CV_SUBMAT_FLAG (1 << CV_SUBMAT_FLAG_SHIFT) +#define CV_IS_SUBMAT(flags) ((flags) & CV_MAT_SUBMAT_FLAG) + +/** Size of each channel item, + 0x124489 = 1000 0100 0100 0010 0010 0001 0001 ~ array of sizeof(arr_type_elem) */ +#define CV_ELEM_SIZE1(type) \ + ((((sizeof(size_t)<<28)|0x8442211) >> CV_MAT_DEPTH(type)*4) & 15) + +/** 0x3a50 = 11 10 10 01 01 00 00 ~ array of log2(sizeof(arr_type_elem)) */ +#define CV_ELEM_SIZE(type) \ + (CV_MAT_CN(type) << ((((sizeof(size_t)/4+1)*16384|0x3a50) >> CV_MAT_DEPTH(type)*2) & 3)) + +#ifndef MIN +# define MIN(a,b) ((a) > (b) ? (b) : (a)) +#endif + +#ifndef MAX +# define MAX(a,b) ((a) < (b) ? (b) : (a)) +#endif + +/****************************************************************************************\ +* exchange-add operation for atomic operations on reference counters * +\****************************************************************************************/ + +#ifdef CV_XADD + // allow to use user-defined macro +#elif defined __GNUC__ +# if defined __clang__ && __clang_major__ >= 3 && !defined __ANDROID__ && !defined __EMSCRIPTEN__ && !defined(__CUDACC__) +# ifdef __ATOMIC_ACQ_REL +# define CV_XADD(addr, delta) __c11_atomic_fetch_add((_Atomic(int)*)(addr), delta, __ATOMIC_ACQ_REL) +# else +# define CV_XADD(addr, delta) __atomic_fetch_add((_Atomic(int)*)(addr), delta, 4) +# endif +# else +# if defined __ATOMIC_ACQ_REL && !defined __clang__ + // version for gcc >= 4.7 +# define CV_XADD(addr, delta) (int)__atomic_fetch_add((unsigned*)(addr), (unsigned)(delta), __ATOMIC_ACQ_REL) +# else +# define CV_XADD(addr, delta) (int)__sync_fetch_and_add((unsigned*)(addr), (unsigned)(delta)) +# endif +# endif +#elif defined _MSC_VER && !defined RC_INVOKED +# include <intrin.h> +# define CV_XADD(addr, delta) (int)_InterlockedExchangeAdd((long volatile*)addr, delta) +#else + CV_INLINE CV_XADD(int* addr, int delta) { int tmp = *addr; *addr += delta; return tmp; } +#endif + + +/****************************************************************************************\ +* CV_NORETURN attribute * +\****************************************************************************************/ + +#ifndef CV_NORETURN +# if defined(__GNUC__) +# define CV_NORETURN __attribute__((__noreturn__)) +# elif defined(_MSC_VER) && (_MSC_VER >= 1300) +# define CV_NORETURN __declspec(noreturn) +# else +# define CV_NORETURN /* nothing by default */ +# endif +#endif + + +/****************************************************************************************\ +* C++ Move semantics * +\****************************************************************************************/ + +#ifndef CV_CXX_MOVE_SEMANTICS +# if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) || defined(_MSC_VER) && _MSC_VER >= 1600 +# define CV_CXX_MOVE_SEMANTICS 1 +# elif defined(__clang) +# if __has_feature(cxx_rvalue_references) +# define CV_CXX_MOVE_SEMANTICS 1 +# endif +# endif +#else +# if CV_CXX_MOVE_SEMANTICS == 0 +# undef CV_CXX_MOVE_SEMANTICS +# endif +#endif + +//! @} + +#endif // OPENCV_CORE_CVDEF_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/cvstd.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1066 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CVSTD_HPP +#define OPENCV_CORE_CVSTD_HPP + +#ifndef __cplusplus +# error cvstd.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/cvdef.h" + +#include <cstddef> +#include <cstring> +#include <cctype> + +#ifndef OPENCV_NOSTL +# include <string> +#endif + +// import useful primitives from stl +#ifndef OPENCV_NOSTL_TRANSITIONAL +# include <algorithm> +# include <utility> +# include <cstdlib> //for abs(int) +# include <cmath> + +namespace cv +{ + static inline uchar abs(uchar a) { return a; } + static inline ushort abs(ushort a) { return a; } + static inline unsigned abs(unsigned a) { return a; } + static inline uint64 abs(uint64 a) { return a; } + + using std::min; + using std::max; + using std::abs; + using std::swap; + using std::sqrt; + using std::exp; + using std::pow; + using std::log; +} + +#else +namespace cv +{ + template<typename T> static inline T min(T a, T b) { return a < b ? a : b; } + template<typename T> static inline T max(T a, T b) { return a > b ? a : b; } + template<typename T> static inline T abs(T a) { return a < 0 ? -a : a; } + template<typename T> static inline void swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } + + template<> inline uchar abs(uchar a) { return a; } + template<> inline ushort abs(ushort a) { return a; } + template<> inline unsigned abs(unsigned a) { return a; } + template<> inline uint64 abs(uint64 a) { return a; } +} +#endif + +namespace cv { + +//! @addtogroup core_utils +//! @{ + +//////////////////////////// memory management functions //////////////////////////// + +/** @brief Allocates an aligned memory buffer. + +The function allocates the buffer of the specified size and returns it. When the buffer size is 16 +bytes or more, the returned buffer is aligned to 16 bytes. +@param bufSize Allocated buffer size. + */ +CV_EXPORTS void* fastMalloc(size_t bufSize); + +/** @brief Deallocates a memory buffer. + +The function deallocates the buffer allocated with fastMalloc . If NULL pointer is passed, the +function does nothing. C version of the function clears the pointer *pptr* to avoid problems with +double memory deallocation. +@param ptr Pointer to the allocated buffer. + */ +CV_EXPORTS void fastFree(void* ptr); + +/*! + The STL-compilant memory Allocator based on cv::fastMalloc() and cv::fastFree() +*/ +template<typename _Tp> class Allocator +{ +public: + typedef _Tp value_type; + typedef value_type* pointer; + typedef const value_type* const_pointer; + typedef value_type& reference; + typedef const value_type& const_reference; + typedef size_t size_type; + typedef ptrdiff_t difference_type; + template<typename U> class rebind { typedef Allocator<U> other; }; + + explicit Allocator() {} + ~Allocator() {} + explicit Allocator(Allocator const&) {} + template<typename U> + explicit Allocator(Allocator<U> const&) {} + + // address + pointer address(reference r) { return &r; } + const_pointer address(const_reference r) { return &r; } + + pointer allocate(size_type count, const void* =0) { return reinterpret_cast<pointer>(fastMalloc(count * sizeof (_Tp))); } + void deallocate(pointer p, size_type) { fastFree(p); } + + void construct(pointer p, const _Tp& v) { new(static_cast<void*>(p)) _Tp(v); } + void destroy(pointer p) { p->~_Tp(); } + + size_type max_size() const { return cv::max(static_cast<_Tp>(-1)/sizeof(_Tp), 1); } +}; + +//! @} core_utils + +//! @cond IGNORED + +namespace detail +{ + +// Metafunction to avoid taking a reference to void. +template<typename T> +struct RefOrVoid { typedef T& type; }; + +template<> +struct RefOrVoid<void>{ typedef void type; }; + +template<> +struct RefOrVoid<const void>{ typedef const void type; }; + +template<> +struct RefOrVoid<volatile void>{ typedef volatile void type; }; + +template<> +struct RefOrVoid<const volatile void>{ typedef const volatile void type; }; + +// This class would be private to Ptr, if it didn't have to be a non-template. +struct PtrOwner; + +} + +template<typename Y> +struct DefaultDeleter +{ + void operator () (Y* p) const; +}; + +//! @endcond + +//! @addtogroup core_basic +//! @{ + +/** @brief Template class for smart pointers with shared ownership + +A Ptr\<T\> pretends to be a pointer to an object of type T. Unlike an ordinary pointer, however, the +object will be automatically cleaned up once all Ptr instances pointing to it are destroyed. + +Ptr is similar to boost::shared_ptr that is part of the Boost library +(<http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm>) and std::shared_ptr from +the [C++11](http://en.wikipedia.org/wiki/C++11) standard. + +This class provides the following advantages: +- Default constructor, copy constructor, and assignment operator for an arbitrary C++ class or C + structure. For some objects, like files, windows, mutexes, sockets, and others, a copy + constructor or an assignment operator are difficult to define. For some other objects, like + complex classifiers in OpenCV, copy constructors are absent and not easy to implement. Finally, + some of complex OpenCV and your own data structures may be written in C. However, copy + constructors and default constructors can simplify programming a lot. Besides, they are often + required (for example, by STL containers). By using a Ptr to such an object instead of the + object itself, you automatically get all of the necessary constructors and the assignment + operator. +- *O(1)* complexity of the above-mentioned operations. While some structures, like std::vector, + provide a copy constructor and an assignment operator, the operations may take a considerable + amount of time if the data structures are large. But if the structures are put into a Ptr, the + overhead is small and independent of the data size. +- Automatic and customizable cleanup, even for C structures. See the example below with FILE\*. +- Heterogeneous collections of objects. The standard STL and most other C++ and OpenCV containers + can store only objects of the same type and the same size. The classical solution to store + objects of different types in the same container is to store pointers to the base class (Base\*) + instead but then you lose the automatic memory management. Again, by using Ptr\<Base\> instead + of raw pointers, you can solve the problem. + +A Ptr is said to *own* a pointer - that is, for each Ptr there is a pointer that will be deleted +once all Ptr instances that own it are destroyed. The owned pointer may be null, in which case +nothing is deleted. Each Ptr also *stores* a pointer. The stored pointer is the pointer the Ptr +pretends to be; that is, the one you get when you use Ptr::get or the conversion to T\*. It's +usually the same as the owned pointer, but if you use casts or the general shared-ownership +constructor, the two may diverge: the Ptr will still own the original pointer, but will itself point +to something else. + +The owned pointer is treated as a black box. The only thing Ptr needs to know about it is how to +delete it. This knowledge is encapsulated in the *deleter* - an auxiliary object that is associated +with the owned pointer and shared between all Ptr instances that own it. The default deleter is an +instance of DefaultDeleter, which uses the standard C++ delete operator; as such it will work with +any pointer allocated with the standard new operator. + +However, if the pointer must be deleted in a different way, you must specify a custom deleter upon +Ptr construction. A deleter is simply a callable object that accepts the pointer as its sole +argument. For example, if you want to wrap FILE, you may do so as follows: +@code + Ptr<FILE> f(fopen("myfile.txt", "w"), fclose); + if(!f) throw ...; + fprintf(f, ....); + ... + // the file will be closed automatically by f's destructor. +@endcode +Alternatively, if you want all pointers of a particular type to be deleted the same way, you can +specialize DefaultDeleter<T>::operator() for that type, like this: +@code + namespace cv { + template<> void DefaultDeleter<FILE>::operator ()(FILE * obj) const + { + fclose(obj); + } + } +@endcode +For convenience, the following types from the OpenCV C API already have such a specialization that +calls the appropriate release function: +- CvCapture +- CvFileStorage +- CvHaarClassifierCascade +- CvMat +- CvMatND +- CvMemStorage +- CvSparseMat +- CvVideoWriter +- IplImage +@note The shared ownership mechanism is implemented with reference counting. As such, cyclic +ownership (e.g. when object a contains a Ptr to object b, which contains a Ptr to object a) will +lead to all involved objects never being cleaned up. Avoid such situations. +@note It is safe to concurrently read (but not write) a Ptr instance from multiple threads and +therefore it is normally safe to use it in multi-threaded applications. The same is true for Mat and +other C++ OpenCV classes that use internal reference counts. +*/ +template<typename T> +struct Ptr +{ + /** Generic programming support. */ + typedef T element_type; + + /** The default constructor creates a null Ptr - one that owns and stores a null pointer. + */ + Ptr(); + + /** + If p is null, these are equivalent to the default constructor. + Otherwise, these constructors assume ownership of p - that is, the created Ptr owns and stores p + and assumes it is the sole owner of it. Don't use them if p is already owned by another Ptr, or + else p will get deleted twice. + With the first constructor, DefaultDeleter\<Y\>() becomes the associated deleter (so p will + eventually be deleted with the standard delete operator). Y must be a complete type at the point + of invocation. + With the second constructor, d becomes the associated deleter. + Y\* must be convertible to T\*. + @param p Pointer to own. + @note It is often easier to use makePtr instead. + */ + template<typename Y> +#ifdef DISABLE_OPENCV_24_COMPATIBILITY + explicit +#endif + Ptr(Y* p); + + /** @overload + @param d Deleter to use for the owned pointer. + @param p Pointer to own. + */ + template<typename Y, typename D> + Ptr(Y* p, D d); + + /** + These constructors create a Ptr that shares ownership with another Ptr - that is, own the same + pointer as o. + With the first two, the same pointer is stored, as well; for the second, Y\* must be convertible + to T\*. + With the third, p is stored, and Y may be any type. This constructor allows to have completely + unrelated owned and stored pointers, and should be used with care to avoid confusion. A relatively + benign use is to create a non-owning Ptr, like this: + @code + ptr = Ptr<T>(Ptr<T>(), dont_delete_me); // owns nothing; will not delete the pointer. + @endcode + @param o Ptr to share ownership with. + */ + Ptr(const Ptr& o); + + /** @overload + @param o Ptr to share ownership with. + */ + template<typename Y> + Ptr(const Ptr<Y>& o); + + /** @overload + @param o Ptr to share ownership with. + @param p Pointer to store. + */ + template<typename Y> + Ptr(const Ptr<Y>& o, T* p); + + /** The destructor is equivalent to calling Ptr::release. */ + ~Ptr(); + + /** + Assignment replaces the current Ptr instance with one that owns and stores same pointers as o and + then destroys the old instance. + @param o Ptr to share ownership with. + */ + Ptr& operator = (const Ptr& o); + + /** @overload */ + template<typename Y> + Ptr& operator = (const Ptr<Y>& o); + + /** If no other Ptr instance owns the owned pointer, deletes it with the associated deleter. Then sets + both the owned and the stored pointers to NULL. + */ + void release(); + + /** + `ptr.reset(...)` is equivalent to `ptr = Ptr<T>(...)`. + @param p Pointer to own. + */ + template<typename Y> + void reset(Y* p); + + /** @overload + @param d Deleter to use for the owned pointer. + @param p Pointer to own. + */ + template<typename Y, typename D> + void reset(Y* p, D d); + + /** + Swaps the owned and stored pointers (and deleters, if any) of this and o. + @param o Ptr to swap with. + */ + void swap(Ptr& o); + + /** Returns the stored pointer. */ + T* get() const; + + /** Ordinary pointer emulation. */ + typename detail::RefOrVoid<T>::type operator * () const; + + /** Ordinary pointer emulation. */ + T* operator -> () const; + + /** Equivalent to get(). */ + operator T* () const; + + /** ptr.empty() is equivalent to `!ptr.get()`. */ + bool empty() const; + + /** Returns a Ptr that owns the same pointer as this, and stores the same + pointer as this, except converted via static_cast to Y*. + */ + template<typename Y> + Ptr<Y> staticCast() const; + + /** Ditto for const_cast. */ + template<typename Y> + Ptr<Y> constCast() const; + + /** Ditto for dynamic_cast. */ + template<typename Y> + Ptr<Y> dynamicCast() const; + +#ifdef CV_CXX_MOVE_SEMANTICS + Ptr(Ptr&& o); + Ptr& operator = (Ptr&& o); +#endif + +private: + detail::PtrOwner* owner; + T* stored; + + template<typename Y> + friend struct Ptr; // have to do this for the cross-type copy constructor +}; + +/** Equivalent to ptr1.swap(ptr2). Provided to help write generic algorithms. */ +template<typename T> +void swap(Ptr<T>& ptr1, Ptr<T>& ptr2); + +/** Return whether ptr1.get() and ptr2.get() are equal and not equal, respectively. */ +template<typename T> +bool operator == (const Ptr<T>& ptr1, const Ptr<T>& ptr2); +template<typename T> +bool operator != (const Ptr<T>& ptr1, const Ptr<T>& ptr2); + +/** `makePtr<T>(...)` is equivalent to `Ptr<T>(new T(...))`. It is shorter than the latter, and it's +marginally safer than using a constructor or Ptr::reset, since it ensures that the owned pointer +is new and thus not owned by any other Ptr instance. +Unfortunately, perfect forwarding is impossible to implement in C++03, and so makePtr is limited +to constructors of T that have up to 10 arguments, none of which are non-const references. + */ +template<typename T> +Ptr<T> makePtr(); +/** @overload */ +template<typename T, typename A1> +Ptr<T> makePtr(const A1& a1); +/** @overload */ +template<typename T, typename A1, typename A2> +Ptr<T> makePtr(const A1& a1, const A2& a2); +/** @overload */ +template<typename T, typename A1, typename A2, typename A3> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3); +/** @overload */ +template<typename T, typename A1, typename A2, typename A3, typename A4> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4); +/** @overload */ +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5); +/** @overload */ +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6); +/** @overload */ +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7); +/** @overload */ +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8); +/** @overload */ +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9); +/** @overload */ +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10); + +//////////////////////////////// string class //////////////////////////////// + +class CV_EXPORTS FileNode; //for string constructor from FileNode + +class CV_EXPORTS String +{ +public: + typedef char value_type; + typedef char& reference; + typedef const char& const_reference; + typedef char* pointer; + typedef const char* const_pointer; + typedef ptrdiff_t difference_type; + typedef size_t size_type; + typedef char* iterator; + typedef const char* const_iterator; + + static const size_t npos = size_t(-1); + + explicit String(); + String(const String& str); + String(const String& str, size_t pos, size_t len = npos); + String(const char* s); + String(const char* s, size_t n); + String(size_t n, char c); + String(const char* first, const char* last); + template<typename Iterator> String(Iterator first, Iterator last); + explicit String(const FileNode& fn); + ~String(); + + String& operator=(const String& str); + String& operator=(const char* s); + String& operator=(char c); + + String& operator+=(const String& str); + String& operator+=(const char* s); + String& operator+=(char c); + + size_t size() const; + size_t length() const; + + char operator[](size_t idx) const; + char operator[](int idx) const; + + const char* begin() const; + const char* end() const; + + const char* c_str() const; + + bool empty() const; + void clear(); + + int compare(const char* s) const; + int compare(const String& str) const; + + void swap(String& str); + String substr(size_t pos = 0, size_t len = npos) const; + + size_t find(const char* s, size_t pos, size_t n) const; + size_t find(char c, size_t pos = 0) const; + size_t find(const String& str, size_t pos = 0) const; + size_t find(const char* s, size_t pos = 0) const; + + size_t rfind(const char* s, size_t pos, size_t n) const; + size_t rfind(char c, size_t pos = npos) const; + size_t rfind(const String& str, size_t pos = npos) const; + size_t rfind(const char* s, size_t pos = npos) const; + + size_t find_first_of(const char* s, size_t pos, size_t n) const; + size_t find_first_of(char c, size_t pos = 0) const; + size_t find_first_of(const String& str, size_t pos = 0) const; + size_t find_first_of(const char* s, size_t pos = 0) const; + + size_t find_last_of(const char* s, size_t pos, size_t n) const; + size_t find_last_of(char c, size_t pos = npos) const; + size_t find_last_of(const String& str, size_t pos = npos) const; + size_t find_last_of(const char* s, size_t pos = npos) const; + + friend String operator+ (const String& lhs, const String& rhs); + friend String operator+ (const String& lhs, const char* rhs); + friend String operator+ (const char* lhs, const String& rhs); + friend String operator+ (const String& lhs, char rhs); + friend String operator+ (char lhs, const String& rhs); + + String toLowerCase() const; + +#ifndef OPENCV_NOSTL + String(const std::string& str); + String(const std::string& str, size_t pos, size_t len = npos); + String& operator=(const std::string& str); + String& operator+=(const std::string& str); + operator std::string() const; + + friend String operator+ (const String& lhs, const std::string& rhs); + friend String operator+ (const std::string& lhs, const String& rhs); +#endif + +private: + char* cstr_; + size_t len_; + + char* allocate(size_t len); // len without trailing 0 + void deallocate(); + + String(int); // disabled and invalid. Catch invalid usages like, commandLineParser.has(0) problem +}; + +//! @} core_basic + +////////////////////////// cv::String implementation ///////////////////////// + +//! @cond IGNORED + +inline +String::String() + : cstr_(0), len_(0) +{} + +inline +String::String(const String& str) + : cstr_(str.cstr_), len_(str.len_) +{ + if (cstr_) + CV_XADD(((int*)cstr_)-1, 1); +} + +inline +String::String(const String& str, size_t pos, size_t len) + : cstr_(0), len_(0) +{ + pos = min(pos, str.len_); + len = min(str.len_ - pos, len); + if (!len) return; + if (len == str.len_) + { + CV_XADD(((int*)str.cstr_)-1, 1); + cstr_ = str.cstr_; + len_ = str.len_; + return; + } + memcpy(allocate(len), str.cstr_ + pos, len); +} + +inline +String::String(const char* s) + : cstr_(0), len_(0) +{ + if (!s) return; + size_t len = strlen(s); + memcpy(allocate(len), s, len); +} + +inline +String::String(const char* s, size_t n) + : cstr_(0), len_(0) +{ + if (!n) return; + memcpy(allocate(n), s, n); +} + +inline +String::String(size_t n, char c) + : cstr_(0), len_(0) +{ + memset(allocate(n), c, n); +} + +inline +String::String(const char* first, const char* last) + : cstr_(0), len_(0) +{ + size_t len = (size_t)(last - first); + memcpy(allocate(len), first, len); +} + +template<typename Iterator> inline +String::String(Iterator first, Iterator last) + : cstr_(0), len_(0) +{ + size_t len = (size_t)(last - first); + char* str = allocate(len); + while (first != last) + { + *str++ = *first; + ++first; + } +} + +inline +String::~String() +{ + deallocate(); +} + +inline +String& String::operator=(const String& str) +{ + if (&str == this) return *this; + + deallocate(); + if (str.cstr_) CV_XADD(((int*)str.cstr_)-1, 1); + cstr_ = str.cstr_; + len_ = str.len_; + return *this; +} + +inline +String& String::operator=(const char* s) +{ + deallocate(); + if (!s) return *this; + size_t len = strlen(s); + memcpy(allocate(len), s, len); + return *this; +} + +inline +String& String::operator=(char c) +{ + deallocate(); + allocate(1)[0] = c; + return *this; +} + +inline +String& String::operator+=(const String& str) +{ + *this = *this + str; + return *this; +} + +inline +String& String::operator+=(const char* s) +{ + *this = *this + s; + return *this; +} + +inline +String& String::operator+=(char c) +{ + *this = *this + c; + return *this; +} + +inline +size_t String::size() const +{ + return len_; +} + +inline +size_t String::length() const +{ + return len_; +} + +inline +char String::operator[](size_t idx) const +{ + return cstr_[idx]; +} + +inline +char String::operator[](int idx) const +{ + return cstr_[idx]; +} + +inline +const char* String::begin() const +{ + return cstr_; +} + +inline +const char* String::end() const +{ + return len_ ? cstr_ + 1 : 0; +} + +inline +bool String::empty() const +{ + return len_ == 0; +} + +inline +const char* String::c_str() const +{ + return cstr_ ? cstr_ : ""; +} + +inline +void String::swap(String& str) +{ + cv::swap(cstr_, str.cstr_); + cv::swap(len_, str.len_); +} + +inline +void String::clear() +{ + deallocate(); +} + +inline +int String::compare(const char* s) const +{ + if (cstr_ == s) return 0; + return strcmp(c_str(), s); +} + +inline +int String::compare(const String& str) const +{ + if (cstr_ == str.cstr_) return 0; + return strcmp(c_str(), str.c_str()); +} + +inline +String String::substr(size_t pos, size_t len) const +{ + return String(*this, pos, len); +} + +inline +size_t String::find(const char* s, size_t pos, size_t n) const +{ + if (n == 0 || pos + n > len_) return npos; + const char* lmax = cstr_ + len_ - n; + for (const char* i = cstr_ + pos; i <= lmax; ++i) + { + size_t j = 0; + while (j < n && s[j] == i[j]) ++j; + if (j == n) return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::find(char c, size_t pos) const +{ + return find(&c, pos, 1); +} + +inline +size_t String::find(const String& str, size_t pos) const +{ + return find(str.c_str(), pos, str.len_); +} + +inline +size_t String::find(const char* s, size_t pos) const +{ + if (pos >= len_ || !s[0]) return npos; + const char* lmax = cstr_ + len_; + for (const char* i = cstr_ + pos; i < lmax; ++i) + { + size_t j = 0; + while (s[j] && s[j] == i[j]) + { if(i + j >= lmax) return npos; + ++j; + } + if (!s[j]) return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::rfind(const char* s, size_t pos, size_t n) const +{ + if (n > len_) return npos; + if (pos > len_ - n) pos = len_ - n; + for (const char* i = cstr_ + pos; i >= cstr_; --i) + { + size_t j = 0; + while (j < n && s[j] == i[j]) ++j; + if (j == n) return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::rfind(char c, size_t pos) const +{ + return rfind(&c, pos, 1); +} + +inline +size_t String::rfind(const String& str, size_t pos) const +{ + return rfind(str.c_str(), pos, str.len_); +} + +inline +size_t String::rfind(const char* s, size_t pos) const +{ + return rfind(s, pos, strlen(s)); +} + +inline +size_t String::find_first_of(const char* s, size_t pos, size_t n) const +{ + if (n == 0 || pos + n > len_) return npos; + const char* lmax = cstr_ + len_; + for (const char* i = cstr_ + pos; i < lmax; ++i) + { + for (size_t j = 0; j < n; ++j) + if (s[j] == *i) + return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::find_first_of(char c, size_t pos) const +{ + return find_first_of(&c, pos, 1); +} + +inline +size_t String::find_first_of(const String& str, size_t pos) const +{ + return find_first_of(str.c_str(), pos, str.len_); +} + +inline +size_t String::find_first_of(const char* s, size_t pos) const +{ + if (len_ == 0) return npos; + if (pos >= len_ || !s[0]) return npos; + const char* lmax = cstr_ + len_; + for (const char* i = cstr_ + pos; i < lmax; ++i) + { + for (size_t j = 0; s[j]; ++j) + if (s[j] == *i) + return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::find_last_of(const char* s, size_t pos, size_t n) const +{ + if (len_ == 0) return npos; + if (pos >= len_) pos = len_ - 1; + for (const char* i = cstr_ + pos; i >= cstr_; --i) + { + for (size_t j = 0; j < n; ++j) + if (s[j] == *i) + return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::find_last_of(char c, size_t pos) const +{ + return find_last_of(&c, pos, 1); +} + +inline +size_t String::find_last_of(const String& str, size_t pos) const +{ + return find_last_of(str.c_str(), pos, str.len_); +} + +inline +size_t String::find_last_of(const char* s, size_t pos) const +{ + if (len_ == 0) return npos; + if (pos >= len_) pos = len_ - 1; + for (const char* i = cstr_ + pos; i >= cstr_; --i) + { + for (size_t j = 0; s[j]; ++j) + if (s[j] == *i) + return (size_t)(i - cstr_); + } + return npos; +} + +inline +String String::toLowerCase() const +{ + String res(cstr_, len_); + + for (size_t i = 0; i < len_; ++i) + res.cstr_[i] = (char) ::tolower(cstr_[i]); + + return res; +} + +//! @endcond + +// ************************* cv::String non-member functions ************************* + +//! @relates cv::String +//! @{ + +inline +String operator + (const String& lhs, const String& rhs) +{ + String s; + s.allocate(lhs.len_ + rhs.len_); + memcpy(s.cstr_, lhs.cstr_, lhs.len_); + memcpy(s.cstr_ + lhs.len_, rhs.cstr_, rhs.len_); + return s; +} + +inline +String operator + (const String& lhs, const char* rhs) +{ + String s; + size_t rhslen = strlen(rhs); + s.allocate(lhs.len_ + rhslen); + memcpy(s.cstr_, lhs.cstr_, lhs.len_); + memcpy(s.cstr_ + lhs.len_, rhs, rhslen); + return s; +} + +inline +String operator + (const char* lhs, const String& rhs) +{ + String s; + size_t lhslen = strlen(lhs); + s.allocate(lhslen + rhs.len_); + memcpy(s.cstr_, lhs, lhslen); + memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_); + return s; +} + +inline +String operator + (const String& lhs, char rhs) +{ + String s; + s.allocate(lhs.len_ + 1); + memcpy(s.cstr_, lhs.cstr_, lhs.len_); + s.cstr_[lhs.len_] = rhs; + return s; +} + +inline +String operator + (char lhs, const String& rhs) +{ + String s; + s.allocate(rhs.len_ + 1); + s.cstr_[0] = lhs; + memcpy(s.cstr_ + 1, rhs.cstr_, rhs.len_); + return s; +} + +static inline bool operator== (const String& lhs, const String& rhs) { return 0 == lhs.compare(rhs); } +static inline bool operator== (const char* lhs, const String& rhs) { return 0 == rhs.compare(lhs); } +static inline bool operator== (const String& lhs, const char* rhs) { return 0 == lhs.compare(rhs); } +static inline bool operator!= (const String& lhs, const String& rhs) { return 0 != lhs.compare(rhs); } +static inline bool operator!= (const char* lhs, const String& rhs) { return 0 != rhs.compare(lhs); } +static inline bool operator!= (const String& lhs, const char* rhs) { return 0 != lhs.compare(rhs); } +static inline bool operator< (const String& lhs, const String& rhs) { return lhs.compare(rhs) < 0; } +static inline bool operator< (const char* lhs, const String& rhs) { return rhs.compare(lhs) > 0; } +static inline bool operator< (const String& lhs, const char* rhs) { return lhs.compare(rhs) < 0; } +static inline bool operator<= (const String& lhs, const String& rhs) { return lhs.compare(rhs) <= 0; } +static inline bool operator<= (const char* lhs, const String& rhs) { return rhs.compare(lhs) >= 0; } +static inline bool operator<= (const String& lhs, const char* rhs) { return lhs.compare(rhs) <= 0; } +static inline bool operator> (const String& lhs, const String& rhs) { return lhs.compare(rhs) > 0; } +static inline bool operator> (const char* lhs, const String& rhs) { return rhs.compare(lhs) < 0; } +static inline bool operator> (const String& lhs, const char* rhs) { return lhs.compare(rhs) > 0; } +static inline bool operator>= (const String& lhs, const String& rhs) { return lhs.compare(rhs) >= 0; } +static inline bool operator>= (const char* lhs, const String& rhs) { return rhs.compare(lhs) <= 0; } +static inline bool operator>= (const String& lhs, const char* rhs) { return lhs.compare(rhs) >= 0; } + +//! @} relates cv::String + +} // cv + +#ifndef OPENCV_NOSTL_TRANSITIONAL +namespace std +{ + static inline void swap(cv::String& a, cv::String& b) { a.swap(b); } +} +#else +namespace cv +{ + template<> inline + void swap<cv::String>(cv::String& a, cv::String& b) + { + a.swap(b); + } +} +#endif + +#include "opencv2/core/ptr.inl.hpp" + +#endif //OPENCV_CORE_CVSTD_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/cvstd.inl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,267 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CVSTDINL_HPP +#define OPENCV_CORE_CVSTDINL_HPP + +#ifndef OPENCV_NOSTL +# include <complex> +# include <ostream> +#endif + +//! @cond IGNORED + +namespace cv +{ +#ifndef OPENCV_NOSTL + +template<typename _Tp> class DataType< std::complex<_Tp> > +{ +public: + typedef std::complex<_Tp> value_type; + typedef value_type work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = 2, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) }; + + typedef Vec<channel_type, channels> vec_type; +}; + +inline +String::String(const std::string& str) + : cstr_(0), len_(0) +{ + if (!str.empty()) + { + size_t len = str.size(); + memcpy(allocate(len), str.c_str(), len); + } +} + +inline +String::String(const std::string& str, size_t pos, size_t len) + : cstr_(0), len_(0) +{ + size_t strlen = str.size(); + pos = min(pos, strlen); + len = min(strlen - pos, len); + if (!len) return; + memcpy(allocate(len), str.c_str() + pos, len); +} + +inline +String& String::operator = (const std::string& str) +{ + deallocate(); + if (!str.empty()) + { + size_t len = str.size(); + memcpy(allocate(len), str.c_str(), len); + } + return *this; +} + +inline +String& String::operator += (const std::string& str) +{ + *this = *this + str; + return *this; +} + +inline +String::operator std::string() const +{ + return std::string(cstr_, len_); +} + +inline +String operator + (const String& lhs, const std::string& rhs) +{ + String s; + size_t rhslen = rhs.size(); + s.allocate(lhs.len_ + rhslen); + memcpy(s.cstr_, lhs.cstr_, lhs.len_); + memcpy(s.cstr_ + lhs.len_, rhs.c_str(), rhslen); + return s; +} + +inline +String operator + (const std::string& lhs, const String& rhs) +{ + String s; + size_t lhslen = lhs.size(); + s.allocate(lhslen + rhs.len_); + memcpy(s.cstr_, lhs.c_str(), lhslen); + memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_); + return s; +} + +inline +FileNode::operator std::string() const +{ + String value; + read(*this, value, value); + return value; +} + +template<> inline +void operator >> (const FileNode& n, std::string& value) +{ + String val; + read(n, val, val); + value = val; +} + +template<> inline +FileStorage& operator << (FileStorage& fs, const std::string& value) +{ + return fs << cv::String(value); +} + +static inline +std::ostream& operator << (std::ostream& os, const String& str) +{ + return os << str.c_str(); +} + +static inline +std::ostream& operator << (std::ostream& out, Ptr<Formatted> fmtd) +{ + fmtd->reset(); + for(const char* str = fmtd->next(); str; str = fmtd->next()) + out << str; + return out; +} + +static inline +std::ostream& operator << (std::ostream& out, const Mat& mtx) +{ + return out << Formatter::get()->format(mtx); +} + +template<typename _Tp> static inline +std::ostream& operator << (std::ostream& out, const std::vector<Point_<_Tp> >& vec) +{ + return out << Formatter::get()->format(Mat(vec)); +} + + +template<typename _Tp> static inline +std::ostream& operator << (std::ostream& out, const std::vector<Point3_<_Tp> >& vec) +{ + return out << Formatter::get()->format(Mat(vec)); +} + + +template<typename _Tp, int m, int n> static inline +std::ostream& operator << (std::ostream& out, const Matx<_Tp, m, n>& matx) +{ + return out << Formatter::get()->format(Mat(matx)); +} + +template<typename _Tp> static inline +std::ostream& operator << (std::ostream& out, const Point_<_Tp>& p) +{ + out << "[" << p.x << ", " << p.y << "]"; + return out; +} + +template<typename _Tp> static inline +std::ostream& operator << (std::ostream& out, const Point3_<_Tp>& p) +{ + out << "[" << p.x << ", " << p.y << ", " << p.z << "]"; + return out; +} + +template<typename _Tp, int n> static inline +std::ostream& operator << (std::ostream& out, const Vec<_Tp, n>& vec) +{ + out << "["; +#ifdef _MSC_VER +#pragma warning( push ) +#pragma warning( disable: 4127 ) +#endif + if(Vec<_Tp, n>::depth < CV_32F) +#ifdef _MSC_VER +#pragma warning( pop ) +#endif + { + for (int i = 0; i < n - 1; ++i) { + out << (int)vec[i] << ", "; + } + out << (int)vec[n-1] << "]"; + } + else + { + for (int i = 0; i < n - 1; ++i) { + out << vec[i] << ", "; + } + out << vec[n-1] << "]"; + } + + return out; +} + +template<typename _Tp> static inline +std::ostream& operator << (std::ostream& out, const Size_<_Tp>& size) +{ + return out << "[" << size.width << " x " << size.height << "]"; +} + +template<typename _Tp> static inline +std::ostream& operator << (std::ostream& out, const Rect_<_Tp>& rect) +{ + return out << "[" << rect.width << " x " << rect.height << " from (" << rect.x << ", " << rect.y << ")]"; +} + + +#endif // OPENCV_NOSTL +} // cv + +//! @endcond + +#endif // OPENCV_CORE_CVSTDINL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/directx.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,184 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors as is and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the copyright holders or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_DIRECTX_HPP +#define OPENCV_CORE_DIRECTX_HPP + +#include "mat.hpp" +#include "ocl.hpp" + +#if !defined(__d3d11_h__) +struct ID3D11Device; +struct ID3D11Texture2D; +#endif + +#if !defined(__d3d10_h__) +struct ID3D10Device; +struct ID3D10Texture2D; +#endif + +#if !defined(_D3D9_H_) +struct IDirect3DDevice9; +struct IDirect3DDevice9Ex; +struct IDirect3DSurface9; +#endif + + +namespace cv { namespace directx { + +namespace ocl { +using namespace cv::ocl; + +//! @addtogroup core_directx +// This section describes OpenCL and DirectX interoperability. +// +// To enable DirectX support, configure OpenCV using CMake with WITH_DIRECTX=ON . Note, DirectX is +// supported only on Windows. +// +// To use OpenCL functionality you should first initialize OpenCL context from DirectX resource. +// +//! @{ + +// TODO static functions in the Context class +//! @brief Creates OpenCL context from D3D11 device +// +//! @param pD3D11Device - pointer to D3D11 device +//! @return Returns reference to OpenCL Context +CV_EXPORTS Context& initializeContextFromD3D11Device(ID3D11Device* pD3D11Device); + +//! @brief Creates OpenCL context from D3D10 device +// +//! @param pD3D10Device - pointer to D3D10 device +//! @return Returns reference to OpenCL Context +CV_EXPORTS Context& initializeContextFromD3D10Device(ID3D10Device* pD3D10Device); + +//! @brief Creates OpenCL context from Direct3DDevice9Ex device +// +//! @param pDirect3DDevice9Ex - pointer to Direct3DDevice9Ex device +//! @return Returns reference to OpenCL Context +CV_EXPORTS Context& initializeContextFromDirect3DDevice9Ex(IDirect3DDevice9Ex* pDirect3DDevice9Ex); + +//! @brief Creates OpenCL context from Direct3DDevice9 device +// +//! @param pDirect3DDevice9 - pointer to Direct3Device9 device +//! @return Returns reference to OpenCL Context +CV_EXPORTS Context& initializeContextFromDirect3DDevice9(IDirect3DDevice9* pDirect3DDevice9); + +//! @} + +} // namespace cv::directx::ocl + +//! @addtogroup core_directx +//! @{ + +//! @brief Converts InputArray to ID3D11Texture2D. If destination texture format is DXGI_FORMAT_NV12 then +//! input UMat expected to be in BGR format and data will be downsampled and color-converted to NV12. +// +//! @note Note: Destination texture must be allocated by application. Function does memory copy from src to +//! pD3D11Texture2D +// +//! @param src - source InputArray +//! @param pD3D11Texture2D - destination D3D11 texture +CV_EXPORTS void convertToD3D11Texture2D(InputArray src, ID3D11Texture2D* pD3D11Texture2D); + +//! @brief Converts ID3D11Texture2D to OutputArray. If input texture format is DXGI_FORMAT_NV12 then +//! data will be upsampled and color-converted to BGR format. +// +//! @note Note: Destination matrix will be re-allocated if it has not enough memory to match texture size. +//! function does memory copy from pD3D11Texture2D to dst +// +//! @param pD3D11Texture2D - source D3D11 texture +//! @param dst - destination OutputArray +CV_EXPORTS void convertFromD3D11Texture2D(ID3D11Texture2D* pD3D11Texture2D, OutputArray dst); + +//! @brief Converts InputArray to ID3D10Texture2D +// +//! @note Note: function does memory copy from src to +//! pD3D10Texture2D +// +//! @param src - source InputArray +//! @param pD3D10Texture2D - destination D3D10 texture +CV_EXPORTS void convertToD3D10Texture2D(InputArray src, ID3D10Texture2D* pD3D10Texture2D); + +//! @brief Converts ID3D10Texture2D to OutputArray +// +//! @note Note: function does memory copy from pD3D10Texture2D +//! to dst +// +//! @param pD3D10Texture2D - source D3D10 texture +//! @param dst - destination OutputArray +CV_EXPORTS void convertFromD3D10Texture2D(ID3D10Texture2D* pD3D10Texture2D, OutputArray dst); + +//! @brief Converts InputArray to IDirect3DSurface9 +// +//! @note Note: function does memory copy from src to +//! pDirect3DSurface9 +// +//! @param src - source InputArray +//! @param pDirect3DSurface9 - destination D3D10 texture +//! @param surfaceSharedHandle - shared handle +CV_EXPORTS void convertToDirect3DSurface9(InputArray src, IDirect3DSurface9* pDirect3DSurface9, void* surfaceSharedHandle = NULL); + +//! @brief Converts IDirect3DSurface9 to OutputArray +// +//! @note Note: function does memory copy from pDirect3DSurface9 +//! to dst +// +//! @param pDirect3DSurface9 - source D3D10 texture +//! @param dst - destination OutputArray +//! @param surfaceSharedHandle - shared handle +CV_EXPORTS void convertFromDirect3DSurface9(IDirect3DSurface9* pDirect3DSurface9, OutputArray dst, void* surfaceSharedHandle = NULL); + +//! @brief Get OpenCV type from DirectX type +//! @param iDXGI_FORMAT - enum DXGI_FORMAT for D3D10/D3D11 +//! @return OpenCV type or -1 if there is no equivalent +CV_EXPORTS int getTypeFromDXGI_FORMAT(const int iDXGI_FORMAT); // enum DXGI_FORMAT for D3D10/D3D11 + +//! @brief Get OpenCV type from DirectX type +//! @param iD3DFORMAT - enum D3DTYPE for D3D9 +//! @return OpenCV type or -1 if there is no equivalent +CV_EXPORTS int getTypeFromD3DFORMAT(const int iD3DFORMAT); // enum D3DTYPE for D3D9 + +//! @} + +} } // namespace cv::directx + +#endif // OPENCV_CORE_DIRECTX_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/eigen.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,280 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + + +#ifndef OPENCV_CORE_EIGEN_HPP +#define OPENCV_CORE_EIGEN_HPP + +#include "opencv2/core.hpp" + +#if defined _MSC_VER && _MSC_VER >= 1200 +#pragma warning( disable: 4714 ) //__forceinline is not inlined +#pragma warning( disable: 4127 ) //conditional expression is constant +#pragma warning( disable: 4244 ) //conversion from '__int64' to 'int', possible loss of data +#endif + +namespace cv +{ + +//! @addtogroup core_eigen +//! @{ + +template<typename _Tp, int _rows, int _cols, int _options, int _maxRows, int _maxCols> static inline +void eigen2cv( const Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& src, Mat& dst ) +{ + if( !(src.Flags & Eigen::RowMajorBit) ) + { + Mat _src(src.cols(), src.rows(), DataType<_Tp>::type, + (void*)src.data(), src.stride()*sizeof(_Tp)); + transpose(_src, dst); + } + else + { + Mat _src(src.rows(), src.cols(), DataType<_Tp>::type, + (void*)src.data(), src.stride()*sizeof(_Tp)); + _src.copyTo(dst); + } +} + +// Matx case +template<typename _Tp, int _rows, int _cols, int _options, int _maxRows, int _maxCols> static inline +void eigen2cv( const Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& src, + Matx<_Tp, _rows, _cols>& dst ) +{ + if( !(src.Flags & Eigen::RowMajorBit) ) + { + dst = Matx<_Tp, _cols, _rows>(static_cast<const _Tp*>(src.data())).t(); + } + else + { + dst = Matx<_Tp, _rows, _cols>(static_cast<const _Tp*>(src.data())); + } +} + +template<typename _Tp, int _rows, int _cols, int _options, int _maxRows, int _maxCols> static inline +void cv2eigen( const Mat& src, + Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& dst ) +{ + CV_DbgAssert(src.rows == _rows && src.cols == _cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(src.cols, src.rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + if( src.type() == _dst.type() ) + transpose(src, _dst); + else if( src.cols == src.rows ) + { + src.convertTo(_dst, _dst.type()); + transpose(_dst, _dst); + } + else + Mat(src.t()).convertTo(_dst, _dst.type()); + } + else + { + const Mat _dst(src.rows, src.cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.convertTo(_dst, _dst.type()); + } +} + +// Matx case +template<typename _Tp, int _rows, int _cols, int _options, int _maxRows, int _maxCols> static inline +void cv2eigen( const Matx<_Tp, _rows, _cols>& src, + Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& dst ) +{ + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(_cols, _rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + transpose(src, _dst); + } + else + { + const Mat _dst(_rows, _cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + Mat(src).copyTo(_dst); + } +} + +template<typename _Tp> static inline +void cv2eigen( const Mat& src, + Eigen::Matrix<_Tp, Eigen::Dynamic, Eigen::Dynamic>& dst ) +{ + dst.resize(src.rows, src.cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(src.cols, src.rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + if( src.type() == _dst.type() ) + transpose(src, _dst); + else if( src.cols == src.rows ) + { + src.convertTo(_dst, _dst.type()); + transpose(_dst, _dst); + } + else + Mat(src.t()).convertTo(_dst, _dst.type()); + } + else + { + const Mat _dst(src.rows, src.cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.convertTo(_dst, _dst.type()); + } +} + +// Matx case +template<typename _Tp, int _rows, int _cols> static inline +void cv2eigen( const Matx<_Tp, _rows, _cols>& src, + Eigen::Matrix<_Tp, Eigen::Dynamic, Eigen::Dynamic>& dst ) +{ + dst.resize(_rows, _cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(_cols, _rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + transpose(src, _dst); + } + else + { + const Mat _dst(_rows, _cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + Mat(src).copyTo(_dst); + } +} + +template<typename _Tp> static inline +void cv2eigen( const Mat& src, + Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst ) +{ + CV_Assert(src.cols == 1); + dst.resize(src.rows); + + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(src.cols, src.rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + if( src.type() == _dst.type() ) + transpose(src, _dst); + else + Mat(src.t()).convertTo(_dst, _dst.type()); + } + else + { + const Mat _dst(src.rows, src.cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.convertTo(_dst, _dst.type()); + } +} + +// Matx case +template<typename _Tp, int _rows> static inline +void cv2eigen( const Matx<_Tp, _rows, 1>& src, + Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst ) +{ + dst.resize(_rows); + + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(1, _rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + transpose(src, _dst); + } + else + { + const Mat _dst(_rows, 1, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.copyTo(_dst); + } +} + + +template<typename _Tp> static inline +void cv2eigen( const Mat& src, + Eigen::Matrix<_Tp, 1, Eigen::Dynamic>& dst ) +{ + CV_Assert(src.rows == 1); + dst.resize(src.cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(src.cols, src.rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + if( src.type() == _dst.type() ) + transpose(src, _dst); + else + Mat(src.t()).convertTo(_dst, _dst.type()); + } + else + { + const Mat _dst(src.rows, src.cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.convertTo(_dst, _dst.type()); + } +} + +//Matx +template<typename _Tp, int _cols> static inline +void cv2eigen( const Matx<_Tp, 1, _cols>& src, + Eigen::Matrix<_Tp, 1, Eigen::Dynamic>& dst ) +{ + dst.resize(_cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(_cols, 1, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + transpose(src, _dst); + } + else + { + const Mat _dst(1, _cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + Mat(src).copyTo(_dst); + } +} + +//! @} + +} // cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/fast_math.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,303 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_FAST_MATH_HPP +#define OPENCV_CORE_FAST_MATH_HPP + +#include "opencv2/core/cvdef.h" + +//! @addtogroup core_utils +//! @{ + +/****************************************************************************************\ +* fast math * +\****************************************************************************************/ + +#if defined __BORLANDC__ +# include <fastmath.h> +#elif defined __cplusplus +# include <cmath> +#else +# include <math.h> +#endif + +#ifdef HAVE_TEGRA_OPTIMIZATION +# include "tegra_round.hpp" +#endif + +#if CV_VFP + // 1. general scheme + #define ARM_ROUND(_value, _asm_string) \ + int res; \ + float temp; \ + (void)temp; \ + asm(_asm_string : [res] "=r" (res), [temp] "=w" (temp) : [value] "w" (_value)); \ + return res + // 2. version for double + #ifdef __clang__ + #define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %[value] \n vmov %[res], %[temp]") + #else + #define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %P[value] \n vmov %[res], %[temp]") + #endif + // 3. version for float + #define ARM_ROUND_FLT(value) ARM_ROUND(value, "vcvtr.s32.f32 %[temp], %[value]\n vmov %[res], %[temp]") +#endif // CV_VFP + +/** @brief Rounds floating-point number to the nearest integer + + @param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the + result is not defined. + */ +CV_INLINE int +cvRound( double value ) +{ +#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ \ + && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) + __m128d t = _mm_set_sd( value ); + return _mm_cvtsd_si32(t); +#elif defined _MSC_VER && defined _M_IX86 + int t; + __asm + { + fld value; + fistp t; + } + return t; +#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \ + defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION + TEGRA_ROUND_DBL(value); +#elif defined CV_ICC || defined __GNUC__ +# if CV_VFP + ARM_ROUND_DBL(value); +# else + return (int)lrint(value); +# endif +#else + /* it's ok if round does not comply with IEEE754 standard; + the tests should allow +/-1 difference when the tested functions use round */ + return (int)(value + (value >= 0 ? 0.5 : -0.5)); +#endif +} + + +/** @brief Rounds floating-point number to the nearest integer not larger than the original. + + The function computes an integer i such that: + \f[i \le \texttt{value} < i+1\f] + @param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the + result is not defined. + */ +CV_INLINE int cvFloor( double value ) +{ +#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) + __m128d t = _mm_set_sd( value ); + int i = _mm_cvtsd_si32(t); + return i - _mm_movemask_pd(_mm_cmplt_sd(t, _mm_cvtsi32_sd(t,i))); +#elif defined __GNUC__ + int i = (int)value; + return i - (i > value); +#else + int i = cvRound(value); + float diff = (float)(value - i); + return i - (diff < 0); +#endif +} + +/** @brief Rounds floating-point number to the nearest integer not smaller than the original. + + The function computes an integer i such that: + \f[i \le \texttt{value} < i+1\f] + @param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the + result is not defined. + */ +CV_INLINE int cvCeil( double value ) +{ +#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__) + __m128d t = _mm_set_sd( value ); + int i = _mm_cvtsd_si32(t); + return i + _mm_movemask_pd(_mm_cmplt_sd(_mm_cvtsi32_sd(t,i), t)); +#elif defined __GNUC__ + int i = (int)value; + return i + (i < value); +#else + int i = cvRound(value); + float diff = (float)(i - value); + return i + (diff < 0); +#endif +} + +/** @brief Determines if the argument is Not A Number. + + @param value The input floating-point value + + The function returns 1 if the argument is Not A Number (as defined by IEEE754 standard), 0 + otherwise. */ +CV_INLINE int cvIsNaN( double value ) +{ + Cv64suf ieee754; + ieee754.f = value; + return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) + + ((unsigned)ieee754.u != 0) > 0x7ff00000; +} + +/** @brief Determines if the argument is Infinity. + + @param value The input floating-point value + + The function returns 1 if the argument is a plus or minus infinity (as defined by IEEE754 standard) + and 0 otherwise. */ +CV_INLINE int cvIsInf( double value ) +{ + Cv64suf ieee754; + ieee754.f = value; + return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 && + (unsigned)ieee754.u == 0; +} + +#ifdef __cplusplus + +/** @overload */ +CV_INLINE int cvRound(float value) +{ +#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ && \ + defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) + __m128 t = _mm_set_ss( value ); + return _mm_cvtss_si32(t); +#elif defined _MSC_VER && defined _M_IX86 + int t; + __asm + { + fld value; + fistp t; + } + return t; +#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \ + defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION + TEGRA_ROUND_FLT(value); +#elif defined CV_ICC || defined __GNUC__ +# if CV_VFP + ARM_ROUND_FLT(value); +# else + return (int)lrintf(value); +# endif +#else + /* it's ok if round does not comply with IEEE754 standard; + the tests should allow +/-1 difference when the tested functions use round */ + return (int)(value + (value >= 0 ? 0.5f : -0.5f)); +#endif +} + +/** @overload */ +CV_INLINE int cvRound( int value ) +{ + return value; +} + +/** @overload */ +CV_INLINE int cvFloor( float value ) +{ +#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) + __m128 t = _mm_set_ss( value ); + int i = _mm_cvtss_si32(t); + return i - _mm_movemask_ps(_mm_cmplt_ss(t, _mm_cvtsi32_ss(t,i))); +#elif defined __GNUC__ + int i = (int)value; + return i - (i > value); +#else + int i = cvRound(value); + float diff = (float)(value - i); + return i - (diff < 0); +#endif +} + +/** @overload */ +CV_INLINE int cvFloor( int value ) +{ + return value; +} + +/** @overload */ +CV_INLINE int cvCeil( float value ) +{ +#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__) + __m128 t = _mm_set_ss( value ); + int i = _mm_cvtss_si32(t); + return i + _mm_movemask_ps(_mm_cmplt_ss(_mm_cvtsi32_ss(t,i), t)); +#elif defined __GNUC__ + int i = (int)value; + return i + (i < value); +#else + int i = cvRound(value); + float diff = (float)(i - value); + return i + (diff < 0); +#endif +} + +/** @overload */ +CV_INLINE int cvCeil( int value ) +{ + return value; +} + +/** @overload */ +CV_INLINE int cvIsNaN( float value ) +{ + Cv32suf ieee754; + ieee754.f = value; + return (ieee754.u & 0x7fffffff) > 0x7f800000; +} + +/** @overload */ +CV_INLINE int cvIsInf( float value ) +{ + Cv32suf ieee754; + ieee754.f = value; + return (ieee754.u & 0x7fffffff) == 0x7f800000; +} + +#endif // __cplusplus + +//! @} core_utils + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/hal/hal.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,250 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_HPP +#define OPENCV_HAL_HPP + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/cvstd.hpp" +#include "opencv2/core/hal/interface.h" + +namespace cv { namespace hal { + +//! @addtogroup core_hal_functions +//! @{ + +CV_EXPORTS int normHamming(const uchar* a, int n); +CV_EXPORTS int normHamming(const uchar* a, const uchar* b, int n); + +CV_EXPORTS int normHamming(const uchar* a, int n, int cellSize); +CV_EXPORTS int normHamming(const uchar* a, const uchar* b, int n, int cellSize); + +CV_EXPORTS int LU32f(float* A, size_t astep, int m, float* b, size_t bstep, int n); +CV_EXPORTS int LU64f(double* A, size_t astep, int m, double* b, size_t bstep, int n); +CV_EXPORTS bool Cholesky32f(float* A, size_t astep, int m, float* b, size_t bstep, int n); +CV_EXPORTS bool Cholesky64f(double* A, size_t astep, int m, double* b, size_t bstep, int n); +CV_EXPORTS void SVD32f(float* At, size_t astep, float* W, float* U, size_t ustep, float* Vt, size_t vstep, int m, int n, int flags); +CV_EXPORTS void SVD64f(double* At, size_t astep, double* W, double* U, size_t ustep, double* Vt, size_t vstep, int m, int n, int flags); +CV_EXPORTS int QR32f(float* A, size_t astep, int m, int n, int k, float* b, size_t bstep, float* hFactors); +CV_EXPORTS int QR64f(double* A, size_t astep, int m, int n, int k, double* b, size_t bstep, double* hFactors); + +CV_EXPORTS void gemm32f(const float* src1, size_t src1_step, const float* src2, size_t src2_step, + float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, + int m_a, int n_a, int n_d, int flags); +CV_EXPORTS void gemm64f(const double* src1, size_t src1_step, const double* src2, size_t src2_step, + double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, + int m_a, int n_a, int n_d, int flags); +CV_EXPORTS void gemm32fc(const float* src1, size_t src1_step, const float* src2, size_t src2_step, + float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, + int m_a, int n_a, int n_d, int flags); +CV_EXPORTS void gemm64fc(const double* src1, size_t src1_step, const double* src2, size_t src2_step, + double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, + int m_a, int n_a, int n_d, int flags); + +CV_EXPORTS int normL1_(const uchar* a, const uchar* b, int n); +CV_EXPORTS float normL1_(const float* a, const float* b, int n); +CV_EXPORTS float normL2Sqr_(const float* a, const float* b, int n); + +CV_EXPORTS void exp32f(const float* src, float* dst, int n); +CV_EXPORTS void exp64f(const double* src, double* dst, int n); +CV_EXPORTS void log32f(const float* src, float* dst, int n); +CV_EXPORTS void log64f(const double* src, double* dst, int n); + +CV_EXPORTS void fastAtan32f(const float* y, const float* x, float* dst, int n, bool angleInDegrees); +CV_EXPORTS void fastAtan64f(const double* y, const double* x, double* dst, int n, bool angleInDegrees); +CV_EXPORTS void magnitude32f(const float* x, const float* y, float* dst, int n); +CV_EXPORTS void magnitude64f(const double* x, const double* y, double* dst, int n); +CV_EXPORTS void sqrt32f(const float* src, float* dst, int len); +CV_EXPORTS void sqrt64f(const double* src, double* dst, int len); +CV_EXPORTS void invSqrt32f(const float* src, float* dst, int len); +CV_EXPORTS void invSqrt64f(const double* src, double* dst, int len); + +CV_EXPORTS void split8u(const uchar* src, uchar** dst, int len, int cn ); +CV_EXPORTS void split16u(const ushort* src, ushort** dst, int len, int cn ); +CV_EXPORTS void split32s(const int* src, int** dst, int len, int cn ); +CV_EXPORTS void split64s(const int64* src, int64** dst, int len, int cn ); + +CV_EXPORTS void merge8u(const uchar** src, uchar* dst, int len, int cn ); +CV_EXPORTS void merge16u(const ushort** src, ushort* dst, int len, int cn ); +CV_EXPORTS void merge32s(const int** src, int* dst, int len, int cn ); +CV_EXPORTS void merge64s(const int64** src, int64* dst, int len, int cn ); + +CV_EXPORTS void add8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void sub8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void max8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void min8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void absdiff8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void and8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void or8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void xor8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void not8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void cmp8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp8s(const schar* src1, size_t step1, const schar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp16s(const short* src1, size_t step1, const short* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp32s(const int* src1, size_t step1, const int* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp32f(const float* src1, size_t step1, const float* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp64f(const double* src1, size_t step1, const double* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); + +CV_EXPORTS void mul8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scale); + +CV_EXPORTS void div8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scale); + +CV_EXPORTS void recip8u( const uchar *, size_t, const uchar * src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip8s( const schar *, size_t, const schar * src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip16u( const ushort *, size_t, const ushort * src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip16s( const short *, size_t, const short * src2, size_t step2, short* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip32s( const int *, size_t, const int * src2, size_t step2, int* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip32f( const float *, size_t, const float * src2, size_t step2, float* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip64f( const double *, size_t, const double * src2, size_t step2, double* dst, size_t step, int width, int height, void* scale); + +CV_EXPORTS void addWeighted8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _scalars ); +CV_EXPORTS void addWeighted8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scalars ); + +struct CV_EXPORTS DFT1D +{ + static Ptr<DFT1D> create(int len, int count, int depth, int flags, bool * useBuffer = 0); + virtual void apply(const uchar *src, uchar *dst) = 0; + virtual ~DFT1D() {} +}; + +struct CV_EXPORTS DFT2D +{ + static Ptr<DFT2D> create(int width, int height, int depth, + int src_channels, int dst_channels, + int flags, int nonzero_rows = 0); + virtual void apply(const uchar *src_data, size_t src_step, uchar *dst_data, size_t dst_step) = 0; + virtual ~DFT2D() {} +}; + +struct CV_EXPORTS DCT2D +{ + static Ptr<DCT2D> create(int width, int height, int depth, int flags); + virtual void apply(const uchar *src_data, size_t src_step, uchar *dst_data, size_t dst_step) = 0; + virtual ~DCT2D() {} +}; + +//! @} core_hal + +//============================================================================= +// for binary compatibility with 3.0 + +//! @cond IGNORED + +CV_EXPORTS int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n); +CV_EXPORTS int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n); +CV_EXPORTS bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n); +CV_EXPORTS bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n); + +CV_EXPORTS void exp(const float* src, float* dst, int n); +CV_EXPORTS void exp(const double* src, double* dst, int n); +CV_EXPORTS void log(const float* src, float* dst, int n); +CV_EXPORTS void log(const double* src, double* dst, int n); + +CV_EXPORTS void fastAtan2(const float* y, const float* x, float* dst, int n, bool angleInDegrees); +CV_EXPORTS void magnitude(const float* x, const float* y, float* dst, int n); +CV_EXPORTS void magnitude(const double* x, const double* y, double* dst, int n); +CV_EXPORTS void sqrt(const float* src, float* dst, int len); +CV_EXPORTS void sqrt(const double* src, double* dst, int len); +CV_EXPORTS void invSqrt(const float* src, float* dst, int len); +CV_EXPORTS void invSqrt(const double* src, double* dst, int len); + +//! @endcond + +}} //cv::hal + +#endif //OPENCV_HAL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/hal/interface.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,182 @@ +#ifndef OPENCV_CORE_HAL_INTERFACE_H +#define OPENCV_CORE_HAL_INTERFACE_H + +//! @addtogroup core_hal_interface +//! @{ + +//! @name Return codes +//! @{ +#define CV_HAL_ERROR_OK 0 +#define CV_HAL_ERROR_NOT_IMPLEMENTED 1 +#define CV_HAL_ERROR_UNKNOWN -1 +//! @} + +#ifdef __cplusplus +#include <cstddef> +#else +#include <stddef.h> +#include <stdbool.h> +#endif + +//! @name Data types +//! primitive types +//! - schar - signed 1 byte integer +//! - uchar - unsigned 1 byte integer +//! - short - signed 2 byte integer +//! - ushort - unsigned 2 byte integer +//! - int - signed 4 byte integer +//! - uint - unsigned 4 byte integer +//! - int64 - signed 8 byte integer +//! - uint64 - unsigned 8 byte integer +//! @{ +#if !defined _MSC_VER && !defined __BORLANDC__ +# if defined __cplusplus && __cplusplus >= 201103L && !defined __APPLE__ +# include <cstdint> + #ifndef __MBED__ + typedef std::uint32_t uint; + # endif +# else +# include <stdint.h> + #ifndef __MBED__ + typedef uint32_t uint; + # endif +# endif +#else + typedef unsigned uint; +#endif + +typedef signed char schar; + +#ifndef __IPL_H__ + typedef unsigned char uchar; + typedef unsigned short ushort; +#endif + +#if defined _MSC_VER || defined __BORLANDC__ + typedef __int64 int64; + typedef unsigned __int64 uint64; +# define CV_BIG_INT(n) n##I64 +# define CV_BIG_UINT(n) n##UI64 +#else + typedef int64_t int64; + typedef uint64_t uint64; +# define CV_BIG_INT(n) n##LL +# define CV_BIG_UINT(n) n##ULL +#endif + +#define CV_CN_MAX 512 +#define CV_CN_SHIFT 3 +#define CV_DEPTH_MAX (1 << CV_CN_SHIFT) + +#define CV_8U 0 +#define CV_8S 1 +#define CV_16U 2 +#define CV_16S 3 +#define CV_32S 4 +#define CV_32F 5 +#define CV_64F 6 +#define CV_USRTYPE1 7 + +#define CV_MAT_DEPTH_MASK (CV_DEPTH_MAX - 1) +#define CV_MAT_DEPTH(flags) ((flags) & CV_MAT_DEPTH_MASK) + +#define CV_MAKETYPE(depth,cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT)) +#define CV_MAKE_TYPE CV_MAKETYPE + +#define CV_8UC1 CV_MAKETYPE(CV_8U,1) +#define CV_8UC2 CV_MAKETYPE(CV_8U,2) +#define CV_8UC3 CV_MAKETYPE(CV_8U,3) +#define CV_8UC4 CV_MAKETYPE(CV_8U,4) +#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n)) + +#define CV_8SC1 CV_MAKETYPE(CV_8S,1) +#define CV_8SC2 CV_MAKETYPE(CV_8S,2) +#define CV_8SC3 CV_MAKETYPE(CV_8S,3) +#define CV_8SC4 CV_MAKETYPE(CV_8S,4) +#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n)) + +#define CV_16UC1 CV_MAKETYPE(CV_16U,1) +#define CV_16UC2 CV_MAKETYPE(CV_16U,2) +#define CV_16UC3 CV_MAKETYPE(CV_16U,3) +#define CV_16UC4 CV_MAKETYPE(CV_16U,4) +#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n)) + +#define CV_16SC1 CV_MAKETYPE(CV_16S,1) +#define CV_16SC2 CV_MAKETYPE(CV_16S,2) +#define CV_16SC3 CV_MAKETYPE(CV_16S,3) +#define CV_16SC4 CV_MAKETYPE(CV_16S,4) +#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n)) + +#define CV_32SC1 CV_MAKETYPE(CV_32S,1) +#define CV_32SC2 CV_MAKETYPE(CV_32S,2) +#define CV_32SC3 CV_MAKETYPE(CV_32S,3) +#define CV_32SC4 CV_MAKETYPE(CV_32S,4) +#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n)) + +#define CV_32FC1 CV_MAKETYPE(CV_32F,1) +#define CV_32FC2 CV_MAKETYPE(CV_32F,2) +#define CV_32FC3 CV_MAKETYPE(CV_32F,3) +#define CV_32FC4 CV_MAKETYPE(CV_32F,4) +#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n)) + +#define CV_64FC1 CV_MAKETYPE(CV_64F,1) +#define CV_64FC2 CV_MAKETYPE(CV_64F,2) +#define CV_64FC3 CV_MAKETYPE(CV_64F,3) +#define CV_64FC4 CV_MAKETYPE(CV_64F,4) +#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n)) +//! @} + +//! @name Comparison operation +//! @sa cv::CmpTypes +//! @{ +#define CV_HAL_CMP_EQ 0 +#define CV_HAL_CMP_GT 1 +#define CV_HAL_CMP_GE 2 +#define CV_HAL_CMP_LT 3 +#define CV_HAL_CMP_LE 4 +#define CV_HAL_CMP_NE 5 +//! @} + +//! @name Border processing modes +//! @sa cv::BorderTypes +//! @{ +#define CV_HAL_BORDER_CONSTANT 0 +#define CV_HAL_BORDER_REPLICATE 1 +#define CV_HAL_BORDER_REFLECT 2 +#define CV_HAL_BORDER_WRAP 3 +#define CV_HAL_BORDER_REFLECT_101 4 +#define CV_HAL_BORDER_TRANSPARENT 5 +#define CV_HAL_BORDER_ISOLATED 16 +//! @} + +//! @name DFT flags +//! @{ +#define CV_HAL_DFT_INVERSE 1 +#define CV_HAL_DFT_SCALE 2 +#define CV_HAL_DFT_ROWS 4 +#define CV_HAL_DFT_COMPLEX_OUTPUT 16 +#define CV_HAL_DFT_REAL_OUTPUT 32 +#define CV_HAL_DFT_TWO_STAGE 64 +#define CV_HAL_DFT_STAGE_COLS 128 +#define CV_HAL_DFT_IS_CONTINUOUS 512 +#define CV_HAL_DFT_IS_INPLACE 1024 +//! @} + +//! @name SVD flags +//! @{ +#define CV_HAL_SVD_NO_UV 1 +#define CV_HAL_SVD_SHORT_UV 2 +#define CV_HAL_SVD_MODIFY_A 4 +#define CV_HAL_SVD_FULL_UV 8 +//! @} + +//! @name Gemm flags +//! @{ +#define CV_HAL_GEMM_1_T 1 +#define CV_HAL_GEMM_2_T 2 +#define CV_HAL_GEMM_3_T 4 +//! @} + +//! @} + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/hal/intrin.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,414 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_INTRIN_HPP +#define OPENCV_HAL_INTRIN_HPP + +#include <cmath> +#include <float.h> +#include <stdlib.h> +#include "opencv2/core/cvdef.h" + +#define OPENCV_HAL_ADD(a, b) ((a) + (b)) +#define OPENCV_HAL_AND(a, b) ((a) & (b)) +#define OPENCV_HAL_NOP(a) (a) +#define OPENCV_HAL_1ST(a, b) (a) + +// unlike HAL API, which is in cv::hal, +// we put intrinsics into cv namespace to make its +// access from within opencv code more accessible +namespace cv { + +//! @addtogroup core_hal_intrin +//! @{ + +//! @cond IGNORED +template<typename _Tp> struct V_TypeTraits +{ + typedef _Tp int_type; + typedef _Tp uint_type; + typedef _Tp abs_type; + typedef _Tp sum_type; + + enum { delta = 0, shift = 0 }; + + static int_type reinterpret_int(_Tp x) { return x; } + static uint_type reinterpet_uint(_Tp x) { return x; } + static _Tp reinterpret_from_int(int_type x) { return (_Tp)x; } +}; + +template<> struct V_TypeTraits<uchar> +{ + typedef uchar value_type; + typedef schar int_type; + typedef uchar uint_type; + typedef uchar abs_type; + typedef int sum_type; + + typedef ushort w_type; + typedef unsigned q_type; + + enum { delta = 128, shift = 8 }; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits<schar> +{ + typedef schar value_type; + typedef schar int_type; + typedef uchar uint_type; + typedef uchar abs_type; + typedef int sum_type; + + typedef short w_type; + typedef int q_type; + + enum { delta = 128, shift = 8 }; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits<ushort> +{ + typedef ushort value_type; + typedef short int_type; + typedef ushort uint_type; + typedef ushort abs_type; + typedef int sum_type; + + typedef unsigned w_type; + typedef uchar nu_type; + + enum { delta = 32768, shift = 16 }; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits<short> +{ + typedef short value_type; + typedef short int_type; + typedef ushort uint_type; + typedef ushort abs_type; + typedef int sum_type; + + typedef int w_type; + typedef uchar nu_type; + typedef schar n_type; + + enum { delta = 128, shift = 8 }; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits<unsigned> +{ + typedef unsigned value_type; + typedef int int_type; + typedef unsigned uint_type; + typedef unsigned abs_type; + typedef unsigned sum_type; + + typedef uint64 w_type; + typedef ushort nu_type; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits<int> +{ + typedef int value_type; + typedef int int_type; + typedef unsigned uint_type; + typedef unsigned abs_type; + typedef int sum_type; + + typedef int64 w_type; + typedef short n_type; + typedef ushort nu_type; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits<uint64> +{ + typedef uint64 value_type; + typedef int64 int_type; + typedef uint64 uint_type; + typedef uint64 abs_type; + typedef uint64 sum_type; + + typedef unsigned nu_type; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits<int64> +{ + typedef int64 value_type; + typedef int64 int_type; + typedef uint64 uint_type; + typedef uint64 abs_type; + typedef int64 sum_type; + + typedef int nu_type; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + + +template<> struct V_TypeTraits<float> +{ + typedef float value_type; + typedef int int_type; + typedef unsigned uint_type; + typedef float abs_type; + typedef float sum_type; + + typedef double w_type; + + static int_type reinterpret_int(value_type x) + { + Cv32suf u; + u.f = x; + return u.i; + } + static uint_type reinterpet_uint(value_type x) + { + Cv32suf u; + u.f = x; + return u.u; + } + static value_type reinterpret_from_int(int_type x) + { + Cv32suf u; + u.i = x; + return u.f; + } +}; + +template<> struct V_TypeTraits<double> +{ + typedef double value_type; + typedef int64 int_type; + typedef uint64 uint_type; + typedef double abs_type; + typedef double sum_type; + static int_type reinterpret_int(value_type x) + { + Cv64suf u; + u.f = x; + return u.i; + } + static uint_type reinterpet_uint(value_type x) + { + Cv64suf u; + u.f = x; + return u.u; + } + static value_type reinterpret_from_int(int_type x) + { + Cv64suf u; + u.i = x; + return u.f; + } +}; + +template <typename T> struct V_SIMD128Traits +{ + enum { nlanes = 16 / sizeof(T) }; +}; + +//! @endcond + +//! @} + +} + +#ifdef CV_DOXYGEN +# undef CV_SSE2 +# undef CV_NEON +#endif + +#if CV_SSE2 + +#include "opencv2/core/hal/intrin_sse.hpp" + +#elif CV_NEON + +#include "opencv2/core/hal/intrin_neon.hpp" + +#else + +#include "opencv2/core/hal/intrin_cpp.hpp" + +#endif + +//! @addtogroup core_hal_intrin +//! @{ + +#ifndef CV_SIMD128 +//! Set to 1 if current compiler supports vector extensions (NEON or SSE is enabled) +#define CV_SIMD128 0 +#endif + +#ifndef CV_SIMD128_64F +//! Set to 1 if current intrinsics implementation supports 64-bit float vectors +#define CV_SIMD128_64F 0 +#endif + +//! @} + +//================================================================================================== + +//! @cond IGNORED + +namespace cv { + +template <typename R> struct V_RegTrait128; + +template <> struct V_RegTrait128<uchar> { + typedef v_uint8x16 reg; + typedef v_uint16x8 w_reg; + typedef v_uint32x4 q_reg; + typedef v_uint8x16 u_reg; + static v_uint8x16 zero() { return v_setzero_u8(); } + static v_uint8x16 all(uchar val) { return v_setall_u8(val); } +}; + +template <> struct V_RegTrait128<schar> { + typedef v_int8x16 reg; + typedef v_int16x8 w_reg; + typedef v_int32x4 q_reg; + typedef v_uint8x16 u_reg; + static v_int8x16 zero() { return v_setzero_s8(); } + static v_int8x16 all(schar val) { return v_setall_s8(val); } +}; + +template <> struct V_RegTrait128<ushort> { + typedef v_uint16x8 reg; + typedef v_uint32x4 w_reg; + typedef v_int16x8 int_reg; + typedef v_uint16x8 u_reg; + static v_uint16x8 zero() { return v_setzero_u16(); } + static v_uint16x8 all(ushort val) { return v_setall_u16(val); } +}; + +template <> struct V_RegTrait128<short> { + typedef v_int16x8 reg; + typedef v_int32x4 w_reg; + typedef v_uint16x8 u_reg; + static v_int16x8 zero() { return v_setzero_s16(); } + static v_int16x8 all(short val) { return v_setall_s16(val); } +}; + +template <> struct V_RegTrait128<unsigned> { + typedef v_uint32x4 reg; + typedef v_uint64x2 w_reg; + typedef v_int32x4 int_reg; + typedef v_uint32x4 u_reg; + static v_uint32x4 zero() { return v_setzero_u32(); } + static v_uint32x4 all(unsigned val) { return v_setall_u32(val); } +}; + +template <> struct V_RegTrait128<int> { + typedef v_int32x4 reg; + typedef v_int64x2 w_reg; + typedef v_uint32x4 u_reg; + static v_int32x4 zero() { return v_setzero_s32(); } + static v_int32x4 all(int val) { return v_setall_s32(val); } +}; + +template <> struct V_RegTrait128<uint64> { + typedef v_uint64x2 reg; + static v_uint64x2 zero() { return v_setzero_u64(); } + static v_uint64x2 all(uint64 val) { return v_setall_u64(val); } +}; + +template <> struct V_RegTrait128<int64> { + typedef v_int64x2 reg; + static v_int64x2 zero() { return v_setzero_s64(); } + static v_int64x2 all(int64 val) { return v_setall_s64(val); } +}; + +template <> struct V_RegTrait128<float> { + typedef v_float32x4 reg; + typedef v_int32x4 int_reg; + typedef v_float32x4 u_reg; + static v_float32x4 zero() { return v_setzero_f32(); } + static v_float32x4 all(float val) { return v_setall_f32(val); } +}; + +#if CV_SIMD128_64F +template <> struct V_RegTrait128<double> { + typedef v_float64x2 reg; + typedef v_int32x4 int_reg; + typedef v_float64x2 u_reg; + static v_float64x2 zero() { return v_setzero_f64(); } + static v_float64x2 all(double val) { return v_setall_f64(val); } +}; +#endif + +} // cv:: + +//! @endcond + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/hal/intrin_cpp.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1790 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_INTRIN_CPP_HPP +#define OPENCV_HAL_INTRIN_CPP_HPP + +#include <limits> +#include <cstring> +#include <algorithm> +#include "opencv2/core/saturate.hpp" + +namespace cv +{ + +/** @addtogroup core_hal_intrin + +"Universal intrinsics" is a types and functions set intended to simplify vectorization of code on +different platforms. Currently there are two supported SIMD extensions: __SSE/SSE2__ on x86 +architectures and __NEON__ on ARM architectures, both allow working with 128 bit registers +containing packed values of different types. In case when there is no SIMD extension available +during compilation, fallback C++ implementation of intrinsics will be chosen and code will work as +expected although it could be slower. + +### Types + +There are several types representing 128-bit register as a vector of packed values, each type is +implemented as a structure based on a one SIMD register. + +- cv::v_uint8x16 and cv::v_int8x16: sixteen 8-bit integer values (unsigned/signed) - char +- cv::v_uint16x8 and cv::v_int16x8: eight 16-bit integer values (unsigned/signed) - short +- cv::v_uint32x4 and cv::v_int32x4: four 32-bit integer values (unsgined/signed) - int +- cv::v_uint64x2 and cv::v_int64x2: two 64-bit integer values (unsigned/signed) - int64 +- cv::v_float32x4: four 32-bit floating point values (signed) - float +- cv::v_float64x2: two 64-bit floating point valies (signed) - double + +@note +cv::v_float64x2 is not implemented in NEON variant, if you want to use this type, don't forget to +check the CV_SIMD128_64F preprocessor definition: +@code +#if CV_SIMD128_64F +//... +#endif +@endcode + +### Load and store operations + +These operations allow to set contents of the register explicitly or by loading it from some memory +block and to save contents of the register to memory block. + +- Constructors: +@ref v_reg::v_reg(const _Tp *ptr) "from memory", +@ref v_reg::v_reg(_Tp s0, _Tp s1) "from two values", ... +- Other create methods: +@ref v_setall_s8, @ref v_setall_u8, ..., +@ref v_setzero_u8, @ref v_setzero_s8, ... +- Memory operations: +@ref v_load, @ref v_load_aligned, @ref v_load_halves, +@ref v_store, @ref v_store_aligned, +@ref v_store_high, @ref v_store_low + +### Value reordering + +These operations allow to reorder or recombine elements in one or multiple vectors. + +- Interleave, deinterleave (2, 3 and 4 channels): @ref v_load_deinterleave, @ref v_store_interleave +- Expand: @ref v_load_expand, @ref v_load_expand_q, @ref v_expand +- Pack: @ref v_pack, @ref v_pack_u, @ref v_rshr_pack, @ref v_rshr_pack_u, +@ref v_pack_store, @ref v_pack_u_store, @ref v_rshr_pack_store, @ref v_rshr_pack_u_store +- Recombine: @ref v_zip, @ref v_recombine, @ref v_combine_low, @ref v_combine_high +- Extract: @ref v_extract + + +### Arithmetic, bitwise and comparison operations + +Element-wise binary and unary operations. + +- Arithmetics: +@ref operator +(const v_reg &a, const v_reg &b) "+", +@ref operator -(const v_reg &a, const v_reg &b) "-", +@ref operator *(const v_reg &a, const v_reg &b) "*", +@ref operator /(const v_reg &a, const v_reg &b) "/", +@ref v_mul_expand + +- Non-saturating arithmetics: @ref v_add_wrap, @ref v_sub_wrap + +- Bitwise shifts: +@ref operator <<(const v_reg &a, int s) "<<", +@ref operator >>(const v_reg &a, int s) ">>", +@ref v_shl, @ref v_shr + +- Bitwise logic: +@ref operator&(const v_reg &a, const v_reg &b) "&", +@ref operator |(const v_reg &a, const v_reg &b) "|", +@ref operator ^(const v_reg &a, const v_reg &b) "^", +@ref operator ~(const v_reg &a) "~" + +- Comparison: +@ref operator >(const v_reg &a, const v_reg &b) ">", +@ref operator >=(const v_reg &a, const v_reg &b) ">=", +@ref operator <(const v_reg &a, const v_reg &b) "<", +@ref operator <=(const v_reg &a, const v_reg &b) "<=", +@ref operator==(const v_reg &a, const v_reg &b) "==", +@ref operator !=(const v_reg &a, const v_reg &b) "!=" + +- min/max: @ref v_min, @ref v_max + +### Reduce and mask + +Most of these operations return only one value. + +- Reduce: @ref v_reduce_min, @ref v_reduce_max, @ref v_reduce_sum +- Mask: @ref v_signmask, @ref v_check_all, @ref v_check_any, @ref v_select + +### Other math + +- Some frequent operations: @ref v_sqrt, @ref v_invsqrt, @ref v_magnitude, @ref v_sqr_magnitude +- Absolute values: @ref v_abs, @ref v_absdiff + +### Conversions + +Different type conversions and casts: + +- Rounding: @ref v_round, @ref v_floor, @ref v_ceil, @ref v_trunc, +- To float: @ref v_cvt_f32, @ref v_cvt_f64 +- Reinterpret: @ref v_reinterpret_as_u8, @ref v_reinterpret_as_s8, ... + +### Matrix operations + +In these operations vectors represent matrix rows/columns: @ref v_dotprod, @ref v_matmul, @ref v_transpose4x4 + +### Usability + +Most operations are implemented only for some subset of the available types, following matrices +shows the applicability of different operations to the types. + +Regular integers: + +| Operations\\Types | uint 8x16 | int 8x16 | uint 16x8 | int 16x8 | uint 32x4 | int 32x4 | +|-------------------|:-:|:-:|:-:|:-:|:-:|:-:| +|load, store | x | x | x | x | x | x | +|interleave | x | x | x | x | x | x | +|expand | x | x | x | x | x | x | +|expand_q | x | x | | | | | +|add, sub | x | x | x | x | x | x | +|add_wrap, sub_wrap | x | x | x | x | | | +|mul | | | x | x | x | x | +|mul_expand | | | x | x | x | | +|compare | x | x | x | x | x | x | +|shift | | | x | x | x | x | +|dotprod | | | | x | | | +|logical | x | x | x | x | x | x | +|min, max | x | x | x | x | x | x | +|absdiff | x | x | x | x | x | x | +|reduce | | | | | x | x | +|mask | x | x | x | x | x | x | +|pack | x | x | x | x | x | x | +|pack_u | x | | x | | | | +|unpack | x | x | x | x | x | x | +|extract | x | x | x | x | x | x | +|cvt_flt32 | | | | | | x | +|cvt_flt64 | | | | | | x | +|transpose4x4 | | | | | x | x | + +Big integers: + +| Operations\\Types | uint 64x2 | int 64x2 | +|-------------------|:-:|:-:| +|load, store | x | x | +|add, sub | x | x | +|shift | x | x | +|logical | x | x | +|extract | x | x | + +Floating point: + +| Operations\\Types | float 32x4 | float 64x2 | +|-------------------|:-:|:-:| +|load, store | x | x | +|interleave | x | | +|add, sub | x | x | +|mul | x | x | +|div | x | x | +|compare | x | x | +|min, max | x | x | +|absdiff | x | x | +|reduce | x | | +|mask | x | x | +|unpack | x | x | +|cvt_flt32 | | x | +|cvt_flt64 | x | | +|sqrt, abs | x | x | +|float math | x | x | +|transpose4x4 | x | | + + + @{ */ + +template<typename _Tp, int n> struct v_reg +{ +//! @cond IGNORED + typedef _Tp lane_type; + typedef v_reg<typename V_TypeTraits<_Tp>::int_type, n> int_vec; + typedef v_reg<typename V_TypeTraits<_Tp>::abs_type, n> abs_vec; + enum { nlanes = n }; +// !@endcond + + /** @brief Constructor + + Initializes register with data from memory + @param ptr pointer to memory block with data for register */ + explicit v_reg(const _Tp* ptr) { for( int i = 0; i < n; i++ ) s[i] = ptr[i]; } + + /** @brief Constructor + + Initializes register with two 64-bit values */ + v_reg(_Tp s0, _Tp s1) { s[0] = s0; s[1] = s1; } + + /** @brief Constructor + + Initializes register with four 32-bit values */ + v_reg(_Tp s0, _Tp s1, _Tp s2, _Tp s3) { s[0] = s0; s[1] = s1; s[2] = s2; s[3] = s3; } + + /** @brief Constructor + + Initializes register with eight 16-bit values */ + v_reg(_Tp s0, _Tp s1, _Tp s2, _Tp s3, + _Tp s4, _Tp s5, _Tp s6, _Tp s7) + { + s[0] = s0; s[1] = s1; s[2] = s2; s[3] = s3; + s[4] = s4; s[5] = s5; s[6] = s6; s[7] = s7; + } + + /** @brief Constructor + + Initializes register with sixteen 8-bit values */ + v_reg(_Tp s0, _Tp s1, _Tp s2, _Tp s3, + _Tp s4, _Tp s5, _Tp s6, _Tp s7, + _Tp s8, _Tp s9, _Tp s10, _Tp s11, + _Tp s12, _Tp s13, _Tp s14, _Tp s15) + { + s[0] = s0; s[1] = s1; s[2] = s2; s[3] = s3; + s[4] = s4; s[5] = s5; s[6] = s6; s[7] = s7; + s[8] = s8; s[9] = s9; s[10] = s10; s[11] = s11; + s[12] = s12; s[13] = s13; s[14] = s14; s[15] = s15; + } + + /** @brief Default constructor + + Does not initialize anything*/ + v_reg() {} + + /** @brief Copy constructor */ + v_reg(const v_reg<_Tp, n> & r) + { + for( int i = 0; i < n; i++ ) + s[i] = r.s[i]; + } + /** @brief Access first value + + Returns value of the first lane according to register type, for example: + @code{.cpp} + v_int32x4 r(1, 2, 3, 4); + int v = r.get0(); // returns 1 + v_uint64x2 r(1, 2); + uint64_t v = r.get0(); // returns 1 + @endcode + */ + _Tp get0() const { return s[0]; } + +//! @cond IGNORED + _Tp get(const int i) const { return s[i]; } + v_reg<_Tp, n> high() const + { + v_reg<_Tp, n> c; + int i; + for( i = 0; i < n/2; i++ ) + { + c.s[i] = s[i+(n/2)]; + c.s[i+(n/2)] = 0; + } + return c; + } + + static v_reg<_Tp, n> zero() + { + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = (_Tp)0; + return c; + } + + static v_reg<_Tp, n> all(_Tp s) + { + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = s; + return c; + } + + template<typename _Tp2, int n2> v_reg<_Tp2, n2> reinterpret_as() const + { + size_t bytes = std::min(sizeof(_Tp2)*n2, sizeof(_Tp)*n); + v_reg<_Tp2, n2> c; + std::memcpy(&c.s[0], &s[0], bytes); + return c; + } + + _Tp s[n]; +//! @endcond +}; + +/** @brief Sixteen 8-bit unsigned integer values */ +typedef v_reg<uchar, 16> v_uint8x16; +/** @brief Sixteen 8-bit signed integer values */ +typedef v_reg<schar, 16> v_int8x16; +/** @brief Eight 16-bit unsigned integer values */ +typedef v_reg<ushort, 8> v_uint16x8; +/** @brief Eight 16-bit signed integer values */ +typedef v_reg<short, 8> v_int16x8; +/** @brief Four 32-bit unsigned integer values */ +typedef v_reg<unsigned, 4> v_uint32x4; +/** @brief Four 32-bit signed integer values */ +typedef v_reg<int, 4> v_int32x4; +/** @brief Four 32-bit floating point values (single precision) */ +typedef v_reg<float, 4> v_float32x4; +/** @brief Two 64-bit floating point values (double precision) */ +typedef v_reg<double, 2> v_float64x2; +/** @brief Two 64-bit unsigned integer values */ +typedef v_reg<uint64, 2> v_uint64x2; +/** @brief Two 64-bit signed integer values */ +typedef v_reg<int64, 2> v_int64x2; + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_BIN_OP(bin_op) \ +template<typename _Tp, int n> inline v_reg<_Tp, n> \ + operator bin_op (const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + v_reg<_Tp, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = saturate_cast<_Tp>(a.s[i] bin_op b.s[i]); \ + return c; \ +} \ +template<typename _Tp, int n> inline v_reg<_Tp, n>& \ + operator bin_op##= (v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + for( int i = 0; i < n; i++ ) \ + a.s[i] = saturate_cast<_Tp>(a.s[i] bin_op b.s[i]); \ + return a; \ +} + +/** @brief Add values + +For all types. */ +OPENCV_HAL_IMPL_BIN_OP(+) + +/** @brief Subtract values + +For all types. */ +OPENCV_HAL_IMPL_BIN_OP(-) + +/** @brief Multiply values + +For 16- and 32-bit integer types and floating types. */ +OPENCV_HAL_IMPL_BIN_OP(*) + +/** @brief Divide values + +For floating types only. */ +OPENCV_HAL_IMPL_BIN_OP(/) + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_BIT_OP(bit_op) \ +template<typename _Tp, int n> inline v_reg<_Tp, n> operator bit_op \ + (const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + v_reg<_Tp, n> c; \ + typedef typename V_TypeTraits<_Tp>::int_type itype; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int((itype)(V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) bit_op \ + V_TypeTraits<_Tp>::reinterpret_int(b.s[i]))); \ + return c; \ +} \ +template<typename _Tp, int n> inline v_reg<_Tp, n>& operator \ + bit_op##= (v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + typedef typename V_TypeTraits<_Tp>::int_type itype; \ + for( int i = 0; i < n; i++ ) \ + a.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int((itype)(V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) bit_op \ + V_TypeTraits<_Tp>::reinterpret_int(b.s[i]))); \ + return a; \ +} + +/** @brief Bitwise AND + +Only for integer types. */ +OPENCV_HAL_IMPL_BIT_OP(&) + +/** @brief Bitwise OR + +Only for integer types. */ +OPENCV_HAL_IMPL_BIT_OP(|) + +/** @brief Bitwise XOR + +Only for integer types.*/ +OPENCV_HAL_IMPL_BIT_OP(^) + +/** @brief Bitwise NOT + +Only for integer types.*/ +template<typename _Tp, int n> inline v_reg<_Tp, n> operator ~ (const v_reg<_Tp, n>& a) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int(~V_TypeTraits<_Tp>::reinterpret_int(a.s[i])); + } + return c; +} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_MATH_FUNC(func, cfunc, _Tp2) \ +template<typename _Tp, int n> inline v_reg<_Tp2, n> func(const v_reg<_Tp, n>& a) \ +{ \ + v_reg<_Tp2, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = cfunc(a.s[i]); \ + return c; \ +} + +/** @brief Square root of elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_sqrt, std::sqrt, _Tp) + +//! @cond IGNORED +OPENCV_HAL_IMPL_MATH_FUNC(v_sin, std::sin, _Tp) +OPENCV_HAL_IMPL_MATH_FUNC(v_cos, std::cos, _Tp) +OPENCV_HAL_IMPL_MATH_FUNC(v_exp, std::exp, _Tp) +OPENCV_HAL_IMPL_MATH_FUNC(v_log, std::log, _Tp) +//! @endcond + +/** @brief Absolute value of elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_abs, (typename V_TypeTraits<_Tp>::abs_type)std::abs, + typename V_TypeTraits<_Tp>::abs_type) + +/** @brief Round elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_round, cvRound, int) + +/** @brief Floor elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_floor, cvFloor, int) + +/** @brief Ceil elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_ceil, cvCeil, int) + +/** @brief Truncate elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_trunc, int, int) + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_MINMAX_FUNC(func, cfunc) \ +template<typename _Tp, int n> inline v_reg<_Tp, n> func(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + v_reg<_Tp, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = cfunc(a.s[i], b.s[i]); \ + return c; \ +} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_REDUCE_MINMAX_FUNC(func, cfunc) \ +template<typename _Tp, int n> inline _Tp func(const v_reg<_Tp, n>& a) \ +{ \ + _Tp c = a.s[0]; \ + for( int i = 1; i < n; i++ ) \ + c = cfunc(c, a.s[i]); \ + return c; \ +} + +/** @brief Choose min values for each pair + +Scheme: +@code +{A1 A2 ...} +{B1 B2 ...} +-------------- +{min(A1,B1) min(A2,B2) ...} +@endcode +For all types except 64-bit integer. */ +OPENCV_HAL_IMPL_MINMAX_FUNC(v_min, std::min) + +/** @brief Choose max values for each pair + +Scheme: +@code +{A1 A2 ...} +{B1 B2 ...} +-------------- +{max(A1,B1) max(A2,B2) ...} +@endcode +For all types except 64-bit integer. */ +OPENCV_HAL_IMPL_MINMAX_FUNC(v_max, std::max) + +/** @brief Find one min value + +Scheme: +@code +{A1 A2 A3 ...} => min(A1,A2,A3,...) +@endcode +For 32-bit integer and 32-bit floating point types. */ +OPENCV_HAL_IMPL_REDUCE_MINMAX_FUNC(v_reduce_min, std::min) + +/** @brief Find one max value + +Scheme: +@code +{A1 A2 A3 ...} => max(A1,A2,A3,...) +@endcode +For 32-bit integer and 32-bit floating point types. */ +OPENCV_HAL_IMPL_REDUCE_MINMAX_FUNC(v_reduce_max, std::max) + +//! @cond IGNORED +template<typename _Tp, int n> +inline void v_minmax( const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b, + v_reg<_Tp, n>& minval, v_reg<_Tp, n>& maxval ) +{ + for( int i = 0; i < n; i++ ) + { + minval.s[i] = std::min(a.s[i], b.s[i]); + maxval.s[i] = std::max(a.s[i], b.s[i]); + } +} +//! @endcond + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_CMP_OP(cmp_op) \ +template<typename _Tp, int n> \ +inline v_reg<_Tp, n> operator cmp_op(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + typedef typename V_TypeTraits<_Tp>::int_type itype; \ + v_reg<_Tp, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int((itype)-(int)(a.s[i] cmp_op b.s[i])); \ + return c; \ +} + +/** @brief Less-than comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(<) + +/** @brief Greater-than comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(>) + +/** @brief Less-than or equal comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(<=) + +/** @brief Greater-than or equal comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(>=) + +/** @brief Equal comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(==) + +/** @brief Not equal comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(!=) + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_ADD_SUB_OP(func, bin_op, cast_op, _Tp2) \ +template<typename _Tp, int n> \ +inline v_reg<_Tp2, n> func(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + typedef _Tp2 rtype; \ + v_reg<rtype, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = cast_op(a.s[i] bin_op b.s[i]); \ + return c; \ +} + +/** @brief Add values without saturation + +For 8- and 16-bit integer values. */ +OPENCV_HAL_IMPL_ADD_SUB_OP(v_add_wrap, +, (_Tp), _Tp) + +/** @brief Subtract values without saturation + +For 8- and 16-bit integer values. */ +OPENCV_HAL_IMPL_ADD_SUB_OP(v_sub_wrap, -, (_Tp), _Tp) + +//! @cond IGNORED +template<typename T> inline T _absdiff(T a, T b) +{ + return a > b ? a - b : b - a; +} +//! @endcond + +/** @brief Absolute difference + +Returns \f$ |a - b| \f$ converted to corresponding unsigned type. +Example: +@code{.cpp} +v_int32x4 a, b; // {1, 2, 3, 4} and {4, 3, 2, 1} +v_uint32x4 c = v_absdiff(a, b); // result is {3, 1, 1, 3} +@endcode +For 8-, 16-, 32-bit integer source types. */ +template<typename _Tp, int n> +inline v_reg<typename V_TypeTraits<_Tp>::abs_type, n> v_absdiff(const v_reg<_Tp, n>& a, const v_reg<_Tp, n> & b) +{ + typedef typename V_TypeTraits<_Tp>::abs_type rtype; + v_reg<rtype, n> c; + const rtype mask = std::numeric_limits<_Tp>::is_signed ? (1 << (sizeof(rtype)*8 - 1)) : 0; + for( int i = 0; i < n; i++ ) + { + rtype ua = a.s[i] ^ mask; + rtype ub = b.s[i] ^ mask; + c.s[i] = _absdiff(ua, ub); + } + return c; +} + +/** @overload + +For 32-bit floating point values */ +inline v_float32x4 v_absdiff(const v_float32x4& a, const v_float32x4& b) +{ + v_float32x4 c; + for( int i = 0; i < c.nlanes; i++ ) + c.s[i] = _absdiff(a.s[i], b.s[i]); + return c; +} + +/** @overload + +For 64-bit floating point values */ +inline v_float64x2 v_absdiff(const v_float64x2& a, const v_float64x2& b) +{ + v_float64x2 c; + for( int i = 0; i < c.nlanes; i++ ) + c.s[i] = _absdiff(a.s[i], b.s[i]); + return c; +} + +/** @brief Inversed square root + +Returns \f$ 1/sqrt(a) \f$ +For floating point types only. */ +template<typename _Tp, int n> +inline v_reg<_Tp, n> v_invsqrt(const v_reg<_Tp, n>& a) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = 1.f/std::sqrt(a.s[i]); + return c; +} + +/** @brief Magnitude + +Returns \f$ sqrt(a^2 + b^2) \f$ +For floating point types only. */ +template<typename _Tp, int n> +inline v_reg<_Tp, n> v_magnitude(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = std::sqrt(a.s[i]*a.s[i] + b.s[i]*b.s[i]); + return c; +} + +/** @brief Square of the magnitude + +Returns \f$ a^2 + b^2 \f$ +For floating point types only. */ +template<typename _Tp, int n> +inline v_reg<_Tp, n> v_sqr_magnitude(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = a.s[i]*a.s[i] + b.s[i]*b.s[i]; + return c; +} + +/** @brief Multiply and add + +Returns \f$ a*b + c \f$ +For floating point types only. */ +template<typename _Tp, int n> +inline v_reg<_Tp, n> v_muladd(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b, + const v_reg<_Tp, n>& c) +{ + v_reg<_Tp, n> d; + for( int i = 0; i < n; i++ ) + d.s[i] = a.s[i]*b.s[i] + c.s[i]; + return d; +} + +/** @brief Dot product of elements + +Multiply values in two registers and sum adjacent result pairs. +Scheme: +@code + {A1 A2 ...} // 16-bit +x {B1 B2 ...} // 16-bit +------------- +{A1B1+A2B2 ...} // 32-bit +@endcode +Implemented only for 16-bit signed source type (v_int16x8). +*/ +template<typename _Tp, int n> inline v_reg<typename V_TypeTraits<_Tp>::w_type, n/2> + v_dotprod(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + typedef typename V_TypeTraits<_Tp>::w_type w_type; + v_reg<w_type, n/2> c; + for( int i = 0; i < (n/2); i++ ) + c.s[i] = (w_type)a.s[i*2]*b.s[i*2] + (w_type)a.s[i*2+1]*b.s[i*2+1]; + return c; +} + +/** @brief Multiply and expand + +Multiply values two registers and store results in two registers with wider pack type. +Scheme: +@code + {A B C D} // 32-bit +x {E F G H} // 32-bit +--------------- +{AE BF} // 64-bit + {CG DH} // 64-bit +@endcode +Example: +@code{.cpp} +v_uint32x4 a, b; // {1,2,3,4} and {2,2,2,2} +v_uint64x2 c, d; // results +v_mul_expand(a, b, c, d); // c, d = {2,4}, {6, 8} +@endcode +Implemented only for 16- and unsigned 32-bit source types (v_int16x8, v_uint16x8, v_uint32x4). +*/ +template<typename _Tp, int n> inline void v_mul_expand(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b, + v_reg<typename V_TypeTraits<_Tp>::w_type, n/2>& c, + v_reg<typename V_TypeTraits<_Tp>::w_type, n/2>& d) +{ + typedef typename V_TypeTraits<_Tp>::w_type w_type; + for( int i = 0; i < (n/2); i++ ) + { + c.s[i] = (w_type)a.s[i]*b.s[i]; + d.s[i] = (w_type)a.s[i+(n/2)]*b.s[i+(n/2)]; + } +} + +//! @cond IGNORED +template<typename _Tp, int n> inline void v_hsum(const v_reg<_Tp, n>& a, + v_reg<typename V_TypeTraits<_Tp>::w_type, n/2>& c) +{ + typedef typename V_TypeTraits<_Tp>::w_type w_type; + for( int i = 0; i < (n/2); i++ ) + { + c.s[i] = (w_type)a.s[i*2] + a.s[i*2+1]; + } +} +//! @endcond + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_SHIFT_OP(shift_op) \ +template<typename _Tp, int n> inline v_reg<_Tp, n> operator shift_op(const v_reg<_Tp, n>& a, int imm) \ +{ \ + v_reg<_Tp, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = (_Tp)(a.s[i] shift_op imm); \ + return c; \ +} + +/** @brief Bitwise shift left + +For 16-, 32- and 64-bit integer values. */ +OPENCV_HAL_IMPL_SHIFT_OP(<<) + +/** @brief Bitwise shift right + +For 16-, 32- and 64-bit integer values. */ +OPENCV_HAL_IMPL_SHIFT_OP(>>) + +/** @brief Sum packed values + +Scheme: +@code +{A1 A2 A3 ...} => sum{A1,A2,A3,...} +@endcode +For 32-bit integer and 32-bit floating point types.*/ +template<typename _Tp, int n> inline typename V_TypeTraits<_Tp>::sum_type v_reduce_sum(const v_reg<_Tp, n>& a) +{ + typename V_TypeTraits<_Tp>::sum_type c = a.s[0]; + for( int i = 1; i < n; i++ ) + c += a.s[i]; + return c; +} + +/** @brief Get negative values mask + +Returned value is a bit mask with bits set to 1 on places corresponding to negative packed values indexes. +Example: +@code{.cpp} +v_int32x4 r; // set to {-1, -1, 1, 1} +int mask = v_signmask(r); // mask = 3 <== 00000000 00000000 00000000 00000011 +@endcode +For all types except 64-bit. */ +template<typename _Tp, int n> inline int v_signmask(const v_reg<_Tp, n>& a) +{ + int mask = 0; + for( int i = 0; i < n; i++ ) + mask |= (V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) < 0) << i; + return mask; +} + +/** @brief Check if all packed values are less than zero + +Unsigned values will be casted to signed: `uchar 254 => char -2`. +For all types except 64-bit. */ +template<typename _Tp, int n> inline bool v_check_all(const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < n; i++ ) + if( V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) >= 0 ) + return false; + return true; +} + +/** @brief Check if any of packed values is less than zero + +Unsigned values will be casted to signed: `uchar 254 => char -2`. +For all types except 64-bit. */ +template<typename _Tp, int n> inline bool v_check_any(const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < n; i++ ) + if( V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) < 0 ) + return true; + return false; +} + +/** @brief Bitwise select + +Return value will be built by combining values a and b using the following scheme: +If the i-th bit in _mask_ is 1 + select i-th bit from _a_ +else + select i-th bit from _b_ */ +template<typename _Tp, int n> inline v_reg<_Tp, n> v_select(const v_reg<_Tp, n>& mask, + const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + typedef V_TypeTraits<_Tp> Traits; + typedef typename Traits::int_type int_type; + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + { + int_type m = Traits::reinterpret_int(mask.s[i]); + c.s[i] = Traits::reinterpret_from_int((Traits::reinterpret_int(a.s[i]) & m) + | (Traits::reinterpret_int(b.s[i]) & ~m)); + } + return c; +} + +/** @brief Expand values to the wider pack type + +Copy contents of register to two registers with 2x wider pack type. +Scheme: +@code + int32x4 int64x2 int64x2 +{A B C D} ==> {A B} , {C D} +@endcode */ +template<typename _Tp, int n> inline void v_expand(const v_reg<_Tp, n>& a, + v_reg<typename V_TypeTraits<_Tp>::w_type, n/2>& b0, + v_reg<typename V_TypeTraits<_Tp>::w_type, n/2>& b1) +{ + for( int i = 0; i < (n/2); i++ ) + { + b0.s[i] = a.s[i]; + b1.s[i] = a.s[i+(n/2)]; + } +} + +//! @cond IGNORED +template<typename _Tp, int n> inline v_reg<typename V_TypeTraits<_Tp>::int_type, n> + v_reinterpret_as_int(const v_reg<_Tp, n>& a) +{ + v_reg<typename V_TypeTraits<_Tp>::int_type, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = V_TypeTraits<_Tp>::reinterpret_int(a.s[i]); + return c; +} + +template<typename _Tp, int n> inline v_reg<typename V_TypeTraits<_Tp>::uint_type, n> + v_reinterpret_as_uint(const v_reg<_Tp, n>& a) +{ + v_reg<typename V_TypeTraits<_Tp>::uint_type, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = V_TypeTraits<_Tp>::reinterpret_uint(a.s[i]); + return c; +} +//! @endcond + +/** @brief Interleave two vectors + +Scheme: +@code + {A1 A2 A3 A4} + {B1 B2 B3 B4} +--------------- + {A1 B1 A2 B2} and {A3 B3 A4 B4} +@endcode +For all types except 64-bit. +*/ +template<typename _Tp, int n> inline void v_zip( const v_reg<_Tp, n>& a0, const v_reg<_Tp, n>& a1, + v_reg<_Tp, n>& b0, v_reg<_Tp, n>& b1 ) +{ + int i; + for( i = 0; i < n/2; i++ ) + { + b0.s[i*2] = a0.s[i]; + b0.s[i*2+1] = a1.s[i]; + } + for( ; i < n; i++ ) + { + b1.s[i*2-n] = a0.s[i]; + b1.s[i*2-n+1] = a1.s[i]; + } +} + +/** @brief Load register contents from memory + +@param ptr pointer to memory block with data +@return register object + +@note Returned type will be detected from passed pointer type, for example uchar ==> cv::v_uint8x16, int ==> cv::v_int32x4, etc. + */ +template<typename _Tp> +inline v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> v_load(const _Tp* ptr) +{ + return v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes>(ptr); +} + +/** @brief Load register contents from memory (aligned) + +similar to cv::v_load, but source memory block should be aligned (to 16-byte boundary) + */ +template<typename _Tp> +inline v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> v_load_aligned(const _Tp* ptr) +{ + return v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes>(ptr); +} + +/** @brief Load register contents from two memory blocks + +@param loptr memory block containing data for first half (0..n/2) +@param hiptr memory block containing data for second half (n/2..n) + +@code{.cpp} +int lo[2] = { 1, 2 }, hi[2] = { 3, 4 }; +v_int32x4 r = v_load_halves(lo, hi); +@endcode + */ +template<typename _Tp> +inline v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> v_load_halves(const _Tp* loptr, const _Tp* hiptr) +{ + v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> c; + for( int i = 0; i < c.nlanes/2; i++ ) + { + c.s[i] = loptr[i]; + c.s[i+c.nlanes/2] = hiptr[i]; + } + return c; +} + +/** @brief Load register contents from memory with double expand + +Same as cv::v_load, but result pack type will be 2x wider than memory type. + +@code{.cpp} +short buf[4] = {1, 2, 3, 4}; // type is int16 +v_int32x4 r = v_load_expand(buf); // r = {1, 2, 3, 4} - type is int32 +@endcode +For 8-, 16-, 32-bit integer source types. */ +template<typename _Tp> +inline v_reg<typename V_TypeTraits<_Tp>::w_type, V_SIMD128Traits<_Tp>::nlanes / 2> +v_load_expand(const _Tp* ptr) +{ + typedef typename V_TypeTraits<_Tp>::w_type w_type; + v_reg<w_type, V_SIMD128Traits<w_type>::nlanes> c; + for( int i = 0; i < c.nlanes; i++ ) + { + c.s[i] = ptr[i]; + } + return c; +} + +/** @brief Load register contents from memory with quad expand + +Same as cv::v_load_expand, but result type is 4 times wider than source. +@code{.cpp} +char buf[4] = {1, 2, 3, 4}; // type is int8 +v_int32x4 r = v_load_q(buf); // r = {1, 2, 3, 4} - type is int32 +@endcode +For 8-bit integer source types. */ +template<typename _Tp> +inline v_reg<typename V_TypeTraits<_Tp>::q_type, V_SIMD128Traits<_Tp>::nlanes / 4> +v_load_expand_q(const _Tp* ptr) +{ + typedef typename V_TypeTraits<_Tp>::q_type q_type; + v_reg<q_type, V_SIMD128Traits<q_type>::nlanes> c; + for( int i = 0; i < c.nlanes; i++ ) + { + c.s[i] = ptr[i]; + } + return c; +} + +/** @brief Load and deinterleave (2 channels) + +Load data from memory deinterleave and store to 2 registers. +Scheme: +@code +{A1 B1 A2 B2 ...} ==> {A1 A2 ...}, {B1 B2 ...} +@endcode +For all types except 64-bit. */ +template<typename _Tp, int n> inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a, + v_reg<_Tp, n>& b) +{ + int i, i2; + for( i = i2 = 0; i < n; i++, i2 += 2 ) + { + a.s[i] = ptr[i2]; + b.s[i] = ptr[i2+1]; + } +} + +/** @brief Load and deinterleave (3 channels) + +Load data from memory deinterleave and store to 3 registers. +Scheme: +@code +{A1 B1 C1 A2 B2 C2 ...} ==> {A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...} +@endcode +For all types except 64-bit. */ +template<typename _Tp, int n> inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a, + v_reg<_Tp, n>& b, v_reg<_Tp, n>& c) +{ + int i, i3; + for( i = i3 = 0; i < n; i++, i3 += 3 ) + { + a.s[i] = ptr[i3]; + b.s[i] = ptr[i3+1]; + c.s[i] = ptr[i3+2]; + } +} + +/** @brief Load and deinterleave (4 channels) + +Load data from memory deinterleave and store to 4 registers. +Scheme: +@code +{A1 B1 C1 D1 A2 B2 C2 D2 ...} ==> {A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...}, {D1 D2 ...} +@endcode +For all types except 64-bit. */ +template<typename _Tp, int n> +inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a, + v_reg<_Tp, n>& b, v_reg<_Tp, n>& c, + v_reg<_Tp, n>& d) +{ + int i, i4; + for( i = i4 = 0; i < n; i++, i4 += 4 ) + { + a.s[i] = ptr[i4]; + b.s[i] = ptr[i4+1]; + c.s[i] = ptr[i4+2]; + d.s[i] = ptr[i4+3]; + } +} + +/** @brief Interleave and store (2 channels) + +Interleave and store data from 2 registers to memory. +Scheme: +@code +{A1 A2 ...}, {B1 B2 ...} ==> {A1 B1 A2 B2 ...} +@endcode +For all types except 64-bit. */ +template<typename _Tp, int n> +inline void v_store_interleave( _Tp* ptr, const v_reg<_Tp, n>& a, + const v_reg<_Tp, n>& b) +{ + int i, i2; + for( i = i2 = 0; i < n; i++, i2 += 2 ) + { + ptr[i2] = a.s[i]; + ptr[i2+1] = b.s[i]; + } +} + +/** @brief Interleave and store (3 channels) + +Interleave and store data from 3 registers to memory. +Scheme: +@code +{A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...} ==> {A1 B1 C1 A2 B2 C2 ...} +@endcode +For all types except 64-bit. */ +template<typename _Tp, int n> +inline void v_store_interleave( _Tp* ptr, const v_reg<_Tp, n>& a, + const v_reg<_Tp, n>& b, const v_reg<_Tp, n>& c) +{ + int i, i3; + for( i = i3 = 0; i < n; i++, i3 += 3 ) + { + ptr[i3] = a.s[i]; + ptr[i3+1] = b.s[i]; + ptr[i3+2] = c.s[i]; + } +} + +/** @brief Interleave and store (4 channels) + +Interleave and store data from 4 registers to memory. +Scheme: +@code +{A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...}, {D1 D2 ...} ==> {A1 B1 C1 D1 A2 B2 C2 D2 ...} +@endcode +For all types except 64-bit. */ +template<typename _Tp, int n> inline void v_store_interleave( _Tp* ptr, const v_reg<_Tp, n>& a, + const v_reg<_Tp, n>& b, const v_reg<_Tp, n>& c, + const v_reg<_Tp, n>& d) +{ + int i, i4; + for( i = i4 = 0; i < n; i++, i4 += 4 ) + { + ptr[i4] = a.s[i]; + ptr[i4+1] = b.s[i]; + ptr[i4+2] = c.s[i]; + ptr[i4+3] = d.s[i]; + } +} + +/** @brief Store data to memory + +Store register contents to memory. +Scheme: +@code + REG {A B C D} ==> MEM {A B C D} +@endcode +Pointer can be unaligned. */ +template<typename _Tp, int n> +inline void v_store(_Tp* ptr, const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < n; i++ ) + ptr[i] = a.s[i]; +} + +/** @brief Store data to memory (lower half) + +Store lower half of register contents to memory. +Scheme: +@code + REG {A B C D} ==> MEM {A B} +@endcode */ +template<typename _Tp, int n> +inline void v_store_low(_Tp* ptr, const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < (n/2); i++ ) + ptr[i] = a.s[i]; +} + +/** @brief Store data to memory (higher half) + +Store higher half of register contents to memory. +Scheme: +@code + REG {A B C D} ==> MEM {C D} +@endcode */ +template<typename _Tp, int n> +inline void v_store_high(_Tp* ptr, const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < (n/2); i++ ) + ptr[i] = a.s[i+(n/2)]; +} + +/** @brief Store data to memory (aligned) + +Store register contents to memory. +Scheme: +@code + REG {A B C D} ==> MEM {A B C D} +@endcode +Pointer __should__ be aligned by 16-byte boundary. */ +template<typename _Tp, int n> +inline void v_store_aligned(_Tp* ptr, const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < n; i++ ) + ptr[i] = a.s[i]; +} + +/** @brief Combine vector from first elements of two vectors + +Scheme: +@code + {A1 A2 A3 A4} + {B1 B2 B3 B4} +--------------- + {A1 A2 B1 B2} +@endcode +For all types except 64-bit. */ +template<typename _Tp, int n> +inline v_reg<_Tp, n> v_combine_low(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < (n/2); i++ ) + { + c.s[i] = a.s[i]; + c.s[i+(n/2)] = b.s[i]; + } + return c; +} + +/** @brief Combine vector from last elements of two vectors + +Scheme: +@code + {A1 A2 A3 A4} + {B1 B2 B3 B4} +--------------- + {A3 A4 B3 B4} +@endcode +For all types except 64-bit. */ +template<typename _Tp, int n> +inline v_reg<_Tp, n> v_combine_high(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < (n/2); i++ ) + { + c.s[i] = a.s[i+(n/2)]; + c.s[i+(n/2)] = b.s[i+(n/2)]; + } + return c; +} + +/** @brief Combine two vectors from lower and higher parts of two other vectors + +@code{.cpp} +low = cv::v_combine_low(a, b); +high = cv::v_combine_high(a, b); +@endcode */ +template<typename _Tp, int n> +inline void v_recombine(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b, + v_reg<_Tp, n>& low, v_reg<_Tp, n>& high) +{ + for( int i = 0; i < (n/2); i++ ) + { + low.s[i] = a.s[i]; + low.s[i+(n/2)] = b.s[i]; + high.s[i] = a.s[i+(n/2)]; + high.s[i+(n/2)] = b.s[i+(n/2)]; + } +} + +/** @brief Vector extract + +Scheme: +@code + {A1 A2 A3 A4} + {B1 B2 B3 B4} +======================== +shift = 1 {A2 A3 A4 B1} +shift = 2 {A3 A4 B1 B2} +shift = 3 {A4 B1 B2 B3} +@endcode +Restriction: 0 <= shift < nlanes + +Usage: +@code +v_int32x4 a, b, c; +c = v_extract<2>(a, b); +@endcode +For integer types only. */ +template<int s, typename _Tp, int n> +inline v_reg<_Tp, n> v_extract(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> r; + const int shift = n - s; + int i = 0; + for (; i < shift; ++i) + r.s[i] = a.s[i+s]; + for (; i < n; ++i) + r.s[i] = b.s[i-shift]; + return r; +} + +/** @brief Round + +Rounds each value. Input type is float vector ==> output type is int vector.*/ +template<int n> inline v_reg<int, n> v_round(const v_reg<float, n>& a) +{ + v_reg<int, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = cvRound(a.s[i]); + return c; +} + +/** @brief Floor + +Floor each value. Input type is float vector ==> output type is int vector.*/ +template<int n> inline v_reg<int, n> v_floor(const v_reg<float, n>& a) +{ + v_reg<int, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = cvFloor(a.s[i]); + return c; +} + +/** @brief Ceil + +Ceil each value. Input type is float vector ==> output type is int vector.*/ +template<int n> inline v_reg<int, n> v_ceil(const v_reg<float, n>& a) +{ + v_reg<int, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = cvCeil(a.s[i]); + return c; +} + +/** @brief Trunc + +Truncate each value. Input type is float vector ==> output type is int vector.*/ +template<int n> inline v_reg<int, n> v_trunc(const v_reg<float, n>& a) +{ + v_reg<int, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = (int)(a.s[i]); + return c; +} + +/** @overload */ +template<int n> inline v_reg<int, n*2> v_round(const v_reg<double, n>& a) +{ + v_reg<int, n*2> c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = cvRound(a.s[i]); + c.s[i+n] = 0; + } + return c; +} + +/** @overload */ +template<int n> inline v_reg<int, n*2> v_floor(const v_reg<double, n>& a) +{ + v_reg<int, n> c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = cvFloor(a.s[i]); + c.s[i+n] = 0; + } + return c; +} + +/** @overload */ +template<int n> inline v_reg<int, n*2> v_ceil(const v_reg<double, n>& a) +{ + v_reg<int, n> c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = cvCeil(a.s[i]); + c.s[i+n] = 0; + } + return c; +} + +/** @overload */ +template<int n> inline v_reg<int, n*2> v_trunc(const v_reg<double, n>& a) +{ + v_reg<int, n> c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = cvCeil(a.s[i]); + c.s[i+n] = 0; + } + return c; +} + +/** @brief Convert to float + +Supported input type is cv::v_int32x4. */ +template<int n> inline v_reg<float, n> v_cvt_f32(const v_reg<int, n>& a) +{ + v_reg<float, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = (float)a.s[i]; + return c; +} + +/** @brief Convert to double + +Supported input type is cv::v_int32x4. */ +template<int n> inline v_reg<double, n> v_cvt_f64(const v_reg<int, n*2>& a) +{ + v_reg<double, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = (double)a.s[i]; + return c; +} + +/** @brief Convert to double + +Supported input type is cv::v_float32x4. */ +template<int n> inline v_reg<double, n> v_cvt_f64(const v_reg<float, n*2>& a) +{ + v_reg<double, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = (double)a.s[i]; + return c; +} + +/** @brief Transpose 4x4 matrix + +Scheme: +@code +a0 {A1 A2 A3 A4} +a1 {B1 B2 B3 B4} +a2 {C1 C2 C3 C4} +a3 {D1 D2 D3 D4} +=============== +b0 {A1 B1 C1 D1} +b1 {A2 B2 C2 D2} +b2 {A3 B3 C3 D3} +b3 {A4 B4 C4 D4} +@endcode +*/ +template<typename _Tp> +inline void v_transpose4x4( v_reg<_Tp, 4>& a0, const v_reg<_Tp, 4>& a1, + const v_reg<_Tp, 4>& a2, const v_reg<_Tp, 4>& a3, + v_reg<_Tp, 4>& b0, v_reg<_Tp, 4>& b1, + v_reg<_Tp, 4>& b2, v_reg<_Tp, 4>& b3 ) +{ + b0 = v_reg<_Tp, 4>(a0.s[0], a1.s[0], a2.s[0], a3.s[0]); + b1 = v_reg<_Tp, 4>(a0.s[1], a1.s[1], a2.s[1], a3.s[1]); + b2 = v_reg<_Tp, 4>(a0.s[2], a1.s[2], a2.s[2], a3.s[2]); + b3 = v_reg<_Tp, 4>(a0.s[3], a1.s[3], a2.s[3], a3.s[3]); +} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_INIT_ZERO(_Tpvec, _Tp, suffix) \ +inline _Tpvec v_setzero_##suffix() { return _Tpvec::zero(); } + +//! @name Init with zero +//! @{ +//! @brief Create new vector with zero elements +OPENCV_HAL_IMPL_C_INIT_ZERO(v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_int8x16, schar, s8) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_int16x8, short, s16) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_int32x4, int, s32) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_float32x4, float, f32) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_float64x2, double, f64) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_uint64x2, uint64, u64) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_int64x2, int64, s64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_INIT_VAL(_Tpvec, _Tp, suffix) \ +inline _Tpvec v_setall_##suffix(_Tp val) { return _Tpvec::all(val); } + +//! @name Init with value +//! @{ +//! @brief Create new vector with elements set to a specific value +OPENCV_HAL_IMPL_C_INIT_VAL(v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_C_INIT_VAL(v_int8x16, schar, s8) +OPENCV_HAL_IMPL_C_INIT_VAL(v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_C_INIT_VAL(v_int16x8, short, s16) +OPENCV_HAL_IMPL_C_INIT_VAL(v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_C_INIT_VAL(v_int32x4, int, s32) +OPENCV_HAL_IMPL_C_INIT_VAL(v_float32x4, float, f32) +OPENCV_HAL_IMPL_C_INIT_VAL(v_float64x2, double, f64) +OPENCV_HAL_IMPL_C_INIT_VAL(v_uint64x2, uint64, u64) +OPENCV_HAL_IMPL_C_INIT_VAL(v_int64x2, int64, s64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_REINTERPRET(_Tpvec, _Tp, suffix) \ +template<typename _Tp0, int n0> inline _Tpvec \ + v_reinterpret_as_##suffix(const v_reg<_Tp0, n0>& a) \ +{ return a.template reinterpret_as<_Tp, _Tpvec::nlanes>(); } + +//! @name Reinterpret +//! @{ +//! @brief Convert vector to different type without modifying underlying data. +OPENCV_HAL_IMPL_C_REINTERPRET(v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_C_REINTERPRET(v_int8x16, schar, s8) +OPENCV_HAL_IMPL_C_REINTERPRET(v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_C_REINTERPRET(v_int16x8, short, s16) +OPENCV_HAL_IMPL_C_REINTERPRET(v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_C_REINTERPRET(v_int32x4, int, s32) +OPENCV_HAL_IMPL_C_REINTERPRET(v_float32x4, float, f32) +OPENCV_HAL_IMPL_C_REINTERPRET(v_float64x2, double, f64) +OPENCV_HAL_IMPL_C_REINTERPRET(v_uint64x2, uint64, u64) +OPENCV_HAL_IMPL_C_REINTERPRET(v_int64x2, int64, s64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_SHIFTL(_Tpvec, _Tp) \ +template<int n> inline _Tpvec v_shl(const _Tpvec& a) \ +{ return a << n; } + +//! @name Left shift +//! @{ +//! @brief Shift left +OPENCV_HAL_IMPL_C_SHIFTL(v_uint16x8, ushort) +OPENCV_HAL_IMPL_C_SHIFTL(v_int16x8, short) +OPENCV_HAL_IMPL_C_SHIFTL(v_uint32x4, unsigned) +OPENCV_HAL_IMPL_C_SHIFTL(v_int32x4, int) +OPENCV_HAL_IMPL_C_SHIFTL(v_uint64x2, uint64) +OPENCV_HAL_IMPL_C_SHIFTL(v_int64x2, int64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_SHIFTR(_Tpvec, _Tp) \ +template<int n> inline _Tpvec v_shr(const _Tpvec& a) \ +{ return a >> n; } + +//! @name Right shift +//! @{ +//! @brief Shift right +OPENCV_HAL_IMPL_C_SHIFTR(v_uint16x8, ushort) +OPENCV_HAL_IMPL_C_SHIFTR(v_int16x8, short) +OPENCV_HAL_IMPL_C_SHIFTR(v_uint32x4, unsigned) +OPENCV_HAL_IMPL_C_SHIFTR(v_int32x4, int) +OPENCV_HAL_IMPL_C_SHIFTR(v_uint64x2, uint64) +OPENCV_HAL_IMPL_C_SHIFTR(v_int64x2, int64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_RSHIFTR(_Tpvec, _Tp) \ +template<int n> inline _Tpvec v_rshr(const _Tpvec& a) \ +{ \ + _Tpvec c; \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + c.s[i] = (_Tp)((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \ + return c; \ +} + +//! @name Rounding shift +//! @{ +//! @brief Rounding shift right +OPENCV_HAL_IMPL_C_RSHIFTR(v_uint16x8, ushort) +OPENCV_HAL_IMPL_C_RSHIFTR(v_int16x8, short) +OPENCV_HAL_IMPL_C_RSHIFTR(v_uint32x4, unsigned) +OPENCV_HAL_IMPL_C_RSHIFTR(v_int32x4, int) +OPENCV_HAL_IMPL_C_RSHIFTR(v_uint64x2, uint64) +OPENCV_HAL_IMPL_C_RSHIFTR(v_int64x2, int64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_PACK(_Tpvec, _Tpnvec, _Tpn, pack_suffix) \ +inline _Tpnvec v_##pack_suffix(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpnvec c; \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + { \ + c.s[i] = saturate_cast<_Tpn>(a.s[i]); \ + c.s[i+_Tpvec::nlanes] = saturate_cast<_Tpn>(b.s[i]); \ + } \ + return c; \ +} + +//! @name Pack +//! @{ +//! @brief Pack values from two vectors to one +//! +//! Return vector type have twice more elements than input vector types. Variant with _u_ suffix also +//! converts to corresponding unsigned type. +//! +//! - pack: for 16-, 32- and 64-bit integer input types +//! - pack_u: for 16- and 32-bit signed integer input types +OPENCV_HAL_IMPL_C_PACK(v_uint16x8, v_uint8x16, uchar, pack) +OPENCV_HAL_IMPL_C_PACK(v_int16x8, v_int8x16, schar, pack) +OPENCV_HAL_IMPL_C_PACK(v_uint32x4, v_uint16x8, ushort, pack) +OPENCV_HAL_IMPL_C_PACK(v_int32x4, v_int16x8, short, pack) +OPENCV_HAL_IMPL_C_PACK(v_uint64x2, v_uint32x4, unsigned, pack) +OPENCV_HAL_IMPL_C_PACK(v_int64x2, v_int32x4, int, pack) +OPENCV_HAL_IMPL_C_PACK(v_int16x8, v_uint8x16, uchar, pack_u) +OPENCV_HAL_IMPL_C_PACK(v_int32x4, v_uint16x8, ushort, pack_u) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_RSHR_PACK(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix) \ +template<int n> inline _Tpnvec v_rshr_##pack_suffix(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpnvec c; \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + { \ + c.s[i] = saturate_cast<_Tpn>((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \ + c.s[i+_Tpvec::nlanes] = saturate_cast<_Tpn>((b.s[i] + ((_Tp)1 << (n - 1))) >> n); \ + } \ + return c; \ +} + +//! @name Pack with rounding shift +//! @{ +//! @brief Pack values from two vectors to one with rounding shift +//! +//! Values from the input vectors will be shifted right by _n_ bits with rounding, converted to narrower +//! type and returned in the result vector. Variant with _u_ suffix converts to unsigned type. +//! +//! - pack: for 16-, 32- and 64-bit integer input types +//! - pack_u: for 16- and 32-bit signed integer input types +OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint16x8, ushort, v_uint8x16, uchar, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int16x8, short, v_int8x16, schar, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint32x4, unsigned, v_uint16x8, ushort, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int32x4, int, v_int16x8, short, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint64x2, uint64, v_uint32x4, unsigned, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int64x2, int64, v_int32x4, int, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int16x8, short, v_uint8x16, uchar, pack_u) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int32x4, int, v_uint16x8, ushort, pack_u) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_PACK_STORE(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix) \ +inline void v_##pack_suffix##_store(_Tpn* ptr, const _Tpvec& a) \ +{ \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + ptr[i] = saturate_cast<_Tpn>(a.s[i]); \ +} + +//! @name Pack and store +//! @{ +//! @brief Store values from the input vector into memory with pack +//! +//! Values will be stored into memory with saturating conversion to narrower type. +//! Variant with _u_ suffix converts to corresponding unsigned type. +//! +//! - pack: for 16-, 32- and 64-bit integer input types +//! - pack_u: for 16- and 32-bit signed integer input types +OPENCV_HAL_IMPL_C_PACK_STORE(v_uint16x8, ushort, v_uint8x16, uchar, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int16x8, short, v_int8x16, schar, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_uint32x4, unsigned, v_uint16x8, ushort, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int32x4, int, v_int16x8, short, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_uint64x2, uint64, v_uint32x4, unsigned, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int64x2, int64, v_int32x4, int, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int16x8, short, v_uint8x16, uchar, pack_u) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int32x4, int, v_uint16x8, ushort, pack_u) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix) \ +template<int n> inline void v_rshr_##pack_suffix##_store(_Tpn* ptr, const _Tpvec& a) \ +{ \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + ptr[i] = saturate_cast<_Tpn>((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \ +} + +//! @name Pack and store with rounding shift +//! @{ +//! @brief Store values from the input vector into memory with pack +//! +//! Values will be shifted _n_ bits right with rounding, converted to narrower type and stored into +//! memory. Variant with _u_ suffix converts to unsigned type. +//! +//! - pack: for 16-, 32- and 64-bit integer input types +//! - pack_u: for 16- and 32-bit signed integer input types +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint16x8, ushort, v_uint8x16, uchar, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int16x8, short, v_int8x16, schar, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint32x4, unsigned, v_uint16x8, ushort, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int32x4, int, v_int16x8, short, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint64x2, uint64, v_uint32x4, unsigned, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int64x2, int64, v_int32x4, int, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int16x8, short, v_uint8x16, uchar, pack_u) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int32x4, int, v_uint16x8, ushort, pack_u) +//! @} + +/** @brief Matrix multiplication + +Scheme: +@code +{A0 A1 A2 A3} |V0| +{B0 B1 B2 B3} |V1| +{C0 C1 C2 C3} |V2| +{D0 D1 D2 D3} x |V3| +==================== +{R0 R1 R2 R3}, where: +R0 = A0V0 + A1V1 + A2V2 + A3V3, +R1 = B0V0 + B1V1 + B2V2 + B3V3 +... +@endcode +*/ +inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0, + const v_float32x4& m1, const v_float32x4& m2, + const v_float32x4& m3) +{ + return v_float32x4(v.s[0]*m0.s[0] + v.s[1]*m1.s[0] + v.s[2]*m2.s[0] + v.s[3]*m3.s[0], + v.s[0]*m0.s[1] + v.s[1]*m1.s[1] + v.s[2]*m2.s[1] + v.s[3]*m3.s[1], + v.s[0]*m0.s[2] + v.s[1]*m1.s[2] + v.s[2]*m2.s[2] + v.s[3]*m3.s[2], + v.s[0]*m0.s[3] + v.s[1]*m1.s[3] + v.s[2]*m2.s[3] + v.s[3]*m3.s[3]); +} + +//! @} + +//! @name Check SIMD support +//! @{ +//! @brief Check CPU capability of SIMD operation +static inline bool hasSIMD128() +{ + return false; +} + +//! @} + + +} + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/hal/intrin_neon.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1234 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_INTRIN_NEON_HPP +#define OPENCV_HAL_INTRIN_NEON_HPP + +#include <algorithm> +#include "opencv2/core/utility.hpp" + +namespace cv +{ + +//! @cond IGNORED + +#define CV_SIMD128 1 +#if defined(__aarch64__) +#define CV_SIMD128_64F 1 +#else +#define CV_SIMD128_64F 0 +#endif + +#if CV_SIMD128_64F +#define OPENCV_HAL_IMPL_NEON_REINTERPRET(_Tpv, suffix) \ +template <typename T> static inline \ +_Tpv vreinterpretq_##suffix##_f64(T a) { return (_Tpv) a; } \ +template <typename T> static inline \ +float64x2_t vreinterpretq_f64_##suffix(T a) { return (float64x2_t) a; } +OPENCV_HAL_IMPL_NEON_REINTERPRET(uint8x16_t, u8) +OPENCV_HAL_IMPL_NEON_REINTERPRET(int8x16_t, s8) +OPENCV_HAL_IMPL_NEON_REINTERPRET(uint16x8_t, u16) +OPENCV_HAL_IMPL_NEON_REINTERPRET(int16x8_t, s16) +OPENCV_HAL_IMPL_NEON_REINTERPRET(uint32x4_t, u32) +OPENCV_HAL_IMPL_NEON_REINTERPRET(int32x4_t, s32) +OPENCV_HAL_IMPL_NEON_REINTERPRET(uint64x2_t, u64) +OPENCV_HAL_IMPL_NEON_REINTERPRET(int64x2_t, s64) +OPENCV_HAL_IMPL_NEON_REINTERPRET(float32x4_t, f32) +#endif + +struct v_uint8x16 +{ + typedef uchar lane_type; + enum { nlanes = 16 }; + + v_uint8x16() {} + explicit v_uint8x16(uint8x16_t v) : val(v) {} + v_uint8x16(uchar v0, uchar v1, uchar v2, uchar v3, uchar v4, uchar v5, uchar v6, uchar v7, + uchar v8, uchar v9, uchar v10, uchar v11, uchar v12, uchar v13, uchar v14, uchar v15) + { + uchar v[] = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15}; + val = vld1q_u8(v); + } + uchar get0() const + { + return vgetq_lane_u8(val, 0); + } + + uint8x16_t val; +}; + +struct v_int8x16 +{ + typedef schar lane_type; + enum { nlanes = 16 }; + + v_int8x16() {} + explicit v_int8x16(int8x16_t v) : val(v) {} + v_int8x16(schar v0, schar v1, schar v2, schar v3, schar v4, schar v5, schar v6, schar v7, + schar v8, schar v9, schar v10, schar v11, schar v12, schar v13, schar v14, schar v15) + { + schar v[] = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15}; + val = vld1q_s8(v); + } + schar get0() const + { + return vgetq_lane_s8(val, 0); + } + + int8x16_t val; +}; + +struct v_uint16x8 +{ + typedef ushort lane_type; + enum { nlanes = 8 }; + + v_uint16x8() {} + explicit v_uint16x8(uint16x8_t v) : val(v) {} + v_uint16x8(ushort v0, ushort v1, ushort v2, ushort v3, ushort v4, ushort v5, ushort v6, ushort v7) + { + ushort v[] = {v0, v1, v2, v3, v4, v5, v6, v7}; + val = vld1q_u16(v); + } + ushort get0() const + { + return vgetq_lane_u16(val, 0); + } + + uint16x8_t val; +}; + +struct v_int16x8 +{ + typedef short lane_type; + enum { nlanes = 8 }; + + v_int16x8() {} + explicit v_int16x8(int16x8_t v) : val(v) {} + v_int16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7) + { + short v[] = {v0, v1, v2, v3, v4, v5, v6, v7}; + val = vld1q_s16(v); + } + short get0() const + { + return vgetq_lane_s16(val, 0); + } + + int16x8_t val; +}; + +struct v_uint32x4 +{ + typedef unsigned lane_type; + enum { nlanes = 4 }; + + v_uint32x4() {} + explicit v_uint32x4(uint32x4_t v) : val(v) {} + v_uint32x4(unsigned v0, unsigned v1, unsigned v2, unsigned v3) + { + unsigned v[] = {v0, v1, v2, v3}; + val = vld1q_u32(v); + } + unsigned get0() const + { + return vgetq_lane_u32(val, 0); + } + + uint32x4_t val; +}; + +struct v_int32x4 +{ + typedef int lane_type; + enum { nlanes = 4 }; + + v_int32x4() {} + explicit v_int32x4(int32x4_t v) : val(v) {} + v_int32x4(int v0, int v1, int v2, int v3) + { + int v[] = {v0, v1, v2, v3}; + val = vld1q_s32(v); + } + int get0() const + { + return vgetq_lane_s32(val, 0); + } + int32x4_t val; +}; + +struct v_float32x4 +{ + typedef float lane_type; + enum { nlanes = 4 }; + + v_float32x4() {} + explicit v_float32x4(float32x4_t v) : val(v) {} + v_float32x4(float v0, float v1, float v2, float v3) + { + float v[] = {v0, v1, v2, v3}; + val = vld1q_f32(v); + } + float get0() const + { + return vgetq_lane_f32(val, 0); + } + float32x4_t val; +}; + +struct v_uint64x2 +{ + typedef uint64 lane_type; + enum { nlanes = 2 }; + + v_uint64x2() {} + explicit v_uint64x2(uint64x2_t v) : val(v) {} + v_uint64x2(unsigned v0, unsigned v1) + { + uint64 v[] = {v0, v1}; + val = vld1q_u64(v); + } + uint64 get0() const + { + return vgetq_lane_u64(val, 0); + } + uint64x2_t val; +}; + +struct v_int64x2 +{ + typedef int64 lane_type; + enum { nlanes = 2 }; + + v_int64x2() {} + explicit v_int64x2(int64x2_t v) : val(v) {} + v_int64x2(int v0, int v1) + { + int64 v[] = {v0, v1}; + val = vld1q_s64(v); + } + int64 get0() const + { + return vgetq_lane_s64(val, 0); + } + int64x2_t val; +}; + +#if CV_SIMD128_64F +struct v_float64x2 +{ + typedef double lane_type; + enum { nlanes = 2 }; + + v_float64x2() {} + explicit v_float64x2(float64x2_t v) : val(v) {} + v_float64x2(double v0, double v1) + { + double v[] = {v0, v1}; + val = vld1q_f64(v); + } + double get0() const + { + return vgetq_lane_f64(val, 0); + } + float64x2_t val; +}; +#endif + +#if defined (HAVE_FP16) +// Workaround for old comiplers +template <typename T> static inline int16x4_t vreinterpret_s16_f16(T a) +{ return (int16x4_t)a; } +template <typename T> static inline float16x4_t vreinterpret_f16_s16(T a) +{ return (float16x4_t)a; } +template <typename T> static inline float16x4_t vld1_f16(const T* ptr) +{ return vreinterpret_f16_s16(vld1_s16((const short*)ptr)); } +template <typename T> static inline void vst1_f16(T* ptr, float16x4_t a) +{ vst1_s16((short*)ptr, vreinterpret_s16_f16(a)); } + +struct v_float16x4 +{ + typedef short lane_type; + enum { nlanes = 4 }; + + v_float16x4() {} + explicit v_float16x4(float16x4_t v) : val(v) {} + v_float16x4(short v0, short v1, short v2, short v3) + { + short v[] = {v0, v1, v2, v3}; + val = vld1_f16(v); + } + short get0() const + { + return vget_lane_s16(vreinterpret_s16_f16(val), 0); + } + float16x4_t val; +}; +#endif + +#define OPENCV_HAL_IMPL_NEON_INIT(_Tpv, _Tp, suffix) \ +inline v_##_Tpv v_setzero_##suffix() { return v_##_Tpv(vdupq_n_##suffix((_Tp)0)); } \ +inline v_##_Tpv v_setall_##suffix(_Tp v) { return v_##_Tpv(vdupq_n_##suffix(v)); } \ +inline _Tpv##_t vreinterpretq_##suffix##_##suffix(_Tpv##_t v) { return v; } \ +inline v_uint8x16 v_reinterpret_as_u8(const v_##_Tpv& v) { return v_uint8x16(vreinterpretq_u8_##suffix(v.val)); } \ +inline v_int8x16 v_reinterpret_as_s8(const v_##_Tpv& v) { return v_int8x16(vreinterpretq_s8_##suffix(v.val)); } \ +inline v_uint16x8 v_reinterpret_as_u16(const v_##_Tpv& v) { return v_uint16x8(vreinterpretq_u16_##suffix(v.val)); } \ +inline v_int16x8 v_reinterpret_as_s16(const v_##_Tpv& v) { return v_int16x8(vreinterpretq_s16_##suffix(v.val)); } \ +inline v_uint32x4 v_reinterpret_as_u32(const v_##_Tpv& v) { return v_uint32x4(vreinterpretq_u32_##suffix(v.val)); } \ +inline v_int32x4 v_reinterpret_as_s32(const v_##_Tpv& v) { return v_int32x4(vreinterpretq_s32_##suffix(v.val)); } \ +inline v_uint64x2 v_reinterpret_as_u64(const v_##_Tpv& v) { return v_uint64x2(vreinterpretq_u64_##suffix(v.val)); } \ +inline v_int64x2 v_reinterpret_as_s64(const v_##_Tpv& v) { return v_int64x2(vreinterpretq_s64_##suffix(v.val)); } \ +inline v_float32x4 v_reinterpret_as_f32(const v_##_Tpv& v) { return v_float32x4(vreinterpretq_f32_##suffix(v.val)); } + +OPENCV_HAL_IMPL_NEON_INIT(uint8x16, uchar, u8) +OPENCV_HAL_IMPL_NEON_INIT(int8x16, schar, s8) +OPENCV_HAL_IMPL_NEON_INIT(uint16x8, ushort, u16) +OPENCV_HAL_IMPL_NEON_INIT(int16x8, short, s16) +OPENCV_HAL_IMPL_NEON_INIT(uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_NEON_INIT(int32x4, int, s32) +OPENCV_HAL_IMPL_NEON_INIT(uint64x2, uint64, u64) +OPENCV_HAL_IMPL_NEON_INIT(int64x2, int64, s64) +OPENCV_HAL_IMPL_NEON_INIT(float32x4, float, f32) +#if CV_SIMD128_64F +#define OPENCV_HAL_IMPL_NEON_INIT_64(_Tpv, suffix) \ +inline v_float64x2 v_reinterpret_as_f64(const v_##_Tpv& v) { return v_float64x2(vreinterpretq_f64_##suffix(v.val)); } +OPENCV_HAL_IMPL_NEON_INIT(float64x2, double, f64) +OPENCV_HAL_IMPL_NEON_INIT_64(uint8x16, u8) +OPENCV_HAL_IMPL_NEON_INIT_64(int8x16, s8) +OPENCV_HAL_IMPL_NEON_INIT_64(uint16x8, u16) +OPENCV_HAL_IMPL_NEON_INIT_64(int16x8, s16) +OPENCV_HAL_IMPL_NEON_INIT_64(uint32x4, u32) +OPENCV_HAL_IMPL_NEON_INIT_64(int32x4, s32) +OPENCV_HAL_IMPL_NEON_INIT_64(uint64x2, u64) +OPENCV_HAL_IMPL_NEON_INIT_64(int64x2, s64) +OPENCV_HAL_IMPL_NEON_INIT_64(float32x4, f32) +OPENCV_HAL_IMPL_NEON_INIT_64(float64x2, f64) +#endif + +#define OPENCV_HAL_IMPL_NEON_PACK(_Tpvec, _Tp, hreg, suffix, _Tpwvec, wsuffix, pack, op) \ +inline _Tpvec v_##pack(const _Tpwvec& a, const _Tpwvec& b) \ +{ \ + hreg a1 = vqmov##op##_##wsuffix(a.val), b1 = vqmov##op##_##wsuffix(b.val); \ + return _Tpvec(vcombine_##suffix(a1, b1)); \ +} \ +inline void v_##pack##_store(_Tp* ptr, const _Tpwvec& a) \ +{ \ + hreg a1 = vqmov##op##_##wsuffix(a.val); \ + vst1_##suffix(ptr, a1); \ +} \ +template<int n> inline \ +_Tpvec v_rshr_##pack(const _Tpwvec& a, const _Tpwvec& b) \ +{ \ + hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \ + hreg b1 = vqrshr##op##_n_##wsuffix(b.val, n); \ + return _Tpvec(vcombine_##suffix(a1, b1)); \ +} \ +template<int n> inline \ +void v_rshr_##pack##_store(_Tp* ptr, const _Tpwvec& a) \ +{ \ + hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \ + vst1_##suffix(ptr, a1); \ +} + +OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_uint16x8, u16, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_int8x16, schar, int8x8_t, s8, v_int16x8, s16, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_uint32x4, u32, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_int16x8, short, int16x4_t, s16, v_int32x4, s32, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_uint32x4, unsigned, uint32x2_t, u32, v_uint64x2, u64, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_int32x4, int, int32x2_t, s32, v_int64x2, s64, pack, n) + +OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_int16x8, s16, pack_u, un) +OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_int32x4, s32, pack_u, un) + +inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0, + const v_float32x4& m1, const v_float32x4& m2, + const v_float32x4& m3) +{ + float32x2_t vl = vget_low_f32(v.val), vh = vget_high_f32(v.val); + float32x4_t res = vmulq_lane_f32(m0.val, vl, 0); + res = vmlaq_lane_f32(res, m1.val, vl, 1); + res = vmlaq_lane_f32(res, m2.val, vh, 0); + res = vmlaq_lane_f32(res, m3.val, vh, 1); + return v_float32x4(res); +} + +#define OPENCV_HAL_IMPL_NEON_BIN_OP(bin_op, _Tpvec, intrin) \ +inline _Tpvec operator bin_op (const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(intrin(a.val, b.val)); \ +} \ +inline _Tpvec& operator bin_op##= (_Tpvec& a, const _Tpvec& b) \ +{ \ + a.val = intrin(a.val, b.val); \ + return a; \ +} + +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint8x16, vqaddq_u8) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint8x16, vqsubq_u8) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int8x16, vqaddq_s8) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int8x16, vqsubq_s8) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint16x8, vqaddq_u16) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint16x8, vqsubq_u16) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_uint16x8, vmulq_u16) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int16x8, vqaddq_s16) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int16x8, vqsubq_s16) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int16x8, vmulq_s16) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int32x4, vaddq_s32) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int32x4, vsubq_s32) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int32x4, vmulq_s32) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint32x4, vaddq_u32) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint32x4, vsubq_u32) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_uint32x4, vmulq_u32) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_float32x4, vaddq_f32) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_float32x4, vsubq_f32) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_float32x4, vmulq_f32) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int64x2, vaddq_s64) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int64x2, vsubq_s64) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint64x2, vaddq_u64) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint64x2, vsubq_u64) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_BIN_OP(/, v_float32x4, vdivq_f32) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_float64x2, vaddq_f64) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_float64x2, vsubq_f64) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_float64x2, vmulq_f64) +OPENCV_HAL_IMPL_NEON_BIN_OP(/, v_float64x2, vdivq_f64) +#else +inline v_float32x4 operator / (const v_float32x4& a, const v_float32x4& b) +{ + float32x4_t reciprocal = vrecpeq_f32(b.val); + reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal); + reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal); + return v_float32x4(vmulq_f32(a.val, reciprocal)); +} +inline v_float32x4& operator /= (v_float32x4& a, const v_float32x4& b) +{ + float32x4_t reciprocal = vrecpeq_f32(b.val); + reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal); + reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal); + a.val = vmulq_f32(a.val, reciprocal); + return a; +} +#endif + +inline void v_mul_expand(const v_int16x8& a, const v_int16x8& b, + v_int32x4& c, v_int32x4& d) +{ + c.val = vmull_s16(vget_low_s16(a.val), vget_low_s16(b.val)); + d.val = vmull_s16(vget_high_s16(a.val), vget_high_s16(b.val)); +} + +inline void v_mul_expand(const v_uint16x8& a, const v_uint16x8& b, + v_uint32x4& c, v_uint32x4& d) +{ + c.val = vmull_u16(vget_low_u16(a.val), vget_low_u16(b.val)); + d.val = vmull_u16(vget_high_u16(a.val), vget_high_u16(b.val)); +} + +inline void v_mul_expand(const v_uint32x4& a, const v_uint32x4& b, + v_uint64x2& c, v_uint64x2& d) +{ + c.val = vmull_u32(vget_low_u32(a.val), vget_low_u32(b.val)); + d.val = vmull_u32(vget_high_u32(a.val), vget_high_u32(b.val)); +} + +inline v_int32x4 v_dotprod(const v_int16x8& a, const v_int16x8& b) +{ + int32x4_t c = vmull_s16(vget_low_s16(a.val), vget_low_s16(b.val)); + int32x4_t d = vmull_s16(vget_high_s16(a.val), vget_high_s16(b.val)); + int32x4x2_t cd = vuzpq_s32(c, d); + return v_int32x4(vaddq_s32(cd.val[0], cd.val[1])); +} + +#define OPENCV_HAL_IMPL_NEON_LOGIC_OP(_Tpvec, suffix) \ + OPENCV_HAL_IMPL_NEON_BIN_OP(&, _Tpvec, vandq_##suffix) \ + OPENCV_HAL_IMPL_NEON_BIN_OP(|, _Tpvec, vorrq_##suffix) \ + OPENCV_HAL_IMPL_NEON_BIN_OP(^, _Tpvec, veorq_##suffix) \ + inline _Tpvec operator ~ (const _Tpvec& a) \ + { \ + return _Tpvec(vreinterpretq_##suffix##_u8(vmvnq_u8(vreinterpretq_u8_##suffix(a.val)))); \ + } + +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint8x16, u8) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int8x16, s8) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint16x8, u16) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int16x8, s16) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint32x4, u32) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int32x4, s32) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint64x2, u64) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int64x2, s64) + +#define OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(bin_op, intrin) \ +inline v_float32x4 operator bin_op (const v_float32x4& a, const v_float32x4& b) \ +{ \ + return v_float32x4(vreinterpretq_f32_s32(intrin(vreinterpretq_s32_f32(a.val), vreinterpretq_s32_f32(b.val)))); \ +} \ +inline v_float32x4& operator bin_op##= (v_float32x4& a, const v_float32x4& b) \ +{ \ + a.val = vreinterpretq_f32_s32(intrin(vreinterpretq_s32_f32(a.val), vreinterpretq_s32_f32(b.val))); \ + return a; \ +} + +OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(&, vandq_s32) +OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(|, vorrq_s32) +OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(^, veorq_s32) + +inline v_float32x4 operator ~ (const v_float32x4& a) +{ + return v_float32x4(vreinterpretq_f32_s32(vmvnq_s32(vreinterpretq_s32_f32(a.val)))); +} + +#if CV_SIMD128_64F +inline v_float32x4 v_sqrt(const v_float32x4& x) +{ + return v_float32x4(vsqrtq_f32(x.val)); +} + +inline v_float32x4 v_invsqrt(const v_float32x4& x) +{ + v_float32x4 one = v_setall_f32(1.0f); + return one / v_sqrt(x); +} +#else +inline v_float32x4 v_sqrt(const v_float32x4& x) +{ + float32x4_t x1 = vmaxq_f32(x.val, vdupq_n_f32(FLT_MIN)); + float32x4_t e = vrsqrteq_f32(x1); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e); + return v_float32x4(vmulq_f32(x.val, e)); +} + +inline v_float32x4 v_invsqrt(const v_float32x4& x) +{ + float32x4_t e = vrsqrteq_f32(x.val); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x.val, e), e), e); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x.val, e), e), e); + return v_float32x4(e); +} +#endif + +#define OPENCV_HAL_IMPL_NEON_ABS(_Tpuvec, _Tpsvec, usuffix, ssuffix) \ +inline _Tpuvec v_abs(const _Tpsvec& a) { return v_reinterpret_as_##usuffix(_Tpsvec(vabsq_##ssuffix(a.val))); } + +OPENCV_HAL_IMPL_NEON_ABS(v_uint8x16, v_int8x16, u8, s8) +OPENCV_HAL_IMPL_NEON_ABS(v_uint16x8, v_int16x8, u16, s16) +OPENCV_HAL_IMPL_NEON_ABS(v_uint32x4, v_int32x4, u32, s32) + +inline v_float32x4 v_abs(v_float32x4 x) +{ return v_float32x4(vabsq_f32(x.val)); } + +#if CV_SIMD128_64F +#define OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(bin_op, intrin) \ +inline v_float64x2 operator bin_op (const v_float64x2& a, const v_float64x2& b) \ +{ \ + return v_float64x2(vreinterpretq_f64_s64(intrin(vreinterpretq_s64_f64(a.val), vreinterpretq_s64_f64(b.val)))); \ +} \ +inline v_float64x2& operator bin_op##= (v_float64x2& a, const v_float64x2& b) \ +{ \ + a.val = vreinterpretq_f64_s64(intrin(vreinterpretq_s64_f64(a.val), vreinterpretq_s64_f64(b.val))); \ + return a; \ +} + +OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(&, vandq_s64) +OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(|, vorrq_s64) +OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(^, veorq_s64) + +inline v_float64x2 operator ~ (const v_float64x2& a) +{ + return v_float64x2(vreinterpretq_f64_s32(vmvnq_s32(vreinterpretq_s32_f64(a.val)))); +} + +inline v_float64x2 v_sqrt(const v_float64x2& x) +{ + return v_float64x2(vsqrtq_f64(x.val)); +} + +inline v_float64x2 v_invsqrt(const v_float64x2& x) +{ + v_float64x2 one = v_setall_f64(1.0f); + return one / v_sqrt(x); +} + +inline v_float64x2 v_abs(v_float64x2 x) +{ return v_float64x2(vabsq_f64(x.val)); } +#endif + +// TODO: exp, log, sin, cos + +#define OPENCV_HAL_IMPL_NEON_BIN_FUNC(_Tpvec, func, intrin) \ +inline _Tpvec func(const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(intrin(a.val, b.val)); \ +} + +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_min, vminq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_max, vmaxq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_min, vminq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_max, vmaxq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_min, vminq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_max, vmaxq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_min, vminq_s16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_max, vmaxq_s16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_min, vminq_u32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_max, vmaxq_u32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_min, vminq_s32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_max, vmaxq_s32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_min, vminq_f32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_max, vmaxq_f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_min, vminq_f64) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_max, vmaxq_f64) +#endif + +#if CV_SIMD128_64F +inline int64x2_t vmvnq_s64(int64x2_t a) +{ + int64x2_t vx = vreinterpretq_s64_u32(vdupq_n_u32(0xFFFFFFFF)); + return veorq_s64(a, vx); +} +inline uint64x2_t vmvnq_u64(uint64x2_t a) +{ + uint64x2_t vx = vreinterpretq_u64_u32(vdupq_n_u32(0xFFFFFFFF)); + return veorq_u64(a, vx); +} +#endif +#define OPENCV_HAL_IMPL_NEON_INT_CMP_OP(_Tpvec, cast, suffix, not_suffix) \ +inline _Tpvec operator == (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vceqq_##suffix(a.val, b.val))); } \ +inline _Tpvec operator != (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vmvnq_##not_suffix(vceqq_##suffix(a.val, b.val)))); } \ +inline _Tpvec operator < (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vcltq_##suffix(a.val, b.val))); } \ +inline _Tpvec operator > (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vcgtq_##suffix(a.val, b.val))); } \ +inline _Tpvec operator <= (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vcleq_##suffix(a.val, b.val))); } \ +inline _Tpvec operator >= (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vcgeq_##suffix(a.val, b.val))); } + +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint8x16, OPENCV_HAL_NOP, u8, u8) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int8x16, vreinterpretq_s8_u8, s8, u8) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint16x8, OPENCV_HAL_NOP, u16, u16) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int16x8, vreinterpretq_s16_u16, s16, u16) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint32x4, OPENCV_HAL_NOP, u32, u32) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int32x4, vreinterpretq_s32_u32, s32, u32) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float32x4, vreinterpretq_f32_u32, f32, u32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint64x2, OPENCV_HAL_NOP, u64, u64) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int64x2, vreinterpretq_s64_u64, s64, u64) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float64x2, vreinterpretq_f64_u64, f64, u64) +#endif + +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_add_wrap, vaddq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_add_wrap, vaddq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_add_wrap, vaddq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_add_wrap, vaddq_s16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_sub_wrap, vsubq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_sub_wrap, vsubq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_sub_wrap, vsubq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_sub_wrap, vsubq_s16) + +// TODO: absdiff for signed integers +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_absdiff, vabdq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_absdiff, vabdq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_absdiff, vabdq_u32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_absdiff, vabdq_f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_absdiff, vabdq_f64) +#endif + +#define OPENCV_HAL_IMPL_NEON_BIN_FUNC2(_Tpvec, _Tpvec2, cast, func, intrin) \ +inline _Tpvec2 func(const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec2(cast(intrin(a.val, b.val))); \ +} + +OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int8x16, v_uint8x16, vreinterpretq_u8_s8, v_absdiff, vabdq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int16x8, v_uint16x8, vreinterpretq_u16_s16, v_absdiff, vabdq_s16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int32x4, v_uint32x4, vreinterpretq_u32_s32, v_absdiff, vabdq_s32) + +inline v_float32x4 v_magnitude(const v_float32x4& a, const v_float32x4& b) +{ + v_float32x4 x(vmlaq_f32(vmulq_f32(a.val, a.val), b.val, b.val)); + return v_sqrt(x); +} + +inline v_float32x4 v_sqr_magnitude(const v_float32x4& a, const v_float32x4& b) +{ + return v_float32x4(vmlaq_f32(vmulq_f32(a.val, a.val), b.val, b.val)); +} + +inline v_float32x4 v_muladd(const v_float32x4& a, const v_float32x4& b, const v_float32x4& c) +{ + return v_float32x4(vmlaq_f32(c.val, a.val, b.val)); +} + +#if CV_SIMD128_64F +inline v_float64x2 v_magnitude(const v_float64x2& a, const v_float64x2& b) +{ + v_float64x2 x(vaddq_f64(vmulq_f64(a.val, a.val), vmulq_f64(b.val, b.val))); + return v_sqrt(x); +} + +inline v_float64x2 v_sqr_magnitude(const v_float64x2& a, const v_float64x2& b) +{ + return v_float64x2(vaddq_f64(vmulq_f64(a.val, a.val), vmulq_f64(b.val, b.val))); +} + +inline v_float64x2 v_muladd(const v_float64x2& a, const v_float64x2& b, const v_float64x2& c) +{ + return v_float64x2(vaddq_f64(c.val, vmulq_f64(a.val, b.val))); +} +#endif + +// trade efficiency for convenience +#define OPENCV_HAL_IMPL_NEON_SHIFT_OP(_Tpvec, suffix, _Tps, ssuffix) \ +inline _Tpvec operator << (const _Tpvec& a, int n) \ +{ return _Tpvec(vshlq_##suffix(a.val, vdupq_n_##ssuffix((_Tps)n))); } \ +inline _Tpvec operator >> (const _Tpvec& a, int n) \ +{ return _Tpvec(vshlq_##suffix(a.val, vdupq_n_##ssuffix((_Tps)-n))); } \ +template<int n> inline _Tpvec v_shl(const _Tpvec& a) \ +{ return _Tpvec(vshlq_n_##suffix(a.val, n)); } \ +template<int n> inline _Tpvec v_shr(const _Tpvec& a) \ +{ return _Tpvec(vshrq_n_##suffix(a.val, n)); } \ +template<int n> inline _Tpvec v_rshr(const _Tpvec& a) \ +{ return _Tpvec(vrshrq_n_##suffix(a.val, n)); } + +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint8x16, u8, schar, s8) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int8x16, s8, schar, s8) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint16x8, u16, short, s16) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int16x8, s16, short, s16) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint32x4, u32, int, s32) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int32x4, s32, int, s32) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint64x2, u64, int64, s64) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int64x2, s64, int64, s64) + +#define OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(_Tpvec, _Tp, suffix) \ +inline _Tpvec v_load(const _Tp* ptr) \ +{ return _Tpvec(vld1q_##suffix(ptr)); } \ +inline _Tpvec v_load_aligned(const _Tp* ptr) \ +{ return _Tpvec(vld1q_##suffix(ptr)); } \ +inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \ +{ return _Tpvec(vcombine_##suffix(vld1_##suffix(ptr0), vld1_##suffix(ptr1))); } \ +inline void v_store(_Tp* ptr, const _Tpvec& a) \ +{ vst1q_##suffix(ptr, a.val); } \ +inline void v_store_aligned(_Tp* ptr, const _Tpvec& a) \ +{ vst1q_##suffix(ptr, a.val); } \ +inline void v_store_low(_Tp* ptr, const _Tpvec& a) \ +{ vst1_##suffix(ptr, vget_low_##suffix(a.val)); } \ +inline void v_store_high(_Tp* ptr, const _Tpvec& a) \ +{ vst1_##suffix(ptr, vget_high_##suffix(a.val)); } + +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int8x16, schar, s8) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int16x8, short, s16) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int32x4, int, s32) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint64x2, uint64, u64) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int64x2, int64, s64) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float32x4, float, f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float64x2, double, f64) +#endif + +#if defined (HAVE_FP16) +// Workaround for old comiplers +inline v_float16x4 v_load_f16(const short* ptr) +{ return v_float16x4(vld1_f16(ptr)); } +inline void v_store_f16(short* ptr, v_float16x4& a) +{ vst1_f16(ptr, a.val); } +#endif + +#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(_Tpvec, _Tpnvec, scalartype, func, vectorfunc, suffix) \ +inline scalartype v_reduce_##func(const _Tpvec& a) \ +{ \ + _Tpnvec##_t a0 = vp##vectorfunc##_##suffix(vget_low_##suffix(a.val), vget_high_##suffix(a.val)); \ + a0 = vp##vectorfunc##_##suffix(a0, a0); \ + return (scalartype)vget_lane_##suffix(vp##vectorfunc##_##suffix(a0, a0),0); \ +} + +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, sum, add, u16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, max, max, u16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, min, min, u16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, sum, add, s16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, max, max, s16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, min, min, s16) + +#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(_Tpvec, _Tpnvec, scalartype, func, vectorfunc, suffix) \ +inline scalartype v_reduce_##func(const _Tpvec& a) \ +{ \ + _Tpnvec##_t a0 = vp##vectorfunc##_##suffix(vget_low_##suffix(a.val), vget_high_##suffix(a.val)); \ + return (scalartype)vget_lane_##suffix(vp##vectorfunc##_##suffix(a0, vget_high_##suffix(a.val)),0); \ +} + +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, sum, add, u32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, max, max, u32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, min, min, u32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, sum, add, s32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, max, max, s32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, min, min, s32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, sum, add, f32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, max, max, f32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, min, min, f32) + +inline int v_signmask(const v_uint8x16& a) +{ + int8x8_t m0 = vcreate_s8(CV_BIG_UINT(0x0706050403020100)); + uint8x16_t v0 = vshlq_u8(vshrq_n_u8(a.val, 7), vcombine_s8(m0, m0)); + uint64x2_t v1 = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(v0))); + return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 8); +} +inline int v_signmask(const v_int8x16& a) +{ return v_signmask(v_reinterpret_as_u8(a)); } + +inline int v_signmask(const v_uint16x8& a) +{ + int16x4_t m0 = vcreate_s16(CV_BIG_UINT(0x0003000200010000)); + uint16x8_t v0 = vshlq_u16(vshrq_n_u16(a.val, 15), vcombine_s16(m0, m0)); + uint64x2_t v1 = vpaddlq_u32(vpaddlq_u16(v0)); + return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 4); +} +inline int v_signmask(const v_int16x8& a) +{ return v_signmask(v_reinterpret_as_u16(a)); } + +inline int v_signmask(const v_uint32x4& a) +{ + int32x2_t m0 = vcreate_s32(CV_BIG_UINT(0x0000000100000000)); + uint32x4_t v0 = vshlq_u32(vshrq_n_u32(a.val, 31), vcombine_s32(m0, m0)); + uint64x2_t v1 = vpaddlq_u32(v0); + return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 2); +} +inline int v_signmask(const v_int32x4& a) +{ return v_signmask(v_reinterpret_as_u32(a)); } +inline int v_signmask(const v_float32x4& a) +{ return v_signmask(v_reinterpret_as_u32(a)); } +#if CV_SIMD128_64F +inline int v_signmask(const v_uint64x2& a) +{ + int64x1_t m0 = vdup_n_s64(0); + uint64x2_t v0 = vshlq_u64(vshrq_n_u64(a.val, 63), vcombine_s64(m0, m0)); + return (int)vgetq_lane_u64(v0, 0) + ((int)vgetq_lane_u64(v0, 1) << 1); +} +inline int v_signmask(const v_float64x2& a) +{ return v_signmask(v_reinterpret_as_u64(a)); } +#endif + +#define OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(_Tpvec, suffix, shift) \ +inline bool v_check_all(const v_##_Tpvec& a) \ +{ \ + _Tpvec##_t v0 = vshrq_n_##suffix(vmvnq_##suffix(a.val), shift); \ + uint64x2_t v1 = vreinterpretq_u64_##suffix(v0); \ + return (vgetq_lane_u64(v1, 0) | vgetq_lane_u64(v1, 1)) == 0; \ +} \ +inline bool v_check_any(const v_##_Tpvec& a) \ +{ \ + _Tpvec##_t v0 = vshrq_n_##suffix(a.val, shift); \ + uint64x2_t v1 = vreinterpretq_u64_##suffix(v0); \ + return (vgetq_lane_u64(v1, 0) | vgetq_lane_u64(v1, 1)) != 0; \ +} + +OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint8x16, u8, 7) +OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint16x8, u16, 15) +OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint32x4, u32, 31) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint64x2, u64, 63) +#endif + +inline bool v_check_all(const v_int8x16& a) +{ return v_check_all(v_reinterpret_as_u8(a)); } +inline bool v_check_all(const v_int16x8& a) +{ return v_check_all(v_reinterpret_as_u16(a)); } +inline bool v_check_all(const v_int32x4& a) +{ return v_check_all(v_reinterpret_as_u32(a)); } +inline bool v_check_all(const v_float32x4& a) +{ return v_check_all(v_reinterpret_as_u32(a)); } + +inline bool v_check_any(const v_int8x16& a) +{ return v_check_any(v_reinterpret_as_u8(a)); } +inline bool v_check_any(const v_int16x8& a) +{ return v_check_any(v_reinterpret_as_u16(a)); } +inline bool v_check_any(const v_int32x4& a) +{ return v_check_any(v_reinterpret_as_u32(a)); } +inline bool v_check_any(const v_float32x4& a) +{ return v_check_any(v_reinterpret_as_u32(a)); } + +#if CV_SIMD128_64F +inline bool v_check_all(const v_int64x2& a) +{ return v_check_all(v_reinterpret_as_u64(a)); } +inline bool v_check_all(const v_float64x2& a) +{ return v_check_all(v_reinterpret_as_u64(a)); } +inline bool v_check_any(const v_int64x2& a) +{ return v_check_any(v_reinterpret_as_u64(a)); } +inline bool v_check_any(const v_float64x2& a) +{ return v_check_any(v_reinterpret_as_u64(a)); } +#endif + +#define OPENCV_HAL_IMPL_NEON_SELECT(_Tpvec, suffix, usuffix) \ +inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(vbslq_##suffix(vreinterpretq_##usuffix##_##suffix(mask.val), a.val, b.val)); \ +} + +OPENCV_HAL_IMPL_NEON_SELECT(v_uint8x16, u8, u8) +OPENCV_HAL_IMPL_NEON_SELECT(v_int8x16, s8, u8) +OPENCV_HAL_IMPL_NEON_SELECT(v_uint16x8, u16, u16) +OPENCV_HAL_IMPL_NEON_SELECT(v_int16x8, s16, u16) +OPENCV_HAL_IMPL_NEON_SELECT(v_uint32x4, u32, u32) +OPENCV_HAL_IMPL_NEON_SELECT(v_int32x4, s32, u32) +OPENCV_HAL_IMPL_NEON_SELECT(v_float32x4, f32, u32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_SELECT(v_float64x2, f64, u64) +#endif + +#define OPENCV_HAL_IMPL_NEON_EXPAND(_Tpvec, _Tpwvec, _Tp, suffix) \ +inline void v_expand(const _Tpvec& a, _Tpwvec& b0, _Tpwvec& b1) \ +{ \ + b0.val = vmovl_##suffix(vget_low_##suffix(a.val)); \ + b1.val = vmovl_##suffix(vget_high_##suffix(a.val)); \ +} \ +inline _Tpwvec v_load_expand(const _Tp* ptr) \ +{ \ + return _Tpwvec(vmovl_##suffix(vld1_##suffix(ptr))); \ +} + +OPENCV_HAL_IMPL_NEON_EXPAND(v_uint8x16, v_uint16x8, uchar, u8) +OPENCV_HAL_IMPL_NEON_EXPAND(v_int8x16, v_int16x8, schar, s8) +OPENCV_HAL_IMPL_NEON_EXPAND(v_uint16x8, v_uint32x4, ushort, u16) +OPENCV_HAL_IMPL_NEON_EXPAND(v_int16x8, v_int32x4, short, s16) +OPENCV_HAL_IMPL_NEON_EXPAND(v_uint32x4, v_uint64x2, uint, u32) +OPENCV_HAL_IMPL_NEON_EXPAND(v_int32x4, v_int64x2, int, s32) + +inline v_uint32x4 v_load_expand_q(const uchar* ptr) +{ + uint8x8_t v0 = vcreate_u8(*(unsigned*)ptr); + uint16x4_t v1 = vget_low_u16(vmovl_u8(v0)); + return v_uint32x4(vmovl_u16(v1)); +} + +inline v_int32x4 v_load_expand_q(const schar* ptr) +{ + int8x8_t v0 = vcreate_s8(*(unsigned*)ptr); + int16x4_t v1 = vget_low_s16(vmovl_s8(v0)); + return v_int32x4(vmovl_s16(v1)); +} + +#if defined(__aarch64__) +#define OPENCV_HAL_IMPL_NEON_UNPACKS(_Tpvec, suffix) \ +inline void v_zip(const v_##_Tpvec& a0, const v_##_Tpvec& a1, v_##_Tpvec& b0, v_##_Tpvec& b1) \ +{ \ + b0.val = vzip1q_##suffix(a0.val, a1.val); \ + b1.val = vzip2q_##suffix(a0.val, a1.val); \ +} \ +inline v_##_Tpvec v_combine_low(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val))); \ +} \ +inline v_##_Tpvec v_combine_high(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val))); \ +} \ +inline void v_recombine(const v_##_Tpvec& a, const v_##_Tpvec& b, v_##_Tpvec& c, v_##_Tpvec& d) \ +{ \ + c.val = vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val)); \ + d.val = vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val)); \ +} +#else +#define OPENCV_HAL_IMPL_NEON_UNPACKS(_Tpvec, suffix) \ +inline void v_zip(const v_##_Tpvec& a0, const v_##_Tpvec& a1, v_##_Tpvec& b0, v_##_Tpvec& b1) \ +{ \ + _Tpvec##x2_t p = vzipq_##suffix(a0.val, a1.val); \ + b0.val = p.val[0]; \ + b1.val = p.val[1]; \ +} \ +inline v_##_Tpvec v_combine_low(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val))); \ +} \ +inline v_##_Tpvec v_combine_high(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val))); \ +} \ +inline void v_recombine(const v_##_Tpvec& a, const v_##_Tpvec& b, v_##_Tpvec& c, v_##_Tpvec& d) \ +{ \ + c.val = vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val)); \ + d.val = vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val)); \ +} +#endif + +OPENCV_HAL_IMPL_NEON_UNPACKS(uint8x16, u8) +OPENCV_HAL_IMPL_NEON_UNPACKS(int8x16, s8) +OPENCV_HAL_IMPL_NEON_UNPACKS(uint16x8, u16) +OPENCV_HAL_IMPL_NEON_UNPACKS(int16x8, s16) +OPENCV_HAL_IMPL_NEON_UNPACKS(uint32x4, u32) +OPENCV_HAL_IMPL_NEON_UNPACKS(int32x4, s32) +OPENCV_HAL_IMPL_NEON_UNPACKS(float32x4, f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_UNPACKS(float64x2, f64) +#endif + +#define OPENCV_HAL_IMPL_NEON_EXTRACT(_Tpvec, suffix) \ +template <int s> \ +inline v_##_Tpvec v_extract(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vextq_##suffix(a.val, b.val, s)); \ +} + +OPENCV_HAL_IMPL_NEON_EXTRACT(uint8x16, u8) +OPENCV_HAL_IMPL_NEON_EXTRACT(int8x16, s8) +OPENCV_HAL_IMPL_NEON_EXTRACT(uint16x8, u16) +OPENCV_HAL_IMPL_NEON_EXTRACT(int16x8, s16) +OPENCV_HAL_IMPL_NEON_EXTRACT(uint32x4, u32) +OPENCV_HAL_IMPL_NEON_EXTRACT(int32x4, s32) +OPENCV_HAL_IMPL_NEON_EXTRACT(uint64x2, u64) +OPENCV_HAL_IMPL_NEON_EXTRACT(int64x2, s64) +OPENCV_HAL_IMPL_NEON_EXTRACT(float32x4, f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_EXTRACT(float64x2, f64) +#endif + +inline v_int32x4 v_round(const v_float32x4& a) +{ + static const int32x4_t v_sign = vdupq_n_s32(1 << 31), + v_05 = vreinterpretq_s32_f32(vdupq_n_f32(0.5f)); + + int32x4_t v_addition = vorrq_s32(v_05, vandq_s32(v_sign, vreinterpretq_s32_f32(a.val))); + return v_int32x4(vcvtq_s32_f32(vaddq_f32(a.val, vreinterpretq_f32_s32(v_addition)))); +} + +inline v_int32x4 v_floor(const v_float32x4& a) +{ + int32x4_t a1 = vcvtq_s32_f32(a.val); + uint32x4_t mask = vcgtq_f32(vcvtq_f32_s32(a1), a.val); + return v_int32x4(vaddq_s32(a1, vreinterpretq_s32_u32(mask))); +} + +inline v_int32x4 v_ceil(const v_float32x4& a) +{ + int32x4_t a1 = vcvtq_s32_f32(a.val); + uint32x4_t mask = vcgtq_f32(a.val, vcvtq_f32_s32(a1)); + return v_int32x4(vsubq_s32(a1, vreinterpretq_s32_u32(mask))); +} + +inline v_int32x4 v_trunc(const v_float32x4& a) +{ return v_int32x4(vcvtq_s32_f32(a.val)); } + +#if CV_SIMD128_64F +inline v_int32x4 v_round(const v_float64x2& a) +{ + static const int32x2_t zero = vdup_n_s32(0); + return v_int32x4(vcombine_s32(vmovn_s64(vcvtaq_s64_f64(a.val)), zero)); +} + +inline v_int32x4 v_floor(const v_float64x2& a) +{ + static const int32x2_t zero = vdup_n_s32(0); + int64x2_t a1 = vcvtq_s64_f64(a.val); + uint64x2_t mask = vcgtq_f64(vcvtq_f64_s64(a1), a.val); + a1 = vaddq_s64(a1, vreinterpretq_s64_u64(mask)); + return v_int32x4(vcombine_s32(vmovn_s64(a1), zero)); +} + +inline v_int32x4 v_ceil(const v_float64x2& a) +{ + static const int32x2_t zero = vdup_n_s32(0); + int64x2_t a1 = vcvtq_s64_f64(a.val); + uint64x2_t mask = vcgtq_f64(a.val, vcvtq_f64_s64(a1)); + a1 = vsubq_s64(a1, vreinterpretq_s64_u64(mask)); + return v_int32x4(vcombine_s32(vmovn_s64(a1), zero)); +} + +inline v_int32x4 v_trunc(const v_float64x2& a) +{ + static const int32x2_t zero = vdup_n_s32(0); + return v_int32x4(vcombine_s32(vmovn_s64(vcvtaq_s64_f64(a.val)), zero)); +} +#endif + +#define OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(_Tpvec, suffix) \ +inline void v_transpose4x4(const v_##_Tpvec& a0, const v_##_Tpvec& a1, \ + const v_##_Tpvec& a2, const v_##_Tpvec& a3, \ + v_##_Tpvec& b0, v_##_Tpvec& b1, \ + v_##_Tpvec& b2, v_##_Tpvec& b3) \ +{ \ + /* m00 m01 m02 m03 */ \ + /* m10 m11 m12 m13 */ \ + /* m20 m21 m22 m23 */ \ + /* m30 m31 m32 m33 */ \ + _Tpvec##x2_t t0 = vtrnq_##suffix(a0.val, a1.val); \ + _Tpvec##x2_t t1 = vtrnq_##suffix(a2.val, a3.val); \ + /* m00 m10 m02 m12 */ \ + /* m01 m11 m03 m13 */ \ + /* m20 m30 m22 m32 */ \ + /* m21 m31 m23 m33 */ \ + b0.val = vcombine_##suffix(vget_low_##suffix(t0.val[0]), vget_low_##suffix(t1.val[0])); \ + b1.val = vcombine_##suffix(vget_low_##suffix(t0.val[1]), vget_low_##suffix(t1.val[1])); \ + b2.val = vcombine_##suffix(vget_high_##suffix(t0.val[0]), vget_high_##suffix(t1.val[0])); \ + b3.val = vcombine_##suffix(vget_high_##suffix(t0.val[1]), vget_high_##suffix(t1.val[1])); \ +} + +OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(uint32x4, u32) +OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(int32x4, s32) +OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(float32x4, f32) + +#define OPENCV_HAL_IMPL_NEON_INTERLEAVED(_Tpvec, _Tp, suffix) \ +inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b) \ +{ \ + _Tpvec##x2_t v = vld2q_##suffix(ptr); \ + a.val = v.val[0]; \ + b.val = v.val[1]; \ +} \ +inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, v_##_Tpvec& c) \ +{ \ + _Tpvec##x3_t v = vld3q_##suffix(ptr); \ + a.val = v.val[0]; \ + b.val = v.val[1]; \ + c.val = v.val[2]; \ +} \ +inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, \ + v_##_Tpvec& c, v_##_Tpvec& d) \ +{ \ + _Tpvec##x4_t v = vld4q_##suffix(ptr); \ + a.val = v.val[0]; \ + b.val = v.val[1]; \ + c.val = v.val[2]; \ + d.val = v.val[3]; \ +} \ +inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + _Tpvec##x2_t v; \ + v.val[0] = a.val; \ + v.val[1] = b.val; \ + vst2q_##suffix(ptr, v); \ +} \ +inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b, const v_##_Tpvec& c) \ +{ \ + _Tpvec##x3_t v; \ + v.val[0] = a.val; \ + v.val[1] = b.val; \ + v.val[2] = c.val; \ + vst3q_##suffix(ptr, v); \ +} \ +inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b, \ + const v_##_Tpvec& c, const v_##_Tpvec& d) \ +{ \ + _Tpvec##x4_t v; \ + v.val[0] = a.val; \ + v.val[1] = b.val; \ + v.val[2] = c.val; \ + v.val[3] = d.val; \ + vst4q_##suffix(ptr, v); \ +} + +OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint8x16, uchar, u8) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(int8x16, schar, s8) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint16x8, ushort, u16) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(int16x8, short, s16) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(int32x4, int, s32) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(float32x4, float, f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_INTERLEAVED(float64x2, double, f64) +#endif + +inline v_float32x4 v_cvt_f32(const v_int32x4& a) +{ + return v_float32x4(vcvtq_f32_s32(a.val)); +} + +#if CV_SIMD128_64F +inline v_float32x4 v_cvt_f32(const v_float64x2& a) +{ + float32x2_t zero = vdup_n_f32(0.0f); + return v_float32x4(vcombine_f32(vcvt_f32_f64(a.val), zero)); +} + +inline v_float64x2 v_cvt_f64(const v_int32x4& a) +{ + return v_float64x2(vcvt_f64_f32(vcvt_f32_s32(vget_low_s32(a.val)))); +} + +inline v_float64x2 v_cvt_f64_high(const v_int32x4& a) +{ + return v_float64x2(vcvt_f64_f32(vcvt_f32_s32(vget_high_s32(a.val)))); +} + +inline v_float64x2 v_cvt_f64(const v_float32x4& a) +{ + return v_float64x2(vcvt_f64_f32(vget_low_f32(a.val))); +} + +inline v_float64x2 v_cvt_f64_high(const v_float32x4& a) +{ + return v_float64x2(vcvt_f64_f32(vget_high_f32(a.val))); +} +#endif + +#if defined (HAVE_FP16) +inline v_float32x4 v_cvt_f32(const v_float16x4& a) +{ + return v_float32x4(vcvt_f32_f16(a.val)); +} + +inline v_float16x4 v_cvt_f16(const v_float32x4& a) +{ + return v_float16x4(vcvt_f16_f32(a.val)); +} +#endif + +//! @name Check SIMD support +//! @{ +//! @brief Check CPU capability of SIMD operation +static inline bool hasSIMD128() +{ + return checkHardwareSupport(CV_CPU_NEON); +} + +//! @} + +//! @endcond + +} + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/hal/intrin_sse.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1744 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_SSE_HPP +#define OPENCV_HAL_SSE_HPP + +#include <algorithm> +#include "opencv2/core/utility.hpp" + +#define CV_SIMD128 1 +#define CV_SIMD128_64F 1 + +namespace cv +{ + +//! @cond IGNORED + +struct v_uint8x16 +{ + typedef uchar lane_type; + enum { nlanes = 16 }; + + v_uint8x16() {} + explicit v_uint8x16(__m128i v) : val(v) {} + v_uint8x16(uchar v0, uchar v1, uchar v2, uchar v3, uchar v4, uchar v5, uchar v6, uchar v7, + uchar v8, uchar v9, uchar v10, uchar v11, uchar v12, uchar v13, uchar v14, uchar v15) + { + val = _mm_setr_epi8((char)v0, (char)v1, (char)v2, (char)v3, + (char)v4, (char)v5, (char)v6, (char)v7, + (char)v8, (char)v9, (char)v10, (char)v11, + (char)v12, (char)v13, (char)v14, (char)v15); + } + uchar get0() const + { + return (uchar)_mm_cvtsi128_si32(val); + } + + __m128i val; +}; + +struct v_int8x16 +{ + typedef schar lane_type; + enum { nlanes = 16 }; + + v_int8x16() {} + explicit v_int8x16(__m128i v) : val(v) {} + v_int8x16(schar v0, schar v1, schar v2, schar v3, schar v4, schar v5, schar v6, schar v7, + schar v8, schar v9, schar v10, schar v11, schar v12, schar v13, schar v14, schar v15) + { + val = _mm_setr_epi8((char)v0, (char)v1, (char)v2, (char)v3, + (char)v4, (char)v5, (char)v6, (char)v7, + (char)v8, (char)v9, (char)v10, (char)v11, + (char)v12, (char)v13, (char)v14, (char)v15); + } + schar get0() const + { + return (schar)_mm_cvtsi128_si32(val); + } + + __m128i val; +}; + +struct v_uint16x8 +{ + typedef ushort lane_type; + enum { nlanes = 8 }; + + v_uint16x8() {} + explicit v_uint16x8(__m128i v) : val(v) {} + v_uint16x8(ushort v0, ushort v1, ushort v2, ushort v3, ushort v4, ushort v5, ushort v6, ushort v7) + { + val = _mm_setr_epi16((short)v0, (short)v1, (short)v2, (short)v3, + (short)v4, (short)v5, (short)v6, (short)v7); + } + ushort get0() const + { + return (ushort)_mm_cvtsi128_si32(val); + } + + __m128i val; +}; + +struct v_int16x8 +{ + typedef short lane_type; + enum { nlanes = 8 }; + + v_int16x8() {} + explicit v_int16x8(__m128i v) : val(v) {} + v_int16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7) + { + val = _mm_setr_epi16((short)v0, (short)v1, (short)v2, (short)v3, + (short)v4, (short)v5, (short)v6, (short)v7); + } + short get0() const + { + return (short)_mm_cvtsi128_si32(val); + } + __m128i val; +}; + +struct v_uint32x4 +{ + typedef unsigned lane_type; + enum { nlanes = 4 }; + + v_uint32x4() {} + explicit v_uint32x4(__m128i v) : val(v) {} + v_uint32x4(unsigned v0, unsigned v1, unsigned v2, unsigned v3) + { + val = _mm_setr_epi32((int)v0, (int)v1, (int)v2, (int)v3); + } + unsigned get0() const + { + return (unsigned)_mm_cvtsi128_si32(val); + } + __m128i val; +}; + +struct v_int32x4 +{ + typedef int lane_type; + enum { nlanes = 4 }; + + v_int32x4() {} + explicit v_int32x4(__m128i v) : val(v) {} + v_int32x4(int v0, int v1, int v2, int v3) + { + val = _mm_setr_epi32(v0, v1, v2, v3); + } + int get0() const + { + return _mm_cvtsi128_si32(val); + } + __m128i val; +}; + +struct v_float32x4 +{ + typedef float lane_type; + enum { nlanes = 4 }; + + v_float32x4() {} + explicit v_float32x4(__m128 v) : val(v) {} + v_float32x4(float v0, float v1, float v2, float v3) + { + val = _mm_setr_ps(v0, v1, v2, v3); + } + float get0() const + { + return _mm_cvtss_f32(val); + } + __m128 val; +}; + +struct v_uint64x2 +{ + typedef uint64 lane_type; + enum { nlanes = 2 }; + + v_uint64x2() {} + explicit v_uint64x2(__m128i v) : val(v) {} + v_uint64x2(uint64 v0, uint64 v1) + { + val = _mm_setr_epi32((int)v0, (int)(v0 >> 32), (int)v1, (int)(v1 >> 32)); + } + uint64 get0() const + { + int a = _mm_cvtsi128_si32(val); + int b = _mm_cvtsi128_si32(_mm_srli_epi64(val, 32)); + return (unsigned)a | ((uint64)(unsigned)b << 32); + } + __m128i val; +}; + +struct v_int64x2 +{ + typedef int64 lane_type; + enum { nlanes = 2 }; + + v_int64x2() {} + explicit v_int64x2(__m128i v) : val(v) {} + v_int64x2(int64 v0, int64 v1) + { + val = _mm_setr_epi32((int)v0, (int)(v0 >> 32), (int)v1, (int)(v1 >> 32)); + } + int64 get0() const + { + int a = _mm_cvtsi128_si32(val); + int b = _mm_cvtsi128_si32(_mm_srli_epi64(val, 32)); + return (int64)((unsigned)a | ((uint64)(unsigned)b << 32)); + } + __m128i val; +}; + +struct v_float64x2 +{ + typedef double lane_type; + enum { nlanes = 2 }; + + v_float64x2() {} + explicit v_float64x2(__m128d v) : val(v) {} + v_float64x2(double v0, double v1) + { + val = _mm_setr_pd(v0, v1); + } + double get0() const + { + return _mm_cvtsd_f64(val); + } + __m128d val; +}; + +#if defined(HAVE_FP16) +struct v_float16x4 +{ + typedef short lane_type; + enum { nlanes = 4 }; + + v_float16x4() {} + explicit v_float16x4(__m128i v) : val(v) {} + v_float16x4(short v0, short v1, short v2, short v3) + { + val = _mm_setr_epi16(v0, v1, v2, v3, 0, 0, 0, 0); + } + short get0() const + { + return (short)_mm_cvtsi128_si32(val); + } + __m128i val; +}; +#endif + +#define OPENCV_HAL_IMPL_SSE_INITVEC(_Tpvec, _Tp, suffix, zsuffix, ssuffix, _Tps, cast) \ +inline _Tpvec v_setzero_##suffix() { return _Tpvec(_mm_setzero_##zsuffix()); } \ +inline _Tpvec v_setall_##suffix(_Tp v) { return _Tpvec(_mm_set1_##ssuffix((_Tps)v)); } \ +template<typename _Tpvec0> inline _Tpvec v_reinterpret_as_##suffix(const _Tpvec0& a) \ +{ return _Tpvec(cast(a.val)); } + +OPENCV_HAL_IMPL_SSE_INITVEC(v_uint8x16, uchar, u8, si128, epi8, char, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_int8x16, schar, s8, si128, epi8, char, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_uint16x8, ushort, u16, si128, epi16, short, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_int16x8, short, s16, si128, epi16, short, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_uint32x4, unsigned, u32, si128, epi32, int, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_int32x4, int, s32, si128, epi32, int, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_float32x4, float, f32, ps, ps, float, _mm_castsi128_ps) +OPENCV_HAL_IMPL_SSE_INITVEC(v_float64x2, double, f64, pd, pd, double, _mm_castsi128_pd) + +inline v_uint64x2 v_setzero_u64() { return v_uint64x2(_mm_setzero_si128()); } +inline v_int64x2 v_setzero_s64() { return v_int64x2(_mm_setzero_si128()); } +inline v_uint64x2 v_setall_u64(uint64 val) { return v_uint64x2(val, val); } +inline v_int64x2 v_setall_s64(int64 val) { return v_int64x2(val, val); } + +template<typename _Tpvec> inline +v_uint64x2 v_reinterpret_as_u64(const _Tpvec& a) { return v_uint64x2(a.val); } +template<typename _Tpvec> inline +v_int64x2 v_reinterpret_as_s64(const _Tpvec& a) { return v_int64x2(a.val); } +inline v_float32x4 v_reinterpret_as_f32(const v_uint64x2& a) +{ return v_float32x4(_mm_castsi128_ps(a.val)); } +inline v_float32x4 v_reinterpret_as_f32(const v_int64x2& a) +{ return v_float32x4(_mm_castsi128_ps(a.val)); } +inline v_float64x2 v_reinterpret_as_f64(const v_uint64x2& a) +{ return v_float64x2(_mm_castsi128_pd(a.val)); } +inline v_float64x2 v_reinterpret_as_f64(const v_int64x2& a) +{ return v_float64x2(_mm_castsi128_pd(a.val)); } + +#define OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(_Tpvec, suffix) \ +inline _Tpvec v_reinterpret_as_##suffix(const v_float32x4& a) \ +{ return _Tpvec(_mm_castps_si128(a.val)); } \ +inline _Tpvec v_reinterpret_as_##suffix(const v_float64x2& a) \ +{ return _Tpvec(_mm_castpd_si128(a.val)); } + +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_uint8x16, u8) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_int8x16, s8) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_uint16x8, u16) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_int16x8, s16) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_uint32x4, u32) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_int32x4, s32) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_uint64x2, u64) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_int64x2, s64) + +inline v_float32x4 v_reinterpret_as_f32(const v_float32x4& a) {return a; } +inline v_float64x2 v_reinterpret_as_f64(const v_float64x2& a) {return a; } +inline v_float32x4 v_reinterpret_as_f32(const v_float64x2& a) {return v_float32x4(_mm_castpd_ps(a.val)); } +inline v_float64x2 v_reinterpret_as_f64(const v_float32x4& a) {return v_float64x2(_mm_castps_pd(a.val)); } + +//////////////// PACK /////////////// +inline v_uint8x16 v_pack(const v_uint16x8& a, const v_uint16x8& b) +{ + __m128i delta = _mm_set1_epi16(255); + return v_uint8x16(_mm_packus_epi16(_mm_subs_epu16(a.val, _mm_subs_epu16(a.val, delta)), + _mm_subs_epu16(b.val, _mm_subs_epu16(b.val, delta)))); +} + +inline void v_pack_store(uchar* ptr, const v_uint16x8& a) +{ + __m128i delta = _mm_set1_epi16(255); + __m128i a1 = _mm_subs_epu16(a.val, _mm_subs_epu16(a.val, delta)); + _mm_storel_epi64((__m128i*)ptr, _mm_packus_epi16(a1, a1)); +} + +inline v_uint8x16 v_pack_u(const v_int16x8& a, const v_int16x8& b) +{ return v_uint8x16(_mm_packus_epi16(a.val, b.val)); } + +inline void v_pack_u_store(uchar* ptr, const v_int16x8& a) +{ _mm_storel_epi64((__m128i*)ptr, _mm_packus_epi16(a.val, a.val)); } + +template<int n> inline +v_uint8x16 v_rshr_pack(const v_uint16x8& a, const v_uint16x8& b) +{ + // we assume that n > 0, and so the shifted 16-bit values can be treated as signed numbers. + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + return v_uint8x16(_mm_packus_epi16(_mm_srli_epi16(_mm_adds_epu16(a.val, delta), n), + _mm_srli_epi16(_mm_adds_epu16(b.val, delta), n))); +} + +template<int n> inline +void v_rshr_pack_store(uchar* ptr, const v_uint16x8& a) +{ + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + __m128i a1 = _mm_srli_epi16(_mm_adds_epu16(a.val, delta), n); + _mm_storel_epi64((__m128i*)ptr, _mm_packus_epi16(a1, a1)); +} + +template<int n> inline +v_uint8x16 v_rshr_pack_u(const v_int16x8& a, const v_int16x8& b) +{ + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + return v_uint8x16(_mm_packus_epi16(_mm_srai_epi16(_mm_adds_epi16(a.val, delta), n), + _mm_srai_epi16(_mm_adds_epi16(b.val, delta), n))); +} + +template<int n> inline +void v_rshr_pack_u_store(uchar* ptr, const v_int16x8& a) +{ + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + __m128i a1 = _mm_srai_epi16(_mm_adds_epi16(a.val, delta), n); + _mm_storel_epi64((__m128i*)ptr, _mm_packus_epi16(a1, a1)); +} + +inline v_int8x16 v_pack(const v_int16x8& a, const v_int16x8& b) +{ return v_int8x16(_mm_packs_epi16(a.val, b.val)); } + +inline void v_pack_store(schar* ptr, v_int16x8& a) +{ _mm_storel_epi64((__m128i*)ptr, _mm_packs_epi16(a.val, a.val)); } + +template<int n> inline +v_int8x16 v_rshr_pack(const v_int16x8& a, const v_int16x8& b) +{ + // we assume that n > 0, and so the shifted 16-bit values can be treated as signed numbers. + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + return v_int8x16(_mm_packs_epi16(_mm_srai_epi16(_mm_adds_epi16(a.val, delta), n), + _mm_srai_epi16(_mm_adds_epi16(b.val, delta), n))); +} +template<int n> inline +void v_rshr_pack_store(schar* ptr, const v_int16x8& a) +{ + // we assume that n > 0, and so the shifted 16-bit values can be treated as signed numbers. + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + __m128i a1 = _mm_srai_epi16(_mm_adds_epi16(a.val, delta), n); + _mm_storel_epi64((__m128i*)ptr, _mm_packs_epi16(a1, a1)); +} + + +// bit-wise "mask ? a : b" +inline __m128i v_select_si128(__m128i mask, __m128i a, __m128i b) +{ + return _mm_xor_si128(b, _mm_and_si128(_mm_xor_si128(a, b), mask)); +} + +inline v_uint16x8 v_pack(const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i z = _mm_setzero_si128(), maxval32 = _mm_set1_epi32(65535), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(v_select_si128(_mm_cmpgt_epi32(z, a.val), maxval32, a.val), delta32); + __m128i b1 = _mm_sub_epi32(v_select_si128(_mm_cmpgt_epi32(z, b.val), maxval32, b.val), delta32); + __m128i r = _mm_packs_epi32(a1, b1); + return v_uint16x8(_mm_sub_epi16(r, _mm_set1_epi16(-32768))); +} + +inline void v_pack_store(ushort* ptr, const v_uint32x4& a) +{ + __m128i z = _mm_setzero_si128(), maxval32 = _mm_set1_epi32(65535), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(v_select_si128(_mm_cmpgt_epi32(z, a.val), maxval32, a.val), delta32); + __m128i r = _mm_packs_epi32(a1, a1); + _mm_storel_epi64((__m128i*)ptr, _mm_sub_epi16(r, _mm_set1_epi16(-32768))); +} + +template<int n> inline +v_uint16x8 v_rshr_pack(const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(_mm_srli_epi32(_mm_add_epi32(a.val, delta), n), delta32); + __m128i b1 = _mm_sub_epi32(_mm_srli_epi32(_mm_add_epi32(b.val, delta), n), delta32); + return v_uint16x8(_mm_sub_epi16(_mm_packs_epi32(a1, b1), _mm_set1_epi16(-32768))); +} + +template<int n> inline +void v_rshr_pack_store(ushort* ptr, const v_uint32x4& a) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(_mm_srli_epi32(_mm_add_epi32(a.val, delta), n), delta32); + __m128i a2 = _mm_sub_epi16(_mm_packs_epi32(a1, a1), _mm_set1_epi16(-32768)); + _mm_storel_epi64((__m128i*)ptr, a2); +} + +inline v_uint16x8 v_pack_u(const v_int32x4& a, const v_int32x4& b) +{ + __m128i delta32 = _mm_set1_epi32(32768); + __m128i r = _mm_packs_epi32(_mm_sub_epi32(a.val, delta32), _mm_sub_epi32(b.val, delta32)); + return v_uint16x8(_mm_sub_epi16(r, _mm_set1_epi16(-32768))); +} + +inline void v_pack_u_store(ushort* ptr, const v_int32x4& a) +{ + __m128i delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(a.val, delta32); + __m128i r = _mm_sub_epi16(_mm_packs_epi32(a1, a1), _mm_set1_epi16(-32768)); + _mm_storel_epi64((__m128i*)ptr, r); +} + +template<int n> inline +v_uint16x8 v_rshr_pack_u(const v_int32x4& a, const v_int32x4& b) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(_mm_srai_epi32(_mm_add_epi32(a.val, delta), n), delta32); + __m128i a2 = _mm_sub_epi16(_mm_packs_epi32(a1, a1), _mm_set1_epi16(-32768)); + __m128i b1 = _mm_sub_epi32(_mm_srai_epi32(_mm_add_epi32(b.val, delta), n), delta32); + __m128i b2 = _mm_sub_epi16(_mm_packs_epi32(b1, b1), _mm_set1_epi16(-32768)); + return v_uint16x8(_mm_unpacklo_epi64(a2, b2)); +} + +template<int n> inline +void v_rshr_pack_u_store(ushort* ptr, const v_int32x4& a) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(_mm_srai_epi32(_mm_add_epi32(a.val, delta), n), delta32); + __m128i a2 = _mm_sub_epi16(_mm_packs_epi32(a1, a1), _mm_set1_epi16(-32768)); + _mm_storel_epi64((__m128i*)ptr, a2); +} + +inline v_int16x8 v_pack(const v_int32x4& a, const v_int32x4& b) +{ return v_int16x8(_mm_packs_epi32(a.val, b.val)); } + +inline void v_pack_store(short* ptr, const v_int32x4& a) +{ + _mm_storel_epi64((__m128i*)ptr, _mm_packs_epi32(a.val, a.val)); +} + +template<int n> inline +v_int16x8 v_rshr_pack(const v_int32x4& a, const v_int32x4& b) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)); + return v_int16x8(_mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(a.val, delta), n), + _mm_srai_epi32(_mm_add_epi32(b.val, delta), n))); +} + +template<int n> inline +void v_rshr_pack_store(short* ptr, const v_int32x4& a) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)); + __m128i a1 = _mm_srai_epi32(_mm_add_epi32(a.val, delta), n); + _mm_storel_epi64((__m128i*)ptr, _mm_packs_epi32(a1, a1)); +} + + +// [a0 0 | b0 0] [a1 0 | b1 0] +inline v_uint32x4 v_pack(const v_uint64x2& a, const v_uint64x2& b) +{ + __m128i v0 = _mm_unpacklo_epi32(a.val, b.val); // a0 a1 0 0 + __m128i v1 = _mm_unpackhi_epi32(a.val, b.val); // b0 b1 0 0 + return v_uint32x4(_mm_unpacklo_epi32(v0, v1)); +} + +inline void v_pack_store(unsigned* ptr, const v_uint64x2& a) +{ + __m128i a1 = _mm_shuffle_epi32(a.val, _MM_SHUFFLE(0, 2, 2, 0)); + _mm_storel_epi64((__m128i*)ptr, a1); +} + +// [a0 0 | b0 0] [a1 0 | b1 0] +inline v_int32x4 v_pack(const v_int64x2& a, const v_int64x2& b) +{ + __m128i v0 = _mm_unpacklo_epi32(a.val, b.val); // a0 a1 0 0 + __m128i v1 = _mm_unpackhi_epi32(a.val, b.val); // b0 b1 0 0 + return v_int32x4(_mm_unpacklo_epi32(v0, v1)); +} + +inline void v_pack_store(int* ptr, const v_int64x2& a) +{ + __m128i a1 = _mm_shuffle_epi32(a.val, _MM_SHUFFLE(0, 2, 2, 0)); + _mm_storel_epi64((__m128i*)ptr, a1); +} + +template<int n> inline +v_uint32x4 v_rshr_pack(const v_uint64x2& a, const v_uint64x2& b) +{ + uint64 delta = (uint64)1 << (n-1); + v_uint64x2 delta2(delta, delta); + __m128i a1 = _mm_srli_epi64(_mm_add_epi64(a.val, delta2.val), n); + __m128i b1 = _mm_srli_epi64(_mm_add_epi64(b.val, delta2.val), n); + __m128i v0 = _mm_unpacklo_epi32(a1, b1); // a0 a1 0 0 + __m128i v1 = _mm_unpackhi_epi32(a1, b1); // b0 b1 0 0 + return v_uint32x4(_mm_unpacklo_epi32(v0, v1)); +} + +template<int n> inline +void v_rshr_pack_store(unsigned* ptr, const v_uint64x2& a) +{ + uint64 delta = (uint64)1 << (n-1); + v_uint64x2 delta2(delta, delta); + __m128i a1 = _mm_srli_epi64(_mm_add_epi64(a.val, delta2.val), n); + __m128i a2 = _mm_shuffle_epi32(a1, _MM_SHUFFLE(0, 2, 2, 0)); + _mm_storel_epi64((__m128i*)ptr, a2); +} + +inline __m128i v_sign_epi64(__m128i a) +{ + return _mm_shuffle_epi32(_mm_srai_epi32(a, 31), _MM_SHUFFLE(3, 3, 1, 1)); // x m0 | x m1 +} + +inline __m128i v_srai_epi64(__m128i a, int imm) +{ + __m128i smask = v_sign_epi64(a); + return _mm_xor_si128(_mm_srli_epi64(_mm_xor_si128(a, smask), imm), smask); +} + +template<int n> inline +v_int32x4 v_rshr_pack(const v_int64x2& a, const v_int64x2& b) +{ + int64 delta = (int64)1 << (n-1); + v_int64x2 delta2(delta, delta); + __m128i a1 = v_srai_epi64(_mm_add_epi64(a.val, delta2.val), n); + __m128i b1 = v_srai_epi64(_mm_add_epi64(b.val, delta2.val), n); + __m128i v0 = _mm_unpacklo_epi32(a1, b1); // a0 a1 0 0 + __m128i v1 = _mm_unpackhi_epi32(a1, b1); // b0 b1 0 0 + return v_int32x4(_mm_unpacklo_epi32(v0, v1)); +} + +template<int n> inline +void v_rshr_pack_store(int* ptr, const v_int64x2& a) +{ + int64 delta = (int64)1 << (n-1); + v_int64x2 delta2(delta, delta); + __m128i a1 = v_srai_epi64(_mm_add_epi64(a.val, delta2.val), n); + __m128i a2 = _mm_shuffle_epi32(a1, _MM_SHUFFLE(0, 2, 2, 0)); + _mm_storel_epi64((__m128i*)ptr, a2); +} + +inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0, + const v_float32x4& m1, const v_float32x4& m2, + const v_float32x4& m3) +{ + __m128 v0 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(0, 0, 0, 0)), m0.val); + __m128 v1 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(1, 1, 1, 1)), m1.val); + __m128 v2 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(2, 2, 2, 2)), m2.val); + __m128 v3 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(3, 3, 3, 3)), m3.val); + + return v_float32x4(_mm_add_ps(_mm_add_ps(v0, v1), _mm_add_ps(v2, v3))); +} + + +#define OPENCV_HAL_IMPL_SSE_BIN_OP(bin_op, _Tpvec, intrin) \ + inline _Tpvec operator bin_op (const _Tpvec& a, const _Tpvec& b) \ + { \ + return _Tpvec(intrin(a.val, b.val)); \ + } \ + inline _Tpvec& operator bin_op##= (_Tpvec& a, const _Tpvec& b) \ + { \ + a.val = intrin(a.val, b.val); \ + return a; \ + } + +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_uint8x16, _mm_adds_epu8) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_uint8x16, _mm_subs_epu8) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_int8x16, _mm_adds_epi8) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_int8x16, _mm_subs_epi8) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_uint16x8, _mm_adds_epu16) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_uint16x8, _mm_subs_epu16) +OPENCV_HAL_IMPL_SSE_BIN_OP(*, v_uint16x8, _mm_mullo_epi16) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_int16x8, _mm_adds_epi16) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_int16x8, _mm_subs_epi16) +OPENCV_HAL_IMPL_SSE_BIN_OP(*, v_int16x8, _mm_mullo_epi16) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_uint32x4, _mm_add_epi32) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_uint32x4, _mm_sub_epi32) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_int32x4, _mm_add_epi32) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_int32x4, _mm_sub_epi32) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_float32x4, _mm_add_ps) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_float32x4, _mm_sub_ps) +OPENCV_HAL_IMPL_SSE_BIN_OP(*, v_float32x4, _mm_mul_ps) +OPENCV_HAL_IMPL_SSE_BIN_OP(/, v_float32x4, _mm_div_ps) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_float64x2, _mm_add_pd) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_float64x2, _mm_sub_pd) +OPENCV_HAL_IMPL_SSE_BIN_OP(*, v_float64x2, _mm_mul_pd) +OPENCV_HAL_IMPL_SSE_BIN_OP(/, v_float64x2, _mm_div_pd) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_uint64x2, _mm_add_epi64) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_uint64x2, _mm_sub_epi64) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_int64x2, _mm_add_epi64) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_int64x2, _mm_sub_epi64) + +inline v_uint32x4 operator * (const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i c0 = _mm_mul_epu32(a.val, b.val); + __m128i c1 = _mm_mul_epu32(_mm_srli_epi64(a.val, 32), _mm_srli_epi64(b.val, 32)); + __m128i d0 = _mm_unpacklo_epi32(c0, c1); + __m128i d1 = _mm_unpackhi_epi32(c0, c1); + return v_uint32x4(_mm_unpacklo_epi64(d0, d1)); +} +inline v_int32x4 operator * (const v_int32x4& a, const v_int32x4& b) +{ + __m128i c0 = _mm_mul_epu32(a.val, b.val); + __m128i c1 = _mm_mul_epu32(_mm_srli_epi64(a.val, 32), _mm_srli_epi64(b.val, 32)); + __m128i d0 = _mm_unpacklo_epi32(c0, c1); + __m128i d1 = _mm_unpackhi_epi32(c0, c1); + return v_int32x4(_mm_unpacklo_epi64(d0, d1)); +} +inline v_uint32x4& operator *= (v_uint32x4& a, const v_uint32x4& b) +{ + a = a * b; + return a; +} +inline v_int32x4& operator *= (v_int32x4& a, const v_int32x4& b) +{ + a = a * b; + return a; +} + +inline void v_mul_expand(const v_int16x8& a, const v_int16x8& b, + v_int32x4& c, v_int32x4& d) +{ + __m128i v0 = _mm_mullo_epi16(a.val, b.val); + __m128i v1 = _mm_mulhi_epi16(a.val, b.val); + c.val = _mm_unpacklo_epi16(v0, v1); + d.val = _mm_unpackhi_epi16(v0, v1); +} + +inline void v_mul_expand(const v_uint16x8& a, const v_uint16x8& b, + v_uint32x4& c, v_uint32x4& d) +{ + __m128i v0 = _mm_mullo_epi16(a.val, b.val); + __m128i v1 = _mm_mulhi_epu16(a.val, b.val); + c.val = _mm_unpacklo_epi16(v0, v1); + d.val = _mm_unpackhi_epi16(v0, v1); +} + +inline void v_mul_expand(const v_uint32x4& a, const v_uint32x4& b, + v_uint64x2& c, v_uint64x2& d) +{ + __m128i c0 = _mm_mul_epu32(a.val, b.val); + __m128i c1 = _mm_mul_epu32(_mm_srli_epi64(a.val, 32), _mm_srli_epi64(b.val, 32)); + c.val = _mm_unpacklo_epi64(c0, c1); + d.val = _mm_unpackhi_epi64(c0, c1); +} + +inline v_int32x4 v_dotprod(const v_int16x8& a, const v_int16x8& b) +{ + return v_int32x4(_mm_madd_epi16(a.val, b.val)); +} + +#define OPENCV_HAL_IMPL_SSE_LOGIC_OP(_Tpvec, suffix, not_const) \ + OPENCV_HAL_IMPL_SSE_BIN_OP(&, _Tpvec, _mm_and_##suffix) \ + OPENCV_HAL_IMPL_SSE_BIN_OP(|, _Tpvec, _mm_or_##suffix) \ + OPENCV_HAL_IMPL_SSE_BIN_OP(^, _Tpvec, _mm_xor_##suffix) \ + inline _Tpvec operator ~ (const _Tpvec& a) \ + { \ + return _Tpvec(_mm_xor_##suffix(a.val, not_const)); \ + } + +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_uint8x16, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_int8x16, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_uint16x8, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_int16x8, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_uint32x4, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_int32x4, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_uint64x2, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_int64x2, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_float32x4, ps, _mm_castsi128_ps(_mm_set1_epi32(-1))) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_float64x2, pd, _mm_castsi128_pd(_mm_set1_epi32(-1))) + +inline v_float32x4 v_sqrt(const v_float32x4& x) +{ return v_float32x4(_mm_sqrt_ps(x.val)); } + +inline v_float32x4 v_invsqrt(const v_float32x4& x) +{ + static const __m128 _0_5 = _mm_set1_ps(0.5f), _1_5 = _mm_set1_ps(1.5f); + __m128 t = x.val; + __m128 h = _mm_mul_ps(t, _0_5); + t = _mm_rsqrt_ps(t); + t = _mm_mul_ps(t, _mm_sub_ps(_1_5, _mm_mul_ps(_mm_mul_ps(t, t), h))); + return v_float32x4(t); +} + +inline v_float64x2 v_sqrt(const v_float64x2& x) +{ return v_float64x2(_mm_sqrt_pd(x.val)); } + +inline v_float64x2 v_invsqrt(const v_float64x2& x) +{ + static const __m128d v_1 = _mm_set1_pd(1.); + return v_float64x2(_mm_div_pd(v_1, _mm_sqrt_pd(x.val))); +} + +#define OPENCV_HAL_IMPL_SSE_ABS_INT_FUNC(_Tpuvec, _Tpsvec, func, suffix, subWidth) \ +inline _Tpuvec v_abs(const _Tpsvec& x) \ +{ return _Tpuvec(_mm_##func##_ep##suffix(x.val, _mm_sub_ep##subWidth(_mm_setzero_si128(), x.val))); } + +OPENCV_HAL_IMPL_SSE_ABS_INT_FUNC(v_uint8x16, v_int8x16, min, u8, i8) +OPENCV_HAL_IMPL_SSE_ABS_INT_FUNC(v_uint16x8, v_int16x8, max, i16, i16) +inline v_uint32x4 v_abs(const v_int32x4& x) +{ + __m128i s = _mm_srli_epi32(x.val, 31); + __m128i f = _mm_srai_epi32(x.val, 31); + return v_uint32x4(_mm_add_epi32(_mm_xor_si128(x.val, f), s)); +} +inline v_float32x4 v_abs(const v_float32x4& x) +{ return v_float32x4(_mm_and_ps(x.val, _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff)))); } +inline v_float64x2 v_abs(const v_float64x2& x) +{ + return v_float64x2(_mm_and_pd(x.val, + _mm_castsi128_pd(_mm_srli_epi64(_mm_set1_epi32(-1), 1)))); +} + +// TODO: exp, log, sin, cos + +#define OPENCV_HAL_IMPL_SSE_BIN_FUNC(_Tpvec, func, intrin) \ +inline _Tpvec func(const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(intrin(a.val, b.val)); \ +} + +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_min, _mm_min_epu8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_max, _mm_max_epu8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int16x8, v_min, _mm_min_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int16x8, v_max, _mm_max_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_float32x4, v_min, _mm_min_ps) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_float32x4, v_max, _mm_max_ps) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_float64x2, v_min, _mm_min_pd) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_float64x2, v_max, _mm_max_pd) + +inline v_int8x16 v_min(const v_int8x16& a, const v_int8x16& b) +{ + __m128i delta = _mm_set1_epi8((char)-128); + return v_int8x16(_mm_xor_si128(delta, _mm_min_epu8(_mm_xor_si128(a.val, delta), + _mm_xor_si128(b.val, delta)))); +} +inline v_int8x16 v_max(const v_int8x16& a, const v_int8x16& b) +{ + __m128i delta = _mm_set1_epi8((char)-128); + return v_int8x16(_mm_xor_si128(delta, _mm_max_epu8(_mm_xor_si128(a.val, delta), + _mm_xor_si128(b.val, delta)))); +} +inline v_uint16x8 v_min(const v_uint16x8& a, const v_uint16x8& b) +{ + return v_uint16x8(_mm_subs_epu16(a.val, _mm_subs_epu16(a.val, b.val))); +} +inline v_uint16x8 v_max(const v_uint16x8& a, const v_uint16x8& b) +{ + return v_uint16x8(_mm_adds_epu16(_mm_subs_epu16(a.val, b.val), b.val)); +} +inline v_uint32x4 v_min(const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i delta = _mm_set1_epi32((int)0x80000000); + __m128i mask = _mm_cmpgt_epi32(_mm_xor_si128(a.val, delta), _mm_xor_si128(b.val, delta)); + return v_uint32x4(v_select_si128(mask, b.val, a.val)); +} +inline v_uint32x4 v_max(const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i delta = _mm_set1_epi32((int)0x80000000); + __m128i mask = _mm_cmpgt_epi32(_mm_xor_si128(a.val, delta), _mm_xor_si128(b.val, delta)); + return v_uint32x4(v_select_si128(mask, a.val, b.val)); +} +inline v_int32x4 v_min(const v_int32x4& a, const v_int32x4& b) +{ + return v_int32x4(v_select_si128(_mm_cmpgt_epi32(a.val, b.val), b.val, a.val)); +} +inline v_int32x4 v_max(const v_int32x4& a, const v_int32x4& b) +{ + return v_int32x4(v_select_si128(_mm_cmpgt_epi32(a.val, b.val), a.val, b.val)); +} + +#define OPENCV_HAL_IMPL_SSE_INT_CMP_OP(_Tpuvec, _Tpsvec, suffix, sbit) \ +inline _Tpuvec operator == (const _Tpuvec& a, const _Tpuvec& b) \ +{ return _Tpuvec(_mm_cmpeq_##suffix(a.val, b.val)); } \ +inline _Tpuvec operator != (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i not_mask = _mm_set1_epi32(-1); \ + return _Tpuvec(_mm_xor_si128(_mm_cmpeq_##suffix(a.val, b.val), not_mask)); \ +} \ +inline _Tpsvec operator == (const _Tpsvec& a, const _Tpsvec& b) \ +{ return _Tpsvec(_mm_cmpeq_##suffix(a.val, b.val)); } \ +inline _Tpsvec operator != (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + __m128i not_mask = _mm_set1_epi32(-1); \ + return _Tpsvec(_mm_xor_si128(_mm_cmpeq_##suffix(a.val, b.val), not_mask)); \ +} \ +inline _Tpuvec operator < (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i smask = _mm_set1_##suffix(sbit); \ + return _Tpuvec(_mm_cmpgt_##suffix(_mm_xor_si128(b.val, smask), _mm_xor_si128(a.val, smask))); \ +} \ +inline _Tpuvec operator > (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i smask = _mm_set1_##suffix(sbit); \ + return _Tpuvec(_mm_cmpgt_##suffix(_mm_xor_si128(a.val, smask), _mm_xor_si128(b.val, smask))); \ +} \ +inline _Tpuvec operator <= (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i smask = _mm_set1_##suffix(sbit); \ + __m128i not_mask = _mm_set1_epi32(-1); \ + __m128i res = _mm_cmpgt_##suffix(_mm_xor_si128(a.val, smask), _mm_xor_si128(b.val, smask)); \ + return _Tpuvec(_mm_xor_si128(res, not_mask)); \ +} \ +inline _Tpuvec operator >= (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i smask = _mm_set1_##suffix(sbit); \ + __m128i not_mask = _mm_set1_epi32(-1); \ + __m128i res = _mm_cmpgt_##suffix(_mm_xor_si128(b.val, smask), _mm_xor_si128(a.val, smask)); \ + return _Tpuvec(_mm_xor_si128(res, not_mask)); \ +} \ +inline _Tpsvec operator < (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + return _Tpsvec(_mm_cmpgt_##suffix(b.val, a.val)); \ +} \ +inline _Tpsvec operator > (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + return _Tpsvec(_mm_cmpgt_##suffix(a.val, b.val)); \ +} \ +inline _Tpsvec operator <= (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + __m128i not_mask = _mm_set1_epi32(-1); \ + return _Tpsvec(_mm_xor_si128(_mm_cmpgt_##suffix(a.val, b.val), not_mask)); \ +} \ +inline _Tpsvec operator >= (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + __m128i not_mask = _mm_set1_epi32(-1); \ + return _Tpsvec(_mm_xor_si128(_mm_cmpgt_##suffix(b.val, a.val), not_mask)); \ +} + +OPENCV_HAL_IMPL_SSE_INT_CMP_OP(v_uint8x16, v_int8x16, epi8, (char)-128) +OPENCV_HAL_IMPL_SSE_INT_CMP_OP(v_uint16x8, v_int16x8, epi16, (short)-32768) +OPENCV_HAL_IMPL_SSE_INT_CMP_OP(v_uint32x4, v_int32x4, epi32, (int)0x80000000) + +#define OPENCV_HAL_IMPL_SSE_FLT_CMP_OP(_Tpvec, suffix) \ +inline _Tpvec operator == (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmpeq_##suffix(a.val, b.val)); } \ +inline _Tpvec operator != (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmpneq_##suffix(a.val, b.val)); } \ +inline _Tpvec operator < (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmplt_##suffix(a.val, b.val)); } \ +inline _Tpvec operator > (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmpgt_##suffix(a.val, b.val)); } \ +inline _Tpvec operator <= (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmple_##suffix(a.val, b.val)); } \ +inline _Tpvec operator >= (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmpge_##suffix(a.val, b.val)); } + +OPENCV_HAL_IMPL_SSE_FLT_CMP_OP(v_float32x4, ps) +OPENCV_HAL_IMPL_SSE_FLT_CMP_OP(v_float64x2, pd) + +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_add_wrap, _mm_add_epi8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int8x16, v_add_wrap, _mm_add_epi8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint16x8, v_add_wrap, _mm_add_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int16x8, v_add_wrap, _mm_add_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_sub_wrap, _mm_sub_epi8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int8x16, v_sub_wrap, _mm_sub_epi8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint16x8, v_sub_wrap, _mm_sub_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int16x8, v_sub_wrap, _mm_sub_epi16) + +#define OPENCV_HAL_IMPL_SSE_ABSDIFF_8_16(_Tpuvec, _Tpsvec, bits, smask32) \ +inline _Tpuvec v_absdiff(const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + return _Tpuvec(_mm_add_epi##bits(_mm_subs_epu##bits(a.val, b.val), _mm_subs_epu##bits(b.val, a.val))); \ +} \ +inline _Tpuvec v_absdiff(const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + __m128i smask = _mm_set1_epi32(smask32); \ + __m128i a1 = _mm_xor_si128(a.val, smask); \ + __m128i b1 = _mm_xor_si128(b.val, smask); \ + return _Tpuvec(_mm_add_epi##bits(_mm_subs_epu##bits(a1, b1), _mm_subs_epu##bits(b1, a1))); \ +} + +OPENCV_HAL_IMPL_SSE_ABSDIFF_8_16(v_uint8x16, v_int8x16, 8, (int)0x80808080) +OPENCV_HAL_IMPL_SSE_ABSDIFF_8_16(v_uint16x8, v_int16x8, 16, (int)0x80008000) + +inline v_uint32x4 v_absdiff(const v_uint32x4& a, const v_uint32x4& b) +{ + return v_max(a, b) - v_min(a, b); +} + +inline v_uint32x4 v_absdiff(const v_int32x4& a, const v_int32x4& b) +{ + __m128i d = _mm_sub_epi32(a.val, b.val); + __m128i m = _mm_cmpgt_epi32(b.val, a.val); + return v_uint32x4(_mm_sub_epi32(_mm_xor_si128(d, m), m)); +} + +#define OPENCV_HAL_IMPL_SSE_MISC_FLT_OP(_Tpvec, _Tp, _Tpreg, suffix, absmask_vec) \ +inline _Tpvec v_absdiff(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpreg absmask = _mm_castsi128_##suffix(absmask_vec); \ + return _Tpvec(_mm_and_##suffix(_mm_sub_##suffix(a.val, b.val), absmask)); \ +} \ +inline _Tpvec v_magnitude(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpreg res = _mm_add_##suffix(_mm_mul_##suffix(a.val, a.val), _mm_mul_##suffix(b.val, b.val)); \ + return _Tpvec(_mm_sqrt_##suffix(res)); \ +} \ +inline _Tpvec v_sqr_magnitude(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpreg res = _mm_add_##suffix(_mm_mul_##suffix(a.val, a.val), _mm_mul_##suffix(b.val, b.val)); \ + return _Tpvec(res); \ +} \ +inline _Tpvec v_muladd(const _Tpvec& a, const _Tpvec& b, const _Tpvec& c) \ +{ \ + return _Tpvec(_mm_add_##suffix(_mm_mul_##suffix(a.val, b.val), c.val)); \ +} + +OPENCV_HAL_IMPL_SSE_MISC_FLT_OP(v_float32x4, float, __m128, ps, _mm_set1_epi32((int)0x7fffffff)) +OPENCV_HAL_IMPL_SSE_MISC_FLT_OP(v_float64x2, double, __m128d, pd, _mm_srli_epi64(_mm_set1_epi32(-1), 1)) + +#define OPENCV_HAL_IMPL_SSE_SHIFT_OP(_Tpuvec, _Tpsvec, suffix, srai) \ +inline _Tpuvec operator << (const _Tpuvec& a, int imm) \ +{ \ + return _Tpuvec(_mm_slli_##suffix(a.val, imm)); \ +} \ +inline _Tpsvec operator << (const _Tpsvec& a, int imm) \ +{ \ + return _Tpsvec(_mm_slli_##suffix(a.val, imm)); \ +} \ +inline _Tpuvec operator >> (const _Tpuvec& a, int imm) \ +{ \ + return _Tpuvec(_mm_srli_##suffix(a.val, imm)); \ +} \ +inline _Tpsvec operator >> (const _Tpsvec& a, int imm) \ +{ \ + return _Tpsvec(srai(a.val, imm)); \ +} \ +template<int imm> \ +inline _Tpuvec v_shl(const _Tpuvec& a) \ +{ \ + return _Tpuvec(_mm_slli_##suffix(a.val, imm)); \ +} \ +template<int imm> \ +inline _Tpsvec v_shl(const _Tpsvec& a) \ +{ \ + return _Tpsvec(_mm_slli_##suffix(a.val, imm)); \ +} \ +template<int imm> \ +inline _Tpuvec v_shr(const _Tpuvec& a) \ +{ \ + return _Tpuvec(_mm_srli_##suffix(a.val, imm)); \ +} \ +template<int imm> \ +inline _Tpsvec v_shr(const _Tpsvec& a) \ +{ \ + return _Tpsvec(srai(a.val, imm)); \ +} + +OPENCV_HAL_IMPL_SSE_SHIFT_OP(v_uint16x8, v_int16x8, epi16, _mm_srai_epi16) +OPENCV_HAL_IMPL_SSE_SHIFT_OP(v_uint32x4, v_int32x4, epi32, _mm_srai_epi32) +OPENCV_HAL_IMPL_SSE_SHIFT_OP(v_uint64x2, v_int64x2, epi64, v_srai_epi64) + +#define OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(_Tpvec, _Tp) \ +inline _Tpvec v_load(const _Tp* ptr) \ +{ return _Tpvec(_mm_loadu_si128((const __m128i*)ptr)); } \ +inline _Tpvec v_load_aligned(const _Tp* ptr) \ +{ return _Tpvec(_mm_load_si128((const __m128i*)ptr)); } \ +inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \ +{ \ + return _Tpvec(_mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i*)ptr0), \ + _mm_loadl_epi64((const __m128i*)ptr1))); \ +} \ +inline void v_store(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storeu_si128((__m128i*)ptr, a.val); } \ +inline void v_store_aligned(_Tp* ptr, const _Tpvec& a) \ +{ _mm_store_si128((__m128i*)ptr, a.val); } \ +inline void v_store_low(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storel_epi64((__m128i*)ptr, a.val); } \ +inline void v_store_high(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storel_epi64((__m128i*)ptr, _mm_unpackhi_epi64(a.val, a.val)); } + +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_uint8x16, uchar) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_int8x16, schar) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_uint16x8, ushort) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_int16x8, short) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_uint32x4, unsigned) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_int32x4, int) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_uint64x2, uint64) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_int64x2, int64) + +#define OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(_Tpvec, _Tp, suffix) \ +inline _Tpvec v_load(const _Tp* ptr) \ +{ return _Tpvec(_mm_loadu_##suffix(ptr)); } \ +inline _Tpvec v_load_aligned(const _Tp* ptr) \ +{ return _Tpvec(_mm_load_##suffix(ptr)); } \ +inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \ +{ \ + return _Tpvec(_mm_castsi128_##suffix( \ + _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i*)ptr0), \ + _mm_loadl_epi64((const __m128i*)ptr1)))); \ +} \ +inline void v_store(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storeu_##suffix(ptr, a.val); } \ +inline void v_store_aligned(_Tp* ptr, const _Tpvec& a) \ +{ _mm_store_##suffix(ptr, a.val); } \ +inline void v_store_low(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storel_epi64((__m128i*)ptr, _mm_cast##suffix##_si128(a.val)); } \ +inline void v_store_high(_Tp* ptr, const _Tpvec& a) \ +{ \ + __m128i a1 = _mm_cast##suffix##_si128(a.val); \ + _mm_storel_epi64((__m128i*)ptr, _mm_unpackhi_epi64(a1, a1)); \ +} + +OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(v_float32x4, float, ps) +OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(v_float64x2, double, pd) + +#if defined(HAVE_FP16) +inline v_float16x4 v_load_f16(const short* ptr) +{ return v_float16x4(_mm_loadl_epi64((const __m128i*)ptr)); } +inline void v_store_f16(short* ptr, v_float16x4& a) +{ _mm_storel_epi64((__m128i*)ptr, a.val); } +#endif + +#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(_Tpvec, scalartype, func, suffix, sbit) \ +inline scalartype v_reduce_##func(const v_##_Tpvec& a) \ +{ \ + __m128i val = a.val; \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,8)); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,4)); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,2)); \ + return (scalartype)_mm_cvtsi128_si32(val); \ +} \ +inline unsigned scalartype v_reduce_##func(const v_u##_Tpvec& a) \ +{ \ + __m128i val = a.val; \ + __m128i smask = _mm_set1_epi16(sbit); \ + val = _mm_xor_si128(val, smask); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,8)); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,4)); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,2)); \ + return (unsigned scalartype)(_mm_cvtsi128_si32(val) ^ sbit); \ +} +#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_8_SUM(_Tpvec, scalartype, suffix) \ +inline scalartype v_reduce_sum(const v_##_Tpvec& a) \ +{ \ + __m128i val = a.val; \ + val = _mm_adds_epi##suffix(val, _mm_srli_si128(val, 8)); \ + val = _mm_adds_epi##suffix(val, _mm_srli_si128(val, 4)); \ + val = _mm_adds_epi##suffix(val, _mm_srli_si128(val, 2)); \ + return (scalartype)_mm_cvtsi128_si32(val); \ +} \ +inline unsigned scalartype v_reduce_sum(const v_u##_Tpvec& a) \ +{ \ + __m128i val = a.val; \ + val = _mm_adds_epu##suffix(val, _mm_srli_si128(val, 8)); \ + val = _mm_adds_epu##suffix(val, _mm_srli_si128(val, 4)); \ + val = _mm_adds_epu##suffix(val, _mm_srli_si128(val, 2)); \ + return (unsigned scalartype)_mm_cvtsi128_si32(val); \ +} +OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(int16x8, short, max, epi16, (short)-32768) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(int16x8, short, min, epi16, (short)-32768) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_8_SUM(int16x8, short, 16) + +#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(_Tpvec, scalartype, func, scalar_func) \ +inline scalartype v_reduce_##func(const _Tpvec& a) \ +{ \ + scalartype CV_DECL_ALIGNED(16) buf[4]; \ + v_store_aligned(buf, a); \ + scalartype s0 = scalar_func(buf[0], buf[1]); \ + scalartype s1 = scalar_func(buf[2], buf[3]); \ + return scalar_func(s0, s1); \ +} + +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_uint32x4, unsigned, sum, OPENCV_HAL_ADD) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_uint32x4, unsigned, max, std::max) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_uint32x4, unsigned, min, std::min) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_int32x4, int, sum, OPENCV_HAL_ADD) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_int32x4, int, max, std::max) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_int32x4, int, min, std::min) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_float32x4, float, sum, OPENCV_HAL_ADD) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_float32x4, float, max, std::max) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_float32x4, float, min, std::min) + +#define OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(_Tpvec, suffix, pack_op, and_op, signmask, allmask) \ +inline int v_signmask(const _Tpvec& a) \ +{ \ + return and_op(_mm_movemask_##suffix(pack_op(a.val)), signmask); \ +} \ +inline bool v_check_all(const _Tpvec& a) \ +{ return and_op(_mm_movemask_##suffix(a.val), allmask) == allmask; } \ +inline bool v_check_any(const _Tpvec& a) \ +{ return and_op(_mm_movemask_##suffix(a.val), allmask) != 0; } + +#define OPENCV_HAL_PACKS(a) _mm_packs_epi16(a, a) +inline __m128i v_packq_epi32(__m128i a) +{ + __m128i b = _mm_packs_epi32(a, a); + return _mm_packs_epi16(b, b); +} + +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_uint8x16, epi8, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 65535, 65535) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_int8x16, epi8, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 65535, 65535) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_uint16x8, epi8, OPENCV_HAL_PACKS, OPENCV_HAL_AND, 255, (int)0xaaaa) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_int16x8, epi8, OPENCV_HAL_PACKS, OPENCV_HAL_AND, 255, (int)0xaaaa) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_uint32x4, epi8, v_packq_epi32, OPENCV_HAL_AND, 15, (int)0x8888) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_int32x4, epi8, v_packq_epi32, OPENCV_HAL_AND, 15, (int)0x8888) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_float32x4, ps, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 15, 15) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_float64x2, pd, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 3, 3) + +#define OPENCV_HAL_IMPL_SSE_SELECT(_Tpvec, suffix) \ +inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(_mm_xor_##suffix(b.val, _mm_and_##suffix(_mm_xor_##suffix(b.val, a.val), mask.val))); \ +} + +OPENCV_HAL_IMPL_SSE_SELECT(v_uint8x16, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_int8x16, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_uint16x8, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_int16x8, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_uint32x4, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_int32x4, si128) +// OPENCV_HAL_IMPL_SSE_SELECT(v_uint64x2, si128) +// OPENCV_HAL_IMPL_SSE_SELECT(v_int64x2, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_float32x4, ps) +OPENCV_HAL_IMPL_SSE_SELECT(v_float64x2, pd) + +#define OPENCV_HAL_IMPL_SSE_EXPAND(_Tpuvec, _Tpwuvec, _Tpu, _Tpsvec, _Tpwsvec, _Tps, suffix, wsuffix, shift) \ +inline void v_expand(const _Tpuvec& a, _Tpwuvec& b0, _Tpwuvec& b1) \ +{ \ + __m128i z = _mm_setzero_si128(); \ + b0.val = _mm_unpacklo_##suffix(a.val, z); \ + b1.val = _mm_unpackhi_##suffix(a.val, z); \ +} \ +inline _Tpwuvec v_load_expand(const _Tpu* ptr) \ +{ \ + __m128i z = _mm_setzero_si128(); \ + return _Tpwuvec(_mm_unpacklo_##suffix(_mm_loadl_epi64((const __m128i*)ptr), z)); \ +} \ +inline void v_expand(const _Tpsvec& a, _Tpwsvec& b0, _Tpwsvec& b1) \ +{ \ + b0.val = _mm_srai_##wsuffix(_mm_unpacklo_##suffix(a.val, a.val), shift); \ + b1.val = _mm_srai_##wsuffix(_mm_unpackhi_##suffix(a.val, a.val), shift); \ +} \ +inline _Tpwsvec v_load_expand(const _Tps* ptr) \ +{ \ + __m128i a = _mm_loadl_epi64((const __m128i*)ptr); \ + return _Tpwsvec(_mm_srai_##wsuffix(_mm_unpacklo_##suffix(a, a), shift)); \ +} + +OPENCV_HAL_IMPL_SSE_EXPAND(v_uint8x16, v_uint16x8, uchar, v_int8x16, v_int16x8, schar, epi8, epi16, 8) +OPENCV_HAL_IMPL_SSE_EXPAND(v_uint16x8, v_uint32x4, ushort, v_int16x8, v_int32x4, short, epi16, epi32, 16) + +inline void v_expand(const v_uint32x4& a, v_uint64x2& b0, v_uint64x2& b1) +{ + __m128i z = _mm_setzero_si128(); + b0.val = _mm_unpacklo_epi32(a.val, z); + b1.val = _mm_unpackhi_epi32(a.val, z); +} +inline v_uint64x2 v_load_expand(const unsigned* ptr) +{ + __m128i z = _mm_setzero_si128(); + return v_uint64x2(_mm_unpacklo_epi32(_mm_loadl_epi64((const __m128i*)ptr), z)); +} +inline void v_expand(const v_int32x4& a, v_int64x2& b0, v_int64x2& b1) +{ + __m128i s = _mm_srai_epi32(a.val, 31); + b0.val = _mm_unpacklo_epi32(a.val, s); + b1.val = _mm_unpackhi_epi32(a.val, s); +} +inline v_int64x2 v_load_expand(const int* ptr) +{ + __m128i a = _mm_loadl_epi64((const __m128i*)ptr); + __m128i s = _mm_srai_epi32(a, 31); + return v_int64x2(_mm_unpacklo_epi32(a, s)); +} + +inline v_uint32x4 v_load_expand_q(const uchar* ptr) +{ + __m128i z = _mm_setzero_si128(); + __m128i a = _mm_cvtsi32_si128(*(const int*)ptr); + return v_uint32x4(_mm_unpacklo_epi16(_mm_unpacklo_epi8(a, z), z)); +} + +inline v_int32x4 v_load_expand_q(const schar* ptr) +{ + __m128i a = _mm_cvtsi32_si128(*(const int*)ptr); + a = _mm_unpacklo_epi8(a, a); + a = _mm_unpacklo_epi8(a, a); + return v_int32x4(_mm_srai_epi32(a, 24)); +} + +#define OPENCV_HAL_IMPL_SSE_UNPACKS(_Tpvec, suffix, cast_from, cast_to) \ +inline void v_zip(const _Tpvec& a0, const _Tpvec& a1, _Tpvec& b0, _Tpvec& b1) \ +{ \ + b0.val = _mm_unpacklo_##suffix(a0.val, a1.val); \ + b1.val = _mm_unpackhi_##suffix(a0.val, a1.val); \ +} \ +inline _Tpvec v_combine_low(const _Tpvec& a, const _Tpvec& b) \ +{ \ + __m128i a1 = cast_from(a.val), b1 = cast_from(b.val); \ + return _Tpvec(cast_to(_mm_unpacklo_epi64(a1, b1))); \ +} \ +inline _Tpvec v_combine_high(const _Tpvec& a, const _Tpvec& b) \ +{ \ + __m128i a1 = cast_from(a.val), b1 = cast_from(b.val); \ + return _Tpvec(cast_to(_mm_unpackhi_epi64(a1, b1))); \ +} \ +inline void v_recombine(const _Tpvec& a, const _Tpvec& b, _Tpvec& c, _Tpvec& d) \ +{ \ + __m128i a1 = cast_from(a.val), b1 = cast_from(b.val); \ + c.val = cast_to(_mm_unpacklo_epi64(a1, b1)); \ + d.val = cast_to(_mm_unpackhi_epi64(a1, b1)); \ +} + +OPENCV_HAL_IMPL_SSE_UNPACKS(v_uint8x16, epi8, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_int8x16, epi8, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_uint16x8, epi16, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_int16x8, epi16, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_uint32x4, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_int32x4, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_float32x4, ps, _mm_castps_si128, _mm_castsi128_ps) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_float64x2, pd, _mm_castpd_si128, _mm_castsi128_pd) + +template<int s, typename _Tpvec> +inline _Tpvec v_extract(const _Tpvec& a, const _Tpvec& b) +{ + const int w = sizeof(typename _Tpvec::lane_type); + const int n = _Tpvec::nlanes; + __m128i ra, rb; + ra = _mm_srli_si128(a.val, s*w); + rb = _mm_slli_si128(b.val, (n-s)*w); + return _Tpvec(_mm_or_si128(ra, rb)); +} + +inline v_int32x4 v_round(const v_float32x4& a) +{ return v_int32x4(_mm_cvtps_epi32(a.val)); } + +inline v_int32x4 v_floor(const v_float32x4& a) +{ + __m128i a1 = _mm_cvtps_epi32(a.val); + __m128i mask = _mm_castps_si128(_mm_cmpgt_ps(_mm_cvtepi32_ps(a1), a.val)); + return v_int32x4(_mm_add_epi32(a1, mask)); +} + +inline v_int32x4 v_ceil(const v_float32x4& a) +{ + __m128i a1 = _mm_cvtps_epi32(a.val); + __m128i mask = _mm_castps_si128(_mm_cmpgt_ps(a.val, _mm_cvtepi32_ps(a1))); + return v_int32x4(_mm_sub_epi32(a1, mask)); +} + +inline v_int32x4 v_trunc(const v_float32x4& a) +{ return v_int32x4(_mm_cvttps_epi32(a.val)); } + +inline v_int32x4 v_round(const v_float64x2& a) +{ return v_int32x4(_mm_cvtpd_epi32(a.val)); } + +inline v_int32x4 v_floor(const v_float64x2& a) +{ + __m128i a1 = _mm_cvtpd_epi32(a.val); + __m128i mask = _mm_castpd_si128(_mm_cmpgt_pd(_mm_cvtepi32_pd(a1), a.val)); + mask = _mm_srli_si128(_mm_slli_si128(mask, 4), 8); // m0 m0 m1 m1 => m0 m1 0 0 + return v_int32x4(_mm_add_epi32(a1, mask)); +} + +inline v_int32x4 v_ceil(const v_float64x2& a) +{ + __m128i a1 = _mm_cvtpd_epi32(a.val); + __m128i mask = _mm_castpd_si128(_mm_cmpgt_pd(a.val, _mm_cvtepi32_pd(a1))); + mask = _mm_srli_si128(_mm_slli_si128(mask, 4), 8); // m0 m0 m1 m1 => m0 m1 0 0 + return v_int32x4(_mm_sub_epi32(a1, mask)); +} + +inline v_int32x4 v_trunc(const v_float64x2& a) +{ return v_int32x4(_mm_cvttpd_epi32(a.val)); } + +#define OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(_Tpvec, suffix, cast_from, cast_to) \ +inline void v_transpose4x4(const _Tpvec& a0, const _Tpvec& a1, \ + const _Tpvec& a2, const _Tpvec& a3, \ + _Tpvec& b0, _Tpvec& b1, \ + _Tpvec& b2, _Tpvec& b3) \ +{ \ + __m128i t0 = cast_from(_mm_unpacklo_##suffix(a0.val, a1.val)); \ + __m128i t1 = cast_from(_mm_unpacklo_##suffix(a2.val, a3.val)); \ + __m128i t2 = cast_from(_mm_unpackhi_##suffix(a0.val, a1.val)); \ + __m128i t3 = cast_from(_mm_unpackhi_##suffix(a2.val, a3.val)); \ +\ + b0.val = cast_to(_mm_unpacklo_epi64(t0, t1)); \ + b1.val = cast_to(_mm_unpackhi_epi64(t0, t1)); \ + b2.val = cast_to(_mm_unpacklo_epi64(t2, t3)); \ + b3.val = cast_to(_mm_unpackhi_epi64(t2, t3)); \ +} + +OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(v_uint32x4, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(v_int32x4, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(v_float32x4, ps, _mm_castps_si128, _mm_castsi128_ps) + +// adopted from sse_utils.hpp +inline void v_load_deinterleave(const uchar* ptr, v_uint8x16& a, v_uint8x16& b, v_uint8x16& c) +{ + __m128i t00 = _mm_loadu_si128((const __m128i*)ptr); + __m128i t01 = _mm_loadu_si128((const __m128i*)(ptr + 16)); + __m128i t02 = _mm_loadu_si128((const __m128i*)(ptr + 32)); + + __m128i t10 = _mm_unpacklo_epi8(t00, _mm_unpackhi_epi64(t01, t01)); + __m128i t11 = _mm_unpacklo_epi8(_mm_unpackhi_epi64(t00, t00), t02); + __m128i t12 = _mm_unpacklo_epi8(t01, _mm_unpackhi_epi64(t02, t02)); + + __m128i t20 = _mm_unpacklo_epi8(t10, _mm_unpackhi_epi64(t11, t11)); + __m128i t21 = _mm_unpacklo_epi8(_mm_unpackhi_epi64(t10, t10), t12); + __m128i t22 = _mm_unpacklo_epi8(t11, _mm_unpackhi_epi64(t12, t12)); + + __m128i t30 = _mm_unpacklo_epi8(t20, _mm_unpackhi_epi64(t21, t21)); + __m128i t31 = _mm_unpacklo_epi8(_mm_unpackhi_epi64(t20, t20), t22); + __m128i t32 = _mm_unpacklo_epi8(t21, _mm_unpackhi_epi64(t22, t22)); + + a.val = _mm_unpacklo_epi8(t30, _mm_unpackhi_epi64(t31, t31)); + b.val = _mm_unpacklo_epi8(_mm_unpackhi_epi64(t30, t30), t32); + c.val = _mm_unpacklo_epi8(t31, _mm_unpackhi_epi64(t32, t32)); +} + +inline void v_load_deinterleave(const uchar* ptr, v_uint8x16& a, v_uint8x16& b, v_uint8x16& c, v_uint8x16& d) +{ + __m128i u0 = _mm_loadu_si128((const __m128i*)ptr); // a0 b0 c0 d0 a1 b1 c1 d1 ... + __m128i u1 = _mm_loadu_si128((const __m128i*)(ptr + 16)); // a4 b4 c4 d4 ... + __m128i u2 = _mm_loadu_si128((const __m128i*)(ptr + 32)); // a8 b8 c8 d8 ... + __m128i u3 = _mm_loadu_si128((const __m128i*)(ptr + 48)); // a12 b12 c12 d12 ... + + __m128i v0 = _mm_unpacklo_epi8(u0, u2); // a0 a8 b0 b8 ... + __m128i v1 = _mm_unpackhi_epi8(u0, u2); // a2 a10 b2 b10 ... + __m128i v2 = _mm_unpacklo_epi8(u1, u3); // a4 a12 b4 b12 ... + __m128i v3 = _mm_unpackhi_epi8(u1, u3); // a6 a14 b6 b14 ... + + u0 = _mm_unpacklo_epi8(v0, v2); // a0 a4 a8 a12 ... + u1 = _mm_unpacklo_epi8(v1, v3); // a2 a6 a10 a14 ... + u2 = _mm_unpackhi_epi8(v0, v2); // a1 a5 a9 a13 ... + u3 = _mm_unpackhi_epi8(v1, v3); // a3 a7 a11 a15 ... + + v0 = _mm_unpacklo_epi8(u0, u1); // a0 a2 a4 a6 ... + v1 = _mm_unpacklo_epi8(u2, u3); // a1 a3 a5 a7 ... + v2 = _mm_unpackhi_epi8(u0, u1); // c0 c2 c4 c6 ... + v3 = _mm_unpackhi_epi8(u2, u3); // c1 c3 c5 c7 ... + + a.val = _mm_unpacklo_epi8(v0, v1); + b.val = _mm_unpackhi_epi8(v0, v1); + c.val = _mm_unpacklo_epi8(v2, v3); + d.val = _mm_unpackhi_epi8(v2, v3); +} + +inline void v_load_deinterleave(const ushort* ptr, v_uint16x8& a, v_uint16x8& b, v_uint16x8& c) +{ + __m128i t00 = _mm_loadu_si128((const __m128i*)ptr); + __m128i t01 = _mm_loadu_si128((const __m128i*)(ptr + 8)); + __m128i t02 = _mm_loadu_si128((const __m128i*)(ptr + 16)); + + __m128i t10 = _mm_unpacklo_epi16(t00, _mm_unpackhi_epi64(t01, t01)); + __m128i t11 = _mm_unpacklo_epi16(_mm_unpackhi_epi64(t00, t00), t02); + __m128i t12 = _mm_unpacklo_epi16(t01, _mm_unpackhi_epi64(t02, t02)); + + __m128i t20 = _mm_unpacklo_epi16(t10, _mm_unpackhi_epi64(t11, t11)); + __m128i t21 = _mm_unpacklo_epi16(_mm_unpackhi_epi64(t10, t10), t12); + __m128i t22 = _mm_unpacklo_epi16(t11, _mm_unpackhi_epi64(t12, t12)); + + a.val = _mm_unpacklo_epi16(t20, _mm_unpackhi_epi64(t21, t21)); + b.val = _mm_unpacklo_epi16(_mm_unpackhi_epi64(t20, t20), t22); + c.val = _mm_unpacklo_epi16(t21, _mm_unpackhi_epi64(t22, t22)); +} + +inline void v_load_deinterleave(const ushort* ptr, v_uint16x8& a, v_uint16x8& b, v_uint16x8& c, v_uint16x8& d) +{ + __m128i u0 = _mm_loadu_si128((const __m128i*)ptr); // a0 b0 c0 d0 a1 b1 c1 d1 + __m128i u1 = _mm_loadu_si128((const __m128i*)(ptr + 8)); // a2 b2 c2 d2 ... + __m128i u2 = _mm_loadu_si128((const __m128i*)(ptr + 16)); // a4 b4 c4 d4 ... + __m128i u3 = _mm_loadu_si128((const __m128i*)(ptr + 24)); // a6 b6 c6 d6 ... + + __m128i v0 = _mm_unpacklo_epi16(u0, u2); // a0 a4 b0 b4 ... + __m128i v1 = _mm_unpackhi_epi16(u0, u2); // a1 a5 b1 b5 ... + __m128i v2 = _mm_unpacklo_epi16(u1, u3); // a2 a6 b2 b6 ... + __m128i v3 = _mm_unpackhi_epi16(u1, u3); // a3 a7 b3 b7 ... + + u0 = _mm_unpacklo_epi16(v0, v2); // a0 a2 a4 a6 ... + u1 = _mm_unpacklo_epi16(v1, v3); // a1 a3 a5 a7 ... + u2 = _mm_unpackhi_epi16(v0, v2); // c0 c2 c4 c6 ... + u3 = _mm_unpackhi_epi16(v1, v3); // c1 c3 c5 c7 ... + + a.val = _mm_unpacklo_epi16(u0, u1); + b.val = _mm_unpackhi_epi16(u0, u1); + c.val = _mm_unpacklo_epi16(u2, u3); + d.val = _mm_unpackhi_epi16(u2, u3); +} + +inline void v_load_deinterleave(const unsigned* ptr, v_uint32x4& a, v_uint32x4& b, v_uint32x4& c) +{ + __m128i t00 = _mm_loadu_si128((const __m128i*)ptr); + __m128i t01 = _mm_loadu_si128((const __m128i*)(ptr + 4)); + __m128i t02 = _mm_loadu_si128((const __m128i*)(ptr + 8)); + + __m128i t10 = _mm_unpacklo_epi32(t00, _mm_unpackhi_epi64(t01, t01)); + __m128i t11 = _mm_unpacklo_epi32(_mm_unpackhi_epi64(t00, t00), t02); + __m128i t12 = _mm_unpacklo_epi32(t01, _mm_unpackhi_epi64(t02, t02)); + + a.val = _mm_unpacklo_epi32(t10, _mm_unpackhi_epi64(t11, t11)); + b.val = _mm_unpacklo_epi32(_mm_unpackhi_epi64(t10, t10), t12); + c.val = _mm_unpacklo_epi32(t11, _mm_unpackhi_epi64(t12, t12)); +} + +inline void v_load_deinterleave(const unsigned* ptr, v_uint32x4& a, v_uint32x4& b, v_uint32x4& c, v_uint32x4& d) +{ + v_uint32x4 u0(_mm_loadu_si128((const __m128i*)ptr)); // a0 b0 c0 d0 + v_uint32x4 u1(_mm_loadu_si128((const __m128i*)(ptr + 4))); // a1 b1 c1 d1 + v_uint32x4 u2(_mm_loadu_si128((const __m128i*)(ptr + 8))); // a2 b2 c2 d2 + v_uint32x4 u3(_mm_loadu_si128((const __m128i*)(ptr + 12))); // a3 b3 c3 d3 + + v_transpose4x4(u0, u1, u2, u3, a, b, c, d); +} + +// 2-channel, float only +inline void v_load_deinterleave(const float* ptr, v_float32x4& a, v_float32x4& b) +{ + const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1); + + __m128 u0 = _mm_loadu_ps(ptr); // a0 b0 a1 b1 + __m128 u1 = _mm_loadu_ps((ptr + 4)); // a2 b2 a3 b3 + + a.val = _mm_shuffle_ps(u0, u1, mask_lo); // a0 a1 a2 a3 + b.val = _mm_shuffle_ps(u0, u1, mask_hi); // b0 b1 ab b3 +} + +inline void v_store_interleave( short* ptr, const v_int16x8& a, const v_int16x8& b ) +{ + __m128i t0, t1; + t0 = _mm_unpacklo_epi16(a.val, b.val); + t1 = _mm_unpackhi_epi16(a.val, b.val); + _mm_storeu_si128((__m128i*)(ptr), t0); + _mm_storeu_si128((__m128i*)(ptr + 8), t1); +} + +inline void v_store_interleave( uchar* ptr, const v_uint8x16& a, const v_uint8x16& b, + const v_uint8x16& c ) +{ + __m128i z = _mm_setzero_si128(); + __m128i ab0 = _mm_unpacklo_epi8(a.val, b.val); + __m128i ab1 = _mm_unpackhi_epi8(a.val, b.val); + __m128i c0 = _mm_unpacklo_epi8(c.val, z); + __m128i c1 = _mm_unpackhi_epi8(c.val, z); + + __m128i p00 = _mm_unpacklo_epi16(ab0, c0); + __m128i p01 = _mm_unpackhi_epi16(ab0, c0); + __m128i p02 = _mm_unpacklo_epi16(ab1, c1); + __m128i p03 = _mm_unpackhi_epi16(ab1, c1); + + __m128i p10 = _mm_unpacklo_epi32(p00, p01); + __m128i p11 = _mm_unpackhi_epi32(p00, p01); + __m128i p12 = _mm_unpacklo_epi32(p02, p03); + __m128i p13 = _mm_unpackhi_epi32(p02, p03); + + __m128i p20 = _mm_unpacklo_epi64(p10, p11); + __m128i p21 = _mm_unpackhi_epi64(p10, p11); + __m128i p22 = _mm_unpacklo_epi64(p12, p13); + __m128i p23 = _mm_unpackhi_epi64(p12, p13); + + p20 = _mm_slli_si128(p20, 1); + p22 = _mm_slli_si128(p22, 1); + + __m128i p30 = _mm_slli_epi64(_mm_unpacklo_epi32(p20, p21), 8); + __m128i p31 = _mm_srli_epi64(_mm_unpackhi_epi32(p20, p21), 8); + __m128i p32 = _mm_slli_epi64(_mm_unpacklo_epi32(p22, p23), 8); + __m128i p33 = _mm_srli_epi64(_mm_unpackhi_epi32(p22, p23), 8); + + __m128i p40 = _mm_unpacklo_epi64(p30, p31); + __m128i p41 = _mm_unpackhi_epi64(p30, p31); + __m128i p42 = _mm_unpacklo_epi64(p32, p33); + __m128i p43 = _mm_unpackhi_epi64(p32, p33); + + __m128i v0 = _mm_or_si128(_mm_srli_si128(p40, 2), _mm_slli_si128(p41, 10)); + __m128i v1 = _mm_or_si128(_mm_srli_si128(p41, 6), _mm_slli_si128(p42, 6)); + __m128i v2 = _mm_or_si128(_mm_srli_si128(p42, 10), _mm_slli_si128(p43, 2)); + + _mm_storeu_si128((__m128i*)(ptr), v0); + _mm_storeu_si128((__m128i*)(ptr + 16), v1); + _mm_storeu_si128((__m128i*)(ptr + 32), v2); +} + +inline void v_store_interleave( uchar* ptr, const v_uint8x16& a, const v_uint8x16& b, + const v_uint8x16& c, const v_uint8x16& d) +{ + // a0 a1 a2 a3 .... + // b0 b1 b2 b3 .... + // c0 c1 c2 c3 .... + // d0 d1 d2 d3 .... + __m128i u0 = _mm_unpacklo_epi8(a.val, c.val); // a0 c0 a1 c1 ... + __m128i u1 = _mm_unpackhi_epi8(a.val, c.val); // a8 c8 a9 c9 ... + __m128i u2 = _mm_unpacklo_epi8(b.val, d.val); // b0 d0 b1 d1 ... + __m128i u3 = _mm_unpackhi_epi8(b.val, d.val); // b8 d8 b9 d9 ... + + __m128i v0 = _mm_unpacklo_epi8(u0, u2); // a0 b0 c0 d0 ... + __m128i v1 = _mm_unpacklo_epi8(u1, u3); // a8 b8 c8 d8 ... + __m128i v2 = _mm_unpackhi_epi8(u0, u2); // a4 b4 c4 d4 ... + __m128i v3 = _mm_unpackhi_epi8(u1, u3); // a12 b12 c12 d12 ... + + _mm_storeu_si128((__m128i*)ptr, v0); + _mm_storeu_si128((__m128i*)(ptr + 16), v2); + _mm_storeu_si128((__m128i*)(ptr + 32), v1); + _mm_storeu_si128((__m128i*)(ptr + 48), v3); +} + +inline void v_store_interleave( ushort* ptr, const v_uint16x8& a, + const v_uint16x8& b, + const v_uint16x8& c ) +{ + __m128i z = _mm_setzero_si128(); + __m128i ab0 = _mm_unpacklo_epi16(a.val, b.val); + __m128i ab1 = _mm_unpackhi_epi16(a.val, b.val); + __m128i c0 = _mm_unpacklo_epi16(c.val, z); + __m128i c1 = _mm_unpackhi_epi16(c.val, z); + + __m128i p10 = _mm_unpacklo_epi32(ab0, c0); + __m128i p11 = _mm_unpackhi_epi32(ab0, c0); + __m128i p12 = _mm_unpacklo_epi32(ab1, c1); + __m128i p13 = _mm_unpackhi_epi32(ab1, c1); + + __m128i p20 = _mm_unpacklo_epi64(p10, p11); + __m128i p21 = _mm_unpackhi_epi64(p10, p11); + __m128i p22 = _mm_unpacklo_epi64(p12, p13); + __m128i p23 = _mm_unpackhi_epi64(p12, p13); + + p20 = _mm_slli_si128(p20, 2); + p22 = _mm_slli_si128(p22, 2); + + __m128i p30 = _mm_unpacklo_epi64(p20, p21); + __m128i p31 = _mm_unpackhi_epi64(p20, p21); + __m128i p32 = _mm_unpacklo_epi64(p22, p23); + __m128i p33 = _mm_unpackhi_epi64(p22, p23); + + __m128i v0 = _mm_or_si128(_mm_srli_si128(p30, 2), _mm_slli_si128(p31, 10)); + __m128i v1 = _mm_or_si128(_mm_srli_si128(p31, 6), _mm_slli_si128(p32, 6)); + __m128i v2 = _mm_or_si128(_mm_srli_si128(p32, 10), _mm_slli_si128(p33, 2)); + + _mm_storeu_si128((__m128i*)(ptr), v0); + _mm_storeu_si128((__m128i*)(ptr + 8), v1); + _mm_storeu_si128((__m128i*)(ptr + 16), v2); +} + +inline void v_store_interleave( ushort* ptr, const v_uint16x8& a, const v_uint16x8& b, + const v_uint16x8& c, const v_uint16x8& d) +{ + // a0 a1 a2 a3 .... + // b0 b1 b2 b3 .... + // c0 c1 c2 c3 .... + // d0 d1 d2 d3 .... + __m128i u0 = _mm_unpacklo_epi16(a.val, c.val); // a0 c0 a1 c1 ... + __m128i u1 = _mm_unpackhi_epi16(a.val, c.val); // a4 c4 a5 c5 ... + __m128i u2 = _mm_unpacklo_epi16(b.val, d.val); // b0 d0 b1 d1 ... + __m128i u3 = _mm_unpackhi_epi16(b.val, d.val); // b4 d4 b5 d5 ... + + __m128i v0 = _mm_unpacklo_epi16(u0, u2); // a0 b0 c0 d0 ... + __m128i v1 = _mm_unpacklo_epi16(u1, u3); // a4 b4 c4 d4 ... + __m128i v2 = _mm_unpackhi_epi16(u0, u2); // a2 b2 c2 d2 ... + __m128i v3 = _mm_unpackhi_epi16(u1, u3); // a6 b6 c6 d6 ... + + _mm_storeu_si128((__m128i*)ptr, v0); + _mm_storeu_si128((__m128i*)(ptr + 8), v2); + _mm_storeu_si128((__m128i*)(ptr + 16), v1); + _mm_storeu_si128((__m128i*)(ptr + 24), v3); +} + +inline void v_store_interleave( unsigned* ptr, const v_uint32x4& a, const v_uint32x4& b, + const v_uint32x4& c ) +{ + v_uint32x4 z = v_setzero_u32(), u0, u1, u2, u3; + v_transpose4x4(a, b, c, z, u0, u1, u2, u3); + + __m128i v0 = _mm_or_si128(u0.val, _mm_slli_si128(u1.val, 12)); + __m128i v1 = _mm_or_si128(_mm_srli_si128(u1.val, 4), _mm_slli_si128(u2.val, 8)); + __m128i v2 = _mm_or_si128(_mm_srli_si128(u2.val, 8), _mm_slli_si128(u3.val, 4)); + + _mm_storeu_si128((__m128i*)ptr, v0); + _mm_storeu_si128((__m128i*)(ptr + 4), v1); + _mm_storeu_si128((__m128i*)(ptr + 8), v2); +} + +inline void v_store_interleave(unsigned* ptr, const v_uint32x4& a, const v_uint32x4& b, + const v_uint32x4& c, const v_uint32x4& d) +{ + v_uint32x4 t0, t1, t2, t3; + v_transpose4x4(a, b, c, d, t0, t1, t2, t3); + v_store(ptr, t0); + v_store(ptr + 4, t1); + v_store(ptr + 8, t2); + v_store(ptr + 12, t3); +} + +// 2-channel, float only +inline void v_store_interleave(float* ptr, const v_float32x4& a, const v_float32x4& b) +{ + // a0 a1 a2 a3 ... + // b0 b1 b2 b3 ... + __m128 u0 = _mm_unpacklo_ps(a.val, b.val); // a0 b0 a1 b1 + __m128 u1 = _mm_unpackhi_ps(a.val, b.val); // a2 b2 a3 b3 + + _mm_storeu_ps(ptr, u0); + _mm_storeu_ps((ptr + 4), u1); +} + +#define OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(_Tpvec, _Tp, suffix, _Tpuvec, _Tpu, usuffix) \ +inline void v_load_deinterleave( const _Tp* ptr, _Tpvec& a0, \ + _Tpvec& b0, _Tpvec& c0 ) \ +{ \ + _Tpuvec a1, b1, c1; \ + v_load_deinterleave((const _Tpu*)ptr, a1, b1, c1); \ + a0 = v_reinterpret_as_##suffix(a1); \ + b0 = v_reinterpret_as_##suffix(b1); \ + c0 = v_reinterpret_as_##suffix(c1); \ +} \ +inline void v_load_deinterleave( const _Tp* ptr, _Tpvec& a0, \ + _Tpvec& b0, _Tpvec& c0, _Tpvec& d0 ) \ +{ \ + _Tpuvec a1, b1, c1, d1; \ + v_load_deinterleave((const _Tpu*)ptr, a1, b1, c1, d1); \ + a0 = v_reinterpret_as_##suffix(a1); \ + b0 = v_reinterpret_as_##suffix(b1); \ + c0 = v_reinterpret_as_##suffix(c1); \ + d0 = v_reinterpret_as_##suffix(d1); \ +} \ +inline void v_store_interleave( _Tp* ptr, const _Tpvec& a0, \ + const _Tpvec& b0, const _Tpvec& c0 ) \ +{ \ + _Tpuvec a1 = v_reinterpret_as_##usuffix(a0); \ + _Tpuvec b1 = v_reinterpret_as_##usuffix(b0); \ + _Tpuvec c1 = v_reinterpret_as_##usuffix(c0); \ + v_store_interleave((_Tpu*)ptr, a1, b1, c1); \ +} \ +inline void v_store_interleave( _Tp* ptr, const _Tpvec& a0, const _Tpvec& b0, \ + const _Tpvec& c0, const _Tpvec& d0 ) \ +{ \ + _Tpuvec a1 = v_reinterpret_as_##usuffix(a0); \ + _Tpuvec b1 = v_reinterpret_as_##usuffix(b0); \ + _Tpuvec c1 = v_reinterpret_as_##usuffix(c0); \ + _Tpuvec d1 = v_reinterpret_as_##usuffix(d0); \ + v_store_interleave((_Tpu*)ptr, a1, b1, c1, d1); \ +} + +OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(v_int8x16, schar, s8, v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(v_int16x8, short, s16, v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(v_int32x4, int, s32, v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(v_float32x4, float, f32, v_uint32x4, unsigned, u32) + +inline v_float32x4 v_cvt_f32(const v_int32x4& a) +{ + return v_float32x4(_mm_cvtepi32_ps(a.val)); +} + +inline v_float32x4 v_cvt_f32(const v_float64x2& a) +{ + return v_float32x4(_mm_cvtpd_ps(a.val)); +} + +inline v_float64x2 v_cvt_f64(const v_int32x4& a) +{ + return v_float64x2(_mm_cvtepi32_pd(a.val)); +} + +inline v_float64x2 v_cvt_f64_high(const v_int32x4& a) +{ + return v_float64x2(_mm_cvtepi32_pd(_mm_srli_si128(a.val,8))); +} + +inline v_float64x2 v_cvt_f64(const v_float32x4& a) +{ + return v_float64x2(_mm_cvtps_pd(a.val)); +} + +inline v_float64x2 v_cvt_f64_high(const v_float32x4& a) +{ + return v_float64x2(_mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(a.val),8)))); +} + +#if defined(HAVE_FP16) +inline v_float32x4 v_cvt_f32(const v_float16x4& a) +{ + return v_float32x4(_mm_cvtph_ps(a.val)); +} + +inline v_float16x4 v_cvt_f16(const v_float32x4& a) +{ + return v_float16x4(_mm_cvtps_ph(a.val, 0)); +} +#endif + +//! @name Check SIMD support +//! @{ +//! @brief Check CPU capability of SIMD operation +static inline bool hasSIMD128() +{ + return checkHardwareSupport(CV_CPU_SSE2); +} + +//! @} + +//! @endcond + +} + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/ippasync.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,195 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2015, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_IPPASYNC_HPP +#define OPENCV_CORE_IPPASYNC_HPP + +#ifdef HAVE_IPP_A + +#include "opencv2/core.hpp" +#include <ipp_async_op.h> +#include <ipp_async_accel.h> + +namespace cv +{ + +namespace hpp +{ + +/** @addtogroup core_ipp +This section describes conversion between OpenCV and [Intel® IPP Asynchronous +C/C++](http://software.intel.com/en-us/intel-ipp-preview) library. [Getting Started +Guide](http://registrationcenter.intel.com/irc_nas/3727/ipp_async_get_started.htm) help you to +install the library, configure header and library build paths. + */ +//! @{ + + //! convert OpenCV data type to hppDataType + inline int toHppType(const int cvType) + { + int depth = CV_MAT_DEPTH(cvType); + int hppType = depth == CV_8U ? HPP_DATA_TYPE_8U : + depth == CV_16U ? HPP_DATA_TYPE_16U : + depth == CV_16S ? HPP_DATA_TYPE_16S : + depth == CV_32S ? HPP_DATA_TYPE_32S : + depth == CV_32F ? HPP_DATA_TYPE_32F : + depth == CV_64F ? HPP_DATA_TYPE_64F : -1; + CV_Assert( hppType >= 0 ); + return hppType; + } + + //! convert hppDataType to OpenCV data type + inline int toCvType(const int hppType) + { + int cvType = hppType == HPP_DATA_TYPE_8U ? CV_8U : + hppType == HPP_DATA_TYPE_16U ? CV_16U : + hppType == HPP_DATA_TYPE_16S ? CV_16S : + hppType == HPP_DATA_TYPE_32S ? CV_32S : + hppType == HPP_DATA_TYPE_32F ? CV_32F : + hppType == HPP_DATA_TYPE_64F ? CV_64F : -1; + CV_Assert( cvType >= 0 ); + return cvType; + } + + /** @brief Convert hppiMatrix to Mat. + + This function allocates and initializes new matrix (if needed) that has the same size and type as + input matrix. Supports CV_8U, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F. + @param src input hppiMatrix. + @param dst output matrix. + @param accel accelerator instance (see hpp::getHpp for the list of acceleration framework types). + @param cn number of channels. + */ + inline void copyHppToMat(hppiMatrix* src, Mat& dst, hppAccel accel, int cn) + { + hppDataType type; + hpp32u width, height; + hppStatus sts; + + if (src == NULL) + return dst.release(); + + sts = hppiInquireMatrix(src, &type, &width, &height); + + CV_Assert( sts == HPP_STATUS_NO_ERROR); + + int matType = CV_MAKETYPE(toCvType(type), cn); + + CV_Assert(width%cn == 0); + + width /= cn; + + dst.create((int)height, (int)width, (int)matType); + + size_t newSize = (size_t)(height*(hpp32u)(dst.step)); + + sts = hppiGetMatrixData(accel,src,(hpp32u)(dst.step),dst.data,&newSize); + + CV_Assert( sts == HPP_STATUS_NO_ERROR); + } + + /** @brief Create Mat from hppiMatrix. + + This function allocates and initializes the Mat that has the same size and type as input matrix. + Supports CV_8U, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F. + @param src input hppiMatrix. + @param accel accelerator instance (see hpp::getHpp for the list of acceleration framework types). + @param cn number of channels. + @sa howToUseIPPAconversion, hpp::copyHppToMat, hpp::getHpp. + */ + inline Mat getMat(hppiMatrix* src, hppAccel accel, int cn) + { + Mat dst; + copyHppToMat(src, dst, accel, cn); + return dst; + } + + /** @brief Create hppiMatrix from Mat. + + This function allocates and initializes the hppiMatrix that has the same size and type as input + matrix, returns the hppiMatrix*. + + If you want to use zero-copy for GPU you should to have 4KB aligned matrix data. See details + [hppiCreateSharedMatrix](http://software.intel.com/ru-ru/node/501697). + + Supports CV_8U, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F. + + @note The hppiMatrix pointer to the image buffer in system memory refers to the src.data. Control + the lifetime of the matrix and don't change its data, if there is no special need. + @param src input matrix. + @param accel accelerator instance. Supports type: + - **HPP_ACCEL_TYPE_CPU** - accelerated by optimized CPU instructions. + - **HPP_ACCEL_TYPE_GPU** - accelerated by GPU programmable units or fixed-function + accelerators. + - **HPP_ACCEL_TYPE_ANY** - any acceleration or no acceleration available. + @sa howToUseIPPAconversion, hpp::getMat + */ + inline hppiMatrix* getHpp(const Mat& src, hppAccel accel) + { + int htype = toHppType(src.type()); + int cn = src.channels(); + + CV_Assert(src.data); + hppAccelType accelType = hppQueryAccelType(accel); + + if (accelType!=HPP_ACCEL_TYPE_CPU) + { + hpp32u pitch, size; + hppQueryMatrixAllocParams(accel, src.cols*cn, src.rows, htype, &pitch, &size); + if (pitch!=0 && size!=0) + if ((int)(src.data)%4096==0 && pitch==(hpp32u)(src.step)) + { + return hppiCreateSharedMatrix(htype, src.cols*cn, src.rows, src.data, pitch, size); + } + } + + return hppiCreateMatrix(htype, src.cols*cn, src.rows, src.data, (hpp32s)(src.step));; + } + +//! @} +}} + +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/mat.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,3520 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_MAT_HPP +#define OPENCV_CORE_MAT_HPP + +#ifndef __cplusplus +# error mat.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/matx.hpp" +#include "opencv2/core/types.hpp" + +#include "opencv2/core/bufferpool.hpp" + +namespace cv +{ + +//! @addtogroup core_basic +//! @{ + +enum { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25, + ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 }; + +class CV_EXPORTS _OutputArray; + +//////////////////////// Input/Output Array Arguments ///////////////////////////////// + +/** @brief This is the proxy class for passing read-only input arrays into OpenCV functions. + +It is defined as: +@code + typedef const _InputArray& InputArray; +@endcode +where _InputArray is a class that can be constructed from `Mat`, `Mat_<T>`, `Matx<T, m, n>`, +`std::vector<T>`, `std::vector<std::vector<T> >` or `std::vector<Mat>`. It can also be constructed +from a matrix expression. + +Since this is mostly implementation-level class, and its interface may change in future versions, we +do not describe it in details. There are a few key things, though, that should be kept in mind: + +- When you see in the reference manual or in OpenCV source code a function that takes + InputArray, it means that you can actually pass `Mat`, `Matx`, `vector<T>` etc. (see above the + complete list). +- Optional input arguments: If some of the input arrays may be empty, pass cv::noArray() (or + simply cv::Mat() as you probably did before). +- The class is designed solely for passing parameters. That is, normally you *should not* + declare class members, local and global variables of this type. +- If you want to design your own function or a class method that can operate of arrays of + multiple types, you can use InputArray (or OutputArray) for the respective parameters. Inside + a function you should use _InputArray::getMat() method to construct a matrix header for the + array (without copying data). _InputArray::kind() can be used to distinguish Mat from + `vector<>` etc., but normally it is not needed. + +Here is how you can use a function that takes InputArray : +@code + std::vector<Point2f> vec; + // points or a circle + for( int i = 0; i < 30; i++ ) + vec.push_back(Point2f((float)(100 + 30*cos(i*CV_PI*2/5)), + (float)(100 - 30*sin(i*CV_PI*2/5)))); + cv::transform(vec, vec, cv::Matx23f(0.707, -0.707, 10, 0.707, 0.707, 20)); +@endcode +That is, we form an STL vector containing points, and apply in-place affine transformation to the +vector using the 2x3 matrix created inline as `Matx<float, 2, 3>` instance. + +Here is how such a function can be implemented (for simplicity, we implement a very specific case of +it, according to the assertion statement inside) : +@code + void myAffineTransform(InputArray _src, OutputArray _dst, InputArray _m) + { + // get Mat headers for input arrays. This is O(1) operation, + // unless _src and/or _m are matrix expressions. + Mat src = _src.getMat(), m = _m.getMat(); + CV_Assert( src.type() == CV_32FC2 && m.type() == CV_32F && m.size() == Size(3, 2) ); + + // [re]create the output array so that it has the proper size and type. + // In case of Mat it calls Mat::create, in case of STL vector it calls vector::resize. + _dst.create(src.size(), src.type()); + Mat dst = _dst.getMat(); + + for( int i = 0; i < src.rows; i++ ) + for( int j = 0; j < src.cols; j++ ) + { + Point2f pt = src.at<Point2f>(i, j); + dst.at<Point2f>(i, j) = Point2f(m.at<float>(0, 0)*pt.x + + m.at<float>(0, 1)*pt.y + + m.at<float>(0, 2), + m.at<float>(1, 0)*pt.x + + m.at<float>(1, 1)*pt.y + + m.at<float>(1, 2)); + } + } +@endcode +There is another related type, InputArrayOfArrays, which is currently defined as a synonym for +InputArray: +@code + typedef InputArray InputArrayOfArrays; +@endcode +It denotes function arguments that are either vectors of vectors or vectors of matrices. A separate +synonym is needed to generate Python/Java etc. wrappers properly. At the function implementation +level their use is similar, but _InputArray::getMat(idx) should be used to get header for the +idx-th component of the outer vector and _InputArray::size().area() should be used to find the +number of components (vectors/matrices) of the outer vector. + */ +class CV_EXPORTS _InputArray +{ +public: + enum { + KIND_SHIFT = 16, + FIXED_TYPE = 0x8000 << KIND_SHIFT, + FIXED_SIZE = 0x4000 << KIND_SHIFT, + KIND_MASK = 31 << KIND_SHIFT, + + NONE = 0 << KIND_SHIFT, + MAT = 1 << KIND_SHIFT, + MATX = 2 << KIND_SHIFT, + STD_VECTOR = 3 << KIND_SHIFT, + STD_VECTOR_VECTOR = 4 << KIND_SHIFT, + STD_VECTOR_MAT = 5 << KIND_SHIFT, + EXPR = 6 << KIND_SHIFT, + OPENGL_BUFFER = 7 << KIND_SHIFT, + CUDA_HOST_MEM = 8 << KIND_SHIFT, + CUDA_GPU_MAT = 9 << KIND_SHIFT, + UMAT =10 << KIND_SHIFT, + STD_VECTOR_UMAT =11 << KIND_SHIFT, + STD_BOOL_VECTOR =12 << KIND_SHIFT, + STD_VECTOR_CUDA_GPU_MAT = 13 << KIND_SHIFT + }; + + _InputArray(); + _InputArray(int _flags, void* _obj); + _InputArray(const Mat& m); + _InputArray(const MatExpr& expr); + _InputArray(const std::vector<Mat>& vec); + template<typename _Tp> _InputArray(const Mat_<_Tp>& m); + template<typename _Tp> _InputArray(const std::vector<_Tp>& vec); + _InputArray(const std::vector<bool>& vec); + template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec); + template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec); + template<typename _Tp> _InputArray(const _Tp* vec, int n); + template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx); + _InputArray(const double& val); + _InputArray(const cuda::GpuMat& d_mat); + _InputArray(const std::vector<cuda::GpuMat>& d_mat_array); + _InputArray(const ogl::Buffer& buf); + _InputArray(const cuda::HostMem& cuda_mem); + template<typename _Tp> _InputArray(const cudev::GpuMat_<_Tp>& m); + _InputArray(const UMat& um); + _InputArray(const std::vector<UMat>& umv); + + Mat getMat(int idx=-1) const; + Mat getMat_(int idx=-1) const; + UMat getUMat(int idx=-1) const; + void getMatVector(std::vector<Mat>& mv) const; + void getUMatVector(std::vector<UMat>& umv) const; + void getGpuMatVector(std::vector<cuda::GpuMat>& gpumv) const; + cuda::GpuMat getGpuMat() const; + ogl::Buffer getOGlBuffer() const; + + int getFlags() const; + void* getObj() const; + Size getSz() const; + + int kind() const; + int dims(int i=-1) const; + int cols(int i=-1) const; + int rows(int i=-1) const; + Size size(int i=-1) const; + int sizend(int* sz, int i=-1) const; + bool sameSize(const _InputArray& arr) const; + size_t total(int i=-1) const; + int type(int i=-1) const; + int depth(int i=-1) const; + int channels(int i=-1) const; + bool isContinuous(int i=-1) const; + bool isSubmatrix(int i=-1) const; + bool empty() const; + void copyTo(const _OutputArray& arr) const; + void copyTo(const _OutputArray& arr, const _InputArray & mask) const; + size_t offset(int i=-1) const; + size_t step(int i=-1) const; + bool isMat() const; + bool isUMat() const; + bool isMatVector() const; + bool isUMatVector() const; + bool isMatx() const; + bool isVector() const; + bool isGpuMatVector() const; + ~_InputArray(); + +protected: + int flags; + void* obj; + Size sz; + + void init(int _flags, const void* _obj); + void init(int _flags, const void* _obj, Size _sz); +}; + + +/** @brief This type is very similar to InputArray except that it is used for input/output and output function +parameters. + +Just like with InputArray, OpenCV users should not care about OutputArray, they just pass `Mat`, +`vector<T>` etc. to the functions. The same limitation as for `InputArray`: *Do not explicitly +create OutputArray instances* applies here too. + +If you want to make your function polymorphic (i.e. accept different arrays as output parameters), +it is also not very difficult. Take the sample above as the reference. Note that +_OutputArray::create() needs to be called before _OutputArray::getMat(). This way you guarantee +that the output array is properly allocated. + +Optional output parameters. If you do not need certain output array to be computed and returned to +you, pass cv::noArray(), just like you would in the case of optional input array. At the +implementation level, use _OutputArray::needed() to check if certain output array needs to be +computed or not. + +There are several synonyms for OutputArray that are used to assist automatic Python/Java/... wrapper +generators: +@code + typedef OutputArray OutputArrayOfArrays; + typedef OutputArray InputOutputArray; + typedef OutputArray InputOutputArrayOfArrays; +@endcode + */ +class CV_EXPORTS _OutputArray : public _InputArray +{ +public: + enum + { + DEPTH_MASK_8U = 1 << CV_8U, + DEPTH_MASK_8S = 1 << CV_8S, + DEPTH_MASK_16U = 1 << CV_16U, + DEPTH_MASK_16S = 1 << CV_16S, + DEPTH_MASK_32S = 1 << CV_32S, + DEPTH_MASK_32F = 1 << CV_32F, + DEPTH_MASK_64F = 1 << CV_64F, + DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1, + DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S, + DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F + }; + + _OutputArray(); + _OutputArray(int _flags, void* _obj); + _OutputArray(Mat& m); + _OutputArray(std::vector<Mat>& vec); + _OutputArray(cuda::GpuMat& d_mat); + _OutputArray(std::vector<cuda::GpuMat>& d_mat); + _OutputArray(ogl::Buffer& buf); + _OutputArray(cuda::HostMem& cuda_mem); + template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m); + template<typename _Tp> _OutputArray(std::vector<_Tp>& vec); + _OutputArray(std::vector<bool>& vec); + template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec); + template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec); + template<typename _Tp> _OutputArray(Mat_<_Tp>& m); + template<typename _Tp> _OutputArray(_Tp* vec, int n); + template<typename _Tp, int m, int n> _OutputArray(Matx<_Tp, m, n>& matx); + _OutputArray(UMat& m); + _OutputArray(std::vector<UMat>& vec); + + _OutputArray(const Mat& m); + _OutputArray(const std::vector<Mat>& vec); + _OutputArray(const cuda::GpuMat& d_mat); + _OutputArray(const std::vector<cuda::GpuMat>& d_mat); + _OutputArray(const ogl::Buffer& buf); + _OutputArray(const cuda::HostMem& cuda_mem); + template<typename _Tp> _OutputArray(const cudev::GpuMat_<_Tp>& m); + template<typename _Tp> _OutputArray(const std::vector<_Tp>& vec); + template<typename _Tp> _OutputArray(const std::vector<std::vector<_Tp> >& vec); + template<typename _Tp> _OutputArray(const std::vector<Mat_<_Tp> >& vec); + template<typename _Tp> _OutputArray(const Mat_<_Tp>& m); + template<typename _Tp> _OutputArray(const _Tp* vec, int n); + template<typename _Tp, int m, int n> _OutputArray(const Matx<_Tp, m, n>& matx); + _OutputArray(const UMat& m); + _OutputArray(const std::vector<UMat>& vec); + + bool fixedSize() const; + bool fixedType() const; + bool needed() const; + Mat& getMatRef(int i=-1) const; + UMat& getUMatRef(int i=-1) const; + cuda::GpuMat& getGpuMatRef() const; + std::vector<cuda::GpuMat>& getGpuMatVecRef() const; + ogl::Buffer& getOGlBufferRef() const; + cuda::HostMem& getHostMemRef() const; + void create(Size sz, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const; + void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const; + void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const; + void createSameSize(const _InputArray& arr, int mtype) const; + void release() const; + void clear() const; + void setTo(const _InputArray& value, const _InputArray & mask = _InputArray()) const; + + void assign(const UMat& u) const; + void assign(const Mat& m) const; +}; + + +class CV_EXPORTS _InputOutputArray : public _OutputArray +{ +public: + _InputOutputArray(); + _InputOutputArray(int _flags, void* _obj); + _InputOutputArray(Mat& m); + _InputOutputArray(std::vector<Mat>& vec); + _InputOutputArray(cuda::GpuMat& d_mat); + _InputOutputArray(ogl::Buffer& buf); + _InputOutputArray(cuda::HostMem& cuda_mem); + template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m); + template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec); + _InputOutputArray(std::vector<bool>& vec); + template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec); + template<typename _Tp> _InputOutputArray(std::vector<Mat_<_Tp> >& vec); + template<typename _Tp> _InputOutputArray(Mat_<_Tp>& m); + template<typename _Tp> _InputOutputArray(_Tp* vec, int n); + template<typename _Tp, int m, int n> _InputOutputArray(Matx<_Tp, m, n>& matx); + _InputOutputArray(UMat& m); + _InputOutputArray(std::vector<UMat>& vec); + + _InputOutputArray(const Mat& m); + _InputOutputArray(const std::vector<Mat>& vec); + _InputOutputArray(const cuda::GpuMat& d_mat); + _InputOutputArray(const std::vector<cuda::GpuMat>& d_mat); + _InputOutputArray(const ogl::Buffer& buf); + _InputOutputArray(const cuda::HostMem& cuda_mem); + template<typename _Tp> _InputOutputArray(const cudev::GpuMat_<_Tp>& m); + template<typename _Tp> _InputOutputArray(const std::vector<_Tp>& vec); + template<typename _Tp> _InputOutputArray(const std::vector<std::vector<_Tp> >& vec); + template<typename _Tp> _InputOutputArray(const std::vector<Mat_<_Tp> >& vec); + template<typename _Tp> _InputOutputArray(const Mat_<_Tp>& m); + template<typename _Tp> _InputOutputArray(const _Tp* vec, int n); + template<typename _Tp, int m, int n> _InputOutputArray(const Matx<_Tp, m, n>& matx); + _InputOutputArray(const UMat& m); + _InputOutputArray(const std::vector<UMat>& vec); +}; + +typedef const _InputArray& InputArray; +typedef InputArray InputArrayOfArrays; +typedef const _OutputArray& OutputArray; +typedef OutputArray OutputArrayOfArrays; +typedef const _InputOutputArray& InputOutputArray; +typedef InputOutputArray InputOutputArrayOfArrays; + +CV_EXPORTS InputOutputArray noArray(); + +/////////////////////////////////// MatAllocator ////////////////////////////////////// + +//! Usage flags for allocator +enum UMatUsageFlags +{ + USAGE_DEFAULT = 0, + + // buffer allocation policy is platform and usage specific + USAGE_ALLOCATE_HOST_MEMORY = 1 << 0, + USAGE_ALLOCATE_DEVICE_MEMORY = 1 << 1, + USAGE_ALLOCATE_SHARED_MEMORY = 1 << 2, // It is not equal to: USAGE_ALLOCATE_HOST_MEMORY | USAGE_ALLOCATE_DEVICE_MEMORY + + __UMAT_USAGE_FLAGS_32BIT = 0x7fffffff // Binary compatibility hint +}; + +struct CV_EXPORTS UMatData; + +/** @brief Custom array allocator +*/ +class CV_EXPORTS MatAllocator +{ +public: + MatAllocator() {} + virtual ~MatAllocator() {} + + // let's comment it off for now to detect and fix all the uses of allocator + //virtual void allocate(int dims, const int* sizes, int type, int*& refcount, + // uchar*& datastart, uchar*& data, size_t* step) = 0; + //virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0; + virtual UMatData* allocate(int dims, const int* sizes, int type, + void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const = 0; + virtual bool allocate(UMatData* data, int accessflags, UMatUsageFlags usageFlags) const = 0; + virtual void deallocate(UMatData* data) const = 0; + virtual void map(UMatData* data, int accessflags) const; + virtual void unmap(UMatData* data) const; + virtual void download(UMatData* data, void* dst, int dims, const size_t sz[], + const size_t srcofs[], const size_t srcstep[], + const size_t dststep[]) const; + virtual void upload(UMatData* data, const void* src, int dims, const size_t sz[], + const size_t dstofs[], const size_t dststep[], + const size_t srcstep[]) const; + virtual void copy(UMatData* srcdata, UMatData* dstdata, int dims, const size_t sz[], + const size_t srcofs[], const size_t srcstep[], + const size_t dstofs[], const size_t dststep[], bool sync) const; + + // default implementation returns DummyBufferPoolController + virtual BufferPoolController* getBufferPoolController(const char* id = NULL) const; +}; + + +//////////////////////////////// MatCommaInitializer ////////////////////////////////// + +/** @brief Comma-separated Matrix Initializer + + The class instances are usually not created explicitly. + Instead, they are created on "matrix << firstValue" operator. + + The sample below initializes 2x2 rotation matrix: + + \code + double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180); + Mat R = (Mat_<double>(2,2) << a, -b, b, a); + \endcode +*/ +template<typename _Tp> class MatCommaInitializer_ +{ +public: + //! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat + MatCommaInitializer_(Mat_<_Tp>* _m); + //! the operator that takes the next value and put it to the matrix + template<typename T2> MatCommaInitializer_<_Tp>& operator , (T2 v); + //! another form of conversion operator + operator Mat_<_Tp>() const; +protected: + MatIterator_<_Tp> it; +}; + + +/////////////////////////////////////// Mat /////////////////////////////////////////// + +// note that umatdata might be allocated together +// with the matrix data, not as a separate object. +// therefore, it does not have constructor or destructor; +// it should be explicitly initialized using init(). +struct CV_EXPORTS UMatData +{ + enum { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2, + DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24, + USER_ALLOCATED=32, DEVICE_MEM_MAPPED=64}; + UMatData(const MatAllocator* allocator); + ~UMatData(); + + // provide atomic access to the structure + void lock(); + void unlock(); + + bool hostCopyObsolete() const; + bool deviceCopyObsolete() const; + bool deviceMemMapped() const; + bool copyOnMap() const; + bool tempUMat() const; + bool tempCopiedUMat() const; + void markHostCopyObsolete(bool flag); + void markDeviceCopyObsolete(bool flag); + void markDeviceMemMapped(bool flag); + + const MatAllocator* prevAllocator; + const MatAllocator* currAllocator; + int urefcount; + int refcount; + uchar* data; + uchar* origdata; + size_t size; + + int flags; + void* handle; + void* userdata; + int allocatorFlags_; + int mapcount; + UMatData* originalUMatData; +}; + + +struct CV_EXPORTS UMatDataAutoLock +{ + explicit UMatDataAutoLock(UMatData* u); + ~UMatDataAutoLock(); + UMatData* u; +}; + + +struct CV_EXPORTS MatSize +{ + explicit MatSize(int* _p); + Size operator()() const; + const int& operator[](int i) const; + int& operator[](int i); + operator const int*() const; + bool operator == (const MatSize& sz) const; + bool operator != (const MatSize& sz) const; + + int* p; +}; + +struct CV_EXPORTS MatStep +{ + MatStep(); + explicit MatStep(size_t s); + const size_t& operator[](int i) const; + size_t& operator[](int i); + operator size_t() const; + MatStep& operator = (size_t s); + + size_t* p; + size_t buf[2]; +protected: + MatStep& operator = (const MatStep&); +}; + +/** @example cout_mat.cpp +An example demonstrating the serial out capabilities of cv::Mat +*/ + + /** @brief n-dimensional dense array class + +The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It +can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel +volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms +may be better stored in a SparseMat ). The data layout of the array `M` is defined by the array +`M.step[]`, so that the address of element \f$(i_0,...,i_{M.dims-1})\f$, where \f$0\leq i_k<M.size[k]\f$, is +computed as: +\f[addr(M_{i_0,...,i_{M.dims-1}}) = M.data + M.step[0]*i_0 + M.step[1]*i_1 + ... + M.step[M.dims-1]*i_{M.dims-1}\f] +In case of a 2-dimensional array, the above formula is reduced to: +\f[addr(M_{i,j}) = M.data + M.step[0]*i + M.step[1]*j\f] +Note that `M.step[i] >= M.step[i+1]` (in fact, `M.step[i] >= M.step[i+1]*M.size[i+1]` ). This means +that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, +and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() . + +So, the data layout in Mat is fully compatible with CvMat, IplImage, and CvMatND types from OpenCV +1.x. It is also compatible with the majority of dense array types from the standard toolkits and +SDKs, such as Numpy (ndarray), Win32 (independent device bitmaps), and others, that is, with any +array that uses *steps* (or *strides*) to compute the position of a pixel. Due to this +compatibility, it is possible to make a Mat header for user-allocated data and process it in-place +using OpenCV functions. + +There are many different ways to create a Mat object. The most popular options are listed below: + +- Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue]) +constructor. A new array of the specified size and type is allocated. type has the same meaning as +in the cvCreateMat method. For example, CV_8UC1 means a 8-bit single-channel array, CV_32FC2 +means a 2-channel (complex) floating-point array, and so on. +@code + // make a 7x7 complex matrix filled with 1+3j. + Mat M(7,7,CV_32FC2,Scalar(1,3)); + // and now turn M to a 100x60 15-channel 8-bit matrix. + // The old content will be deallocated + M.create(100,60,CV_8UC(15)); +@endcode +As noted in the introduction to this chapter, create() allocates only a new array when the shape +or type of the current array are different from the specified ones. + +- Create a multi-dimensional array: +@code + // create a 100x100x100 8-bit array + int sz[] = {100, 100, 100}; + Mat bigCube(3, sz, CV_8U, Scalar::all(0)); +@endcode +It passes the number of dimensions =1 to the Mat constructor but the created array will be +2-dimensional with the number of columns set to 1. So, Mat::dims is always \>= 2 (can also be 0 +when the array is empty). + +- Use a copy constructor or assignment operator where there can be an array or expression on the +right side (see below). As noted in the introduction, the array assignment is an O(1) operation +because it only copies the header and increases the reference counter. The Mat::clone() method can +be used to get a full (deep) copy of the array when you need it. + +- Construct a header for a part of another array. It can be a single row, single column, several +rows, several columns, rectangular region in the array (called a *minor* in algebra) or a +diagonal. Such operations are also O(1) because the new header references the same data. You can +actually modify a part of the array using this feature, for example: +@code + // add the 5-th row, multiplied by 3 to the 3rd row + M.row(3) = M.row(3) + M.row(5)*3; + // now copy the 7-th column to the 1-st column + // M.col(1) = M.col(7); // this will not work + Mat M1 = M.col(1); + M.col(7).copyTo(M1); + // create a new 320x240 image + Mat img(Size(320,240),CV_8UC3); + // select a ROI + Mat roi(img, Rect(10,10,100,100)); + // fill the ROI with (0,255,0) (which is green in RGB space); + // the original 320x240 image will be modified + roi = Scalar(0,255,0); +@endcode +Due to the additional datastart and dataend members, it is possible to compute a relative +sub-array position in the main *container* array using locateROI(): +@code + Mat A = Mat::eye(10, 10, CV_32S); + // extracts A columns, 1 (inclusive) to 3 (exclusive). + Mat B = A(Range::all(), Range(1, 3)); + // extracts B rows, 5 (inclusive) to 9 (exclusive). + // that is, C \~ A(Range(5, 9), Range(1, 3)) + Mat C = B(Range(5, 9), Range::all()); + Size size; Point ofs; + C.locateROI(size, ofs); + // size will be (width=10,height=10) and the ofs will be (x=1, y=5) +@endcode +As in case of whole matrices, if you need a deep copy, use the `clone()` method of the extracted +sub-matrices. + +- Make a header for user-allocated data. It can be useful to do the following: + -# Process "foreign" data using OpenCV (for example, when you implement a DirectShow\* filter or + a processing module for gstreamer, and so on). For example: + @code + void process_video_frame(const unsigned char* pixels, + int width, int height, int step) + { + Mat img(height, width, CV_8UC3, pixels, step); + GaussianBlur(img, img, Size(7,7), 1.5, 1.5); + } + @endcode + -# Quickly initialize small matrices and/or get a super-fast element access. + @code + double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}}; + Mat M = Mat(3, 3, CV_64F, m).inv(); + @endcode + . + Partial yet very common cases of this *user-allocated data* case are conversions from CvMat and + IplImage to Mat. For this purpose, there is function cv::cvarrToMat taking pointers to CvMat or + IplImage and the optional flag indicating whether to copy the data or not. + @snippet samples/cpp/image.cpp iplimage + +- Use MATLAB-style array initializers, zeros(), ones(), eye(), for example: +@code + // create a double-precision identity martix and add it to M. + M += Mat::eye(M.rows, M.cols, CV_64F); +@endcode + +- Use a comma-separated initializer: +@code + // create a 3x3 double-precision identity matrix + Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1); +@endcode +With this approach, you first call a constructor of the Mat class with the proper parameters, and +then you just put `<< operator` followed by comma-separated values that can be constants, +variables, expressions, and so on. Also, note the extra parentheses required to avoid compilation +errors. + +Once the array is created, it is automatically managed via a reference-counting mechanism. If the +array header is built on top of user-allocated data, you should handle the data by yourself. The +array data is deallocated when no one points to it. If you want to release the data pointed by a +array header before the array destructor is called, use Mat::release(). + +The next important thing to learn about the array class is element access. This manual already +described how to compute an address of each array element. Normally, you are not required to use the +formula directly in the code. If you know the array element type (which can be retrieved using the +method Mat::type() ), you can access the element \f$M_{ij}\f$ of a 2-dimensional array as: +@code + M.at<double>(i,j) += 1.f; +@endcode +assuming that `M` is a double-precision floating-point array. There are several variants of the method +at for a different number of dimensions. + +If you need to process a whole row of a 2D array, the most efficient way is to get the pointer to +the row first, and then just use the plain C operator [] : +@code + // compute sum of positive matrix elements + // (assuming that M isa double-precision matrix) + double sum=0; + for(int i = 0; i < M.rows; i++) + { + const double* Mi = M.ptr<double>(i); + for(int j = 0; j < M.cols; j++) + sum += std::max(Mi[j], 0.); + } +@endcode +Some operations, like the one above, do not actually depend on the array shape. They just process +elements of an array one by one (or elements from multiple arrays that have the same coordinates, +for example, array addition). Such operations are called *element-wise*. It makes sense to check +whether all the input/output arrays are continuous, namely, have no gaps at the end of each row. If +yes, process them as a long single row: +@code + // compute the sum of positive matrix elements, optimized variant + double sum=0; + int cols = M.cols, rows = M.rows; + if(M.isContinuous()) + { + cols *= rows; + rows = 1; + } + for(int i = 0; i < rows; i++) + { + const double* Mi = M.ptr<double>(i); + for(int j = 0; j < cols; j++) + sum += std::max(Mi[j], 0.); + } +@endcode +In case of the continuous matrix, the outer loop body is executed just once. So, the overhead is +smaller, which is especially noticeable in case of small matrices. + +Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows: +@code + // compute sum of positive matrix elements, iterator-based variant + double sum=0; + MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>(); + for(; it != it_end; ++it) + sum += std::max(*it, 0.); +@endcode +The matrix iterators are random-access iterators, so they can be passed to any STL algorithm, +including std::sort(). +*/ +class CV_EXPORTS Mat +{ +public: + /** + These are various constructors that form a matrix. As noted in the AutomaticAllocation, often + the default constructor is enough, and the proper matrix will be allocated by an OpenCV function. + The constructed matrix can further be assigned to another matrix or matrix expression or can be + allocated with Mat::create . In the former case, the old content is de-referenced. + */ + Mat(); + + /** @overload + @param rows Number of rows in a 2D array. + @param cols Number of columns in a 2D array. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + */ + Mat(int rows, int cols, int type); + + /** @overload + @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the + number of columns go in the reverse order. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + */ + Mat(Size size, int type); + + /** @overload + @param rows Number of rows in a 2D array. + @param cols Number of columns in a 2D array. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param s An optional value to initialize each matrix element with. To set all the matrix elements to + the particular value after the construction, use the assignment operator + Mat::operator=(const Scalar& value) . + */ + Mat(int rows, int cols, int type, const Scalar& s); + + /** @overload + @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the + number of columns go in the reverse order. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param s An optional value to initialize each matrix element with. To set all the matrix elements to + the particular value after the construction, use the assignment operator + Mat::operator=(const Scalar& value) . + */ + Mat(Size size, int type, const Scalar& s); + + /** @overload + @param ndims Array dimensionality. + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + */ + Mat(int ndims, const int* sizes, int type); + + /** @overload + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + */ + Mat(const std::vector<int>& sizes, int type); + + /** @overload + @param ndims Array dimensionality. + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param s An optional value to initialize each matrix element with. To set all the matrix elements to + the particular value after the construction, use the assignment operator + Mat::operator=(const Scalar& value) . + */ + Mat(int ndims, const int* sizes, int type, const Scalar& s); + + /** @overload + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param s An optional value to initialize each matrix element with. To set all the matrix elements to + the particular value after the construction, use the assignment operator + Mat::operator=(const Scalar& value) . + */ + Mat(const std::vector<int>& sizes, int type, const Scalar& s); + + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + */ + Mat(const Mat& m); + + /** @overload + @param rows Number of rows in a 2D array. + @param cols Number of columns in a 2D array. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param data Pointer to the user data. Matrix constructors that take data and step parameters do not + allocate matrix data. Instead, they just initialize the matrix header that points to the specified + data, which means that no data is copied. This operation is very efficient and can be used to + process external data using OpenCV functions. The external data is not automatically deallocated, so + you should take care of it. + @param step Number of bytes each matrix row occupies. The value should include the padding bytes at + the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed + and the actual step is calculated as cols*elemSize(). See Mat::elemSize. + */ + Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP); + + /** @overload + @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the + number of columns go in the reverse order. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param data Pointer to the user data. Matrix constructors that take data and step parameters do not + allocate matrix data. Instead, they just initialize the matrix header that points to the specified + data, which means that no data is copied. This operation is very efficient and can be used to + process external data using OpenCV functions. The external data is not automatically deallocated, so + you should take care of it. + @param step Number of bytes each matrix row occupies. The value should include the padding bytes at + the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed + and the actual step is calculated as cols*elemSize(). See Mat::elemSize. + */ + Mat(Size size, int type, void* data, size_t step=AUTO_STEP); + + /** @overload + @param ndims Array dimensionality. + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param data Pointer to the user data. Matrix constructors that take data and step parameters do not + allocate matrix data. Instead, they just initialize the matrix header that points to the specified + data, which means that no data is copied. This operation is very efficient and can be used to + process external data using OpenCV functions. The external data is not automatically deallocated, so + you should take care of it. + @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always + set to the element size). If not specified, the matrix is assumed to be continuous. + */ + Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0); + + /** @overload + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param data Pointer to the user data. Matrix constructors that take data and step parameters do not + allocate matrix data. Instead, they just initialize the matrix header that points to the specified + data, which means that no data is copied. This operation is very efficient and can be used to + process external data using OpenCV functions. The external data is not automatically deallocated, so + you should take care of it. + @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always + set to the element size). If not specified, the matrix is assumed to be continuous. + */ + Mat(const std::vector<int>& sizes, int type, void* data, const size_t* steps=0); + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + @param rowRange Range of the m rows to take. As usual, the range start is inclusive and the range + end is exclusive. Use Range::all() to take all the rows. + @param colRange Range of the m columns to take. Use Range::all() to take all the columns. + */ + Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all()); + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + @param roi Region of interest. + */ + Mat(const Mat& m, const Rect& roi); + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + @param ranges Array of selected ranges of m along each dimensionality. + */ + Mat(const Mat& m, const Range* ranges); + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + @param ranges Array of selected ranges of m along each dimensionality. + */ + Mat(const Mat& m, const std::vector<Range>& ranges); + + /** @overload + @param vec STL vector whose elements form the matrix. The matrix has a single column and the number + of rows equal to the number of vector elements. Type of the matrix matches the type of vector + elements. The constructor can handle arbitrary types, for which there is a properly declared + DataType . This means that the vector elements must be primitive numbers or uni-type numerical + tuples of numbers. Mixed-type structures are not supported. The corresponding constructor is + explicit. Since STL vectors are not automatically converted to Mat instances, you should write + Mat(vec) explicitly. Unless you copy the data into the matrix ( copyData=true ), no new elements + will be added to the vector because it can potentially yield vector data reallocation, and, thus, + the matrix data pointer will be invalid. + @param copyData Flag to specify whether the underlying data of the STL vector should be copied + to (true) or shared with (false) the newly constructed matrix. When the data is copied, the + allocated buffer is managed using Mat reference counting mechanism. While the data is shared, + the reference counter is NULL, and you should not deallocate the data until the matrix is not + destructed. + */ + template<typename _Tp> explicit Mat(const std::vector<_Tp>& vec, bool copyData=false); + + /** @overload + */ + template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true); + + /** @overload + */ + template<typename _Tp, int m, int n> explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true); + + /** @overload + */ + template<typename _Tp> explicit Mat(const Point_<_Tp>& pt, bool copyData=true); + + /** @overload + */ + template<typename _Tp> explicit Mat(const Point3_<_Tp>& pt, bool copyData=true); + + /** @overload + */ + template<typename _Tp> explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer); + + //! download data from GpuMat + explicit Mat(const cuda::GpuMat& m); + + //! destructor - calls release() + ~Mat(); + + /** @brief assignment operators + + These are available assignment operators. Since they all are very different, make sure to read the + operator parameters description. + @param m Assigned, right-hand-side matrix. Matrix assignment is an O(1) operation. This means that + no data is copied but the data is shared and the reference counter, if any, is incremented. Before + assigning new data, the old data is de-referenced via Mat::release . + */ + Mat& operator = (const Mat& m); + + /** @overload + @param expr Assigned matrix expression object. As opposite to the first form of the assignment + operation, the second form can reuse already allocated matrix if it has the right size and type to + fit the matrix expression result. It is automatically handled by the real function that the matrix + expressions is expanded to. For example, C=A+B is expanded to add(A, B, C), and add takes care of + automatic C reallocation. + */ + Mat& operator = (const MatExpr& expr); + + //! retrieve UMat from Mat + UMat getUMat(int accessFlags, UMatUsageFlags usageFlags = USAGE_DEFAULT) const; + + /** @brief Creates a matrix header for the specified matrix row. + + The method makes a new header for the specified matrix row and returns it. This is an O(1) + operation, regardless of the matrix size. The underlying data of the new matrix is shared with the + original matrix. Here is the example of one of the classical basic matrix processing operations, + axpy, used by LU and many other algorithms: + @code + inline void matrix_axpy(Mat& A, int i, int j, double alpha) + { + A.row(i) += A.row(j)*alpha; + } + @endcode + @note In the current implementation, the following code does not work as expected: + @code + Mat A; + ... + A.row(i) = A.row(j); // will not work + @endcode + This happens because A.row(i) forms a temporary header that is further assigned to another header. + Remember that each of these operations is O(1), that is, no data is copied. Thus, the above + assignment is not true if you may have expected the j-th row to be copied to the i-th row. To + achieve that, you should either turn this simple assignment into an expression or use the + Mat::copyTo method: + @code + Mat A; + ... + // works, but looks a bit obscure. + A.row(i) = A.row(j) + 0; + // this is a bit longer, but the recommended method. + A.row(j).copyTo(A.row(i)); + @endcode + @param y A 0-based row index. + */ + Mat row(int y) const; + + /** @brief Creates a matrix header for the specified matrix column. + + The method makes a new header for the specified matrix column and returns it. This is an O(1) + operation, regardless of the matrix size. The underlying data of the new matrix is shared with the + original matrix. See also the Mat::row description. + @param x A 0-based column index. + */ + Mat col(int x) const; + + /** @brief Creates a matrix header for the specified row span. + + The method makes a new header for the specified row span of the matrix. Similarly to Mat::row and + Mat::col , this is an O(1) operation. + @param startrow An inclusive 0-based start index of the row span. + @param endrow An exclusive 0-based ending index of the row span. + */ + Mat rowRange(int startrow, int endrow) const; + + /** @overload + @param r Range structure containing both the start and the end indices. + */ + Mat rowRange(const Range& r) const; + + /** @brief Creates a matrix header for the specified column span. + + The method makes a new header for the specified column span of the matrix. Similarly to Mat::row and + Mat::col , this is an O(1) operation. + @param startcol An inclusive 0-based start index of the column span. + @param endcol An exclusive 0-based ending index of the column span. + */ + Mat colRange(int startcol, int endcol) const; + + /** @overload + @param r Range structure containing both the start and the end indices. + */ + Mat colRange(const Range& r) const; + + /** @brief Extracts a diagonal from a matrix + + The method makes a new header for the specified matrix diagonal. The new matrix is represented as a + single-column matrix. Similarly to Mat::row and Mat::col, this is an O(1) operation. + @param d index of the diagonal, with the following values: + - `d=0` is the main diagonal. + - `d>0` is a diagonal from the lower half. For example, d=1 means the diagonal is set + immediately below the main one. + - `d<0` is a diagonal from the upper half. For example, d=-1 means the diagonal is set + immediately above the main one. + */ + Mat diag(int d=0) const; + + /** @brief creates a diagonal matrix + + The method creates a square diagonal matrix from specified main diagonal. + @param d One-dimensional matrix that represents the main diagonal. + */ + static Mat diag(const Mat& d); + + /** @brief Creates a full copy of the array and the underlying data. + + The method creates a full copy of the array. The original step[] is not taken into account. So, the + array copy is a continuous array occupying total()*elemSize() bytes. + */ + Mat clone() const; + + /** @brief Copies the matrix to another one. + + The method copies the matrix data to another matrix. Before copying the data, the method invokes : + @code + m.create(this->size(), this->type()); + @endcode + so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the + function does not handle the case of a partial overlap between the source and the destination + matrices. + + When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, + the newly allocated matrix is initialized with all zeros before copying the data. + @param m Destination matrix. If it does not have a proper size or type before the operation, it is + reallocated. + */ + void copyTo( OutputArray m ) const; + + /** @overload + @param m Destination matrix. If it does not have a proper size or type before the operation, it is + reallocated. + @param mask Operation mask. Its non-zero elements indicate which matrix elements need to be copied. + The mask has to be of type CV_8U and can have 1 or multiple channels. + */ + void copyTo( OutputArray m, InputArray mask ) const; + + /** @brief Converts an array to another data type with optional scaling. + + The method converts source pixel values to the target data type. saturate_cast\<\> is applied at + the end to avoid possible overflows: + + \f[m(x,y) = saturate \_ cast<rType>( \alpha (*this)(x,y) + \beta )\f] + @param m output matrix; if it does not have a proper size or type before the operation, it is + reallocated. + @param rtype desired output matrix type or, rather, the depth since the number of channels are the + same as the input has; if rtype is negative, the output matrix will have the same type as the input. + @param alpha optional scale factor. + @param beta optional delta added to the scaled values. + */ + void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const; + + /** @brief Provides a functional form of convertTo. + + This is an internally used method called by the @ref MatrixExpressions engine. + @param m Destination array. + @param type Desired destination array depth (or -1 if it should be the same as the source type). + */ + void assignTo( Mat& m, int type=-1 ) const; + + /** @brief Sets all or some of the array elements to the specified value. + @param s Assigned scalar converted to the actual array type. + */ + Mat& operator = (const Scalar& s); + + /** @brief Sets all or some of the array elements to the specified value. + + This is an advanced variant of the Mat::operator=(const Scalar& s) operator. + @param value Assigned scalar converted to the actual array type. + @param mask Operation mask of the same size as \*this. + */ + Mat& setTo(InputArray value, InputArray mask=noArray()); + + /** @brief Changes the shape and/or the number of channels of a 2D matrix without copying the data. + + The method makes a new matrix header for \*this elements. The new matrix may have a different size + and/or different number of channels. Any combination is possible if: + - No extra elements are included into the new matrix and no elements are excluded. Consequently, + the product rows\*cols\*channels() must stay the same after the transformation. + - No data is copied. That is, this is an O(1) operation. Consequently, if you change the number of + rows, or the operation changes the indices of elements row in some other way, the matrix must be + continuous. See Mat::isContinuous . + + For example, if there is a set of 3D points stored as an STL vector, and you want to represent the + points as a 3xN matrix, do the following: + @code + std::vector<Point3f> vec; + ... + Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation + reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel. + // Also, an O(1) operation + t(); // finally, transpose the Nx3 matrix. + // This involves copying all the elements + @endcode + @param cn New number of channels. If the parameter is 0, the number of channels remains the same. + @param rows New number of rows. If the parameter is 0, the number of rows remains the same. + */ + Mat reshape(int cn, int rows=0) const; + + /** @overload */ + Mat reshape(int cn, int newndims, const int* newsz) const; + + /** @brief Transposes a matrix. + + The method performs matrix transposition by means of matrix expressions. It does not perform the + actual transposition but returns a temporary matrix transposition object that can be further used as + a part of more complex matrix expressions or can be assigned to a matrix: + @code + Mat A1 = A + Mat::eye(A.size(), A.type())*lambda; + Mat C = A1.t()*A1; // compute (A + lambda*I)^t * (A + lamda*I) + @endcode + */ + MatExpr t() const; + + /** @brief Inverses a matrix. + + The method performs a matrix inversion by means of matrix expressions. This means that a temporary + matrix inversion object is returned by the method and can be used further as a part of more complex + matrix expressions or can be assigned to a matrix. + @param method Matrix inversion method. One of cv::DecompTypes + */ + MatExpr inv(int method=DECOMP_LU) const; + + /** @brief Performs an element-wise multiplication or division of the two matrices. + + The method returns a temporary object encoding per-element array multiplication, with optional + scale. Note that this is not a matrix multiplication that corresponds to a simpler "\*" operator. + + Example: + @code + Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5) + @endcode + @param m Another array of the same type and the same size as \*this, or a matrix expression. + @param scale Optional scale factor. + */ + MatExpr mul(InputArray m, double scale=1) const; + + /** @brief Computes a cross-product of two 3-element vectors. + + The method computes a cross-product of two 3-element vectors. The vectors must be 3-element + floating-point vectors of the same shape and size. The result is another 3-element vector of the + same shape and type as operands. + @param m Another cross-product operand. + */ + Mat cross(InputArray m) const; + + /** @brief Computes a dot-product of two vectors. + + The method computes a dot-product of two matrices. If the matrices are not single-column or + single-row vectors, the top-to-bottom left-to-right scan ordering is used to treat them as 1D + vectors. The vectors must have the same size and type. If the matrices have more than one channel, + the dot products from all the channels are summed together. + @param m another dot-product operand. + */ + double dot(InputArray m) const; + + /** @brief Returns a zero array of the specified size and type. + + The method returns a Matlab-style zero array initializer. It can be used to quickly form a constant + array as a function parameter, part of a matrix expression, or as a matrix initializer. : + @code + Mat A; + A = Mat::zeros(3, 3, CV_32F); + @endcode + In the example above, a new matrix is allocated only if A is not a 3x3 floating-point matrix. + Otherwise, the existing matrix A is filled with zeros. + @param rows Number of rows. + @param cols Number of columns. + @param type Created matrix type. + */ + static MatExpr zeros(int rows, int cols, int type); + + /** @overload + @param size Alternative to the matrix size specification Size(cols, rows) . + @param type Created matrix type. + */ + static MatExpr zeros(Size size, int type); + + /** @overload + @param ndims Array dimensionality. + @param sz Array of integers specifying the array shape. + @param type Created matrix type. + */ + static MatExpr zeros(int ndims, const int* sz, int type); + + /** @brief Returns an array of all 1's of the specified size and type. + + The method returns a Matlab-style 1's array initializer, similarly to Mat::zeros. Note that using + this method you can initialize an array with an arbitrary value, using the following Matlab idiom: + @code + Mat A = Mat::ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3. + @endcode + The above operation does not form a 100x100 matrix of 1's and then multiply it by 3. Instead, it + just remembers the scale factor (3 in this case) and use it when actually invoking the matrix + initializer. + @param rows Number of rows. + @param cols Number of columns. + @param type Created matrix type. + */ + static MatExpr ones(int rows, int cols, int type); + + /** @overload + @param size Alternative to the matrix size specification Size(cols, rows) . + @param type Created matrix type. + */ + static MatExpr ones(Size size, int type); + + /** @overload + @param ndims Array dimensionality. + @param sz Array of integers specifying the array shape. + @param type Created matrix type. + */ + static MatExpr ones(int ndims, const int* sz, int type); + + /** @brief Returns an identity matrix of the specified size and type. + + The method returns a Matlab-style identity matrix initializer, similarly to Mat::zeros. Similarly to + Mat::ones, you can use a scale operation to create a scaled identity matrix efficiently: + @code + // make a 4x4 diagonal matrix with 0.1's on the diagonal. + Mat A = Mat::eye(4, 4, CV_32F)*0.1; + @endcode + @param rows Number of rows. + @param cols Number of columns. + @param type Created matrix type. + */ + static MatExpr eye(int rows, int cols, int type); + + /** @overload + @param size Alternative matrix size specification as Size(cols, rows) . + @param type Created matrix type. + */ + static MatExpr eye(Size size, int type); + + /** @brief Allocates new array data if needed. + + This is one of the key Mat methods. Most new-style OpenCV functions and methods that produce arrays + call this method for each output array. The method uses the following algorithm: + + -# If the current array shape and the type match the new ones, return immediately. Otherwise, + de-reference the previous data by calling Mat::release. + -# Initialize the new header. + -# Allocate the new data of total()\*elemSize() bytes. + -# Allocate the new, associated with the data, reference counter and set it to 1. + + Such a scheme makes the memory management robust and efficient at the same time and helps avoid + extra typing for you. This means that usually there is no need to explicitly allocate output arrays. + That is, instead of writing: + @code + Mat color; + ... + Mat gray(color.rows, color.cols, color.depth()); + cvtColor(color, gray, COLOR_BGR2GRAY); + @endcode + you can simply write: + @code + Mat color; + ... + Mat gray; + cvtColor(color, gray, COLOR_BGR2GRAY); + @endcode + because cvtColor, as well as the most of OpenCV functions, calls Mat::create() for the output array + internally. + @param rows New number of rows. + @param cols New number of columns. + @param type New matrix type. + */ + void create(int rows, int cols, int type); + + /** @overload + @param size Alternative new matrix size specification: Size(cols, rows) + @param type New matrix type. + */ + void create(Size size, int type); + + /** @overload + @param ndims New array dimensionality. + @param sizes Array of integers specifying a new array shape. + @param type New matrix type. + */ + void create(int ndims, const int* sizes, int type); + + /** @overload + @param sizes Array of integers specifying a new array shape. + @param type New matrix type. + */ + void create(const std::vector<int>& sizes, int type); + + /** @brief Increments the reference counter. + + The method increments the reference counter associated with the matrix data. If the matrix header + points to an external data set (see Mat::Mat ), the reference counter is NULL, and the method has no + effect in this case. Normally, to avoid memory leaks, the method should not be called explicitly. It + is called implicitly by the matrix assignment operator. The reference counter increment is an atomic + operation on the platforms that support it. Thus, it is safe to operate on the same matrices + asynchronously in different threads. + */ + void addref(); + + /** @brief Decrements the reference counter and deallocates the matrix if needed. + + The method decrements the reference counter associated with the matrix data. When the reference + counter reaches 0, the matrix data is deallocated and the data and the reference counter pointers + are set to NULL's. If the matrix header points to an external data set (see Mat::Mat ), the + reference counter is NULL, and the method has no effect in this case. + + This method can be called manually to force the matrix data deallocation. But since this method is + automatically called in the destructor, or by any other method that changes the data pointer, it is + usually not needed. The reference counter decrement and check for 0 is an atomic operation on the + platforms that support it. Thus, it is safe to operate on the same matrices asynchronously in + different threads. + */ + void release(); + + //! deallocates the matrix data + void deallocate(); + //! internal use function; properly re-allocates _size, _step arrays + void copySize(const Mat& m); + + /** @brief Reserves space for the certain number of rows. + + The method reserves space for sz rows. If the matrix already has enough space to store sz rows, + nothing happens. If the matrix is reallocated, the first Mat::rows rows are preserved. The method + emulates the corresponding method of the STL vector class. + @param sz Number of rows. + */ + void reserve(size_t sz); + + /** @brief Changes the number of matrix rows. + + The methods change the number of matrix rows. If the matrix is reallocated, the first + min(Mat::rows, sz) rows are preserved. The methods emulate the corresponding methods of the STL + vector class. + @param sz New number of rows. + */ + void resize(size_t sz); + + /** @overload + @param sz New number of rows. + @param s Value assigned to the newly added elements. + */ + void resize(size_t sz, const Scalar& s); + + //! internal function + void push_back_(const void* elem); + + /** @brief Adds elements to the bottom of the matrix. + + The methods add one or more elements to the bottom of the matrix. They emulate the corresponding + method of the STL vector class. When elem is Mat , its type and the number of columns must be the + same as in the container matrix. + @param elem Added element(s). + */ + template<typename _Tp> void push_back(const _Tp& elem); + + /** @overload + @param elem Added element(s). + */ + template<typename _Tp> void push_back(const Mat_<_Tp>& elem); + + /** @overload + @param m Added line(s). + */ + void push_back(const Mat& m); + + /** @brief Removes elements from the bottom of the matrix. + + The method removes one or more rows from the bottom of the matrix. + @param nelems Number of removed rows. If it is greater than the total number of rows, an exception + is thrown. + */ + void pop_back(size_t nelems=1); + + /** @brief Locates the matrix header within a parent matrix. + + After you extracted a submatrix from a matrix using Mat::row, Mat::col, Mat::rowRange, + Mat::colRange, and others, the resultant submatrix points just to the part of the original big + matrix. However, each submatrix contains information (represented by datastart and dataend + fields) that helps reconstruct the original matrix size and the position of the extracted + submatrix within the original matrix. The method locateROI does exactly that. + @param wholeSize Output parameter that contains the size of the whole matrix containing *this* + as a part. + @param ofs Output parameter that contains an offset of *this* inside the whole matrix. + */ + void locateROI( Size& wholeSize, Point& ofs ) const; + + /** @brief Adjusts a submatrix size and position within the parent matrix. + + The method is complimentary to Mat::locateROI . The typical use of these functions is to determine + the submatrix position within the parent matrix and then shift the position somehow. Typically, it + can be required for filtering operations when pixels outside of the ROI should be taken into + account. When all the method parameters are positive, the ROI needs to grow in all directions by the + specified amount, for example: + @code + A.adjustROI(2, 2, 2, 2); + @endcode + In this example, the matrix size is increased by 4 elements in each direction. The matrix is shifted + by 2 elements to the left and 2 elements up, which brings in all the necessary pixels for the + filtering with the 5x5 kernel. + + adjustROI forces the adjusted ROI to be inside of the parent matrix that is boundaries of the + adjusted ROI are constrained by boundaries of the parent matrix. For example, if the submatrix A is + located in the first row of a parent matrix and you called A.adjustROI(2, 2, 2, 2) then A will not + be increased in the upward direction. + + The function is used internally by the OpenCV filtering functions, like filter2D , morphological + operations, and so on. + @param dtop Shift of the top submatrix boundary upwards. + @param dbottom Shift of the bottom submatrix boundary downwards. + @param dleft Shift of the left submatrix boundary to the left. + @param dright Shift of the right submatrix boundary to the right. + @sa copyMakeBorder + */ + Mat& adjustROI( int dtop, int dbottom, int dleft, int dright ); + + /** @brief Extracts a rectangular submatrix. + + The operators make a new header for the specified sub-array of \*this . They are the most + generalized forms of Mat::row, Mat::col, Mat::rowRange, and Mat::colRange . For example, + `A(Range(0, 10), Range::all())` is equivalent to `A.rowRange(0, 10)`. Similarly to all of the above, + the operators are O(1) operations, that is, no matrix data is copied. + @param rowRange Start and end row of the extracted submatrix. The upper boundary is not included. To + select all the rows, use Range::all(). + @param colRange Start and end column of the extracted submatrix. The upper boundary is not included. + To select all the columns, use Range::all(). + */ + Mat operator()( Range rowRange, Range colRange ) const; + + /** @overload + @param roi Extracted submatrix specified as a rectangle. + */ + Mat operator()( const Rect& roi ) const; + + /** @overload + @param ranges Array of selected ranges along each array dimension. + */ + Mat operator()( const Range* ranges ) const; + + /** @overload + @param ranges Array of selected ranges along each array dimension. + */ + Mat operator()(const std::vector<Range>& ranges) const; + + // //! converts header to CvMat; no data is copied + // operator CvMat() const; + // //! converts header to CvMatND; no data is copied + // operator CvMatND() const; + // //! converts header to IplImage; no data is copied + // operator IplImage() const; + + template<typename _Tp> operator std::vector<_Tp>() const; + template<typename _Tp, int n> operator Vec<_Tp, n>() const; + template<typename _Tp, int m, int n> operator Matx<_Tp, m, n>() const; + + /** @brief Reports whether the matrix is continuous or not. + + The method returns true if the matrix elements are stored continuously without gaps at the end of + each row. Otherwise, it returns false. Obviously, 1x1 or 1xN matrices are always continuous. + Matrices created with Mat::create are always continuous. But if you extract a part of the matrix + using Mat::col, Mat::diag, and so on, or constructed a matrix header for externally allocated data, + such matrices may no longer have this property. + + The continuity flag is stored as a bit in the Mat::flags field and is computed automatically when + you construct a matrix header. Thus, the continuity check is a very fast operation, though + theoretically it could be done as follows: + @code + // alternative implementation of Mat::isContinuous() + bool myCheckMatContinuity(const Mat& m) + { + //return (m.flags & Mat::CONTINUOUS_FLAG) != 0; + return m.rows == 1 || m.step == m.cols*m.elemSize(); + } + @endcode + The method is used in quite a few of OpenCV functions. The point is that element-wise operations + (such as arithmetic and logical operations, math functions, alpha blending, color space + transformations, and others) do not depend on the image geometry. Thus, if all the input and output + arrays are continuous, the functions can process them as very long single-row vectors. The example + below illustrates how an alpha-blending function can be implemented: + @code + template<typename T> + void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst) + { + const float alpha_scale = (float)std::numeric_limits<T>::max(), + inv_scale = 1.f/alpha_scale; + + CV_Assert( src1.type() == src2.type() && + src1.type() == CV_MAKETYPE(DataType<T>::depth, 4) && + src1.size() == src2.size()); + Size size = src1.size(); + dst.create(size, src1.type()); + + // here is the idiom: check the arrays for continuity and, + // if this is the case, + // treat the arrays as 1D vectors + if( src1.isContinuous() && src2.isContinuous() && dst.isContinuous() ) + { + size.width *= size.height; + size.height = 1; + } + size.width *= 4; + + for( int i = 0; i < size.height; i++ ) + { + // when the arrays are continuous, + // the outer loop is executed only once + const T* ptr1 = src1.ptr<T>(i); + const T* ptr2 = src2.ptr<T>(i); + T* dptr = dst.ptr<T>(i); + + for( int j = 0; j < size.width; j += 4 ) + { + float alpha = ptr1[j+3]*inv_scale, beta = ptr2[j+3]*inv_scale; + dptr[j] = saturate_cast<T>(ptr1[j]*alpha + ptr2[j]*beta); + dptr[j+1] = saturate_cast<T>(ptr1[j+1]*alpha + ptr2[j+1]*beta); + dptr[j+2] = saturate_cast<T>(ptr1[j+2]*alpha + ptr2[j+2]*beta); + dptr[j+3] = saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale); + } + } + } + @endcode + This approach, while being very simple, can boost the performance of a simple element-operation by + 10-20 percents, especially if the image is rather small and the operation is quite simple. + + Another OpenCV idiom in this function, a call of Mat::create for the destination array, that + allocates the destination array unless it already has the proper size and type. And while the newly + allocated arrays are always continuous, you still need to check the destination array because + Mat::create does not always allocate a new matrix. + */ + bool isContinuous() const; + + //! returns true if the matrix is a submatrix of another matrix + bool isSubmatrix() const; + + /** @brief Returns the matrix element size in bytes. + + The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 , + the method returns 3\*sizeof(short) or 6. + */ + size_t elemSize() const; + + /** @brief Returns the size of each matrix element channel in bytes. + + The method returns the matrix element channel size in bytes, that is, it ignores the number of + channels. For example, if the matrix type is CV_16SC3 , the method returns sizeof(short) or 2. + */ + size_t elemSize1() const; + + /** @brief Returns the type of a matrix element. + + The method returns a matrix element type. This is an identifier compatible with the CvMat type + system, like CV_16SC3 or 16-bit signed 3-channel array, and so on. + */ + int type() const; + + /** @brief Returns the depth of a matrix element. + + The method returns the identifier of the matrix element depth (the type of each individual channel). + For example, for a 16-bit signed element array, the method returns CV_16S . A complete list of + matrix types contains the following values: + - CV_8U - 8-bit unsigned integers ( 0..255 ) + - CV_8S - 8-bit signed integers ( -128..127 ) + - CV_16U - 16-bit unsigned integers ( 0..65535 ) + - CV_16S - 16-bit signed integers ( -32768..32767 ) + - CV_32S - 32-bit signed integers ( -2147483648..2147483647 ) + - CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN ) + - CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN ) + */ + int depth() const; + + /** @brief Returns the number of matrix channels. + + The method returns the number of matrix channels. + */ + int channels() const; + + /** @brief Returns a normalized step. + + The method returns a matrix step divided by Mat::elemSize1() . It can be useful to quickly access an + arbitrary matrix element. + */ + size_t step1(int i=0) const; + + /** @brief Returns true if the array has no elements. + + The method returns true if Mat::total() is 0 or if Mat::data is NULL. Because of pop_back() and + resize() methods `M.total() == 0` does not imply that `M.data == NULL`. + */ + bool empty() const; + + /** @brief Returns the total number of array elements. + + The method returns the number of array elements (a number of pixels if the array represents an + image). + */ + size_t total() const; + + //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise + int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const; + + /** @brief Returns a pointer to the specified matrix row. + + The methods return `uchar*` or typed pointer to the specified matrix row. See the sample in + Mat::isContinuous to know how to use these methods. + @param i0 A 0-based row index. + */ + uchar* ptr(int i0=0); + /** @overload */ + const uchar* ptr(int i0=0) const; + + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + uchar* ptr(int row, int col); + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + const uchar* ptr(int row, int col) const; + + /** @overload */ + uchar* ptr(int i0, int i1, int i2); + /** @overload */ + const uchar* ptr(int i0, int i1, int i2) const; + + /** @overload */ + uchar* ptr(const int* idx); + /** @overload */ + const uchar* ptr(const int* idx) const; + /** @overload */ + template<int n> uchar* ptr(const Vec<int, n>& idx); + /** @overload */ + template<int n> const uchar* ptr(const Vec<int, n>& idx) const; + + /** @overload */ + template<typename _Tp> _Tp* ptr(int i0=0); + /** @overload */ + template<typename _Tp> const _Tp* ptr(int i0=0) const; + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + template<typename _Tp> _Tp* ptr(int row, int col); + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + template<typename _Tp> const _Tp* ptr(int row, int col) const; + /** @overload */ + template<typename _Tp> _Tp* ptr(int i0, int i1, int i2); + /** @overload */ + template<typename _Tp> const _Tp* ptr(int i0, int i1, int i2) const; + /** @overload */ + template<typename _Tp> _Tp* ptr(const int* idx); + /** @overload */ + template<typename _Tp> const _Tp* ptr(const int* idx) const; + /** @overload */ + template<typename _Tp, int n> _Tp* ptr(const Vec<int, n>& idx); + /** @overload */ + template<typename _Tp, int n> const _Tp* ptr(const Vec<int, n>& idx) const; + + /** @brief Returns a reference to the specified array element. + + The template methods return a reference to the specified array element. For the sake of higher + performance, the index range checks are only performed in the Debug configuration. + + Note that the variants with a single index (i) can be used to access elements of single-row or + single-column 2-dimensional arrays. That is, if, for example, A is a 1 x N floating-point matrix and + B is an M x 1 integer matrix, you can simply write `A.at<float>(k+4)` and `B.at<int>(2*i+1)` + instead of `A.at<float>(0,k+4)` and `B.at<int>(2*i+1,0)`, respectively. + + The example below initializes a Hilbert matrix: + @code + Mat H(100, 100, CV_64F); + for(int i = 0; i < H.rows; i++) + for(int j = 0; j < H.cols; j++) + H.at<double>(i,j)=1./(i+j+1); + @endcode + + Keep in mind that the size identifier used in the at operator cannot be chosen at random. It depends + on the image from which you are trying to retrieve the data. The table below gives a better insight in this: + - If matrix is of type `CV_8U` then use `Mat.at<uchar>(y,x)`. + - If matrix is of type `CV_8S` then use `Mat.at<schar>(y,x)`. + - If matrix is of type `CV_16U` then use `Mat.at<ushort>(y,x)`. + - If matrix is of type `CV_16S` then use `Mat.at<short>(y,x)`. + - If matrix is of type `CV_32S` then use `Mat.at<int>(y,x)`. + - If matrix is of type `CV_32F` then use `Mat.at<float>(y,x)`. + - If matrix is of type `CV_64F` then use `Mat.at<double>(y,x)`. + + @param i0 Index along the dimension 0 + */ + template<typename _Tp> _Tp& at(int i0=0); + /** @overload + @param i0 Index along the dimension 0 + */ + template<typename _Tp> const _Tp& at(int i0=0) const; + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + template<typename _Tp> _Tp& at(int row, int col); + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + template<typename _Tp> const _Tp& at(int row, int col) const; + + /** @overload + @param i0 Index along the dimension 0 + @param i1 Index along the dimension 1 + @param i2 Index along the dimension 2 + */ + template<typename _Tp> _Tp& at(int i0, int i1, int i2); + /** @overload + @param i0 Index along the dimension 0 + @param i1 Index along the dimension 1 + @param i2 Index along the dimension 2 + */ + template<typename _Tp> const _Tp& at(int i0, int i1, int i2) const; + + /** @overload + @param idx Array of Mat::dims indices. + */ + template<typename _Tp> _Tp& at(const int* idx); + /** @overload + @param idx Array of Mat::dims indices. + */ + template<typename _Tp> const _Tp& at(const int* idx) const; + + /** @overload */ + template<typename _Tp, int n> _Tp& at(const Vec<int, n>& idx); + /** @overload */ + template<typename _Tp, int n> const _Tp& at(const Vec<int, n>& idx) const; + + /** @overload + special versions for 2D arrays (especially convenient for referencing image pixels) + @param pt Element position specified as Point(j,i) . + */ + template<typename _Tp> _Tp& at(Point pt); + /** @overload + special versions for 2D arrays (especially convenient for referencing image pixels) + @param pt Element position specified as Point(j,i) . + */ + template<typename _Tp> const _Tp& at(Point pt) const; + + /** @brief Returns the matrix iterator and sets it to the first matrix element. + + The methods return the matrix read-only or read-write iterators. The use of matrix iterators is very + similar to the use of bi-directional STL iterators. In the example below, the alpha blending + function is rewritten using the matrix iterators: + @code + template<typename T> + void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst) + { + typedef Vec<T, 4> VT; + + const float alpha_scale = (float)std::numeric_limits<T>::max(), + inv_scale = 1.f/alpha_scale; + + CV_Assert( src1.type() == src2.type() && + src1.type() == DataType<VT>::type && + src1.size() == src2.size()); + Size size = src1.size(); + dst.create(size, src1.type()); + + MatConstIterator_<VT> it1 = src1.begin<VT>(), it1_end = src1.end<VT>(); + MatConstIterator_<VT> it2 = src2.begin<VT>(); + MatIterator_<VT> dst_it = dst.begin<VT>(); + + for( ; it1 != it1_end; ++it1, ++it2, ++dst_it ) + { + VT pix1 = *it1, pix2 = *it2; + float alpha = pix1[3]*inv_scale, beta = pix2[3]*inv_scale; + *dst_it = VT(saturate_cast<T>(pix1[0]*alpha + pix2[0]*beta), + saturate_cast<T>(pix1[1]*alpha + pix2[1]*beta), + saturate_cast<T>(pix1[2]*alpha + pix2[2]*beta), + saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale)); + } + } + @endcode + */ + template<typename _Tp> MatIterator_<_Tp> begin(); + template<typename _Tp> MatConstIterator_<_Tp> begin() const; + + /** @brief Returns the matrix iterator and sets it to the after-last matrix element. + + The methods return the matrix read-only or read-write iterators, set to the point following the last + matrix element. + */ + template<typename _Tp> MatIterator_<_Tp> end(); + template<typename _Tp> MatConstIterator_<_Tp> end() const; + + /** @brief Runs the given functor over all matrix elements in parallel. + + The operation passed as argument has to be a function pointer, a function object or a lambda(C++11). + + Example 1. All of the operations below put 0xFF the first channel of all matrix elements: + @code + Mat image(1920, 1080, CV_8UC3); + typedef cv::Point3_<uint8_t> Pixel; + + // first. raw pointer access. + for (int r = 0; r < image.rows; ++r) { + Pixel* ptr = image.ptr<Pixel>(0, r); + const Pixel* ptr_end = ptr + image.cols; + for (; ptr != ptr_end; ++ptr) { + ptr->x = 255; + } + } + + // Using MatIterator. (Simple but there are a Iterator's overhead) + for (Pixel &p : cv::Mat_<Pixel>(image)) { + p.x = 255; + } + + // Parallel execution with function object. + struct Operator { + void operator ()(Pixel &pixel, const int * position) { + pixel.x = 255; + } + }; + image.forEach<Pixel>(Operator()); + + // Parallel execution using C++11 lambda. + image.forEach<Pixel>([](Pixel &p, const int * position) -> void { + p.x = 255; + }); + @endcode + Example 2. Using the pixel's position: + @code + // Creating 3D matrix (255 x 255 x 255) typed uint8_t + // and initialize all elements by the value which equals elements position. + // i.e. pixels (x,y,z) = (1,2,3) is (b,g,r) = (1,2,3). + + int sizes[] = { 255, 255, 255 }; + typedef cv::Point3_<uint8_t> Pixel; + + Mat_<Pixel> image = Mat::zeros(3, sizes, CV_8UC3); + + image.forEach<Pixel>([&](Pixel& pixel, const int position[]) -> void { + pixel.x = position[0]; + pixel.y = position[1]; + pixel.z = position[2]; + }); + @endcode + */ + template<typename _Tp, typename Functor> void forEach(const Functor& operation); + /** @overload */ + template<typename _Tp, typename Functor> void forEach(const Functor& operation) const; + +#ifdef CV_CXX_MOVE_SEMANTICS + Mat(Mat&& m); + Mat& operator = (Mat&& m); +#endif + + enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG }; + enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 }; + + /*! includes several bit-fields: + - the magic signature + - continuity flag + - depth + - number of channels + */ + int flags; + //! the matrix dimensionality, >= 2 + int dims; + //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions + int rows, cols; + //! pointer to the data + uchar* data; + + //! helper fields used in locateROI and adjustROI + const uchar* datastart; + const uchar* dataend; + const uchar* datalimit; + + //! custom allocator + MatAllocator* allocator; + //! and the standard allocator + static MatAllocator* getStdAllocator(); + static MatAllocator* getDefaultAllocator(); + static void setDefaultAllocator(MatAllocator* allocator); + + //! interaction with UMat + UMatData* u; + + MatSize size; + MatStep step; + +protected: + template<typename _Tp, typename Functor> void forEach_impl(const Functor& operation); +}; + + +///////////////////////////////// Mat_<_Tp> //////////////////////////////////// + +/** @brief Template matrix class derived from Mat + +@code + template<typename _Tp> class Mat_ : public Mat + { + public: + // ... some specific methods + // and + // no new extra fields + }; +@endcode +The class `Mat_<_Tp>` is a *thin* template wrapper on top of the Mat class. It does not have any +extra data fields. Nor this class nor Mat has any virtual methods. Thus, references or pointers to +these two classes can be freely but carefully converted one to another. For example: +@code + // create a 100x100 8-bit matrix + Mat M(100,100,CV_8U); + // this will be compiled fine. no any data conversion will be done. + Mat_<float>& M1 = (Mat_<float>&)M; + // the program is likely to crash at the statement below + M1(99,99) = 1.f; +@endcode +While Mat is sufficient in most cases, Mat_ can be more convenient if you use a lot of element +access operations and if you know matrix type at the compilation time. Note that +`Mat::at(int y,int x)` and `Mat_::operator()(int y,int x)` do absolutely the same +and run at the same speed, but the latter is certainly shorter: +@code + Mat_<double> M(20,20); + for(int i = 0; i < M.rows; i++) + for(int j = 0; j < M.cols; j++) + M(i,j) = 1./(i+j+1); + Mat E, V; + eigen(M,E,V); + cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0); +@endcode +To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter: +@code + // allocate a 320x240 color image and fill it with green (in RGB space) + Mat_<Vec3b> img(240, 320, Vec3b(0,255,0)); + // now draw a diagonal white line + for(int i = 0; i < 100; i++) + img(i,i)=Vec3b(255,255,255); + // and now scramble the 2nd (red) channel of each pixel + for(int i = 0; i < img.rows; i++) + for(int j = 0; j < img.cols; j++) + img(i,j)[2] ^= (uchar)(i ^ j); +@endcode + */ +template<typename _Tp> class Mat_ : public Mat +{ +public: + typedef _Tp value_type; + typedef typename DataType<_Tp>::channel_type channel_type; + typedef MatIterator_<_Tp> iterator; + typedef MatConstIterator_<_Tp> const_iterator; + + //! default constructor + Mat_(); + //! equivalent to Mat(_rows, _cols, DataType<_Tp>::type) + Mat_(int _rows, int _cols); + //! constructor that sets each matrix element to specified value + Mat_(int _rows, int _cols, const _Tp& value); + //! equivalent to Mat(_size, DataType<_Tp>::type) + explicit Mat_(Size _size); + //! constructor that sets each matrix element to specified value + Mat_(Size _size, const _Tp& value); + //! n-dim array constructor + Mat_(int _ndims, const int* _sizes); + //! n-dim array constructor that sets each matrix element to specified value + Mat_(int _ndims, const int* _sizes, const _Tp& value); + //! copy/conversion contructor. If m is of different type, it's converted + Mat_(const Mat& m); + //! copy constructor + Mat_(const Mat_& m); + //! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type + Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP); + //! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type + Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0); + //! selects a submatrix + Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all()); + //! selects a submatrix + Mat_(const Mat_& m, const Rect& roi); + //! selects a submatrix, n-dim version + Mat_(const Mat_& m, const Range* ranges); + //! selects a submatrix, n-dim version + Mat_(const Mat_& m, const std::vector<Range>& ranges); + //! from a matrix expression + explicit Mat_(const MatExpr& e); + //! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column + explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false); + template<int n> explicit Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData=true); + template<int m, int n> explicit Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& mtx, bool copyData=true); + explicit Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true); + explicit Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true); + explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer); + + Mat_& operator = (const Mat& m); + Mat_& operator = (const Mat_& m); + //! set all the elements to s. + Mat_& operator = (const _Tp& s); + //! assign a matrix expression + Mat_& operator = (const MatExpr& e); + + //! iterators; they are smart enough to skip gaps in the end of rows + iterator begin(); + iterator end(); + const_iterator begin() const; + const_iterator end() const; + + //! template methods for for operation over all matrix elements. + // the operations take care of skipping gaps in the end of rows (if any) + template<typename Functor> void forEach(const Functor& operation); + template<typename Functor> void forEach(const Functor& operation) const; + + //! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type) + void create(int _rows, int _cols); + //! equivalent to Mat::create(_size, DataType<_Tp>::type) + void create(Size _size); + //! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type) + void create(int _ndims, const int* _sizes); + //! cross-product + Mat_ cross(const Mat_& m) const; + //! data type conversion + template<typename T2> operator Mat_<T2>() const; + //! overridden forms of Mat::row() etc. + Mat_ row(int y) const; + Mat_ col(int x) const; + Mat_ diag(int d=0) const; + Mat_ clone() const; + + //! overridden forms of Mat::elemSize() etc. + size_t elemSize() const; + size_t elemSize1() const; + int type() const; + int depth() const; + int channels() const; + size_t step1(int i=0) const; + //! returns step()/sizeof(_Tp) + size_t stepT(int i=0) const; + + //! overridden forms of Mat::zeros() etc. Data type is omitted, of course + static MatExpr zeros(int rows, int cols); + static MatExpr zeros(Size size); + static MatExpr zeros(int _ndims, const int* _sizes); + static MatExpr ones(int rows, int cols); + static MatExpr ones(Size size); + static MatExpr ones(int _ndims, const int* _sizes); + static MatExpr eye(int rows, int cols); + static MatExpr eye(Size size); + + //! some more overriden methods + Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright ); + Mat_ operator()( const Range& rowRange, const Range& colRange ) const; + Mat_ operator()( const Rect& roi ) const; + Mat_ operator()( const Range* ranges ) const; + Mat_ operator()(const std::vector<Range>& ranges) const; + + //! more convenient forms of row and element access operators + _Tp* operator [](int y); + const _Tp* operator [](int y) const; + + //! returns reference to the specified element + _Tp& operator ()(const int* idx); + //! returns read-only reference to the specified element + const _Tp& operator ()(const int* idx) const; + + //! returns reference to the specified element + template<int n> _Tp& operator ()(const Vec<int, n>& idx); + //! returns read-only reference to the specified element + template<int n> const _Tp& operator ()(const Vec<int, n>& idx) const; + + //! returns reference to the specified element (1D case) + _Tp& operator ()(int idx0); + //! returns read-only reference to the specified element (1D case) + const _Tp& operator ()(int idx0) const; + //! returns reference to the specified element (2D case) + _Tp& operator ()(int row, int col); + //! returns read-only reference to the specified element (2D case) + const _Tp& operator ()(int row, int col) const; + //! returns reference to the specified element (3D case) + _Tp& operator ()(int idx0, int idx1, int idx2); + //! returns read-only reference to the specified element (3D case) + const _Tp& operator ()(int idx0, int idx1, int idx2) const; + + _Tp& operator ()(Point pt); + const _Tp& operator ()(Point pt) const; + + //! conversion to vector. + operator std::vector<_Tp>() const; + //! conversion to Vec + template<int n> operator Vec<typename DataType<_Tp>::channel_type, n>() const; + //! conversion to Matx + template<int m, int n> operator Matx<typename DataType<_Tp>::channel_type, m, n>() const; + +#ifdef CV_CXX_MOVE_SEMANTICS + Mat_(Mat_&& m); + Mat_& operator = (Mat_&& m); + + Mat_(Mat&& m); + Mat_& operator = (Mat&& m); + + Mat_(MatExpr&& e); +#endif +}; + +typedef Mat_<uchar> Mat1b; +typedef Mat_<Vec2b> Mat2b; +typedef Mat_<Vec3b> Mat3b; +typedef Mat_<Vec4b> Mat4b; + +typedef Mat_<short> Mat1s; +typedef Mat_<Vec2s> Mat2s; +typedef Mat_<Vec3s> Mat3s; +typedef Mat_<Vec4s> Mat4s; + +typedef Mat_<ushort> Mat1w; +typedef Mat_<Vec2w> Mat2w; +typedef Mat_<Vec3w> Mat3w; +typedef Mat_<Vec4w> Mat4w; + +typedef Mat_<int> Mat1i; +typedef Mat_<Vec2i> Mat2i; +typedef Mat_<Vec3i> Mat3i; +typedef Mat_<Vec4i> Mat4i; + +typedef Mat_<float> Mat1f; +typedef Mat_<Vec2f> Mat2f; +typedef Mat_<Vec3f> Mat3f; +typedef Mat_<Vec4f> Mat4f; + +typedef Mat_<double> Mat1d; +typedef Mat_<Vec2d> Mat2d; +typedef Mat_<Vec3d> Mat3d; +typedef Mat_<Vec4d> Mat4d; + +/** @todo document */ +class CV_EXPORTS UMat +{ +public: + //! default constructor + UMat(UMatUsageFlags usageFlags = USAGE_DEFAULT); + //! constructs 2D matrix of the specified size and type + // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.) + UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + //! constucts 2D matrix and fills it with the specified value _s. + UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT); + UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT); + + //! constructs n-dimensional matrix + UMat(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + UMat(int ndims, const int* sizes, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT); + + //! copy constructor + UMat(const UMat& m); + + //! creates a matrix header for a part of the bigger matrix + UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all()); + UMat(const UMat& m, const Rect& roi); + UMat(const UMat& m, const Range* ranges); + UMat(const UMat& m, const std::vector<Range>& ranges); + //! builds matrix from std::vector with or without copying the data + template<typename _Tp> explicit UMat(const std::vector<_Tp>& vec, bool copyData=false); + //! builds matrix from cv::Vec; the data is copied by default + template<typename _Tp, int n> explicit UMat(const Vec<_Tp, n>& vec, bool copyData=true); + //! builds matrix from cv::Matx; the data is copied by default + template<typename _Tp, int m, int n> explicit UMat(const Matx<_Tp, m, n>& mtx, bool copyData=true); + //! builds matrix from a 2D point + template<typename _Tp> explicit UMat(const Point_<_Tp>& pt, bool copyData=true); + //! builds matrix from a 3D point + template<typename _Tp> explicit UMat(const Point3_<_Tp>& pt, bool copyData=true); + //! builds matrix from comma initializer + template<typename _Tp> explicit UMat(const MatCommaInitializer_<_Tp>& commaInitializer); + + //! destructor - calls release() + ~UMat(); + //! assignment operators + UMat& operator = (const UMat& m); + + Mat getMat(int flags) const; + + //! returns a new matrix header for the specified row + UMat row(int y) const; + //! returns a new matrix header for the specified column + UMat col(int x) const; + //! ... for the specified row span + UMat rowRange(int startrow, int endrow) const; + UMat rowRange(const Range& r) const; + //! ... for the specified column span + UMat colRange(int startcol, int endcol) const; + UMat colRange(const Range& r) const; + //! ... for the specified diagonal + // (d=0 - the main diagonal, + // >0 - a diagonal from the lower half, + // <0 - a diagonal from the upper half) + UMat diag(int d=0) const; + //! constructs a square diagonal matrix which main diagonal is vector "d" + static UMat diag(const UMat& d); + + //! returns deep copy of the matrix, i.e. the data is copied + UMat clone() const; + //! copies the matrix content to "m". + // It calls m.create(this->size(), this->type()). + void copyTo( OutputArray m ) const; + //! copies those matrix elements to "m" that are marked with non-zero mask elements. + void copyTo( OutputArray m, InputArray mask ) const; + //! converts matrix to another datatype with optional scalng. See cvConvertScale. + void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const; + + void assignTo( UMat& m, int type=-1 ) const; + + //! sets every matrix element to s + UMat& operator = (const Scalar& s); + //! sets some of the matrix elements to s, according to the mask + UMat& setTo(InputArray value, InputArray mask=noArray()); + //! creates alternative matrix header for the same data, with different + // number of channels and/or different number of rows. see cvReshape. + UMat reshape(int cn, int rows=0) const; + UMat reshape(int cn, int newndims, const int* newsz) const; + + //! matrix transposition by means of matrix expressions + UMat t() const; + //! matrix inversion by means of matrix expressions + UMat inv(int method=DECOMP_LU) const; + //! per-element matrix multiplication by means of matrix expressions + UMat mul(InputArray m, double scale=1) const; + + //! computes dot-product + double dot(InputArray m) const; + + //! Matlab-style matrix initialization + static UMat zeros(int rows, int cols, int type); + static UMat zeros(Size size, int type); + static UMat zeros(int ndims, const int* sz, int type); + static UMat ones(int rows, int cols, int type); + static UMat ones(Size size, int type); + static UMat ones(int ndims, const int* sz, int type); + static UMat eye(int rows, int cols, int type); + static UMat eye(Size size, int type); + + //! allocates new matrix data unless the matrix already has specified size and type. + // previous data is unreferenced if needed. + void create(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + void create(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + void create(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + void create(const std::vector<int>& sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + + //! increases the reference counter; use with care to avoid memleaks + void addref(); + //! decreases reference counter; + // deallocates the data when reference counter reaches 0. + void release(); + + //! deallocates the matrix data + void deallocate(); + //! internal use function; properly re-allocates _size, _step arrays + void copySize(const UMat& m); + + //! locates matrix header within a parent matrix. See below + void locateROI( Size& wholeSize, Point& ofs ) const; + //! moves/resizes the current matrix ROI inside the parent matrix. + UMat& adjustROI( int dtop, int dbottom, int dleft, int dright ); + //! extracts a rectangular sub-matrix + // (this is a generalized form of row, rowRange etc.) + UMat operator()( Range rowRange, Range colRange ) const; + UMat operator()( const Rect& roi ) const; + UMat operator()( const Range* ranges ) const; + UMat operator()(const std::vector<Range>& ranges) const; + + //! returns true iff the matrix data is continuous + // (i.e. when there are no gaps between successive rows). + // similar to CV_IS_MAT_CONT(cvmat->type) + bool isContinuous() const; + + //! returns true if the matrix is a submatrix of another matrix + bool isSubmatrix() const; + + //! returns element size in bytes, + // similar to CV_ELEM_SIZE(cvmat->type) + size_t elemSize() const; + //! returns the size of element channel in bytes. + size_t elemSize1() const; + //! returns element type, similar to CV_MAT_TYPE(cvmat->type) + int type() const; + //! returns element type, similar to CV_MAT_DEPTH(cvmat->type) + int depth() const; + //! returns element type, similar to CV_MAT_CN(cvmat->type) + int channels() const; + //! returns step/elemSize1() + size_t step1(int i=0) const; + //! returns true if matrix data is NULL + bool empty() const; + //! returns the total number of matrix elements + size_t total() const; + + //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise + int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const; + +#ifdef CV_CXX_MOVE_SEMANTICS + UMat(UMat&& m); + UMat& operator = (UMat&& m); +#endif + + void* handle(int accessFlags) const; + void ndoffset(size_t* ofs) const; + + enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG }; + enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 }; + + /*! includes several bit-fields: + - the magic signature + - continuity flag + - depth + - number of channels + */ + int flags; + //! the matrix dimensionality, >= 2 + int dims; + //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions + int rows, cols; + + //! custom allocator + MatAllocator* allocator; + UMatUsageFlags usageFlags; // usage flags for allocator + //! and the standard allocator + static MatAllocator* getStdAllocator(); + + // black-box container of UMat data + UMatData* u; + + // offset of the submatrix (or 0) + size_t offset; + + MatSize size; + MatStep step; + +protected: +}; + + +/////////////////////////// multi-dimensional sparse matrix ////////////////////////// + +/** @brief The class SparseMat represents multi-dimensional sparse numerical arrays. + +Such a sparse array can store elements of any type that Mat can store. *Sparse* means that only +non-zero elements are stored (though, as a result of operations on a sparse matrix, some of its +stored elements can actually become 0. It is up to you to detect such elements and delete them +using SparseMat::erase ). The non-zero elements are stored in a hash table that grows when it is +filled so that the search time is O(1) in average (regardless of whether element is there or not). +Elements can be accessed using the following methods: +- Query operations (SparseMat::ptr and the higher-level SparseMat::ref, SparseMat::value and + SparseMat::find), for example: + @code + const int dims = 5; + int size[5] = {10, 10, 10, 10, 10}; + SparseMat sparse_mat(dims, size, CV_32F); + for(int i = 0; i < 1000; i++) + { + int idx[dims]; + for(int k = 0; k < dims; k++) + idx[k] = rand() % size[k]; + sparse_mat.ref<float>(idx) += 1.f; + } + cout << "nnz = " << sparse_mat.nzcount() << endl; + @endcode +- Sparse matrix iterators. They are similar to MatIterator but different from NAryMatIterator. + That is, the iteration loop is familiar to STL users: + @code + // prints elements of a sparse floating-point matrix + // and the sum of elements. + SparseMatConstIterator_<float> + it = sparse_mat.begin<float>(), + it_end = sparse_mat.end<float>(); + double s = 0; + int dims = sparse_mat.dims(); + for(; it != it_end; ++it) + { + // print element indices and the element value + const SparseMat::Node* n = it.node(); + printf("("); + for(int i = 0; i < dims; i++) + printf("%d%s", n->idx[i], i < dims-1 ? ", " : ")"); + printf(": %g\n", it.value<float>()); + s += *it; + } + printf("Element sum is %g\n", s); + @endcode + If you run this loop, you will notice that elements are not enumerated in a logical order + (lexicographical, and so on). They come in the same order as they are stored in the hash table + (semi-randomly). You may collect pointers to the nodes and sort them to get the proper ordering. + Note, however, that pointers to the nodes may become invalid when you add more elements to the + matrix. This may happen due to possible buffer reallocation. +- Combination of the above 2 methods when you need to process 2 or more sparse matrices + simultaneously. For example, this is how you can compute unnormalized cross-correlation of the 2 + floating-point sparse matrices: + @code + double cross_corr(const SparseMat& a, const SparseMat& b) + { + const SparseMat *_a = &a, *_b = &b; + // if b contains less elements than a, + // it is faster to iterate through b + if(_a->nzcount() > _b->nzcount()) + std::swap(_a, _b); + SparseMatConstIterator_<float> it = _a->begin<float>(), + it_end = _a->end<float>(); + double ccorr = 0; + for(; it != it_end; ++it) + { + // take the next element from the first matrix + float avalue = *it; + const Node* anode = it.node(); + // and try to find an element with the same index in the second matrix. + // since the hash value depends only on the element index, + // reuse the hash value stored in the node + float bvalue = _b->value<float>(anode->idx,&anode->hashval); + ccorr += avalue*bvalue; + } + return ccorr; + } + @endcode + */ +class CV_EXPORTS SparseMat +{ +public: + typedef SparseMatIterator iterator; + typedef SparseMatConstIterator const_iterator; + + enum { MAGIC_VAL=0x42FD0000, MAX_DIM=32, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 }; + + //! the sparse matrix header + struct CV_EXPORTS Hdr + { + Hdr(int _dims, const int* _sizes, int _type); + void clear(); + int refcount; + int dims; + int valueOffset; + size_t nodeSize; + size_t nodeCount; + size_t freeList; + std::vector<uchar> pool; + std::vector<size_t> hashtab; + int size[MAX_DIM]; + }; + + //! sparse matrix node - element of a hash table + struct CV_EXPORTS Node + { + //! hash value + size_t hashval; + //! index of the next node in the same hash table entry + size_t next; + //! index of the matrix element + int idx[MAX_DIM]; + }; + + /** @brief Various SparseMat constructors. + */ + SparseMat(); + + /** @overload + @param dims Array dimensionality. + @param _sizes Sparce matrix size on all dementions. + @param _type Sparse matrix data type. + */ + SparseMat(int dims, const int* _sizes, int _type); + + /** @overload + @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted + to sparse representation. + */ + SparseMat(const SparseMat& m); + + /** @overload + @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted + to sparse representation. + */ + explicit SparseMat(const Mat& m); + + //! the destructor + ~SparseMat(); + + //! assignment operator. This is O(1) operation, i.e. no data is copied + SparseMat& operator = (const SparseMat& m); + //! equivalent to the corresponding constructor + SparseMat& operator = (const Mat& m); + + //! creates full copy of the matrix + SparseMat clone() const; + + //! copies all the data to the destination matrix. All the previous content of m is erased + void copyTo( SparseMat& m ) const; + //! converts sparse matrix to dense matrix. + void copyTo( Mat& m ) const; + //! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type + void convertTo( SparseMat& m, int rtype, double alpha=1 ) const; + //! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling. + /*! + @param [out] m - output matrix; if it does not have a proper size or type before the operation, + it is reallocated + @param [in] rtype – desired output matrix type or, rather, the depth since the number of channels + are the same as the input has; if rtype is negative, the output matrix will have the + same type as the input. + @param [in] alpha – optional scale factor + @param [in] beta – optional delta added to the scaled values + */ + void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const; + + // not used now + void assignTo( SparseMat& m, int type=-1 ) const; + + //! reallocates sparse matrix. + /*! + If the matrix already had the proper size and type, + it is simply cleared with clear(), otherwise, + the old matrix is released (using release()) and the new one is allocated. + */ + void create(int dims, const int* _sizes, int _type); + //! sets all the sparse matrix elements to 0, which means clearing the hash table. + void clear(); + //! manually increments the reference counter to the header. + void addref(); + // decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated. + void release(); + + //! converts sparse matrix to the old-style representation; all the elements are copied. + //operator CvSparseMat*() const; + //! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements) + size_t elemSize() const; + //! returns elemSize()/channels() + size_t elemSize1() const; + + //! returns type of sparse matrix elements + int type() const; + //! returns the depth of sparse matrix elements + int depth() const; + //! returns the number of channels + int channels() const; + + //! returns the array of sizes, or NULL if the matrix is not allocated + const int* size() const; + //! returns the size of i-th matrix dimension (or 0) + int size(int i) const; + //! returns the matrix dimensionality + int dims() const; + //! returns the number of non-zero elements (=the number of hash table nodes) + size_t nzcount() const; + + //! computes the element hash value (1D case) + size_t hash(int i0) const; + //! computes the element hash value (2D case) + size_t hash(int i0, int i1) const; + //! computes the element hash value (3D case) + size_t hash(int i0, int i1, int i2) const; + //! computes the element hash value (nD case) + size_t hash(const int* idx) const; + + //!@{ + /*! + specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case. + return pointer to the matrix element. + - if the element is there (it's non-zero), the pointer to it is returned + - if it's not there and createMissing=false, NULL pointer is returned + - if it's not there and createMissing=true, then the new element + is created and initialized with 0. Pointer to it is returned + - if the optional hashval pointer is not NULL, the element hash value is + not computed, but *hashval is taken instead. + */ + //! returns pointer to the specified element (1D case) + uchar* ptr(int i0, bool createMissing, size_t* hashval=0); + //! returns pointer to the specified element (2D case) + uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0); + //! returns pointer to the specified element (3D case) + uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0); + //! returns pointer to the specified element (nD case) + uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0); + //!@} + + //!@{ + /*! + return read-write reference to the specified sparse matrix element. + + `ref<_Tp>(i0,...[,hashval])` is equivalent to `*(_Tp*)ptr(i0,...,true[,hashval])`. + The methods always return a valid reference. + If the element did not exist, it is created and initialiazed with 0. + */ + //! returns reference to the specified element (1D case) + template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0); + //! returns reference to the specified element (2D case) + template<typename _Tp> _Tp& ref(int i0, int i1, size_t* hashval=0); + //! returns reference to the specified element (3D case) + template<typename _Tp> _Tp& ref(int i0, int i1, int i2, size_t* hashval=0); + //! returns reference to the specified element (nD case) + template<typename _Tp> _Tp& ref(const int* idx, size_t* hashval=0); + //!@} + + //!@{ + /*! + return value of the specified sparse matrix element. + + `value<_Tp>(i0,...[,hashval])` is equivalent to + @code + { const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); } + @endcode + + That is, if the element did not exist, the methods return 0. + */ + //! returns value of the specified element (1D case) + template<typename _Tp> _Tp value(int i0, size_t* hashval=0) const; + //! returns value of the specified element (2D case) + template<typename _Tp> _Tp value(int i0, int i1, size_t* hashval=0) const; + //! returns value of the specified element (3D case) + template<typename _Tp> _Tp value(int i0, int i1, int i2, size_t* hashval=0) const; + //! returns value of the specified element (nD case) + template<typename _Tp> _Tp value(const int* idx, size_t* hashval=0) const; + //!@} + + //!@{ + /*! + Return pointer to the specified sparse matrix element if it exists + + `find<_Tp>(i0,...[,hashval])` is equivalent to `(_const Tp*)ptr(i0,...false[,hashval])`. + + If the specified element does not exist, the methods return NULL. + */ + //! returns pointer to the specified element (1D case) + template<typename _Tp> const _Tp* find(int i0, size_t* hashval=0) const; + //! returns pointer to the specified element (2D case) + template<typename _Tp> const _Tp* find(int i0, int i1, size_t* hashval=0) const; + //! returns pointer to the specified element (3D case) + template<typename _Tp> const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const; + //! returns pointer to the specified element (nD case) + template<typename _Tp> const _Tp* find(const int* idx, size_t* hashval=0) const; + //!@} + + //! erases the specified element (2D case) + void erase(int i0, int i1, size_t* hashval=0); + //! erases the specified element (3D case) + void erase(int i0, int i1, int i2, size_t* hashval=0); + //! erases the specified element (nD case) + void erase(const int* idx, size_t* hashval=0); + + //!@{ + /*! + return the sparse matrix iterator pointing to the first sparse matrix element + */ + //! returns the sparse matrix iterator at the matrix beginning + SparseMatIterator begin(); + //! returns the sparse matrix iterator at the matrix beginning + template<typename _Tp> SparseMatIterator_<_Tp> begin(); + //! returns the read-only sparse matrix iterator at the matrix beginning + SparseMatConstIterator begin() const; + //! returns the read-only sparse matrix iterator at the matrix beginning + template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const; + //!@} + /*! + return the sparse matrix iterator pointing to the element following the last sparse matrix element + */ + //! returns the sparse matrix iterator at the matrix end + SparseMatIterator end(); + //! returns the read-only sparse matrix iterator at the matrix end + SparseMatConstIterator end() const; + //! returns the typed sparse matrix iterator at the matrix end + template<typename _Tp> SparseMatIterator_<_Tp> end(); + //! returns the typed read-only sparse matrix iterator at the matrix end + template<typename _Tp> SparseMatConstIterator_<_Tp> end() const; + + //! returns the value stored in the sparse martix node + template<typename _Tp> _Tp& value(Node* n); + //! returns the value stored in the sparse martix node + template<typename _Tp> const _Tp& value(const Node* n) const; + + ////////////// some internal-use methods /////////////// + Node* node(size_t nidx); + const Node* node(size_t nidx) const; + + uchar* newNode(const int* idx, size_t hashval); + void removeNode(size_t hidx, size_t nidx, size_t previdx); + void resizeHashTab(size_t newsize); + + int flags; + Hdr* hdr; +}; + + + +///////////////////////////////// SparseMat_<_Tp> //////////////////////////////////// + +/** @brief Template sparse n-dimensional array class derived from SparseMat + +SparseMat_ is a thin wrapper on top of SparseMat created in the same way as Mat_ . It simplifies +notation of some operations: +@code + int sz[] = {10, 20, 30}; + SparseMat_<double> M(3, sz); + ... + M.ref(1, 2, 3) = M(4, 5, 6) + M(7, 8, 9); +@endcode + */ +template<typename _Tp> class SparseMat_ : public SparseMat +{ +public: + typedef SparseMatIterator_<_Tp> iterator; + typedef SparseMatConstIterator_<_Tp> const_iterator; + + //! the default constructor + SparseMat_(); + //! the full constructor equivelent to SparseMat(dims, _sizes, DataType<_Tp>::type) + SparseMat_(int dims, const int* _sizes); + //! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted + SparseMat_(const SparseMat& m); + //! the copy constructor. This is O(1) operation - no data is copied + SparseMat_(const SparseMat_& m); + //! converts dense matrix to the sparse form + SparseMat_(const Mat& m); + //! converts the old-style sparse matrix to the C++ class. All the elements are copied + //SparseMat_(const CvSparseMat* m); + //! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted + SparseMat_& operator = (const SparseMat& m); + //! the assignment operator. This is O(1) operation - no data is copied + SparseMat_& operator = (const SparseMat_& m); + //! converts dense matrix to the sparse form + SparseMat_& operator = (const Mat& m); + + //! makes full copy of the matrix. All the elements are duplicated + SparseMat_ clone() const; + //! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type) + void create(int dims, const int* _sizes); + //! converts sparse matrix to the old-style CvSparseMat. All the elements are copied + //operator CvSparseMat*() const; + + //! returns type of the matrix elements + int type() const; + //! returns depth of the matrix elements + int depth() const; + //! returns the number of channels in each matrix element + int channels() const; + + //! equivalent to SparseMat::ref<_Tp>(i0, hashval) + _Tp& ref(int i0, size_t* hashval=0); + //! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval) + _Tp& ref(int i0, int i1, size_t* hashval=0); + //! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval) + _Tp& ref(int i0, int i1, int i2, size_t* hashval=0); + //! equivalent to SparseMat::ref<_Tp>(idx, hashval) + _Tp& ref(const int* idx, size_t* hashval=0); + + //! equivalent to SparseMat::value<_Tp>(i0, hashval) + _Tp operator()(int i0, size_t* hashval=0) const; + //! equivalent to SparseMat::value<_Tp>(i0, i1, hashval) + _Tp operator()(int i0, int i1, size_t* hashval=0) const; + //! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval) + _Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const; + //! equivalent to SparseMat::value<_Tp>(idx, hashval) + _Tp operator()(const int* idx, size_t* hashval=0) const; + + //! returns sparse matrix iterator pointing to the first sparse matrix element + SparseMatIterator_<_Tp> begin(); + //! returns read-only sparse matrix iterator pointing to the first sparse matrix element + SparseMatConstIterator_<_Tp> begin() const; + //! returns sparse matrix iterator pointing to the element following the last sparse matrix element + SparseMatIterator_<_Tp> end(); + //! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element + SparseMatConstIterator_<_Tp> end() const; +}; + + + +////////////////////////////////// MatConstIterator ////////////////////////////////// + +class CV_EXPORTS MatConstIterator +{ +public: + typedef uchar* value_type; + typedef ptrdiff_t difference_type; + typedef const uchar** pointer; + typedef uchar* reference; + +#ifndef OPENCV_NOSTL + typedef std::random_access_iterator_tag iterator_category; +#endif + + //! default constructor + MatConstIterator(); + //! constructor that sets the iterator to the beginning of the matrix + MatConstIterator(const Mat* _m); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator(const Mat* _m, int _row, int _col=0); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator(const Mat* _m, Point _pt); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator(const Mat* _m, const int* _idx); + //! copy constructor + MatConstIterator(const MatConstIterator& it); + + //! copy operator + MatConstIterator& operator = (const MatConstIterator& it); + //! returns the current matrix element + const uchar* operator *() const; + //! returns the i-th matrix element, relative to the current + const uchar* operator [](ptrdiff_t i) const; + + //! shifts the iterator forward by the specified number of elements + MatConstIterator& operator += (ptrdiff_t ofs); + //! shifts the iterator backward by the specified number of elements + MatConstIterator& operator -= (ptrdiff_t ofs); + //! decrements the iterator + MatConstIterator& operator --(); + //! decrements the iterator + MatConstIterator operator --(int); + //! increments the iterator + MatConstIterator& operator ++(); + //! increments the iterator + MatConstIterator operator ++(int); + //! returns the current iterator position + Point pos() const; + //! returns the current iterator position + void pos(int* _idx) const; + + ptrdiff_t lpos() const; + void seek(ptrdiff_t ofs, bool relative = false); + void seek(const int* _idx, bool relative = false); + + const Mat* m; + size_t elemSize; + const uchar* ptr; + const uchar* sliceStart; + const uchar* sliceEnd; +}; + + + +////////////////////////////////// MatConstIterator_ ///////////////////////////////// + +/** @brief Matrix read-only iterator + */ +template<typename _Tp> +class MatConstIterator_ : public MatConstIterator +{ +public: + typedef _Tp value_type; + typedef ptrdiff_t difference_type; + typedef const _Tp* pointer; + typedef const _Tp& reference; + +#ifndef OPENCV_NOSTL + typedef std::random_access_iterator_tag iterator_category; +#endif + + //! default constructor + MatConstIterator_(); + //! constructor that sets the iterator to the beginning of the matrix + MatConstIterator_(const Mat_<_Tp>* _m); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator_(const Mat_<_Tp>* _m, Point _pt); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx); + //! copy constructor + MatConstIterator_(const MatConstIterator_& it); + + //! copy operator + MatConstIterator_& operator = (const MatConstIterator_& it); + //! returns the current matrix element + const _Tp& operator *() const; + //! returns the i-th matrix element, relative to the current + const _Tp& operator [](ptrdiff_t i) const; + + //! shifts the iterator forward by the specified number of elements + MatConstIterator_& operator += (ptrdiff_t ofs); + //! shifts the iterator backward by the specified number of elements + MatConstIterator_& operator -= (ptrdiff_t ofs); + //! decrements the iterator + MatConstIterator_& operator --(); + //! decrements the iterator + MatConstIterator_ operator --(int); + //! increments the iterator + MatConstIterator_& operator ++(); + //! increments the iterator + MatConstIterator_ operator ++(int); + //! returns the current iterator position + Point pos() const; +}; + + + +//////////////////////////////////// MatIterator_ //////////////////////////////////// + +/** @brief Matrix read-write iterator +*/ +template<typename _Tp> +class MatIterator_ : public MatConstIterator_<_Tp> +{ +public: + typedef _Tp* pointer; + typedef _Tp& reference; + +#ifndef OPENCV_NOSTL + typedef std::random_access_iterator_tag iterator_category; +#endif + + //! the default constructor + MatIterator_(); + //! constructor that sets the iterator to the beginning of the matrix + MatIterator_(Mat_<_Tp>* _m); + //! constructor that sets the iterator to the specified element of the matrix + MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0); + //! constructor that sets the iterator to the specified element of the matrix + MatIterator_(Mat_<_Tp>* _m, Point _pt); + //! constructor that sets the iterator to the specified element of the matrix + MatIterator_(Mat_<_Tp>* _m, const int* _idx); + //! copy constructor + MatIterator_(const MatIterator_& it); + //! copy operator + MatIterator_& operator = (const MatIterator_<_Tp>& it ); + + //! returns the current matrix element + _Tp& operator *() const; + //! returns the i-th matrix element, relative to the current + _Tp& operator [](ptrdiff_t i) const; + + //! shifts the iterator forward by the specified number of elements + MatIterator_& operator += (ptrdiff_t ofs); + //! shifts the iterator backward by the specified number of elements + MatIterator_& operator -= (ptrdiff_t ofs); + //! decrements the iterator + MatIterator_& operator --(); + //! decrements the iterator + MatIterator_ operator --(int); + //! increments the iterator + MatIterator_& operator ++(); + //! increments the iterator + MatIterator_ operator ++(int); +}; + + + +/////////////////////////////// SparseMatConstIterator /////////////////////////////// + +/** @brief Read-Only Sparse Matrix Iterator. + + Here is how to use the iterator to compute the sum of floating-point sparse matrix elements: + + \code + SparseMatConstIterator it = m.begin(), it_end = m.end(); + double s = 0; + CV_Assert( m.type() == CV_32F ); + for( ; it != it_end; ++it ) + s += it.value<float>(); + \endcode +*/ +class CV_EXPORTS SparseMatConstIterator +{ +public: + //! the default constructor + SparseMatConstIterator(); + //! the full constructor setting the iterator to the first sparse matrix element + SparseMatConstIterator(const SparseMat* _m); + //! the copy constructor + SparseMatConstIterator(const SparseMatConstIterator& it); + + //! the assignment operator + SparseMatConstIterator& operator = (const SparseMatConstIterator& it); + + //! template method returning the current matrix element + template<typename _Tp> const _Tp& value() const; + //! returns the current node of the sparse matrix. it.node->idx is the current element index + const SparseMat::Node* node() const; + + //! moves iterator to the previous element + SparseMatConstIterator& operator --(); + //! moves iterator to the previous element + SparseMatConstIterator operator --(int); + //! moves iterator to the next element + SparseMatConstIterator& operator ++(); + //! moves iterator to the next element + SparseMatConstIterator operator ++(int); + + //! moves iterator to the element after the last element + void seekEnd(); + + const SparseMat* m; + size_t hashidx; + uchar* ptr; +}; + + + +////////////////////////////////// SparseMatIterator ///////////////////////////////// + +/** @brief Read-write Sparse Matrix Iterator + + The class is similar to cv::SparseMatConstIterator, + but can be used for in-place modification of the matrix elements. +*/ +class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator +{ +public: + //! the default constructor + SparseMatIterator(); + //! the full constructor setting the iterator to the first sparse matrix element + SparseMatIterator(SparseMat* _m); + //! the full constructor setting the iterator to the specified sparse matrix element + SparseMatIterator(SparseMat* _m, const int* idx); + //! the copy constructor + SparseMatIterator(const SparseMatIterator& it); + + //! the assignment operator + SparseMatIterator& operator = (const SparseMatIterator& it); + //! returns read-write reference to the current sparse matrix element + template<typename _Tp> _Tp& value() const; + //! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!) + SparseMat::Node* node() const; + + //! moves iterator to the next element + SparseMatIterator& operator ++(); + //! moves iterator to the next element + SparseMatIterator operator ++(int); +}; + + + +/////////////////////////////// SparseMatConstIterator_ ////////////////////////////// + +/** @brief Template Read-Only Sparse Matrix Iterator Class. + + This is the derived from SparseMatConstIterator class that + introduces more convenient operator *() for accessing the current element. +*/ +template<typename _Tp> class SparseMatConstIterator_ : public SparseMatConstIterator +{ +public: + +#ifndef OPENCV_NOSTL + typedef std::forward_iterator_tag iterator_category; +#endif + + //! the default constructor + SparseMatConstIterator_(); + //! the full constructor setting the iterator to the first sparse matrix element + SparseMatConstIterator_(const SparseMat_<_Tp>* _m); + SparseMatConstIterator_(const SparseMat* _m); + //! the copy constructor + SparseMatConstIterator_(const SparseMatConstIterator_& it); + + //! the assignment operator + SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it); + //! the element access operator + const _Tp& operator *() const; + + //! moves iterator to the next element + SparseMatConstIterator_& operator ++(); + //! moves iterator to the next element + SparseMatConstIterator_ operator ++(int); +}; + + + +///////////////////////////////// SparseMatIterator_ ///////////////////////////////// + +/** @brief Template Read-Write Sparse Matrix Iterator Class. + + This is the derived from cv::SparseMatConstIterator_ class that + introduces more convenient operator *() for accessing the current element. +*/ +template<typename _Tp> class SparseMatIterator_ : public SparseMatConstIterator_<_Tp> +{ +public: + +#ifndef OPENCV_NOSTL + typedef std::forward_iterator_tag iterator_category; +#endif + + //! the default constructor + SparseMatIterator_(); + //! the full constructor setting the iterator to the first sparse matrix element + SparseMatIterator_(SparseMat_<_Tp>* _m); + SparseMatIterator_(SparseMat* _m); + //! the copy constructor + SparseMatIterator_(const SparseMatIterator_& it); + + //! the assignment operator + SparseMatIterator_& operator = (const SparseMatIterator_& it); + //! returns the reference to the current element + _Tp& operator *() const; + + //! moves the iterator to the next element + SparseMatIterator_& operator ++(); + //! moves the iterator to the next element + SparseMatIterator_ operator ++(int); +}; + + + +/////////////////////////////////// NAryMatIterator ////////////////////////////////// + +/** @brief n-ary multi-dimensional array iterator. + +Use the class to implement unary, binary, and, generally, n-ary element-wise operations on +multi-dimensional arrays. Some of the arguments of an n-ary function may be continuous arrays, some +may be not. It is possible to use conventional MatIterator 's for each array but incrementing all of +the iterators after each small operations may be a big overhead. In this case consider using +NAryMatIterator to iterate through several matrices simultaneously as long as they have the same +geometry (dimensionality and all the dimension sizes are the same). On each iteration `it.planes[0]`, +`it.planes[1]`,... will be the slices of the corresponding matrices. + +The example below illustrates how you can compute a normalized and threshold 3D color histogram: +@code + void computeNormalizedColorHist(const Mat& image, Mat& hist, int N, double minProb) + { + const int histSize[] = {N, N, N}; + + // make sure that the histogram has a proper size and type + hist.create(3, histSize, CV_32F); + + // and clear it + hist = Scalar(0); + + // the loop below assumes that the image + // is a 8-bit 3-channel. check it. + CV_Assert(image.type() == CV_8UC3); + MatConstIterator_<Vec3b> it = image.begin<Vec3b>(), + it_end = image.end<Vec3b>(); + for( ; it != it_end; ++it ) + { + const Vec3b& pix = *it; + hist.at<float>(pix[0]*N/256, pix[1]*N/256, pix[2]*N/256) += 1.f; + } + + minProb *= image.rows*image.cols; + + // initialize iterator (the style is different from STL). + // after initialization the iterator will contain + // the number of slices or planes the iterator will go through. + // it simultaneously increments iterators for several matrices + // supplied as a null terminated list of pointers + const Mat* arrays[] = {&hist, 0}; + Mat planes[1]; + NAryMatIterator itNAry(arrays, planes, 1); + double s = 0; + // iterate through the matrix. on each iteration + // itNAry.planes[i] (of type Mat) will be set to the current plane + // of the i-th n-dim matrix passed to the iterator constructor. + for(int p = 0; p < itNAry.nplanes; p++, ++itNAry) + { + threshold(itNAry.planes[0], itNAry.planes[0], minProb, 0, THRESH_TOZERO); + s += sum(itNAry.planes[0])[0]; + } + + s = 1./s; + itNAry = NAryMatIterator(arrays, planes, 1); + for(int p = 0; p < itNAry.nplanes; p++, ++itNAry) + itNAry.planes[0] *= s; + } +@endcode + */ +class CV_EXPORTS NAryMatIterator +{ +public: + //! the default constructor + NAryMatIterator(); + //! the full constructor taking arbitrary number of n-dim matrices + NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1); + //! the full constructor taking arbitrary number of n-dim matrices + NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1); + //! the separate iterator initialization method + void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1); + + //! proceeds to the next plane of every iterated matrix + NAryMatIterator& operator ++(); + //! proceeds to the next plane of every iterated matrix (postfix increment operator) + NAryMatIterator operator ++(int); + + //! the iterated arrays + const Mat** arrays; + //! the current planes + Mat* planes; + //! data pointers + uchar** ptrs; + //! the number of arrays + int narrays; + //! the number of hyper-planes that the iterator steps through + size_t nplanes; + //! the size of each segment (in elements) + size_t size; +protected: + int iterdepth; + size_t idx; +}; + + + +///////////////////////////////// Matrix Expressions ///////////////////////////////// + +class CV_EXPORTS MatOp +{ +public: + MatOp(); + virtual ~MatOp(); + + virtual bool elementWise(const MatExpr& expr) const; + virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0; + virtual void roi(const MatExpr& expr, const Range& rowRange, + const Range& colRange, MatExpr& res) const; + virtual void diag(const MatExpr& expr, int d, MatExpr& res) const; + virtual void augAssignAdd(const MatExpr& expr, Mat& m) const; + virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const; + virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const; + virtual void augAssignDivide(const MatExpr& expr, Mat& m) const; + virtual void augAssignAnd(const MatExpr& expr, Mat& m) const; + virtual void augAssignOr(const MatExpr& expr, Mat& m) const; + virtual void augAssignXor(const MatExpr& expr, Mat& m) const; + + virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const; + virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const; + + virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const; + virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const; + + virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const; + virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const; + + virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const; + virtual void divide(double s, const MatExpr& expr, MatExpr& res) const; + + virtual void abs(const MatExpr& expr, MatExpr& res) const; + + virtual void transpose(const MatExpr& expr, MatExpr& res) const; + virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const; + virtual void invert(const MatExpr& expr, int method, MatExpr& res) const; + + virtual Size size(const MatExpr& expr) const; + virtual int type(const MatExpr& expr) const; +}; + +/** @brief Matrix expression representation +@anchor MatrixExpressions +This is a list of implemented matrix operations that can be combined in arbitrary complex +expressions (here A, B stand for matrices ( Mat ), s for a scalar ( Scalar ), alpha for a +real-valued scalar ( double )): +- Addition, subtraction, negation: `A+B`, `A-B`, `A+s`, `A-s`, `s+A`, `s-A`, `-A` +- Scaling: `A*alpha` +- Per-element multiplication and division: `A.mul(B)`, `A/B`, `alpha/A` +- Matrix multiplication: `A*B` +- Transposition: `A.t()` (means A<sup>T</sup>) +- Matrix inversion and pseudo-inversion, solving linear systems and least-squares problems: + `A.inv([method]) (~ A<sup>-1</sup>)`, `A.inv([method])*B (~ X: AX=B)` +- Comparison: `A cmpop B`, `A cmpop alpha`, `alpha cmpop A`, where *cmpop* is one of + `>`, `>=`, `==`, `!=`, `<=`, `<`. The result of comparison is an 8-bit single channel mask whose + elements are set to 255 (if the particular element or pair of elements satisfy the condition) or + 0. +- Bitwise logical operations: `A logicop B`, `A logicop s`, `s logicop A`, `~A`, where *logicop* is one of + `&`, `|`, `^`. +- Element-wise minimum and maximum: `min(A, B)`, `min(A, alpha)`, `max(A, B)`, `max(A, alpha)` +- Element-wise absolute value: `abs(A)` +- Cross-product, dot-product: `A.cross(B)`, `A.dot(B)` +- Any function of matrix or matrices and scalars that returns a matrix or a scalar, such as norm, + mean, sum, countNonZero, trace, determinant, repeat, and others. +- Matrix initializers ( Mat::eye(), Mat::zeros(), Mat::ones() ), matrix comma-separated + initializers, matrix constructors and operators that extract sub-matrices (see Mat description). +- Mat_<destination_type>() constructors to cast the result to the proper type. +@note Comma-separated initializers and probably some other operations may require additional +explicit Mat() or Mat_<T>() constructor calls to resolve a possible ambiguity. + +Here are examples of matrix expressions: +@code + // compute pseudo-inverse of A, equivalent to A.inv(DECOMP_SVD) + SVD svd(A); + Mat pinvA = svd.vt.t()*Mat::diag(1./svd.w)*svd.u.t(); + + // compute the new vector of parameters in the Levenberg-Marquardt algorithm + x -= (A.t()*A + lambda*Mat::eye(A.cols,A.cols,A.type())).inv(DECOMP_CHOLESKY)*(A.t()*err); + + // sharpen image using "unsharp mask" algorithm + Mat blurred; double sigma = 1, threshold = 5, amount = 1; + GaussianBlur(img, blurred, Size(), sigma, sigma); + Mat lowContrastMask = abs(img - blurred) < threshold; + Mat sharpened = img*(1+amount) + blurred*(-amount); + img.copyTo(sharpened, lowContrastMask); +@endcode +*/ +class CV_EXPORTS MatExpr +{ +public: + MatExpr(); + explicit MatExpr(const Mat& m); + + MatExpr(const MatOp* _op, int _flags, const Mat& _a = Mat(), const Mat& _b = Mat(), + const Mat& _c = Mat(), double _alpha = 1, double _beta = 1, const Scalar& _s = Scalar()); + + operator Mat() const; + template<typename _Tp> operator Mat_<_Tp>() const; + + Size size() const; + int type() const; + + MatExpr row(int y) const; + MatExpr col(int x) const; + MatExpr diag(int d = 0) const; + MatExpr operator()( const Range& rowRange, const Range& colRange ) const; + MatExpr operator()( const Rect& roi ) const; + + MatExpr t() const; + MatExpr inv(int method = DECOMP_LU) const; + MatExpr mul(const MatExpr& e, double scale=1) const; + MatExpr mul(const Mat& m, double scale=1) const; + + Mat cross(const Mat& m) const; + double dot(const Mat& m) const; + + const MatOp* op; + int flags; + + Mat a, b, c; + double alpha, beta; + Scalar s; +}; + +//! @} core_basic + +//! @relates cv::MatExpr +//! @{ +CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a); +CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m); +CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e); +CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s); +CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e); +CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2); + +CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a); +CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m); +CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e); +CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s); +CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e); +CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2); + +CV_EXPORTS MatExpr operator - (const Mat& m); +CV_EXPORTS MatExpr operator - (const MatExpr& e); + +CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator * (const Mat& a, double s); +CV_EXPORTS MatExpr operator * (double s, const Mat& a); +CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m); +CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e); +CV_EXPORTS MatExpr operator * (const MatExpr& e, double s); +CV_EXPORTS MatExpr operator * (double s, const MatExpr& e); +CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2); + +CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator / (const Mat& a, double s); +CV_EXPORTS MatExpr operator / (double s, const Mat& a); +CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m); +CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e); +CV_EXPORTS MatExpr operator / (const MatExpr& e, double s); +CV_EXPORTS MatExpr operator / (double s, const MatExpr& e); +CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2); + +CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator < (const Mat& a, double s); +CV_EXPORTS MatExpr operator < (double s, const Mat& a); + +CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator <= (const Mat& a, double s); +CV_EXPORTS MatExpr operator <= (double s, const Mat& a); + +CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator == (const Mat& a, double s); +CV_EXPORTS MatExpr operator == (double s, const Mat& a); + +CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator != (const Mat& a, double s); +CV_EXPORTS MatExpr operator != (double s, const Mat& a); + +CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator >= (const Mat& a, double s); +CV_EXPORTS MatExpr operator >= (double s, const Mat& a); + +CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator > (const Mat& a, double s); +CV_EXPORTS MatExpr operator > (double s, const Mat& a); + +CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a); + +CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a); + +CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a); + +CV_EXPORTS MatExpr operator ~(const Mat& m); + +CV_EXPORTS MatExpr min(const Mat& a, const Mat& b); +CV_EXPORTS MatExpr min(const Mat& a, double s); +CV_EXPORTS MatExpr min(double s, const Mat& a); + +CV_EXPORTS MatExpr max(const Mat& a, const Mat& b); +CV_EXPORTS MatExpr max(const Mat& a, double s); +CV_EXPORTS MatExpr max(double s, const Mat& a); + +/** @brief Calculates an absolute value of each matrix element. + +abs is a meta-function that is expanded to one of absdiff or convertScaleAbs forms: +- C = abs(A-B) is equivalent to `absdiff(A, B, C)` +- C = abs(A) is equivalent to `absdiff(A, Scalar::all(0), C)` +- C = `Mat_<Vec<uchar,n> >(abs(A*alpha + beta))` is equivalent to `convertScaleAbs(A, C, alpha, +beta)` + +The output matrix has the same size and the same type as the input one except for the last case, +where C is depth=CV_8U . +@param m matrix. +@sa @ref MatrixExpressions, absdiff, convertScaleAbs + */ +CV_EXPORTS MatExpr abs(const Mat& m); +/** @overload +@param e matrix expression. +*/ +CV_EXPORTS MatExpr abs(const MatExpr& e); +//! @} relates cv::MatExpr + +} // cv + +#include "opencv2/core/mat.inl.hpp" + +#endif // OPENCV_CORE_MAT_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/mat.inl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,3733 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_MATRIX_OPERATIONS_HPP +#define OPENCV_CORE_MATRIX_OPERATIONS_HPP + +#ifndef __cplusplus +# error mat.inl.hpp header must be compiled as C++ +#endif + +namespace cv +{ + +//! @cond IGNORED + +//////////////////////// Input/Output Arrays //////////////////////// + +inline void _InputArray::init(int _flags, const void* _obj) +{ flags = _flags; obj = (void*)_obj; } + +inline void _InputArray::init(int _flags, const void* _obj, Size _sz) +{ flags = _flags; obj = (void*)_obj; sz = _sz; } + +inline void* _InputArray::getObj() const { return obj; } +inline int _InputArray::getFlags() const { return flags; } +inline Size _InputArray::getSz() const { return sz; } + +inline _InputArray::_InputArray() { init(NONE, 0); } +inline _InputArray::_InputArray(int _flags, void* _obj) { init(_flags, _obj); } +inline _InputArray::_InputArray(const Mat& m) { init(MAT+ACCESS_READ, &m); } +inline _InputArray::_InputArray(const std::vector<Mat>& vec) { init(STD_VECTOR_MAT+ACCESS_READ, &vec); } +inline _InputArray::_InputArray(const UMat& m) { init(UMAT+ACCESS_READ, &m); } +inline _InputArray::_InputArray(const std::vector<UMat>& vec) { init(STD_VECTOR_UMAT+ACCESS_READ, &vec); } + +template<typename _Tp> inline +_InputArray::_InputArray(const std::vector<_Tp>& vec) +{ init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); } + +inline +_InputArray::_InputArray(const std::vector<bool>& vec) +{ init(FIXED_TYPE + STD_BOOL_VECTOR + DataType<bool>::type + ACCESS_READ, &vec); } + +template<typename _Tp> inline +_InputArray::_InputArray(const std::vector<std::vector<_Tp> >& vec) +{ init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); } + +template<typename _Tp> inline +_InputArray::_InputArray(const std::vector<Mat_<_Tp> >& vec) +{ init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_READ, &vec); } + +template<typename _Tp, int m, int n> inline +_InputArray::_InputArray(const Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_READ, &mtx, Size(n, m)); } + +template<typename _Tp> inline +_InputArray::_InputArray(const _Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_READ, vec, Size(n, 1)); } + +template<typename _Tp> inline +_InputArray::_InputArray(const Mat_<_Tp>& m) +{ init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_READ, &m); } + +inline _InputArray::_InputArray(const double& val) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + CV_64F + ACCESS_READ, &val, Size(1,1)); } + +inline _InputArray::_InputArray(const MatExpr& expr) +{ init(FIXED_TYPE + FIXED_SIZE + EXPR + ACCESS_READ, &expr); } + +inline _InputArray::_InputArray(const cuda::GpuMat& d_mat) +{ init(CUDA_GPU_MAT + ACCESS_READ, &d_mat); } + +inline _InputArray::_InputArray(const std::vector<cuda::GpuMat>& d_mat) +{ init(STD_VECTOR_CUDA_GPU_MAT + ACCESS_READ, &d_mat);} + +inline _InputArray::_InputArray(const ogl::Buffer& buf) +{ init(OPENGL_BUFFER + ACCESS_READ, &buf); } + +inline _InputArray::_InputArray(const cuda::HostMem& cuda_mem) +{ init(CUDA_HOST_MEM + ACCESS_READ, &cuda_mem); } + +inline _InputArray::~_InputArray() {} + +inline Mat _InputArray::getMat(int i) const +{ + if( kind() == MAT && i < 0 ) + return *(const Mat*)obj; + return getMat_(i); +} + +inline bool _InputArray::isMat() const { return kind() == _InputArray::MAT; } +inline bool _InputArray::isUMat() const { return kind() == _InputArray::UMAT; } +inline bool _InputArray::isMatVector() const { return kind() == _InputArray::STD_VECTOR_MAT; } +inline bool _InputArray::isUMatVector() const { return kind() == _InputArray::STD_VECTOR_UMAT; } +inline bool _InputArray::isMatx() const { return kind() == _InputArray::MATX; } +inline bool _InputArray::isVector() const { return kind() == _InputArray::STD_VECTOR || kind() == _InputArray::STD_BOOL_VECTOR; } +inline bool _InputArray::isGpuMatVector() const { return kind() == _InputArray::STD_VECTOR_CUDA_GPU_MAT; } + +//////////////////////////////////////////////////////////////////////////////////////// + +inline _OutputArray::_OutputArray() { init(ACCESS_WRITE, 0); } +inline _OutputArray::_OutputArray(int _flags, void* _obj) { init(_flags|ACCESS_WRITE, _obj); } +inline _OutputArray::_OutputArray(Mat& m) { init(MAT+ACCESS_WRITE, &m); } +inline _OutputArray::_OutputArray(std::vector<Mat>& vec) { init(STD_VECTOR_MAT+ACCESS_WRITE, &vec); } +inline _OutputArray::_OutputArray(UMat& m) { init(UMAT+ACCESS_WRITE, &m); } +inline _OutputArray::_OutputArray(std::vector<UMat>& vec) { init(STD_VECTOR_UMAT+ACCESS_WRITE, &vec); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(std::vector<_Tp>& vec) +{ init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +inline +_OutputArray::_OutputArray(std::vector<bool>&) +{ CV_Error(Error::StsUnsupportedFormat, "std::vector<bool> cannot be an output array\n"); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(std::vector<std::vector<_Tp> >& vec) +{ init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(std::vector<Mat_<_Tp> >& vec) +{ init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(Mat_<_Tp>& m) +{ init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_WRITE, &m); } + +template<typename _Tp, int m, int n> inline +_OutputArray::_OutputArray(Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, &mtx, Size(n, m)); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(_Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, vec, Size(n, 1)); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(const std::vector<_Tp>& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(const std::vector<std::vector<_Tp> >& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(const std::vector<Mat_<_Tp> >& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(const Mat_<_Tp>& m) +{ init(FIXED_TYPE + FIXED_SIZE + MAT + DataType<_Tp>::type + ACCESS_WRITE, &m); } + +template<typename _Tp, int m, int n> inline +_OutputArray::_OutputArray(const Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, &mtx, Size(n, m)); } + +template<typename _Tp> inline +_OutputArray::_OutputArray(const _Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, vec, Size(n, 1)); } + +inline _OutputArray::_OutputArray(cuda::GpuMat& d_mat) +{ init(CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); } + +inline _OutputArray::_OutputArray(std::vector<cuda::GpuMat>& d_mat) +{ init(STD_VECTOR_CUDA_GPU_MAT + ACCESS_WRITE, &d_mat);} + +inline _OutputArray::_OutputArray(ogl::Buffer& buf) +{ init(OPENGL_BUFFER + ACCESS_WRITE, &buf); } + +inline _OutputArray::_OutputArray(cuda::HostMem& cuda_mem) +{ init(CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); } + +inline _OutputArray::_OutputArray(const Mat& m) +{ init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_WRITE, &m); } + +inline _OutputArray::_OutputArray(const std::vector<Mat>& vec) +{ init(FIXED_SIZE + STD_VECTOR_MAT + ACCESS_WRITE, &vec); } + +inline _OutputArray::_OutputArray(const UMat& m) +{ init(FIXED_TYPE + FIXED_SIZE + UMAT + ACCESS_WRITE, &m); } + +inline _OutputArray::_OutputArray(const std::vector<UMat>& vec) +{ init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_WRITE, &vec); } + +inline _OutputArray::_OutputArray(const cuda::GpuMat& d_mat) +{ init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); } + + +inline _OutputArray::_OutputArray(const ogl::Buffer& buf) +{ init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_WRITE, &buf); } + +inline _OutputArray::_OutputArray(const cuda::HostMem& cuda_mem) +{ init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); } + +/////////////////////////////////////////////////////////////////////////////////////////// + +inline _InputOutputArray::_InputOutputArray() { init(ACCESS_RW, 0); } +inline _InputOutputArray::_InputOutputArray(int _flags, void* _obj) { init(_flags|ACCESS_RW, _obj); } +inline _InputOutputArray::_InputOutputArray(Mat& m) { init(MAT+ACCESS_RW, &m); } +inline _InputOutputArray::_InputOutputArray(std::vector<Mat>& vec) { init(STD_VECTOR_MAT+ACCESS_RW, &vec); } +inline _InputOutputArray::_InputOutputArray(UMat& m) { init(UMAT+ACCESS_RW, &m); } +inline _InputOutputArray::_InputOutputArray(std::vector<UMat>& vec) { init(STD_VECTOR_UMAT+ACCESS_RW, &vec); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(std::vector<_Tp>& vec) +{ init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } + +inline _InputOutputArray::_InputOutputArray(std::vector<bool>&) +{ CV_Error(Error::StsUnsupportedFormat, "std::vector<bool> cannot be an input/output array\n"); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(std::vector<std::vector<_Tp> >& vec) +{ init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(std::vector<Mat_<_Tp> >& vec) +{ init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(Mat_<_Tp>& m) +{ init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_RW, &m); } + +template<typename _Tp, int m, int n> inline +_InputOutputArray::_InputOutputArray(Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, &mtx, Size(n, m)); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(_Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, vec, Size(n, 1)); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(const std::vector<_Tp>& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(const std::vector<std::vector<_Tp> >& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(const std::vector<Mat_<_Tp> >& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(const Mat_<_Tp>& m) +{ init(FIXED_TYPE + FIXED_SIZE + MAT + DataType<_Tp>::type + ACCESS_RW, &m); } + +template<typename _Tp, int m, int n> inline +_InputOutputArray::_InputOutputArray(const Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, &mtx, Size(n, m)); } + +template<typename _Tp> inline +_InputOutputArray::_InputOutputArray(const _Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, vec, Size(n, 1)); } + +inline _InputOutputArray::_InputOutputArray(cuda::GpuMat& d_mat) +{ init(CUDA_GPU_MAT + ACCESS_RW, &d_mat); } + +inline _InputOutputArray::_InputOutputArray(ogl::Buffer& buf) +{ init(OPENGL_BUFFER + ACCESS_RW, &buf); } + +inline _InputOutputArray::_InputOutputArray(cuda::HostMem& cuda_mem) +{ init(CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); } + +inline _InputOutputArray::_InputOutputArray(const Mat& m) +{ init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_RW, &m); } + +inline _InputOutputArray::_InputOutputArray(const std::vector<Mat>& vec) +{ init(FIXED_SIZE + STD_VECTOR_MAT + ACCESS_RW, &vec); } + +inline _InputOutputArray::_InputOutputArray(const UMat& m) +{ init(FIXED_TYPE + FIXED_SIZE + UMAT + ACCESS_RW, &m); } + +inline _InputOutputArray::_InputOutputArray(const std::vector<UMat>& vec) +{ init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_RW, &vec); } + +inline _InputOutputArray::_InputOutputArray(const cuda::GpuMat& d_mat) +{ init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_RW, &d_mat); } + +inline _InputOutputArray::_InputOutputArray(const std::vector<cuda::GpuMat>& d_mat) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_CUDA_GPU_MAT + ACCESS_RW, &d_mat);} + +template<> inline _InputOutputArray::_InputOutputArray(std::vector<cuda::GpuMat>& d_mat) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_CUDA_GPU_MAT + ACCESS_RW, &d_mat);} + +inline _InputOutputArray::_InputOutputArray(const ogl::Buffer& buf) +{ init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_RW, &buf); } + +inline _InputOutputArray::_InputOutputArray(const cuda::HostMem& cuda_mem) +{ init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); } + +//////////////////////////////////////////// Mat ////////////////////////////////////////// + +inline +Mat::Mat() + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{} + +inline +Mat::Mat(int _rows, int _cols, int _type) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_rows, _cols, _type); +} + +inline +Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_rows, _cols, _type); + *this = _s; +} + +inline +Mat::Mat(Size _sz, int _type) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create( _sz.height, _sz.width, _type ); +} + +inline +Mat::Mat(Size _sz, int _type, const Scalar& _s) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_sz.height, _sz.width, _type); + *this = _s; +} + +inline +Mat::Mat(int _dims, const int* _sz, int _type) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_dims, _sz, _type); +} + +inline +Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_dims, _sz, _type); + *this = _s; +} + +inline +Mat::Mat(const std::vector<int>& _sz, int _type) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_sz, _type); +} + +inline +Mat::Mat(const std::vector<int>& _sz, int _type, const Scalar& _s) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_sz, _type); + *this = _s; +} + +inline +Mat::Mat(const Mat& m) + : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data), + datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator), + u(m.u), size(&rows) +{ + if( u ) + CV_XADD(&u->refcount, 1); + if( m.dims <= 2 ) + { + step[0] = m.step[0]; step[1] = m.step[1]; + } + else + { + dims = 0; + copySize(m); + } +} + +inline +Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step) + : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols), + data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0), + allocator(0), u(0), size(&rows) +{ + CV_Assert(total() == 0 || data != NULL); + + size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type); + size_t minstep = cols * esz; + if( _step == AUTO_STEP ) + { + _step = minstep; + flags |= CONTINUOUS_FLAG; + } + else + { + if( rows == 1 ) _step = minstep; + CV_DbgAssert( _step >= minstep ); + + if (_step % esz1 != 0) + { + CV_Error(Error::BadStep, "Step must be a multiple of esz1"); + } + + flags |= _step == minstep ? CONTINUOUS_FLAG : 0; + } + step[0] = _step; + step[1] = esz; + datalimit = datastart + _step * rows; + dataend = datalimit - _step + minstep; +} + +inline +Mat::Mat(Size _sz, int _type, void* _data, size_t _step) + : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width), + data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0), + allocator(0), u(0), size(&rows) +{ + CV_Assert(total() == 0 || data != NULL); + + size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type); + size_t minstep = cols*esz; + if( _step == AUTO_STEP ) + { + _step = minstep; + flags |= CONTINUOUS_FLAG; + } + else + { + if( rows == 1 ) _step = minstep; + CV_DbgAssert( _step >= minstep ); + + if (_step % esz1 != 0) + { + CV_Error(Error::BadStep, "Step must be a multiple of esz1"); + } + + flags |= _step == minstep ? CONTINUOUS_FLAG : 0; + } + step[0] = _step; + step[1] = esz; + datalimit = datastart + _step*rows; + dataend = datalimit - _step + minstep; +} + +template<typename _Tp> inline +Mat::Mat(const std::vector<_Tp>& vec, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), + cols(1), data(0), datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if(vec.empty()) + return; + if( !copyData ) + { + step[0] = step[1] = sizeof(_Tp); + datastart = data = (uchar*)&vec[0]; + datalimit = dataend = datastart + rows * step[0]; + } + else + Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this); +} + +template<typename _Tp, int n> inline +Mat::Mat(const Vec<_Tp, n>& vec, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(n), cols(1), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if( !copyData ) + { + step[0] = step[1] = sizeof(_Tp); + datastart = data = (uchar*)vec.val; + datalimit = dataend = datastart + rows * step[0]; + } + else + Mat(n, 1, DataType<_Tp>::type, (void*)vec.val).copyTo(*this); +} + + +template<typename _Tp, int m, int n> inline +Mat::Mat(const Matx<_Tp,m,n>& M, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(m), cols(n), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if( !copyData ) + { + step[0] = cols * sizeof(_Tp); + step[1] = sizeof(_Tp); + datastart = data = (uchar*)M.val; + datalimit = dataend = datastart + rows * step[0]; + } + else + Mat(m, n, DataType<_Tp>::type, (uchar*)M.val).copyTo(*this); +} + +template<typename _Tp> inline +Mat::Mat(const Point_<_Tp>& pt, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(2), cols(1), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if( !copyData ) + { + step[0] = step[1] = sizeof(_Tp); + datastart = data = (uchar*)&pt.x; + datalimit = dataend = datastart + rows * step[0]; + } + else + { + create(2, 1, DataType<_Tp>::type); + ((_Tp*)data)[0] = pt.x; + ((_Tp*)data)[1] = pt.y; + } +} + +template<typename _Tp> inline +Mat::Mat(const Point3_<_Tp>& pt, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(3), cols(1), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if( !copyData ) + { + step[0] = step[1] = sizeof(_Tp); + datastart = data = (uchar*)&pt.x; + datalimit = dataend = datastart + rows * step[0]; + } + else + { + create(3, 1, DataType<_Tp>::type); + ((_Tp*)data)[0] = pt.x; + ((_Tp*)data)[1] = pt.y; + ((_Tp*)data)[2] = pt.z; + } +} + +template<typename _Tp> inline +Mat::Mat(const MatCommaInitializer_<_Tp>& commaInitializer) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(0), rows(0), cols(0), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + *this = commaInitializer.operator Mat_<_Tp>(); +} + +inline +Mat::~Mat() +{ + release(); + if( step.p != step.buf ) + fastFree(step.p); +} + +inline +Mat& Mat::operator = (const Mat& m) +{ + if( this != &m ) + { + if( m.u ) + CV_XADD(&m.u->refcount, 1); + release(); + flags = m.flags; + if( dims <= 2 && m.dims <= 2 ) + { + dims = m.dims; + rows = m.rows; + cols = m.cols; + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + copySize(m); + data = m.data; + datastart = m.datastart; + dataend = m.dataend; + datalimit = m.datalimit; + allocator = m.allocator; + u = m.u; + } + return *this; +} + +inline +Mat Mat::row(int y) const +{ + return Mat(*this, Range(y, y + 1), Range::all()); +} + +inline +Mat Mat::col(int x) const +{ + return Mat(*this, Range::all(), Range(x, x + 1)); +} + +inline +Mat Mat::rowRange(int startrow, int endrow) const +{ + return Mat(*this, Range(startrow, endrow), Range::all()); +} + +inline +Mat Mat::rowRange(const Range& r) const +{ + return Mat(*this, r, Range::all()); +} + +inline +Mat Mat::colRange(int startcol, int endcol) const +{ + return Mat(*this, Range::all(), Range(startcol, endcol)); +} + +inline +Mat Mat::colRange(const Range& r) const +{ + return Mat(*this, Range::all(), r); +} + +inline +Mat Mat::clone() const +{ + Mat m; + copyTo(m); + return m; +} + +inline +void Mat::assignTo( Mat& m, int _type ) const +{ + if( _type < 0 ) + m = *this; + else + convertTo(m, _type); +} + +inline +void Mat::create(int _rows, int _cols, int _type) +{ + _type &= TYPE_MASK; + if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && data ) + return; + int sz[] = {_rows, _cols}; + create(2, sz, _type); +} + +inline +void Mat::create(Size _sz, int _type) +{ + create(_sz.height, _sz.width, _type); +} + +inline +void Mat::addref() +{ + if( u ) + CV_XADD(&u->refcount, 1); +} + +inline +void Mat::release() +{ + if( u && CV_XADD(&u->refcount, -1) == 1 ) + deallocate(); + u = NULL; + datastart = dataend = datalimit = data = 0; + for(int i = 0; i < dims; i++) + size.p[i] = 0; +#ifdef _DEBUG + flags = MAGIC_VAL; + dims = rows = cols = 0; + if(step.p != step.buf) + { + fastFree(step.p); + step.p = step.buf; + size.p = &rows; + } +#endif +} + +inline +Mat Mat::operator()( Range _rowRange, Range _colRange ) const +{ + return Mat(*this, _rowRange, _colRange); +} + +inline +Mat Mat::operator()( const Rect& roi ) const +{ + return Mat(*this, roi); +} + +inline +Mat Mat::operator()(const Range* ranges) const +{ + return Mat(*this, ranges); +} + +inline +Mat Mat::operator()(const std::vector<Range>& ranges) const +{ + return Mat(*this, ranges); +} + +inline +bool Mat::isContinuous() const +{ + return (flags & CONTINUOUS_FLAG) != 0; +} + +inline +bool Mat::isSubmatrix() const +{ + return (flags & SUBMATRIX_FLAG) != 0; +} + +inline +size_t Mat::elemSize() const +{ + return dims > 0 ? step.p[dims - 1] : 0; +} + +inline +size_t Mat::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int Mat::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int Mat::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int Mat::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t Mat::step1(int i) const +{ + return step.p[i] / elemSize1(); +} + +inline +bool Mat::empty() const +{ + return data == 0 || total() == 0; +} + +inline +size_t Mat::total() const +{ + if( dims <= 2 ) + return (size_t)rows * cols; + size_t p = 1; + for( int i = 0; i < dims; i++ ) + p *= size[i]; + return p; +} + +inline +uchar* Mat::ptr(int y) +{ + CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); + return data + step.p[0] * y; +} + +inline +const uchar* Mat::ptr(int y) const +{ + CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); + return data + step.p[0] * y; +} + +template<typename _Tp> inline +_Tp* Mat::ptr(int y) +{ + CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); + return (_Tp*)(data + step.p[0] * y); +} + +template<typename _Tp> inline +const _Tp* Mat::ptr(int y) const +{ + CV_DbgAssert( y == 0 || (data && dims >= 1 && data && (unsigned)y < (unsigned)size.p[0]) ); + return (const _Tp*)(data + step.p[0] * y); +} + +inline +uchar* Mat::ptr(int i0, int i1) +{ + CV_DbgAssert(dims >= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + return data + i0 * step.p[0] + i1 * step.p[1]; +} + +inline +const uchar* Mat::ptr(int i0, int i1) const +{ + CV_DbgAssert(dims >= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + return data + i0 * step.p[0] + i1 * step.p[1]; +} + +template<typename _Tp> inline +_Tp* Mat::ptr(int i0, int i1) +{ + CV_DbgAssert(dims >= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + return (_Tp*)(data + i0 * step.p[0] + i1 * step.p[1]); +} + +template<typename _Tp> inline +const _Tp* Mat::ptr(int i0, int i1) const +{ + CV_DbgAssert(dims >= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + return (const _Tp*)(data + i0 * step.p[0] + i1 * step.p[1]); +} + +inline +uchar* Mat::ptr(int i0, int i1, int i2) +{ + CV_DbgAssert(dims >= 3); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); + return data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]; +} + +inline +const uchar* Mat::ptr(int i0, int i1, int i2) const +{ + CV_DbgAssert(dims >= 3); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); + return data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]; +} + +template<typename _Tp> inline +_Tp* Mat::ptr(int i0, int i1, int i2) +{ + CV_DbgAssert(dims >= 3); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); + return (_Tp*)(data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]); +} + +template<typename _Tp> inline +const _Tp* Mat::ptr(int i0, int i1, int i2) const +{ + CV_DbgAssert(dims >= 3); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); + return (const _Tp*)(data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]); +} + +inline +uchar* Mat::ptr(const int* idx) +{ + int i, d = dims; + uchar* p = data; + CV_DbgAssert( d >= 1 && p ); + for( i = 0; i < d; i++ ) + { + CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] ); + p += idx[i] * step.p[i]; + } + return p; +} + +inline +const uchar* Mat::ptr(const int* idx) const +{ + int i, d = dims; + uchar* p = data; + CV_DbgAssert( d >= 1 && p ); + for( i = 0; i < d; i++ ) + { + CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] ); + p += idx[i] * step.p[i]; + } + return p; +} + +template<typename _Tp> inline +_Tp& Mat::at(int i0, int i1) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); + CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); + return ((_Tp*)(data + step.p[0] * i0))[i1]; +} + +template<typename _Tp> inline +const _Tp& Mat::at(int i0, int i1) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); + CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); + return ((const _Tp*)(data + step.p[0] * i0))[i1]; +} + +template<typename _Tp> inline +_Tp& Mat::at(Point pt) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)(pt.x * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); + CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); + return ((_Tp*)(data + step.p[0] * pt.y))[pt.x]; +} + +template<typename _Tp> inline +const _Tp& Mat::at(Point pt) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)(pt.x * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); + CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); + return ((const _Tp*)(data + step.p[0] * pt.y))[pt.x]; +} + +template<typename _Tp> inline +_Tp& Mat::at(int i0) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)(size.p[0] * size.p[1])); + CV_DbgAssert(elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type)); + if( isContinuous() || size.p[0] == 1 ) + return ((_Tp*)data)[i0]; + if( size.p[1] == 1 ) + return *(_Tp*)(data + step.p[0] * i0); + int i = i0 / cols, j = i0 - i * cols; + return ((_Tp*)(data + step.p[0] * i))[j]; +} + +template<typename _Tp> inline +const _Tp& Mat::at(int i0) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)(size.p[0] * size.p[1])); + CV_DbgAssert(elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type)); + if( isContinuous() || size.p[0] == 1 ) + return ((const _Tp*)data)[i0]; + if( size.p[1] == 1 ) + return *(const _Tp*)(data + step.p[0] * i0); + int i = i0 / cols, j = i0 - i * cols; + return ((const _Tp*)(data + step.p[0] * i))[j]; +} + +template<typename _Tp> inline +_Tp& Mat::at(int i0, int i1, int i2) +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(_Tp*)ptr(i0, i1, i2); +} + +template<typename _Tp> inline +const _Tp& Mat::at(int i0, int i1, int i2) const +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(const _Tp*)ptr(i0, i1, i2); +} + +template<typename _Tp> inline +_Tp& Mat::at(const int* idx) +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(_Tp*)ptr(idx); +} + +template<typename _Tp> inline +const _Tp& Mat::at(const int* idx) const +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(const _Tp*)ptr(idx); +} + +template<typename _Tp, int n> inline +_Tp& Mat::at(const Vec<int, n>& idx) +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(_Tp*)ptr(idx.val); +} + +template<typename _Tp, int n> inline +const _Tp& Mat::at(const Vec<int, n>& idx) const +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(const _Tp*)ptr(idx.val); +} + +template<typename _Tp> inline +MatConstIterator_<_Tp> Mat::begin() const +{ + CV_DbgAssert( elemSize() == sizeof(_Tp) ); + return MatConstIterator_<_Tp>((const Mat_<_Tp>*)this); +} + +template<typename _Tp> inline +MatConstIterator_<_Tp> Mat::end() const +{ + CV_DbgAssert( elemSize() == sizeof(_Tp) ); + MatConstIterator_<_Tp> it((const Mat_<_Tp>*)this); + it += total(); + return it; +} + +template<typename _Tp> inline +MatIterator_<_Tp> Mat::begin() +{ + CV_DbgAssert( elemSize() == sizeof(_Tp) ); + return MatIterator_<_Tp>((Mat_<_Tp>*)this); +} + +template<typename _Tp> inline +MatIterator_<_Tp> Mat::end() +{ + CV_DbgAssert( elemSize() == sizeof(_Tp) ); + MatIterator_<_Tp> it((Mat_<_Tp>*)this); + it += total(); + return it; +} + +template<typename _Tp, typename Functor> inline +void Mat::forEach(const Functor& operation) { + this->forEach_impl<_Tp>(operation); +} + +template<typename _Tp, typename Functor> inline +void Mat::forEach(const Functor& operation) const { + // call as not const + (const_cast<Mat*>(this))->forEach<const _Tp>(operation); +} + +template<typename _Tp> inline +Mat::operator std::vector<_Tp>() const +{ + std::vector<_Tp> v; + copyTo(v); + return v; +} + +template<typename _Tp, int n> inline +Mat::operator Vec<_Tp, n>() const +{ + CV_Assert( data && dims <= 2 && (rows == 1 || cols == 1) && + rows + cols - 1 == n && channels() == 1 ); + + if( isContinuous() && type() == DataType<_Tp>::type ) + return Vec<_Tp, n>((_Tp*)data); + Vec<_Tp, n> v; + Mat tmp(rows, cols, DataType<_Tp>::type, v.val); + convertTo(tmp, tmp.type()); + return v; +} + +template<typename _Tp, int m, int n> inline +Mat::operator Matx<_Tp, m, n>() const +{ + CV_Assert( data && dims <= 2 && rows == m && cols == n && channels() == 1 ); + + if( isContinuous() && type() == DataType<_Tp>::type ) + return Matx<_Tp, m, n>((_Tp*)data); + Matx<_Tp, m, n> mtx; + Mat tmp(rows, cols, DataType<_Tp>::type, mtx.val); + convertTo(tmp, tmp.type()); + return mtx; +} + +template<typename _Tp> inline +void Mat::push_back(const _Tp& elem) +{ + if( !data ) + { + *this = Mat(1, 1, DataType<_Tp>::type, (void*)&elem).clone(); + return; + } + CV_Assert(DataType<_Tp>::type == type() && cols == 1 + /* && dims == 2 (cols == 1 implies dims == 2) */); + const uchar* tmp = dataend + step[0]; + if( !isSubmatrix() && isContinuous() && tmp <= datalimit ) + { + *(_Tp*)(data + (size.p[0]++) * step.p[0]) = elem; + dataend = tmp; + } + else + push_back_(&elem); +} + +template<typename _Tp> inline +void Mat::push_back(const Mat_<_Tp>& m) +{ + push_back((const Mat&)m); +} + +template<> inline +void Mat::push_back(const MatExpr& expr) +{ + push_back(static_cast<Mat>(expr)); +} + +#ifdef CV_CXX_MOVE_SEMANTICS + +inline +Mat::Mat(Mat&& m) + : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data), + datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator), + u(m.u), size(&rows) +{ + if (m.dims <= 2) // move new step/size info + { + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + { + CV_DbgAssert(m.step.p != m.step.buf); + step.p = m.step.p; + size.p = m.size.p; + m.step.p = m.step.buf; + m.size.p = &m.rows; + } + m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; + m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL; + m.allocator = NULL; + m.u = NULL; +} + +inline +Mat& Mat::operator = (Mat&& m) +{ + if (this == &m) + return *this; + + release(); + flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols; data = m.data; + datastart = m.datastart; dataend = m.dataend; datalimit = m.datalimit; allocator = m.allocator; + u = m.u; + if (step.p != step.buf) // release self step/size + { + fastFree(step.p); + step.p = step.buf; + size.p = &rows; + } + if (m.dims <= 2) // move new step/size info + { + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + { + CV_DbgAssert(m.step.p != m.step.buf); + step.p = m.step.p; + size.p = m.size.p; + m.step.p = m.step.buf; + m.size.p = &m.rows; + } + m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; + m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL; + m.allocator = NULL; + m.u = NULL; + return *this; +} + +#endif + + +///////////////////////////// MatSize //////////////////////////// + +inline +MatSize::MatSize(int* _p) + : p(_p) {} + +inline +Size MatSize::operator()() const +{ + CV_DbgAssert(p[-1] <= 2); + return Size(p[1], p[0]); +} + +inline +const int& MatSize::operator[](int i) const +{ + return p[i]; +} + +inline +int& MatSize::operator[](int i) +{ + return p[i]; +} + +inline +MatSize::operator const int*() const +{ + return p; +} + +inline +bool MatSize::operator == (const MatSize& sz) const +{ + int d = p[-1]; + int dsz = sz.p[-1]; + if( d != dsz ) + return false; + if( d == 2 ) + return p[0] == sz.p[0] && p[1] == sz.p[1]; + + for( int i = 0; i < d; i++ ) + if( p[i] != sz.p[i] ) + return false; + return true; +} + +inline +bool MatSize::operator != (const MatSize& sz) const +{ + return !(*this == sz); +} + + + +///////////////////////////// MatStep //////////////////////////// + +inline +MatStep::MatStep() +{ + p = buf; p[0] = p[1] = 0; +} + +inline +MatStep::MatStep(size_t s) +{ + p = buf; p[0] = s; p[1] = 0; +} + +inline +const size_t& MatStep::operator[](int i) const +{ + return p[i]; +} + +inline +size_t& MatStep::operator[](int i) +{ + return p[i]; +} + +inline MatStep::operator size_t() const +{ + CV_DbgAssert( p == buf ); + return buf[0]; +} + +inline MatStep& MatStep::operator = (size_t s) +{ + CV_DbgAssert( p == buf ); + buf[0] = s; + return *this; +} + + + +////////////////////////////// Mat_<_Tp> //////////////////////////// + +template<typename _Tp> inline +Mat_<_Tp>::Mat_() + : Mat() +{ + flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(int _rows, int _cols) + : Mat(_rows, _cols, DataType<_Tp>::type) +{ +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(int _rows, int _cols, const _Tp& value) + : Mat(_rows, _cols, DataType<_Tp>::type) +{ + *this = value; +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(Size _sz) + : Mat(_sz.height, _sz.width, DataType<_Tp>::type) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(Size _sz, const _Tp& value) + : Mat(_sz.height, _sz.width, DataType<_Tp>::type) +{ + *this = value; +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(int _dims, const int* _sz) + : Mat(_dims, _sz, DataType<_Tp>::type) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(int _dims, const int* _sz, const _Tp& _s) + : Mat(_dims, _sz, DataType<_Tp>::type, Scalar(_s)) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(int _dims, const int* _sz, _Tp* _data, const size_t* _steps) + : Mat(_dims, _sz, DataType<_Tp>::type, _data, _steps) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const Range* ranges) + : Mat(m, ranges) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const std::vector<Range>& ranges) + : Mat(m, ranges) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const Mat& m) + : Mat() +{ + flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; + *this = m; +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const Mat_& m) + : Mat(m) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(int _rows, int _cols, _Tp* _data, size_t steps) + : Mat(_rows, _cols, DataType<_Tp>::type, _data, steps) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const Mat_& m, const Range& _rowRange, const Range& _colRange) + : Mat(m, _rowRange, _colRange) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const Mat_& m, const Rect& roi) + : Mat(m, roi) +{} + +template<typename _Tp> template<int n> inline +Mat_<_Tp>::Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData) + : Mat(n / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&vec) +{ + CV_Assert(n%DataType<_Tp>::channels == 0); + if( copyData ) + *this = clone(); +} + +template<typename _Tp> template<int m, int n> inline +Mat_<_Tp>::Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& M, bool copyData) + : Mat(m, n / DataType<_Tp>::channels, DataType<_Tp>::type, (void*)&M) +{ + CV_Assert(n % DataType<_Tp>::channels == 0); + if( copyData ) + *this = clone(); +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData) + : Mat(2 / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt) +{ + CV_Assert(2 % DataType<_Tp>::channels == 0); + if( copyData ) + *this = clone(); +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData) + : Mat(3 / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt) +{ + CV_Assert(3 % DataType<_Tp>::channels == 0); + if( copyData ) + *this = clone(); +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const MatCommaInitializer_<_Tp>& commaInitializer) + : Mat(commaInitializer) +{} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const std::vector<_Tp>& vec, bool copyData) + : Mat(vec, copyData) +{} + +template<typename _Tp> inline +Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat& m) +{ + if( DataType<_Tp>::type == m.type() ) + { + Mat::operator = (m); + return *this; + } + if( DataType<_Tp>::depth == m.depth() ) + { + return (*this = m.reshape(DataType<_Tp>::channels, m.dims, 0)); + } + CV_DbgAssert(DataType<_Tp>::channels == m.channels()); + m.convertTo(*this, type()); + return *this; +} + +template<typename _Tp> inline +Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat_& m) +{ + Mat::operator=(m); + return *this; +} + +template<typename _Tp> inline +Mat_<_Tp>& Mat_<_Tp>::operator = (const _Tp& s) +{ + typedef typename DataType<_Tp>::vec_type VT; + Mat::operator=(Scalar((const VT&)s)); + return *this; +} + +template<typename _Tp> inline +void Mat_<_Tp>::create(int _rows, int _cols) +{ + Mat::create(_rows, _cols, DataType<_Tp>::type); +} + +template<typename _Tp> inline +void Mat_<_Tp>::create(Size _sz) +{ + Mat::create(_sz, DataType<_Tp>::type); +} + +template<typename _Tp> inline +void Mat_<_Tp>::create(int _dims, const int* _sz) +{ + Mat::create(_dims, _sz, DataType<_Tp>::type); +} + +template<typename _Tp> inline +Mat_<_Tp> Mat_<_Tp>::cross(const Mat_& m) const +{ + return Mat_<_Tp>(Mat::cross(m)); +} + +template<typename _Tp> template<typename T2> inline +Mat_<_Tp>::operator Mat_<T2>() const +{ + return Mat_<T2>(*this); +} + +template<typename _Tp> inline +Mat_<_Tp> Mat_<_Tp>::row(int y) const +{ + return Mat_(*this, Range(y, y+1), Range::all()); +} + +template<typename _Tp> inline +Mat_<_Tp> Mat_<_Tp>::col(int x) const +{ + return Mat_(*this, Range::all(), Range(x, x+1)); +} + +template<typename _Tp> inline +Mat_<_Tp> Mat_<_Tp>::diag(int d) const +{ + return Mat_(Mat::diag(d)); +} + +template<typename _Tp> inline +Mat_<_Tp> Mat_<_Tp>::clone() const +{ + return Mat_(Mat::clone()); +} + +template<typename _Tp> inline +size_t Mat_<_Tp>::elemSize() const +{ + CV_DbgAssert( Mat::elemSize() == sizeof(_Tp) ); + return sizeof(_Tp); +} + +template<typename _Tp> inline +size_t Mat_<_Tp>::elemSize1() const +{ + CV_DbgAssert( Mat::elemSize1() == sizeof(_Tp) / DataType<_Tp>::channels ); + return sizeof(_Tp) / DataType<_Tp>::channels; +} + +template<typename _Tp> inline +int Mat_<_Tp>::type() const +{ + CV_DbgAssert( Mat::type() == DataType<_Tp>::type ); + return DataType<_Tp>::type; +} + +template<typename _Tp> inline +int Mat_<_Tp>::depth() const +{ + CV_DbgAssert( Mat::depth() == DataType<_Tp>::depth ); + return DataType<_Tp>::depth; +} + +template<typename _Tp> inline +int Mat_<_Tp>::channels() const +{ + CV_DbgAssert( Mat::channels() == DataType<_Tp>::channels ); + return DataType<_Tp>::channels; +} + +template<typename _Tp> inline +size_t Mat_<_Tp>::stepT(int i) const +{ + return step.p[i] / elemSize(); +} + +template<typename _Tp> inline +size_t Mat_<_Tp>::step1(int i) const +{ + return step.p[i] / elemSize1(); +} + +template<typename _Tp> inline +Mat_<_Tp>& Mat_<_Tp>::adjustROI( int dtop, int dbottom, int dleft, int dright ) +{ + return (Mat_<_Tp>&)(Mat::adjustROI(dtop, dbottom, dleft, dright)); +} + +template<typename _Tp> inline +Mat_<_Tp> Mat_<_Tp>::operator()( const Range& _rowRange, const Range& _colRange ) const +{ + return Mat_<_Tp>(*this, _rowRange, _colRange); +} + +template<typename _Tp> inline +Mat_<_Tp> Mat_<_Tp>::operator()( const Rect& roi ) const +{ + return Mat_<_Tp>(*this, roi); +} + +template<typename _Tp> inline +Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const +{ + return Mat_<_Tp>(*this, ranges); +} + +template<typename _Tp> inline +Mat_<_Tp> Mat_<_Tp>::operator()(const std::vector<Range>& ranges) const +{ + return Mat_<_Tp>(*this, ranges); +} + +template<typename _Tp> inline +_Tp* Mat_<_Tp>::operator [](int y) +{ + CV_DbgAssert( 0 <= y && y < rows ); + return (_Tp*)(data + y*step.p[0]); +} + +template<typename _Tp> inline +const _Tp* Mat_<_Tp>::operator [](int y) const +{ + CV_DbgAssert( 0 <= y && y < rows ); + return (const _Tp*)(data + y*step.p[0]); +} + +template<typename _Tp> inline +_Tp& Mat_<_Tp>::operator ()(int i0, int i1) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert(type() == DataType<_Tp>::type); + return ((_Tp*)(data + step.p[0] * i0))[i1]; +} + +template<typename _Tp> inline +const _Tp& Mat_<_Tp>::operator ()(int i0, int i1) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert(type() == DataType<_Tp>::type); + return ((const _Tp*)(data + step.p[0] * i0))[i1]; +} + +template<typename _Tp> inline +_Tp& Mat_<_Tp>::operator ()(Point pt) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)pt.x < (unsigned)size.p[1]); + CV_DbgAssert(type() == DataType<_Tp>::type); + return ((_Tp*)(data + step.p[0] * pt.y))[pt.x]; +} + +template<typename _Tp> inline +const _Tp& Mat_<_Tp>::operator ()(Point pt) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)pt.x < (unsigned)size.p[1]); + CV_DbgAssert(type() == DataType<_Tp>::type); + return ((const _Tp*)(data + step.p[0] * pt.y))[pt.x]; +} + +template<typename _Tp> inline +_Tp& Mat_<_Tp>::operator ()(const int* idx) +{ + return Mat::at<_Tp>(idx); +} + +template<typename _Tp> inline +const _Tp& Mat_<_Tp>::operator ()(const int* idx) const +{ + return Mat::at<_Tp>(idx); +} + +template<typename _Tp> template<int n> inline +_Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx) +{ + return Mat::at<_Tp>(idx); +} + +template<typename _Tp> template<int n> inline +const _Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx) const +{ + return Mat::at<_Tp>(idx); +} + +template<typename _Tp> inline +_Tp& Mat_<_Tp>::operator ()(int i0) +{ + return this->at<_Tp>(i0); +} + +template<typename _Tp> inline +const _Tp& Mat_<_Tp>::operator ()(int i0) const +{ + return this->at<_Tp>(i0); +} + +template<typename _Tp> inline +_Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) +{ + return this->at<_Tp>(i0, i1, i2); +} + +template<typename _Tp> inline +const _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) const +{ + return this->at<_Tp>(i0, i1, i2); +} + +template<typename _Tp> inline +Mat_<_Tp>::operator std::vector<_Tp>() const +{ + std::vector<_Tp> v; + copyTo(v); + return v; +} + +template<typename _Tp> template<int n> inline +Mat_<_Tp>::operator Vec<typename DataType<_Tp>::channel_type, n>() const +{ + CV_Assert(n % DataType<_Tp>::channels == 0); + +#if defined _MSC_VER + const Mat* pMat = (const Mat*)this; // workaround for MSVS <= 2012 compiler bugs (but GCC 4.6 dislikes this workaround) + return pMat->operator Vec<typename DataType<_Tp>::channel_type, n>(); +#else + return this->Mat::operator Vec<typename DataType<_Tp>::channel_type, n>(); +#endif +} + +template<typename _Tp> template<int m, int n> inline +Mat_<_Tp>::operator Matx<typename DataType<_Tp>::channel_type, m, n>() const +{ + CV_Assert(n % DataType<_Tp>::channels == 0); + +#if defined _MSC_VER + const Mat* pMat = (const Mat*)this; // workaround for MSVS <= 2012 compiler bugs (but GCC 4.6 dislikes this workaround) + Matx<typename DataType<_Tp>::channel_type, m, n> res = pMat->operator Matx<typename DataType<_Tp>::channel_type, m, n>(); + return res; +#else + Matx<typename DataType<_Tp>::channel_type, m, n> res = this->Mat::operator Matx<typename DataType<_Tp>::channel_type, m, n>(); + return res; +#endif +} + +template<typename _Tp> inline +MatConstIterator_<_Tp> Mat_<_Tp>::begin() const +{ + return Mat::begin<_Tp>(); +} + +template<typename _Tp> inline +MatConstIterator_<_Tp> Mat_<_Tp>::end() const +{ + return Mat::end<_Tp>(); +} + +template<typename _Tp> inline +MatIterator_<_Tp> Mat_<_Tp>::begin() +{ + return Mat::begin<_Tp>(); +} + +template<typename _Tp> inline +MatIterator_<_Tp> Mat_<_Tp>::end() +{ + return Mat::end<_Tp>(); +} + +template<typename _Tp> template<typename Functor> inline +void Mat_<_Tp>::forEach(const Functor& operation) { + Mat::forEach<_Tp, Functor>(operation); +} + +template<typename _Tp> template<typename Functor> inline +void Mat_<_Tp>::forEach(const Functor& operation) const { + Mat::forEach<_Tp, Functor>(operation); +} + +#ifdef CV_CXX_MOVE_SEMANTICS + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(Mat_&& m) + : Mat(m) +{ +} + +template<typename _Tp> inline +Mat_<_Tp>& Mat_<_Tp>::operator = (Mat_&& m) +{ + Mat::operator = (m); + return *this; +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(Mat&& m) + : Mat() +{ + flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; + *this = m; +} + +template<typename _Tp> inline +Mat_<_Tp>& Mat_<_Tp>::operator = (Mat&& m) +{ + if( DataType<_Tp>::type == m.type() ) + { + Mat::operator = ((Mat&&)m); + return *this; + } + if( DataType<_Tp>::depth == m.depth() ) + { + Mat::operator = ((Mat&&)m.reshape(DataType<_Tp>::channels, m.dims, 0)); + return *this; + } + CV_DbgAssert(DataType<_Tp>::channels == m.channels()); + m.convertTo(*this, type()); + return *this; +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(MatExpr&& e) + : Mat() +{ + flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; + *this = Mat(e); +} + +#endif + +///////////////////////////// SparseMat ///////////////////////////// + +inline +SparseMat::SparseMat() + : flags(MAGIC_VAL), hdr(0) +{} + +inline +SparseMat::SparseMat(int _dims, const int* _sizes, int _type) + : flags(MAGIC_VAL), hdr(0) +{ + create(_dims, _sizes, _type); +} + +inline +SparseMat::SparseMat(const SparseMat& m) + : flags(m.flags), hdr(m.hdr) +{ + addref(); +} + +inline +SparseMat::~SparseMat() +{ + release(); +} + +inline +SparseMat& SparseMat::operator = (const SparseMat& m) +{ + if( this != &m ) + { + if( m.hdr ) + CV_XADD(&m.hdr->refcount, 1); + release(); + flags = m.flags; + hdr = m.hdr; + } + return *this; +} + +inline +SparseMat& SparseMat::operator = (const Mat& m) +{ + return (*this = SparseMat(m)); +} + +inline +SparseMat SparseMat::clone() const +{ + SparseMat temp; + this->copyTo(temp); + return temp; +} + +inline +void SparseMat::assignTo( SparseMat& m, int _type ) const +{ + if( _type < 0 ) + m = *this; + else + convertTo(m, _type); +} + +inline +void SparseMat::addref() +{ + if( hdr ) + CV_XADD(&hdr->refcount, 1); +} + +inline +void SparseMat::release() +{ + if( hdr && CV_XADD(&hdr->refcount, -1) == 1 ) + delete hdr; + hdr = 0; +} + +inline +size_t SparseMat::elemSize() const +{ + return CV_ELEM_SIZE(flags); +} + +inline +size_t SparseMat::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int SparseMat::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int SparseMat::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int SparseMat::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +const int* SparseMat::size() const +{ + return hdr ? hdr->size : 0; +} + +inline +int SparseMat::size(int i) const +{ + if( hdr ) + { + CV_DbgAssert((unsigned)i < (unsigned)hdr->dims); + return hdr->size[i]; + } + return 0; +} + +inline +int SparseMat::dims() const +{ + return hdr ? hdr->dims : 0; +} + +inline +size_t SparseMat::nzcount() const +{ + return hdr ? hdr->nodeCount : 0; +} + +inline +size_t SparseMat::hash(int i0) const +{ + return (size_t)i0; +} + +inline +size_t SparseMat::hash(int i0, int i1) const +{ + return (size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1; +} + +inline +size_t SparseMat::hash(int i0, int i1, int i2) const +{ + return ((size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1) * HASH_SCALE + (unsigned)i2; +} + +inline +size_t SparseMat::hash(const int* idx) const +{ + size_t h = (unsigned)idx[0]; + if( !hdr ) + return 0; + int d = hdr->dims; + for(int i = 1; i < d; i++ ) + h = h * HASH_SCALE + (unsigned)idx[i]; + return h; +} + +template<typename _Tp> inline +_Tp& SparseMat::ref(int i0, size_t* hashval) +{ + return *(_Tp*)((SparseMat*)this)->ptr(i0, true, hashval); +} + +template<typename _Tp> inline +_Tp& SparseMat::ref(int i0, int i1, size_t* hashval) +{ + return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, true, hashval); +} + +template<typename _Tp> inline +_Tp& SparseMat::ref(int i0, int i1, int i2, size_t* hashval) +{ + return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, i2, true, hashval); +} + +template<typename _Tp> inline +_Tp& SparseMat::ref(const int* idx, size_t* hashval) +{ + return *(_Tp*)((SparseMat*)this)->ptr(idx, true, hashval); +} + +template<typename _Tp> inline +_Tp SparseMat::value(int i0, size_t* hashval) const +{ + const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); + return p ? *p : _Tp(); +} + +template<typename _Tp> inline +_Tp SparseMat::value(int i0, int i1, size_t* hashval) const +{ + const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); + return p ? *p : _Tp(); +} + +template<typename _Tp> inline +_Tp SparseMat::value(int i0, int i1, int i2, size_t* hashval) const +{ + const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); + return p ? *p : _Tp(); +} + +template<typename _Tp> inline +_Tp SparseMat::value(const int* idx, size_t* hashval) const +{ + const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); + return p ? *p : _Tp(); +} + +template<typename _Tp> inline +const _Tp* SparseMat::find(int i0, size_t* hashval) const +{ + return (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); +} + +template<typename _Tp> inline +const _Tp* SparseMat::find(int i0, int i1, size_t* hashval) const +{ + return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); +} + +template<typename _Tp> inline +const _Tp* SparseMat::find(int i0, int i1, int i2, size_t* hashval) const +{ + return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); +} + +template<typename _Tp> inline +const _Tp* SparseMat::find(const int* idx, size_t* hashval) const +{ + return (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); +} + +template<typename _Tp> inline +_Tp& SparseMat::value(Node* n) +{ + return *(_Tp*)((uchar*)n + hdr->valueOffset); +} + +template<typename _Tp> inline +const _Tp& SparseMat::value(const Node* n) const +{ + return *(const _Tp*)((const uchar*)n + hdr->valueOffset); +} + +inline +SparseMat::Node* SparseMat::node(size_t nidx) +{ + return (Node*)(void*)&hdr->pool[nidx]; +} + +inline +const SparseMat::Node* SparseMat::node(size_t nidx) const +{ + return (const Node*)(const void*)&hdr->pool[nidx]; +} + +inline +SparseMatIterator SparseMat::begin() +{ + return SparseMatIterator(this); +} + +inline +SparseMatConstIterator SparseMat::begin() const +{ + return SparseMatConstIterator(this); +} + +inline +SparseMatIterator SparseMat::end() +{ + SparseMatIterator it(this); + it.seekEnd(); + return it; +} + +inline +SparseMatConstIterator SparseMat::end() const +{ + SparseMatConstIterator it(this); + it.seekEnd(); + return it; +} + +template<typename _Tp> inline +SparseMatIterator_<_Tp> SparseMat::begin() +{ + return SparseMatIterator_<_Tp>(this); +} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp> SparseMat::begin() const +{ + return SparseMatConstIterator_<_Tp>(this); +} + +template<typename _Tp> inline +SparseMatIterator_<_Tp> SparseMat::end() +{ + SparseMatIterator_<_Tp> it(this); + it.seekEnd(); + return it; +} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp> SparseMat::end() const +{ + SparseMatConstIterator_<_Tp> it(this); + it.seekEnd(); + return it; +} + + + +///////////////////////////// SparseMat_ //////////////////////////// + +template<typename _Tp> inline +SparseMat_<_Tp>::SparseMat_() +{ + flags = MAGIC_VAL | DataType<_Tp>::type; +} + +template<typename _Tp> inline +SparseMat_<_Tp>::SparseMat_(int _dims, const int* _sizes) + : SparseMat(_dims, _sizes, DataType<_Tp>::type) +{} + +template<typename _Tp> inline +SparseMat_<_Tp>::SparseMat_(const SparseMat& m) +{ + if( m.type() == DataType<_Tp>::type ) + *this = (const SparseMat_<_Tp>&)m; + else + m.convertTo(*this, DataType<_Tp>::type); +} + +template<typename _Tp> inline +SparseMat_<_Tp>::SparseMat_(const SparseMat_<_Tp>& m) +{ + this->flags = m.flags; + this->hdr = m.hdr; + if( this->hdr ) + CV_XADD(&this->hdr->refcount, 1); +} + +template<typename _Tp> inline +SparseMat_<_Tp>::SparseMat_(const Mat& m) +{ + SparseMat sm(m); + *this = sm; +} + +template<typename _Tp> inline +SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const SparseMat_<_Tp>& m) +{ + if( this != &m ) + { + if( m.hdr ) CV_XADD(&m.hdr->refcount, 1); + release(); + flags = m.flags; + hdr = m.hdr; + } + return *this; +} + +template<typename _Tp> inline +SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const SparseMat& m) +{ + if( m.type() == DataType<_Tp>::type ) + return (*this = (const SparseMat_<_Tp>&)m); + m.convertTo(*this, DataType<_Tp>::type); + return *this; +} + +template<typename _Tp> inline +SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const Mat& m) +{ + return (*this = SparseMat(m)); +} + +template<typename _Tp> inline +SparseMat_<_Tp> SparseMat_<_Tp>::clone() const +{ + SparseMat_<_Tp> m; + this->copyTo(m); + return m; +} + +template<typename _Tp> inline +void SparseMat_<_Tp>::create(int _dims, const int* _sizes) +{ + SparseMat::create(_dims, _sizes, DataType<_Tp>::type); +} + +template<typename _Tp> inline +int SparseMat_<_Tp>::type() const +{ + return DataType<_Tp>::type; +} + +template<typename _Tp> inline +int SparseMat_<_Tp>::depth() const +{ + return DataType<_Tp>::depth; +} + +template<typename _Tp> inline +int SparseMat_<_Tp>::channels() const +{ + return DataType<_Tp>::channels; +} + +template<typename _Tp> inline +_Tp& SparseMat_<_Tp>::ref(int i0, size_t* hashval) +{ + return SparseMat::ref<_Tp>(i0, hashval); +} + +template<typename _Tp> inline +_Tp SparseMat_<_Tp>::operator()(int i0, size_t* hashval) const +{ + return SparseMat::value<_Tp>(i0, hashval); +} + +template<typename _Tp> inline +_Tp& SparseMat_<_Tp>::ref(int i0, int i1, size_t* hashval) +{ + return SparseMat::ref<_Tp>(i0, i1, hashval); +} + +template<typename _Tp> inline +_Tp SparseMat_<_Tp>::operator()(int i0, int i1, size_t* hashval) const +{ + return SparseMat::value<_Tp>(i0, i1, hashval); +} + +template<typename _Tp> inline +_Tp& SparseMat_<_Tp>::ref(int i0, int i1, int i2, size_t* hashval) +{ + return SparseMat::ref<_Tp>(i0, i1, i2, hashval); +} + +template<typename _Tp> inline +_Tp SparseMat_<_Tp>::operator()(int i0, int i1, int i2, size_t* hashval) const +{ + return SparseMat::value<_Tp>(i0, i1, i2, hashval); +} + +template<typename _Tp> inline +_Tp& SparseMat_<_Tp>::ref(const int* idx, size_t* hashval) +{ + return SparseMat::ref<_Tp>(idx, hashval); +} + +template<typename _Tp> inline +_Tp SparseMat_<_Tp>::operator()(const int* idx, size_t* hashval) const +{ + return SparseMat::value<_Tp>(idx, hashval); +} + +template<typename _Tp> inline +SparseMatIterator_<_Tp> SparseMat_<_Tp>::begin() +{ + return SparseMatIterator_<_Tp>(this); +} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::begin() const +{ + return SparseMatConstIterator_<_Tp>(this); +} + +template<typename _Tp> inline +SparseMatIterator_<_Tp> SparseMat_<_Tp>::end() +{ + SparseMatIterator_<_Tp> it(this); + it.seekEnd(); + return it; +} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::end() const +{ + SparseMatConstIterator_<_Tp> it(this); + it.seekEnd(); + return it; +} + + + +////////////////////////// MatConstIterator ///////////////////////// + +inline +MatConstIterator::MatConstIterator() + : m(0), elemSize(0), ptr(0), sliceStart(0), sliceEnd(0) +{} + +inline +MatConstIterator::MatConstIterator(const Mat* _m) + : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) +{ + if( m && m->isContinuous() ) + { + sliceStart = m->ptr(); + sliceEnd = sliceStart + m->total()*elemSize; + } + seek((const int*)0); +} + +inline +MatConstIterator::MatConstIterator(const Mat* _m, int _row, int _col) + : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) +{ + CV_Assert(m && m->dims <= 2); + if( m->isContinuous() ) + { + sliceStart = m->ptr(); + sliceEnd = sliceStart + m->total()*elemSize; + } + int idx[] = {_row, _col}; + seek(idx); +} + +inline +MatConstIterator::MatConstIterator(const Mat* _m, Point _pt) + : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) +{ + CV_Assert(m && m->dims <= 2); + if( m->isContinuous() ) + { + sliceStart = m->ptr(); + sliceEnd = sliceStart + m->total()*elemSize; + } + int idx[] = {_pt.y, _pt.x}; + seek(idx); +} + +inline +MatConstIterator::MatConstIterator(const MatConstIterator& it) + : m(it.m), elemSize(it.elemSize), ptr(it.ptr), sliceStart(it.sliceStart), sliceEnd(it.sliceEnd) +{} + +inline +MatConstIterator& MatConstIterator::operator = (const MatConstIterator& it ) +{ + m = it.m; elemSize = it.elemSize; ptr = it.ptr; + sliceStart = it.sliceStart; sliceEnd = it.sliceEnd; + return *this; +} + +inline +const uchar* MatConstIterator::operator *() const +{ + return ptr; +} + +inline MatConstIterator& MatConstIterator::operator += (ptrdiff_t ofs) +{ + if( !m || ofs == 0 ) + return *this; + ptrdiff_t ofsb = ofs*elemSize; + ptr += ofsb; + if( ptr < sliceStart || sliceEnd <= ptr ) + { + ptr -= ofsb; + seek(ofs, true); + } + return *this; +} + +inline +MatConstIterator& MatConstIterator::operator -= (ptrdiff_t ofs) +{ + return (*this += -ofs); +} + +inline +MatConstIterator& MatConstIterator::operator --() +{ + if( m && (ptr -= elemSize) < sliceStart ) + { + ptr += elemSize; + seek(-1, true); + } + return *this; +} + +inline +MatConstIterator MatConstIterator::operator --(int) +{ + MatConstIterator b = *this; + *this += -1; + return b; +} + +inline +MatConstIterator& MatConstIterator::operator ++() +{ + if( m && (ptr += elemSize) >= sliceEnd ) + { + ptr -= elemSize; + seek(1, true); + } + return *this; +} + +inline MatConstIterator MatConstIterator::operator ++(int) +{ + MatConstIterator b = *this; + *this += 1; + return b; +} + + +static inline +bool operator == (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.m == b.m && a.ptr == b.ptr; +} + +static inline +bool operator != (const MatConstIterator& a, const MatConstIterator& b) +{ + return !(a == b); +} + +static inline +bool operator < (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.ptr < b.ptr; +} + +static inline +bool operator > (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.ptr > b.ptr; +} + +static inline +bool operator <= (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.ptr <= b.ptr; +} + +static inline +bool operator >= (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.ptr >= b.ptr; +} + +static inline +ptrdiff_t operator - (const MatConstIterator& b, const MatConstIterator& a) +{ + if( a.m != b.m ) + return ((size_t)(-1) >> 1); + if( a.sliceEnd == b.sliceEnd ) + return (b.ptr - a.ptr)/static_cast<ptrdiff_t>(b.elemSize); + + return b.lpos() - a.lpos(); +} + +static inline +MatConstIterator operator + (const MatConstIterator& a, ptrdiff_t ofs) +{ + MatConstIterator b = a; + return b += ofs; +} + +static inline +MatConstIterator operator + (ptrdiff_t ofs, const MatConstIterator& a) +{ + MatConstIterator b = a; + return b += ofs; +} + +static inline +MatConstIterator operator - (const MatConstIterator& a, ptrdiff_t ofs) +{ + MatConstIterator b = a; + return b += -ofs; +} + + +inline +const uchar* MatConstIterator::operator [](ptrdiff_t i) const +{ + return *(*this + i); +} + + + +///////////////////////// MatConstIterator_ ///////////////////////// + +template<typename _Tp> inline +MatConstIterator_<_Tp>::MatConstIterator_() +{} + +template<typename _Tp> inline +MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m) + : MatConstIterator(_m) +{} + +template<typename _Tp> inline +MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col) + : MatConstIterator(_m, _row, _col) +{} + +template<typename _Tp> inline +MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m, Point _pt) + : MatConstIterator(_m, _pt) +{} + +template<typename _Tp> inline +MatConstIterator_<_Tp>::MatConstIterator_(const MatConstIterator_& it) + : MatConstIterator(it) +{} + +template<typename _Tp> inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator = (const MatConstIterator_& it ) +{ + MatConstIterator::operator = (it); + return *this; +} + +template<typename _Tp> inline +const _Tp& MatConstIterator_<_Tp>::operator *() const +{ + return *(_Tp*)(this->ptr); +} + +template<typename _Tp> inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator += (ptrdiff_t ofs) +{ + MatConstIterator::operator += (ofs); + return *this; +} + +template<typename _Tp> inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator -= (ptrdiff_t ofs) +{ + return (*this += -ofs); +} + +template<typename _Tp> inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator --() +{ + MatConstIterator::operator --(); + return *this; +} + +template<typename _Tp> inline +MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator --(int) +{ + MatConstIterator_ b = *this; + MatConstIterator::operator --(); + return b; +} + +template<typename _Tp> inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator ++() +{ + MatConstIterator::operator ++(); + return *this; +} + +template<typename _Tp> inline +MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator ++(int) +{ + MatConstIterator_ b = *this; + MatConstIterator::operator ++(); + return b; +} + + +template<typename _Tp> inline +Point MatConstIterator_<_Tp>::pos() const +{ + if( !m ) + return Point(); + CV_DbgAssert( m->dims <= 2 ); + if( m->isContinuous() ) + { + ptrdiff_t ofs = (const _Tp*)ptr - (const _Tp*)m->data; + int y = (int)(ofs / m->cols); + int x = (int)(ofs - (ptrdiff_t)y * m->cols); + return Point(x, y); + } + else + { + ptrdiff_t ofs = (uchar*)ptr - m->data; + int y = (int)(ofs / m->step); + int x = (int)((ofs - y * m->step)/sizeof(_Tp)); + return Point(x, y); + } +} + + +template<typename _Tp> static inline +bool operator == (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b) +{ + return a.m == b.m && a.ptr == b.ptr; +} + +template<typename _Tp> static inline +bool operator != (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b) +{ + return a.m != b.m || a.ptr != b.ptr; +} + +template<typename _Tp> static inline +MatConstIterator_<_Tp> operator + (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs) +{ + MatConstIterator t = (const MatConstIterator&)a + ofs; + return (MatConstIterator_<_Tp>&)t; +} + +template<typename _Tp> static inline +MatConstIterator_<_Tp> operator + (ptrdiff_t ofs, const MatConstIterator_<_Tp>& a) +{ + MatConstIterator t = (const MatConstIterator&)a + ofs; + return (MatConstIterator_<_Tp>&)t; +} + +template<typename _Tp> static inline +MatConstIterator_<_Tp> operator - (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs) +{ + MatConstIterator t = (const MatConstIterator&)a - ofs; + return (MatConstIterator_<_Tp>&)t; +} + +template<typename _Tp> inline +const _Tp& MatConstIterator_<_Tp>::operator [](ptrdiff_t i) const +{ + return *(_Tp*)MatConstIterator::operator [](i); +} + + + +//////////////////////////// MatIterator_ /////////////////////////// + +template<typename _Tp> inline +MatIterator_<_Tp>::MatIterator_() + : MatConstIterator_<_Tp>() +{} + +template<typename _Tp> inline +MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m) + : MatConstIterator_<_Tp>(_m) +{} + +template<typename _Tp> inline +MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, int _row, int _col) + : MatConstIterator_<_Tp>(_m, _row, _col) +{} + +template<typename _Tp> inline +MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, Point _pt) + : MatConstIterator_<_Tp>(_m, _pt) +{} + +template<typename _Tp> inline +MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, const int* _idx) + : MatConstIterator_<_Tp>(_m, _idx) +{} + +template<typename _Tp> inline +MatIterator_<_Tp>::MatIterator_(const MatIterator_& it) + : MatConstIterator_<_Tp>(it) +{} + +template<typename _Tp> inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator = (const MatIterator_<_Tp>& it ) +{ + MatConstIterator::operator = (it); + return *this; +} + +template<typename _Tp> inline +_Tp& MatIterator_<_Tp>::operator *() const +{ + return *(_Tp*)(this->ptr); +} + +template<typename _Tp> inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator += (ptrdiff_t ofs) +{ + MatConstIterator::operator += (ofs); + return *this; +} + +template<typename _Tp> inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator -= (ptrdiff_t ofs) +{ + MatConstIterator::operator += (-ofs); + return *this; +} + +template<typename _Tp> inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator --() +{ + MatConstIterator::operator --(); + return *this; +} + +template<typename _Tp> inline +MatIterator_<_Tp> MatIterator_<_Tp>::operator --(int) +{ + MatIterator_ b = *this; + MatConstIterator::operator --(); + return b; +} + +template<typename _Tp> inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator ++() +{ + MatConstIterator::operator ++(); + return *this; +} + +template<typename _Tp> inline +MatIterator_<_Tp> MatIterator_<_Tp>::operator ++(int) +{ + MatIterator_ b = *this; + MatConstIterator::operator ++(); + return b; +} + +template<typename _Tp> inline +_Tp& MatIterator_<_Tp>::operator [](ptrdiff_t i) const +{ + return *(*this + i); +} + + +template<typename _Tp> static inline +bool operator == (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b) +{ + return a.m == b.m && a.ptr == b.ptr; +} + +template<typename _Tp> static inline +bool operator != (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b) +{ + return a.m != b.m || a.ptr != b.ptr; +} + +template<typename _Tp> static inline +MatIterator_<_Tp> operator + (const MatIterator_<_Tp>& a, ptrdiff_t ofs) +{ + MatConstIterator t = (const MatConstIterator&)a + ofs; + return (MatIterator_<_Tp>&)t; +} + +template<typename _Tp> static inline +MatIterator_<_Tp> operator + (ptrdiff_t ofs, const MatIterator_<_Tp>& a) +{ + MatConstIterator t = (const MatConstIterator&)a + ofs; + return (MatIterator_<_Tp>&)t; +} + +template<typename _Tp> static inline +MatIterator_<_Tp> operator - (const MatIterator_<_Tp>& a, ptrdiff_t ofs) +{ + MatConstIterator t = (const MatConstIterator&)a - ofs; + return (MatIterator_<_Tp>&)t; +} + + + +/////////////////////// SparseMatConstIterator ////////////////////// + +inline +SparseMatConstIterator::SparseMatConstIterator() + : m(0), hashidx(0), ptr(0) +{} + +inline +SparseMatConstIterator::SparseMatConstIterator(const SparseMatConstIterator& it) + : m(it.m), hashidx(it.hashidx), ptr(it.ptr) +{} + +inline SparseMatConstIterator& SparseMatConstIterator::operator = (const SparseMatConstIterator& it) +{ + if( this != &it ) + { + m = it.m; + hashidx = it.hashidx; + ptr = it.ptr; + } + return *this; +} + +template<typename _Tp> inline +const _Tp& SparseMatConstIterator::value() const +{ + return *(const _Tp*)ptr; +} + +inline +const SparseMat::Node* SparseMatConstIterator::node() const +{ + return (ptr && m && m->hdr) ? (const SparseMat::Node*)(const void*)(ptr - m->hdr->valueOffset) : 0; +} + +inline +SparseMatConstIterator SparseMatConstIterator::operator ++(int) +{ + SparseMatConstIterator it = *this; + ++*this; + return it; +} + +inline +void SparseMatConstIterator::seekEnd() +{ + if( m && m->hdr ) + { + hashidx = m->hdr->hashtab.size(); + ptr = 0; + } +} + + +static inline +bool operator == (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2) +{ + return it1.m == it2.m && it1.ptr == it2.ptr; +} + +static inline +bool operator != (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2) +{ + return !(it1 == it2); +} + + + +///////////////////////// SparseMatIterator ///////////////////////// + +inline +SparseMatIterator::SparseMatIterator() +{} + +inline +SparseMatIterator::SparseMatIterator(SparseMat* _m) + : SparseMatConstIterator(_m) +{} + +inline +SparseMatIterator::SparseMatIterator(const SparseMatIterator& it) + : SparseMatConstIterator(it) +{} + +inline +SparseMatIterator& SparseMatIterator::operator = (const SparseMatIterator& it) +{ + (SparseMatConstIterator&)*this = it; + return *this; +} + +template<typename _Tp> inline +_Tp& SparseMatIterator::value() const +{ + return *(_Tp*)ptr; +} + +inline +SparseMat::Node* SparseMatIterator::node() const +{ + return (SparseMat::Node*)SparseMatConstIterator::node(); +} + +inline +SparseMatIterator& SparseMatIterator::operator ++() +{ + SparseMatConstIterator::operator ++(); + return *this; +} + +inline +SparseMatIterator SparseMatIterator::operator ++(int) +{ + SparseMatIterator it = *this; + ++*this; + return it; +} + + + +////////////////////// SparseMatConstIterator_ ////////////////////// + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp>::SparseMatConstIterator_() +{} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat_<_Tp>* _m) + : SparseMatConstIterator(_m) +{} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat* _m) + : SparseMatConstIterator(_m) +{ + CV_Assert( _m->type() == DataType<_Tp>::type ); +} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMatConstIterator_<_Tp>& it) + : SparseMatConstIterator(it) +{} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp>& SparseMatConstIterator_<_Tp>::operator = (const SparseMatConstIterator_<_Tp>& it) +{ + return reinterpret_cast<SparseMatConstIterator_<_Tp>&> + (*reinterpret_cast<SparseMatConstIterator*>(this) = + reinterpret_cast<const SparseMatConstIterator&>(it)); +} + +template<typename _Tp> inline +const _Tp& SparseMatConstIterator_<_Tp>::operator *() const +{ + return *(const _Tp*)this->ptr; +} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp>& SparseMatConstIterator_<_Tp>::operator ++() +{ + SparseMatConstIterator::operator ++(); + return *this; +} + +template<typename _Tp> inline +SparseMatConstIterator_<_Tp> SparseMatConstIterator_<_Tp>::operator ++(int) +{ + SparseMatConstIterator_<_Tp> it = *this; + SparseMatConstIterator::operator ++(); + return it; +} + + + +///////////////////////// SparseMatIterator_ //////////////////////// + +template<typename _Tp> inline +SparseMatIterator_<_Tp>::SparseMatIterator_() +{} + +template<typename _Tp> inline +SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat_<_Tp>* _m) + : SparseMatConstIterator_<_Tp>(_m) +{} + +template<typename _Tp> inline +SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat* _m) + : SparseMatConstIterator_<_Tp>(_m) +{} + +template<typename _Tp> inline +SparseMatIterator_<_Tp>::SparseMatIterator_(const SparseMatIterator_<_Tp>& it) + : SparseMatConstIterator_<_Tp>(it) +{} + +template<typename _Tp> inline +SparseMatIterator_<_Tp>& SparseMatIterator_<_Tp>::operator = (const SparseMatIterator_<_Tp>& it) +{ + return reinterpret_cast<SparseMatIterator_<_Tp>&> + (*reinterpret_cast<SparseMatConstIterator*>(this) = + reinterpret_cast<const SparseMatConstIterator&>(it)); +} + +template<typename _Tp> inline +_Tp& SparseMatIterator_<_Tp>::operator *() const +{ + return *(_Tp*)this->ptr; +} + +template<typename _Tp> inline +SparseMatIterator_<_Tp>& SparseMatIterator_<_Tp>::operator ++() +{ + SparseMatConstIterator::operator ++(); + return *this; +} + +template<typename _Tp> inline +SparseMatIterator_<_Tp> SparseMatIterator_<_Tp>::operator ++(int) +{ + SparseMatIterator_<_Tp> it = *this; + SparseMatConstIterator::operator ++(); + return it; +} + + + +//////////////////////// MatCommaInitializer_ /////////////////////// + +template<typename _Tp> inline +MatCommaInitializer_<_Tp>::MatCommaInitializer_(Mat_<_Tp>* _m) + : it(_m) +{} + +template<typename _Tp> template<typename T2> inline +MatCommaInitializer_<_Tp>& MatCommaInitializer_<_Tp>::operator , (T2 v) +{ + CV_DbgAssert( this->it < ((const Mat_<_Tp>*)this->it.m)->end() ); + *this->it = _Tp(v); + ++this->it; + return *this; +} + +template<typename _Tp> inline +MatCommaInitializer_<_Tp>::operator Mat_<_Tp>() const +{ + CV_DbgAssert( this->it == ((const Mat_<_Tp>*)this->it.m)->end() ); + return Mat_<_Tp>(*this->it.m); +} + + +template<typename _Tp, typename T2> static inline +MatCommaInitializer_<_Tp> operator << (const Mat_<_Tp>& m, T2 val) +{ + MatCommaInitializer_<_Tp> commaInitializer((Mat_<_Tp>*)&m); + return (commaInitializer, val); +} + + + +///////////////////////// Matrix Expressions //////////////////////// + +inline +Mat& Mat::operator = (const MatExpr& e) +{ + e.op->assign(e, *this); + return *this; +} + +template<typename _Tp> inline +Mat_<_Tp>::Mat_(const MatExpr& e) +{ + e.op->assign(e, *this, DataType<_Tp>::type); +} + +template<typename _Tp> inline +Mat_<_Tp>& Mat_<_Tp>::operator = (const MatExpr& e) +{ + e.op->assign(e, *this, DataType<_Tp>::type); + return *this; +} + +template<typename _Tp> inline +MatExpr Mat_<_Tp>::zeros(int rows, int cols) +{ + return Mat::zeros(rows, cols, DataType<_Tp>::type); +} + +template<typename _Tp> inline +MatExpr Mat_<_Tp>::zeros(Size sz) +{ + return Mat::zeros(sz, DataType<_Tp>::type); +} + +template<typename _Tp> inline +MatExpr Mat_<_Tp>::ones(int rows, int cols) +{ + return Mat::ones(rows, cols, DataType<_Tp>::type); +} + +template<typename _Tp> inline +MatExpr Mat_<_Tp>::ones(Size sz) +{ + return Mat::ones(sz, DataType<_Tp>::type); +} + +template<typename _Tp> inline +MatExpr Mat_<_Tp>::eye(int rows, int cols) +{ + return Mat::eye(rows, cols, DataType<_Tp>::type); +} + +template<typename _Tp> inline +MatExpr Mat_<_Tp>::eye(Size sz) +{ + return Mat::eye(sz, DataType<_Tp>::type); +} + +inline +MatExpr::MatExpr() + : op(0), flags(0), a(Mat()), b(Mat()), c(Mat()), alpha(0), beta(0), s() +{} + +inline +MatExpr::MatExpr(const MatOp* _op, int _flags, const Mat& _a, const Mat& _b, + const Mat& _c, double _alpha, double _beta, const Scalar& _s) + : op(_op), flags(_flags), a(_a), b(_b), c(_c), alpha(_alpha), beta(_beta), s(_s) +{} + +inline +MatExpr::operator Mat() const +{ + Mat m; + op->assign(*this, m); + return m; +} + +template<typename _Tp> inline +MatExpr::operator Mat_<_Tp>() const +{ + Mat_<_Tp> m; + op->assign(*this, m, DataType<_Tp>::type); + return m; +} + + +template<typename _Tp> static inline +MatExpr min(const Mat_<_Tp>& a, const Mat_<_Tp>& b) +{ + return cv::min((const Mat&)a, (const Mat&)b); +} + +template<typename _Tp> static inline +MatExpr min(const Mat_<_Tp>& a, double s) +{ + return cv::min((const Mat&)a, s); +} + +template<typename _Tp> static inline +MatExpr min(double s, const Mat_<_Tp>& a) +{ + return cv::min((const Mat&)a, s); +} + +template<typename _Tp> static inline +MatExpr max(const Mat_<_Tp>& a, const Mat_<_Tp>& b) +{ + return cv::max((const Mat&)a, (const Mat&)b); +} + +template<typename _Tp> static inline +MatExpr max(const Mat_<_Tp>& a, double s) +{ + return cv::max((const Mat&)a, s); +} + +template<typename _Tp> static inline +MatExpr max(double s, const Mat_<_Tp>& a) +{ + return cv::max((const Mat&)a, s); +} + +template<typename _Tp> static inline +MatExpr abs(const Mat_<_Tp>& m) +{ + return cv::abs((const Mat&)m); +} + + +static inline +Mat& operator += (Mat& a, const MatExpr& b) +{ + b.op->augAssignAdd(b, a); + return a; +} + +static inline +const Mat& operator += (const Mat& a, const MatExpr& b) +{ + b.op->augAssignAdd(b, (Mat&)a); + return a; +} + +template<typename _Tp> static inline +Mat_<_Tp>& operator += (Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignAdd(b, a); + return a; +} + +template<typename _Tp> static inline +const Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignAdd(b, (Mat&)a); + return a; +} + +static inline +Mat& operator -= (Mat& a, const MatExpr& b) +{ + b.op->augAssignSubtract(b, a); + return a; +} + +static inline +const Mat& operator -= (const Mat& a, const MatExpr& b) +{ + b.op->augAssignSubtract(b, (Mat&)a); + return a; +} + +template<typename _Tp> static inline +Mat_<_Tp>& operator -= (Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignSubtract(b, a); + return a; +} + +template<typename _Tp> static inline +const Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignSubtract(b, (Mat&)a); + return a; +} + +static inline +Mat& operator *= (Mat& a, const MatExpr& b) +{ + b.op->augAssignMultiply(b, a); + return a; +} + +static inline +const Mat& operator *= (const Mat& a, const MatExpr& b) +{ + b.op->augAssignMultiply(b, (Mat&)a); + return a; +} + +template<typename _Tp> static inline +Mat_<_Tp>& operator *= (Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignMultiply(b, a); + return a; +} + +template<typename _Tp> static inline +const Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignMultiply(b, (Mat&)a); + return a; +} + +static inline +Mat& operator /= (Mat& a, const MatExpr& b) +{ + b.op->augAssignDivide(b, a); + return a; +} + +static inline +const Mat& operator /= (const Mat& a, const MatExpr& b) +{ + b.op->augAssignDivide(b, (Mat&)a); + return a; +} + +template<typename _Tp> static inline +Mat_<_Tp>& operator /= (Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignDivide(b, a); + return a; +} + +template<typename _Tp> static inline +const Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignDivide(b, (Mat&)a); + return a; +} + + +//////////////////////////////// UMat //////////////////////////////// + +inline +UMat::UMat(UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{} + +inline +UMat::UMat(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_rows, _cols, _type); +} + +inline +UMat::UMat(int _rows, int _cols, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_rows, _cols, _type); + *this = _s; +} + +inline +UMat::UMat(Size _sz, int _type, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create( _sz.height, _sz.width, _type ); +} + +inline +UMat::UMat(Size _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_sz.height, _sz.width, _type); + *this = _s; +} + +inline +UMat::UMat(int _dims, const int* _sz, int _type, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_dims, _sz, _type); +} + +inline +UMat::UMat(int _dims, const int* _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_dims, _sz, _type); + *this = _s; +} + +inline +UMat::UMat(const UMat& m) +: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator), + usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows) +{ + addref(); + if( m.dims <= 2 ) + { + step[0] = m.step[0]; step[1] = m.step[1]; + } + else + { + dims = 0; + copySize(m); + } +} + + +template<typename _Tp> inline +UMat::UMat(const std::vector<_Tp>& vec, bool copyData) +: flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), +cols(1), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows) +{ + if(vec.empty()) + return; + if( !copyData ) + { + // !!!TODO!!! + CV_Error(Error::StsNotImplemented, ""); + } + else + Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this); +} + + +inline +UMat& UMat::operator = (const UMat& m) +{ + if( this != &m ) + { + const_cast<UMat&>(m).addref(); + release(); + flags = m.flags; + if( dims <= 2 && m.dims <= 2 ) + { + dims = m.dims; + rows = m.rows; + cols = m.cols; + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + copySize(m); + allocator = m.allocator; + if (usageFlags == USAGE_DEFAULT) + usageFlags = m.usageFlags; + u = m.u; + offset = m.offset; + } + return *this; +} + +inline +UMat UMat::row(int y) const +{ + return UMat(*this, Range(y, y + 1), Range::all()); +} + +inline +UMat UMat::col(int x) const +{ + return UMat(*this, Range::all(), Range(x, x + 1)); +} + +inline +UMat UMat::rowRange(int startrow, int endrow) const +{ + return UMat(*this, Range(startrow, endrow), Range::all()); +} + +inline +UMat UMat::rowRange(const Range& r) const +{ + return UMat(*this, r, Range::all()); +} + +inline +UMat UMat::colRange(int startcol, int endcol) const +{ + return UMat(*this, Range::all(), Range(startcol, endcol)); +} + +inline +UMat UMat::colRange(const Range& r) const +{ + return UMat(*this, Range::all(), r); +} + +inline +UMat UMat::clone() const +{ + UMat m; + copyTo(m); + return m; +} + +inline +void UMat::assignTo( UMat& m, int _type ) const +{ + if( _type < 0 ) + m = *this; + else + convertTo(m, _type); +} + +inline +void UMat::create(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) +{ + _type &= TYPE_MASK; + if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && u ) + return; + int sz[] = {_rows, _cols}; + create(2, sz, _type, _usageFlags); +} + +inline +void UMat::create(Size _sz, int _type, UMatUsageFlags _usageFlags) +{ + create(_sz.height, _sz.width, _type, _usageFlags); +} + +inline +void UMat::addref() +{ + if( u ) + CV_XADD(&(u->urefcount), 1); +} + +inline void UMat::release() +{ + if( u && CV_XADD(&(u->urefcount), -1) == 1 ) + deallocate(); + for(int i = 0; i < dims; i++) + size.p[i] = 0; + u = 0; +} + +inline +UMat UMat::operator()( Range _rowRange, Range _colRange ) const +{ + return UMat(*this, _rowRange, _colRange); +} + +inline +UMat UMat::operator()( const Rect& roi ) const +{ + return UMat(*this, roi); +} + +inline +UMat UMat::operator()(const Range* ranges) const +{ + return UMat(*this, ranges); +} + +inline +UMat UMat::operator()(const std::vector<Range>& ranges) const +{ + return UMat(*this, ranges); +} + +inline +bool UMat::isContinuous() const +{ + return (flags & CONTINUOUS_FLAG) != 0; +} + +inline +bool UMat::isSubmatrix() const +{ + return (flags & SUBMATRIX_FLAG) != 0; +} + +inline +size_t UMat::elemSize() const +{ + return dims > 0 ? step.p[dims - 1] : 0; +} + +inline +size_t UMat::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int UMat::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int UMat::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int UMat::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t UMat::step1(int i) const +{ + return step.p[i] / elemSize1(); +} + +inline +bool UMat::empty() const +{ + return u == 0 || total() == 0; +} + +inline +size_t UMat::total() const +{ + if( dims <= 2 ) + return (size_t)rows * cols; + size_t p = 1; + for( int i = 0; i < dims; i++ ) + p *= size[i]; + return p; +} + +#ifdef CV_CXX_MOVE_SEMANTICS + +inline +UMat::UMat(UMat&& m) +: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator), + usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows) +{ + if (m.dims <= 2) // move new step/size info + { + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + { + CV_DbgAssert(m.step.p != m.step.buf); + step.p = m.step.p; + size.p = m.size.p; + m.step.p = m.step.buf; + m.size.p = &m.rows; + } + m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; + m.allocator = NULL; + m.u = NULL; + m.offset = 0; +} + +inline +UMat& UMat::operator = (UMat&& m) +{ + if (this == &m) + return *this; + release(); + flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols; + allocator = m.allocator; usageFlags = m.usageFlags; + u = m.u; + offset = m.offset; + if (step.p != step.buf) // release self step/size + { + fastFree(step.p); + step.p = step.buf; + size.p = &rows; + } + if (m.dims <= 2) // move new step/size info + { + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + { + CV_DbgAssert(m.step.p != m.step.buf); + step.p = m.step.p; + size.p = m.size.p; + m.step.p = m.step.buf; + m.size.p = &m.rows; + } + m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; + m.allocator = NULL; + m.u = NULL; + m.offset = 0; + return *this; +} + +#endif + + +inline bool UMatData::hostCopyObsolete() const { return (flags & HOST_COPY_OBSOLETE) != 0; } +inline bool UMatData::deviceCopyObsolete() const { return (flags & DEVICE_COPY_OBSOLETE) != 0; } +inline bool UMatData::deviceMemMapped() const { return (flags & DEVICE_MEM_MAPPED) != 0; } +inline bool UMatData::copyOnMap() const { return (flags & COPY_ON_MAP) != 0; } +inline bool UMatData::tempUMat() const { return (flags & TEMP_UMAT) != 0; } +inline bool UMatData::tempCopiedUMat() const { return (flags & TEMP_COPIED_UMAT) == TEMP_COPIED_UMAT; } + +inline void UMatData::markDeviceMemMapped(bool flag) +{ + if(flag) + flags |= DEVICE_MEM_MAPPED; + else + flags &= ~DEVICE_MEM_MAPPED; +} + +inline void UMatData::markHostCopyObsolete(bool flag) +{ + if(flag) + flags |= HOST_COPY_OBSOLETE; + else + flags &= ~HOST_COPY_OBSOLETE; +} +inline void UMatData::markDeviceCopyObsolete(bool flag) +{ + if(flag) + flags |= DEVICE_COPY_OBSOLETE; + else + flags &= ~DEVICE_COPY_OBSOLETE; +} + +inline UMatDataAutoLock::UMatDataAutoLock(UMatData* _u) : u(_u) { u->lock(); } +inline UMatDataAutoLock::~UMatDataAutoLock() { u->unlock(); } + +//! @endcond + +} //cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/matx.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1407 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_MATX_HPP +#define OPENCV_CORE_MATX_HPP + +#ifndef __cplusplus +# error matx.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/base.hpp" +#include "opencv2/core/traits.hpp" +#include "opencv2/core/saturate.hpp" + +namespace cv +{ + +//! @addtogroup core_basic +//! @{ + +////////////////////////////// Small Matrix /////////////////////////// + +//! @cond IGNORED +struct CV_EXPORTS Matx_AddOp {}; +struct CV_EXPORTS Matx_SubOp {}; +struct CV_EXPORTS Matx_ScaleOp {}; +struct CV_EXPORTS Matx_MulOp {}; +struct CV_EXPORTS Matx_DivOp {}; +struct CV_EXPORTS Matx_MatMulOp {}; +struct CV_EXPORTS Matx_TOp {}; +//! @endcond + +/** @brief Template class for small matrices whose type and size are known at compilation time + +If you need a more flexible type, use Mat . The elements of the matrix M are accessible using the +M(i,j) notation. Most of the common matrix operations (see also @ref MatrixExpressions ) are +available. To do an operation on Matx that is not implemented, you can easily convert the matrix to +Mat and backwards: +@code + Matx33f m(1, 2, 3, + 4, 5, 6, + 7, 8, 9); + cout << sum(Mat(m*m.t())) << endl; + @endcode + */ +template<typename _Tp, int m, int n> class Matx +{ +public: + enum { depth = DataType<_Tp>::depth, + rows = m, + cols = n, + channels = rows*cols, + type = CV_MAKETYPE(depth, channels), + shortdim = (m < n ? m : n) + }; + + typedef _Tp value_type; + typedef Matx<_Tp, m, n> mat_type; + typedef Matx<_Tp, shortdim, 1> diag_type; + + //! default constructor + Matx(); + + Matx(_Tp v0); //!< 1x1 matrix + Matx(_Tp v0, _Tp v1); //!< 1x2 or 2x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2); //!< 1x3 or 3x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 1x4, 2x2 or 4x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 1x5 or 5x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 1x6, 2x3, 3x2 or 6x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 1x7 or 7x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 1x8, 2x4, 4x2 or 8x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 1x9, 3x3 or 9x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 1x10, 2x5 or 5x2 or 10x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, + _Tp v4, _Tp v5, _Tp v6, _Tp v7, + _Tp v8, _Tp v9, _Tp v10, _Tp v11); //!< 1x12, 2x6, 3x4, 4x3, 6x2 or 12x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, + _Tp v4, _Tp v5, _Tp v6, _Tp v7, + _Tp v8, _Tp v9, _Tp v10, _Tp v11, + _Tp v12, _Tp v13); //!< 1x14, 2x7, 7x2 or 14x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, + _Tp v4, _Tp v5, _Tp v6, _Tp v7, + _Tp v8, _Tp v9, _Tp v10, _Tp v11, + _Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix + explicit Matx(const _Tp* vals); //!< initialize from a plain array + + static Matx all(_Tp alpha); + static Matx zeros(); + static Matx ones(); + static Matx eye(); + static Matx diag(const diag_type& d); + static Matx randu(_Tp a, _Tp b); + static Matx randn(_Tp a, _Tp b); + + //! dot product computed with the default precision + _Tp dot(const Matx<_Tp, m, n>& v) const; + + //! dot product computed in double-precision arithmetics + double ddot(const Matx<_Tp, m, n>& v) const; + + //! conversion to another data type + template<typename T2> operator Matx<T2, m, n>() const; + + //! change the matrix shape + template<int m1, int n1> Matx<_Tp, m1, n1> reshape() const; + + //! extract part of the matrix + template<int m1, int n1> Matx<_Tp, m1, n1> get_minor(int i, int j) const; + + //! extract the matrix row + Matx<_Tp, 1, n> row(int i) const; + + //! extract the matrix column + Matx<_Tp, m, 1> col(int i) const; + + //! extract the matrix diagonal + diag_type diag() const; + + //! transpose the matrix + Matx<_Tp, n, m> t() const; + + //! invert the matrix + Matx<_Tp, n, m> inv(int method=DECOMP_LU, bool *p_is_ok = NULL) const; + + //! solve linear system + template<int l> Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const; + Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const; + + //! multiply two matrices element-wise + Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const; + + //! divide two matrices element-wise + Matx<_Tp, m, n> div(const Matx<_Tp, m, n>& a) const; + + //! element access + const _Tp& operator ()(int i, int j) const; + _Tp& operator ()(int i, int j); + + //! 1D element access + const _Tp& operator ()(int i) const; + _Tp& operator ()(int i); + + Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp); + Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp); + template<typename _T2> Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp); + Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp); + Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_DivOp); + template<int l> Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp); + Matx(const Matx<_Tp, n, m>& a, Matx_TOp); + + _Tp val[m*n]; //< matrix elements +}; + +typedef Matx<float, 1, 2> Matx12f; +typedef Matx<double, 1, 2> Matx12d; +typedef Matx<float, 1, 3> Matx13f; +typedef Matx<double, 1, 3> Matx13d; +typedef Matx<float, 1, 4> Matx14f; +typedef Matx<double, 1, 4> Matx14d; +typedef Matx<float, 1, 6> Matx16f; +typedef Matx<double, 1, 6> Matx16d; + +typedef Matx<float, 2, 1> Matx21f; +typedef Matx<double, 2, 1> Matx21d; +typedef Matx<float, 3, 1> Matx31f; +typedef Matx<double, 3, 1> Matx31d; +typedef Matx<float, 4, 1> Matx41f; +typedef Matx<double, 4, 1> Matx41d; +typedef Matx<float, 6, 1> Matx61f; +typedef Matx<double, 6, 1> Matx61d; + +typedef Matx<float, 2, 2> Matx22f; +typedef Matx<double, 2, 2> Matx22d; +typedef Matx<float, 2, 3> Matx23f; +typedef Matx<double, 2, 3> Matx23d; +typedef Matx<float, 3, 2> Matx32f; +typedef Matx<double, 3, 2> Matx32d; + +typedef Matx<float, 3, 3> Matx33f; +typedef Matx<double, 3, 3> Matx33d; + +typedef Matx<float, 3, 4> Matx34f; +typedef Matx<double, 3, 4> Matx34d; +typedef Matx<float, 4, 3> Matx43f; +typedef Matx<double, 4, 3> Matx43d; + +typedef Matx<float, 4, 4> Matx44f; +typedef Matx<double, 4, 4> Matx44d; +typedef Matx<float, 6, 6> Matx66f; +typedef Matx<double, 6, 6> Matx66d; + +/*! + traits +*/ +template<typename _Tp, int m, int n> class DataType< Matx<_Tp, m, n> > +{ +public: + typedef Matx<_Tp, m, n> value_type; + typedef Matx<typename DataType<_Tp>::work_type, m, n> work_type; + typedef _Tp channel_type; + typedef value_type vec_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = m * n, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; +}; + +/** @brief Comma-separated Matrix Initializer +*/ +template<typename _Tp, int m, int n> class MatxCommaInitializer +{ +public: + MatxCommaInitializer(Matx<_Tp, m, n>* _mtx); + template<typename T2> MatxCommaInitializer<_Tp, m, n>& operator , (T2 val); + Matx<_Tp, m, n> operator *() const; + + Matx<_Tp, m, n>* dst; + int idx; +}; + +/* + Utility methods +*/ +template<typename _Tp, int m> static double determinant(const Matx<_Tp, m, m>& a); +template<typename _Tp, int m, int n> static double trace(const Matx<_Tp, m, n>& a); +template<typename _Tp, int m, int n> static double norm(const Matx<_Tp, m, n>& M); +template<typename _Tp, int m, int n> static double norm(const Matx<_Tp, m, n>& M, int normType); + + + +/////////////////////// Vec (used as element of multi-channel images ///////////////////// + +/** @brief Template class for short numerical vectors, a partial case of Matx + +This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements) on which you +can perform basic arithmetical operations, access individual elements using [] operator etc. The +vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc., which +elements are dynamically allocated in the heap. + +The template takes 2 parameters: +@tparam _Tp element type +@tparam cn the number of elements + +In addition to the universal notation like Vec<float, 3>, you can use shorter aliases +for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>. + +It is possible to convert Vec\<T,2\> to/from Point_, Vec\<T,3\> to/from Point3_ , and Vec\<T,4\> +to CvScalar or Scalar_. Use operator[] to access the elements of Vec. + +All the expected vector operations are also implemented: +- v1 = v2 + v3 +- v1 = v2 - v3 +- v1 = v2 \* scale +- v1 = scale \* v2 +- v1 = -v2 +- v1 += v2 and other augmenting operations +- v1 == v2, v1 != v2 +- norm(v1) (euclidean norm) +The Vec class is commonly used to describe pixel types of multi-channel arrays. See Mat for details. +*/ +template<typename _Tp, int cn> class Vec : public Matx<_Tp, cn, 1> +{ +public: + typedef _Tp value_type; + enum { depth = Matx<_Tp, cn, 1>::depth, + channels = cn, + type = CV_MAKETYPE(depth, channels) + }; + + //! default constructor + Vec(); + + Vec(_Tp v0); //!< 1-element vector constructor + Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13); //!< 14-element vector constructor + explicit Vec(const _Tp* values); + + Vec(const Vec<_Tp, cn>& v); + + static Vec all(_Tp alpha); + + //! per-element multiplication + Vec mul(const Vec<_Tp, cn>& v) const; + + //! conjugation (makes sense for complex numbers and quaternions) + Vec conj() const; + + /*! + cross product of the two 3D vectors. + + For other dimensionalities the exception is raised + */ + Vec cross(const Vec& v) const; + //! conversion to another data type + template<typename T2> operator Vec<T2, cn>() const; + + /*! element access */ + const _Tp& operator [](int i) const; + _Tp& operator[](int i); + const _Tp& operator ()(int i) const; + _Tp& operator ()(int i); + + Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp); + Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp); + template<typename _T2> Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp); +}; + +/** @name Shorter aliases for the most popular specializations of Vec<T,n> + @{ +*/ +typedef Vec<uchar, 2> Vec2b; +typedef Vec<uchar, 3> Vec3b; +typedef Vec<uchar, 4> Vec4b; + +typedef Vec<short, 2> Vec2s; +typedef Vec<short, 3> Vec3s; +typedef Vec<short, 4> Vec4s; + +typedef Vec<ushort, 2> Vec2w; +typedef Vec<ushort, 3> Vec3w; +typedef Vec<ushort, 4> Vec4w; + +typedef Vec<int, 2> Vec2i; +typedef Vec<int, 3> Vec3i; +typedef Vec<int, 4> Vec4i; +typedef Vec<int, 6> Vec6i; +typedef Vec<int, 8> Vec8i; + +typedef Vec<float, 2> Vec2f; +typedef Vec<float, 3> Vec3f; +typedef Vec<float, 4> Vec4f; +typedef Vec<float, 6> Vec6f; + +typedef Vec<double, 2> Vec2d; +typedef Vec<double, 3> Vec3d; +typedef Vec<double, 4> Vec4d; +typedef Vec<double, 6> Vec6d; +/** @} */ + +/*! + traits +*/ +template<typename _Tp, int cn> class DataType< Vec<_Tp, cn> > +{ +public: + typedef Vec<_Tp, cn> value_type; + typedef Vec<typename DataType<_Tp>::work_type, cn> work_type; + typedef _Tp channel_type; + typedef value_type vec_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = cn, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; +}; + +/** @brief Comma-separated Vec Initializer +*/ +template<typename _Tp, int m> class VecCommaInitializer : public MatxCommaInitializer<_Tp, m, 1> +{ +public: + VecCommaInitializer(Vec<_Tp, m>* _vec); + template<typename T2> VecCommaInitializer<_Tp, m>& operator , (T2 val); + Vec<_Tp, m> operator *() const; +}; + +template<typename _Tp, int cn> static Vec<_Tp, cn> normalize(const Vec<_Tp, cn>& v); + +//! @} core_basic + +//! @cond IGNORED + +///////////////////////////////////// helper classes ///////////////////////////////////// +namespace internal +{ + +template<typename _Tp, int m> struct Matx_DetOp +{ + double operator ()(const Matx<_Tp, m, m>& a) const + { + Matx<_Tp, m, m> temp = a; + double p = LU(temp.val, m*sizeof(_Tp), m, 0, 0, 0); + if( p == 0 ) + return p; + for( int i = 0; i < m; i++ ) + p *= temp(i, i); + return p; + } +}; + +template<typename _Tp> struct Matx_DetOp<_Tp, 1> +{ + double operator ()(const Matx<_Tp, 1, 1>& a) const + { + return a(0,0); + } +}; + +template<typename _Tp> struct Matx_DetOp<_Tp, 2> +{ + double operator ()(const Matx<_Tp, 2, 2>& a) const + { + return a(0,0)*a(1,1) - a(0,1)*a(1,0); + } +}; + +template<typename _Tp> struct Matx_DetOp<_Tp, 3> +{ + double operator ()(const Matx<_Tp, 3, 3>& a) const + { + return a(0,0)*(a(1,1)*a(2,2) - a(2,1)*a(1,2)) - + a(0,1)*(a(1,0)*a(2,2) - a(2,0)*a(1,2)) + + a(0,2)*(a(1,0)*a(2,1) - a(2,0)*a(1,1)); + } +}; + +template<typename _Tp> Vec<_Tp, 2> inline conjugate(const Vec<_Tp, 2>& v) +{ + return Vec<_Tp, 2>(v[0], -v[1]); +} + +template<typename _Tp> Vec<_Tp, 4> inline conjugate(const Vec<_Tp, 4>& v) +{ + return Vec<_Tp, 4>(v[0], -v[1], -v[2], -v[3]); +} + +} // internal + + + +////////////////////////////////// Matx Implementation /////////////////////////////////// + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx() +{ + for(int i = 0; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0) +{ + val[0] = v0; + for(int i = 1; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1) +{ + CV_StaticAssert(channels >= 2, "Matx should have at least 2 elements."); + val[0] = v0; val[1] = v1; + for(int i = 2; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2) +{ + CV_StaticAssert(channels >= 3, "Matx should have at least 3 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; + for(int i = 3; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3) +{ + CV_StaticAssert(channels >= 4, "Matx should have at least 4 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + for(int i = 4; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4) +{ + CV_StaticAssert(channels >= 5, "Matx should have at least 5 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; + for(int i = 5; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5) +{ + CV_StaticAssert(channels >= 6, "Matx should have at least 6 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; + for(int i = 6; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6) +{ + CV_StaticAssert(channels >= 7, "Matx should have at least 7 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; + for(int i = 7; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7) +{ + CV_StaticAssert(channels >= 8, "Matx should have at least 8 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + for(int i = 8; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8) +{ + CV_StaticAssert(channels >= 9, "Matx should have at least 9 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; + for(int i = 9; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9) +{ + CV_StaticAssert(channels >= 10, "Matx should have at least 10 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; val[9] = v9; + for(int i = 10; i < channels; i++) val[i] = _Tp(0); +} + + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11) +{ + CV_StaticAssert(channels >= 12, "Matx should have at least 12 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11; + for(int i = 12; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13) +{ + CV_StaticAssert(channels == 14, "Matx should have at least 14 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11; + val[12] = v12; val[13] = v13; +} + + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13, _Tp v14, _Tp v15) +{ + CV_StaticAssert(channels >= 16, "Matx should have at least 16 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11; + val[12] = v12; val[13] = v13; val[14] = v14; val[15] = v15; + for(int i = 16; i < channels; i++) val[i] = _Tp(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n>::Matx(const _Tp* values) +{ + for( int i = 0; i < channels; i++ ) val[i] = values[i]; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n> Matx<_Tp, m, n>::all(_Tp alpha) +{ + Matx<_Tp, m, n> M; + for( int i = 0; i < m*n; i++ ) M.val[i] = alpha; + return M; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::zeros() +{ + return all(0); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::ones() +{ + return all(1); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::eye() +{ + Matx<_Tp,m,n> M; + for(int i = 0; i < shortdim; i++) + M(i,i) = 1; + return M; +} + +template<typename _Tp, int m, int n> inline +_Tp Matx<_Tp, m, n>::dot(const Matx<_Tp, m, n>& M) const +{ + _Tp s = 0; + for( int i = 0; i < channels; i++ ) s += val[i]*M.val[i]; + return s; +} + +template<typename _Tp, int m, int n> inline +double Matx<_Tp, m, n>::ddot(const Matx<_Tp, m, n>& M) const +{ + double s = 0; + for( int i = 0; i < channels; i++ ) s += (double)val[i]*M.val[i]; + return s; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::diag(const typename Matx<_Tp,m,n>::diag_type& d) +{ + Matx<_Tp,m,n> M; + for(int i = 0; i < shortdim; i++) + M(i,i) = d(i, 0); + return M; +} + +template<typename _Tp, int m, int n> template<typename T2> +inline Matx<_Tp, m, n>::operator Matx<T2, m, n>() const +{ + Matx<T2, m, n> M; + for( int i = 0; i < m*n; i++ ) M.val[i] = saturate_cast<T2>(val[i]); + return M; +} + +template<typename _Tp, int m, int n> template<int m1, int n1> inline +Matx<_Tp, m1, n1> Matx<_Tp, m, n>::reshape() const +{ + CV_StaticAssert(m1*n1 == m*n, "Input and destnarion matrices must have the same number of elements"); + return (const Matx<_Tp, m1, n1>&)*this; +} + +template<typename _Tp, int m, int n> +template<int m1, int n1> inline +Matx<_Tp, m1, n1> Matx<_Tp, m, n>::get_minor(int i, int j) const +{ + CV_DbgAssert(0 <= i && i+m1 <= m && 0 <= j && j+n1 <= n); + Matx<_Tp, m1, n1> s; + for( int di = 0; di < m1; di++ ) + for( int dj = 0; dj < n1; dj++ ) + s(di, dj) = (*this)(i+di, j+dj); + return s; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, 1, n> Matx<_Tp, m, n>::row(int i) const +{ + CV_DbgAssert((unsigned)i < (unsigned)m); + return Matx<_Tp, 1, n>(&val[i*n]); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, 1> Matx<_Tp, m, n>::col(int j) const +{ + CV_DbgAssert((unsigned)j < (unsigned)n); + Matx<_Tp, m, 1> v; + for( int i = 0; i < m; i++ ) + v.val[i] = val[i*n + j]; + return v; +} + +template<typename _Tp, int m, int n> inline +typename Matx<_Tp, m, n>::diag_type Matx<_Tp, m, n>::diag() const +{ + diag_type d; + for( int i = 0; i < shortdim; i++ ) + d.val[i] = val[i*n + i]; + return d; +} + +template<typename _Tp, int m, int n> inline +const _Tp& Matx<_Tp, m, n>::operator()(int i, int j) const +{ + CV_DbgAssert( (unsigned)i < (unsigned)m && (unsigned)j < (unsigned)n ); + return this->val[i*n + j]; +} + +template<typename _Tp, int m, int n> inline +_Tp& Matx<_Tp, m, n>::operator ()(int i, int j) +{ + CV_DbgAssert( (unsigned)i < (unsigned)m && (unsigned)j < (unsigned)n ); + return val[i*n + j]; +} + +template<typename _Tp, int m, int n> inline +const _Tp& Matx<_Tp, m, n>::operator ()(int i) const +{ + CV_StaticAssert(m == 1 || n == 1, "Single index indexation requires matrix to be a column or a row"); + CV_DbgAssert( (unsigned)i < (unsigned)(m+n-1) ); + return val[i]; +} + +template<typename _Tp, int m, int n> inline +_Tp& Matx<_Tp, m, n>::operator ()(int i) +{ + CV_StaticAssert(m == 1 || n == 1, "Single index indexation requires matrix to be a column or a row"); + CV_DbgAssert( (unsigned)i < (unsigned)(m+n-1) ); + return val[i]; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] + b.val[i]); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] - b.val[i]); +} + +template<typename _Tp, int m, int n> template<typename _T2> inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] * alpha); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] * b.val[i]); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_DivOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] / b.val[i]); +} + +template<typename _Tp, int m, int n> template<int l> inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp) +{ + for( int i = 0; i < m; i++ ) + for( int j = 0; j < n; j++ ) + { + _Tp s = 0; + for( int k = 0; k < l; k++ ) + s += a(i, k) * b(k, j); + val[i*n + j] = s; + } +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, n, m>& a, Matx_TOp) +{ + for( int i = 0; i < m; i++ ) + for( int j = 0; j < n; j++ ) + val[i*n + j] = a(j, i); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n> Matx<_Tp, m, n>::mul(const Matx<_Tp, m, n>& a) const +{ + return Matx<_Tp, m, n>(*this, a, Matx_MulOp()); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n> Matx<_Tp, m, n>::div(const Matx<_Tp, m, n>& a) const +{ + return Matx<_Tp, m, n>(*this, a, Matx_DivOp()); +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, n, m> Matx<_Tp, m, n>::t() const +{ + return Matx<_Tp, n, m>(*this, Matx_TOp()); +} + +template<typename _Tp, int m, int n> inline +Vec<_Tp, n> Matx<_Tp, m, n>::solve(const Vec<_Tp, m>& rhs, int method) const +{ + Matx<_Tp, n, 1> x = solve((const Matx<_Tp, m, 1>&)(rhs), method); + return (Vec<_Tp, n>&)(x); +} + +template<typename _Tp, int m> static inline +double determinant(const Matx<_Tp, m, m>& a) +{ + return cv::internal::Matx_DetOp<_Tp, m>()(a); +} + +template<typename _Tp, int m, int n> static inline +double trace(const Matx<_Tp, m, n>& a) +{ + _Tp s = 0; + for( int i = 0; i < std::min(m, n); i++ ) + s += a(i,i); + return s; +} + +template<typename _Tp, int m, int n> static inline +double norm(const Matx<_Tp, m, n>& M) +{ + return std::sqrt(normL2Sqr<_Tp, double>(M.val, m*n)); +} + +template<typename _Tp, int m, int n> static inline +double norm(const Matx<_Tp, m, n>& M, int normType) +{ + switch(normType) { + case NORM_INF: + return (double)normInf<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n); + case NORM_L1: + return (double)normL1<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n); + case NORM_L2SQR: + return (double)normL2Sqr<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n); + default: + case NORM_L2: + return std::sqrt((double)normL2Sqr<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n)); + } +} + + + +//////////////////////////////// matx comma initializer ////////////////////////////////// + +template<typename _Tp, typename _T2, int m, int n> static inline +MatxCommaInitializer<_Tp, m, n> operator << (const Matx<_Tp, m, n>& mtx, _T2 val) +{ + MatxCommaInitializer<_Tp, m, n> commaInitializer((Matx<_Tp, m, n>*)&mtx); + return (commaInitializer, val); +} + +template<typename _Tp, int m, int n> inline +MatxCommaInitializer<_Tp, m, n>::MatxCommaInitializer(Matx<_Tp, m, n>* _mtx) + : dst(_mtx), idx(0) +{} + +template<typename _Tp, int m, int n> template<typename _T2> inline +MatxCommaInitializer<_Tp, m, n>& MatxCommaInitializer<_Tp, m, n>::operator , (_T2 value) +{ + CV_DbgAssert( idx < m*n ); + dst->val[idx++] = saturate_cast<_Tp>(value); + return *this; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, m, n> MatxCommaInitializer<_Tp, m, n>::operator *() const +{ + CV_DbgAssert( idx == n*m ); + return *dst; +} + + + +/////////////////////////////////// Vec Implementation /////////////////////////////////// + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec() {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0) + : Matx<_Tp, cn, 1>(v0) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1) + : Matx<_Tp, cn, 1>(v0, v1) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2) + : Matx<_Tp, cn, 1>(v0, v1, v2) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(const _Tp* values) + : Matx<_Tp, cn, 1>(values) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(const Vec<_Tp, cn>& m) + : Matx<_Tp, cn, 1>(m.val) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp op) + : Matx<_Tp, cn, 1>(a, b, op) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp op) + : Matx<_Tp, cn, 1>(a, b, op) {} + +template<typename _Tp, int cn> template<typename _T2> inline +Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp op) + : Matx<_Tp, cn, 1>(a, alpha, op) {} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn> Vec<_Tp, cn>::all(_Tp alpha) +{ + Vec v; + for( int i = 0; i < cn; i++ ) v.val[i] = alpha; + return v; +} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn> Vec<_Tp, cn>::mul(const Vec<_Tp, cn>& v) const +{ + Vec<_Tp, cn> w; + for( int i = 0; i < cn; i++ ) w.val[i] = saturate_cast<_Tp>(this->val[i]*v.val[i]); + return w; +} + +template<> inline +Vec<float, 2> Vec<float, 2>::conj() const +{ + return cv::internal::conjugate(*this); +} + +template<> inline +Vec<double, 2> Vec<double, 2>::conj() const +{ + return cv::internal::conjugate(*this); +} + +template<> inline +Vec<float, 4> Vec<float, 4>::conj() const +{ + return cv::internal::conjugate(*this); +} + +template<> inline +Vec<double, 4> Vec<double, 4>::conj() const +{ + return cv::internal::conjugate(*this); +} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn> Vec<_Tp, cn>::cross(const Vec<_Tp, cn>&) const +{ + CV_StaticAssert(cn == 3, "for arbitrary-size vector there is no cross-product defined"); + return Vec<_Tp, cn>(); +} + +template<> inline +Vec<float, 3> Vec<float, 3>::cross(const Vec<float, 3>& v) const +{ + return Vec<float,3>(this->val[1]*v.val[2] - this->val[2]*v.val[1], + this->val[2]*v.val[0] - this->val[0]*v.val[2], + this->val[0]*v.val[1] - this->val[1]*v.val[0]); +} + +template<> inline +Vec<double, 3> Vec<double, 3>::cross(const Vec<double, 3>& v) const +{ + return Vec<double,3>(this->val[1]*v.val[2] - this->val[2]*v.val[1], + this->val[2]*v.val[0] - this->val[0]*v.val[2], + this->val[0]*v.val[1] - this->val[1]*v.val[0]); +} + +template<typename _Tp, int cn> template<typename T2> inline +Vec<_Tp, cn>::operator Vec<T2, cn>() const +{ + Vec<T2, cn> v; + for( int i = 0; i < cn; i++ ) v.val[i] = saturate_cast<T2>(this->val[i]); + return v; +} + +template<typename _Tp, int cn> inline +const _Tp& Vec<_Tp, cn>::operator [](int i) const +{ + CV_DbgAssert( (unsigned)i < (unsigned)cn ); + return this->val[i]; +} + +template<typename _Tp, int cn> inline +_Tp& Vec<_Tp, cn>::operator [](int i) +{ + CV_DbgAssert( (unsigned)i < (unsigned)cn ); + return this->val[i]; +} + +template<typename _Tp, int cn> inline +const _Tp& Vec<_Tp, cn>::operator ()(int i) const +{ + CV_DbgAssert( (unsigned)i < (unsigned)cn ); + return this->val[i]; +} + +template<typename _Tp, int cn> inline +_Tp& Vec<_Tp, cn>::operator ()(int i) +{ + CV_DbgAssert( (unsigned)i < (unsigned)cn ); + return this->val[i]; +} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn> normalize(const Vec<_Tp, cn>& v) +{ + double nv = norm(v); + return v * (nv ? 1./nv : 0.); +} + + + +//////////////////////////////// matx comma initializer ////////////////////////////////// + + +template<typename _Tp, typename _T2, int cn> static inline +VecCommaInitializer<_Tp, cn> operator << (const Vec<_Tp, cn>& vec, _T2 val) +{ + VecCommaInitializer<_Tp, cn> commaInitializer((Vec<_Tp, cn>*)&vec); + return (commaInitializer, val); +} + +template<typename _Tp, int cn> inline +VecCommaInitializer<_Tp, cn>::VecCommaInitializer(Vec<_Tp, cn>* _vec) + : MatxCommaInitializer<_Tp, cn, 1>(_vec) +{} + +template<typename _Tp, int cn> template<typename _T2> inline +VecCommaInitializer<_Tp, cn>& VecCommaInitializer<_Tp, cn>::operator , (_T2 value) +{ + CV_DbgAssert( this->idx < cn ); + this->dst->val[this->idx++] = saturate_cast<_Tp>(value); + return *this; +} + +template<typename _Tp, int cn> inline +Vec<_Tp, cn> VecCommaInitializer<_Tp, cn>::operator *() const +{ + CV_DbgAssert( this->idx == cn ); + return *this->dst; +} + +//! @endcond + +///////////////////////////// Matx out-of-class operators //////////////////////////////// + +//! @relates cv::Matx +//! @{ + +template<typename _Tp1, typename _Tp2, int m, int n> static inline +Matx<_Tp1, m, n>& operator += (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp1>(a.val[i] + b.val[i]); + return a; +} + +template<typename _Tp1, typename _Tp2, int m, int n> static inline +Matx<_Tp1, m, n>& operator -= (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp1>(a.val[i] - b.val[i]); + return a; +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n> operator + (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) +{ + return Matx<_Tp, m, n>(a, b, Matx_AddOp()); +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) +{ + return Matx<_Tp, m, n>(a, b, Matx_SubOp()); +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, int alpha) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha); + return a; +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, float alpha) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha); + return a; +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, double alpha) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha); + return a; +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, int alpha) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, float alpha) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, double alpha) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n> operator * (int alpha, const Matx<_Tp, m, n>& a) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n> operator * (float alpha, const Matx<_Tp, m, n>& a) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n> operator * (double alpha, const Matx<_Tp, m, n>& a) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int m, int n> static inline +Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a) +{ + return Matx<_Tp, m, n>(a, -1, Matx_ScaleOp()); +} + +template<typename _Tp, int m, int n, int l> static inline +Matx<_Tp, m, n> operator * (const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b) +{ + return Matx<_Tp, m, n>(a, b, Matx_MatMulOp()); +} + +template<typename _Tp, int m, int n> static inline +Vec<_Tp, m> operator * (const Matx<_Tp, m, n>& a, const Vec<_Tp, n>& b) +{ + Matx<_Tp, m, 1> c(a, b, Matx_MatMulOp()); + return (const Vec<_Tp, m>&)(c); +} + +template<typename _Tp, int m, int n> static inline +bool operator == (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) +{ + for( int i = 0; i < m*n; i++ ) + if( a.val[i] != b.val[i] ) return false; + return true; +} + +template<typename _Tp, int m, int n> static inline +bool operator != (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) +{ + return !(a == b); +} + +//! @} + +////////////////////////////// Vec out-of-class operators //////////////////////////////// + +//! @relates cv::Vec +//! @{ + +template<typename _Tp1, typename _Tp2, int cn> static inline +Vec<_Tp1, cn>& operator += (Vec<_Tp1, cn>& a, const Vec<_Tp2, cn>& b) +{ + for( int i = 0; i < cn; i++ ) + a.val[i] = saturate_cast<_Tp1>(a.val[i] + b.val[i]); + return a; +} + +template<typename _Tp1, typename _Tp2, int cn> static inline +Vec<_Tp1, cn>& operator -= (Vec<_Tp1, cn>& a, const Vec<_Tp2, cn>& b) +{ + for( int i = 0; i < cn; i++ ) + a.val[i] = saturate_cast<_Tp1>(a.val[i] - b.val[i]); + return a; +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator + (const Vec<_Tp, cn>& a, const Vec<_Tp, cn>& b) +{ + return Vec<_Tp, cn>(a, b, Matx_AddOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator - (const Vec<_Tp, cn>& a, const Vec<_Tp, cn>& b) +{ + return Vec<_Tp, cn>(a, b, Matx_SubOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, int alpha) +{ + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*alpha); + return a; +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, float alpha) +{ + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*alpha); + return a; +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, double alpha) +{ + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*alpha); + return a; +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, int alpha) +{ + double ialpha = 1./alpha; + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*ialpha); + return a; +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, float alpha) +{ + float ialpha = 1.f/alpha; + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*ialpha); + return a; +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, double alpha) +{ + double ialpha = 1./alpha; + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*ialpha); + return a; +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, int alpha) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator * (int alpha, const Vec<_Tp, cn>& a) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, float alpha) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator * (float alpha, const Vec<_Tp, cn>& a) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, double alpha) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator * (double alpha, const Vec<_Tp, cn>& a) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, int alpha) +{ + return Vec<_Tp, cn>(a, 1./alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, float alpha) +{ + return Vec<_Tp, cn>(a, 1.f/alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, double alpha) +{ + return Vec<_Tp, cn>(a, 1./alpha, Matx_ScaleOp()); +} + +template<typename _Tp, int cn> static inline +Vec<_Tp, cn> operator - (const Vec<_Tp, cn>& a) +{ + Vec<_Tp,cn> t; + for( int i = 0; i < cn; i++ ) t.val[i] = saturate_cast<_Tp>(-a.val[i]); + return t; +} + +template<typename _Tp> inline Vec<_Tp, 4> operator * (const Vec<_Tp, 4>& v1, const Vec<_Tp, 4>& v2) +{ + return Vec<_Tp, 4>(saturate_cast<_Tp>(v1[0]*v2[0] - v1[1]*v2[1] - v1[2]*v2[2] - v1[3]*v2[3]), + saturate_cast<_Tp>(v1[0]*v2[1] + v1[1]*v2[0] + v1[2]*v2[3] - v1[3]*v2[2]), + saturate_cast<_Tp>(v1[0]*v2[2] - v1[1]*v2[3] + v1[2]*v2[0] + v1[3]*v2[1]), + saturate_cast<_Tp>(v1[0]*v2[3] + v1[1]*v2[2] - v1[2]*v2[1] + v1[3]*v2[0])); +} + +template<typename _Tp> inline Vec<_Tp, 4>& operator *= (Vec<_Tp, 4>& v1, const Vec<_Tp, 4>& v2) +{ + v1 = v1 * v2; + return v1; +} + +//! @} + +} // cv + +#endif // OPENCV_CORE_MATX_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/neon_utils.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,128 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_NEON_UTILS_HPP +#define OPENCV_HAL_NEON_UTILS_HPP + +#include "opencv2/core/cvdef.h" + +//! @addtogroup core_utils_neon +//! @{ + +#if CV_NEON + +inline int32x2_t cv_vrnd_s32_f32(float32x2_t v) +{ + static int32x2_t v_sign = vdup_n_s32(1 << 31), + v_05 = vreinterpret_s32_f32(vdup_n_f32(0.5f)); + + int32x2_t v_addition = vorr_s32(v_05, vand_s32(v_sign, vreinterpret_s32_f32(v))); + return vcvt_s32_f32(vadd_f32(v, vreinterpret_f32_s32(v_addition))); +} + +inline int32x4_t cv_vrndq_s32_f32(float32x4_t v) +{ + static int32x4_t v_sign = vdupq_n_s32(1 << 31), + v_05 = vreinterpretq_s32_f32(vdupq_n_f32(0.5f)); + + int32x4_t v_addition = vorrq_s32(v_05, vandq_s32(v_sign, vreinterpretq_s32_f32(v))); + return vcvtq_s32_f32(vaddq_f32(v, vreinterpretq_f32_s32(v_addition))); +} + +inline uint32x2_t cv_vrnd_u32_f32(float32x2_t v) +{ + static float32x2_t v_05 = vdup_n_f32(0.5f); + return vcvt_u32_f32(vadd_f32(v, v_05)); +} + +inline uint32x4_t cv_vrndq_u32_f32(float32x4_t v) +{ + static float32x4_t v_05 = vdupq_n_f32(0.5f); + return vcvtq_u32_f32(vaddq_f32(v, v_05)); +} + +inline float32x4_t cv_vrecpq_f32(float32x4_t val) +{ + float32x4_t reciprocal = vrecpeq_f32(val); + reciprocal = vmulq_f32(vrecpsq_f32(val, reciprocal), reciprocal); + reciprocal = vmulq_f32(vrecpsq_f32(val, reciprocal), reciprocal); + return reciprocal; +} + +inline float32x2_t cv_vrecp_f32(float32x2_t val) +{ + float32x2_t reciprocal = vrecpe_f32(val); + reciprocal = vmul_f32(vrecps_f32(val, reciprocal), reciprocal); + reciprocal = vmul_f32(vrecps_f32(val, reciprocal), reciprocal); + return reciprocal; +} + +inline float32x4_t cv_vrsqrtq_f32(float32x4_t val) +{ + float32x4_t e = vrsqrteq_f32(val); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(e, e), val), e); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(e, e), val), e); + return e; +} + +inline float32x2_t cv_vrsqrt_f32(float32x2_t val) +{ + float32x2_t e = vrsqrte_f32(val); + e = vmul_f32(vrsqrts_f32(vmul_f32(e, e), val), e); + e = vmul_f32(vrsqrts_f32(vmul_f32(e, e), val), e); + return e; +} + +inline float32x4_t cv_vsqrtq_f32(float32x4_t val) +{ + return cv_vrecpq_f32(cv_vrsqrtq_f32(val)); +} + +inline float32x2_t cv_vsqrt_f32(float32x2_t val) +{ + return cv_vrecp_f32(cv_vrsqrt_f32(val)); +} + +#endif + +//! @} + +#endif // OPENCV_HAL_NEON_UTILS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/ocl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,757 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the OpenCV Foundation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OPENCL_HPP +#define OPENCV_OPENCL_HPP + +#include "opencv2/core.hpp" + +namespace cv { namespace ocl { + +//! @addtogroup core_opencl +//! @{ + +CV_EXPORTS_W bool haveOpenCL(); +CV_EXPORTS_W bool useOpenCL(); +CV_EXPORTS_W bool haveAmdBlas(); +CV_EXPORTS_W bool haveAmdFft(); +CV_EXPORTS_W void setUseOpenCL(bool flag); +CV_EXPORTS_W void finish(); + +CV_EXPORTS bool haveSVM(); + +class CV_EXPORTS Context; +class CV_EXPORTS Device; +class CV_EXPORTS Kernel; +class CV_EXPORTS Program; +class CV_EXPORTS ProgramSource; +class CV_EXPORTS Queue; +class CV_EXPORTS PlatformInfo; +class CV_EXPORTS Image2D; + +class CV_EXPORTS Device +{ +public: + Device(); + explicit Device(void* d); + Device(const Device& d); + Device& operator = (const Device& d); + ~Device(); + + void set(void* d); + + enum + { + TYPE_DEFAULT = (1 << 0), + TYPE_CPU = (1 << 1), + TYPE_GPU = (1 << 2), + TYPE_ACCELERATOR = (1 << 3), + TYPE_DGPU = TYPE_GPU + (1 << 16), + TYPE_IGPU = TYPE_GPU + (1 << 17), + TYPE_ALL = 0xFFFFFFFF + }; + + String name() const; + String extensions() const; + String version() const; + String vendorName() const; + String OpenCL_C_Version() const; + String OpenCLVersion() const; + int deviceVersionMajor() const; + int deviceVersionMinor() const; + String driverVersion() const; + void* ptr() const; + + int type() const; + + int addressBits() const; + bool available() const; + bool compilerAvailable() const; + bool linkerAvailable() const; + + enum + { + FP_DENORM=(1 << 0), + FP_INF_NAN=(1 << 1), + FP_ROUND_TO_NEAREST=(1 << 2), + FP_ROUND_TO_ZERO=(1 << 3), + FP_ROUND_TO_INF=(1 << 4), + FP_FMA=(1 << 5), + FP_SOFT_FLOAT=(1 << 6), + FP_CORRECTLY_ROUNDED_DIVIDE_SQRT=(1 << 7) + }; + int doubleFPConfig() const; + int singleFPConfig() const; + int halfFPConfig() const; + + bool endianLittle() const; + bool errorCorrectionSupport() const; + + enum + { + EXEC_KERNEL=(1 << 0), + EXEC_NATIVE_KERNEL=(1 << 1) + }; + int executionCapabilities() const; + + size_t globalMemCacheSize() const; + + enum + { + NO_CACHE=0, + READ_ONLY_CACHE=1, + READ_WRITE_CACHE=2 + }; + int globalMemCacheType() const; + int globalMemCacheLineSize() const; + size_t globalMemSize() const; + + size_t localMemSize() const; + enum + { + NO_LOCAL_MEM=0, + LOCAL_IS_LOCAL=1, + LOCAL_IS_GLOBAL=2 + }; + int localMemType() const; + bool hostUnifiedMemory() const; + + bool imageSupport() const; + + bool imageFromBufferSupport() const; + uint imagePitchAlignment() const; + uint imageBaseAddressAlignment() const; + + size_t image2DMaxWidth() const; + size_t image2DMaxHeight() const; + + size_t image3DMaxWidth() const; + size_t image3DMaxHeight() const; + size_t image3DMaxDepth() const; + + size_t imageMaxBufferSize() const; + size_t imageMaxArraySize() const; + + enum + { + UNKNOWN_VENDOR=0, + VENDOR_AMD=1, + VENDOR_INTEL=2, + VENDOR_NVIDIA=3 + }; + int vendorID() const; + // FIXIT + // dev.isAMD() doesn't work for OpenCL CPU devices from AMD OpenCL platform. + // This method should use platform name instead of vendor name. + // After fix restore code in arithm.cpp: ocl_compare() + inline bool isAMD() const { return vendorID() == VENDOR_AMD; } + inline bool isIntel() const { return vendorID() == VENDOR_INTEL; } + inline bool isNVidia() const { return vendorID() == VENDOR_NVIDIA; } + + int maxClockFrequency() const; + int maxComputeUnits() const; + int maxConstantArgs() const; + size_t maxConstantBufferSize() const; + + size_t maxMemAllocSize() const; + size_t maxParameterSize() const; + + int maxReadImageArgs() const; + int maxWriteImageArgs() const; + int maxSamplers() const; + + size_t maxWorkGroupSize() const; + int maxWorkItemDims() const; + void maxWorkItemSizes(size_t*) const; + + int memBaseAddrAlign() const; + + int nativeVectorWidthChar() const; + int nativeVectorWidthShort() const; + int nativeVectorWidthInt() const; + int nativeVectorWidthLong() const; + int nativeVectorWidthFloat() const; + int nativeVectorWidthDouble() const; + int nativeVectorWidthHalf() const; + + int preferredVectorWidthChar() const; + int preferredVectorWidthShort() const; + int preferredVectorWidthInt() const; + int preferredVectorWidthLong() const; + int preferredVectorWidthFloat() const; + int preferredVectorWidthDouble() const; + int preferredVectorWidthHalf() const; + + size_t printfBufferSize() const; + size_t profilingTimerResolution() const; + + static const Device& getDefault(); + +protected: + struct Impl; + Impl* p; +}; + + +class CV_EXPORTS Context +{ +public: + Context(); + explicit Context(int dtype); + ~Context(); + Context(const Context& c); + Context& operator = (const Context& c); + + bool create(); + bool create(int dtype); + size_t ndevices() const; + const Device& device(size_t idx) const; + Program getProg(const ProgramSource& prog, + const String& buildopt, String& errmsg); + + static Context& getDefault(bool initialize = true); + void* ptr() const; + + friend void initializeContextFromHandle(Context& ctx, void* platform, void* context, void* device); + + bool useSVM() const; + void setUseSVM(bool enabled); + + struct Impl; + Impl* p; +}; + +class CV_EXPORTS Platform +{ +public: + Platform(); + ~Platform(); + Platform(const Platform& p); + Platform& operator = (const Platform& p); + + void* ptr() const; + static Platform& getDefault(); + + friend void initializeContextFromHandle(Context& ctx, void* platform, void* context, void* device); +protected: + struct Impl; + Impl* p; +}; + +/* +//! @brief Attaches OpenCL context to OpenCV +// +//! @note Note: +// OpenCV will check if available OpenCL platform has platformName name, +// then assign context to OpenCV and call clRetainContext function. +// The deviceID device will be used as target device and new command queue +// will be created. +// +// Params: +//! @param platformName - name of OpenCL platform to attach, +//! this string is used to check if platform is available +//! to OpenCV at runtime +//! @param platfromID - ID of platform attached context was created for +//! @param context - OpenCL context to be attached to OpenCV +//! @param deviceID - ID of device, must be created from attached context +*/ +CV_EXPORTS void attachContext(const String& platformName, void* platformID, void* context, void* deviceID); + +/* +//! @brief Convert OpenCL buffer to UMat +// +//! @note Note: +// OpenCL buffer (cl_mem_buffer) should contain 2D image data, compatible with OpenCV. +// Memory content is not copied from clBuffer to UMat. Instead, buffer handle assigned +// to UMat and clRetainMemObject is called. +// +// Params: +//! @param cl_mem_buffer - source clBuffer handle +//! @param step - num of bytes in single row +//! @param rows - number of rows +//! @param cols - number of cols +//! @param type - OpenCV type of image +//! @param dst - destination UMat +*/ +CV_EXPORTS void convertFromBuffer(void* cl_mem_buffer, size_t step, int rows, int cols, int type, UMat& dst); + +/* +//! @brief Convert OpenCL image2d_t to UMat +// +//! @note Note: +// OpenCL image2d_t (cl_mem_image), should be compatible with OpenCV +// UMat formats. +// Memory content is copied from image to UMat with +// clEnqueueCopyImageToBuffer function. +// +// Params: +//! @param cl_mem_image - source image2d_t handle +//! @param dst - destination UMat +*/ +CV_EXPORTS void convertFromImage(void* cl_mem_image, UMat& dst); + +// TODO Move to internal header +void initializeContextFromHandle(Context& ctx, void* platform, void* context, void* device); + +class CV_EXPORTS Queue +{ +public: + Queue(); + explicit Queue(const Context& c, const Device& d=Device()); + ~Queue(); + Queue(const Queue& q); + Queue& operator = (const Queue& q); + + bool create(const Context& c=Context(), const Device& d=Device()); + void finish(); + void* ptr() const; + static Queue& getDefault(); + +protected: + struct Impl; + Impl* p; +}; + + +class CV_EXPORTS KernelArg +{ +public: + enum { LOCAL=1, READ_ONLY=2, WRITE_ONLY=4, READ_WRITE=6, CONSTANT=8, PTR_ONLY = 16, NO_SIZE=256 }; + KernelArg(int _flags, UMat* _m, int wscale=1, int iwscale=1, const void* _obj=0, size_t _sz=0); + KernelArg(); + + static KernelArg Local() { return KernelArg(LOCAL, 0); } + static KernelArg PtrWriteOnly(const UMat& m) + { return KernelArg(PTR_ONLY+WRITE_ONLY, (UMat*)&m); } + static KernelArg PtrReadOnly(const UMat& m) + { return KernelArg(PTR_ONLY+READ_ONLY, (UMat*)&m); } + static KernelArg PtrReadWrite(const UMat& m) + { return KernelArg(PTR_ONLY+READ_WRITE, (UMat*)&m); } + static KernelArg ReadWrite(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(READ_WRITE, (UMat*)&m, wscale, iwscale); } + static KernelArg ReadWriteNoSize(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(READ_WRITE+NO_SIZE, (UMat*)&m, wscale, iwscale); } + static KernelArg ReadOnly(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(READ_ONLY, (UMat*)&m, wscale, iwscale); } + static KernelArg WriteOnly(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(WRITE_ONLY, (UMat*)&m, wscale, iwscale); } + static KernelArg ReadOnlyNoSize(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(READ_ONLY+NO_SIZE, (UMat*)&m, wscale, iwscale); } + static KernelArg WriteOnlyNoSize(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(WRITE_ONLY+NO_SIZE, (UMat*)&m, wscale, iwscale); } + static KernelArg Constant(const Mat& m); + template<typename _Tp> static KernelArg Constant(const _Tp* arr, size_t n) + { return KernelArg(CONSTANT, 0, 1, 1, (void*)arr, n); } + + int flags; + UMat* m; + const void* obj; + size_t sz; + int wscale, iwscale; +}; + + +class CV_EXPORTS Kernel +{ +public: + Kernel(); + Kernel(const char* kname, const Program& prog); + Kernel(const char* kname, const ProgramSource& prog, + const String& buildopts = String(), String* errmsg=0); + ~Kernel(); + Kernel(const Kernel& k); + Kernel& operator = (const Kernel& k); + + bool empty() const; + bool create(const char* kname, const Program& prog); + bool create(const char* kname, const ProgramSource& prog, + const String& buildopts, String* errmsg=0); + + int set(int i, const void* value, size_t sz); + int set(int i, const Image2D& image2D); + int set(int i, const UMat& m); + int set(int i, const KernelArg& arg); + template<typename _Tp> int set(int i, const _Tp& value) + { return set(i, &value, sizeof(value)); } + + template<typename _Tp0> + Kernel& args(const _Tp0& a0) + { + set(0, a0); return *this; + } + + template<typename _Tp0, typename _Tp1> + Kernel& args(const _Tp0& a0, const _Tp1& a1) + { + int i = set(0, a0); set(i, a1); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2) + { + int i = set(0, a0); i = set(i, a1); set(i, a2); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, typename _Tp4> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, + const _Tp3& a3, const _Tp4& a4) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); + i = set(i, a3); set(i, a4); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, + typename _Tp3, typename _Tp4, typename _Tp5> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, + const _Tp3& a3, const _Tp4& a4, const _Tp5& a5) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); + i = set(i, a3); i = set(i, a4); set(i, a5); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, + typename _Tp4, typename _Tp5, typename _Tp6> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); + i = set(i, a4); i = set(i, a5); set(i, a6); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, + typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); + i = set(i, a4); i = set(i, a5); i = set(i, a6); set(i, a7); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, typename _Tp4, + typename _Tp5, typename _Tp6, typename _Tp7, typename _Tp8> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); + i = set(i, a5); i = set(i, a6); i = set(i, a7); set(i, a8); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, typename _Tp4, + typename _Tp5, typename _Tp6, typename _Tp7, typename _Tp8, typename _Tp9> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); set(i, a9); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, + typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7, + typename _Tp8, typename _Tp9, typename _Tp10> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); set(i, a10); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, + typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7, + typename _Tp8, typename _Tp9, typename _Tp10, typename _Tp11> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); set(i, a11); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, + typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7, + typename _Tp8, typename _Tp9, typename _Tp10, typename _Tp11, typename _Tp12> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11, + const _Tp12& a12) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11); + set(i, a12); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, + typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7, + typename _Tp8, typename _Tp9, typename _Tp10, typename _Tp11, typename _Tp12, + typename _Tp13> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11, + const _Tp12& a12, const _Tp13& a13) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11); + i = set(i, a12); set(i, a13); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, + typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7, + typename _Tp8, typename _Tp9, typename _Tp10, typename _Tp11, typename _Tp12, + typename _Tp13, typename _Tp14> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11, + const _Tp12& a12, const _Tp13& a13, const _Tp14& a14) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11); + i = set(i, a12); i = set(i, a13); set(i, a14); return *this; + } + + template<typename _Tp0, typename _Tp1, typename _Tp2, typename _Tp3, + typename _Tp4, typename _Tp5, typename _Tp6, typename _Tp7, + typename _Tp8, typename _Tp9, typename _Tp10, typename _Tp11, typename _Tp12, + typename _Tp13, typename _Tp14, typename _Tp15> + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11, + const _Tp12& a12, const _Tp13& a13, const _Tp14& a14, const _Tp15& a15) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11); + i = set(i, a12); i = set(i, a13); i = set(i, a14); set(i, a15); return *this; + } + /* + Run the OpenCL kernel. + @param dims the work problem dimensions. It is the length of globalsize and localsize. It can be either 1, 2 or 3. + @param globalsize work items for each dimension. + It is not the final globalsize passed to OpenCL. + Each dimension will be adjusted to the nearest integer divisible by the corresponding value in localsize. + If localsize is NULL, it will still be adjusted depending on dims. + The adjusted values are greater than or equal to the original values. + @param localsize work-group size for each dimension. + @param sync specify whether to wait for OpenCL computation to finish before return. + @param q command queue + */ + bool run(int dims, size_t globalsize[], + size_t localsize[], bool sync, const Queue& q=Queue()); + bool runTask(bool sync, const Queue& q=Queue()); + + size_t workGroupSize() const; + size_t preferedWorkGroupSizeMultiple() const; + bool compileWorkGroupSize(size_t wsz[]) const; + size_t localMemSize() const; + + void* ptr() const; + struct Impl; + +protected: + Impl* p; +}; + +class CV_EXPORTS Program +{ +public: + Program(); + Program(const ProgramSource& src, + const String& buildflags, String& errmsg); + explicit Program(const String& buf); + Program(const Program& prog); + + Program& operator = (const Program& prog); + ~Program(); + + bool create(const ProgramSource& src, + const String& buildflags, String& errmsg); + bool read(const String& buf, const String& buildflags); + bool write(String& buf) const; + + const ProgramSource& source() const; + void* ptr() const; + + String getPrefix() const; + static String getPrefix(const String& buildflags); + +protected: + struct Impl; + Impl* p; +}; + + +class CV_EXPORTS ProgramSource +{ +public: + typedef uint64 hash_t; + + ProgramSource(); + explicit ProgramSource(const String& prog); + explicit ProgramSource(const char* prog); + ~ProgramSource(); + ProgramSource(const ProgramSource& prog); + ProgramSource& operator = (const ProgramSource& prog); + + const String& source() const; + hash_t hash() const; + +protected: + struct Impl; + Impl* p; +}; + +class CV_EXPORTS PlatformInfo +{ +public: + PlatformInfo(); + explicit PlatformInfo(void* id); + ~PlatformInfo(); + + PlatformInfo(const PlatformInfo& i); + PlatformInfo& operator =(const PlatformInfo& i); + + String name() const; + String vendor() const; + String version() const; + int deviceNumber() const; + void getDevice(Device& device, int d) const; + +protected: + struct Impl; + Impl* p; +}; + +CV_EXPORTS const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf); +CV_EXPORTS const char* typeToStr(int t); +CV_EXPORTS const char* memopTypeToStr(int t); +CV_EXPORTS const char* vecopTypeToStr(int t); +CV_EXPORTS String kernelToStr(InputArray _kernel, int ddepth = -1, const char * name = NULL); +CV_EXPORTS void getPlatfomsInfo(std::vector<PlatformInfo>& platform_info); + + +enum OclVectorStrategy +{ + // all matrices have its own vector width + OCL_VECTOR_OWN = 0, + // all matrices have maximal vector width among all matrices + // (useful for cases when matrices have different data types) + OCL_VECTOR_MAX = 1, + + // default strategy + OCL_VECTOR_DEFAULT = OCL_VECTOR_OWN +}; + +CV_EXPORTS int predictOptimalVectorWidth(InputArray src1, InputArray src2 = noArray(), InputArray src3 = noArray(), + InputArray src4 = noArray(), InputArray src5 = noArray(), InputArray src6 = noArray(), + InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray(), + OclVectorStrategy strat = OCL_VECTOR_DEFAULT); + +CV_EXPORTS int checkOptimalVectorWidth(const int *vectorWidths, + InputArray src1, InputArray src2 = noArray(), InputArray src3 = noArray(), + InputArray src4 = noArray(), InputArray src5 = noArray(), InputArray src6 = noArray(), + InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray(), + OclVectorStrategy strat = OCL_VECTOR_DEFAULT); + +// with OCL_VECTOR_MAX strategy +CV_EXPORTS int predictOptimalVectorWidthMax(InputArray src1, InputArray src2 = noArray(), InputArray src3 = noArray(), + InputArray src4 = noArray(), InputArray src5 = noArray(), InputArray src6 = noArray(), + InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray()); + +CV_EXPORTS void buildOptionsAddMatrixDescription(String& buildOptions, const String& name, InputArray _m); + +class CV_EXPORTS Image2D +{ +public: + Image2D(); + + // src: The UMat from which to get image properties and data + // norm: Flag to enable the use of normalized channel data types + // alias: Flag indicating that the image should alias the src UMat. + // If true, changes to the image or src will be reflected in + // both objects. + explicit Image2D(const UMat &src, bool norm = false, bool alias = false); + Image2D(const Image2D & i); + ~Image2D(); + + Image2D & operator = (const Image2D & i); + + // Indicates if creating an aliased image should succeed. Depends on the + // underlying platform and the dimensions of the UMat. + static bool canCreateAlias(const UMat &u); + + // Indicates if the image format is supported. + static bool isFormatSupported(int depth, int cn, bool norm); + + void* ptr() const; +protected: + struct Impl; + Impl* p; +}; + + +CV_EXPORTS MatAllocator* getOpenCLAllocator(); + + +#ifdef __OPENCV_BUILD +namespace internal { + +CV_EXPORTS bool isOpenCLForced(); +#define OCL_FORCE_CHECK(condition) (cv::ocl::internal::isOpenCLForced() || (condition)) + +CV_EXPORTS bool isPerformanceCheckBypassed(); +#define OCL_PERFORMANCE_CHECK(condition) (cv::ocl::internal::isPerformanceCheckBypassed() || (condition)) + +CV_EXPORTS bool isCLBuffer(UMat& u); + +} // namespace internal +#endif + +//! @} + +}} + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/ocl_genbase.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,64 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the OpenCV Foundation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OPENCL_GENBASE_HPP +#define OPENCV_OPENCL_GENBASE_HPP + +namespace cv +{ +namespace ocl +{ + +//! @cond IGNORED + +struct ProgramEntry +{ + const char* name; + const char* programStr; + const char* programHash; +}; + +//! @endcond + +} +} + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/opengl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,729 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_OPENGL_HPP +#define OPENCV_CORE_OPENGL_HPP + +#ifndef __cplusplus +# error opengl.hpp header must be compiled as C++ +#endif + +#include "opencv2/core.hpp" +#include "ocl.hpp" + +namespace cv { namespace ogl { + +/** @addtogroup core_opengl +This section describes OpenGL interoperability. + +To enable OpenGL support, configure OpenCV using CMake with WITH_OPENGL=ON . Currently OpenGL is +supported only with WIN32, GTK and Qt backends on Windows and Linux (MacOS and Android are not +supported). For GTK backend gtkglext-1.0 library is required. + +To use OpenGL functionality you should first create OpenGL context (window or frame buffer). You can +do this with namedWindow function or with other OpenGL toolkit (GLUT, for example). +*/ +//! @{ + +/////////////////// OpenGL Objects /////////////////// + +/** @brief Smart pointer for OpenGL buffer object with reference counting. + +Buffer Objects are OpenGL objects that store an array of unformatted memory allocated by the OpenGL +context. These can be used to store vertex data, pixel data retrieved from images or the +framebuffer, and a variety of other things. + +ogl::Buffer has interface similar with Mat interface and represents 2D array memory. + +ogl::Buffer supports memory transfers between host and device and also can be mapped to CUDA memory. + */ +class CV_EXPORTS Buffer +{ +public: + /** @brief The target defines how you intend to use the buffer object. + */ + enum Target + { + ARRAY_BUFFER = 0x8892, //!< The buffer will be used as a source for vertex data + ELEMENT_ARRAY_BUFFER = 0x8893, //!< The buffer will be used for indices (in glDrawElements, for example) + PIXEL_PACK_BUFFER = 0x88EB, //!< The buffer will be used for reading from OpenGL textures + PIXEL_UNPACK_BUFFER = 0x88EC //!< The buffer will be used for writing to OpenGL textures + }; + + enum Access + { + READ_ONLY = 0x88B8, + WRITE_ONLY = 0x88B9, + READ_WRITE = 0x88BA + }; + + /** @brief The constructors. + + Creates empty ogl::Buffer object, creates ogl::Buffer object from existed buffer ( abufId + parameter), allocates memory for ogl::Buffer object or copies from host/device memory. + */ + Buffer(); + + /** @overload + @param arows Number of rows in a 2D array. + @param acols Number of columns in a 2D array. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param abufId Buffer object name. + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Buffer(int arows, int acols, int atype, unsigned int abufId, bool autoRelease = false); + + /** @overload + @param asize 2D array size. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param abufId Buffer object name. + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Buffer(Size asize, int atype, unsigned int abufId, bool autoRelease = false); + + /** @overload + @param arows Number of rows in a 2D array. + @param acols Number of columns in a 2D array. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Buffer(int arows, int acols, int atype, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @overload + @param asize 2D array size. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Buffer(Size asize, int atype, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @overload + @param arr Input array (host or device memory, it can be Mat , cuda::GpuMat or std::vector ). + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + explicit Buffer(InputArray arr, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @brief Allocates memory for ogl::Buffer object. + + @param arows Number of rows in a 2D array. + @param acols Number of columns in a 2D array. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void create(int arows, int acols, int atype, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @overload + @param asize 2D array size. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void create(Size asize, int atype, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @brief Decrements the reference counter and destroys the buffer object if needed. + + The function will call setAutoRelease(true) . + */ + void release(); + + /** @brief Sets auto release mode. + + The lifetime of the OpenGL object is tied to the lifetime of the context. If OpenGL context was + bound to a window it could be released at any time (user can close a window). If object's destructor + is called after destruction of the context it will cause an error. Thus ogl::Buffer doesn't destroy + OpenGL object in destructor by default (all OpenGL resources will be released with OpenGL context). + This function can force ogl::Buffer destructor to destroy OpenGL object. + @param flag Auto release mode (if true, release will be called in object's destructor). + */ + void setAutoRelease(bool flag); + + /** @brief Copies from host/device memory to OpenGL buffer. + @param arr Input array (host or device memory, it can be Mat , cuda::GpuMat or std::vector ). + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void copyFrom(InputArray arr, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @overload */ + void copyFrom(InputArray arr, cuda::Stream& stream, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @brief Copies from OpenGL buffer to host/device memory or another OpenGL buffer object. + + @param arr Destination array (host or device memory, can be Mat , cuda::GpuMat , std::vector or + ogl::Buffer ). + */ + void copyTo(OutputArray arr) const; + + /** @overload */ + void copyTo(OutputArray arr, cuda::Stream& stream) const; + + /** @brief Creates a full copy of the buffer object and the underlying data. + + @param target Buffer usage for destination buffer. + @param autoRelease Auto release mode for destination buffer. + */ + Buffer clone(Target target = ARRAY_BUFFER, bool autoRelease = false) const; + + /** @brief Binds OpenGL buffer to the specified buffer binding point. + + @param target Binding point. See cv::ogl::Buffer::Target . + */ + void bind(Target target) const; + + /** @brief Unbind any buffers from the specified binding point. + + @param target Binding point. See cv::ogl::Buffer::Target . + */ + static void unbind(Target target); + + /** @brief Maps OpenGL buffer to host memory. + + mapHost maps to the client's address space the entire data store of the buffer object. The data can + then be directly read and/or written relative to the returned pointer, depending on the specified + access policy. + + A mapped data store must be unmapped with ogl::Buffer::unmapHost before its buffer object is used. + + This operation can lead to memory transfers between host and device. + + Only one buffer object can be mapped at a time. + @param access Access policy, indicating whether it will be possible to read from, write to, or both + read from and write to the buffer object's mapped data store. The symbolic constant must be + ogl::Buffer::READ_ONLY , ogl::Buffer::WRITE_ONLY or ogl::Buffer::READ_WRITE . + */ + Mat mapHost(Access access); + + /** @brief Unmaps OpenGL buffer. + */ + void unmapHost(); + + //! map to device memory (blocking) + cuda::GpuMat mapDevice(); + void unmapDevice(); + + /** @brief Maps OpenGL buffer to CUDA device memory. + + This operatation doesn't copy data. Several buffer objects can be mapped to CUDA memory at a time. + + A mapped data store must be unmapped with ogl::Buffer::unmapDevice before its buffer object is used. + */ + cuda::GpuMat mapDevice(cuda::Stream& stream); + + /** @brief Unmaps OpenGL buffer. + */ + void unmapDevice(cuda::Stream& stream); + + int rows() const; + int cols() const; + Size size() const; + bool empty() const; + + int type() const; + int depth() const; + int channels() const; + int elemSize() const; + int elemSize1() const; + + //! get OpenGL opject id + unsigned int bufId() const; + + class Impl; + +private: + Ptr<Impl> impl_; + int rows_; + int cols_; + int type_; +}; + +/** @brief Smart pointer for OpenGL 2D texture memory with reference counting. + */ +class CV_EXPORTS Texture2D +{ +public: + /** @brief An Image Format describes the way that the images in Textures store their data. + */ + enum Format + { + NONE = 0, + DEPTH_COMPONENT = 0x1902, //!< Depth + RGB = 0x1907, //!< Red, Green, Blue + RGBA = 0x1908 //!< Red, Green, Blue, Alpha + }; + + /** @brief The constructors. + + Creates empty ogl::Texture2D object, allocates memory for ogl::Texture2D object or copies from + host/device memory. + */ + Texture2D(); + + /** @overload */ + Texture2D(int arows, int acols, Format aformat, unsigned int atexId, bool autoRelease = false); + + /** @overload */ + Texture2D(Size asize, Format aformat, unsigned int atexId, bool autoRelease = false); + + /** @overload + @param arows Number of rows. + @param acols Number of columns. + @param aformat Image format. See cv::ogl::Texture2D::Format . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Texture2D(int arows, int acols, Format aformat, bool autoRelease = false); + + /** @overload + @param asize 2D array size. + @param aformat Image format. See cv::ogl::Texture2D::Format . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Texture2D(Size asize, Format aformat, bool autoRelease = false); + + /** @overload + @param arr Input array (host or device memory, it can be Mat , cuda::GpuMat or ogl::Buffer ). + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + explicit Texture2D(InputArray arr, bool autoRelease = false); + + /** @brief Allocates memory for ogl::Texture2D object. + + @param arows Number of rows. + @param acols Number of columns. + @param aformat Image format. See cv::ogl::Texture2D::Format . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void create(int arows, int acols, Format aformat, bool autoRelease = false); + /** @overload + @param asize 2D array size. + @param aformat Image format. See cv::ogl::Texture2D::Format . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void create(Size asize, Format aformat, bool autoRelease = false); + + /** @brief Decrements the reference counter and destroys the texture object if needed. + + The function will call setAutoRelease(true) . + */ + void release(); + + /** @brief Sets auto release mode. + + @param flag Auto release mode (if true, release will be called in object's destructor). + + The lifetime of the OpenGL object is tied to the lifetime of the context. If OpenGL context was + bound to a window it could be released at any time (user can close a window). If object's destructor + is called after destruction of the context it will cause an error. Thus ogl::Texture2D doesn't + destroy OpenGL object in destructor by default (all OpenGL resources will be released with OpenGL + context). This function can force ogl::Texture2D destructor to destroy OpenGL object. + */ + void setAutoRelease(bool flag); + + /** @brief Copies from host/device memory to OpenGL texture. + + @param arr Input array (host or device memory, it can be Mat , cuda::GpuMat or ogl::Buffer ). + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void copyFrom(InputArray arr, bool autoRelease = false); + + /** @brief Copies from OpenGL texture to host/device memory or another OpenGL texture object. + + @param arr Destination array (host or device memory, can be Mat , cuda::GpuMat , ogl::Buffer or + ogl::Texture2D ). + @param ddepth Destination depth. + @param autoRelease Auto release mode for destination buffer (if arr is OpenGL buffer or texture). + */ + void copyTo(OutputArray arr, int ddepth = CV_32F, bool autoRelease = false) const; + + /** @brief Binds texture to current active texture unit for GL_TEXTURE_2D target. + */ + void bind() const; + + int rows() const; + int cols() const; + Size size() const; + bool empty() const; + + Format format() const; + + //! get OpenGL opject id + unsigned int texId() const; + + class Impl; + +private: + Ptr<Impl> impl_; + int rows_; + int cols_; + Format format_; +}; + +/** @brief Wrapper for OpenGL Client-Side Vertex arrays. + +ogl::Arrays stores vertex data in ogl::Buffer objects. + */ +class CV_EXPORTS Arrays +{ +public: + /** @brief Default constructor + */ + Arrays(); + + /** @brief Sets an array of vertex coordinates. + @param vertex array with vertex coordinates, can be both host and device memory. + */ + void setVertexArray(InputArray vertex); + + /** @brief Resets vertex coordinates. + */ + void resetVertexArray(); + + /** @brief Sets an array of vertex colors. + @param color array with vertex colors, can be both host and device memory. + */ + void setColorArray(InputArray color); + + /** @brief Resets vertex colors. + */ + void resetColorArray(); + + /** @brief Sets an array of vertex normals. + @param normal array with vertex normals, can be both host and device memory. + */ + void setNormalArray(InputArray normal); + + /** @brief Resets vertex normals. + */ + void resetNormalArray(); + + /** @brief Sets an array of vertex texture coordinates. + @param texCoord array with vertex texture coordinates, can be both host and device memory. + */ + void setTexCoordArray(InputArray texCoord); + + /** @brief Resets vertex texture coordinates. + */ + void resetTexCoordArray(); + + /** @brief Releases all inner buffers. + */ + void release(); + + /** @brief Sets auto release mode all inner buffers. + @param flag Auto release mode. + */ + void setAutoRelease(bool flag); + + /** @brief Binds all vertex arrays. + */ + void bind() const; + + /** @brief Returns the vertex count. + */ + int size() const; + bool empty() const; + +private: + int size_; + Buffer vertex_; + Buffer color_; + Buffer normal_; + Buffer texCoord_; +}; + +/////////////////// Render Functions /////////////////// + +//! render mode +enum RenderModes { + POINTS = 0x0000, + LINES = 0x0001, + LINE_LOOP = 0x0002, + LINE_STRIP = 0x0003, + TRIANGLES = 0x0004, + TRIANGLE_STRIP = 0x0005, + TRIANGLE_FAN = 0x0006, + QUADS = 0x0007, + QUAD_STRIP = 0x0008, + POLYGON = 0x0009 +}; + +/** @brief Render OpenGL texture or primitives. +@param tex Texture to draw. +@param wndRect Region of window, where to draw a texture (normalized coordinates). +@param texRect Region of texture to draw (normalized coordinates). + */ +CV_EXPORTS void render(const Texture2D& tex, + Rect_<double> wndRect = Rect_<double>(0.0, 0.0, 1.0, 1.0), + Rect_<double> texRect = Rect_<double>(0.0, 0.0, 1.0, 1.0)); + +/** @overload +@param arr Array of privitives vertices. +@param mode Render mode. One of cv::ogl::RenderModes +@param color Color for all vertices. Will be used if arr doesn't contain color array. +*/ +CV_EXPORTS void render(const Arrays& arr, int mode = POINTS, Scalar color = Scalar::all(255)); + +/** @overload +@param arr Array of privitives vertices. +@param indices Array of vertices indices (host or device memory). +@param mode Render mode. One of cv::ogl::RenderModes +@param color Color for all vertices. Will be used if arr doesn't contain color array. +*/ +CV_EXPORTS void render(const Arrays& arr, InputArray indices, int mode = POINTS, Scalar color = Scalar::all(255)); + +/////////////////// CL-GL Interoperability Functions /////////////////// + +namespace ocl { +using namespace cv::ocl; + +// TODO static functions in the Context class +/** @brief Creates OpenCL context from GL. +@return Returns reference to OpenCL Context + */ +CV_EXPORTS Context& initializeContextFromGL(); + +} // namespace cv::ogl::ocl + +/** @brief Converts InputArray to Texture2D object. +@param src - source InputArray. +@param texture - destination Texture2D object. + */ +CV_EXPORTS void convertToGLTexture2D(InputArray src, Texture2D& texture); + +/** @brief Converts Texture2D object to OutputArray. +@param texture - source Texture2D object. +@param dst - destination OutputArray. + */ +CV_EXPORTS void convertFromGLTexture2D(const Texture2D& texture, OutputArray dst); + +/** @brief Maps Buffer object to process on CL side (convert to UMat). + +Function creates CL buffer from GL one, and then constructs UMat that can be used +to process buffer data with OpenCV functions. Note that in current implementation +UMat constructed this way doesn't own corresponding GL buffer object, so it is +the user responsibility to close down CL/GL buffers relationships by explicitly +calling unmapGLBuffer() function. +@param buffer - source Buffer object. +@param accessFlags - data access flags (ACCESS_READ|ACCESS_WRITE). +@return Returns UMat object + */ +CV_EXPORTS UMat mapGLBuffer(const Buffer& buffer, int accessFlags = ACCESS_READ|ACCESS_WRITE); + +/** @brief Unmaps Buffer object (releases UMat, previously mapped from Buffer). + +Function must be called explicitly by the user for each UMat previously constructed +by the call to mapGLBuffer() function. +@param u - source UMat, created by mapGLBuffer(). + */ +CV_EXPORTS void unmapGLBuffer(UMat& u); + +}} // namespace cv::ogl + +namespace cv { namespace cuda { + +//! @addtogroup cuda +//! @{ + +/** @brief Sets a CUDA device and initializes it for the current thread with OpenGL interoperability. + +This function should be explicitly called after OpenGL context creation and before any CUDA calls. +@param device System index of a CUDA device starting with 0. +@ingroup core_opengl + */ +CV_EXPORTS void setGlDevice(int device = 0); + +//! @} + +}} + +//! @cond IGNORED + +//////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////// + +inline +cv::ogl::Buffer::Buffer(int arows, int acols, int atype, Target target, bool autoRelease) : rows_(0), cols_(0), type_(0) +{ + create(arows, acols, atype, target, autoRelease); +} + +inline +cv::ogl::Buffer::Buffer(Size asize, int atype, Target target, bool autoRelease) : rows_(0), cols_(0), type_(0) +{ + create(asize, atype, target, autoRelease); +} + +inline +void cv::ogl::Buffer::create(Size asize, int atype, Target target, bool autoRelease) +{ + create(asize.height, asize.width, atype, target, autoRelease); +} + +inline +int cv::ogl::Buffer::rows() const +{ + return rows_; +} + +inline +int cv::ogl::Buffer::cols() const +{ + return cols_; +} + +inline +cv::Size cv::ogl::Buffer::size() const +{ + return Size(cols_, rows_); +} + +inline +bool cv::ogl::Buffer::empty() const +{ + return rows_ == 0 || cols_ == 0; +} + +inline +int cv::ogl::Buffer::type() const +{ + return type_; +} + +inline +int cv::ogl::Buffer::depth() const +{ + return CV_MAT_DEPTH(type_); +} + +inline +int cv::ogl::Buffer::channels() const +{ + return CV_MAT_CN(type_); +} + +inline +int cv::ogl::Buffer::elemSize() const +{ + return CV_ELEM_SIZE(type_); +} + +inline +int cv::ogl::Buffer::elemSize1() const +{ + return CV_ELEM_SIZE1(type_); +} + +/////// + +inline +cv::ogl::Texture2D::Texture2D(int arows, int acols, Format aformat, bool autoRelease) : rows_(0), cols_(0), format_(NONE) +{ + create(arows, acols, aformat, autoRelease); +} + +inline +cv::ogl::Texture2D::Texture2D(Size asize, Format aformat, bool autoRelease) : rows_(0), cols_(0), format_(NONE) +{ + create(asize, aformat, autoRelease); +} + +inline +void cv::ogl::Texture2D::create(Size asize, Format aformat, bool autoRelease) +{ + create(asize.height, asize.width, aformat, autoRelease); +} + +inline +int cv::ogl::Texture2D::rows() const +{ + return rows_; +} + +inline +int cv::ogl::Texture2D::cols() const +{ + return cols_; +} + +inline +cv::Size cv::ogl::Texture2D::size() const +{ + return Size(cols_, rows_); +} + +inline +bool cv::ogl::Texture2D::empty() const +{ + return rows_ == 0 || cols_ == 0; +} + +inline +cv::ogl::Texture2D::Format cv::ogl::Texture2D::format() const +{ + return format_; +} + +/////// + +inline +cv::ogl::Arrays::Arrays() : size_(0) +{ +} + +inline +int cv::ogl::Arrays::size() const +{ + return size_; +} + +inline +bool cv::ogl::Arrays::empty() const +{ + return size_ == 0; +} + +//! @endcond + +#endif /* OPENCV_CORE_OPENGL_HPP */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/operations.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,530 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_OPERATIONS_HPP +#define OPENCV_CORE_OPERATIONS_HPP + +#ifndef __cplusplus +# error operations.hpp header must be compiled as C++ +#endif + +#include <cstdio> + +//! @cond IGNORED + +namespace cv +{ + +////////////////////////////// Matx methods depending on core API ///////////////////////////// + +namespace internal +{ + +template<typename _Tp, int m> struct Matx_FastInvOp +{ + bool operator()(const Matx<_Tp, m, m>& a, Matx<_Tp, m, m>& b, int method) const + { + Matx<_Tp, m, m> temp = a; + + // assume that b is all 0's on input => make it a unity matrix + for( int i = 0; i < m; i++ ) + b(i, i) = (_Tp)1; + + if( method == DECOMP_CHOLESKY ) + return Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m); + + return LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0; + } +}; + +template<typename _Tp> struct Matx_FastInvOp<_Tp, 2> +{ + bool operator()(const Matx<_Tp, 2, 2>& a, Matx<_Tp, 2, 2>& b, int) const + { + _Tp d = determinant(a); + if( d == 0 ) + return false; + d = 1/d; + b(1,1) = a(0,0)*d; + b(0,0) = a(1,1)*d; + b(0,1) = -a(0,1)*d; + b(1,0) = -a(1,0)*d; + return true; + } +}; + +template<typename _Tp> struct Matx_FastInvOp<_Tp, 3> +{ + bool operator()(const Matx<_Tp, 3, 3>& a, Matx<_Tp, 3, 3>& b, int) const + { + _Tp d = (_Tp)determinant(a); + if( d == 0 ) + return false; + d = 1/d; + b(0,0) = (a(1,1) * a(2,2) - a(1,2) * a(2,1)) * d; + b(0,1) = (a(0,2) * a(2,1) - a(0,1) * a(2,2)) * d; + b(0,2) = (a(0,1) * a(1,2) - a(0,2) * a(1,1)) * d; + + b(1,0) = (a(1,2) * a(2,0) - a(1,0) * a(2,2)) * d; + b(1,1) = (a(0,0) * a(2,2) - a(0,2) * a(2,0)) * d; + b(1,2) = (a(0,2) * a(1,0) - a(0,0) * a(1,2)) * d; + + b(2,0) = (a(1,0) * a(2,1) - a(1,1) * a(2,0)) * d; + b(2,1) = (a(0,1) * a(2,0) - a(0,0) * a(2,1)) * d; + b(2,2) = (a(0,0) * a(1,1) - a(0,1) * a(1,0)) * d; + return true; + } +}; + + +template<typename _Tp, int m, int n> struct Matx_FastSolveOp +{ + bool operator()(const Matx<_Tp, m, m>& a, const Matx<_Tp, m, n>& b, + Matx<_Tp, m, n>& x, int method) const + { + Matx<_Tp, m, m> temp = a; + x = b; + if( method == DECOMP_CHOLESKY ) + return Cholesky(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n); + + return LU(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n) != 0; + } +}; + +template<typename _Tp> struct Matx_FastSolveOp<_Tp, 2, 1> +{ + bool operator()(const Matx<_Tp, 2, 2>& a, const Matx<_Tp, 2, 1>& b, + Matx<_Tp, 2, 1>& x, int) const + { + _Tp d = determinant(a); + if( d == 0 ) + return false; + d = 1/d; + x(0) = (b(0)*a(1,1) - b(1)*a(0,1))*d; + x(1) = (b(1)*a(0,0) - b(0)*a(1,0))*d; + return true; + } +}; + +template<typename _Tp> struct Matx_FastSolveOp<_Tp, 3, 1> +{ + bool operator()(const Matx<_Tp, 3, 3>& a, const Matx<_Tp, 3, 1>& b, + Matx<_Tp, 3, 1>& x, int) const + { + _Tp d = (_Tp)determinant(a); + if( d == 0 ) + return false; + d = 1/d; + x(0) = d*(b(0)*(a(1,1)*a(2,2) - a(1,2)*a(2,1)) - + a(0,1)*(b(1)*a(2,2) - a(1,2)*b(2)) + + a(0,2)*(b(1)*a(2,1) - a(1,1)*b(2))); + + x(1) = d*(a(0,0)*(b(1)*a(2,2) - a(1,2)*b(2)) - + b(0)*(a(1,0)*a(2,2) - a(1,2)*a(2,0)) + + a(0,2)*(a(1,0)*b(2) - b(1)*a(2,0))); + + x(2) = d*(a(0,0)*(a(1,1)*b(2) - b(1)*a(2,1)) - + a(0,1)*(a(1,0)*b(2) - b(1)*a(2,0)) + + b(0)*(a(1,0)*a(2,1) - a(1,1)*a(2,0))); + return true; + } +}; + +} // internal + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b) +{ + Matx<_Tp,m,n> M; + cv::randu(M, Scalar(a), Scalar(b)); + return M; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::randn(_Tp a, _Tp b) +{ + Matx<_Tp,m,n> M; + cv::randn(M, Scalar(a), Scalar(b)); + return M; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, n, m> Matx<_Tp, m, n>::inv(int method, bool *p_is_ok /*= NULL*/) const +{ + Matx<_Tp, n, m> b; + bool ok; + if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) + ok = cv::internal::Matx_FastInvOp<_Tp, m>()(*this, b, method); + else + { + Mat A(*this, false), B(b, false); + ok = (invert(A, B, method) != 0); + } + if( NULL != p_is_ok ) { *p_is_ok = ok; } + return ok ? b : Matx<_Tp, n, m>::zeros(); +} + +template<typename _Tp, int m, int n> template<int l> inline +Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) const +{ + Matx<_Tp, n, l> x; + bool ok; + if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) + ok = cv::internal::Matx_FastSolveOp<_Tp, m, l>()(*this, rhs, x, method); + else + { + Mat A(*this, false), B(rhs, false), X(x, false); + ok = cv::solve(A, B, X, method); + } + + return ok ? x : Matx<_Tp, n, l>::zeros(); +} + + + +////////////////////////// Augmenting algebraic & logical operations ////////////////////////// + +#define CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ + static inline A& operator op (A& a, const B& b) { cvop; return a; } + +#define CV_MAT_AUG_OPERATOR(op, cvop, A, B) \ + CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ + CV_MAT_AUG_OPERATOR1(op, cvop, const A, B) + +#define CV_MAT_AUG_OPERATOR_T(op, cvop, A, B) \ + template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ + template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, const A, B) + +CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat, Mat) +CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat_<_Tp>) +CV_MAT_AUG_OPERATOR (*=, a.convertTo(a, -1, b), Mat, double) +CV_MAT_AUG_OPERATOR_T(*=, a.convertTo(a, -1, b), Mat_<_Tp>, double) + +CV_MAT_AUG_OPERATOR (/=, cv::divide(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat_<_Tp>) +CV_MAT_AUG_OPERATOR (/=, a.convertTo((Mat&)a, -1, 1./b), Mat, double) +CV_MAT_AUG_OPERATOR_T(/=, a.convertTo((Mat&)a, -1, 1./b), Mat_<_Tp>, double) + +CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +#undef CV_MAT_AUG_OPERATOR_T +#undef CV_MAT_AUG_OPERATOR +#undef CV_MAT_AUG_OPERATOR1 + + + +///////////////////////////////////////////// SVD ///////////////////////////////////////////// + +inline SVD::SVD() {} +inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); } +inline void SVD::solveZ( InputArray m, OutputArray _dst ) +{ + Mat mtx = m.getMat(); + SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV)); + _dst.create(svd.vt.cols, 1, svd.vt.type()); + Mat dst = _dst.getMat(); + svd.vt.row(svd.vt.rows-1).reshape(1,svd.vt.cols).copyTo(dst); +} + +template<typename _Tp, int m, int n, int nm> inline void + SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt ) +{ + CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); + Mat _a(a, false), _u(u, false), _w(w, false), _vt(vt, false); + SVD::compute(_a, _w, _u, _vt); + CV_Assert(_w.data == (uchar*)&w.val[0] && _u.data == (uchar*)&u.val[0] && _vt.data == (uchar*)&vt.val[0]); +} + +template<typename _Tp, int m, int n, int nm> inline void +SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w ) +{ + CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); + Mat _a(a, false), _w(w, false); + SVD::compute(_a, _w); + CV_Assert(_w.data == (uchar*)&w.val[0]); +} + +template<typename _Tp, int m, int n, int nm, int nb> inline void +SVD::backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, + const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, + Matx<_Tp, n, nb>& dst ) +{ + CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); + Mat _u(u, false), _w(w, false), _vt(vt, false), _rhs(rhs, false), _dst(dst, false); + SVD::backSubst(_w, _u, _vt, _rhs, _dst); + CV_Assert(_dst.data == (uchar*)&dst.val[0]); +} + + + +/////////////////////////////////// Multiply-with-Carry RNG /////////////////////////////////// + +inline RNG::RNG() { state = 0xffffffff; } +inline RNG::RNG(uint64 _state) { state = _state ? _state : 0xffffffff; } + +inline RNG::operator uchar() { return (uchar)next(); } +inline RNG::operator schar() { return (schar)next(); } +inline RNG::operator ushort() { return (ushort)next(); } +inline RNG::operator short() { return (short)next(); } +inline RNG::operator int() { return (int)next(); } +inline RNG::operator unsigned() { return next(); } +inline RNG::operator float() { return next()*2.3283064365386962890625e-10f; } +inline RNG::operator double() { unsigned t = next(); return (((uint64)t << 32) | next()) * 5.4210108624275221700372640043497e-20; } + +inline unsigned RNG::operator ()(unsigned N) { return (unsigned)uniform(0,N); } +inline unsigned RNG::operator ()() { return next(); } + +inline int RNG::uniform(int a, int b) { return a == b ? a : (int)(next() % (b - a) + a); } +inline float RNG::uniform(float a, float b) { return ((float)*this)*(b - a) + a; } +inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; } + +inline unsigned RNG::next() +{ + state = (uint64)(unsigned)state* /*CV_RNG_COEFF*/ 4164903690U + (unsigned)(state >> 32); + return (unsigned)state; +} + +//! returns the next unifomly-distributed random number of the specified type +template<typename _Tp> static inline _Tp randu() +{ + return (_Tp)theRNG(); +} + +///////////////////////////////// Formatted string generation ///////////////////////////////// + +CV_EXPORTS String format( const char* fmt, ... ); + +///////////////////////////////// Formatted output of cv::Mat ///////////////////////////////// + +static inline +Ptr<Formatted> format(InputArray mtx, int fmt) +{ + return Formatter::get(fmt)->format(mtx.getMat()); +} + +static inline +int print(Ptr<Formatted> fmtd, FILE* stream = stdout) +{ + int written = 0; + fmtd->reset(); + for(const char* str = fmtd->next(); str; str = fmtd->next()) + written += fputs(str, stream); + + return written; +} + +static inline +int print(const Mat& mtx, FILE* stream = stdout) +{ + return print(Formatter::get()->format(mtx), stream); +} + +static inline +int print(const UMat& mtx, FILE* stream = stdout) +{ + return print(Formatter::get()->format(mtx.getMat(ACCESS_READ)), stream); +} + +template<typename _Tp> static inline +int print(const std::vector<Point_<_Tp> >& vec, FILE* stream = stdout) +{ + return print(Formatter::get()->format(Mat(vec)), stream); +} + +template<typename _Tp> static inline +int print(const std::vector<Point3_<_Tp> >& vec, FILE* stream = stdout) +{ + return print(Formatter::get()->format(Mat(vec)), stream); +} + +template<typename _Tp, int m, int n> static inline +int print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout) +{ + return print(Formatter::get()->format(cv::Mat(matx)), stream); +} + +//! @endcond + +/****************************************************************************************\ +* Auxiliary algorithms * +\****************************************************************************************/ + +/** @brief Splits an element set into equivalency classes. + +The generic function partition implements an \f$O(N^2)\f$ algorithm for splitting a set of \f$N\f$ elements +into one or more equivalency classes, as described in +<http://en.wikipedia.org/wiki/Disjoint-set_data_structure> . The function returns the number of +equivalency classes. +@param _vec Set of elements stored as a vector. +@param labels Output vector of labels. It contains as many elements as vec. Each label labels[i] is +a 0-based cluster index of `vec[i]`. +@param predicate Equivalence predicate (pointer to a boolean function of two arguments or an +instance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). The +predicate returns true when the elements are certainly in the same class, and returns false if they +may or may not be in the same class. +@ingroup core_cluster +*/ +template<typename _Tp, class _EqPredicate> int +partition( const std::vector<_Tp>& _vec, std::vector<int>& labels, + _EqPredicate predicate=_EqPredicate()) +{ + int i, j, N = (int)_vec.size(); + const _Tp* vec = &_vec[0]; + + const int PARENT=0; + const int RANK=1; + + std::vector<int> _nodes(N*2); + int (*nodes)[2] = (int(*)[2])&_nodes[0]; + + // The first O(N) pass: create N single-vertex trees + for(i = 0; i < N; i++) + { + nodes[i][PARENT]=-1; + nodes[i][RANK] = 0; + } + + // The main O(N^2) pass: merge connected components + for( i = 0; i < N; i++ ) + { + int root = i; + + // find root + while( nodes[root][PARENT] >= 0 ) + root = nodes[root][PARENT]; + + for( j = 0; j < N; j++ ) + { + if( i == j || !predicate(vec[i], vec[j])) + continue; + int root2 = j; + + while( nodes[root2][PARENT] >= 0 ) + root2 = nodes[root2][PARENT]; + + if( root2 != root ) + { + // unite both trees + int rank = nodes[root][RANK], rank2 = nodes[root2][RANK]; + if( rank > rank2 ) + nodes[root2][PARENT] = root; + else + { + nodes[root][PARENT] = root2; + nodes[root2][RANK] += rank == rank2; + root = root2; + } + CV_Assert( nodes[root][PARENT] < 0 ); + + int k = j, parent; + + // compress the path from node2 to root + while( (parent = nodes[k][PARENT]) >= 0 ) + { + nodes[k][PARENT] = root; + k = parent; + } + + // compress the path from node to root + k = i; + while( (parent = nodes[k][PARENT]) >= 0 ) + { + nodes[k][PARENT] = root; + k = parent; + } + } + } + } + + // Final O(N) pass: enumerate classes + labels.resize(N); + int nclasses = 0; + + for( i = 0; i < N; i++ ) + { + int root = i; + while( nodes[root][PARENT] >= 0 ) + root = nodes[root][PARENT]; + // re-use the rank as the class label + if( nodes[root][RANK] >= 0 ) + nodes[root][RANK] = ~nclasses++; + labels[i] = ~nodes[root][RANK]; + } + + return nclasses; +} + +} // cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/optim.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,302 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the OpenCV Foundation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OPTIM_HPP +#define OPENCV_OPTIM_HPP + +#include "opencv2/core.hpp" + +namespace cv +{ + +/** @addtogroup core_optim +The algorithms in this section minimize or maximize function value within specified constraints or +without any constraints. +@{ +*/ + +/** @brief Basic interface for all solvers + */ +class CV_EXPORTS MinProblemSolver : public Algorithm +{ +public: + /** @brief Represents function being optimized + */ + class CV_EXPORTS Function + { + public: + virtual ~Function() {} + virtual int getDims() const = 0; + virtual double getGradientEps() const; + virtual double calc(const double* x) const = 0; + virtual void getGradient(const double* x,double* grad); + }; + + /** @brief Getter for the optimized function. + + The optimized function is represented by Function interface, which requires derivatives to + implement the sole method calc(double*) to evaluate the function. + + @return Smart-pointer to an object that implements Function interface - it represents the + function that is being optimized. It can be empty, if no function was given so far. + */ + virtual Ptr<Function> getFunction() const = 0; + + /** @brief Setter for the optimized function. + + *It should be called at least once before the call to* minimize(), as default value is not usable. + + @param f The new function to optimize. + */ + virtual void setFunction(const Ptr<Function>& f) = 0; + + /** @brief Getter for the previously set terminal criteria for this algorithm. + + @return Deep copy of the terminal criteria used at the moment. + */ + virtual TermCriteria getTermCriteria() const = 0; + + /** @brief Set terminal criteria for solver. + + This method *is not necessary* to be called before the first call to minimize(), as the default + value is sensible. + + Algorithm stops when the number of function evaluations done exceeds termcrit.maxCount, when + the function values at the vertices of simplex are within termcrit.epsilon range or simplex + becomes so small that it can enclosed in a box with termcrit.epsilon sides, whatever comes + first. + @param termcrit Terminal criteria to be used, represented as cv::TermCriteria structure. + */ + virtual void setTermCriteria(const TermCriteria& termcrit) = 0; + + /** @brief actually runs the algorithm and performs the minimization. + + The sole input parameter determines the centroid of the starting simplex (roughly, it tells + where to start), all the others (terminal criteria, initial step, function to be minimized) are + supposed to be set via the setters before the call to this method or the default values (not + always sensible) will be used. + + @param x The initial point, that will become a centroid of an initial simplex. After the algorithm + will terminate, it will be setted to the point where the algorithm stops, the point of possible + minimum. + @return The value of a function at the point found. + */ + virtual double minimize(InputOutputArray x) = 0; +}; + +/** @brief This class is used to perform the non-linear non-constrained minimization of a function, + +defined on an `n`-dimensional Euclidean space, using the **Nelder-Mead method**, also known as +**downhill simplex method**. The basic idea about the method can be obtained from +<http://en.wikipedia.org/wiki/Nelder-Mead_method>. + +It should be noted, that this method, although deterministic, is rather a heuristic and therefore +may converge to a local minima, not necessary a global one. It is iterative optimization technique, +which at each step uses an information about the values of a function evaluated only at `n+1` +points, arranged as a *simplex* in `n`-dimensional space (hence the second name of the method). At +each step new point is chosen to evaluate function at, obtained value is compared with previous +ones and based on this information simplex changes it's shape , slowly moving to the local minimum. +Thus this method is using *only* function values to make decision, on contrary to, say, Nonlinear +Conjugate Gradient method (which is also implemented in optim). + +Algorithm stops when the number of function evaluations done exceeds termcrit.maxCount, when the +function values at the vertices of simplex are within termcrit.epsilon range or simplex becomes so +small that it can enclosed in a box with termcrit.epsilon sides, whatever comes first, for some +defined by user positive integer termcrit.maxCount and positive non-integer termcrit.epsilon. + +@note DownhillSolver is a derivative of the abstract interface +cv::MinProblemSolver, which in turn is derived from the Algorithm interface and is used to +encapsulate the functionality, common to all non-linear optimization algorithms in the optim +module. + +@note term criteria should meet following condition: +@code + termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) && termcrit.epsilon > 0 && termcrit.maxCount > 0 +@endcode + */ +class CV_EXPORTS DownhillSolver : public MinProblemSolver +{ +public: + /** @brief Returns the initial step that will be used in downhill simplex algorithm. + + @param step Initial step that will be used in algorithm. Note, that although corresponding setter + accepts column-vectors as well as row-vectors, this method will return a row-vector. + @see DownhillSolver::setInitStep + */ + virtual void getInitStep(OutputArray step) const=0; + + /** @brief Sets the initial step that will be used in downhill simplex algorithm. + + Step, together with initial point (givin in DownhillSolver::minimize) are two `n`-dimensional + vectors that are used to determine the shape of initial simplex. Roughly said, initial point + determines the position of a simplex (it will become simplex's centroid), while step determines the + spread (size in each dimension) of a simplex. To be more precise, if \f$s,x_0\in\mathbb{R}^n\f$ are + the initial step and initial point respectively, the vertices of a simplex will be: + \f$v_0:=x_0-\frac{1}{2} s\f$ and \f$v_i:=x_0+s_i\f$ for \f$i=1,2,\dots,n\f$ where \f$s_i\f$ denotes + projections of the initial step of *n*-th coordinate (the result of projection is treated to be + vector given by \f$s_i:=e_i\cdot\left<e_i\cdot s\right>\f$, where \f$e_i\f$ form canonical basis) + + @param step Initial step that will be used in algorithm. Roughly said, it determines the spread + (size in each dimension) of an initial simplex. + */ + virtual void setInitStep(InputArray step)=0; + + /** @brief This function returns the reference to the ready-to-use DownhillSolver object. + + All the parameters are optional, so this procedure can be called even without parameters at + all. In this case, the default values will be used. As default value for terminal criteria are + the only sensible ones, MinProblemSolver::setFunction() and DownhillSolver::setInitStep() + should be called upon the obtained object, if the respective parameters were not given to + create(). Otherwise, the two ways (give parameters to createDownhillSolver() or miss them out + and call the MinProblemSolver::setFunction() and DownhillSolver::setInitStep()) are absolutely + equivalent (and will drop the same errors in the same way, should invalid input be detected). + @param f Pointer to the function that will be minimized, similarly to the one you submit via + MinProblemSolver::setFunction. + @param initStep Initial step, that will be used to construct the initial simplex, similarly to the one + you submit via MinProblemSolver::setInitStep. + @param termcrit Terminal criteria to the algorithm, similarly to the one you submit via + MinProblemSolver::setTermCriteria. + */ + static Ptr<DownhillSolver> create(const Ptr<MinProblemSolver::Function>& f=Ptr<MinProblemSolver::Function>(), + InputArray initStep=Mat_<double>(1,1,0.0), + TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001)); +}; + +/** @brief This class is used to perform the non-linear non-constrained minimization of a function +with known gradient, + +defined on an *n*-dimensional Euclidean space, using the **Nonlinear Conjugate Gradient method**. +The implementation was done based on the beautifully clear explanatory article [An Introduction to +the Conjugate Gradient Method Without the Agonizing +Pain](http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf) by Jonathan Richard +Shewchuk. The method can be seen as an adaptation of a standard Conjugate Gradient method (see, for +example <http://en.wikipedia.org/wiki/Conjugate_gradient_method>) for numerically solving the +systems of linear equations. + +It should be noted, that this method, although deterministic, is rather a heuristic method and +therefore may converge to a local minima, not necessary a global one. What is even more disastrous, +most of its behaviour is ruled by gradient, therefore it essentially cannot distinguish between +local minima and maxima. Therefore, if it starts sufficiently near to the local maximum, it may +converge to it. Another obvious restriction is that it should be possible to compute the gradient of +a function at any point, thus it is preferable to have analytic expression for gradient and +computational burden should be born by the user. + +The latter responsibility is accompilished via the getGradient method of a +MinProblemSolver::Function interface (which represents function being optimized). This method takes +point a point in *n*-dimensional space (first argument represents the array of coordinates of that +point) and comput its gradient (it should be stored in the second argument as an array). + +@note class ConjGradSolver thus does not add any new methods to the basic MinProblemSolver interface. + +@note term criteria should meet following condition: +@code + termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) && termcrit.epsilon > 0 && termcrit.maxCount > 0 + // or + termcrit.type == TermCriteria::MAX_ITER) && termcrit.maxCount > 0 +@endcode + */ +class CV_EXPORTS ConjGradSolver : public MinProblemSolver +{ +public: + /** @brief This function returns the reference to the ready-to-use ConjGradSolver object. + + All the parameters are optional, so this procedure can be called even without parameters at + all. In this case, the default values will be used. As default value for terminal criteria are + the only sensible ones, MinProblemSolver::setFunction() should be called upon the obtained + object, if the function was not given to create(). Otherwise, the two ways (submit it to + create() or miss it out and call the MinProblemSolver::setFunction()) are absolutely equivalent + (and will drop the same errors in the same way, should invalid input be detected). + @param f Pointer to the function that will be minimized, similarly to the one you submit via + MinProblemSolver::setFunction. + @param termcrit Terminal criteria to the algorithm, similarly to the one you submit via + MinProblemSolver::setTermCriteria. + */ + static Ptr<ConjGradSolver> create(const Ptr<MinProblemSolver::Function>& f=Ptr<ConjGradSolver::Function>(), + TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001)); +}; + +//! return codes for cv::solveLP() function +enum SolveLPResult +{ + SOLVELP_UNBOUNDED = -2, //!< problem is unbounded (target function can achieve arbitrary high values) + SOLVELP_UNFEASIBLE = -1, //!< problem is unfeasible (there are no points that satisfy all the constraints imposed) + SOLVELP_SINGLE = 0, //!< there is only one maximum for target function + SOLVELP_MULTI = 1 //!< there are multiple maxima for target function - the arbitrary one is returned +}; + +/** @brief Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method). + +What we mean here by "linear programming problem" (or LP problem, for short) can be formulated as: + +\f[\mbox{Maximize } c\cdot x\\ + \mbox{Subject to:}\\ + Ax\leq b\\ + x\geq 0\f] + +Where \f$c\f$ is fixed `1`-by-`n` row-vector, \f$A\f$ is fixed `m`-by-`n` matrix, \f$b\f$ is fixed `m`-by-`1` +column vector and \f$x\f$ is an arbitrary `n`-by-`1` column vector, which satisfies the constraints. + +Simplex algorithm is one of many algorithms that are designed to handle this sort of problems +efficiently. Although it is not optimal in theoretical sense (there exist algorithms that can solve +any problem written as above in polynomial time, while simplex method degenerates to exponential +time for some special cases), it is well-studied, easy to implement and is shown to work well for +real-life purposes. + +The particular implementation is taken almost verbatim from **Introduction to Algorithms, third +edition** by T. H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein. In particular, the +Bland's rule <http://en.wikipedia.org/wiki/Bland%27s_rule> is used to prevent cycling. + +@param Func This row-vector corresponds to \f$c\f$ in the LP problem formulation (see above). It should +contain 32- or 64-bit floating point numbers. As a convenience, column-vector may be also submitted, +in the latter case it is understood to correspond to \f$c^T\f$. +@param Constr `m`-by-`n+1` matrix, whose rightmost column corresponds to \f$b\f$ in formulation above +and the remaining to \f$A\f$. It should containt 32- or 64-bit floating point numbers. +@param z The solution will be returned here as a column-vector - it corresponds to \f$c\f$ in the +formulation above. It will contain 64-bit floating point numbers. +@return One of cv::SolveLPResult + */ +CV_EXPORTS_W int solveLP(const Mat& Func, const Mat& Constr, Mat& z); + +//! @} + +}// cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/ovx.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,28 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +// Copyright (C) 2016, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. + +// OpenVX related definitions and declarations + +#pragma once +#ifndef OPENCV_OVX_HPP +#define OPENCV_OVX_HPP + +#include "cvdef.h" + +namespace cv +{ +/// Check if use of OpenVX is possible +CV_EXPORTS_W bool haveOpenVX(); + +/// Check if use of OpenVX is enabled +CV_EXPORTS_W bool useOpenVX(); + +/// Enable/disable use of OpenVX +CV_EXPORTS_W void setUseOpenVX(bool flag); +} // namespace cv + +#endif // OPENCV_OVX_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/persistence.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1274 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_PERSISTENCE_HPP +#define OPENCV_CORE_PERSISTENCE_HPP + +#ifndef __cplusplus +# error persistence.hpp header must be compiled as C++ +#endif + +//! @addtogroup core_c +//! @{ + +/** @brief "black box" representation of the file storage associated with a file on disk. + +Several functions that are described below take CvFileStorage\* as inputs and allow the user to +save or to load hierarchical collections that consist of scalar values, standard CXCore objects +(such as matrices, sequences, graphs), and user-defined objects. + +OpenCV can read and write data in XML (<http://www.w3c.org/XML>), YAML (<http://www.yaml.org>) or +JSON (<http://www.json.org/>) formats. Below is an example of 3x3 floating-point identity matrix A, +stored in XML and YAML files +using CXCore functions: +XML: +@code{.xml} + <?xml version="1.0"> + <opencv_storage> + <A type_id="opencv-matrix"> + <rows>3</rows> + <cols>3</cols> + <dt>f</dt> + <data>1. 0. 0. 0. 1. 0. 0. 0. 1.</data> + </A> + </opencv_storage> +@endcode +YAML: +@code{.yaml} + %YAML:1.0 + A: !!opencv-matrix + rows: 3 + cols: 3 + dt: f + data: [ 1., 0., 0., 0., 1., 0., 0., 0., 1.] +@endcode +As it can be seen from the examples, XML uses nested tags to represent hierarchy, while YAML uses +indentation for that purpose (similar to the Python programming language). + +The same functions can read and write data in both formats; the particular format is determined by +the extension of the opened file, ".xml" for XML files, ".yml" or ".yaml" for YAML and ".json" for +JSON. + */ +typedef struct CvFileStorage CvFileStorage; +typedef struct CvFileNode CvFileNode; +typedef struct CvMat CvMat; +typedef struct CvMatND CvMatND; + +//! @} core_c + +#include "opencv2/core/types.hpp" +#include "opencv2/core/mat.hpp" + +namespace cv { + +/** @addtogroup core_xml + +XML/YAML/JSON file storages. {#xml_storage} +======================= +Writing to a file storage. +-------------------------- +You can store and then restore various OpenCV data structures to/from XML (<http://www.w3c.org/XML>), +YAML (<http://www.yaml.org>) or JSON (<http://www.json.org/>) formats. Also, it is possible store +and load arbitrarily complex data structures, which include OpenCV data structures, as well as +primitive data types (integer and floating-point numbers and text strings) as their elements. + +Use the following procedure to write something to XML, YAML or JSON: +-# Create new FileStorage and open it for writing. It can be done with a single call to +FileStorage::FileStorage constructor that takes a filename, or you can use the default constructor +and then call FileStorage::open. Format of the file (XML, YAML or JSON) is determined from the filename +extension (".xml", ".yml"/".yaml" and ".json", respectively) +-# Write all the data you want using the streaming operator `<<`, just like in the case of STL +streams. +-# Close the file using FileStorage::release. FileStorage destructor also closes the file. + +Here is an example: +@code + #include "opencv2/opencv.hpp" + #include <time.h> + + using namespace cv; + + int main(int, char** argv) + { + FileStorage fs("test.yml", FileStorage::WRITE); + + fs << "frameCount" << 5; + time_t rawtime; time(&rawtime); + fs << "calibrationDate" << asctime(localtime(&rawtime)); + Mat cameraMatrix = (Mat_<double>(3,3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1); + Mat distCoeffs = (Mat_<double>(5,1) << 0.1, 0.01, -0.001, 0, 0); + fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs; + fs << "features" << "["; + for( int i = 0; i < 3; i++ ) + { + int x = rand() % 640; + int y = rand() % 480; + uchar lbp = rand() % 256; + + fs << "{:" << "x" << x << "y" << y << "lbp" << "[:"; + for( int j = 0; j < 8; j++ ) + fs << ((lbp >> j) & 1); + fs << "]" << "}"; + } + fs << "]"; + fs.release(); + return 0; + } +@endcode +The sample above stores to XML and integer, text string (calibration date), 2 matrices, and a custom +structure "feature", which includes feature coordinates and LBP (local binary pattern) value. Here +is output of the sample: +@code{.yaml} +%YAML:1.0 +frameCount: 5 +calibrationDate: "Fri Jun 17 14:09:29 2011\n" +cameraMatrix: !!opencv-matrix + rows: 3 + cols: 3 + dt: d + data: [ 1000., 0., 320., 0., 1000., 240., 0., 0., 1. ] +distCoeffs: !!opencv-matrix + rows: 5 + cols: 1 + dt: d + data: [ 1.0000000000000001e-01, 1.0000000000000000e-02, + -1.0000000000000000e-03, 0., 0. ] +features: + - { x:167, y:49, lbp:[ 1, 0, 0, 1, 1, 0, 1, 1 ] } + - { x:298, y:130, lbp:[ 0, 0, 0, 1, 0, 0, 1, 1 ] } + - { x:344, y:158, lbp:[ 1, 1, 0, 0, 0, 0, 1, 0 ] } +@endcode + +As an exercise, you can replace ".yml" with ".xml" or ".json" in the sample above and see, how the +corresponding XML file will look like. + +Several things can be noted by looking at the sample code and the output: + +- The produced YAML (and XML/JSON) consists of heterogeneous collections that can be nested. There are + 2 types of collections: named collections (mappings) and unnamed collections (sequences). In mappings + each element has a name and is accessed by name. This is similar to structures and std::map in + C/C++ and dictionaries in Python. In sequences elements do not have names, they are accessed by + indices. This is similar to arrays and std::vector in C/C++ and lists, tuples in Python. + "Heterogeneous" means that elements of each single collection can have different types. + + Top-level collection in YAML/XML/JSON is a mapping. Each matrix is stored as a mapping, and the matrix + elements are stored as a sequence. Then, there is a sequence of features, where each feature is + represented a mapping, and lbp value in a nested sequence. + +- When you write to a mapping (a structure), you write element name followed by its value. When you + write to a sequence, you simply write the elements one by one. OpenCV data structures (such as + cv::Mat) are written in absolutely the same way as simple C data structures - using `<<` + operator. + +- To write a mapping, you first write the special string `{` to the storage, then write the + elements as pairs (`fs << <element_name> << <element_value>`) and then write the closing + `}`. + +- To write a sequence, you first write the special string `[`, then write the elements, then + write the closing `]`. + +- In YAML/JSON (but not XML), mappings and sequences can be written in a compact Python-like inline + form. In the sample above matrix elements, as well as each feature, including its lbp value, is + stored in such inline form. To store a mapping/sequence in a compact form, put `:` after the + opening character, e.g. use `{:` instead of `{` and `[:` instead of `[`. When the + data is written to XML, those extra `:` are ignored. + +Reading data from a file storage. +--------------------------------- +To read the previously written XML, YAML or JSON file, do the following: +-# Open the file storage using FileStorage::FileStorage constructor or FileStorage::open method. + In the current implementation the whole file is parsed and the whole representation of file + storage is built in memory as a hierarchy of file nodes (see FileNode) + +-# Read the data you are interested in. Use FileStorage::operator [], FileNode::operator [] + and/or FileNodeIterator. + +-# Close the storage using FileStorage::release. + +Here is how to read the file created by the code sample above: +@code + FileStorage fs2("test.yml", FileStorage::READ); + + // first method: use (type) operator on FileNode. + int frameCount = (int)fs2["frameCount"]; + + String date; + // second method: use FileNode::operator >> + fs2["calibrationDate"] >> date; + + Mat cameraMatrix2, distCoeffs2; + fs2["cameraMatrix"] >> cameraMatrix2; + fs2["distCoeffs"] >> distCoeffs2; + + cout << "frameCount: " << frameCount << endl + << "calibration date: " << date << endl + << "camera matrix: " << cameraMatrix2 << endl + << "distortion coeffs: " << distCoeffs2 << endl; + + FileNode features = fs2["features"]; + FileNodeIterator it = features.begin(), it_end = features.end(); + int idx = 0; + std::vector<uchar> lbpval; + + // iterate through a sequence using FileNodeIterator + for( ; it != it_end; ++it, idx++ ) + { + cout << "feature #" << idx << ": "; + cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: ("; + // you can also easily read numerical arrays using FileNode >> std::vector operator. + (*it)["lbp"] >> lbpval; + for( int i = 0; i < (int)lbpval.size(); i++ ) + cout << " " << (int)lbpval[i]; + cout << ")" << endl; + } + fs2.release(); +@endcode + +Format specification {#format_spec} +-------------------- +`([count]{u|c|w|s|i|f|d})`... where the characters correspond to fundamental C++ types: +- `u` 8-bit unsigned number +- `c` 8-bit signed number +- `w` 16-bit unsigned number +- `s` 16-bit signed number +- `i` 32-bit signed number +- `f` single precision floating-point number +- `d` double precision floating-point number +- `r` pointer, 32 lower bits of which are written as a signed integer. The type can be used to + store structures with links between the elements. + +`count` is the optional counter of values of a given type. For example, `2if` means that each array +element is a structure of 2 integers, followed by a single-precision floating-point number. The +equivalent notations of the above specification are `iif`, `2i1f` and so forth. Other examples: `u` +means that the array consists of bytes, and `2d` means the array consists of pairs of doubles. + +@see @ref filestorage.cpp +*/ + +//! @{ + +/** @example filestorage.cpp +A complete example using the FileStorage interface +*/ + +////////////////////////// XML & YAML I/O ////////////////////////// + +class CV_EXPORTS FileNode; +class CV_EXPORTS FileNodeIterator; + +/** @brief XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or +reading data to/from a file. + */ +class CV_EXPORTS_W FileStorage +{ +public: + //! file storage mode + enum Mode + { + READ = 0, //!< value, open the file for reading + WRITE = 1, //!< value, open the file for writing + APPEND = 2, //!< value, open the file for appending + MEMORY = 4, //!< flag, read data from source or write data to the internal buffer (which is + //!< returned by FileStorage::release) + FORMAT_MASK = (7<<3), //!< mask for format flags + FORMAT_AUTO = 0, //!< flag, auto format + FORMAT_XML = (1<<3), //!< flag, XML format + FORMAT_YAML = (2<<3), //!< flag, YAML format + FORMAT_JSON = (3<<3), //!< flag, JSON format + + BASE64 = 64, //!< flag, write rawdata in Base64 by default. (consider using WRITE_BASE64) + WRITE_BASE64 = BASE64 | WRITE, //!< flag, enable both WRITE and BASE64 + }; + enum + { + UNDEFINED = 0, + VALUE_EXPECTED = 1, + NAME_EXPECTED = 2, + INSIDE_MAP = 4 + }; + + /** @brief The constructors. + + The full constructor opens the file. Alternatively you can use the default constructor and then + call FileStorage::open. + */ + CV_WRAP FileStorage(); + + /** @overload + @param source Name of the file to open or the text string to read the data from. Extension of the + file (.xml, .yml/.yaml, or .json) determines its format (XML, YAML or JSON respectively). Also you can + append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both FileStorage::WRITE + and FileStorage::MEMORY flags are specified, source is used just to specify the output file format (e.g. + mydata.xml, .yml etc.). + @param flags Mode of operation. See FileStorage::Mode + @param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and + you should use 8-bit encoding instead of it. + */ + CV_WRAP FileStorage(const String& source, int flags, const String& encoding=String()); + + /** @overload */ + FileStorage(CvFileStorage* fs, bool owning=true); + + //! the destructor. calls release() + virtual ~FileStorage(); + + /** @brief Opens a file. + + See description of parameters in FileStorage::FileStorage. The method calls FileStorage::release + before opening the file. + @param filename Name of the file to open or the text string to read the data from. + Extension of the file (.xml, .yml/.yaml or .json) determines its format (XML, YAML or JSON + respectively). Also you can append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both + FileStorage::WRITE and FileStorage::MEMORY flags are specified, source is used just to specify + the output file format (e.g. mydata.xml, .yml etc.). A file name can also contain parameters. + You can use this format, "*?base64" (e.g. "file.json?base64" (case sensitive)), as an alternative to + FileStorage::BASE64 flag. + @param flags Mode of operation. One of FileStorage::Mode + @param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and + you should use 8-bit encoding instead of it. + */ + CV_WRAP virtual bool open(const String& filename, int flags, const String& encoding=String()); + + /** @brief Checks whether the file is opened. + + @returns true if the object is associated with the current file and false otherwise. It is a + good practice to call this method after you tried to open a file. + */ + CV_WRAP virtual bool isOpened() const; + + /** @brief Closes the file and releases all the memory buffers. + + Call this method after all I/O operations with the storage are finished. + */ + CV_WRAP virtual void release(); + + /** @brief Closes the file and releases all the memory buffers. + + Call this method after all I/O operations with the storage are finished. If the storage was + opened for writing data and FileStorage::WRITE was specified + */ + CV_WRAP virtual String releaseAndGetString(); + + /** @brief Returns the first element of the top-level mapping. + @returns The first element of the top-level mapping. + */ + CV_WRAP FileNode getFirstTopLevelNode() const; + + /** @brief Returns the top-level mapping + @param streamidx Zero-based index of the stream. In most cases there is only one stream in the file. + However, YAML supports multiple streams and so there can be several. + @returns The top-level mapping. + */ + CV_WRAP FileNode root(int streamidx=0) const; + + /** @brief Returns the specified element of the top-level mapping. + @param nodename Name of the file node. + @returns Node with the given name. + */ + FileNode operator[](const String& nodename) const; + + /** @overload */ + CV_WRAP_AS(getNode) FileNode operator[](const char* nodename) const; + + /** @brief Returns the obsolete C FileStorage structure. + @returns Pointer to the underlying C FileStorage structure + */ + CvFileStorage* operator *() { return fs.get(); } + + /** @overload */ + const CvFileStorage* operator *() const { return fs.get(); } + + /** @brief Writes multiple numbers. + + Writes one or more numbers of the specified format to the currently written structure. Usually it is + more convenient to use operator `<<` instead of this method. + @param fmt Specification of each array element, see @ref format_spec "format specification" + @param vec Pointer to the written array. + @param len Number of the uchar elements to write. + */ + void writeRaw( const String& fmt, const uchar* vec, size_t len ); + + /** @brief Writes the registered C structure (CvMat, CvMatND, CvSeq). + @param name Name of the written object. + @param obj Pointer to the object. + @see ocvWrite for details. + */ + void writeObj( const String& name, const void* obj ); + + /** + * @brief Simplified writing API to use with bindings. + * @param name Name of the written object + * @param val Value of the written object + */ + CV_WRAP void write(const String& name, double val); + /// @overload + CV_WRAP void write(const String& name, const String& val); + /// @overload + CV_WRAP void write(const String& name, InputArray val); + + /** @brief Writes a comment. + + The function writes a comment into file storage. The comments are skipped when the storage is read. + @param comment The written comment, single-line or multi-line + @param append If true, the function tries to put the comment at the end of current line. + Else if the comment is multi-line, or if it does not fit at the end of the current + line, the comment starts a new line. + */ + CV_WRAP void writeComment(const String& comment, bool append = false); + + /** @brief Returns the normalized object name for the specified name of a file. + @param filename Name of a file + @returns The normalized object name. + */ + static String getDefaultObjectName(const String& filename); + + Ptr<CvFileStorage> fs; //!< the underlying C FileStorage structure + String elname; //!< the currently written element + std::vector<char> structs; //!< the stack of written structures + int state; //!< the writer state +}; + +template<> CV_EXPORTS void DefaultDeleter<CvFileStorage>::operator ()(CvFileStorage* obj) const; + +/** @brief File Storage Node class. + +The node is used to store each and every element of the file storage opened for reading. When +XML/YAML file is read, it is first parsed and stored in the memory as a hierarchical collection of +nodes. Each node can be a “leaf” that is contain a single number or a string, or be a collection of +other nodes. There can be named collections (mappings) where each element has a name and it is +accessed by a name, and ordered collections (sequences) where elements do not have names but rather +accessed by index. Type of the file node can be determined using FileNode::type method. + +Note that file nodes are only used for navigating file storages opened for reading. When a file +storage is opened for writing, no data is stored in memory after it is written. + */ +class CV_EXPORTS_W_SIMPLE FileNode +{ +public: + //! type of the file storage node + enum Type + { + NONE = 0, //!< empty node + INT = 1, //!< an integer + REAL = 2, //!< floating-point number + FLOAT = REAL, //!< synonym or REAL + STR = 3, //!< text string in UTF-8 encoding + STRING = STR, //!< synonym for STR + REF = 4, //!< integer of size size_t. Typically used for storing complex dynamic structures where some elements reference the others + SEQ = 5, //!< sequence + MAP = 6, //!< mapping + TYPE_MASK = 7, + FLOW = 8, //!< compact representation of a sequence or mapping. Used only by YAML writer + USER = 16, //!< a registered object (e.g. a matrix) + EMPTY = 32, //!< empty structure (sequence or mapping) + NAMED = 64 //!< the node has a name (i.e. it is element of a mapping) + }; + /** @brief The constructors. + + These constructors are used to create a default file node, construct it from obsolete structures or + from the another file node. + */ + CV_WRAP FileNode(); + + /** @overload + @param fs Pointer to the obsolete file storage structure. + @param node File node to be used as initialization for the created file node. + */ + FileNode(const CvFileStorage* fs, const CvFileNode* node); + + /** @overload + @param node File node to be used as initialization for the created file node. + */ + FileNode(const FileNode& node); + + /** @brief Returns element of a mapping node or a sequence node. + @param nodename Name of an element in the mapping node. + @returns Returns the element with the given identifier. + */ + FileNode operator[](const String& nodename) const; + + /** @overload + @param nodename Name of an element in the mapping node. + */ + CV_WRAP_AS(getNode) FileNode operator[](const char* nodename) const; + + /** @overload + @param i Index of an element in the sequence node. + */ + CV_WRAP_AS(at) FileNode operator[](int i) const; + + /** @brief Returns type of the node. + @returns Type of the node. See FileNode::Type + */ + CV_WRAP int type() const; + + //! returns true if the node is empty + CV_WRAP bool empty() const; + //! returns true if the node is a "none" object + CV_WRAP bool isNone() const; + //! returns true if the node is a sequence + CV_WRAP bool isSeq() const; + //! returns true if the node is a mapping + CV_WRAP bool isMap() const; + //! returns true if the node is an integer + CV_WRAP bool isInt() const; + //! returns true if the node is a floating-point number + CV_WRAP bool isReal() const; + //! returns true if the node is a text string + CV_WRAP bool isString() const; + //! returns true if the node has a name + CV_WRAP bool isNamed() const; + //! returns the node name or an empty string if the node is nameless + CV_WRAP String name() const; + //! returns the number of elements in the node, if it is a sequence or mapping, or 1 otherwise. + CV_WRAP size_t size() const; + //! returns the node content as an integer. If the node stores floating-point number, it is rounded. + operator int() const; + //! returns the node content as float + operator float() const; + //! returns the node content as double + operator double() const; + //! returns the node content as text string + operator String() const; +#ifndef OPENCV_NOSTL + operator std::string() const; +#endif + + //! returns pointer to the underlying file node + CvFileNode* operator *(); + //! returns pointer to the underlying file node + const CvFileNode* operator* () const; + + //! returns iterator pointing to the first node element + FileNodeIterator begin() const; + //! returns iterator pointing to the element following the last node element + FileNodeIterator end() const; + + /** @brief Reads node elements to the buffer with the specified format. + + Usually it is more convenient to use operator `>>` instead of this method. + @param fmt Specification of each array element. See @ref format_spec "format specification" + @param vec Pointer to the destination array. + @param len Number of elements to read. If it is greater than number of remaining elements then all + of them will be read. + */ + void readRaw( const String& fmt, uchar* vec, size_t len ) const; + + //! reads the registered object and returns pointer to it + void* readObj() const; + + //! Simplified reading API to use with bindings. + CV_WRAP double real() const; + //! Simplified reading API to use with bindings. + CV_WRAP String string() const; + //! Simplified reading API to use with bindings. + CV_WRAP Mat mat() const; + + // do not use wrapper pointer classes for better efficiency + const CvFileStorage* fs; + const CvFileNode* node; +}; + + +/** @brief used to iterate through sequences and mappings. + +A standard STL notation, with node.begin(), node.end() denoting the beginning and the end of a +sequence, stored in node. See the data reading sample in the beginning of the section. + */ +class CV_EXPORTS FileNodeIterator +{ +public: + /** @brief The constructors. + + These constructors are used to create a default iterator, set it to specific element in a file node + or construct it from another iterator. + */ + FileNodeIterator(); + + /** @overload + @param fs File storage for the iterator. + @param node File node for the iterator. + @param ofs Index of the element in the node. The created iterator will point to this element. + */ + FileNodeIterator(const CvFileStorage* fs, const CvFileNode* node, size_t ofs=0); + + /** @overload + @param it Iterator to be used as initialization for the created iterator. + */ + FileNodeIterator(const FileNodeIterator& it); + + //! returns the currently observed element + FileNode operator *() const; + //! accesses the currently observed element methods + FileNode operator ->() const; + + //! moves iterator to the next node + FileNodeIterator& operator ++ (); + //! moves iterator to the next node + FileNodeIterator operator ++ (int); + //! moves iterator to the previous node + FileNodeIterator& operator -- (); + //! moves iterator to the previous node + FileNodeIterator operator -- (int); + //! moves iterator forward by the specified offset (possibly negative) + FileNodeIterator& operator += (int ofs); + //! moves iterator backward by the specified offset (possibly negative) + FileNodeIterator& operator -= (int ofs); + + /** @brief Reads node elements to the buffer with the specified format. + + Usually it is more convenient to use operator `>>` instead of this method. + @param fmt Specification of each array element. See @ref format_spec "format specification" + @param vec Pointer to the destination array. + @param maxCount Number of elements to read. If it is greater than number of remaining elements then + all of them will be read. + */ + FileNodeIterator& readRaw( const String& fmt, uchar* vec, + size_t maxCount=(size_t)INT_MAX ); + + struct SeqReader + { + int header_size; + void* seq; /* sequence, beign read; CvSeq */ + void* block; /* current block; CvSeqBlock */ + schar* ptr; /* pointer to element be read next */ + schar* block_min; /* pointer to the beginning of block */ + schar* block_max; /* pointer to the end of block */ + int delta_index;/* = seq->first->start_index */ + schar* prev_elem; /* pointer to previous element */ + }; + + const CvFileStorage* fs; + const CvFileNode* container; + SeqReader reader; + size_t remaining; +}; + +//! @} core_xml + +/////////////////// XML & YAML I/O implementation ////////////////// + +//! @relates cv::FileStorage +//! @{ + +CV_EXPORTS void write( FileStorage& fs, const String& name, int value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, float value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, double value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, const String& value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, const Mat& value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, const SparseMat& value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<KeyPoint>& value); +CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<DMatch>& value); + +CV_EXPORTS void writeScalar( FileStorage& fs, int value ); +CV_EXPORTS void writeScalar( FileStorage& fs, float value ); +CV_EXPORTS void writeScalar( FileStorage& fs, double value ); +CV_EXPORTS void writeScalar( FileStorage& fs, const String& value ); + +//! @} + +//! @relates cv::FileNode +//! @{ + +CV_EXPORTS void read(const FileNode& node, int& value, int default_value); +CV_EXPORTS void read(const FileNode& node, float& value, float default_value); +CV_EXPORTS void read(const FileNode& node, double& value, double default_value); +CV_EXPORTS void read(const FileNode& node, String& value, const String& default_value); +CV_EXPORTS void read(const FileNode& node, Mat& mat, const Mat& default_mat = Mat() ); +CV_EXPORTS void read(const FileNode& node, SparseMat& mat, const SparseMat& default_mat = SparseMat() ); +CV_EXPORTS void read(const FileNode& node, std::vector<KeyPoint>& keypoints); +CV_EXPORTS void read(const FileNode& node, std::vector<DMatch>& matches); + +template<typename _Tp> static inline void read(const FileNode& node, Point_<_Tp>& value, const Point_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 2 ? default_value : Point_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1])); +} + +template<typename _Tp> static inline void read(const FileNode& node, Point3_<_Tp>& value, const Point3_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 3 ? default_value : Point3_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]), + saturate_cast<_Tp>(temp[2])); +} + +template<typename _Tp> static inline void read(const FileNode& node, Size_<_Tp>& value, const Size_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 2 ? default_value : Size_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1])); +} + +template<typename _Tp> static inline void read(const FileNode& node, Complex<_Tp>& value, const Complex<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 2 ? default_value : Complex<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1])); +} + +template<typename _Tp> static inline void read(const FileNode& node, Rect_<_Tp>& value, const Rect_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 4 ? default_value : Rect_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]), + saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3])); +} + +template<typename _Tp, int cn> static inline void read(const FileNode& node, Vec<_Tp, cn>& value, const Vec<_Tp, cn>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != cn ? default_value : Vec<_Tp, cn>(&temp[0]); +} + +template<typename _Tp> static inline void read(const FileNode& node, Scalar_<_Tp>& value, const Scalar_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 4 ? default_value : Scalar_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]), + saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3])); +} + +static inline void read(const FileNode& node, Range& value, const Range& default_value) +{ + Point2i temp(value.start, value.end); const Point2i default_temp = Point2i(default_value.start, default_value.end); + read(node, temp, default_temp); + value.start = temp.x; value.end = temp.y; +} + +//! @} + +/** @brief Writes string to a file storage. +@relates cv::FileStorage + */ +CV_EXPORTS FileStorage& operator << (FileStorage& fs, const String& str); + +//! @cond IGNORED + +namespace internal +{ + class CV_EXPORTS WriteStructContext + { + public: + WriteStructContext(FileStorage& _fs, const String& name, int flags, const String& typeName = String()); + ~WriteStructContext(); + private: + FileStorage* fs; + }; + + template<typename _Tp, int numflag> class VecWriterProxy + { + public: + VecWriterProxy( FileStorage* _fs ) : fs(_fs) {} + void operator()(const std::vector<_Tp>& vec) const + { + size_t count = vec.size(); + for (size_t i = 0; i < count; i++) + write(*fs, vec[i]); + } + private: + FileStorage* fs; + }; + + template<typename _Tp> class VecWriterProxy<_Tp, 1> + { + public: + VecWriterProxy( FileStorage* _fs ) : fs(_fs) {} + void operator()(const std::vector<_Tp>& vec) const + { + int _fmt = DataType<_Tp>::fmt; + char fmt[] = { (char)((_fmt >> 8) + '1'), (char)_fmt, '\0' }; + fs->writeRaw(fmt, !vec.empty() ? (uchar*)&vec[0] : 0, vec.size() * sizeof(_Tp)); + } + private: + FileStorage* fs; + }; + + template<typename _Tp, int numflag> class VecReaderProxy + { + public: + VecReaderProxy( FileNodeIterator* _it ) : it(_it) {} + void operator()(std::vector<_Tp>& vec, size_t count) const + { + count = std::min(count, it->remaining); + vec.resize(count); + for (size_t i = 0; i < count; i++, ++(*it)) + read(**it, vec[i], _Tp()); + } + private: + FileNodeIterator* it; + }; + + template<typename _Tp> class VecReaderProxy<_Tp, 1> + { + public: + VecReaderProxy( FileNodeIterator* _it ) : it(_it) {} + void operator()(std::vector<_Tp>& vec, size_t count) const + { + size_t remaining = it->remaining; + size_t cn = DataType<_Tp>::channels; + int _fmt = DataType<_Tp>::fmt; + char fmt[] = { (char)((_fmt >> 8)+'1'), (char)_fmt, '\0' }; + size_t remaining1 = remaining / cn; + count = count < remaining1 ? count : remaining1; + vec.resize(count); + it->readRaw(fmt, !vec.empty() ? (uchar*)&vec[0] : 0, count*sizeof(_Tp)); + } + private: + FileNodeIterator* it; + }; + +} // internal + +//! @endcond + +//! @relates cv::FileStorage +//! @{ + +template<typename _Tp> static inline +void write(FileStorage& fs, const _Tp& value) +{ + write(fs, String(), value); +} + +template<> inline +void write( FileStorage& fs, const int& value ) +{ + writeScalar(fs, value); +} + +template<> inline +void write( FileStorage& fs, const float& value ) +{ + writeScalar(fs, value); +} + +template<> inline +void write( FileStorage& fs, const double& value ) +{ + writeScalar(fs, value); +} + +template<> inline +void write( FileStorage& fs, const String& value ) +{ + writeScalar(fs, value); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const Point_<_Tp>& pt ) +{ + write(fs, pt.x); + write(fs, pt.y); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const Point3_<_Tp>& pt ) +{ + write(fs, pt.x); + write(fs, pt.y); + write(fs, pt.z); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const Size_<_Tp>& sz ) +{ + write(fs, sz.width); + write(fs, sz.height); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const Complex<_Tp>& c ) +{ + write(fs, c.re); + write(fs, c.im); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const Rect_<_Tp>& r ) +{ + write(fs, r.x); + write(fs, r.y); + write(fs, r.width); + write(fs, r.height); +} + +template<typename _Tp, int cn> static inline +void write(FileStorage& fs, const Vec<_Tp, cn>& v ) +{ + for(int i = 0; i < cn; i++) + write(fs, v.val[i]); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const Scalar_<_Tp>& s ) +{ + write(fs, s.val[0]); + write(fs, s.val[1]); + write(fs, s.val[2]); + write(fs, s.val[3]); +} + +static inline +void write(FileStorage& fs, const Range& r ) +{ + write(fs, r.start); + write(fs, r.end); +} + +template<typename _Tp> static inline +void write( FileStorage& fs, const std::vector<_Tp>& vec ) +{ + cv::internal::VecWriterProxy<_Tp, DataType<_Tp>::fmt != 0> w(&fs); + w(vec); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const String& name, const Point_<_Tp>& pt ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, pt); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const String& name, const Point3_<_Tp>& pt ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, pt); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const String& name, const Size_<_Tp>& sz ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, sz); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const String& name, const Complex<_Tp>& c ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, c); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const String& name, const Rect_<_Tp>& r ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, r); +} + +template<typename _Tp, int cn> static inline +void write(FileStorage& fs, const String& name, const Vec<_Tp, cn>& v ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, v); +} + +template<typename _Tp> static inline +void write(FileStorage& fs, const String& name, const Scalar_<_Tp>& s ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, s); +} + +static inline +void write(FileStorage& fs, const String& name, const Range& r ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, r); +} + +template<typename _Tp> static inline +void write( FileStorage& fs, const String& name, const std::vector<_Tp>& vec ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0)); + write(fs, vec); +} + +template<typename _Tp> static inline +void write( FileStorage& fs, const String& name, const std::vector< std::vector<_Tp> >& vec ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ); + for(size_t i = 0; i < vec.size(); i++) + { + cv::internal::WriteStructContext ws_(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0)); + write(fs, vec[i]); + } +} + +//! @} FileStorage + +//! @relates cv::FileNode +//! @{ + +static inline +void read(const FileNode& node, bool& value, bool default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = temp != 0; +} + +static inline +void read(const FileNode& node, uchar& value, uchar default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = saturate_cast<uchar>(temp); +} + +static inline +void read(const FileNode& node, schar& value, schar default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = saturate_cast<schar>(temp); +} + +static inline +void read(const FileNode& node, ushort& value, ushort default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = saturate_cast<ushort>(temp); +} + +static inline +void read(const FileNode& node, short& value, short default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = saturate_cast<short>(temp); +} + +template<typename _Tp> static inline +void read( FileNodeIterator& it, std::vector<_Tp>& vec, size_t maxCount = (size_t)INT_MAX ) +{ + cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it); + r(vec, maxCount); +} + +template<typename _Tp> static inline +void read( const FileNode& node, std::vector<_Tp>& vec, const std::vector<_Tp>& default_value = std::vector<_Tp>() ) +{ + if(!node.node) + vec = default_value; + else + { + FileNodeIterator it = node.begin(); + read( it, vec ); + } +} + +//! @} FileNode + +//! @relates cv::FileStorage +//! @{ + +/** @brief Writes data to a file storage. + */ +template<typename _Tp> static inline +FileStorage& operator << (FileStorage& fs, const _Tp& value) +{ + if( !fs.isOpened() ) + return fs; + if( fs.state == FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP ) + CV_Error( Error::StsError, "No element name has been given" ); + write( fs, fs.elname, value ); + if( fs.state & FileStorage::INSIDE_MAP ) + fs.state = FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP; + return fs; +} + +/** @brief Writes data to a file storage. + */ +static inline +FileStorage& operator << (FileStorage& fs, const char* str) +{ + return (fs << String(str)); +} + +/** @brief Writes data to a file storage. + */ +static inline +FileStorage& operator << (FileStorage& fs, char* value) +{ + return (fs << String(value)); +} + +//! @} FileStorage + +//! @relates cv::FileNodeIterator +//! @{ + +/** @brief Reads data from a file storage. + */ +template<typename _Tp> static inline +FileNodeIterator& operator >> (FileNodeIterator& it, _Tp& value) +{ + read( *it, value, _Tp()); + return ++it; +} + +/** @brief Reads data from a file storage. + */ +template<typename _Tp> static inline +FileNodeIterator& operator >> (FileNodeIterator& it, std::vector<_Tp>& vec) +{ + cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it); + r(vec, (size_t)INT_MAX); + return it; +} + +//! @} FileNodeIterator + +//! @relates cv::FileNode +//! @{ + +/** @brief Reads data from a file storage. + */ +template<typename _Tp> static inline +void operator >> (const FileNode& n, _Tp& value) +{ + read( n, value, _Tp()); +} + +/** @brief Reads data from a file storage. + */ +template<typename _Tp> static inline +void operator >> (const FileNode& n, std::vector<_Tp>& vec) +{ + FileNodeIterator it = n.begin(); + it >> vec; +} + +/** @brief Reads KeyPoint from a file storage. +*/ +//It needs special handling because it contains two types of fields, int & float. +static inline +void operator >> (const FileNode& n, std::vector<KeyPoint>& vec) +{ + read(n, vec); +} +/** @brief Reads DMatch from a file storage. +*/ +//It needs special handling because it contains two types of fields, int & float. +static inline +void operator >> (const FileNode& n, std::vector<DMatch>& vec) +{ + read(n, vec); +} + +//! @} FileNode + +//! @relates cv::FileNodeIterator +//! @{ + +static inline +bool operator == (const FileNodeIterator& it1, const FileNodeIterator& it2) +{ + return it1.fs == it2.fs && it1.container == it2.container && + it1.reader.ptr == it2.reader.ptr && it1.remaining == it2.remaining; +} + +static inline +bool operator != (const FileNodeIterator& it1, const FileNodeIterator& it2) +{ + return !(it1 == it2); +} + +static inline +ptrdiff_t operator - (const FileNodeIterator& it1, const FileNodeIterator& it2) +{ + return it2.remaining - it1.remaining; +} + +static inline +bool operator < (const FileNodeIterator& it1, const FileNodeIterator& it2) +{ + return it1.remaining > it2.remaining; +} + +//! @} FileNodeIterator + +//! @cond IGNORED + +inline FileNode FileStorage::getFirstTopLevelNode() const { FileNode r = root(); FileNodeIterator it = r.begin(); return it != r.end() ? *it : FileNode(); } +inline FileNode::FileNode() : fs(0), node(0) {} +inline FileNode::FileNode(const CvFileStorage* _fs, const CvFileNode* _node) : fs(_fs), node(_node) {} +inline FileNode::FileNode(const FileNode& _node) : fs(_node.fs), node(_node.node) {} +inline bool FileNode::empty() const { return node == 0; } +inline bool FileNode::isNone() const { return type() == NONE; } +inline bool FileNode::isSeq() const { return type() == SEQ; } +inline bool FileNode::isMap() const { return type() == MAP; } +inline bool FileNode::isInt() const { return type() == INT; } +inline bool FileNode::isReal() const { return type() == REAL; } +inline bool FileNode::isString() const { return type() == STR; } +inline CvFileNode* FileNode::operator *() { return (CvFileNode*)node; } +inline const CvFileNode* FileNode::operator* () const { return node; } +inline FileNode::operator int() const { int value; read(*this, value, 0); return value; } +inline FileNode::operator float() const { float value; read(*this, value, 0.f); return value; } +inline FileNode::operator double() const { double value; read(*this, value, 0.); return value; } +inline FileNode::operator String() const { String value; read(*this, value, value); return value; } +inline double FileNode::real() const { return double(*this); } +inline String FileNode::string() const { return String(*this); } +inline Mat FileNode::mat() const { Mat value; read(*this, value, value); return value; } +inline FileNodeIterator FileNode::begin() const { return FileNodeIterator(fs, node); } +inline FileNodeIterator FileNode::end() const { return FileNodeIterator(fs, node, size()); } +inline void FileNode::readRaw( const String& fmt, uchar* vec, size_t len ) const { begin().readRaw( fmt, vec, len ); } +inline FileNode FileNodeIterator::operator *() const { return FileNode(fs, (const CvFileNode*)(const void*)reader.ptr); } +inline FileNode FileNodeIterator::operator ->() const { return FileNode(fs, (const CvFileNode*)(const void*)reader.ptr); } +inline String::String(const FileNode& fn): cstr_(0), len_(0) { read(fn, *this, *this); } + +//! @endcond + + +CV_EXPORTS void cvStartWriteRawData_Base64(::CvFileStorage * fs, const char* name, int len, const char* dt); + +CV_EXPORTS void cvWriteRawData_Base64(::CvFileStorage * fs, const void* _data, int len); + +CV_EXPORTS void cvEndWriteRawData_Base64(::CvFileStorage * fs); + +CV_EXPORTS void cvWriteMat_Base64(::CvFileStorage* fs, const char* name, const ::CvMat* mat); + +CV_EXPORTS void cvWriteMatND_Base64(::CvFileStorage* fs, const char* name, const ::CvMatND* mat); + +} // cv + +#endif // OPENCV_CORE_PERSISTENCE_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/private.cuda.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,172 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_PRIVATE_CUDA_HPP +#define OPENCV_CORE_PRIVATE_CUDA_HPP + +#ifndef __OPENCV_BUILD +# error this is a private header which should not be used from outside of the OpenCV library +#endif + +#include "cvconfig.h" + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/base.hpp" + +#include "opencv2/core/cuda.hpp" + +#ifdef HAVE_CUDA +# include <cuda.h> +# include <cuda_runtime.h> +# include <npp.h> +# include "opencv2/core/cuda_stream_accessor.hpp" +# include "opencv2/core/cuda/common.hpp" + +# define NPP_VERSION (NPP_VERSION_MAJOR * 1000 + NPP_VERSION_MINOR * 100 + NPP_VERSION_BUILD) + +# define CUDART_MINIMUM_REQUIRED_VERSION 6050 + +# if (CUDART_VERSION < CUDART_MINIMUM_REQUIRED_VERSION) +# error "Insufficient Cuda Runtime library version, please update it." +# endif + +# if defined(CUDA_ARCH_BIN_OR_PTX_10) +# error "OpenCV CUDA module doesn't support NVIDIA compute capability 1.0" +# endif +#endif + +//! @cond IGNORED + +namespace cv { namespace cuda { + CV_EXPORTS cv::String getNppErrorMessage(int code); + CV_EXPORTS cv::String getCudaDriverApiErrorMessage(int code); + + CV_EXPORTS GpuMat getInputMat(InputArray _src, Stream& stream); + + CV_EXPORTS GpuMat getOutputMat(OutputArray _dst, int rows, int cols, int type, Stream& stream); + static inline GpuMat getOutputMat(OutputArray _dst, Size size, int type, Stream& stream) + { + return getOutputMat(_dst, size.height, size.width, type, stream); + } + + CV_EXPORTS void syncOutput(const GpuMat& dst, OutputArray _dst, Stream& stream); +}} + +#ifndef HAVE_CUDA + +static inline void throw_no_cuda() { CV_Error(cv::Error::GpuNotSupported, "The library is compiled without CUDA support"); } + +#else // HAVE_CUDA + +static inline void throw_no_cuda() { CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); } + +namespace cv { namespace cuda +{ + class CV_EXPORTS BufferPool + { + public: + explicit BufferPool(Stream& stream); + + GpuMat getBuffer(int rows, int cols, int type); + GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); } + + GpuMat::Allocator* getAllocator() const { return allocator_; } + + private: + GpuMat::Allocator* allocator_; + }; + + static inline void checkNppError(int code, const char* file, const int line, const char* func) + { + if (code < 0) + cv::error(cv::Error::GpuApiCallError, getNppErrorMessage(code), func, file, line); + } + + static inline void checkCudaDriverApiError(int code, const char* file, const int line, const char* func) + { + if (code != CUDA_SUCCESS) + cv::error(cv::Error::GpuApiCallError, getCudaDriverApiErrorMessage(code), func, file, line); + } + + template<int n> struct NPPTypeTraits; + template<> struct NPPTypeTraits<CV_8U> { typedef Npp8u npp_type; }; + template<> struct NPPTypeTraits<CV_8S> { typedef Npp8s npp_type; }; + template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; }; + template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; }; + template<> struct NPPTypeTraits<CV_32S> { typedef Npp32s npp_type; }; + template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; }; + template<> struct NPPTypeTraits<CV_64F> { typedef Npp64f npp_type; }; + + class NppStreamHandler + { + public: + inline explicit NppStreamHandler(Stream& newStream) + { + oldStream = nppGetStream(); + nppSetStream(StreamAccessor::getStream(newStream)); + } + + inline explicit NppStreamHandler(cudaStream_t newStream) + { + oldStream = nppGetStream(); + nppSetStream(newStream); + } + + inline ~NppStreamHandler() + { + nppSetStream(oldStream); + } + + private: + cudaStream_t oldStream; + }; +}} + +#define nppSafeCall(expr) cv::cuda::checkNppError(expr, __FILE__, __LINE__, CV_Func) +#define cuSafeCall(expr) cv::cuda::checkCudaDriverApiError(expr, __FILE__, __LINE__, CV_Func) + +#endif // HAVE_CUDA + +//! @endcond + +#endif // OPENCV_CORE_PRIVATE_CUDA_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/private.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,585 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_PRIVATE_HPP +#define OPENCV_CORE_PRIVATE_HPP + +#ifndef __OPENCV_BUILD +# error this is a private header which should not be used from outside of the OpenCV library +#endif + +#include "opencv2/core.hpp" +#include "cvconfig.h" + +#ifdef HAVE_EIGEN +# if defined __GNUC__ && defined __APPLE__ +# pragma GCC diagnostic ignored "-Wshadow" +# endif +# include <Eigen/Core> +# include "opencv2/core/eigen.hpp" +#endif + +#ifdef HAVE_TBB +# include "tbb/tbb.h" +# include "tbb/task.h" +# undef min +# undef max +#endif + +#if defined HAVE_FP16 && (defined __F16C__ || (defined _MSC_VER && _MSC_VER >= 1700)) +# include <immintrin.h> +# define CV_FP16 1 +#elif defined HAVE_FP16 && defined __GNUC__ +# define CV_FP16 1 +#endif + +#ifndef CV_FP16 +# define CV_FP16 0 +#endif + +//! @cond IGNORED + +namespace cv +{ +#ifdef HAVE_TBB + + typedef tbb::blocked_range<int> BlockedRange; + + template<typename Body> static inline + void parallel_for( const BlockedRange& range, const Body& body ) + { + tbb::parallel_for(range, body); + } + + typedef tbb::split Split; + + template<typename Body> static inline + void parallel_reduce( const BlockedRange& range, Body& body ) + { + tbb::parallel_reduce(range, body); + } + + typedef tbb::concurrent_vector<Rect> ConcurrentRectVector; +#else + class BlockedRange + { + public: + BlockedRange() : _begin(0), _end(0), _grainsize(0) {} + BlockedRange(int b, int e, int g=1) : _begin(b), _end(e), _grainsize(g) {} + int begin() const { return _begin; } + int end() const { return _end; } + int grainsize() const { return _grainsize; } + + protected: + int _begin, _end, _grainsize; + }; + + template<typename Body> static inline + void parallel_for( const BlockedRange& range, const Body& body ) + { + body(range); + } + typedef std::vector<Rect> ConcurrentRectVector; + + class Split {}; + + template<typename Body> static inline + void parallel_reduce( const BlockedRange& range, Body& body ) + { + body(range); + } +#endif + + // Returns a static string if there is a parallel framework, + // NULL otherwise. + CV_EXPORTS const char* currentParallelFramework(); +} //namespace cv + +/****************************************************************************************\ +* Common declarations * +\****************************************************************************************/ + +/* the alignment of all the allocated buffers */ +#define CV_MALLOC_ALIGN 16 + +/* IEEE754 constants and macros */ +#define CV_TOGGLE_FLT(x) ((x)^((int)(x) < 0 ? 0x7fffffff : 0)) +#define CV_TOGGLE_DBL(x) ((x)^((int64)(x) < 0 ? CV_BIG_INT(0x7fffffffffffffff) : 0)) + +static inline void* cvAlignPtr( const void* ptr, int align = 32 ) +{ + CV_DbgAssert ( (align & (align-1)) == 0 ); + return (void*)( ((size_t)ptr + align - 1) & ~(size_t)(align-1) ); +} + +static inline int cvAlign( int size, int align ) +{ + CV_DbgAssert( (align & (align-1)) == 0 && size < INT_MAX ); + return (size + align - 1) & -align; +} + +#ifdef IPL_DEPTH_8U +static inline cv::Size cvGetMatSize( const CvMat* mat ) +{ + return cv::Size(mat->cols, mat->rows); +} +#endif + +namespace cv +{ +CV_EXPORTS void scalarToRawData(const cv::Scalar& s, void* buf, int type, int unroll_to = 0); +} + +// property implementation macros + +#define CV_IMPL_PROPERTY_RO(type, name, member) \ + inline type get##name() const { return member; } + +#define CV_HELP_IMPL_PROPERTY(r_type, w_type, name, member) \ + CV_IMPL_PROPERTY_RO(r_type, name, member) \ + inline void set##name(w_type val) { member = val; } + +#define CV_HELP_WRAP_PROPERTY(r_type, w_type, name, internal_name, internal_obj) \ + r_type get##name() const { return internal_obj.get##internal_name(); } \ + void set##name(w_type val) { internal_obj.set##internal_name(val); } + +#define CV_IMPL_PROPERTY(type, name, member) CV_HELP_IMPL_PROPERTY(type, type, name, member) +#define CV_IMPL_PROPERTY_S(type, name, member) CV_HELP_IMPL_PROPERTY(type, const type &, name, member) + +#define CV_WRAP_PROPERTY(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, type, name, internal_name, internal_obj) +#define CV_WRAP_PROPERTY_S(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, const type &, name, internal_name, internal_obj) + +#define CV_WRAP_SAME_PROPERTY(type, name, internal_obj) CV_WRAP_PROPERTY(type, name, name, internal_obj) +#define CV_WRAP_SAME_PROPERTY_S(type, name, internal_obj) CV_WRAP_PROPERTY_S(type, name, name, internal_obj) + +/****************************************************************************************\ +* Structures and macros for integration with IPP * +\****************************************************************************************/ + +#ifdef HAVE_IPP +#include "ipp.h" + +#ifndef IPP_VERSION_UPDATE // prior to 7.1 +#define IPP_VERSION_UPDATE 0 +#endif + +#define IPP_VERSION_X100 (IPP_VERSION_MAJOR * 100 + IPP_VERSION_MINOR*10 + IPP_VERSION_UPDATE) + +// General define for ipp function disabling +#define IPP_DISABLE_BLOCK 0 + +#ifdef CV_MALLOC_ALIGN +#undef CV_MALLOC_ALIGN +#endif +#define CV_MALLOC_ALIGN 32 // required for AVX optimization + +#define setIppErrorStatus() cv::ipp::setIppStatus(-1, CV_Func, __FILE__, __LINE__) + +static inline IppiSize ippiSize(int width, int height) +{ + IppiSize size = { width, height }; + return size; +} + +static inline IppiSize ippiSize(const cv::Size & _size) +{ + IppiSize size = { _size.width, _size.height }; + return size; +} + +static inline IppiPoint ippiPoint(const cv::Point & _point) +{ + IppiPoint point = { _point.x, _point.y }; + return point; +} + +static inline IppiPoint ippiPoint(int x, int y) +{ + IppiPoint point = { x, y }; + return point; +} + +static inline IppiBorderType ippiGetBorderType(int borderTypeNI) +{ + return borderTypeNI == cv::BORDER_CONSTANT ? ippBorderConst : + borderTypeNI == cv::BORDER_WRAP ? ippBorderWrap : + borderTypeNI == cv::BORDER_REPLICATE ? ippBorderRepl : + borderTypeNI == cv::BORDER_REFLECT_101 ? ippBorderMirror : + borderTypeNI == cv::BORDER_REFLECT ? ippBorderMirrorR : (IppiBorderType)-1; +} + +static inline IppDataType ippiGetDataType(int depth) +{ + return depth == CV_8U ? ipp8u : + depth == CV_8S ? ipp8s : + depth == CV_16U ? ipp16u : + depth == CV_16S ? ipp16s : + depth == CV_32S ? ipp32s : + depth == CV_32F ? ipp32f : + depth == CV_64F ? ipp64f : (IppDataType)-1; +} + +// IPP temporary buffer hepler +template<typename T> +class IppAutoBuffer +{ +public: + IppAutoBuffer() { m_pBuffer = NULL; } + IppAutoBuffer(int size) { Alloc(size); } + ~IppAutoBuffer() { Release(); } + T* Alloc(int size) { m_pBuffer = (T*)ippMalloc(size); return m_pBuffer; } + void Release() { if(m_pBuffer) ippFree(m_pBuffer); } + inline operator T* () { return (T*)m_pBuffer;} + inline operator const T* () const { return (const T*)m_pBuffer;} +private: + // Disable copy operations + IppAutoBuffer(IppAutoBuffer &) {} + IppAutoBuffer& operator =(const IppAutoBuffer &) {return *this;} + + T* m_pBuffer; +}; + +#else +#define IPP_VERSION_X100 0 +#endif + +#if defined HAVE_IPP +#if IPP_VERSION_X100 >= 900 +#define IPP_INITIALIZER(FEAT) \ +{ \ + if(FEAT) \ + ippSetCpuFeatures(FEAT); \ + else \ + ippInit(); \ +} +#elif IPP_VERSION_X100 >= 800 +#define IPP_INITIALIZER(FEAT) \ +{ \ + ippInit(); \ +} +#else +#define IPP_INITIALIZER(FEAT) \ +{ \ + ippStaticInit(); \ +} +#endif + +#ifdef CVAPI_EXPORTS +#define IPP_INITIALIZER_AUTO \ +struct __IppInitializer__ \ +{ \ + __IppInitializer__() \ + {IPP_INITIALIZER(cv::ipp::getIppFeatures())} \ +}; \ +static struct __IppInitializer__ __ipp_initializer__; +#else +#define IPP_INITIALIZER_AUTO +#endif +#else +#define IPP_INITIALIZER +#define IPP_INITIALIZER_AUTO +#endif + +#define CV_IPP_CHECK_COND (cv::ipp::useIPP()) +#define CV_IPP_CHECK() if(CV_IPP_CHECK_COND) + +#ifdef HAVE_IPP + +#ifdef CV_IPP_RUN_VERBOSE +#define CV_IPP_RUN_(condition, func, ...) \ + { \ + if (cv::ipp::useIPP() && (condition) && (func)) \ + { \ + printf("%s: IPP implementation is running\n", CV_Func); \ + fflush(stdout); \ + CV_IMPL_ADD(CV_IMPL_IPP); \ + return __VA_ARGS__; \ + } \ + else \ + { \ + printf("%s: Plain implementation is running\n", CV_Func); \ + fflush(stdout); \ + } \ + } +#elif defined CV_IPP_RUN_ASSERT +#define CV_IPP_RUN_(condition, func, ...) \ + { \ + if (cv::ipp::useIPP() && (condition)) \ + { \ + if(func) \ + { \ + CV_IMPL_ADD(CV_IMPL_IPP); \ + } \ + else \ + { \ + setIppErrorStatus(); \ + CV_Error(cv::Error::StsAssert, #func); \ + } \ + return __VA_ARGS__; \ + } \ + } +#else +#define CV_IPP_RUN_(condition, func, ...) \ + if (cv::ipp::useIPP() && (condition) && (func)) \ + { \ + CV_IMPL_ADD(CV_IMPL_IPP); \ + return __VA_ARGS__; \ + } +#endif +#define CV_IPP_RUN_FAST(func, ...) \ + if (cv::ipp::useIPP() && (func)) \ + { \ + CV_IMPL_ADD(CV_IMPL_IPP); \ + return __VA_ARGS__; \ + } +#else +#define CV_IPP_RUN_(condition, func, ...) +#define CV_IPP_RUN_FAST(func, ...) +#endif + +#define CV_IPP_RUN(condition, func, ...) CV_IPP_RUN_((condition), (func), __VA_ARGS__) + + +#ifndef IPPI_CALL +# define IPPI_CALL(func) CV_Assert((func) >= 0) +#endif + +/* IPP-compatible return codes */ +typedef enum CvStatus +{ + CV_BADMEMBLOCK_ERR = -113, + CV_INPLACE_NOT_SUPPORTED_ERR= -112, + CV_UNMATCHED_ROI_ERR = -111, + CV_NOTFOUND_ERR = -110, + CV_BADCONVERGENCE_ERR = -109, + + CV_BADDEPTH_ERR = -107, + CV_BADROI_ERR = -106, + CV_BADHEADER_ERR = -105, + CV_UNMATCHED_FORMATS_ERR = -104, + CV_UNSUPPORTED_COI_ERR = -103, + CV_UNSUPPORTED_CHANNELS_ERR = -102, + CV_UNSUPPORTED_DEPTH_ERR = -101, + CV_UNSUPPORTED_FORMAT_ERR = -100, + + CV_BADARG_ERR = -49, //ipp comp + CV_NOTDEFINED_ERR = -48, //ipp comp + + CV_BADCHANNELS_ERR = -47, //ipp comp + CV_BADRANGE_ERR = -44, //ipp comp + CV_BADSTEP_ERR = -29, //ipp comp + + CV_BADFLAG_ERR = -12, + CV_DIV_BY_ZERO_ERR = -11, //ipp comp + CV_BADCOEF_ERR = -10, + + CV_BADFACTOR_ERR = -7, + CV_BADPOINT_ERR = -6, + CV_BADSCALE_ERR = -4, + CV_OUTOFMEM_ERR = -3, + CV_NULLPTR_ERR = -2, + CV_BADSIZE_ERR = -1, + CV_NO_ERR = 0, + CV_OK = CV_NO_ERR +} +CvStatus; + +#ifdef HAVE_TEGRA_OPTIMIZATION +namespace tegra { + +CV_EXPORTS bool useTegra(); +CV_EXPORTS void setUseTegra(bool flag); + +} +#endif + +#ifdef ENABLE_INSTRUMENTATION +namespace cv +{ +namespace instr +{ +struct InstrTLSStruct +{ + InstrTLSStruct() + { + pCurrentNode = NULL; + } + InstrNode* pCurrentNode; +}; + +class InstrStruct +{ +public: + InstrStruct() + { + useInstr = false; + flags = FLAGS_MAPPING; + maxDepth = 0; + + rootNode.m_payload = NodeData("ROOT", NULL, 0, NULL, false, TYPE_GENERAL, IMPL_PLAIN); + tlsStruct.get()->pCurrentNode = &rootNode; + } + + Mutex mutexCreate; + Mutex mutexCount; + + bool useInstr; + int flags; + int maxDepth; + InstrNode rootNode; + TLSData<InstrTLSStruct> tlsStruct; +}; + +class CV_EXPORTS IntrumentationRegion +{ +public: + IntrumentationRegion(const char* funName, const char* fileName, int lineNum, void *retAddress, bool alwaysExpand, TYPE instrType = TYPE_GENERAL, IMPL implType = IMPL_PLAIN); + ~IntrumentationRegion(); + +private: + bool m_disabled; // region status + uint64 m_regionTicks; +}; + +CV_EXPORTS InstrStruct& getInstrumentStruct(); +InstrTLSStruct& getInstrumentTLSStruct(); +CV_EXPORTS InstrNode* getCurrentNode(); +} +} + +#ifdef _WIN32 +#define CV_INSTRUMENT_GET_RETURN_ADDRESS _ReturnAddress() +#else +#define CV_INSTRUMENT_GET_RETURN_ADDRESS __builtin_extract_return_addr(__builtin_return_address(0)) +#endif + +// Instrument region +#define CV_INSTRUMENT_REGION_META(NAME, ALWAYS_EXPAND, TYPE, IMPL) ::cv::instr::IntrumentationRegion __instr_region__(NAME, __FILE__, __LINE__, CV_INSTRUMENT_GET_RETURN_ADDRESS, ALWAYS_EXPAND, TYPE, IMPL); +#define CV_INSTRUMENT_REGION_CUSTOM_META(NAME, ALWAYS_EXPAND, TYPE, IMPL)\ + void *__curr_address__ = [&]() {return CV_INSTRUMENT_GET_RETURN_ADDRESS;}();\ + ::cv::instr::IntrumentationRegion __instr_region__(NAME, __FILE__, __LINE__, __curr_address__, false, ::cv::instr::TYPE_GENERAL, ::cv::instr::IMPL_PLAIN); +// Instrument functions with non-void return type +#define CV_INSTRUMENT_FUN_RT_META(TYPE, IMPL, ERROR_COND, FUN, ...) ([&]()\ +{\ + if(::cv::instr::useInstrumentation()){\ + ::cv::instr::IntrumentationRegion __instr__(#FUN, __FILE__, __LINE__, NULL, false, TYPE, IMPL);\ + try{\ + auto status = ((FUN)(__VA_ARGS__));\ + if(ERROR_COND){\ + ::cv::instr::getCurrentNode()->m_payload.m_funError = true;\ + CV_INSTRUMENT_MARK_META(IMPL, #FUN " - BadExit");\ + }\ + return status;\ + }catch(...){\ + ::cv::instr::getCurrentNode()->m_payload.m_funError = true;\ + CV_INSTRUMENT_MARK_META(IMPL, #FUN " - BadExit");\ + throw;\ + }\ + }else{\ + return ((FUN)(__VA_ARGS__));\ + }\ +}()) +// Instrument functions with void return type +#define CV_INSTRUMENT_FUN_RV_META(TYPE, IMPL, FUN, ...) ([&]()\ +{\ + if(::cv::instr::useInstrumentation()){\ + ::cv::instr::IntrumentationRegion __instr__(#FUN, __FILE__, __LINE__, NULL, false, TYPE, IMPL);\ + try{\ + (FUN)(__VA_ARGS__);\ + }catch(...){\ + ::cv::instr::getCurrentNode()->m_payload.m_funError = true;\ + CV_INSTRUMENT_MARK_META(IMPL, #FUN "- BadExit");\ + throw;\ + }\ + }else{\ + (FUN)(__VA_ARGS__);\ + }\ +}()) +// Instrumentation information marker +#define CV_INSTRUMENT_MARK_META(IMPL, NAME, ...) {::cv::instr::IntrumentationRegion __instr_mark__(NAME, __FILE__, __LINE__, NULL, false, ::cv::instr::TYPE_MARKER, IMPL);} + +///// General instrumentation +// General OpenCV region instrumentation macro +#define CV_INSTRUMENT_REGION() CV_INSTRUMENT_REGION_META(__FUNCTION__, false, ::cv::instr::TYPE_GENERAL, ::cv::instr::IMPL_PLAIN) +// Custom OpenCV region instrumentation macro +#define CV_INSTRUMENT_REGION_NAME(NAME) CV_INSTRUMENT_REGION_CUSTOM_META(NAME, false, ::cv::instr::TYPE_GENERAL, ::cv::instr::IMPL_PLAIN) +// Instrumentation for parallel_for_ or other regions which forks and gathers threads +#define CV_INSTRUMENT_REGION_MT_FORK() CV_INSTRUMENT_REGION_META(__FUNCTION__, true, ::cv::instr::TYPE_GENERAL, ::cv::instr::IMPL_PLAIN); + +///// IPP instrumentation +// Wrapper region instrumentation macro +#define CV_INSTRUMENT_REGION_IPP() CV_INSTRUMENT_REGION_META(__FUNCTION__, false, ::cv::instr::TYPE_WRAPPER, ::cv::instr::IMPL_IPP) +// Function instrumentation macro +#define CV_INSTRUMENT_FUN_IPP(FUN, ...) CV_INSTRUMENT_FUN_RT_META(::cv::instr::TYPE_FUN, ::cv::instr::IMPL_IPP, status < 0, FUN, __VA_ARGS__) +// Diagnostic markers +#define CV_INSTRUMENT_MARK_IPP(NAME) CV_INSTRUMENT_MARK_META(::cv::instr::IMPL_IPP, NAME) + +///// OpenCL instrumentation +// Wrapper region instrumentation macro +#define CV_INSTRUMENT_REGION_OPENCL() CV_INSTRUMENT_REGION_META(__FUNCTION__, false, ::cv::instr::TYPE_WRAPPER, ::cv::instr::IMPL_OPENCL) +// OpenCL kernel compilation wrapper +#define CV_INSTRUMENT_REGION_OPENCL_COMPILE(NAME) CV_INSTRUMENT_REGION_META(NAME, false, ::cv::instr::TYPE_WRAPPER, ::cv::instr::IMPL_OPENCL) +// OpenCL kernel run wrapper +#define CV_INSTRUMENT_REGION_OPENCL_RUN(NAME) CV_INSTRUMENT_REGION_META(NAME, false, ::cv::instr::TYPE_FUN, ::cv::instr::IMPL_OPENCL) +// Diagnostic markers +#define CV_INSTRUMENT_MARK_OPENCL(NAME) CV_INSTRUMENT_MARK_META(::cv::instr::IMPL_OPENCL, NAME) +#else +#define CV_INSTRUMENT_REGION_META(...) + +#define CV_INSTRUMENT_REGION() +#define CV_INSTRUMENT_REGION_NAME(...) +#define CV_INSTRUMENT_REGION_MT_FORK() + +#define CV_INSTRUMENT_REGION_IPP() +#define CV_INSTRUMENT_FUN_IPP(FUN, ...) ((FUN)(__VA_ARGS__)) +#define CV_INSTRUMENT_MARK_IPP(...) + +#define CV_INSTRUMENT_REGION_OPENCL() +#define CV_INSTRUMENT_REGION_OPENCL_COMPILE(...) +#define CV_INSTRUMENT_REGION_OPENCL_RUN(...) +#define CV_INSTRUMENT_MARK_OPENCL(...) +#endif + +//! @endcond + +#endif // OPENCV_CORE_PRIVATE_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/ptr.inl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,379 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, NVIDIA Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the copyright holders or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_PTR_INL_HPP +#define OPENCV_CORE_PTR_INL_HPP + +#include <algorithm> + +//! @cond IGNORED + +namespace cv { + +template<typename Y> +void DefaultDeleter<Y>::operator () (Y* p) const +{ + delete p; +} + +namespace detail +{ + +struct PtrOwner +{ + PtrOwner() : refCount(1) + {} + + void incRef() + { + CV_XADD(&refCount, 1); + } + + void decRef() + { + if (CV_XADD(&refCount, -1) == 1) deleteSelf(); + } + +protected: + /* This doesn't really need to be virtual, since PtrOwner is never deleted + directly, but it doesn't hurt and it helps avoid warnings. */ + virtual ~PtrOwner() + {} + + virtual void deleteSelf() = 0; + +private: + unsigned int refCount; + + // noncopyable + PtrOwner(const PtrOwner&); + PtrOwner& operator = (const PtrOwner&); +}; + +template<typename Y, typename D> +struct PtrOwnerImpl : PtrOwner +{ + PtrOwnerImpl(Y* p, D d) : owned(p), deleter(d) + {} + + void deleteSelf() + { + deleter(owned); + delete this; + } + +private: + Y* owned; + D deleter; +}; + + +} + +template<typename T> +Ptr<T>::Ptr() : owner(NULL), stored(NULL) +{} + +template<typename T> +template<typename Y> +Ptr<T>::Ptr(Y* p) + : owner(p + ? new detail::PtrOwnerImpl<Y, DefaultDeleter<Y> >(p, DefaultDeleter<Y>()) + : NULL), + stored(p) +{} + +template<typename T> +template<typename Y, typename D> +Ptr<T>::Ptr(Y* p, D d) + : owner(p + ? new detail::PtrOwnerImpl<Y, D>(p, d) + : NULL), + stored(p) +{} + +template<typename T> +Ptr<T>::Ptr(const Ptr& o) : owner(o.owner), stored(o.stored) +{ + if (owner) owner->incRef(); +} + +template<typename T> +template<typename Y> +Ptr<T>::Ptr(const Ptr<Y>& o) : owner(o.owner), stored(o.stored) +{ + if (owner) owner->incRef(); +} + +template<typename T> +template<typename Y> +Ptr<T>::Ptr(const Ptr<Y>& o, T* p) : owner(o.owner), stored(p) +{ + if (owner) owner->incRef(); +} + +template<typename T> +Ptr<T>::~Ptr() +{ + release(); +} + +template<typename T> +Ptr<T>& Ptr<T>::operator = (const Ptr<T>& o) +{ + Ptr(o).swap(*this); + return *this; +} + +template<typename T> +template<typename Y> +Ptr<T>& Ptr<T>::operator = (const Ptr<Y>& o) +{ + Ptr(o).swap(*this); + return *this; +} + +template<typename T> +void Ptr<T>::release() +{ + if (owner) owner->decRef(); + owner = NULL; + stored = NULL; +} + +template<typename T> +template<typename Y> +void Ptr<T>::reset(Y* p) +{ + Ptr(p).swap(*this); +} + +template<typename T> +template<typename Y, typename D> +void Ptr<T>::reset(Y* p, D d) +{ + Ptr(p, d).swap(*this); +} + +template<typename T> +void Ptr<T>::swap(Ptr<T>& o) +{ + std::swap(owner, o.owner); + std::swap(stored, o.stored); +} + +template<typename T> +T* Ptr<T>::get() const +{ + return stored; +} + +template<typename T> +typename detail::RefOrVoid<T>::type Ptr<T>::operator * () const +{ + return *stored; +} + +template<typename T> +T* Ptr<T>::operator -> () const +{ + return stored; +} + +template<typename T> +Ptr<T>::operator T* () const +{ + return stored; +} + + +template<typename T> +bool Ptr<T>::empty() const +{ + return !stored; +} + +template<typename T> +template<typename Y> +Ptr<Y> Ptr<T>::staticCast() const +{ + return Ptr<Y>(*this, static_cast<Y*>(stored)); +} + +template<typename T> +template<typename Y> +Ptr<Y> Ptr<T>::constCast() const +{ + return Ptr<Y>(*this, const_cast<Y*>(stored)); +} + +template<typename T> +template<typename Y> +Ptr<Y> Ptr<T>::dynamicCast() const +{ + return Ptr<Y>(*this, dynamic_cast<Y*>(stored)); +} + +#ifdef CV_CXX_MOVE_SEMANTICS + +template<typename T> +Ptr<T>::Ptr(Ptr&& o) : owner(o.owner), stored(o.stored) +{ + o.owner = NULL; + o.stored = NULL; +} + +template<typename T> +Ptr<T>& Ptr<T>::operator = (Ptr<T>&& o) +{ + if (this == &o) + return *this; + + release(); + owner = o.owner; + stored = o.stored; + o.owner = NULL; + o.stored = NULL; + return *this; +} + +#endif + + +template<typename T> +void swap(Ptr<T>& ptr1, Ptr<T>& ptr2){ + ptr1.swap(ptr2); +} + +template<typename T> +bool operator == (const Ptr<T>& ptr1, const Ptr<T>& ptr2) +{ + return ptr1.get() == ptr2.get(); +} + +template<typename T> +bool operator != (const Ptr<T>& ptr1, const Ptr<T>& ptr2) +{ + return ptr1.get() != ptr2.get(); +} + +template<typename T> +Ptr<T> makePtr() +{ + return Ptr<T>(new T()); +} + +template<typename T, typename A1> +Ptr<T> makePtr(const A1& a1) +{ + return Ptr<T>(new T(a1)); +} + +template<typename T, typename A1, typename A2> +Ptr<T> makePtr(const A1& a1, const A2& a2) +{ + return Ptr<T>(new T(a1, a2)); +} + +template<typename T, typename A1, typename A2, typename A3> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3) +{ + return Ptr<T>(new T(a1, a2, a3)); +} + +template<typename T, typename A1, typename A2, typename A3, typename A4> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4) +{ + return Ptr<T>(new T(a1, a2, a3, a4)); +} + +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5) +{ + return Ptr<T>(new T(a1, a2, a3, a4, a5)); +} + +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6) +{ + return Ptr<T>(new T(a1, a2, a3, a4, a5, a6)); +} + +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7) +{ + return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7)); +} + +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8) +{ + return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8)); +} + +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9) +{ + return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9)); +} + +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10) +{ + return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)); +} + +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10, typename A11> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10, const A11& a11) +{ + return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11)); +} + +template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10, typename A11, typename A12> +Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10, const A11& a11, const A12& a12) +{ + return Ptr<T>(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12)); +} +} // namespace cv + +//! @endcond + +#endif // OPENCV_CORE_PTR_INL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/saturate.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,150 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2014, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_SATURATE_HPP +#define OPENCV_CORE_SATURATE_HPP + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/fast_math.hpp" + +namespace cv +{ + +//! @addtogroup core_utils +//! @{ + +/////////////// saturate_cast (used in image & signal processing) /////////////////// + +/** @brief Template function for accurate conversion from one primitive type to another. + + The functions saturate_cast resemble the standard C++ cast operations, such as static_cast\<T\>() + and others. They perform an efficient and accurate conversion from one primitive type to another + (see the introduction chapter). saturate in the name means that when the input value v is out of the + range of the target type, the result is not formed just by taking low bits of the input, but instead + the value is clipped. For example: + @code + uchar a = saturate_cast<uchar>(-100); // a = 0 (UCHAR_MIN) + short b = saturate_cast<short>(33333.33333); // b = 32767 (SHRT_MAX) + @endcode + Such clipping is done when the target type is unsigned char , signed char , unsigned short or + signed short . For 32-bit integers, no clipping is done. + + When the parameter is a floating-point value and the target type is an integer (8-, 16- or 32-bit), + the floating-point value is first rounded to the nearest integer and then clipped if needed (when + the target type is 8- or 16-bit). + + This operation is used in the simplest or most complex image processing functions in OpenCV. + + @param v Function parameter. + @sa add, subtract, multiply, divide, Mat::convertTo + */ +template<typename _Tp> static inline _Tp saturate_cast(uchar v) { return _Tp(v); } +/** @overload */ +template<typename _Tp> static inline _Tp saturate_cast(schar v) { return _Tp(v); } +/** @overload */ +template<typename _Tp> static inline _Tp saturate_cast(ushort v) { return _Tp(v); } +/** @overload */ +template<typename _Tp> static inline _Tp saturate_cast(short v) { return _Tp(v); } +/** @overload */ +template<typename _Tp> static inline _Tp saturate_cast(unsigned v) { return _Tp(v); } +/** @overload */ +template<typename _Tp> static inline _Tp saturate_cast(int v) { return _Tp(v); } +/** @overload */ +template<typename _Tp> static inline _Tp saturate_cast(float v) { return _Tp(v); } +/** @overload */ +template<typename _Tp> static inline _Tp saturate_cast(double v) { return _Tp(v); } +/** @overload */ +template<typename _Tp> static inline _Tp saturate_cast(int64 v) { return _Tp(v); } +/** @overload */ +template<typename _Tp> static inline _Tp saturate_cast(uint64 v) { return _Tp(v); } + +template<> inline uchar saturate_cast<uchar>(schar v) { return (uchar)std::max((int)v, 0); } +template<> inline uchar saturate_cast<uchar>(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); } +template<> inline uchar saturate_cast<uchar>(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); } +template<> inline uchar saturate_cast<uchar>(short v) { return saturate_cast<uchar>((int)v); } +template<> inline uchar saturate_cast<uchar>(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); } +template<> inline uchar saturate_cast<uchar>(float v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); } +template<> inline uchar saturate_cast<uchar>(double v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); } +template<> inline uchar saturate_cast<uchar>(int64 v) { return (uchar)((uint64)v <= (uint64)UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); } +template<> inline uchar saturate_cast<uchar>(uint64 v) { return (uchar)std::min(v, (uint64)UCHAR_MAX); } + +template<> inline schar saturate_cast<schar>(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); } +template<> inline schar saturate_cast<schar>(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); } +template<> inline schar saturate_cast<schar>(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); } +template<> inline schar saturate_cast<schar>(short v) { return saturate_cast<schar>((int)v); } +template<> inline schar saturate_cast<schar>(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); } +template<> inline schar saturate_cast<schar>(float v) { int iv = cvRound(v); return saturate_cast<schar>(iv); } +template<> inline schar saturate_cast<schar>(double v) { int iv = cvRound(v); return saturate_cast<schar>(iv); } +template<> inline schar saturate_cast<schar>(int64 v) { return (schar)((uint64)((int64)v-SCHAR_MIN) <= (uint64)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); } +template<> inline schar saturate_cast<schar>(uint64 v) { return (schar)std::min(v, (uint64)SCHAR_MAX); } + +template<> inline ushort saturate_cast<ushort>(schar v) { return (ushort)std::max((int)v, 0); } +template<> inline ushort saturate_cast<ushort>(short v) { return (ushort)std::max((int)v, 0); } +template<> inline ushort saturate_cast<ushort>(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); } +template<> inline ushort saturate_cast<ushort>(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); } +template<> inline ushort saturate_cast<ushort>(float v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); } +template<> inline ushort saturate_cast<ushort>(double v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); } +template<> inline ushort saturate_cast<ushort>(int64 v) { return (ushort)((uint64)v <= (uint64)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); } +template<> inline ushort saturate_cast<ushort>(uint64 v) { return (ushort)std::min(v, (uint64)USHRT_MAX); } + +template<> inline short saturate_cast<short>(ushort v) { return (short)std::min((int)v, SHRT_MAX); } +template<> inline short saturate_cast<short>(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); } +template<> inline short saturate_cast<short>(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); } +template<> inline short saturate_cast<short>(float v) { int iv = cvRound(v); return saturate_cast<short>(iv); } +template<> inline short saturate_cast<short>(double v) { int iv = cvRound(v); return saturate_cast<short>(iv); } +template<> inline short saturate_cast<short>(int64 v) { return (short)((uint64)((int64)v - SHRT_MIN) <= (uint64)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); } +template<> inline short saturate_cast<short>(uint64 v) { return (short)std::min(v, (uint64)SHRT_MAX); } + +template<> inline int saturate_cast<int>(float v) { return cvRound(v); } +template<> inline int saturate_cast<int>(double v) { return cvRound(v); } + +// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc. +template<> inline unsigned saturate_cast<unsigned>(float v) { return cvRound(v); } +template<> inline unsigned saturate_cast<unsigned>(double v) { return cvRound(v); } + +//! @} + +} // cv + +#endif // OPENCV_CORE_SATURATE_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/sse_utils.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,652 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_SSE_UTILS_HPP +#define OPENCV_CORE_SSE_UTILS_HPP + +#ifndef __cplusplus +# error sse_utils.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/cvdef.h" + +//! @addtogroup core_utils_sse +//! @{ + +#if CV_SSE2 + +inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_g0); + __m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_g0); + __m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_g1); + __m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_g1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk2); + __m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk2); + __m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk3); + __m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk3); + + __m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk2); + __m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk2); + __m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk3); + __m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk3); + + __m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk2); + __m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk2); + __m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk3); + __m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk3); + + v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk2); + v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk2); + v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk3); + v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk3); +} + +inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, + __m128i & v_g1, __m128i & v_b0, __m128i & v_b1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_g1); + __m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_g1); + __m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_b0); + __m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_b0); + __m128i layer1_chunk4 = _mm_unpacklo_epi8(v_g0, v_b1); + __m128i layer1_chunk5 = _mm_unpackhi_epi8(v_g0, v_b1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk3); + __m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk3); + __m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk4); + __m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk4); + __m128i layer2_chunk4 = _mm_unpacklo_epi8(layer1_chunk2, layer1_chunk5); + __m128i layer2_chunk5 = _mm_unpackhi_epi8(layer1_chunk2, layer1_chunk5); + + __m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk3); + __m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk3); + __m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk4); + __m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk4); + __m128i layer3_chunk4 = _mm_unpacklo_epi8(layer2_chunk2, layer2_chunk5); + __m128i layer3_chunk5 = _mm_unpackhi_epi8(layer2_chunk2, layer2_chunk5); + + __m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk3); + __m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk3); + __m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk4); + __m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk4); + __m128i layer4_chunk4 = _mm_unpacklo_epi8(layer3_chunk2, layer3_chunk5); + __m128i layer4_chunk5 = _mm_unpackhi_epi8(layer3_chunk2, layer3_chunk5); + + v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk3); + v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk3); + v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk4); + v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk4); + v_b0 = _mm_unpacklo_epi8(layer4_chunk2, layer4_chunk5); + v_b1 = _mm_unpackhi_epi8(layer4_chunk2, layer4_chunk5); +} + +inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1, + __m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_b0); + __m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_b0); + __m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_b1); + __m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_b1); + __m128i layer1_chunk4 = _mm_unpacklo_epi8(v_g0, v_a0); + __m128i layer1_chunk5 = _mm_unpackhi_epi8(v_g0, v_a0); + __m128i layer1_chunk6 = _mm_unpacklo_epi8(v_g1, v_a1); + __m128i layer1_chunk7 = _mm_unpackhi_epi8(v_g1, v_a1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk4); + __m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk4); + __m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk5); + __m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk5); + __m128i layer2_chunk4 = _mm_unpacklo_epi8(layer1_chunk2, layer1_chunk6); + __m128i layer2_chunk5 = _mm_unpackhi_epi8(layer1_chunk2, layer1_chunk6); + __m128i layer2_chunk6 = _mm_unpacklo_epi8(layer1_chunk3, layer1_chunk7); + __m128i layer2_chunk7 = _mm_unpackhi_epi8(layer1_chunk3, layer1_chunk7); + + __m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk4); + __m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk4); + __m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk5); + __m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk5); + __m128i layer3_chunk4 = _mm_unpacklo_epi8(layer2_chunk2, layer2_chunk6); + __m128i layer3_chunk5 = _mm_unpackhi_epi8(layer2_chunk2, layer2_chunk6); + __m128i layer3_chunk6 = _mm_unpacklo_epi8(layer2_chunk3, layer2_chunk7); + __m128i layer3_chunk7 = _mm_unpackhi_epi8(layer2_chunk3, layer2_chunk7); + + __m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk4); + __m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk4); + __m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk5); + __m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk5); + __m128i layer4_chunk4 = _mm_unpacklo_epi8(layer3_chunk2, layer3_chunk6); + __m128i layer4_chunk5 = _mm_unpackhi_epi8(layer3_chunk2, layer3_chunk6); + __m128i layer4_chunk6 = _mm_unpacklo_epi8(layer3_chunk3, layer3_chunk7); + __m128i layer4_chunk7 = _mm_unpackhi_epi8(layer3_chunk3, layer3_chunk7); + + v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk4); + v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk4); + v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk5); + v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk5); + v_b0 = _mm_unpacklo_epi8(layer4_chunk2, layer4_chunk6); + v_b1 = _mm_unpackhi_epi8(layer4_chunk2, layer4_chunk6); + v_a0 = _mm_unpacklo_epi8(layer4_chunk3, layer4_chunk7); + v_a1 = _mm_unpackhi_epi8(layer4_chunk3, layer4_chunk7); +} + +inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1) +{ + __m128i v_mask = _mm_set1_epi16(0x00ff); + + __m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer4_chunk2 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8)); + __m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer4_chunk3 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8)); + + __m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask)); + __m128i layer3_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8)); + __m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask)); + __m128i layer3_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8)); + + __m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8)); + __m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8)); + + __m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8)); + __m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8)); + + v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_g0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8)); + v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_g1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8)); +} + +inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, + __m128i & v_g1, __m128i & v_b0, __m128i & v_b1) +{ + __m128i v_mask = _mm_set1_epi16(0x00ff); + + __m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer4_chunk3 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8)); + __m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer4_chunk4 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8)); + __m128i layer4_chunk2 = _mm_packus_epi16(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask)); + __m128i layer4_chunk5 = _mm_packus_epi16(_mm_srli_epi16(v_b0, 8), _mm_srli_epi16(v_b1, 8)); + + __m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask)); + __m128i layer3_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8)); + __m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask)); + __m128i layer3_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8)); + __m128i layer3_chunk2 = _mm_packus_epi16(_mm_and_si128(layer4_chunk4, v_mask), _mm_and_si128(layer4_chunk5, v_mask)); + __m128i layer3_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk4, 8), _mm_srli_epi16(layer4_chunk5, 8)); + + __m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8)); + __m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8)); + __m128i layer2_chunk2 = _mm_packus_epi16(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask)); + __m128i layer2_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk4, 8), _mm_srli_epi16(layer3_chunk5, 8)); + + __m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8)); + __m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8)); + __m128i layer1_chunk2 = _mm_packus_epi16(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask)); + __m128i layer1_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk4, 8), _mm_srli_epi16(layer2_chunk5, 8)); + + v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_g1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8)); + v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_b0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8)); + v_g0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask)); + v_b1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk4, 8), _mm_srli_epi16(layer1_chunk5, 8)); +} + +inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1, + __m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1) +{ + __m128i v_mask = _mm_set1_epi16(0x00ff); + + __m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer4_chunk4 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8)); + __m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer4_chunk5 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8)); + __m128i layer4_chunk2 = _mm_packus_epi16(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask)); + __m128i layer4_chunk6 = _mm_packus_epi16(_mm_srli_epi16(v_b0, 8), _mm_srli_epi16(v_b1, 8)); + __m128i layer4_chunk3 = _mm_packus_epi16(_mm_and_si128(v_a0, v_mask), _mm_and_si128(v_a1, v_mask)); + __m128i layer4_chunk7 = _mm_packus_epi16(_mm_srli_epi16(v_a0, 8), _mm_srli_epi16(v_a1, 8)); + + __m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask)); + __m128i layer3_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8)); + __m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask)); + __m128i layer3_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8)); + __m128i layer3_chunk2 = _mm_packus_epi16(_mm_and_si128(layer4_chunk4, v_mask), _mm_and_si128(layer4_chunk5, v_mask)); + __m128i layer3_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk4, 8), _mm_srli_epi16(layer4_chunk5, 8)); + __m128i layer3_chunk3 = _mm_packus_epi16(_mm_and_si128(layer4_chunk6, v_mask), _mm_and_si128(layer4_chunk7, v_mask)); + __m128i layer3_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk6, 8), _mm_srli_epi16(layer4_chunk7, 8)); + + __m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8)); + __m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8)); + __m128i layer2_chunk2 = _mm_packus_epi16(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask)); + __m128i layer2_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk4, 8), _mm_srli_epi16(layer3_chunk5, 8)); + __m128i layer2_chunk3 = _mm_packus_epi16(_mm_and_si128(layer3_chunk6, v_mask), _mm_and_si128(layer3_chunk7, v_mask)); + __m128i layer2_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk6, 8), _mm_srli_epi16(layer3_chunk7, 8)); + + __m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8)); + __m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8)); + __m128i layer1_chunk2 = _mm_packus_epi16(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask)); + __m128i layer1_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk4, 8), _mm_srli_epi16(layer2_chunk5, 8)); + __m128i layer1_chunk3 = _mm_packus_epi16(_mm_and_si128(layer2_chunk6, v_mask), _mm_and_si128(layer2_chunk7, v_mask)); + __m128i layer1_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk6, 8), _mm_srli_epi16(layer2_chunk7, 8)); + + v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_b0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8)); + v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_b1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8)); + v_g0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask)); + v_a0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk4, 8), _mm_srli_epi16(layer1_chunk5, 8)); + v_g1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk6, v_mask), _mm_and_si128(layer1_chunk7, v_mask)); + v_a1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk6, 8), _mm_srli_epi16(layer1_chunk7, 8)); +} + +inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_g0); + __m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_g0); + __m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_g1); + __m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_g1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk2); + __m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk2); + __m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk3); + __m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk3); + + __m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk2); + __m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk2); + __m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk3); + __m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk3); + + v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk2); + v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk2); + v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk3); + v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk3); +} + +inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, + __m128i & v_g1, __m128i & v_b0, __m128i & v_b1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_g1); + __m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_g1); + __m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_b0); + __m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_b0); + __m128i layer1_chunk4 = _mm_unpacklo_epi16(v_g0, v_b1); + __m128i layer1_chunk5 = _mm_unpackhi_epi16(v_g0, v_b1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk3); + __m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk3); + __m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk4); + __m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk4); + __m128i layer2_chunk4 = _mm_unpacklo_epi16(layer1_chunk2, layer1_chunk5); + __m128i layer2_chunk5 = _mm_unpackhi_epi16(layer1_chunk2, layer1_chunk5); + + __m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk3); + __m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk3); + __m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk4); + __m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk4); + __m128i layer3_chunk4 = _mm_unpacklo_epi16(layer2_chunk2, layer2_chunk5); + __m128i layer3_chunk5 = _mm_unpackhi_epi16(layer2_chunk2, layer2_chunk5); + + v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk3); + v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk3); + v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk4); + v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk4); + v_b0 = _mm_unpacklo_epi16(layer3_chunk2, layer3_chunk5); + v_b1 = _mm_unpackhi_epi16(layer3_chunk2, layer3_chunk5); +} + +inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1, + __m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_b0); + __m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_b0); + __m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_b1); + __m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_b1); + __m128i layer1_chunk4 = _mm_unpacklo_epi16(v_g0, v_a0); + __m128i layer1_chunk5 = _mm_unpackhi_epi16(v_g0, v_a0); + __m128i layer1_chunk6 = _mm_unpacklo_epi16(v_g1, v_a1); + __m128i layer1_chunk7 = _mm_unpackhi_epi16(v_g1, v_a1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk4); + __m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk4); + __m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk5); + __m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk5); + __m128i layer2_chunk4 = _mm_unpacklo_epi16(layer1_chunk2, layer1_chunk6); + __m128i layer2_chunk5 = _mm_unpackhi_epi16(layer1_chunk2, layer1_chunk6); + __m128i layer2_chunk6 = _mm_unpacklo_epi16(layer1_chunk3, layer1_chunk7); + __m128i layer2_chunk7 = _mm_unpackhi_epi16(layer1_chunk3, layer1_chunk7); + + __m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk4); + __m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk4); + __m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk5); + __m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk5); + __m128i layer3_chunk4 = _mm_unpacklo_epi16(layer2_chunk2, layer2_chunk6); + __m128i layer3_chunk5 = _mm_unpackhi_epi16(layer2_chunk2, layer2_chunk6); + __m128i layer3_chunk6 = _mm_unpacklo_epi16(layer2_chunk3, layer2_chunk7); + __m128i layer3_chunk7 = _mm_unpackhi_epi16(layer2_chunk3, layer2_chunk7); + + v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk4); + v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk4); + v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk5); + v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk5); + v_b0 = _mm_unpacklo_epi16(layer3_chunk2, layer3_chunk6); + v_b1 = _mm_unpackhi_epi16(layer3_chunk2, layer3_chunk6); + v_a0 = _mm_unpacklo_epi16(layer3_chunk3, layer3_chunk7); + v_a1 = _mm_unpackhi_epi16(layer3_chunk3, layer3_chunk7); +} + +#if CV_SSE4_1 + +inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1) +{ + __m128i v_mask = _mm_set1_epi32(0x0000ffff); + + __m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer3_chunk2 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16)); + __m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer3_chunk3 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16)); + + __m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk2 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16)); + __m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16)); + + __m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk2 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16)); + __m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16)); + + v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_g0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16)); + v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_g1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16)); +} + +inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, + __m128i & v_g1, __m128i & v_b0, __m128i & v_b1) +{ + __m128i v_mask = _mm_set1_epi32(0x0000ffff); + + __m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer3_chunk3 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16)); + __m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer3_chunk4 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16)); + __m128i layer3_chunk2 = _mm_packus_epi32(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask)); + __m128i layer3_chunk5 = _mm_packus_epi32(_mm_srli_epi32(v_b0, 16), _mm_srli_epi32(v_b1, 16)); + + __m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16)); + __m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16)); + __m128i layer2_chunk2 = _mm_packus_epi32(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask)); + __m128i layer2_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk4, 16), _mm_srli_epi32(layer3_chunk5, 16)); + + __m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16)); + __m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16)); + __m128i layer1_chunk2 = _mm_packus_epi32(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask)); + __m128i layer1_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk4, 16), _mm_srli_epi32(layer2_chunk5, 16)); + + v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_g1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16)); + v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_b0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16)); + v_g0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask)); + v_b1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk4, 16), _mm_srli_epi32(layer1_chunk5, 16)); +} + +inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1, + __m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1) +{ + __m128i v_mask = _mm_set1_epi32(0x0000ffff); + + __m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer3_chunk4 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16)); + __m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer3_chunk5 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16)); + __m128i layer3_chunk2 = _mm_packus_epi32(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask)); + __m128i layer3_chunk6 = _mm_packus_epi32(_mm_srli_epi32(v_b0, 16), _mm_srli_epi32(v_b1, 16)); + __m128i layer3_chunk3 = _mm_packus_epi32(_mm_and_si128(v_a0, v_mask), _mm_and_si128(v_a1, v_mask)); + __m128i layer3_chunk7 = _mm_packus_epi32(_mm_srli_epi32(v_a0, 16), _mm_srli_epi32(v_a1, 16)); + + __m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16)); + __m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16)); + __m128i layer2_chunk2 = _mm_packus_epi32(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask)); + __m128i layer2_chunk6 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk4, 16), _mm_srli_epi32(layer3_chunk5, 16)); + __m128i layer2_chunk3 = _mm_packus_epi32(_mm_and_si128(layer3_chunk6, v_mask), _mm_and_si128(layer3_chunk7, v_mask)); + __m128i layer2_chunk7 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk6, 16), _mm_srli_epi32(layer3_chunk7, 16)); + + __m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16)); + __m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16)); + __m128i layer1_chunk2 = _mm_packus_epi32(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask)); + __m128i layer1_chunk6 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk4, 16), _mm_srli_epi32(layer2_chunk5, 16)); + __m128i layer1_chunk3 = _mm_packus_epi32(_mm_and_si128(layer2_chunk6, v_mask), _mm_and_si128(layer2_chunk7, v_mask)); + __m128i layer1_chunk7 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk6, 16), _mm_srli_epi32(layer2_chunk7, 16)); + + v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_b0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16)); + v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_b1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16)); + v_g0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask)); + v_a0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk4, 16), _mm_srli_epi32(layer1_chunk5, 16)); + v_g1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk6, v_mask), _mm_and_si128(layer1_chunk7, v_mask)); + v_a1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk6, 16), _mm_srli_epi32(layer1_chunk7, 16)); +} + +#endif // CV_SSE4_1 + +inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1) +{ + __m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_g0); + __m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_g0); + __m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_g1); + __m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_g1); + + __m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk2); + __m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk2); + __m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk3); + __m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk3); + + v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk2); + v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk2); + v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk3); + v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk3); +} + +inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, + __m128 & v_g1, __m128 & v_b0, __m128 & v_b1) +{ + __m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_g1); + __m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_g1); + __m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_b0); + __m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_b0); + __m128 layer1_chunk4 = _mm_unpacklo_ps(v_g0, v_b1); + __m128 layer1_chunk5 = _mm_unpackhi_ps(v_g0, v_b1); + + __m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk3); + __m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk3); + __m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk4); + __m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk4); + __m128 layer2_chunk4 = _mm_unpacklo_ps(layer1_chunk2, layer1_chunk5); + __m128 layer2_chunk5 = _mm_unpackhi_ps(layer1_chunk2, layer1_chunk5); + + v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk3); + v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk3); + v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk4); + v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk4); + v_b0 = _mm_unpacklo_ps(layer2_chunk2, layer2_chunk5); + v_b1 = _mm_unpackhi_ps(layer2_chunk2, layer2_chunk5); +} + +inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1, + __m128 & v_b0, __m128 & v_b1, __m128 & v_a0, __m128 & v_a1) +{ + __m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_b0); + __m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_b0); + __m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_b1); + __m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_b1); + __m128 layer1_chunk4 = _mm_unpacklo_ps(v_g0, v_a0); + __m128 layer1_chunk5 = _mm_unpackhi_ps(v_g0, v_a0); + __m128 layer1_chunk6 = _mm_unpacklo_ps(v_g1, v_a1); + __m128 layer1_chunk7 = _mm_unpackhi_ps(v_g1, v_a1); + + __m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk4); + __m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk4); + __m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk5); + __m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk5); + __m128 layer2_chunk4 = _mm_unpacklo_ps(layer1_chunk2, layer1_chunk6); + __m128 layer2_chunk5 = _mm_unpackhi_ps(layer1_chunk2, layer1_chunk6); + __m128 layer2_chunk6 = _mm_unpacklo_ps(layer1_chunk3, layer1_chunk7); + __m128 layer2_chunk7 = _mm_unpackhi_ps(layer1_chunk3, layer1_chunk7); + + v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk4); + v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk4); + v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk5); + v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk5); + v_b0 = _mm_unpacklo_ps(layer2_chunk2, layer2_chunk6); + v_b1 = _mm_unpackhi_ps(layer2_chunk2, layer2_chunk6); + v_a0 = _mm_unpacklo_ps(layer2_chunk3, layer2_chunk7); + v_a1 = _mm_unpackhi_ps(layer2_chunk3, layer2_chunk7); +} + +inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1) +{ + const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1); + + __m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo); + __m128 layer2_chunk2 = _mm_shuffle_ps(v_r0, v_r1, mask_hi); + __m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo); + __m128 layer2_chunk3 = _mm_shuffle_ps(v_g0, v_g1, mask_hi); + + __m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo); + __m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi); + __m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo); + __m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi); + + v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo); + v_g0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi); + v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo); + v_g1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi); +} + +inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, + __m128 & v_g1, __m128 & v_b0, __m128 & v_b1) +{ + const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1); + + __m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo); + __m128 layer2_chunk3 = _mm_shuffle_ps(v_r0, v_r1, mask_hi); + __m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo); + __m128 layer2_chunk4 = _mm_shuffle_ps(v_g0, v_g1, mask_hi); + __m128 layer2_chunk2 = _mm_shuffle_ps(v_b0, v_b1, mask_lo); + __m128 layer2_chunk5 = _mm_shuffle_ps(v_b0, v_b1, mask_hi); + + __m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo); + __m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi); + __m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo); + __m128 layer1_chunk4 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi); + __m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_lo); + __m128 layer1_chunk5 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_hi); + + v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo); + v_g1 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi); + v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo); + v_b0 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi); + v_g0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_lo); + v_b1 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_hi); +} + +inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1, + __m128 & v_b0, __m128 & v_b1, __m128 & v_a0, __m128 & v_a1) +{ + const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1); + + __m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo); + __m128 layer2_chunk4 = _mm_shuffle_ps(v_r0, v_r1, mask_hi); + __m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo); + __m128 layer2_chunk5 = _mm_shuffle_ps(v_g0, v_g1, mask_hi); + __m128 layer2_chunk2 = _mm_shuffle_ps(v_b0, v_b1, mask_lo); + __m128 layer2_chunk6 = _mm_shuffle_ps(v_b0, v_b1, mask_hi); + __m128 layer2_chunk3 = _mm_shuffle_ps(v_a0, v_a1, mask_lo); + __m128 layer2_chunk7 = _mm_shuffle_ps(v_a0, v_a1, mask_hi); + + __m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo); + __m128 layer1_chunk4 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi); + __m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo); + __m128 layer1_chunk5 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi); + __m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_lo); + __m128 layer1_chunk6 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_hi); + __m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk6, layer2_chunk7, mask_lo); + __m128 layer1_chunk7 = _mm_shuffle_ps(layer2_chunk6, layer2_chunk7, mask_hi); + + v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo); + v_b0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi); + v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo); + v_b1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi); + v_g0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_lo); + v_a0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_hi); + v_g1 = _mm_shuffle_ps(layer1_chunk6, layer1_chunk7, mask_lo); + v_a1 = _mm_shuffle_ps(layer1_chunk6, layer1_chunk7, mask_hi); +} + +#endif // CV_SSE2 + +//! @} + +#endif //OPENCV_CORE_SSE_UTILS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/traits.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,326 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_TRAITS_HPP +#define OPENCV_CORE_TRAITS_HPP + +#include "opencv2/core/cvdef.h" + +namespace cv +{ + +//! @addtogroup core_basic +//! @{ + +/** @brief Template "trait" class for OpenCV primitive data types. + +A primitive OpenCV data type is one of unsigned char, bool, signed char, unsigned short, signed +short, int, float, double, or a tuple of values of one of these types, where all the values in the +tuple have the same type. Any primitive type from the list can be defined by an identifier in the +form CV_\<bit-depth\>{U|S|F}C(\<number_of_channels\>), for example: uchar \~ CV_8UC1, 3-element +floating-point tuple \~ CV_32FC3, and so on. A universal OpenCV structure that is able to store a +single instance of such a primitive data type is Vec. Multiple instances of such a type can be +stored in a std::vector, Mat, Mat_, SparseMat, SparseMat_, or any other container that is able to +store Vec instances. + +The DataType class is basically used to provide a description of such primitive data types without +adding any fields or methods to the corresponding classes (and it is actually impossible to add +anything to primitive C/C++ data types). This technique is known in C++ as class traits. It is not +DataType itself that is used but its specialized versions, such as: +@code + template<> class DataType<uchar> + { + typedef uchar value_type; + typedef int work_type; + typedef uchar channel_type; + enum { channel_type = CV_8U, channels = 1, fmt='u', type = CV_8U }; + }; + ... + template<typename _Tp> DataType<std::complex<_Tp> > + { + typedef std::complex<_Tp> value_type; + typedef std::complex<_Tp> work_type; + typedef _Tp channel_type; + // DataDepth is another helper trait class + enum { depth = DataDepth<_Tp>::value, channels=2, + fmt=(channels-1)*256+DataDepth<_Tp>::fmt, + type=CV_MAKETYPE(depth, channels) }; + }; + ... +@endcode +The main purpose of this class is to convert compilation-time type information to an +OpenCV-compatible data type identifier, for example: +@code + // allocates a 30x40 floating-point matrix + Mat A(30, 40, DataType<float>::type); + + Mat B = Mat_<std::complex<double> >(3, 3); + // the statement below will print 6, 2 , that is depth == CV_64F, channels == 2 + cout << B.depth() << ", " << B.channels() << endl; +@endcode +So, such traits are used to tell OpenCV which data type you are working with, even if such a type is +not native to OpenCV. For example, the matrix B initialization above is compiled because OpenCV +defines the proper specialized template class DataType\<complex\<_Tp\> \> . This mechanism is also +useful (and used in OpenCV this way) for generic algorithms implementations. +*/ +template<typename _Tp> class DataType +{ +public: + typedef _Tp value_type; + typedef value_type work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 1, + depth = -1, + channels = 1, + fmt = 0, + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType<bool> +{ +public: + typedef bool value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_8U, + channels = 1, + fmt = (int)'u', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType<uchar> +{ +public: + typedef uchar value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_8U, + channels = 1, + fmt = (int)'u', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType<schar> +{ +public: + typedef schar value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_8S, + channels = 1, + fmt = (int)'c', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType<char> +{ +public: + typedef schar value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_8S, + channels = 1, + fmt = (int)'c', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType<ushort> +{ +public: + typedef ushort value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_16U, + channels = 1, + fmt = (int)'w', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType<short> +{ +public: + typedef short value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_16S, + channels = 1, + fmt = (int)'s', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType<int> +{ +public: + typedef int value_type; + typedef value_type work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_32S, + channels = 1, + fmt = (int)'i', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType<float> +{ +public: + typedef float value_type; + typedef value_type work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_32F, + channels = 1, + fmt = (int)'f', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType<double> +{ +public: + typedef double value_type; + typedef value_type work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_64F, + channels = 1, + fmt = (int)'d', + type = CV_MAKETYPE(depth, channels) + }; +}; + + +/** @brief A helper class for cv::DataType + +The class is specialized for each fundamental numerical data type supported by OpenCV. It provides +DataDepth<T>::value constant. +*/ +template<typename _Tp> class DataDepth +{ +public: + enum + { + value = DataType<_Tp>::depth, + fmt = DataType<_Tp>::fmt + }; +}; + + + +template<int _depth> class TypeDepth +{ + enum { depth = CV_USRTYPE1 }; + typedef void value_type; +}; + +template<> class TypeDepth<CV_8U> +{ + enum { depth = CV_8U }; + typedef uchar value_type; +}; + +template<> class TypeDepth<CV_8S> +{ + enum { depth = CV_8S }; + typedef schar value_type; +}; + +template<> class TypeDepth<CV_16U> +{ + enum { depth = CV_16U }; + typedef ushort value_type; +}; + +template<> class TypeDepth<CV_16S> +{ + enum { depth = CV_16S }; + typedef short value_type; +}; + +template<> class TypeDepth<CV_32S> +{ + enum { depth = CV_32S }; + typedef int value_type; +}; + +template<> class TypeDepth<CV_32F> +{ + enum { depth = CV_32F }; + typedef float value_type; +}; + +template<> class TypeDepth<CV_64F> +{ + enum { depth = CV_64F }; + typedef double value_type; +}; + +//! @} + +} // cv + +#endif // OPENCV_CORE_TRAITS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/types.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,2264 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_TYPES_HPP +#define OPENCV_CORE_TYPES_HPP + +#ifndef __cplusplus +# error types.hpp header must be compiled as C++ +#endif + +#include <climits> +#include <cfloat> +#include <vector> +#include <limits> + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/cvstd.hpp" +#include "opencv2/core/matx.hpp" + +namespace cv +{ + +//! @addtogroup core_basic +//! @{ + +//////////////////////////////// Complex ////////////////////////////// + +/** @brief A complex number class. + + The template class is similar and compatible with std::complex, however it provides slightly + more convenient access to the real and imaginary parts using through the simple field access, as opposite + to std::complex::real() and std::complex::imag(). +*/ +template<typename _Tp> class Complex +{ +public: + + //! constructors + Complex(); + Complex( _Tp _re, _Tp _im = 0 ); + + //! conversion to another data type + template<typename T2> operator Complex<T2>() const; + //! conjugation + Complex conj() const; + + _Tp re, im; //< the real and the imaginary parts +}; + +typedef Complex<float> Complexf; +typedef Complex<double> Complexd; + +template<typename _Tp> class DataType< Complex<_Tp> > +{ +public: + typedef Complex<_Tp> value_type; + typedef value_type work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = 2, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +//////////////////////////////// Point_ //////////////////////////////// + +/** @brief Template class for 2D points specified by its coordinates `x` and `y`. + +An instance of the class is interchangeable with C structures, CvPoint and CvPoint2D32f . There is +also a cast operator to convert point coordinates to the specified type. The conversion from +floating-point coordinates to integer coordinates is done by rounding. Commonly, the conversion +uses this operation for each of the coordinates. Besides the class members listed in the +declaration above, the following operations on points are implemented: +@code + pt1 = pt2 + pt3; + pt1 = pt2 - pt3; + pt1 = pt2 * a; + pt1 = a * pt2; + pt1 = pt2 / a; + pt1 += pt2; + pt1 -= pt2; + pt1 *= a; + pt1 /= a; + double value = norm(pt); // L2 norm + pt1 == pt2; + pt1 != pt2; +@endcode +For your convenience, the following type aliases are defined: +@code + typedef Point_<int> Point2i; + typedef Point2i Point; + typedef Point_<float> Point2f; + typedef Point_<double> Point2d; +@endcode +Example: +@code + Point2f a(0.3f, 0.f), b(0.f, 0.4f); + Point pt = (a + b)*10.f; + cout << pt.x << ", " << pt.y << endl; +@endcode +*/ +template<typename _Tp> class Point_ +{ +public: + typedef _Tp value_type; + + // various constructors + Point_(); + Point_(_Tp _x, _Tp _y); + Point_(const Point_& pt); + Point_(const Size_<_Tp>& sz); + Point_(const Vec<_Tp, 2>& v); + + Point_& operator = (const Point_& pt); + //! conversion to another data type + template<typename _Tp2> operator Point_<_Tp2>() const; + + //! conversion to the old-style C structures + operator Vec<_Tp, 2>() const; + + //! dot product + _Tp dot(const Point_& pt) const; + //! dot product computed in double-precision arithmetics + double ddot(const Point_& pt) const; + //! cross-product + double cross(const Point_& pt) const; + //! checks whether the point is inside the specified rectangle + bool inside(const Rect_<_Tp>& r) const; + + _Tp x, y; //< the point coordinates +}; + +typedef Point_<int> Point2i; +typedef Point_<int64> Point2l; +typedef Point_<float> Point2f; +typedef Point_<double> Point2d; +typedef Point2i Point; + +template<typename _Tp> class DataType< Point_<_Tp> > +{ +public: + typedef Point_<_Tp> value_type; + typedef Point_<typename DataType<_Tp>::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = 2, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +//////////////////////////////// Point3_ //////////////////////////////// + +/** @brief Template class for 3D points specified by its coordinates `x`, `y` and `z`. + +An instance of the class is interchangeable with the C structure CvPoint2D32f . Similarly to +Point_ , the coordinates of 3D points can be converted to another type. The vector arithmetic and +comparison operations are also supported. + +The following Point3_\<\> aliases are available: +@code + typedef Point3_<int> Point3i; + typedef Point3_<float> Point3f; + typedef Point3_<double> Point3d; +@endcode +@see cv::Point3i, cv::Point3f and cv::Point3d +*/ +template<typename _Tp> class Point3_ +{ +public: + typedef _Tp value_type; + + // various constructors + Point3_(); + Point3_(_Tp _x, _Tp _y, _Tp _z); + Point3_(const Point3_& pt); + explicit Point3_(const Point_<_Tp>& pt); + Point3_(const Vec<_Tp, 3>& v); + + Point3_& operator = (const Point3_& pt); + //! conversion to another data type + template<typename _Tp2> operator Point3_<_Tp2>() const; + //! conversion to cv::Vec<> +#if OPENCV_ABI_COMPATIBILITY > 300 + template<typename _Tp2> operator Vec<_Tp2, 3>() const; +#else + operator Vec<_Tp, 3>() const; +#endif + + //! dot product + _Tp dot(const Point3_& pt) const; + //! dot product computed in double-precision arithmetics + double ddot(const Point3_& pt) const; + //! cross product of the 2 3D points + Point3_ cross(const Point3_& pt) const; + + _Tp x, y, z; //< the point coordinates +}; + +typedef Point3_<int> Point3i; +typedef Point3_<float> Point3f; +typedef Point3_<double> Point3d; + +template<typename _Tp> class DataType< Point3_<_Tp> > +{ +public: + typedef Point3_<_Tp> value_type; + typedef Point3_<typename DataType<_Tp>::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = 3, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +//////////////////////////////// Size_ //////////////////////////////// + +/** @brief Template class for specifying the size of an image or rectangle. + +The class includes two members called width and height. The structure can be converted to and from +the old OpenCV structures CvSize and CvSize2D32f . The same set of arithmetic and comparison +operations as for Point_ is available. + +OpenCV defines the following Size_\<\> aliases: +@code + typedef Size_<int> Size2i; + typedef Size2i Size; + typedef Size_<float> Size2f; +@endcode +*/ +template<typename _Tp> class Size_ +{ +public: + typedef _Tp value_type; + + //! various constructors + Size_(); + Size_(_Tp _width, _Tp _height); + Size_(const Size_& sz); + Size_(const Point_<_Tp>& pt); + + Size_& operator = (const Size_& sz); + //! the area (width*height) + _Tp area() const; + + //! conversion of another data type. + template<typename _Tp2> operator Size_<_Tp2>() const; + + _Tp width, height; // the width and the height +}; + +typedef Size_<int> Size2i; +typedef Size_<int64> Size2l; +typedef Size_<float> Size2f; +typedef Size_<double> Size2d; +typedef Size2i Size; + +template<typename _Tp> class DataType< Size_<_Tp> > +{ +public: + typedef Size_<_Tp> value_type; + typedef Size_<typename DataType<_Tp>::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = 2, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +//////////////////////////////// Rect_ //////////////////////////////// + +/** @brief Template class for 2D rectangles + +described by the following parameters: +- Coordinates of the top-left corner. This is a default interpretation of Rect_::x and Rect_::y + in OpenCV. Though, in your algorithms you may count x and y from the bottom-left corner. +- Rectangle width and height. + +OpenCV typically assumes that the top and left boundary of the rectangle are inclusive, while the +right and bottom boundaries are not. For example, the method Rect_::contains returns true if + +\f[x \leq pt.x < x+width, + y \leq pt.y < y+height\f] + +Virtually every loop over an image ROI in OpenCV (where ROI is specified by Rect_\<int\> ) is +implemented as: +@code + for(int y = roi.y; y < roi.y + roi.height; y++) + for(int x = roi.x; x < roi.x + roi.width; x++) + { + // ... + } +@endcode +In addition to the class members, the following operations on rectangles are implemented: +- \f$\texttt{rect} = \texttt{rect} \pm \texttt{point}\f$ (shifting a rectangle by a certain offset) +- \f$\texttt{rect} = \texttt{rect} \pm \texttt{size}\f$ (expanding or shrinking a rectangle by a + certain amount) +- rect += point, rect -= point, rect += size, rect -= size (augmenting operations) +- rect = rect1 & rect2 (rectangle intersection) +- rect = rect1 | rect2 (minimum area rectangle containing rect1 and rect2 ) +- rect &= rect1, rect |= rect1 (and the corresponding augmenting operations) +- rect == rect1, rect != rect1 (rectangle comparison) + +This is an example how the partial ordering on rectangles can be established (rect1 \f$\subseteq\f$ +rect2): +@code + template<typename _Tp> inline bool + operator <= (const Rect_<_Tp>& r1, const Rect_<_Tp>& r2) + { + return (r1 & r2) == r1; + } +@endcode +For your convenience, the Rect_\<\> alias is available: cv::Rect +*/ +template<typename _Tp> class Rect_ +{ +public: + typedef _Tp value_type; + + //! various constructors + Rect_(); + Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height); + Rect_(const Rect_& r); + Rect_(const Point_<_Tp>& org, const Size_<_Tp>& sz); + Rect_(const Point_<_Tp>& pt1, const Point_<_Tp>& pt2); + + Rect_& operator = ( const Rect_& r ); + //! the top-left corner + Point_<_Tp> tl() const; + //! the bottom-right corner + Point_<_Tp> br() const; + + //! size (width, height) of the rectangle + Size_<_Tp> size() const; + //! area (width*height) of the rectangle + _Tp area() const; + + //! conversion to another data type + template<typename _Tp2> operator Rect_<_Tp2>() const; + + //! checks whether the rectangle contains the point + bool contains(const Point_<_Tp>& pt) const; + + _Tp x, y, width, height; //< the top-left corner, as well as width and height of the rectangle +}; + +typedef Rect_<int> Rect2i; +typedef Rect_<float> Rect2f; +typedef Rect_<double> Rect2d; +typedef Rect2i Rect; + +template<typename _Tp> class DataType< Rect_<_Tp> > +{ +public: + typedef Rect_<_Tp> value_type; + typedef Rect_<typename DataType<_Tp>::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = 4, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +///////////////////////////// RotatedRect ///////////////////////////// + +/** @brief The class represents rotated (i.e. not up-right) rectangles on a plane. + +Each rectangle is specified by the center point (mass center), length of each side (represented by +cv::Size2f structure) and the rotation angle in degrees. + +The sample below demonstrates how to use RotatedRect: +@code + Mat image(200, 200, CV_8UC3, Scalar(0)); + RotatedRect rRect = RotatedRect(Point2f(100,100), Size2f(100,50), 30); + + Point2f vertices[4]; + rRect.points(vertices); + for (int i = 0; i < 4; i++) + line(image, vertices[i], vertices[(i+1)%4], Scalar(0,255,0)); + + Rect brect = rRect.boundingRect(); + rectangle(image, brect, Scalar(255,0,0)); + + imshow("rectangles", image); + waitKey(0); +@endcode +![image](pics/rotatedrect.png) + +@sa CamShift, fitEllipse, minAreaRect, CvBox2D +*/ +class CV_EXPORTS RotatedRect +{ +public: + //! various constructors + RotatedRect(); + /** + @param center The rectangle mass center. + @param size Width and height of the rectangle. + @param angle The rotation angle in a clockwise direction. When the angle is 0, 90, 180, 270 etc., + the rectangle becomes an up-right rectangle. + */ + RotatedRect(const Point2f& center, const Size2f& size, float angle); + /** + Any 3 end points of the RotatedRect. They must be given in order (either clockwise or + anticlockwise). + */ + RotatedRect(const Point2f& point1, const Point2f& point2, const Point2f& point3); + + /** returns 4 vertices of the rectangle + @param pts The points array for storing rectangle vertices. + */ + void points(Point2f pts[]) const; + //! returns the minimal up-right integer rectangle containing the rotated rectangle + Rect boundingRect() const; + //! returns the minimal (exact) floating point rectangle containing the rotated rectangle, not intended for use with images + Rect_<float> boundingRect2f() const; + + Point2f center; //< the rectangle mass center + Size2f size; //< width and height of the rectangle + float angle; //< the rotation angle. When the angle is 0, 90, 180, 270 etc., the rectangle becomes an up-right rectangle. +}; + +template<> class DataType< RotatedRect > +{ +public: + typedef RotatedRect value_type; + typedef value_type work_type; + typedef float channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = (int)sizeof(value_type)/sizeof(channel_type), // 5 + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +//////////////////////////////// Range ///////////////////////////////// + +/** @brief Template class specifying a continuous subsequence (slice) of a sequence. + +The class is used to specify a row or a column span in a matrix ( Mat ) and for many other purposes. +Range(a,b) is basically the same as a:b in Matlab or a..b in Python. As in Python, start is an +inclusive left boundary of the range and end is an exclusive right boundary of the range. Such a +half-opened interval is usually denoted as \f$[start,end)\f$ . + +The static method Range::all() returns a special variable that means "the whole sequence" or "the +whole range", just like " : " in Matlab or " ... " in Python. All the methods and functions in +OpenCV that take Range support this special Range::all() value. But, of course, in case of your own +custom processing, you will probably have to check and handle it explicitly: +@code + void my_function(..., const Range& r, ....) + { + if(r == Range::all()) { + // process all the data + } + else { + // process [r.start, r.end) + } + } +@endcode +*/ +class CV_EXPORTS Range +{ +public: + Range(); + Range(int _start, int _end); + int size() const; + bool empty() const; + static Range all(); + + int start, end; +}; + +template<> class DataType<Range> +{ +public: + typedef Range value_type; + typedef value_type work_type; + typedef int channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = 2, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +//////////////////////////////// Scalar_ /////////////////////////////// + +/** @brief Template class for a 4-element vector derived from Vec. + +Being derived from Vec\<_Tp, 4\> , Scalar_ and Scalar can be used just as typical 4-element +vectors. In addition, they can be converted to/from CvScalar . The type Scalar is widely used in +OpenCV to pass pixel values. +*/ +template<typename _Tp> class Scalar_ : public Vec<_Tp, 4> +{ +public: + //! various constructors + Scalar_(); + Scalar_(_Tp v0, _Tp v1, _Tp v2=0, _Tp v3=0); + Scalar_(_Tp v0); + + template<typename _Tp2, int cn> + Scalar_(const Vec<_Tp2, cn>& v); + + //! returns a scalar with all elements set to v0 + static Scalar_<_Tp> all(_Tp v0); + + //! conversion to another data type + template<typename T2> operator Scalar_<T2>() const; + + //! per-element product + Scalar_<_Tp> mul(const Scalar_<_Tp>& a, double scale=1 ) const; + + // returns (v0, -v1, -v2, -v3) + Scalar_<_Tp> conj() const; + + // returns true iff v1 == v2 == v3 == 0 + bool isReal() const; +}; + +typedef Scalar_<double> Scalar; + +template<typename _Tp> class DataType< Scalar_<_Tp> > +{ +public: + typedef Scalar_<_Tp> value_type; + typedef Scalar_<typename DataType<_Tp>::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = 4, + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +/////////////////////////////// KeyPoint //////////////////////////////// + +/** @brief Data structure for salient point detectors. + +The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint +detectors, such as Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, +cv::LDetector etc. + +The keypoint is characterized by the 2D position, scale (proportional to the diameter of the +neighborhood that needs to be taken into account), orientation and some other parameters. The +keypoint neighborhood is then analyzed by another algorithm that builds a descriptor (usually +represented as a feature vector). The keypoints representing the same object in different images +can then be matched using cv::KDTree or another method. +*/ +class CV_EXPORTS_W_SIMPLE KeyPoint +{ +public: + //! the default constructor + CV_WRAP KeyPoint(); + /** + @param _pt x & y coordinates of the keypoint + @param _size keypoint diameter + @param _angle keypoint orientation + @param _response keypoint detector response on the keypoint (that is, strength of the keypoint) + @param _octave pyramid octave in which the keypoint has been detected + @param _class_id object id + */ + KeyPoint(Point2f _pt, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); + /** + @param x x-coordinate of the keypoint + @param y y-coordinate of the keypoint + @param _size keypoint diameter + @param _angle keypoint orientation + @param _response keypoint detector response on the keypoint (that is, strength of the keypoint) + @param _octave pyramid octave in which the keypoint has been detected + @param _class_id object id + */ + CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); + + size_t hash() const; + + /** + This method converts vector of keypoints to vector of points or the reverse, where each keypoint is + assigned the same size and the same orientation. + + @param keypoints Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB + @param points2f Array of (x,y) coordinates of each keypoint + @param keypointIndexes Array of indexes of keypoints to be converted to points. (Acts like a mask to + convert only specified keypoints) + */ + CV_WRAP static void convert(const std::vector<KeyPoint>& keypoints, + CV_OUT std::vector<Point2f>& points2f, + const std::vector<int>& keypointIndexes=std::vector<int>()); + /** @overload + @param points2f Array of (x,y) coordinates of each keypoint + @param keypoints Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB + @param size keypoint diameter + @param response keypoint detector response on the keypoint (that is, strength of the keypoint) + @param octave pyramid octave in which the keypoint has been detected + @param class_id object id + */ + CV_WRAP static void convert(const std::vector<Point2f>& points2f, + CV_OUT std::vector<KeyPoint>& keypoints, + float size=1, float response=1, int octave=0, int class_id=-1); + + /** + This method computes overlap for pair of keypoints. Overlap is the ratio between area of keypoint + regions' intersection and area of keypoint regions' union (considering keypoint region as circle). + If they don't overlap, we get zero. If they coincide at same location with same size, we get 1. + @param kp1 First keypoint + @param kp2 Second keypoint + */ + CV_WRAP static float overlap(const KeyPoint& kp1, const KeyPoint& kp2); + + CV_PROP_RW Point2f pt; //!< coordinates of the keypoints + CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood + CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable); + //!< it's in [0,360) degrees and measured relative to + //!< image coordinate system, ie in clockwise. + CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling + CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted + CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to) +}; + +template<> class DataType<KeyPoint> +{ +public: + typedef KeyPoint value_type; + typedef float work_type; + typedef float channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = (int)(sizeof(value_type)/sizeof(channel_type)), // 7 + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +//////////////////////////////// DMatch ///////////////////////////////// + +/** @brief Class for matching keypoint descriptors + +query descriptor index, train descriptor index, train image index, and distance between +descriptors. +*/ +class CV_EXPORTS_W_SIMPLE DMatch +{ +public: + CV_WRAP DMatch(); + CV_WRAP DMatch(int _queryIdx, int _trainIdx, float _distance); + CV_WRAP DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance); + + CV_PROP_RW int queryIdx; // query descriptor index + CV_PROP_RW int trainIdx; // train descriptor index + CV_PROP_RW int imgIdx; // train image index + + CV_PROP_RW float distance; + + // less is better + bool operator<(const DMatch &m) const; +}; + +template<> class DataType<DMatch> +{ +public: + typedef DMatch value_type; + typedef int work_type; + typedef int channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = (int)(sizeof(value_type)/sizeof(channel_type)), // 4 + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + + + +///////////////////////////// TermCriteria ////////////////////////////// + +/** @brief The class defining termination criteria for iterative algorithms. + +You can initialize it by default constructor and then override any parameters, or the structure may +be fully initialized using the advanced variant of the constructor. +*/ +class CV_EXPORTS TermCriteria +{ +public: + /** + Criteria type, can be one of: COUNT, EPS or COUNT + EPS + */ + enum Type + { + COUNT=1, //!< the maximum number of iterations or elements to compute + MAX_ITER=COUNT, //!< ditto + EPS=2 //!< the desired accuracy or change in parameters at which the iterative algorithm stops + }; + + //! default constructor + TermCriteria(); + /** + @param type The type of termination criteria, one of TermCriteria::Type + @param maxCount The maximum number of iterations or elements to compute. + @param epsilon The desired accuracy or change in parameters at which the iterative algorithm stops. + */ + TermCriteria(int type, int maxCount, double epsilon); + + int type; //!< the type of termination criteria: COUNT, EPS or COUNT + EPS + int maxCount; // the maximum number of iterations/elements + double epsilon; // the desired accuracy +}; + + +//! @} core_basic + +///////////////////////// raster image moments ////////////////////////// + +//! @addtogroup imgproc_shape +//! @{ + +/** @brief struct returned by cv::moments + +The spatial moments \f$\texttt{Moments::m}_{ji}\f$ are computed as: + +\f[\texttt{m} _{ji}= \sum _{x,y} \left ( \texttt{array} (x,y) \cdot x^j \cdot y^i \right )\f] + +The central moments \f$\texttt{Moments::mu}_{ji}\f$ are computed as: + +\f[\texttt{mu} _{ji}= \sum _{x,y} \left ( \texttt{array} (x,y) \cdot (x - \bar{x} )^j \cdot (y - \bar{y} )^i \right )\f] + +where \f$(\bar{x}, \bar{y})\f$ is the mass center: + +\f[\bar{x} = \frac{\texttt{m}_{10}}{\texttt{m}_{00}} , \; \bar{y} = \frac{\texttt{m}_{01}}{\texttt{m}_{00}}\f] + +The normalized central moments \f$\texttt{Moments::nu}_{ij}\f$ are computed as: + +\f[\texttt{nu} _{ji}= \frac{\texttt{mu}_{ji}}{\texttt{m}_{00}^{(i+j)/2+1}} .\f] + +@note +\f$\texttt{mu}_{00}=\texttt{m}_{00}\f$, \f$\texttt{nu}_{00}=1\f$ +\f$\texttt{nu}_{10}=\texttt{mu}_{10}=\texttt{mu}_{01}=\texttt{mu}_{10}=0\f$ , hence the values are not +stored. + +The moments of a contour are defined in the same way but computed using the Green's formula (see +<http://en.wikipedia.org/wiki/Green_theorem>). So, due to a limited raster resolution, the moments +computed for a contour are slightly different from the moments computed for the same rasterized +contour. + +@note +Since the contour moments are computed using Green formula, you may get seemingly odd results for +contours with self-intersections, e.g. a zero area (m00) for butterfly-shaped contours. + */ +class CV_EXPORTS_W_MAP Moments +{ +public: + //! the default constructor + Moments(); + //! the full constructor + Moments(double m00, double m10, double m01, double m20, double m11, + double m02, double m30, double m21, double m12, double m03 ); + ////! the conversion from CvMoments + //Moments( const CvMoments& moments ); + ////! the conversion to CvMoments + //operator CvMoments() const; + + //! @name spatial moments + //! @{ + CV_PROP_RW double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; + //! @} + + //! @name central moments + //! @{ + CV_PROP_RW double mu20, mu11, mu02, mu30, mu21, mu12, mu03; + //! @} + + //! @name central normalized moments + //! @{ + CV_PROP_RW double nu20, nu11, nu02, nu30, nu21, nu12, nu03; + //! @} +}; + +template<> class DataType<Moments> +{ +public: + typedef Moments value_type; + typedef double work_type; + typedef double channel_type; + + enum { generic_type = 0, + depth = DataType<channel_type>::depth, + channels = (int)(sizeof(value_type)/sizeof(channel_type)), // 24 + fmt = DataType<channel_type>::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec<channel_type, channels> vec_type; +}; + +//! @} imgproc_shape + +//! @cond IGNORED + +///////////////////////////////////////////////////////////////////////// +///////////////////////////// Implementation //////////////////////////// +///////////////////////////////////////////////////////////////////////// + +//////////////////////////////// Complex //////////////////////////////// + +template<typename _Tp> inline +Complex<_Tp>::Complex() + : re(0), im(0) {} + +template<typename _Tp> inline +Complex<_Tp>::Complex( _Tp _re, _Tp _im ) + : re(_re), im(_im) {} + +template<typename _Tp> template<typename T2> inline +Complex<_Tp>::operator Complex<T2>() const +{ + return Complex<T2>(saturate_cast<T2>(re), saturate_cast<T2>(im)); +} + +template<typename _Tp> inline +Complex<_Tp> Complex<_Tp>::conj() const +{ + return Complex<_Tp>(re, -im); +} + + +template<typename _Tp> static inline +bool operator == (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return a.re == b.re && a.im == b.im; +} + +template<typename _Tp> static inline +bool operator != (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return a.re != b.re || a.im != b.im; +} + +template<typename _Tp> static inline +Complex<_Tp> operator + (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return Complex<_Tp>( a.re + b.re, a.im + b.im ); +} + +template<typename _Tp> static inline +Complex<_Tp>& operator += (Complex<_Tp>& a, const Complex<_Tp>& b) +{ + a.re += b.re; a.im += b.im; + return a; +} + +template<typename _Tp> static inline +Complex<_Tp> operator - (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return Complex<_Tp>( a.re - b.re, a.im - b.im ); +} + +template<typename _Tp> static inline +Complex<_Tp>& operator -= (Complex<_Tp>& a, const Complex<_Tp>& b) +{ + a.re -= b.re; a.im -= b.im; + return a; +} + +template<typename _Tp> static inline +Complex<_Tp> operator - (const Complex<_Tp>& a) +{ + return Complex<_Tp>(-a.re, -a.im); +} + +template<typename _Tp> static inline +Complex<_Tp> operator * (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return Complex<_Tp>( a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re ); +} + +template<typename _Tp> static inline +Complex<_Tp> operator * (const Complex<_Tp>& a, _Tp b) +{ + return Complex<_Tp>( a.re*b, a.im*b ); +} + +template<typename _Tp> static inline +Complex<_Tp> operator * (_Tp b, const Complex<_Tp>& a) +{ + return Complex<_Tp>( a.re*b, a.im*b ); +} + +template<typename _Tp> static inline +Complex<_Tp> operator + (const Complex<_Tp>& a, _Tp b) +{ + return Complex<_Tp>( a.re + b, a.im ); +} + +template<typename _Tp> static inline +Complex<_Tp> operator - (const Complex<_Tp>& a, _Tp b) +{ return Complex<_Tp>( a.re - b, a.im ); } + +template<typename _Tp> static inline +Complex<_Tp> operator + (_Tp b, const Complex<_Tp>& a) +{ + return Complex<_Tp>( a.re + b, a.im ); +} + +template<typename _Tp> static inline +Complex<_Tp> operator - (_Tp b, const Complex<_Tp>& a) +{ + return Complex<_Tp>( b - a.re, -a.im ); +} + +template<typename _Tp> static inline +Complex<_Tp>& operator += (Complex<_Tp>& a, _Tp b) +{ + a.re += b; return a; +} + +template<typename _Tp> static inline +Complex<_Tp>& operator -= (Complex<_Tp>& a, _Tp b) +{ + a.re -= b; return a; +} + +template<typename _Tp> static inline +Complex<_Tp>& operator *= (Complex<_Tp>& a, _Tp b) +{ + a.re *= b; a.im *= b; return a; +} + +template<typename _Tp> static inline +double abs(const Complex<_Tp>& a) +{ + return std::sqrt( (double)a.re*a.re + (double)a.im*a.im); +} + +template<typename _Tp> static inline +Complex<_Tp> operator / (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + double t = 1./((double)b.re*b.re + (double)b.im*b.im); + return Complex<_Tp>( (_Tp)((a.re*b.re + a.im*b.im)*t), + (_Tp)((-a.re*b.im + a.im*b.re)*t) ); +} + +template<typename _Tp> static inline +Complex<_Tp>& operator /= (Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return (a = a / b); +} + +template<typename _Tp> static inline +Complex<_Tp> operator / (const Complex<_Tp>& a, _Tp b) +{ + _Tp t = (_Tp)1/b; + return Complex<_Tp>( a.re*t, a.im*t ); +} + +template<typename _Tp> static inline +Complex<_Tp> operator / (_Tp b, const Complex<_Tp>& a) +{ + return Complex<_Tp>(b)/a; +} + +template<typename _Tp> static inline +Complex<_Tp> operator /= (const Complex<_Tp>& a, _Tp b) +{ + _Tp t = (_Tp)1/b; + a.re *= t; a.im *= t; return a; +} + + + +//////////////////////////////// 2D Point /////////////////////////////// + +template<typename _Tp> inline +Point_<_Tp>::Point_() + : x(0), y(0) {} + +template<typename _Tp> inline +Point_<_Tp>::Point_(_Tp _x, _Tp _y) + : x(_x), y(_y) {} + +template<typename _Tp> inline +Point_<_Tp>::Point_(const Point_& pt) + : x(pt.x), y(pt.y) {} + +template<typename _Tp> inline +Point_<_Tp>::Point_(const Size_<_Tp>& sz) + : x(sz.width), y(sz.height) {} + +template<typename _Tp> inline +Point_<_Tp>::Point_(const Vec<_Tp,2>& v) + : x(v[0]), y(v[1]) {} + +template<typename _Tp> inline +Point_<_Tp>& Point_<_Tp>::operator = (const Point_& pt) +{ + x = pt.x; y = pt.y; + return *this; +} + +template<typename _Tp> template<typename _Tp2> inline +Point_<_Tp>::operator Point_<_Tp2>() const +{ + return Point_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y)); +} + +template<typename _Tp> inline +Point_<_Tp>::operator Vec<_Tp, 2>() const +{ + return Vec<_Tp, 2>(x, y); +} + +template<typename _Tp> inline +_Tp Point_<_Tp>::dot(const Point_& pt) const +{ + return saturate_cast<_Tp>(x*pt.x + y*pt.y); +} + +template<typename _Tp> inline +double Point_<_Tp>::ddot(const Point_& pt) const +{ + return (double)x*pt.x + (double)y*pt.y; +} + +template<typename _Tp> inline +double Point_<_Tp>::cross(const Point_& pt) const +{ + return (double)x*pt.y - (double)y*pt.x; +} + +template<typename _Tp> inline bool +Point_<_Tp>::inside( const Rect_<_Tp>& r ) const +{ + return r.contains(*this); +} + + +template<typename _Tp> static inline +Point_<_Tp>& operator += (Point_<_Tp>& a, const Point_<_Tp>& b) +{ + a.x += b.x; + a.y += b.y; + return a; +} + +template<typename _Tp> static inline +Point_<_Tp>& operator -= (Point_<_Tp>& a, const Point_<_Tp>& b) +{ + a.x -= b.x; + a.y -= b.y; + return a; +} + +template<typename _Tp> static inline +Point_<_Tp>& operator *= (Point_<_Tp>& a, int b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + return a; +} + +template<typename _Tp> static inline +Point_<_Tp>& operator *= (Point_<_Tp>& a, float b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + return a; +} + +template<typename _Tp> static inline +Point_<_Tp>& operator *= (Point_<_Tp>& a, double b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + return a; +} + +template<typename _Tp> static inline +Point_<_Tp>& operator /= (Point_<_Tp>& a, int b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + return a; +} + +template<typename _Tp> static inline +Point_<_Tp>& operator /= (Point_<_Tp>& a, float b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + return a; +} + +template<typename _Tp> static inline +Point_<_Tp>& operator /= (Point_<_Tp>& a, double b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + return a; +} + +template<typename _Tp> static inline +double norm(const Point_<_Tp>& pt) +{ + return std::sqrt((double)pt.x*pt.x + (double)pt.y*pt.y); +} + +template<typename _Tp> static inline +bool operator == (const Point_<_Tp>& a, const Point_<_Tp>& b) +{ + return a.x == b.x && a.y == b.y; +} + +template<typename _Tp> static inline +bool operator != (const Point_<_Tp>& a, const Point_<_Tp>& b) +{ + return a.x != b.x || a.y != b.y; +} + +template<typename _Tp> static inline +Point_<_Tp> operator + (const Point_<_Tp>& a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x + b.x), saturate_cast<_Tp>(a.y + b.y) ); +} + +template<typename _Tp> static inline +Point_<_Tp> operator - (const Point_<_Tp>& a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x - b.x), saturate_cast<_Tp>(a.y - b.y) ); +} + +template<typename _Tp> static inline +Point_<_Tp> operator - (const Point_<_Tp>& a) +{ + return Point_<_Tp>( saturate_cast<_Tp>(-a.x), saturate_cast<_Tp>(-a.y) ); +} + +template<typename _Tp> static inline +Point_<_Tp> operator * (const Point_<_Tp>& a, int b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b) ); +} + +template<typename _Tp> static inline +Point_<_Tp> operator * (int a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a) ); +} + +template<typename _Tp> static inline +Point_<_Tp> operator * (const Point_<_Tp>& a, float b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b) ); +} + +template<typename _Tp> static inline +Point_<_Tp> operator * (float a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a) ); +} + +template<typename _Tp> static inline +Point_<_Tp> operator * (const Point_<_Tp>& a, double b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b) ); +} + +template<typename _Tp> static inline +Point_<_Tp> operator * (double a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a) ); +} + +template<typename _Tp> static inline +Point_<_Tp> operator * (const Matx<_Tp, 2, 2>& a, const Point_<_Tp>& b) +{ + Matx<_Tp, 2, 1> tmp = a * Vec<_Tp,2>(b.x, b.y); + return Point_<_Tp>(tmp.val[0], tmp.val[1]); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator * (const Matx<_Tp, 3, 3>& a, const Point_<_Tp>& b) +{ + Matx<_Tp, 3, 1> tmp = a * Vec<_Tp,3>(b.x, b.y, 1); + return Point3_<_Tp>(tmp.val[0], tmp.val[1], tmp.val[2]); +} + +template<typename _Tp> static inline +Point_<_Tp> operator / (const Point_<_Tp>& a, int b) +{ + Point_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template<typename _Tp> static inline +Point_<_Tp> operator / (const Point_<_Tp>& a, float b) +{ + Point_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template<typename _Tp> static inline +Point_<_Tp> operator / (const Point_<_Tp>& a, double b) +{ + Point_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + + + +//////////////////////////////// 3D Point /////////////////////////////// + +template<typename _Tp> inline +Point3_<_Tp>::Point3_() + : x(0), y(0), z(0) {} + +template<typename _Tp> inline +Point3_<_Tp>::Point3_(_Tp _x, _Tp _y, _Tp _z) + : x(_x), y(_y), z(_z) {} + +template<typename _Tp> inline +Point3_<_Tp>::Point3_(const Point3_& pt) + : x(pt.x), y(pt.y), z(pt.z) {} + +template<typename _Tp> inline +Point3_<_Tp>::Point3_(const Point_<_Tp>& pt) + : x(pt.x), y(pt.y), z(_Tp()) {} + +template<typename _Tp> inline +Point3_<_Tp>::Point3_(const Vec<_Tp, 3>& v) + : x(v[0]), y(v[1]), z(v[2]) {} + +template<typename _Tp> template<typename _Tp2> inline +Point3_<_Tp>::operator Point3_<_Tp2>() const +{ + return Point3_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y), saturate_cast<_Tp2>(z)); +} + +#if OPENCV_ABI_COMPATIBILITY > 300 +template<typename _Tp> template<typename _Tp2> inline +Point3_<_Tp>::operator Vec<_Tp2, 3>() const +{ + return Vec<_Tp2, 3>(x, y, z); +} +#else +template<typename _Tp> inline +Point3_<_Tp>::operator Vec<_Tp, 3>() const +{ + return Vec<_Tp, 3>(x, y, z); +} +#endif + +template<typename _Tp> inline +Point3_<_Tp>& Point3_<_Tp>::operator = (const Point3_& pt) +{ + x = pt.x; y = pt.y; z = pt.z; + return *this; +} + +template<typename _Tp> inline +_Tp Point3_<_Tp>::dot(const Point3_& pt) const +{ + return saturate_cast<_Tp>(x*pt.x + y*pt.y + z*pt.z); +} + +template<typename _Tp> inline +double Point3_<_Tp>::ddot(const Point3_& pt) const +{ + return (double)x*pt.x + (double)y*pt.y + (double)z*pt.z; +} + +template<typename _Tp> inline +Point3_<_Tp> Point3_<_Tp>::cross(const Point3_<_Tp>& pt) const +{ + return Point3_<_Tp>(y*pt.z - z*pt.y, z*pt.x - x*pt.z, x*pt.y - y*pt.x); +} + + +template<typename _Tp> static inline +Point3_<_Tp>& operator += (Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + a.x += b.x; + a.y += b.y; + a.z += b.z; + return a; +} + +template<typename _Tp> static inline +Point3_<_Tp>& operator -= (Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + a.x -= b.x; + a.y -= b.y; + a.z -= b.z; + return a; +} + +template<typename _Tp> static inline +Point3_<_Tp>& operator *= (Point3_<_Tp>& a, int b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + a.z = saturate_cast<_Tp>(a.z * b); + return a; +} + +template<typename _Tp> static inline +Point3_<_Tp>& operator *= (Point3_<_Tp>& a, float b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + a.z = saturate_cast<_Tp>(a.z * b); + return a; +} + +template<typename _Tp> static inline +Point3_<_Tp>& operator *= (Point3_<_Tp>& a, double b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + a.z = saturate_cast<_Tp>(a.z * b); + return a; +} + +template<typename _Tp> static inline +Point3_<_Tp>& operator /= (Point3_<_Tp>& a, int b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + a.z = saturate_cast<_Tp>(a.z / b); + return a; +} + +template<typename _Tp> static inline +Point3_<_Tp>& operator /= (Point3_<_Tp>& a, float b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + a.z = saturate_cast<_Tp>(a.z / b); + return a; +} + +template<typename _Tp> static inline +Point3_<_Tp>& operator /= (Point3_<_Tp>& a, double b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + a.z = saturate_cast<_Tp>(a.z / b); + return a; +} + +template<typename _Tp> static inline +double norm(const Point3_<_Tp>& pt) +{ + return std::sqrt((double)pt.x*pt.x + (double)pt.y*pt.y + (double)pt.z*pt.z); +} + +template<typename _Tp> static inline +bool operator == (const Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + return a.x == b.x && a.y == b.y && a.z == b.z; +} + +template<typename _Tp> static inline +bool operator != (const Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + return a.x != b.x || a.y != b.y || a.z != b.z; +} + +template<typename _Tp> static inline +Point3_<_Tp> operator + (const Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x + b.x), saturate_cast<_Tp>(a.y + b.y), saturate_cast<_Tp>(a.z + b.z)); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator - (const Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x - b.x), saturate_cast<_Tp>(a.y - b.y), saturate_cast<_Tp>(a.z - b.z)); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator - (const Point3_<_Tp>& a) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(-a.x), saturate_cast<_Tp>(-a.y), saturate_cast<_Tp>(-a.z) ); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator * (const Point3_<_Tp>& a, int b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b), saturate_cast<_Tp>(a.z*b) ); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator * (int a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(b.x * a), saturate_cast<_Tp>(b.y * a), saturate_cast<_Tp>(b.z * a) ); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator * (const Point3_<_Tp>& a, float b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x * b), saturate_cast<_Tp>(a.y * b), saturate_cast<_Tp>(a.z * b) ); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator * (float a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(b.x * a), saturate_cast<_Tp>(b.y * a), saturate_cast<_Tp>(b.z * a) ); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator * (const Point3_<_Tp>& a, double b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x * b), saturate_cast<_Tp>(a.y * b), saturate_cast<_Tp>(a.z * b) ); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator * (double a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(b.x * a), saturate_cast<_Tp>(b.y * a), saturate_cast<_Tp>(b.z * a) ); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator * (const Matx<_Tp, 3, 3>& a, const Point3_<_Tp>& b) +{ + Matx<_Tp, 3, 1> tmp = a * Vec<_Tp,3>(b.x, b.y, b.z); + return Point3_<_Tp>(tmp.val[0], tmp.val[1], tmp.val[2]); +} + +template<typename _Tp> static inline +Matx<_Tp, 4, 1> operator * (const Matx<_Tp, 4, 4>& a, const Point3_<_Tp>& b) +{ + return a * Matx<_Tp, 4, 1>(b.x, b.y, b.z, 1); +} + +template<typename _Tp> static inline +Point3_<_Tp> operator / (const Point3_<_Tp>& a, int b) +{ + Point3_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template<typename _Tp> static inline +Point3_<_Tp> operator / (const Point3_<_Tp>& a, float b) +{ + Point3_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template<typename _Tp> static inline +Point3_<_Tp> operator / (const Point3_<_Tp>& a, double b) +{ + Point3_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + + + +////////////////////////////////// Size ///////////////////////////////// + +template<typename _Tp> inline +Size_<_Tp>::Size_() + : width(0), height(0) {} + +template<typename _Tp> inline +Size_<_Tp>::Size_(_Tp _width, _Tp _height) + : width(_width), height(_height) {} + +template<typename _Tp> inline +Size_<_Tp>::Size_(const Size_& sz) + : width(sz.width), height(sz.height) {} + +template<typename _Tp> inline +Size_<_Tp>::Size_(const Point_<_Tp>& pt) + : width(pt.x), height(pt.y) {} + +template<typename _Tp> template<typename _Tp2> inline +Size_<_Tp>::operator Size_<_Tp2>() const +{ + return Size_<_Tp2>(saturate_cast<_Tp2>(width), saturate_cast<_Tp2>(height)); +} + +template<typename _Tp> inline +Size_<_Tp>& Size_<_Tp>::operator = (const Size_<_Tp>& sz) +{ + width = sz.width; height = sz.height; + return *this; +} + +template<typename _Tp> inline +_Tp Size_<_Tp>::area() const +{ + return width * height; +} + +template<typename _Tp> static inline +Size_<_Tp>& operator *= (Size_<_Tp>& a, _Tp b) +{ + a.width *= b; + a.height *= b; + return a; +} + +template<typename _Tp> static inline +Size_<_Tp> operator * (const Size_<_Tp>& a, _Tp b) +{ + Size_<_Tp> tmp(a); + tmp *= b; + return tmp; +} + +template<typename _Tp> static inline +Size_<_Tp>& operator /= (Size_<_Tp>& a, _Tp b) +{ + a.width /= b; + a.height /= b; + return a; +} + +template<typename _Tp> static inline +Size_<_Tp> operator / (const Size_<_Tp>& a, _Tp b) +{ + Size_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template<typename _Tp> static inline +Size_<_Tp>& operator += (Size_<_Tp>& a, const Size_<_Tp>& b) +{ + a.width += b.width; + a.height += b.height; + return a; +} + +template<typename _Tp> static inline +Size_<_Tp> operator + (const Size_<_Tp>& a, const Size_<_Tp>& b) +{ + Size_<_Tp> tmp(a); + tmp += b; + return tmp; +} + +template<typename _Tp> static inline +Size_<_Tp>& operator -= (Size_<_Tp>& a, const Size_<_Tp>& b) +{ + a.width -= b.width; + a.height -= b.height; + return a; +} + +template<typename _Tp> static inline +Size_<_Tp> operator - (const Size_<_Tp>& a, const Size_<_Tp>& b) +{ + Size_<_Tp> tmp(a); + tmp -= b; + return tmp; +} + +template<typename _Tp> static inline +bool operator == (const Size_<_Tp>& a, const Size_<_Tp>& b) +{ + return a.width == b.width && a.height == b.height; +} + +template<typename _Tp> static inline +bool operator != (const Size_<_Tp>& a, const Size_<_Tp>& b) +{ + return !(a == b); +} + + + +////////////////////////////////// Rect ///////////////////////////////// + +template<typename _Tp> inline +Rect_<_Tp>::Rect_() + : x(0), y(0), width(0), height(0) {} + +template<typename _Tp> inline +Rect_<_Tp>::Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height) + : x(_x), y(_y), width(_width), height(_height) {} + +template<typename _Tp> inline +Rect_<_Tp>::Rect_(const Rect_<_Tp>& r) + : x(r.x), y(r.y), width(r.width), height(r.height) {} + +template<typename _Tp> inline +Rect_<_Tp>::Rect_(const Point_<_Tp>& org, const Size_<_Tp>& sz) + : x(org.x), y(org.y), width(sz.width), height(sz.height) {} + +template<typename _Tp> inline +Rect_<_Tp>::Rect_(const Point_<_Tp>& pt1, const Point_<_Tp>& pt2) +{ + x = std::min(pt1.x, pt2.x); + y = std::min(pt1.y, pt2.y); + width = std::max(pt1.x, pt2.x) - x; + height = std::max(pt1.y, pt2.y) - y; +} + +template<typename _Tp> inline +Rect_<_Tp>& Rect_<_Tp>::operator = ( const Rect_<_Tp>& r ) +{ + x = r.x; + y = r.y; + width = r.width; + height = r.height; + return *this; +} + +template<typename _Tp> inline +Point_<_Tp> Rect_<_Tp>::tl() const +{ + return Point_<_Tp>(x,y); +} + +template<typename _Tp> inline +Point_<_Tp> Rect_<_Tp>::br() const +{ + return Point_<_Tp>(x + width, y + height); +} + +template<typename _Tp> inline +Size_<_Tp> Rect_<_Tp>::size() const +{ + return Size_<_Tp>(width, height); +} + +template<typename _Tp> inline +_Tp Rect_<_Tp>::area() const +{ + return width * height; +} + +template<typename _Tp> template<typename _Tp2> inline +Rect_<_Tp>::operator Rect_<_Tp2>() const +{ + return Rect_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y), saturate_cast<_Tp2>(width), saturate_cast<_Tp2>(height)); +} + +template<typename _Tp> inline +bool Rect_<_Tp>::contains(const Point_<_Tp>& pt) const +{ + return x <= pt.x && pt.x < x + width && y <= pt.y && pt.y < y + height; +} + + +template<typename _Tp> static inline +Rect_<_Tp>& operator += ( Rect_<_Tp>& a, const Point_<_Tp>& b ) +{ + a.x += b.x; + a.y += b.y; + return a; +} + +template<typename _Tp> static inline +Rect_<_Tp>& operator -= ( Rect_<_Tp>& a, const Point_<_Tp>& b ) +{ + a.x -= b.x; + a.y -= b.y; + return a; +} + +template<typename _Tp> static inline +Rect_<_Tp>& operator += ( Rect_<_Tp>& a, const Size_<_Tp>& b ) +{ + a.width += b.width; + a.height += b.height; + return a; +} + +template<typename _Tp> static inline +Rect_<_Tp>& operator -= ( Rect_<_Tp>& a, const Size_<_Tp>& b ) +{ + a.width -= b.width; + a.height -= b.height; + return a; +} + +template<typename _Tp> static inline +Rect_<_Tp>& operator &= ( Rect_<_Tp>& a, const Rect_<_Tp>& b ) +{ + _Tp x1 = std::max(a.x, b.x); + _Tp y1 = std::max(a.y, b.y); + a.width = std::min(a.x + a.width, b.x + b.width) - x1; + a.height = std::min(a.y + a.height, b.y + b.height) - y1; + a.x = x1; + a.y = y1; + if( a.width <= 0 || a.height <= 0 ) + a = Rect(); + return a; +} + +template<typename _Tp> static inline +Rect_<_Tp>& operator |= ( Rect_<_Tp>& a, const Rect_<_Tp>& b ) +{ + _Tp x1 = std::min(a.x, b.x); + _Tp y1 = std::min(a.y, b.y); + a.width = std::max(a.x + a.width, b.x + b.width) - x1; + a.height = std::max(a.y + a.height, b.y + b.height) - y1; + a.x = x1; + a.y = y1; + return a; +} + +template<typename _Tp> static inline +bool operator == (const Rect_<_Tp>& a, const Rect_<_Tp>& b) +{ + return a.x == b.x && a.y == b.y && a.width == b.width && a.height == b.height; +} + +template<typename _Tp> static inline +bool operator != (const Rect_<_Tp>& a, const Rect_<_Tp>& b) +{ + return a.x != b.x || a.y != b.y || a.width != b.width || a.height != b.height; +} + +template<typename _Tp> static inline +Rect_<_Tp> operator + (const Rect_<_Tp>& a, const Point_<_Tp>& b) +{ + return Rect_<_Tp>( a.x + b.x, a.y + b.y, a.width, a.height ); +} + +template<typename _Tp> static inline +Rect_<_Tp> operator - (const Rect_<_Tp>& a, const Point_<_Tp>& b) +{ + return Rect_<_Tp>( a.x - b.x, a.y - b.y, a.width, a.height ); +} + +template<typename _Tp> static inline +Rect_<_Tp> operator + (const Rect_<_Tp>& a, const Size_<_Tp>& b) +{ + return Rect_<_Tp>( a.x, a.y, a.width + b.width, a.height + b.height ); +} + +template<typename _Tp> static inline +Rect_<_Tp> operator & (const Rect_<_Tp>& a, const Rect_<_Tp>& b) +{ + Rect_<_Tp> c = a; + return c &= b; +} + +template<typename _Tp> static inline +Rect_<_Tp> operator | (const Rect_<_Tp>& a, const Rect_<_Tp>& b) +{ + Rect_<_Tp> c = a; + return c |= b; +} + +/** + * @brief measure dissimilarity between two sample sets + * + * computes the complement of the Jaccard Index as described in <https://en.wikipedia.org/wiki/Jaccard_index>. + * For rectangles this reduces to computing the intersection over the union. + */ +template<typename _Tp> static inline +double jaccardDistance(const Rect_<_Tp>& a, const Rect_<_Tp>& b) { + _Tp Aa = a.area(); + _Tp Ab = b.area(); + + if ((Aa + Ab) <= std::numeric_limits<_Tp>::epsilon()) { + // jaccard_index = 1 -> distance = 0 + return 0.0; + } + + double Aab = (a & b).area(); + // distance = 1 - jaccard_index + return 1.0 - Aab / (Aa + Ab - Aab); +} + +////////////////////////////// RotatedRect ////////////////////////////// + +inline +RotatedRect::RotatedRect() + : center(), size(), angle(0) {} + +inline +RotatedRect::RotatedRect(const Point2f& _center, const Size2f& _size, float _angle) + : center(_center), size(_size), angle(_angle) {} + + + +///////////////////////////////// Range ///////////////////////////////// + +inline +Range::Range() + : start(0), end(0) {} + +inline +Range::Range(int _start, int _end) + : start(_start), end(_end) {} + +inline +int Range::size() const +{ + return end - start; +} + +inline +bool Range::empty() const +{ + return start == end; +} + +inline +Range Range::all() +{ + return Range(INT_MIN, INT_MAX); +} + + +static inline +bool operator == (const Range& r1, const Range& r2) +{ + return r1.start == r2.start && r1.end == r2.end; +} + +static inline +bool operator != (const Range& r1, const Range& r2) +{ + return !(r1 == r2); +} + +static inline +bool operator !(const Range& r) +{ + return r.start == r.end; +} + +static inline +Range operator & (const Range& r1, const Range& r2) +{ + Range r(std::max(r1.start, r2.start), std::min(r1.end, r2.end)); + r.end = std::max(r.end, r.start); + return r; +} + +static inline +Range& operator &= (Range& r1, const Range& r2) +{ + r1 = r1 & r2; + return r1; +} + +static inline +Range operator + (const Range& r1, int delta) +{ + return Range(r1.start + delta, r1.end + delta); +} + +static inline +Range operator + (int delta, const Range& r1) +{ + return Range(r1.start + delta, r1.end + delta); +} + +static inline +Range operator - (const Range& r1, int delta) +{ + return r1 + (-delta); +} + + + +///////////////////////////////// Scalar //////////////////////////////// + +template<typename _Tp> inline +Scalar_<_Tp>::Scalar_() +{ + this->val[0] = this->val[1] = this->val[2] = this->val[3] = 0; +} + +template<typename _Tp> inline +Scalar_<_Tp>::Scalar_(_Tp v0, _Tp v1, _Tp v2, _Tp v3) +{ + this->val[0] = v0; + this->val[1] = v1; + this->val[2] = v2; + this->val[3] = v3; +} + +template<typename _Tp> template<typename _Tp2, int cn> inline +Scalar_<_Tp>::Scalar_(const Vec<_Tp2, cn>& v) +{ + int i; + for( i = 0; i < (cn < 4 ? cn : 4); i++ ) + this->val[i] = cv::saturate_cast<_Tp>(v.val[i]); + for( ; i < 4; i++ ) + this->val[i] = 0; +} + +template<typename _Tp> inline +Scalar_<_Tp>::Scalar_(_Tp v0) +{ + this->val[0] = v0; + this->val[1] = this->val[2] = this->val[3] = 0; +} + +template<typename _Tp> inline +Scalar_<_Tp> Scalar_<_Tp>::all(_Tp v0) +{ + return Scalar_<_Tp>(v0, v0, v0, v0); +} + + +template<typename _Tp> inline +Scalar_<_Tp> Scalar_<_Tp>::mul(const Scalar_<_Tp>& a, double scale ) const +{ + return Scalar_<_Tp>(saturate_cast<_Tp>(this->val[0] * a.val[0] * scale), + saturate_cast<_Tp>(this->val[1] * a.val[1] * scale), + saturate_cast<_Tp>(this->val[2] * a.val[2] * scale), + saturate_cast<_Tp>(this->val[3] * a.val[3] * scale)); +} + +template<typename _Tp> inline +Scalar_<_Tp> Scalar_<_Tp>::conj() const +{ + return Scalar_<_Tp>(saturate_cast<_Tp>( this->val[0]), + saturate_cast<_Tp>(-this->val[1]), + saturate_cast<_Tp>(-this->val[2]), + saturate_cast<_Tp>(-this->val[3])); +} + +template<typename _Tp> inline +bool Scalar_<_Tp>::isReal() const +{ + return this->val[1] == 0 && this->val[2] == 0 && this->val[3] == 0; +} + + +template<typename _Tp> template<typename T2> inline +Scalar_<_Tp>::operator Scalar_<T2>() const +{ + return Scalar_<T2>(saturate_cast<T2>(this->val[0]), + saturate_cast<T2>(this->val[1]), + saturate_cast<T2>(this->val[2]), + saturate_cast<T2>(this->val[3])); +} + + +template<typename _Tp> static inline +Scalar_<_Tp>& operator += (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + a.val[0] += b.val[0]; + a.val[1] += b.val[1]; + a.val[2] += b.val[2]; + a.val[3] += b.val[3]; + return a; +} + +template<typename _Tp> static inline +Scalar_<_Tp>& operator -= (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + a.val[0] -= b.val[0]; + a.val[1] -= b.val[1]; + a.val[2] -= b.val[2]; + a.val[3] -= b.val[3]; + return a; +} + +template<typename _Tp> static inline +Scalar_<_Tp>& operator *= ( Scalar_<_Tp>& a, _Tp v ) +{ + a.val[0] *= v; + a.val[1] *= v; + a.val[2] *= v; + a.val[3] *= v; + return a; +} + +template<typename _Tp> static inline +bool operator == ( const Scalar_<_Tp>& a, const Scalar_<_Tp>& b ) +{ + return a.val[0] == b.val[0] && a.val[1] == b.val[1] && + a.val[2] == b.val[2] && a.val[3] == b.val[3]; +} + +template<typename _Tp> static inline +bool operator != ( const Scalar_<_Tp>& a, const Scalar_<_Tp>& b ) +{ + return a.val[0] != b.val[0] || a.val[1] != b.val[1] || + a.val[2] != b.val[2] || a.val[3] != b.val[3]; +} + +template<typename _Tp> static inline +Scalar_<_Tp> operator + (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + return Scalar_<_Tp>(a.val[0] + b.val[0], + a.val[1] + b.val[1], + a.val[2] + b.val[2], + a.val[3] + b.val[3]); +} + +template<typename _Tp> static inline +Scalar_<_Tp> operator - (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + return Scalar_<_Tp>(saturate_cast<_Tp>(a.val[0] - b.val[0]), + saturate_cast<_Tp>(a.val[1] - b.val[1]), + saturate_cast<_Tp>(a.val[2] - b.val[2]), + saturate_cast<_Tp>(a.val[3] - b.val[3])); +} + +template<typename _Tp> static inline +Scalar_<_Tp> operator * (const Scalar_<_Tp>& a, _Tp alpha) +{ + return Scalar_<_Tp>(a.val[0] * alpha, + a.val[1] * alpha, + a.val[2] * alpha, + a.val[3] * alpha); +} + +template<typename _Tp> static inline +Scalar_<_Tp> operator * (_Tp alpha, const Scalar_<_Tp>& a) +{ + return a*alpha; +} + +template<typename _Tp> static inline +Scalar_<_Tp> operator - (const Scalar_<_Tp>& a) +{ + return Scalar_<_Tp>(saturate_cast<_Tp>(-a.val[0]), + saturate_cast<_Tp>(-a.val[1]), + saturate_cast<_Tp>(-a.val[2]), + saturate_cast<_Tp>(-a.val[3])); +} + + +template<typename _Tp> static inline +Scalar_<_Tp> operator * (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + return Scalar_<_Tp>(saturate_cast<_Tp>(a[0]*b[0] - a[1]*b[1] - a[2]*b[2] - a[3]*b[3]), + saturate_cast<_Tp>(a[0]*b[1] + a[1]*b[0] + a[2]*b[3] - a[3]*b[2]), + saturate_cast<_Tp>(a[0]*b[2] - a[1]*b[3] + a[2]*b[0] + a[3]*b[1]), + saturate_cast<_Tp>(a[0]*b[3] + a[1]*b[2] - a[2]*b[1] + a[3]*b[0])); +} + +template<typename _Tp> static inline +Scalar_<_Tp>& operator *= (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + a = a * b; + return a; +} + +template<typename _Tp> static inline +Scalar_<_Tp> operator / (const Scalar_<_Tp>& a, _Tp alpha) +{ + return Scalar_<_Tp>(a.val[0] / alpha, + a.val[1] / alpha, + a.val[2] / alpha, + a.val[3] / alpha); +} + +template<typename _Tp> static inline +Scalar_<float> operator / (const Scalar_<float>& a, float alpha) +{ + float s = 1 / alpha; + return Scalar_<float>(a.val[0] * s, a.val[1] * s, a.val[2] * s, a.val[3] * s); +} + +template<typename _Tp> static inline +Scalar_<double> operator / (const Scalar_<double>& a, double alpha) +{ + double s = 1 / alpha; + return Scalar_<double>(a.val[0] * s, a.val[1] * s, a.val[2] * s, a.val[3] * s); +} + +template<typename _Tp> static inline +Scalar_<_Tp>& operator /= (Scalar_<_Tp>& a, _Tp alpha) +{ + a = a / alpha; + return a; +} + +template<typename _Tp> static inline +Scalar_<_Tp> operator / (_Tp a, const Scalar_<_Tp>& b) +{ + _Tp s = a / (b[0]*b[0] + b[1]*b[1] + b[2]*b[2] + b[3]*b[3]); + return b.conj() * s; +} + +template<typename _Tp> static inline +Scalar_<_Tp> operator / (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + return a * ((_Tp)1 / b); +} + +template<typename _Tp> static inline +Scalar_<_Tp>& operator /= (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + a = a / b; + return a; +} + +template<typename _Tp> static inline +Scalar operator * (const Matx<_Tp, 4, 4>& a, const Scalar& b) +{ + Matx<double, 4, 1> c((Matx<double, 4, 4>)a, b, Matx_MatMulOp()); + return reinterpret_cast<const Scalar&>(c); +} + +template<> inline +Scalar operator * (const Matx<double, 4, 4>& a, const Scalar& b) +{ + Matx<double, 4, 1> c(a, b, Matx_MatMulOp()); + return reinterpret_cast<const Scalar&>(c); +} + + + +//////////////////////////////// KeyPoint /////////////////////////////// + +inline +KeyPoint::KeyPoint() + : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {} + +inline +KeyPoint::KeyPoint(Point2f _pt, float _size, float _angle, float _response, int _octave, int _class_id) + : pt(_pt), size(_size), angle(_angle), response(_response), octave(_octave), class_id(_class_id) {} + +inline +KeyPoint::KeyPoint(float x, float y, float _size, float _angle, float _response, int _octave, int _class_id) + : pt(x, y), size(_size), angle(_angle), response(_response), octave(_octave), class_id(_class_id) {} + + + +///////////////////////////////// DMatch //////////////////////////////// + +inline +DMatch::DMatch() + : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {} + +inline +DMatch::DMatch(int _queryIdx, int _trainIdx, float _distance) + : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {} + +inline +DMatch::DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance) + : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {} + +inline +bool DMatch::operator < (const DMatch &m) const +{ + return distance < m.distance; +} + + + +////////////////////////////// TermCriteria ///////////////////////////// + +inline +TermCriteria::TermCriteria() + : type(0), maxCount(0), epsilon(0) {} + +inline +TermCriteria::TermCriteria(int _type, int _maxCount, double _epsilon) + : type(_type), maxCount(_maxCount), epsilon(_epsilon) {} + +//! @endcond + +} // cv + +#endif //OPENCV_CORE_TYPES_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/types_c.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1837 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_TYPES_H +#define OPENCV_CORE_TYPES_H + +#ifdef HAVE_IPL +# ifndef __IPL_H__ +# if defined WIN32 || defined _WIN32 +# include <ipl.h> +# else +# include <ipl/ipl.h> +# endif +# endif +#elif defined __IPL_H__ +# define HAVE_IPL +#endif + +#include "opencv2/core/cvdef.h" + +#ifndef SKIP_INCLUDES +#include <assert.h> +#include <stdlib.h> +#include <string.h> +#include <float.h> +#endif // SKIP_INCLUDES + +#if defined WIN32 || defined _WIN32 +# define CV_CDECL __cdecl +# define CV_STDCALL __stdcall +#else +# define CV_CDECL +# define CV_STDCALL +#endif + +#ifndef CV_DEFAULT +# ifdef __cplusplus +# define CV_DEFAULT(val) = val +# else +# define CV_DEFAULT(val) +# endif +#endif + +#ifndef CV_EXTERN_C_FUNCPTR +# ifdef __cplusplus +# define CV_EXTERN_C_FUNCPTR(x) extern "C" { typedef x; } +# else +# define CV_EXTERN_C_FUNCPTR(x) typedef x +# endif +#endif + +#ifndef CVAPI +# define CVAPI(rettype) CV_EXTERN_C CV_EXPORTS rettype CV_CDECL +#endif + +#ifndef CV_IMPL +# define CV_IMPL CV_EXTERN_C +#endif + +#ifdef __cplusplus +# include "opencv2/core.hpp" +#endif + +/** @addtogroup core_c + @{ +*/ + +/** @brief This is the "metatype" used *only* as a function parameter. + +It denotes that the function accepts arrays of multiple types, such as IplImage*, CvMat* or even +CvSeq* sometimes. The particular array type is determined at runtime by analyzing the first 4 +bytes of the header. In C++ interface the role of CvArr is played by InputArray and OutputArray. + */ +typedef void CvArr; + +typedef int CVStatus; + +/** @see cv::Error::Code */ +enum { + CV_StsOk= 0, /**< everything is ok */ + CV_StsBackTrace= -1, /**< pseudo error for back trace */ + CV_StsError= -2, /**< unknown /unspecified error */ + CV_StsInternal= -3, /**< internal error (bad state) */ + CV_StsNoMem= -4, /**< insufficient memory */ + CV_StsBadArg= -5, /**< function arg/param is bad */ + CV_StsBadFunc= -6, /**< unsupported function */ + CV_StsNoConv= -7, /**< iter. didn't converge */ + CV_StsAutoTrace= -8, /**< tracing */ + CV_HeaderIsNull= -9, /**< image header is NULL */ + CV_BadImageSize= -10, /**< image size is invalid */ + CV_BadOffset= -11, /**< offset is invalid */ + CV_BadDataPtr= -12, /**/ + CV_BadStep= -13, /**/ + CV_BadModelOrChSeq= -14, /**/ + CV_BadNumChannels= -15, /**/ + CV_BadNumChannel1U= -16, /**/ + CV_BadDepth= -17, /**/ + CV_BadAlphaChannel= -18, /**/ + CV_BadOrder= -19, /**/ + CV_BadOrigin= -20, /**/ + CV_BadAlign= -21, /**/ + CV_BadCallBack= -22, /**/ + CV_BadTileSize= -23, /**/ + CV_BadCOI= -24, /**/ + CV_BadROISize= -25, /**/ + CV_MaskIsTiled= -26, /**/ + CV_StsNullPtr= -27, /**< null pointer */ + CV_StsVecLengthErr= -28, /**< incorrect vector length */ + CV_StsFilterStructContentErr= -29, /**< incorr. filter structure content */ + CV_StsKernelStructContentErr= -30, /**< incorr. transform kernel content */ + CV_StsFilterOffsetErr= -31, /**< incorrect filter offset value */ + CV_StsBadSize= -201, /**< the input/output structure size is incorrect */ + CV_StsDivByZero= -202, /**< division by zero */ + CV_StsInplaceNotSupported= -203, /**< in-place operation is not supported */ + CV_StsObjectNotFound= -204, /**< request can't be completed */ + CV_StsUnmatchedFormats= -205, /**< formats of input/output arrays differ */ + CV_StsBadFlag= -206, /**< flag is wrong or not supported */ + CV_StsBadPoint= -207, /**< bad CvPoint */ + CV_StsBadMask= -208, /**< bad format of mask (neither 8uC1 nor 8sC1)*/ + CV_StsUnmatchedSizes= -209, /**< sizes of input/output structures do not match */ + CV_StsUnsupportedFormat= -210, /**< the data format/type is not supported by the function*/ + CV_StsOutOfRange= -211, /**< some of parameters are out of range */ + CV_StsParseError= -212, /**< invalid syntax/structure of the parsed file */ + CV_StsNotImplemented= -213, /**< the requested function/feature is not implemented */ + CV_StsBadMemBlock= -214, /**< an allocated block has been corrupted */ + CV_StsAssert= -215, /**< assertion failed */ + CV_GpuNotSupported= -216, + CV_GpuApiCallError= -217, + CV_OpenGlNotSupported= -218, + CV_OpenGlApiCallError= -219, + CV_OpenCLApiCallError= -220, + CV_OpenCLDoubleNotSupported= -221, + CV_OpenCLInitError= -222, + CV_OpenCLNoAMDBlasFft= -223 +}; + +/****************************************************************************************\ +* Common macros and inline functions * +\****************************************************************************************/ + +#define CV_SWAP(a,b,t) ((t) = (a), (a) = (b), (b) = (t)) + +/** min & max without jumps */ +#define CV_IMIN(a, b) ((a) ^ (((a)^(b)) & (((a) < (b)) - 1))) + +#define CV_IMAX(a, b) ((a) ^ (((a)^(b)) & (((a) > (b)) - 1))) + +/** absolute value without jumps */ +#ifndef __cplusplus +# define CV_IABS(a) (((a) ^ ((a) < 0 ? -1 : 0)) - ((a) < 0 ? -1 : 0)) +#else +# define CV_IABS(a) abs(a) +#endif +#define CV_CMP(a,b) (((a) > (b)) - ((a) < (b))) +#define CV_SIGN(a) CV_CMP((a),0) + +#define cvInvSqrt(value) ((float)(1./sqrt(value))) +#define cvSqrt(value) ((float)sqrt(value)) + + +/*************** Random number generation *******************/ + +typedef uint64 CvRNG; + +#define CV_RNG_COEFF 4164903690U + +/** @brief Initializes a random number generator state. + +The function initializes a random number generator and returns the state. The pointer to the state +can be then passed to the cvRandInt, cvRandReal and cvRandArr functions. In the current +implementation a multiply-with-carry generator is used. +@param seed 64-bit value used to initiate a random sequence +@sa the C++ class RNG replaced CvRNG. + */ +CV_INLINE CvRNG cvRNG( int64 seed CV_DEFAULT(-1)) +{ + CvRNG rng = seed ? (uint64)seed : (uint64)(int64)-1; + return rng; +} + +/** @brief Returns a 32-bit unsigned integer and updates RNG. + +The function returns a uniformly-distributed random 32-bit unsigned integer and updates the RNG +state. It is similar to the rand() function from the C runtime library, except that OpenCV functions +always generates a 32-bit random number, regardless of the platform. +@param rng CvRNG state initialized by cvRNG. + */ +CV_INLINE unsigned cvRandInt( CvRNG* rng ) +{ + uint64 temp = *rng; + temp = (uint64)(unsigned)temp*CV_RNG_COEFF + (temp >> 32); + *rng = temp; + return (unsigned)temp; +} + +/** @brief Returns a floating-point random number and updates RNG. + +The function returns a uniformly-distributed random floating-point number between 0 and 1 (1 is not +included). +@param rng RNG state initialized by cvRNG + */ +CV_INLINE double cvRandReal( CvRNG* rng ) +{ + return cvRandInt(rng)*2.3283064365386962890625e-10 /* 2^-32 */; +} + +/****************************************************************************************\ +* Image type (IplImage) * +\****************************************************************************************/ + +#ifndef HAVE_IPL + +/* + * The following definitions (until #endif) + * is an extract from IPL headers. + * Copyright (c) 1995 Intel Corporation. + */ +#define IPL_DEPTH_SIGN 0x80000000 + +#define IPL_DEPTH_1U 1 +#define IPL_DEPTH_8U 8 +#define IPL_DEPTH_16U 16 +#define IPL_DEPTH_32F 32 + +#define IPL_DEPTH_8S (IPL_DEPTH_SIGN| 8) +#define IPL_DEPTH_16S (IPL_DEPTH_SIGN|16) +#define IPL_DEPTH_32S (IPL_DEPTH_SIGN|32) + +#define IPL_DATA_ORDER_PIXEL 0 +#define IPL_DATA_ORDER_PLANE 1 + +#define IPL_ORIGIN_TL 0 +#define IPL_ORIGIN_BL 1 + +#define IPL_ALIGN_4BYTES 4 +#define IPL_ALIGN_8BYTES 8 +#define IPL_ALIGN_16BYTES 16 +#define IPL_ALIGN_32BYTES 32 + +#define IPL_ALIGN_DWORD IPL_ALIGN_4BYTES +#define IPL_ALIGN_QWORD IPL_ALIGN_8BYTES + +#define IPL_BORDER_CONSTANT 0 +#define IPL_BORDER_REPLICATE 1 +#define IPL_BORDER_REFLECT 2 +#define IPL_BORDER_WRAP 3 + +/** The IplImage is taken from the Intel Image Processing Library, in which the format is native. OpenCV +only supports a subset of possible IplImage formats, as outlined in the parameter list above. + +In addition to the above restrictions, OpenCV handles ROIs differently. OpenCV functions require +that the image size or ROI size of all source and destination images match exactly. On the other +hand, the Intel Image Processing Library processes the area of intersection between the source and +destination images (or ROIs), allowing them to vary independently. +*/ +typedef struct +#ifdef __cplusplus + CV_EXPORTS +#endif +_IplImage +{ + int nSize; /**< sizeof(IplImage) */ + int ID; /**< version (=0)*/ + int nChannels; /**< Most of OpenCV functions support 1,2,3 or 4 channels */ + int alphaChannel; /**< Ignored by OpenCV */ + int depth; /**< Pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16S, + IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F are supported. */ + char colorModel[4]; /**< Ignored by OpenCV */ + char channelSeq[4]; /**< ditto */ + int dataOrder; /**< 0 - interleaved color channels, 1 - separate color channels. + cvCreateImage can only create interleaved images */ + int origin; /**< 0 - top-left origin, + 1 - bottom-left origin (Windows bitmaps style). */ + int align; /**< Alignment of image rows (4 or 8). + OpenCV ignores it and uses widthStep instead. */ + int width; /**< Image width in pixels. */ + int height; /**< Image height in pixels. */ + struct _IplROI *roi; /**< Image ROI. If NULL, the whole image is selected. */ + struct _IplImage *maskROI; /**< Must be NULL. */ + void *imageId; /**< " " */ + struct _IplTileInfo *tileInfo; /**< " " */ + int imageSize; /**< Image data size in bytes + (==image->height*image->widthStep + in case of interleaved data)*/ + char *imageData; /**< Pointer to aligned image data. */ + int widthStep; /**< Size of aligned image row in bytes. */ + int BorderMode[4]; /**< Ignored by OpenCV. */ + int BorderConst[4]; /**< Ditto. */ + char *imageDataOrigin; /**< Pointer to very origin of image data + (not necessarily aligned) - + needed for correct deallocation */ + +#ifdef __cplusplus + _IplImage() {} + _IplImage(const cv::Mat& m); +#endif +} +IplImage; + +typedef struct _IplTileInfo IplTileInfo; + +typedef struct _IplROI +{ + int coi; /**< 0 - no COI (all channels are selected), 1 - 0th channel is selected ...*/ + int xOffset; + int yOffset; + int width; + int height; +} +IplROI; + +typedef struct _IplConvKernel +{ + int nCols; + int nRows; + int anchorX; + int anchorY; + int *values; + int nShiftR; +} +IplConvKernel; + +typedef struct _IplConvKernelFP +{ + int nCols; + int nRows; + int anchorX; + int anchorY; + float *values; +} +IplConvKernelFP; + +#define IPL_IMAGE_HEADER 1 +#define IPL_IMAGE_DATA 2 +#define IPL_IMAGE_ROI 4 + +#endif/*HAVE_IPL*/ + +/** extra border mode */ +#define IPL_BORDER_REFLECT_101 4 +#define IPL_BORDER_TRANSPARENT 5 + +#define IPL_IMAGE_MAGIC_VAL ((int)sizeof(IplImage)) +#define CV_TYPE_NAME_IMAGE "opencv-image" + +#define CV_IS_IMAGE_HDR(img) \ + ((img) != NULL && ((const IplImage*)(img))->nSize == sizeof(IplImage)) + +#define CV_IS_IMAGE(img) \ + (CV_IS_IMAGE_HDR(img) && ((IplImage*)img)->imageData != NULL) + +/** for storing double-precision + floating point data in IplImage's */ +#define IPL_DEPTH_64F 64 + +/** get reference to pixel at (col,row), + for multi-channel images (col) should be multiplied by number of channels */ +#define CV_IMAGE_ELEM( image, elemtype, row, col ) \ + (((elemtype*)((image)->imageData + (image)->widthStep*(row)))[(col)]) + +/****************************************************************************************\ +* Matrix type (CvMat) * +\****************************************************************************************/ + +#define CV_AUTO_STEP 0x7fffffff +#define CV_WHOLE_ARR cvSlice( 0, 0x3fffffff ) + +#define CV_MAGIC_MASK 0xFFFF0000 +#define CV_MAT_MAGIC_VAL 0x42420000 +#define CV_TYPE_NAME_MAT "opencv-matrix" + +/** Matrix elements are stored row by row. Element (i, j) (i - 0-based row index, j - 0-based column +index) of a matrix can be retrieved or modified using CV_MAT_ELEM macro: + + uchar pixval = CV_MAT_ELEM(grayimg, uchar, i, j) + CV_MAT_ELEM(cameraMatrix, float, 0, 2) = image.width*0.5f; + +To access multiple-channel matrices, you can use +CV_MAT_ELEM(matrix, type, i, j\*nchannels + channel_idx). + +@deprecated CvMat is now obsolete; consider using Mat instead. + */ +typedef struct CvMat +{ + int type; + int step; + + /* for internal use only */ + int* refcount; + int hdr_refcount; + + union + { + uchar* ptr; + short* s; + int* i; + float* fl; + double* db; + } data; + +#ifdef __cplusplus + union + { + int rows; + int height; + }; + + union + { + int cols; + int width; + }; +#else + int rows; + int cols; +#endif + + +#ifdef __cplusplus + CvMat() {} + CvMat(const CvMat& m) { memcpy(this, &m, sizeof(CvMat));} + CvMat(const cv::Mat& m); +#endif + +} +CvMat; + + +#define CV_IS_MAT_HDR(mat) \ + ((mat) != NULL && \ + (((const CvMat*)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \ + ((const CvMat*)(mat))->cols > 0 && ((const CvMat*)(mat))->rows > 0) + +#define CV_IS_MAT_HDR_Z(mat) \ + ((mat) != NULL && \ + (((const CvMat*)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \ + ((const CvMat*)(mat))->cols >= 0 && ((const CvMat*)(mat))->rows >= 0) + +#define CV_IS_MAT(mat) \ + (CV_IS_MAT_HDR(mat) && ((const CvMat*)(mat))->data.ptr != NULL) + +#define CV_IS_MASK_ARR(mat) \ + (((mat)->type & (CV_MAT_TYPE_MASK & ~CV_8SC1)) == 0) + +#define CV_ARE_TYPES_EQ(mat1, mat2) \ + ((((mat1)->type ^ (mat2)->type) & CV_MAT_TYPE_MASK) == 0) + +#define CV_ARE_CNS_EQ(mat1, mat2) \ + ((((mat1)->type ^ (mat2)->type) & CV_MAT_CN_MASK) == 0) + +#define CV_ARE_DEPTHS_EQ(mat1, mat2) \ + ((((mat1)->type ^ (mat2)->type) & CV_MAT_DEPTH_MASK) == 0) + +#define CV_ARE_SIZES_EQ(mat1, mat2) \ + ((mat1)->rows == (mat2)->rows && (mat1)->cols == (mat2)->cols) + +#define CV_IS_MAT_CONST(mat) \ + (((mat)->rows|(mat)->cols) == 1) + +#define IPL2CV_DEPTH(depth) \ + ((((CV_8U)+(CV_16U<<4)+(CV_32F<<8)+(CV_64F<<16)+(CV_8S<<20)+ \ + (CV_16S<<24)+(CV_32S<<28)) >> ((((depth) & 0xF0) >> 2) + \ + (((depth) & IPL_DEPTH_SIGN) ? 20 : 0))) & 15) + +/** Inline constructor. No data is allocated internally!!! + * (Use together with cvCreateData, or use cvCreateMat instead to + * get a matrix with allocated data): + */ +CV_INLINE CvMat cvMat( int rows, int cols, int type, void* data CV_DEFAULT(NULL)) +{ + CvMat m; + + assert( (unsigned)CV_MAT_DEPTH(type) <= CV_64F ); + type = CV_MAT_TYPE(type); + m.type = CV_MAT_MAGIC_VAL | CV_MAT_CONT_FLAG | type; + m.cols = cols; + m.rows = rows; + m.step = m.cols*CV_ELEM_SIZE(type); + m.data.ptr = (uchar*)data; + m.refcount = NULL; + m.hdr_refcount = 0; + + return m; +} + +#ifdef __cplusplus +inline CvMat::CvMat(const cv::Mat& m) +{ + CV_DbgAssert(m.dims <= 2); + *this = cvMat(m.rows, m.dims == 1 ? 1 : m.cols, m.type(), m.data); + step = (int)m.step[0]; + type = (type & ~cv::Mat::CONTINUOUS_FLAG) | (m.flags & cv::Mat::CONTINUOUS_FLAG); +} +#endif + + +#define CV_MAT_ELEM_PTR_FAST( mat, row, col, pix_size ) \ + (assert( (unsigned)(row) < (unsigned)(mat).rows && \ + (unsigned)(col) < (unsigned)(mat).cols ), \ + (mat).data.ptr + (size_t)(mat).step*(row) + (pix_size)*(col)) + +#define CV_MAT_ELEM_PTR( mat, row, col ) \ + CV_MAT_ELEM_PTR_FAST( mat, row, col, CV_ELEM_SIZE((mat).type) ) + +#define CV_MAT_ELEM( mat, elemtype, row, col ) \ + (*(elemtype*)CV_MAT_ELEM_PTR_FAST( mat, row, col, sizeof(elemtype))) + +/** @brief Returns the particular element of single-channel floating-point matrix. + +The function is a fast replacement for cvGetReal2D in the case of single-channel floating-point +matrices. It is faster because it is inline, it does fewer checks for array type and array element +type, and it checks for the row and column ranges only in debug mode. +@param mat Input matrix +@param row The zero-based index of row +@param col The zero-based index of column + */ +CV_INLINE double cvmGet( const CvMat* mat, int row, int col ) +{ + int type; + + type = CV_MAT_TYPE(mat->type); + assert( (unsigned)row < (unsigned)mat->rows && + (unsigned)col < (unsigned)mat->cols ); + + if( type == CV_32FC1 ) + return ((float*)(void*)(mat->data.ptr + (size_t)mat->step*row))[col]; + else + { + assert( type == CV_64FC1 ); + return ((double*)(void*)(mat->data.ptr + (size_t)mat->step*row))[col]; + } +} + +/** @brief Sets a specific element of a single-channel floating-point matrix. + +The function is a fast replacement for cvSetReal2D in the case of single-channel floating-point +matrices. It is faster because it is inline, it does fewer checks for array type and array element +type, and it checks for the row and column ranges only in debug mode. +@param mat The matrix +@param row The zero-based index of row +@param col The zero-based index of column +@param value The new value of the matrix element + */ +CV_INLINE void cvmSet( CvMat* mat, int row, int col, double value ) +{ + int type; + type = CV_MAT_TYPE(mat->type); + assert( (unsigned)row < (unsigned)mat->rows && + (unsigned)col < (unsigned)mat->cols ); + + if( type == CV_32FC1 ) + ((float*)(void*)(mat->data.ptr + (size_t)mat->step*row))[col] = (float)value; + else + { + assert( type == CV_64FC1 ); + ((double*)(void*)(mat->data.ptr + (size_t)mat->step*row))[col] = value; + } +} + + +CV_INLINE int cvIplDepth( int type ) +{ + int depth = CV_MAT_DEPTH(type); + return CV_ELEM_SIZE1(depth)*8 | (depth == CV_8S || depth == CV_16S || + depth == CV_32S ? IPL_DEPTH_SIGN : 0); +} + + +/****************************************************************************************\ +* Multi-dimensional dense array (CvMatND) * +\****************************************************************************************/ + +#define CV_MATND_MAGIC_VAL 0x42430000 +#define CV_TYPE_NAME_MATND "opencv-nd-matrix" + +#define CV_MAX_DIM 32 +#define CV_MAX_DIM_HEAP 1024 + +/** + @deprecated consider using cv::Mat instead + */ +typedef struct +#ifdef __cplusplus + CV_EXPORTS +#endif +CvMatND +{ + int type; + int dims; + + int* refcount; + int hdr_refcount; + + union + { + uchar* ptr; + float* fl; + double* db; + int* i; + short* s; + } data; + + struct + { + int size; + int step; + } + dim[CV_MAX_DIM]; + +#ifdef __cplusplus + CvMatND() {} + CvMatND(const cv::Mat& m); +#endif +} +CvMatND; + +#define CV_IS_MATND_HDR(mat) \ + ((mat) != NULL && (((const CvMatND*)(mat))->type & CV_MAGIC_MASK) == CV_MATND_MAGIC_VAL) + +#define CV_IS_MATND(mat) \ + (CV_IS_MATND_HDR(mat) && ((const CvMatND*)(mat))->data.ptr != NULL) + + +/****************************************************************************************\ +* Multi-dimensional sparse array (CvSparseMat) * +\****************************************************************************************/ + +#define CV_SPARSE_MAT_MAGIC_VAL 0x42440000 +#define CV_TYPE_NAME_SPARSE_MAT "opencv-sparse-matrix" + +struct CvSet; + +typedef struct +#ifdef __cplusplus + CV_EXPORTS +#endif +CvSparseMat +{ + int type; + int dims; + int* refcount; + int hdr_refcount; + + struct CvSet* heap; + void** hashtable; + int hashsize; + int valoffset; + int idxoffset; + int size[CV_MAX_DIM]; + +#ifdef __cplusplus + void copyToSparseMat(cv::SparseMat& m) const; +#endif +} +CvSparseMat; + +#ifdef __cplusplus + CV_EXPORTS CvSparseMat* cvCreateSparseMat(const cv::SparseMat& m); +#endif + +#define CV_IS_SPARSE_MAT_HDR(mat) \ + ((mat) != NULL && \ + (((const CvSparseMat*)(mat))->type & CV_MAGIC_MASK) == CV_SPARSE_MAT_MAGIC_VAL) + +#define CV_IS_SPARSE_MAT(mat) \ + CV_IS_SPARSE_MAT_HDR(mat) + +/**************** iteration through a sparse array *****************/ + +typedef struct CvSparseNode +{ + unsigned hashval; + struct CvSparseNode* next; +} +CvSparseNode; + +typedef struct CvSparseMatIterator +{ + CvSparseMat* mat; + CvSparseNode* node; + int curidx; +} +CvSparseMatIterator; + +#define CV_NODE_VAL(mat,node) ((void*)((uchar*)(node) + (mat)->valoffset)) +#define CV_NODE_IDX(mat,node) ((int*)((uchar*)(node) + (mat)->idxoffset)) + +/****************************************************************************************\ +* Histogram * +\****************************************************************************************/ + +typedef int CvHistType; + +#define CV_HIST_MAGIC_VAL 0x42450000 +#define CV_HIST_UNIFORM_FLAG (1 << 10) + +/** indicates whether bin ranges are set already or not */ +#define CV_HIST_RANGES_FLAG (1 << 11) + +#define CV_HIST_ARRAY 0 +#define CV_HIST_SPARSE 1 +#define CV_HIST_TREE CV_HIST_SPARSE + +/** should be used as a parameter only, + it turns to CV_HIST_UNIFORM_FLAG of hist->type */ +#define CV_HIST_UNIFORM 1 + +typedef struct CvHistogram +{ + int type; + CvArr* bins; + float thresh[CV_MAX_DIM][2]; /**< For uniform histograms. */ + float** thresh2; /**< For non-uniform histograms. */ + CvMatND mat; /**< Embedded matrix header for array histograms. */ +} +CvHistogram; + +#define CV_IS_HIST( hist ) \ + ((hist) != NULL && \ + (((CvHistogram*)(hist))->type & CV_MAGIC_MASK) == CV_HIST_MAGIC_VAL && \ + (hist)->bins != NULL) + +#define CV_IS_UNIFORM_HIST( hist ) \ + (((hist)->type & CV_HIST_UNIFORM_FLAG) != 0) + +#define CV_IS_SPARSE_HIST( hist ) \ + CV_IS_SPARSE_MAT((hist)->bins) + +#define CV_HIST_HAS_RANGES( hist ) \ + (((hist)->type & CV_HIST_RANGES_FLAG) != 0) + +/****************************************************************************************\ +* Other supplementary data type definitions * +\****************************************************************************************/ + +/*************************************** CvRect *****************************************/ +/** @sa Rect_ */ +typedef struct CvRect +{ + int x; + int y; + int width; + int height; + +#ifdef __cplusplus + CvRect(int _x = 0, int _y = 0, int w = 0, int h = 0): x(_x), y(_y), width(w), height(h) {} + template<typename _Tp> + CvRect(const cv::Rect_<_Tp>& r): x(cv::saturate_cast<int>(r.x)), y(cv::saturate_cast<int>(r.y)), width(cv::saturate_cast<int>(r.width)), height(cv::saturate_cast<int>(r.height)) {} + template<typename _Tp> + operator cv::Rect_<_Tp>() const { return cv::Rect_<_Tp>((_Tp)x, (_Tp)y, (_Tp)width, (_Tp)height); } +#endif +} +CvRect; + +/** constructs CvRect structure. */ +CV_INLINE CvRect cvRect( int x, int y, int width, int height ) +{ + CvRect r; + + r.x = x; + r.y = y; + r.width = width; + r.height = height; + + return r; +} + + +CV_INLINE IplROI cvRectToROI( CvRect rect, int coi ) +{ + IplROI roi; + roi.xOffset = rect.x; + roi.yOffset = rect.y; + roi.width = rect.width; + roi.height = rect.height; + roi.coi = coi; + + return roi; +} + + +CV_INLINE CvRect cvROIToRect( IplROI roi ) +{ + return cvRect( roi.xOffset, roi.yOffset, roi.width, roi.height ); +} + +/*********************************** CvTermCriteria *************************************/ + +#define CV_TERMCRIT_ITER 1 +#define CV_TERMCRIT_NUMBER CV_TERMCRIT_ITER +#define CV_TERMCRIT_EPS 2 + +/** @sa TermCriteria + */ +typedef struct CvTermCriteria +{ + int type; /**< may be combination of + CV_TERMCRIT_ITER + CV_TERMCRIT_EPS */ + int max_iter; + double epsilon; + +#ifdef __cplusplus + CvTermCriteria(int _type = 0, int _iter = 0, double _eps = 0) : type(_type), max_iter(_iter), epsilon(_eps) {} + CvTermCriteria(const cv::TermCriteria& t) : type(t.type), max_iter(t.maxCount), epsilon(t.epsilon) {} + operator cv::TermCriteria() const { return cv::TermCriteria(type, max_iter, epsilon); } +#endif + +} +CvTermCriteria; + +CV_INLINE CvTermCriteria cvTermCriteria( int type, int max_iter, double epsilon ) +{ + CvTermCriteria t; + + t.type = type; + t.max_iter = max_iter; + t.epsilon = (float)epsilon; + + return t; +} + + +/******************************* CvPoint and variants ***********************************/ + +typedef struct CvPoint +{ + int x; + int y; + +#ifdef __cplusplus + CvPoint(int _x = 0, int _y = 0): x(_x), y(_y) {} + template<typename _Tp> + CvPoint(const cv::Point_<_Tp>& pt): x((int)pt.x), y((int)pt.y) {} + template<typename _Tp> + operator cv::Point_<_Tp>() const { return cv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); } +#endif +} +CvPoint; + +/** constructs CvPoint structure. */ +CV_INLINE CvPoint cvPoint( int x, int y ) +{ + CvPoint p; + + p.x = x; + p.y = y; + + return p; +} + + +typedef struct CvPoint2D32f +{ + float x; + float y; + +#ifdef __cplusplus + CvPoint2D32f(float _x = 0, float _y = 0): x(_x), y(_y) {} + template<typename _Tp> + CvPoint2D32f(const cv::Point_<_Tp>& pt): x((float)pt.x), y((float)pt.y) {} + template<typename _Tp> + operator cv::Point_<_Tp>() const { return cv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); } +#endif +} +CvPoint2D32f; + +/** constructs CvPoint2D32f structure. */ +CV_INLINE CvPoint2D32f cvPoint2D32f( double x, double y ) +{ + CvPoint2D32f p; + + p.x = (float)x; + p.y = (float)y; + + return p; +} + +/** converts CvPoint to CvPoint2D32f. */ +CV_INLINE CvPoint2D32f cvPointTo32f( CvPoint point ) +{ + return cvPoint2D32f( (float)point.x, (float)point.y ); +} + +/** converts CvPoint2D32f to CvPoint. */ +CV_INLINE CvPoint cvPointFrom32f( CvPoint2D32f point ) +{ + CvPoint ipt; + ipt.x = cvRound(point.x); + ipt.y = cvRound(point.y); + + return ipt; +} + + +typedef struct CvPoint3D32f +{ + float x; + float y; + float z; + +#ifdef __cplusplus + CvPoint3D32f(float _x = 0, float _y = 0, float _z = 0): x(_x), y(_y), z(_z) {} + template<typename _Tp> + CvPoint3D32f(const cv::Point3_<_Tp>& pt): x((float)pt.x), y((float)pt.y), z((float)pt.z) {} + template<typename _Tp> + operator cv::Point3_<_Tp>() const { return cv::Point3_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y), cv::saturate_cast<_Tp>(z)); } +#endif +} +CvPoint3D32f; + +/** constructs CvPoint3D32f structure. */ +CV_INLINE CvPoint3D32f cvPoint3D32f( double x, double y, double z ) +{ + CvPoint3D32f p; + + p.x = (float)x; + p.y = (float)y; + p.z = (float)z; + + return p; +} + + +typedef struct CvPoint2D64f +{ + double x; + double y; +} +CvPoint2D64f; + +/** constructs CvPoint2D64f structure.*/ +CV_INLINE CvPoint2D64f cvPoint2D64f( double x, double y ) +{ + CvPoint2D64f p; + + p.x = x; + p.y = y; + + return p; +} + + +typedef struct CvPoint3D64f +{ + double x; + double y; + double z; +} +CvPoint3D64f; + +/** constructs CvPoint3D64f structure. */ +CV_INLINE CvPoint3D64f cvPoint3D64f( double x, double y, double z ) +{ + CvPoint3D64f p; + + p.x = x; + p.y = y; + p.z = z; + + return p; +} + + +/******************************** CvSize's & CvBox **************************************/ + +typedef struct CvSize +{ + int width; + int height; + +#ifdef __cplusplus + CvSize(int w = 0, int h = 0): width(w), height(h) {} + template<typename _Tp> + CvSize(const cv::Size_<_Tp>& sz): width(cv::saturate_cast<int>(sz.width)), height(cv::saturate_cast<int>(sz.height)) {} + template<typename _Tp> + operator cv::Size_<_Tp>() const { return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); } +#endif +} +CvSize; + +/** constructs CvSize structure. */ +CV_INLINE CvSize cvSize( int width, int height ) +{ + CvSize s; + + s.width = width; + s.height = height; + + return s; +} + +typedef struct CvSize2D32f +{ + float width; + float height; + +#ifdef __cplusplus + CvSize2D32f(float w = 0, float h = 0): width(w), height(h) {} + template<typename _Tp> + CvSize2D32f(const cv::Size_<_Tp>& sz): width(cv::saturate_cast<float>(sz.width)), height(cv::saturate_cast<float>(sz.height)) {} + template<typename _Tp> + operator cv::Size_<_Tp>() const { return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); } +#endif +} +CvSize2D32f; + +/** constructs CvSize2D32f structure. */ +CV_INLINE CvSize2D32f cvSize2D32f( double width, double height ) +{ + CvSize2D32f s; + + s.width = (float)width; + s.height = (float)height; + + return s; +} + +/** @sa RotatedRect + */ +typedef struct CvBox2D +{ + CvPoint2D32f center; /**< Center of the box. */ + CvSize2D32f size; /**< Box width and length. */ + float angle; /**< Angle between the horizontal axis */ + /**< and the first side (i.e. length) in degrees */ + +#ifdef __cplusplus + CvBox2D(CvPoint2D32f c = CvPoint2D32f(), CvSize2D32f s = CvSize2D32f(), float a = 0) : center(c), size(s), angle(a) {} + CvBox2D(const cv::RotatedRect& rr) : center(rr.center), size(rr.size), angle(rr.angle) {} + operator cv::RotatedRect() const { return cv::RotatedRect(center, size, angle); } +#endif +} +CvBox2D; + + +/** Line iterator state: */ +typedef struct CvLineIterator +{ + /** Pointer to the current point: */ + uchar* ptr; + + /* Bresenham algorithm state: */ + int err; + int plus_delta; + int minus_delta; + int plus_step; + int minus_step; +} +CvLineIterator; + + + +/************************************* CvSlice ******************************************/ +#define CV_WHOLE_SEQ_END_INDEX 0x3fffffff +#define CV_WHOLE_SEQ cvSlice(0, CV_WHOLE_SEQ_END_INDEX) + +typedef struct CvSlice +{ + int start_index, end_index; + +#if defined(__cplusplus) && !defined(__CUDACC__) + CvSlice(int start = 0, int end = 0) : start_index(start), end_index(end) {} + CvSlice(const cv::Range& r) { *this = (r.start != INT_MIN && r.end != INT_MAX) ? CvSlice(r.start, r.end) : CvSlice(0, CV_WHOLE_SEQ_END_INDEX); } + operator cv::Range() const { return (start_index == 0 && end_index == CV_WHOLE_SEQ_END_INDEX ) ? cv::Range::all() : cv::Range(start_index, end_index); } +#endif +} +CvSlice; + +CV_INLINE CvSlice cvSlice( int start, int end ) +{ + CvSlice slice; + slice.start_index = start; + slice.end_index = end; + + return slice; +} + + + +/************************************* CvScalar *****************************************/ +/** @sa Scalar_ + */ +typedef struct CvScalar +{ + double val[4]; + +#ifdef __cplusplus + CvScalar() {} + CvScalar(double d0, double d1 = 0, double d2 = 0, double d3 = 0) { val[0] = d0; val[1] = d1; val[2] = d2; val[3] = d3; } + template<typename _Tp> + CvScalar(const cv::Scalar_<_Tp>& s) { val[0] = s.val[0]; val[1] = s.val[1]; val[2] = s.val[2]; val[3] = s.val[3]; } + template<typename _Tp> + operator cv::Scalar_<_Tp>() const { return cv::Scalar_<_Tp>(cv::saturate_cast<_Tp>(val[0]), cv::saturate_cast<_Tp>(val[1]), cv::saturate_cast<_Tp>(val[2]), cv::saturate_cast<_Tp>(val[3])); } + template<typename _Tp, int cn> + CvScalar(const cv::Vec<_Tp, cn>& v) + { + int i; + for( i = 0; i < (cn < 4 ? cn : 4); i++ ) val[i] = v.val[i]; + for( ; i < 4; i++ ) val[i] = 0; + } +#endif +} +CvScalar; + +CV_INLINE CvScalar cvScalar( double val0, double val1 CV_DEFAULT(0), + double val2 CV_DEFAULT(0), double val3 CV_DEFAULT(0)) +{ + CvScalar scalar; + scalar.val[0] = val0; scalar.val[1] = val1; + scalar.val[2] = val2; scalar.val[3] = val3; + return scalar; +} + + +CV_INLINE CvScalar cvRealScalar( double val0 ) +{ + CvScalar scalar; + scalar.val[0] = val0; + scalar.val[1] = scalar.val[2] = scalar.val[3] = 0; + return scalar; +} + +CV_INLINE CvScalar cvScalarAll( double val0123 ) +{ + CvScalar scalar; + scalar.val[0] = val0123; + scalar.val[1] = val0123; + scalar.val[2] = val0123; + scalar.val[3] = val0123; + return scalar; +} + +/****************************************************************************************\ +* Dynamic Data structures * +\****************************************************************************************/ + +/******************************** Memory storage ****************************************/ + +typedef struct CvMemBlock +{ + struct CvMemBlock* prev; + struct CvMemBlock* next; +} +CvMemBlock; + +#define CV_STORAGE_MAGIC_VAL 0x42890000 + +typedef struct CvMemStorage +{ + int signature; + CvMemBlock* bottom; /**< First allocated block. */ + CvMemBlock* top; /**< Current memory block - top of the stack. */ + struct CvMemStorage* parent; /**< We get new blocks from parent as needed. */ + int block_size; /**< Block size. */ + int free_space; /**< Remaining free space in current block. */ +} +CvMemStorage; + +#define CV_IS_STORAGE(storage) \ + ((storage) != NULL && \ + (((CvMemStorage*)(storage))->signature & CV_MAGIC_MASK) == CV_STORAGE_MAGIC_VAL) + + +typedef struct CvMemStoragePos +{ + CvMemBlock* top; + int free_space; +} +CvMemStoragePos; + + +/*********************************** Sequence *******************************************/ + +typedef struct CvSeqBlock +{ + struct CvSeqBlock* prev; /**< Previous sequence block. */ + struct CvSeqBlock* next; /**< Next sequence block. */ + int start_index; /**< Index of the first element in the block + */ + /**< sequence->first->start_index. */ + int count; /**< Number of elements in the block. */ + schar* data; /**< Pointer to the first element of the block. */ +} +CvSeqBlock; + + +#define CV_TREE_NODE_FIELDS(node_type) \ + int flags; /**< Miscellaneous flags. */ \ + int header_size; /**< Size of sequence header. */ \ + struct node_type* h_prev; /**< Previous sequence. */ \ + struct node_type* h_next; /**< Next sequence. */ \ + struct node_type* v_prev; /**< 2nd previous sequence. */ \ + struct node_type* v_next /**< 2nd next sequence. */ + +/** + Read/Write sequence. + Elements can be dynamically inserted to or deleted from the sequence. +*/ +#define CV_SEQUENCE_FIELDS() \ + CV_TREE_NODE_FIELDS(CvSeq); \ + int total; /**< Total number of elements. */ \ + int elem_size; /**< Size of sequence element in bytes. */ \ + schar* block_max; /**< Maximal bound of the last block. */ \ + schar* ptr; /**< Current write pointer. */ \ + int delta_elems; /**< Grow seq this many at a time. */ \ + CvMemStorage* storage; /**< Where the seq is stored. */ \ + CvSeqBlock* free_blocks; /**< Free blocks list. */ \ + CvSeqBlock* first; /**< Pointer to the first sequence block. */ + +typedef struct CvSeq +{ + CV_SEQUENCE_FIELDS() +} +CvSeq; + +#define CV_TYPE_NAME_SEQ "opencv-sequence" +#define CV_TYPE_NAME_SEQ_TREE "opencv-sequence-tree" + +/*************************************** Set ********************************************/ +/** @brief Set + Order is not preserved. There can be gaps between sequence elements. + After the element has been inserted it stays in the same place all the time. + The MSB(most-significant or sign bit) of the first field (flags) is 0 iff the element exists. +*/ +#define CV_SET_ELEM_FIELDS(elem_type) \ + int flags; \ + struct elem_type* next_free; + +typedef struct CvSetElem +{ + CV_SET_ELEM_FIELDS(CvSetElem) +} +CvSetElem; + +#define CV_SET_FIELDS() \ + CV_SEQUENCE_FIELDS() \ + CvSetElem* free_elems; \ + int active_count; + +typedef struct CvSet +{ + CV_SET_FIELDS() +} +CvSet; + + +#define CV_SET_ELEM_IDX_MASK ((1 << 26) - 1) +#define CV_SET_ELEM_FREE_FLAG (1 << (sizeof(int)*8-1)) + +/** Checks whether the element pointed by ptr belongs to a set or not */ +#define CV_IS_SET_ELEM( ptr ) (((CvSetElem*)(ptr))->flags >= 0) + +/************************************* Graph ********************************************/ + +/** @name Graph + +We represent a graph as a set of vertices. Vertices contain their adjacency lists (more exactly, +pointers to first incoming or outcoming edge (or 0 if isolated vertex)). Edges are stored in +another set. There is a singly-linked list of incoming/outcoming edges for each vertex. + +Each edge consists of: + +- Two pointers to the starting and ending vertices (vtx[0] and vtx[1] respectively). + + A graph may be oriented or not. In the latter case, edges between vertex i to vertex j are not +distinguished during search operations. + +- Two pointers to next edges for the starting and ending vertices, where next[0] points to the +next edge in the vtx[0] adjacency list and next[1] points to the next edge in the vtx[1] +adjacency list. + +@see CvGraphEdge, CvGraphVtx, CvGraphVtx2D, CvGraph +@{ +*/ +#define CV_GRAPH_EDGE_FIELDS() \ + int flags; \ + float weight; \ + struct CvGraphEdge* next[2]; \ + struct CvGraphVtx* vtx[2]; + + +#define CV_GRAPH_VERTEX_FIELDS() \ + int flags; \ + struct CvGraphEdge* first; + + +typedef struct CvGraphEdge +{ + CV_GRAPH_EDGE_FIELDS() +} +CvGraphEdge; + +typedef struct CvGraphVtx +{ + CV_GRAPH_VERTEX_FIELDS() +} +CvGraphVtx; + +typedef struct CvGraphVtx2D +{ + CV_GRAPH_VERTEX_FIELDS() + CvPoint2D32f* ptr; +} +CvGraphVtx2D; + +/** + Graph is "derived" from the set (this is set a of vertices) + and includes another set (edges) +*/ +#define CV_GRAPH_FIELDS() \ + CV_SET_FIELDS() \ + CvSet* edges; + +typedef struct CvGraph +{ + CV_GRAPH_FIELDS() +} +CvGraph; + +#define CV_TYPE_NAME_GRAPH "opencv-graph" + +/** @} */ + +/*********************************** Chain/Countour *************************************/ + +typedef struct CvChain +{ + CV_SEQUENCE_FIELDS() + CvPoint origin; +} +CvChain; + +#define CV_CONTOUR_FIELDS() \ + CV_SEQUENCE_FIELDS() \ + CvRect rect; \ + int color; \ + int reserved[3]; + +typedef struct CvContour +{ + CV_CONTOUR_FIELDS() +} +CvContour; + +typedef CvContour CvPoint2DSeq; + +/****************************************************************************************\ +* Sequence types * +\****************************************************************************************/ + +#define CV_SEQ_MAGIC_VAL 0x42990000 + +#define CV_IS_SEQ(seq) \ + ((seq) != NULL && (((CvSeq*)(seq))->flags & CV_MAGIC_MASK) == CV_SEQ_MAGIC_VAL) + +#define CV_SET_MAGIC_VAL 0x42980000 +#define CV_IS_SET(set) \ + ((set) != NULL && (((CvSeq*)(set))->flags & CV_MAGIC_MASK) == CV_SET_MAGIC_VAL) + +#define CV_SEQ_ELTYPE_BITS 12 +#define CV_SEQ_ELTYPE_MASK ((1 << CV_SEQ_ELTYPE_BITS) - 1) + +#define CV_SEQ_ELTYPE_POINT CV_32SC2 /**< (x,y) */ +#define CV_SEQ_ELTYPE_CODE CV_8UC1 /**< freeman code: 0..7 */ +#define CV_SEQ_ELTYPE_GENERIC 0 +#define CV_SEQ_ELTYPE_PTR CV_USRTYPE1 +#define CV_SEQ_ELTYPE_PPOINT CV_SEQ_ELTYPE_PTR /**< &(x,y) */ +#define CV_SEQ_ELTYPE_INDEX CV_32SC1 /**< #(x,y) */ +#define CV_SEQ_ELTYPE_GRAPH_EDGE 0 /**< &next_o, &next_d, &vtx_o, &vtx_d */ +#define CV_SEQ_ELTYPE_GRAPH_VERTEX 0 /**< first_edge, &(x,y) */ +#define CV_SEQ_ELTYPE_TRIAN_ATR 0 /**< vertex of the binary tree */ +#define CV_SEQ_ELTYPE_CONNECTED_COMP 0 /**< connected component */ +#define CV_SEQ_ELTYPE_POINT3D CV_32FC3 /**< (x,y,z) */ + +#define CV_SEQ_KIND_BITS 2 +#define CV_SEQ_KIND_MASK (((1 << CV_SEQ_KIND_BITS) - 1)<<CV_SEQ_ELTYPE_BITS) + +/** types of sequences */ +#define CV_SEQ_KIND_GENERIC (0 << CV_SEQ_ELTYPE_BITS) +#define CV_SEQ_KIND_CURVE (1 << CV_SEQ_ELTYPE_BITS) +#define CV_SEQ_KIND_BIN_TREE (2 << CV_SEQ_ELTYPE_BITS) + +/** types of sparse sequences (sets) */ +#define CV_SEQ_KIND_GRAPH (1 << CV_SEQ_ELTYPE_BITS) +#define CV_SEQ_KIND_SUBDIV2D (2 << CV_SEQ_ELTYPE_BITS) + +#define CV_SEQ_FLAG_SHIFT (CV_SEQ_KIND_BITS + CV_SEQ_ELTYPE_BITS) + +/** flags for curves */ +#define CV_SEQ_FLAG_CLOSED (1 << CV_SEQ_FLAG_SHIFT) +#define CV_SEQ_FLAG_SIMPLE (0 << CV_SEQ_FLAG_SHIFT) +#define CV_SEQ_FLAG_CONVEX (0 << CV_SEQ_FLAG_SHIFT) +#define CV_SEQ_FLAG_HOLE (2 << CV_SEQ_FLAG_SHIFT) + +/** flags for graphs */ +#define CV_GRAPH_FLAG_ORIENTED (1 << CV_SEQ_FLAG_SHIFT) + +#define CV_GRAPH CV_SEQ_KIND_GRAPH +#define CV_ORIENTED_GRAPH (CV_SEQ_KIND_GRAPH|CV_GRAPH_FLAG_ORIENTED) + +/** point sets */ +#define CV_SEQ_POINT_SET (CV_SEQ_KIND_GENERIC| CV_SEQ_ELTYPE_POINT) +#define CV_SEQ_POINT3D_SET (CV_SEQ_KIND_GENERIC| CV_SEQ_ELTYPE_POINT3D) +#define CV_SEQ_POLYLINE (CV_SEQ_KIND_CURVE | CV_SEQ_ELTYPE_POINT) +#define CV_SEQ_POLYGON (CV_SEQ_FLAG_CLOSED | CV_SEQ_POLYLINE ) +#define CV_SEQ_CONTOUR CV_SEQ_POLYGON +#define CV_SEQ_SIMPLE_POLYGON (CV_SEQ_FLAG_SIMPLE | CV_SEQ_POLYGON ) + +/** chain-coded curves */ +#define CV_SEQ_CHAIN (CV_SEQ_KIND_CURVE | CV_SEQ_ELTYPE_CODE) +#define CV_SEQ_CHAIN_CONTOUR (CV_SEQ_FLAG_CLOSED | CV_SEQ_CHAIN) + +/** binary tree for the contour */ +#define CV_SEQ_POLYGON_TREE (CV_SEQ_KIND_BIN_TREE | CV_SEQ_ELTYPE_TRIAN_ATR) + +/** sequence of the connected components */ +#define CV_SEQ_CONNECTED_COMP (CV_SEQ_KIND_GENERIC | CV_SEQ_ELTYPE_CONNECTED_COMP) + +/** sequence of the integer numbers */ +#define CV_SEQ_INDEX (CV_SEQ_KIND_GENERIC | CV_SEQ_ELTYPE_INDEX) + +#define CV_SEQ_ELTYPE( seq ) ((seq)->flags & CV_SEQ_ELTYPE_MASK) +#define CV_SEQ_KIND( seq ) ((seq)->flags & CV_SEQ_KIND_MASK ) + +/** flag checking */ +#define CV_IS_SEQ_INDEX( seq ) ((CV_SEQ_ELTYPE(seq) == CV_SEQ_ELTYPE_INDEX) && \ + (CV_SEQ_KIND(seq) == CV_SEQ_KIND_GENERIC)) + +#define CV_IS_SEQ_CURVE( seq ) (CV_SEQ_KIND(seq) == CV_SEQ_KIND_CURVE) +#define CV_IS_SEQ_CLOSED( seq ) (((seq)->flags & CV_SEQ_FLAG_CLOSED) != 0) +#define CV_IS_SEQ_CONVEX( seq ) 0 +#define CV_IS_SEQ_HOLE( seq ) (((seq)->flags & CV_SEQ_FLAG_HOLE) != 0) +#define CV_IS_SEQ_SIMPLE( seq ) 1 + +/** type checking macros */ +#define CV_IS_SEQ_POINT_SET( seq ) \ + ((CV_SEQ_ELTYPE(seq) == CV_32SC2 || CV_SEQ_ELTYPE(seq) == CV_32FC2)) + +#define CV_IS_SEQ_POINT_SUBSET( seq ) \ + (CV_IS_SEQ_INDEX( seq ) || CV_SEQ_ELTYPE(seq) == CV_SEQ_ELTYPE_PPOINT) + +#define CV_IS_SEQ_POLYLINE( seq ) \ + (CV_SEQ_KIND(seq) == CV_SEQ_KIND_CURVE && CV_IS_SEQ_POINT_SET(seq)) + +#define CV_IS_SEQ_POLYGON( seq ) \ + (CV_IS_SEQ_POLYLINE(seq) && CV_IS_SEQ_CLOSED(seq)) + +#define CV_IS_SEQ_CHAIN( seq ) \ + (CV_SEQ_KIND(seq) == CV_SEQ_KIND_CURVE && (seq)->elem_size == 1) + +#define CV_IS_SEQ_CONTOUR( seq ) \ + (CV_IS_SEQ_CLOSED(seq) && (CV_IS_SEQ_POLYLINE(seq) || CV_IS_SEQ_CHAIN(seq))) + +#define CV_IS_SEQ_CHAIN_CONTOUR( seq ) \ + (CV_IS_SEQ_CHAIN( seq ) && CV_IS_SEQ_CLOSED( seq )) + +#define CV_IS_SEQ_POLYGON_TREE( seq ) \ + (CV_SEQ_ELTYPE (seq) == CV_SEQ_ELTYPE_TRIAN_ATR && \ + CV_SEQ_KIND( seq ) == CV_SEQ_KIND_BIN_TREE ) + +#define CV_IS_GRAPH( seq ) \ + (CV_IS_SET(seq) && CV_SEQ_KIND((CvSet*)(seq)) == CV_SEQ_KIND_GRAPH) + +#define CV_IS_GRAPH_ORIENTED( seq ) \ + (((seq)->flags & CV_GRAPH_FLAG_ORIENTED) != 0) + +#define CV_IS_SUBDIV2D( seq ) \ + (CV_IS_SET(seq) && CV_SEQ_KIND((CvSet*)(seq)) == CV_SEQ_KIND_SUBDIV2D) + +/****************************************************************************************/ +/* Sequence writer & reader */ +/****************************************************************************************/ + +#define CV_SEQ_WRITER_FIELDS() \ + int header_size; \ + CvSeq* seq; /**< the sequence written */ \ + CvSeqBlock* block; /**< current block */ \ + schar* ptr; /**< pointer to free space */ \ + schar* block_min; /**< pointer to the beginning of block*/\ + schar* block_max; /**< pointer to the end of block */ + +typedef struct CvSeqWriter +{ + CV_SEQ_WRITER_FIELDS() +} +CvSeqWriter; + + +#define CV_SEQ_READER_FIELDS() \ + int header_size; \ + CvSeq* seq; /**< sequence, beign read */ \ + CvSeqBlock* block; /**< current block */ \ + schar* ptr; /**< pointer to element be read next */ \ + schar* block_min; /**< pointer to the beginning of block */\ + schar* block_max; /**< pointer to the end of block */ \ + int delta_index;/**< = seq->first->start_index */ \ + schar* prev_elem; /**< pointer to previous element */ + +typedef struct CvSeqReader +{ + CV_SEQ_READER_FIELDS() +} +CvSeqReader; + +/****************************************************************************************/ +/* Operations on sequences */ +/****************************************************************************************/ + +#define CV_SEQ_ELEM( seq, elem_type, index ) \ +/** assert gives some guarantee that <seq> parameter is valid */ \ +( assert(sizeof((seq)->first[0]) == sizeof(CvSeqBlock) && \ + (seq)->elem_size == sizeof(elem_type)), \ + (elem_type*)((seq)->first && (unsigned)index < \ + (unsigned)((seq)->first->count) ? \ + (seq)->first->data + (index) * sizeof(elem_type) : \ + cvGetSeqElem( (CvSeq*)(seq), (index) ))) +#define CV_GET_SEQ_ELEM( elem_type, seq, index ) CV_SEQ_ELEM( (seq), elem_type, (index) ) + +/** Add element to sequence: */ +#define CV_WRITE_SEQ_ELEM_VAR( elem_ptr, writer ) \ +{ \ + if( (writer).ptr >= (writer).block_max ) \ + { \ + cvCreateSeqBlock( &writer); \ + } \ + memcpy((writer).ptr, elem_ptr, (writer).seq->elem_size);\ + (writer).ptr += (writer).seq->elem_size; \ +} + +#define CV_WRITE_SEQ_ELEM( elem, writer ) \ +{ \ + assert( (writer).seq->elem_size == sizeof(elem)); \ + if( (writer).ptr >= (writer).block_max ) \ + { \ + cvCreateSeqBlock( &writer); \ + } \ + assert( (writer).ptr <= (writer).block_max - sizeof(elem));\ + memcpy((writer).ptr, &(elem), sizeof(elem)); \ + (writer).ptr += sizeof(elem); \ +} + + +/** Move reader position forward: */ +#define CV_NEXT_SEQ_ELEM( elem_size, reader ) \ +{ \ + if( ((reader).ptr += (elem_size)) >= (reader).block_max ) \ + { \ + cvChangeSeqBlock( &(reader), 1 ); \ + } \ +} + + +/** Move reader position backward: */ +#define CV_PREV_SEQ_ELEM( elem_size, reader ) \ +{ \ + if( ((reader).ptr -= (elem_size)) < (reader).block_min ) \ + { \ + cvChangeSeqBlock( &(reader), -1 ); \ + } \ +} + +/** Read element and move read position forward: */ +#define CV_READ_SEQ_ELEM( elem, reader ) \ +{ \ + assert( (reader).seq->elem_size == sizeof(elem)); \ + memcpy( &(elem), (reader).ptr, sizeof((elem))); \ + CV_NEXT_SEQ_ELEM( sizeof(elem), reader ) \ +} + +/** Read element and move read position backward: */ +#define CV_REV_READ_SEQ_ELEM( elem, reader ) \ +{ \ + assert( (reader).seq->elem_size == sizeof(elem)); \ + memcpy(&(elem), (reader).ptr, sizeof((elem))); \ + CV_PREV_SEQ_ELEM( sizeof(elem), reader ) \ +} + + +#define CV_READ_CHAIN_POINT( _pt, reader ) \ +{ \ + (_pt) = (reader).pt; \ + if( (reader).ptr ) \ + { \ + CV_READ_SEQ_ELEM( (reader).code, (reader)); \ + assert( ((reader).code & ~7) == 0 ); \ + (reader).pt.x += (reader).deltas[(int)(reader).code][0]; \ + (reader).pt.y += (reader).deltas[(int)(reader).code][1]; \ + } \ +} + +#define CV_CURRENT_POINT( reader ) (*((CvPoint*)((reader).ptr))) +#define CV_PREV_POINT( reader ) (*((CvPoint*)((reader).prev_elem))) + +#define CV_READ_EDGE( pt1, pt2, reader ) \ +{ \ + assert( sizeof(pt1) == sizeof(CvPoint) && \ + sizeof(pt2) == sizeof(CvPoint) && \ + reader.seq->elem_size == sizeof(CvPoint)); \ + (pt1) = CV_PREV_POINT( reader ); \ + (pt2) = CV_CURRENT_POINT( reader ); \ + (reader).prev_elem = (reader).ptr; \ + CV_NEXT_SEQ_ELEM( sizeof(CvPoint), (reader)); \ +} + +/************ Graph macros ************/ + +/** Return next graph edge for given vertex: */ +#define CV_NEXT_GRAPH_EDGE( edge, vertex ) \ + (assert((edge)->vtx[0] == (vertex) || (edge)->vtx[1] == (vertex)), \ + (edge)->next[(edge)->vtx[1] == (vertex)]) + + + +/****************************************************************************************\ +* Data structures for persistence (a.k.a serialization) functionality * +\****************************************************************************************/ + +/** "black box" file storage */ +typedef struct CvFileStorage CvFileStorage; + +/** Storage flags: */ +#define CV_STORAGE_READ 0 +#define CV_STORAGE_WRITE 1 +#define CV_STORAGE_WRITE_TEXT CV_STORAGE_WRITE +#define CV_STORAGE_WRITE_BINARY CV_STORAGE_WRITE +#define CV_STORAGE_APPEND 2 +#define CV_STORAGE_MEMORY 4 +#define CV_STORAGE_FORMAT_MASK (7<<3) +#define CV_STORAGE_FORMAT_AUTO 0 +#define CV_STORAGE_FORMAT_XML 8 +#define CV_STORAGE_FORMAT_YAML 16 +#define CV_STORAGE_FORMAT_JSON 24 +#define CV_STORAGE_BASE64 64 +#define CV_STORAGE_WRITE_BASE64 (CV_STORAGE_BASE64 | CV_STORAGE_WRITE) + +/** @brief List of attributes. : + +In the current implementation, attributes are used to pass extra parameters when writing user +objects (see cvWrite). XML attributes inside tags are not supported, aside from the object type +specification (type_id attribute). +@see cvAttrList, cvAttrValue + */ +typedef struct CvAttrList +{ + const char** attr; /**< NULL-terminated array of (attribute_name,attribute_value) pairs. */ + struct CvAttrList* next; /**< Pointer to next chunk of the attributes list. */ +} +CvAttrList; + +/** initializes CvAttrList structure */ +CV_INLINE CvAttrList cvAttrList( const char** attr CV_DEFAULT(NULL), + CvAttrList* next CV_DEFAULT(NULL) ) +{ + CvAttrList l; + l.attr = attr; + l.next = next; + + return l; +} + +struct CvTypeInfo; + +#define CV_NODE_NONE 0 +#define CV_NODE_INT 1 +#define CV_NODE_INTEGER CV_NODE_INT +#define CV_NODE_REAL 2 +#define CV_NODE_FLOAT CV_NODE_REAL +#define CV_NODE_STR 3 +#define CV_NODE_STRING CV_NODE_STR +#define CV_NODE_REF 4 /**< not used */ +#define CV_NODE_SEQ 5 +#define CV_NODE_MAP 6 +#define CV_NODE_TYPE_MASK 7 + +#define CV_NODE_TYPE(flags) ((flags) & CV_NODE_TYPE_MASK) + +/** file node flags */ +#define CV_NODE_FLOW 8 /**<Used only for writing structures in YAML format. */ +#define CV_NODE_USER 16 +#define CV_NODE_EMPTY 32 +#define CV_NODE_NAMED 64 + +#define CV_NODE_IS_INT(flags) (CV_NODE_TYPE(flags) == CV_NODE_INT) +#define CV_NODE_IS_REAL(flags) (CV_NODE_TYPE(flags) == CV_NODE_REAL) +#define CV_NODE_IS_STRING(flags) (CV_NODE_TYPE(flags) == CV_NODE_STRING) +#define CV_NODE_IS_SEQ(flags) (CV_NODE_TYPE(flags) == CV_NODE_SEQ) +#define CV_NODE_IS_MAP(flags) (CV_NODE_TYPE(flags) == CV_NODE_MAP) +#define CV_NODE_IS_COLLECTION(flags) (CV_NODE_TYPE(flags) >= CV_NODE_SEQ) +#define CV_NODE_IS_FLOW(flags) (((flags) & CV_NODE_FLOW) != 0) +#define CV_NODE_IS_EMPTY(flags) (((flags) & CV_NODE_EMPTY) != 0) +#define CV_NODE_IS_USER(flags) (((flags) & CV_NODE_USER) != 0) +#define CV_NODE_HAS_NAME(flags) (((flags) & CV_NODE_NAMED) != 0) + +#define CV_NODE_SEQ_SIMPLE 256 +#define CV_NODE_SEQ_IS_SIMPLE(seq) (((seq)->flags & CV_NODE_SEQ_SIMPLE) != 0) + +typedef struct CvString +{ + int len; + char* ptr; +} +CvString; + +/** All the keys (names) of elements in the readed file storage + are stored in the hash to speed up the lookup operations: */ +typedef struct CvStringHashNode +{ + unsigned hashval; + CvString str; + struct CvStringHashNode* next; +} +CvStringHashNode; + +typedef struct CvGenericHash CvFileNodeHash; + +/** Basic element of the file storage - scalar or collection: */ +typedef struct CvFileNode +{ + int tag; + struct CvTypeInfo* info; /**< type information + (only for user-defined object, for others it is 0) */ + union + { + double f; /**< scalar floating-point number */ + int i; /**< scalar integer number */ + CvString str; /**< text string */ + CvSeq* seq; /**< sequence (ordered collection of file nodes) */ + CvFileNodeHash* map; /**< map (collection of named file nodes) */ + } data; +} +CvFileNode; + +#ifdef __cplusplus +extern "C" { +#endif +typedef int (CV_CDECL *CvIsInstanceFunc)( const void* struct_ptr ); +typedef void (CV_CDECL *CvReleaseFunc)( void** struct_dblptr ); +typedef void* (CV_CDECL *CvReadFunc)( CvFileStorage* storage, CvFileNode* node ); +typedef void (CV_CDECL *CvWriteFunc)( CvFileStorage* storage, const char* name, + const void* struct_ptr, CvAttrList attributes ); +typedef void* (CV_CDECL *CvCloneFunc)( const void* struct_ptr ); +#ifdef __cplusplus +} +#endif + +/** @brief Type information + +The structure contains information about one of the standard or user-defined types. Instances of the +type may or may not contain a pointer to the corresponding CvTypeInfo structure. In any case, there +is a way to find the type info structure for a given object using the cvTypeOf function. +Alternatively, type info can be found by type name using cvFindType, which is used when an object +is read from file storage. The user can register a new type with cvRegisterType that adds the type +information structure into the beginning of the type list. Thus, it is possible to create +specialized types from generic standard types and override the basic methods. + */ +typedef struct CvTypeInfo +{ + int flags; /**< not used */ + int header_size; /**< sizeof(CvTypeInfo) */ + struct CvTypeInfo* prev; /**< previous registered type in the list */ + struct CvTypeInfo* next; /**< next registered type in the list */ + const char* type_name; /**< type name, written to file storage */ + CvIsInstanceFunc is_instance; /**< checks if the passed object belongs to the type */ + CvReleaseFunc release; /**< releases object (memory etc.) */ + CvReadFunc read; /**< reads object from file storage */ + CvWriteFunc write; /**< writes object to file storage */ + CvCloneFunc clone; /**< creates a copy of the object */ +} +CvTypeInfo; + + +/**** System data types ******/ + +typedef struct CvPluginFuncInfo +{ + void** func_addr; + void* default_func_addr; + const char* func_names; + int search_modules; + int loaded_from; +} +CvPluginFuncInfo; + +typedef struct CvModuleInfo +{ + struct CvModuleInfo* next; + const char* name; + const char* version; + CvPluginFuncInfo* func_tab; +} +CvModuleInfo; + +/** @} */ + +#endif /*OPENCV_CORE_TYPES_H*/ + +/* End of file. */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/utility.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1171 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_UTILITY_H +#define OPENCV_CORE_UTILITY_H + +#ifndef __cplusplus +# error utility.hpp header must be compiled as C++ +#endif + +#if defined(check) +# warning Detected Apple 'check' macro definition, it can cause build conflicts. Please, include this header before any Apple headers. +#endif + +#include "opencv2/core.hpp" + +namespace cv +{ + +#ifdef CV_COLLECT_IMPL_DATA +CV_EXPORTS void setImpl(int flags); // set implementation flags and reset storage arrays +CV_EXPORTS void addImpl(int flag, const char* func = 0); // add implementation and function name to storage arrays +// Get stored implementation flags and fucntions names arrays +// Each implementation entry correspond to function name entry, so you can find which implementation was executed in which fucntion +CV_EXPORTS int getImpl(std::vector<int> &impl, std::vector<String> &funName); + +CV_EXPORTS bool useCollection(); // return implementation collection state +CV_EXPORTS void setUseCollection(bool flag); // set implementation collection state + +#define CV_IMPL_PLAIN 0x01 // native CPU OpenCV implementation +#define CV_IMPL_OCL 0x02 // OpenCL implementation +#define CV_IMPL_IPP 0x04 // IPP implementation +#define CV_IMPL_MT 0x10 // multithreaded implementation + +#define CV_IMPL_ADD(impl) \ + if(cv::useCollection()) \ + { \ + cv::addImpl(impl, CV_Func); \ + } +#else +#define CV_IMPL_ADD(impl) +#endif + +//! @addtogroup core_utils +//! @{ + +/** @brief Automatically Allocated Buffer Class + + The class is used for temporary buffers in functions and methods. + If a temporary buffer is usually small (a few K's of memory), + but its size depends on the parameters, it makes sense to create a small + fixed-size array on stack and use it if it's large enough. If the required buffer size + is larger than the fixed size, another buffer of sufficient size is allocated dynamically + and released after the processing. Therefore, in typical cases, when the buffer size is small, + there is no overhead associated with malloc()/free(). + At the same time, there is no limit on the size of processed data. + + This is what AutoBuffer does. The template takes 2 parameters - type of the buffer elements and + the number of stack-allocated elements. Here is how the class is used: + + \code + void my_func(const cv::Mat& m) + { + cv::AutoBuffer<float> buf; // create automatic buffer containing 1000 floats + + buf.allocate(m.rows); // if m.rows <= 1000, the pre-allocated buffer is used, + // otherwise the buffer of "m.rows" floats will be allocated + // dynamically and deallocated in cv::AutoBuffer destructor + ... + } + \endcode +*/ +template<typename _Tp, size_t fixed_size = 1024/sizeof(_Tp)+8> class AutoBuffer +{ +public: + typedef _Tp value_type; + + //! the default constructor + AutoBuffer(); + //! constructor taking the real buffer size + AutoBuffer(size_t _size); + + //! the copy constructor + AutoBuffer(const AutoBuffer<_Tp, fixed_size>& buf); + //! the assignment operator + AutoBuffer<_Tp, fixed_size>& operator = (const AutoBuffer<_Tp, fixed_size>& buf); + + //! destructor. calls deallocate() + ~AutoBuffer(); + + //! allocates the new buffer of size _size. if the _size is small enough, stack-allocated buffer is used + void allocate(size_t _size); + //! deallocates the buffer if it was dynamically allocated + void deallocate(); + //! resizes the buffer and preserves the content + void resize(size_t _size); + //! returns the current buffer size + size_t size() const; + //! returns pointer to the real buffer, stack-allocated or head-allocated + operator _Tp* (); + //! returns read-only pointer to the real buffer, stack-allocated or head-allocated + operator const _Tp* () const; + +protected: + //! pointer to the real buffer, can point to buf if the buffer is small enough + _Tp* ptr; + //! size of the real buffer + size_t sz; + //! pre-allocated buffer. At least 1 element to confirm C++ standard reqirements + _Tp buf[(fixed_size > 0) ? fixed_size : 1]; +}; + +/** @brief Sets/resets the break-on-error mode. + +When the break-on-error mode is set, the default error handler issues a hardware exception, which +can make debugging more convenient. + +\return the previous state + */ +CV_EXPORTS bool setBreakOnError(bool flag); + +extern "C" typedef int (*ErrorCallback)( int status, const char* func_name, + const char* err_msg, const char* file_name, + int line, void* userdata ); + + +/** @brief Sets the new error handler and the optional user data. + + The function sets the new error handler, called from cv::error(). + + \param errCallback the new error handler. If NULL, the default error handler is used. + \param userdata the optional user data pointer, passed to the callback. + \param prevUserdata the optional output parameter where the previous user data pointer is stored + + \return the previous error handler +*/ +CV_EXPORTS ErrorCallback redirectError( ErrorCallback errCallback, void* userdata=0, void** prevUserdata=0); + +/** @brief Returns a text string formatted using the printf-like expression. + +The function acts like sprintf but forms and returns an STL string. It can be used to form an error +message in the Exception constructor. +@param fmt printf-compatible formatting specifiers. + */ +CV_EXPORTS String format( const char* fmt, ... ); +CV_EXPORTS String tempfile( const char* suffix = 0); +CV_EXPORTS void glob(String pattern, std::vector<String>& result, bool recursive = false); + +/** @brief OpenCV will try to set the number of threads for the next parallel region. + +If threads == 0, OpenCV will disable threading optimizations and run all it's functions +sequentially. Passing threads \< 0 will reset threads number to system default. This function must +be called outside of parallel region. + +OpenCV will try to run it's functions with specified threads number, but some behaviour differs from +framework: +- `TBB` – User-defined parallel constructions will run with the same threads number, if + another does not specified. If late on user creates own scheduler, OpenCV will be use it. +- `OpenMP` – No special defined behaviour. +- `Concurrency` – If threads == 1, OpenCV will disable threading optimizations and run it's + functions sequentially. +- `GCD` – Supports only values \<= 0. +- `C=` – No special defined behaviour. +@param nthreads Number of threads used by OpenCV. +@sa getNumThreads, getThreadNum + */ +CV_EXPORTS_W void setNumThreads(int nthreads); + +/** @brief Returns the number of threads used by OpenCV for parallel regions. + +Always returns 1 if OpenCV is built without threading support. + +The exact meaning of return value depends on the threading framework used by OpenCV library: +- `TBB` – The number of threads, that OpenCV will try to use for parallel regions. If there is + any tbb::thread_scheduler_init in user code conflicting with OpenCV, then function returns + default number of threads used by TBB library. +- `OpenMP` – An upper bound on the number of threads that could be used to form a new team. +- `Concurrency` – The number of threads, that OpenCV will try to use for parallel regions. +- `GCD` – Unsupported; returns the GCD thread pool limit (512) for compatibility. +- `C=` – The number of threads, that OpenCV will try to use for parallel regions, if before + called setNumThreads with threads \> 0, otherwise returns the number of logical CPUs, + available for the process. +@sa setNumThreads, getThreadNum + */ +CV_EXPORTS_W int getNumThreads(); + +/** @brief Returns the index of the currently executed thread within the current parallel region. Always +returns 0 if called outside of parallel region. + +The exact meaning of return value depends on the threading framework used by OpenCV library: +- `TBB` – Unsupported with current 4.1 TBB release. May be will be supported in future. +- `OpenMP` – The thread number, within the current team, of the calling thread. +- `Concurrency` – An ID for the virtual processor that the current context is executing on (0 + for master thread and unique number for others, but not necessary 1,2,3,...). +- `GCD` – System calling thread's ID. Never returns 0 inside parallel region. +- `C=` – The index of the current parallel task. +@sa setNumThreads, getNumThreads + */ +CV_EXPORTS_W int getThreadNum(); + +/** @brief Returns full configuration time cmake output. + +Returned value is raw cmake output including version control system revision, compiler version, +compiler flags, enabled modules and third party libraries, etc. Output format depends on target +architecture. + */ +CV_EXPORTS_W const String& getBuildInformation(); + +/** @brief Returns the number of ticks. + +The function returns the number of ticks after the certain event (for example, when the machine was +turned on). It can be used to initialize RNG or to measure a function execution time by reading the +tick count before and after the function call. +@sa getTickFrequency, TickMeter + */ +CV_EXPORTS_W int64 getTickCount(); + +/** @brief Returns the number of ticks per second. + +The function returns the number of ticks per second. That is, the following code computes the +execution time in seconds: +@code + double t = (double)getTickCount(); + // do something ... + t = ((double)getTickCount() - t)/getTickFrequency(); +@endcode +@sa getTickCount, TickMeter + */ +CV_EXPORTS_W double getTickFrequency(); + +/** @brief a Class to measure passing time. + +The class computes passing time by counting the number of ticks per second. That is, the following code computes the +execution time in seconds: +@code +TickMeter tm; +tm.start(); +// do something ... +tm.stop(); +std::cout << tm.getTimeSec(); +@endcode +@sa getTickCount, getTickFrequency +*/ + +class CV_EXPORTS_W TickMeter +{ +public: + //! the default constructor + CV_WRAP TickMeter() + { + reset(); + } + + /** + starts counting ticks. + */ + CV_WRAP void start() + { + startTime = cv::getTickCount(); + } + + /** + stops counting ticks. + */ + CV_WRAP void stop() + { + int64 time = cv::getTickCount(); + if (startTime == 0) + return; + ++counter; + sumTime += (time - startTime); + startTime = 0; + } + + /** + returns counted ticks. + */ + CV_WRAP int64 getTimeTicks() const + { + return sumTime; + } + + /** + returns passed time in microseconds. + */ + CV_WRAP double getTimeMicro() const + { + return getTimeMilli()*1e3; + } + + /** + returns passed time in milliseconds. + */ + CV_WRAP double getTimeMilli() const + { + return getTimeSec()*1e3; + } + + /** + returns passed time in seconds. + */ + CV_WRAP double getTimeSec() const + { + return (double)getTimeTicks() / getTickFrequency(); + } + + /** + returns internal counter value. + */ + CV_WRAP int64 getCounter() const + { + return counter; + } + + /** + resets internal values. + */ + CV_WRAP void reset() + { + startTime = 0; + sumTime = 0; + counter = 0; + } + +private: + int64 counter; + int64 sumTime; + int64 startTime; +}; + +/** @brief output operator +@code +TickMeter tm; +tm.start(); +// do something ... +tm.stop(); +std::cout << tm; +@endcode +*/ + +static inline +std::ostream& operator << (std::ostream& out, const TickMeter& tm) +{ + return out << tm.getTimeSec() << "sec"; +} + +/** @brief Returns the number of CPU ticks. + +The function returns the current number of CPU ticks on some architectures (such as x86, x64, +PowerPC). On other platforms the function is equivalent to getTickCount. It can also be used for +very accurate time measurements, as well as for RNG initialization. Note that in case of multi-CPU +systems a thread, from which getCPUTickCount is called, can be suspended and resumed at another CPU +with its own counter. So, theoretically (and practically) the subsequent calls to the function do +not necessary return the monotonously increasing values. Also, since a modern CPU varies the CPU +frequency depending on the load, the number of CPU clocks spent in some code cannot be directly +converted to time units. Therefore, getTickCount is generally a preferable solution for measuring +execution time. + */ +CV_EXPORTS_W int64 getCPUTickCount(); + +/** @brief Returns true if the specified feature is supported by the host hardware. + +The function returns true if the host hardware supports the specified feature. When user calls +setUseOptimized(false), the subsequent calls to checkHardwareSupport() will return false until +setUseOptimized(true) is called. This way user can dynamically switch on and off the optimized code +in OpenCV. +@param feature The feature of interest, one of cv::CpuFeatures + */ +CV_EXPORTS_W bool checkHardwareSupport(int feature); + +/** @brief Returns the number of logical CPUs available for the process. + */ +CV_EXPORTS_W int getNumberOfCPUs(); + + +/** @brief Aligns a pointer to the specified number of bytes. + +The function returns the aligned pointer of the same type as the input pointer: +\f[\texttt{(_Tp*)(((size_t)ptr + n-1) & -n)}\f] +@param ptr Aligned pointer. +@param n Alignment size that must be a power of two. + */ +template<typename _Tp> static inline _Tp* alignPtr(_Tp* ptr, int n=(int)sizeof(_Tp)) +{ + return (_Tp*)(((size_t)ptr + n-1) & -n); +} + +/** @brief Aligns a buffer size to the specified number of bytes. + +The function returns the minimum number that is greater or equal to sz and is divisible by n : +\f[\texttt{(sz + n-1) & -n}\f] +@param sz Buffer size to align. +@param n Alignment size that must be a power of two. + */ +static inline size_t alignSize(size_t sz, int n) +{ + CV_DbgAssert((n & (n - 1)) == 0); // n is a power of 2 + return (sz + n-1) & -n; +} + +/** @brief Enables or disables the optimized code. + +The function can be used to dynamically turn on and off optimized code (code that uses SSE2, AVX, +and other instructions on the platforms that support it). It sets a global flag that is further +checked by OpenCV functions. Since the flag is not checked in the inner OpenCV loops, it is only +safe to call the function on the very top level in your application where you can be sure that no +other OpenCV function is currently executed. + +By default, the optimized code is enabled unless you disable it in CMake. The current status can be +retrieved using useOptimized. +@param onoff The boolean flag specifying whether the optimized code should be used (onoff=true) +or not (onoff=false). + */ +CV_EXPORTS_W void setUseOptimized(bool onoff); + +/** @brief Returns the status of optimized code usage. + +The function returns true if the optimized code is enabled. Otherwise, it returns false. + */ +CV_EXPORTS_W bool useOptimized(); + +static inline size_t getElemSize(int type) { return CV_ELEM_SIZE(type); } + +/////////////////////////////// Parallel Primitives ////////////////////////////////// + +/** @brief Base class for parallel data processors +*/ +class CV_EXPORTS ParallelLoopBody +{ +public: + virtual ~ParallelLoopBody(); + virtual void operator() (const Range& range) const = 0; +}; + +/** @brief Parallel data processor +*/ +CV_EXPORTS void parallel_for_(const Range& range, const ParallelLoopBody& body, double nstripes=-1.); + +/////////////////////////////// forEach method of cv::Mat //////////////////////////// +template<typename _Tp, typename Functor> inline +void Mat::forEach_impl(const Functor& operation) { + if (false) { + operation(*reinterpret_cast<_Tp*>(0), reinterpret_cast<int*>(0)); + // If your compiler fail in this line. + // Please check that your functor signature is + // (_Tp&, const int*) <- multidimential + // or (_Tp&, void*) <- in case of you don't need current idx. + } + + CV_Assert(this->total() / this->size[this->dims - 1] <= INT_MAX); + const int LINES = static_cast<int>(this->total() / this->size[this->dims - 1]); + + class PixelOperationWrapper :public ParallelLoopBody + { + public: + PixelOperationWrapper(Mat_<_Tp>* const frame, const Functor& _operation) + : mat(frame), op(_operation) {} + virtual ~PixelOperationWrapper(){} + // ! Overloaded virtual operator + // convert range call to row call. + virtual void operator()(const Range &range) const { + const int DIMS = mat->dims; + const int COLS = mat->size[DIMS - 1]; + if (DIMS <= 2) { + for (int row = range.start; row < range.end; ++row) { + this->rowCall2(row, COLS); + } + } else { + std::vector<int> idx(COLS); /// idx is modified in this->rowCall + idx[DIMS - 2] = range.start - 1; + + for (int line_num = range.start; line_num < range.end; ++line_num) { + idx[DIMS - 2]++; + for (int i = DIMS - 2; i >= 0; --i) { + if (idx[i] >= mat->size[i]) { + idx[i - 1] += idx[i] / mat->size[i]; + idx[i] %= mat->size[i]; + continue; // carry-over; + } + else { + break; + } + } + this->rowCall(&idx[0], COLS, DIMS); + } + } + } + private: + Mat_<_Tp>* const mat; + const Functor op; + // ! Call operator for each elements in this row. + inline void rowCall(int* const idx, const int COLS, const int DIMS) const { + int &col = idx[DIMS - 1]; + col = 0; + _Tp* pixel = &(mat->template at<_Tp>(idx)); + + while (col < COLS) { + op(*pixel, const_cast<const int*>(idx)); + pixel++; col++; + } + col = 0; + } + // ! Call operator for each elements in this row. 2d mat special version. + inline void rowCall2(const int row, const int COLS) const { + union Index{ + int body[2]; + operator const int*() const { + return reinterpret_cast<const int*>(this); + } + int& operator[](const int i) { + return body[i]; + } + } idx = {{row, 0}}; + // Special union is needed to avoid + // "error: array subscript is above array bounds [-Werror=array-bounds]" + // when call the functor `op` such that access idx[3]. + + _Tp* pixel = &(mat->template at<_Tp>(idx)); + const _Tp* const pixel_end = pixel + COLS; + while(pixel < pixel_end) { + op(*pixel++, static_cast<const int*>(idx)); + idx[1]++; + } + } + PixelOperationWrapper& operator=(const PixelOperationWrapper &) { + CV_Assert(false); + // We can not remove this implementation because Visual Studio warning C4822. + return *this; + } + }; + + parallel_for_(cv::Range(0, LINES), PixelOperationWrapper(reinterpret_cast<Mat_<_Tp>*>(this), operation)); +} + +/////////////////////////// Synchronization Primitives /////////////////////////////// + +class CV_EXPORTS Mutex +{ +public: + Mutex(); + ~Mutex(); + Mutex(const Mutex& m); + Mutex& operator = (const Mutex& m); + + void lock(); + bool trylock(); + void unlock(); + + struct Impl; +protected: + Impl* impl; +}; + +class CV_EXPORTS AutoLock +{ +public: + AutoLock(Mutex& m) : mutex(&m) { mutex->lock(); } + ~AutoLock() { mutex->unlock(); } +protected: + Mutex* mutex; +private: + AutoLock(const AutoLock&); + AutoLock& operator = (const AutoLock&); +}; + +// TLS interface +class CV_EXPORTS TLSDataContainer +{ +protected: + TLSDataContainer(); + virtual ~TLSDataContainer(); + + void gatherData(std::vector<void*> &data) const; +#if OPENCV_ABI_COMPATIBILITY > 300 + void* getData() const; + void release(); + +private: +#else + void release(); + +public: + void* getData() const; +#endif + virtual void* createDataInstance() const = 0; + virtual void deleteDataInstance(void* pData) const = 0; + + int key_; +}; + +// Main TLS data class +template <typename T> +class TLSData : protected TLSDataContainer +{ +public: + inline TLSData() {} + inline ~TLSData() { release(); } // Release key and delete associated data + inline T* get() const { return (T*)getData(); } // Get data assosiated with key + + // Get data from all threads + inline void gather(std::vector<T*> &data) const + { + std::vector<void*> &dataVoid = reinterpret_cast<std::vector<void*>&>(data); + gatherData(dataVoid); + } + +private: + virtual void* createDataInstance() const {return new T;} // Wrapper to allocate data by template + virtual void deleteDataInstance(void* pData) const {delete (T*)pData;} // Wrapper to release data by template + + // Disable TLS copy operations + TLSData(TLSData &) {} + TLSData& operator =(const TLSData &) {return *this;} +}; + +/** @brief Designed for command line parsing + +The sample below demonstrates how to use CommandLineParser: +@code + CommandLineParser parser(argc, argv, keys); + parser.about("Application name v1.0.0"); + + if (parser.has("help")) + { + parser.printMessage(); + return 0; + } + + int N = parser.get<int>("N"); + double fps = parser.get<double>("fps"); + String path = parser.get<String>("path"); + + use_time_stamp = parser.has("timestamp"); + + String img1 = parser.get<String>(0); + String img2 = parser.get<String>(1); + + int repeat = parser.get<int>(2); + + if (!parser.check()) + { + parser.printErrors(); + return 0; + } +@endcode + +### Keys syntax + +The keys parameter is a string containing several blocks, each one is enclosed in curley braces and +describes one argument. Each argument contains three parts separated by the `|` symbol: + +-# argument names is a space-separated list of option synonyms (to mark argument as positional, prefix it with the `@` symbol) +-# default value will be used if the argument was not provided (can be empty) +-# help message (can be empty) + +For example: + +@code{.cpp} + const String keys = + "{help h usage ? | | print this message }" + "{@image1 | | image1 for compare }" + "{@image2 |<none>| image2 for compare }" + "{@repeat |1 | number }" + "{path |. | path to file }" + "{fps | -1.0 | fps for output video }" + "{N count |100 | count of objects }" + "{ts timestamp | | use time stamp }" + ; +} +@endcode + +Note that there are no default values for `help` and `timestamp` so we can check their presence using the `has()` method. +Arguments with default values are considered to be always present. Use the `get()` method in these cases to check their +actual value instead. + +String keys like `get<String>("@image1")` return the empty string `""` by default - even with an empty default value. +Use the special `<none>` default value to enforce that the returned string must not be empty. (like in `get<String>("@image2")`) + +### Usage + +For the described keys: + +@code{.sh} + # Good call (3 positional parameters: image1, image2 and repeat; N is 200, ts is true) + $ ./app -N=200 1.png 2.jpg 19 -ts + + # Bad call + $ ./app -fps=aaa + ERRORS: + Parameter 'fps': can not convert: [aaa] to [double] +@endcode + */ +class CV_EXPORTS CommandLineParser +{ +public: + + /** @brief Constructor + + Initializes command line parser object + + @param argc number of command line arguments (from main()) + @param argv array of command line arguments (from main()) + @param keys string describing acceptable command line parameters (see class description for syntax) + */ + CommandLineParser(int argc, const char* const argv[], const String& keys); + + /** @brief Copy constructor */ + CommandLineParser(const CommandLineParser& parser); + + /** @brief Assignment operator */ + CommandLineParser& operator = (const CommandLineParser& parser); + + /** @brief Destructor */ + ~CommandLineParser(); + + /** @brief Returns application path + + This method returns the path to the executable from the command line (`argv[0]`). + + For example, if the application has been started with such command: + @code{.sh} + $ ./bin/my-executable + @endcode + this method will return `./bin`. + */ + String getPathToApplication() const; + + /** @brief Access arguments by name + + Returns argument converted to selected type. If the argument is not known or can not be + converted to selected type, the error flag is set (can be checked with @ref check). + + For example, define: + @code{.cpp} + String keys = "{N count||}"; + @endcode + + Call: + @code{.sh} + $ ./my-app -N=20 + # or + $ ./my-app --count=20 + @endcode + + Access: + @code{.cpp} + int N = parser.get<int>("N"); + @endcode + + @param name name of the argument + @param space_delete remove spaces from the left and right of the string + @tparam T the argument will be converted to this type if possible + + @note You can access positional arguments by their `@`-prefixed name: + @code{.cpp} + parser.get<String>("@image"); + @endcode + */ + template <typename T> + T get(const String& name, bool space_delete = true) const + { + T val = T(); + getByName(name, space_delete, ParamType<T>::type, (void*)&val); + return val; + } + + /** @brief Access positional arguments by index + + Returns argument converted to selected type. Indexes are counted from zero. + + For example, define: + @code{.cpp} + String keys = "{@arg1||}{@arg2||}" + @endcode + + Call: + @code{.sh} + ./my-app abc qwe + @endcode + + Access arguments: + @code{.cpp} + String val_1 = parser.get<String>(0); // returns "abc", arg1 + String val_2 = parser.get<String>(1); // returns "qwe", arg2 + @endcode + + @param index index of the argument + @param space_delete remove spaces from the left and right of the string + @tparam T the argument will be converted to this type if possible + */ + template <typename T> + T get(int index, bool space_delete = true) const + { + T val = T(); + getByIndex(index, space_delete, ParamType<T>::type, (void*)&val); + return val; + } + + /** @brief Check if field was provided in the command line + + @param name argument name to check + */ + bool has(const String& name) const; + + /** @brief Check for parsing errors + + Returns true if error occured while accessing the parameters (bad conversion, missing arguments, + etc.). Call @ref printErrors to print error messages list. + */ + bool check() const; + + /** @brief Set the about message + + The about message will be shown when @ref printMessage is called, right before arguments table. + */ + void about(const String& message); + + /** @brief Print help message + + This method will print standard help message containing the about message and arguments description. + + @sa about + */ + void printMessage() const; + + /** @brief Print list of errors occured + + @sa check + */ + void printErrors() const; + +protected: + void getByName(const String& name, bool space_delete, int type, void* dst) const; + void getByIndex(int index, bool space_delete, int type, void* dst) const; + + struct Impl; + Impl* impl; +}; + +//! @} core_utils + +//! @cond IGNORED + +/////////////////////////////// AutoBuffer implementation //////////////////////////////////////// + +template<typename _Tp, size_t fixed_size> inline +AutoBuffer<_Tp, fixed_size>::AutoBuffer() +{ + ptr = buf; + sz = fixed_size; +} + +template<typename _Tp, size_t fixed_size> inline +AutoBuffer<_Tp, fixed_size>::AutoBuffer(size_t _size) +{ + ptr = buf; + sz = fixed_size; + allocate(_size); +} + +template<typename _Tp, size_t fixed_size> inline +AutoBuffer<_Tp, fixed_size>::AutoBuffer(const AutoBuffer<_Tp, fixed_size>& abuf ) +{ + ptr = buf; + sz = fixed_size; + allocate(abuf.size()); + for( size_t i = 0; i < sz; i++ ) + ptr[i] = abuf.ptr[i]; +} + +template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>& +AutoBuffer<_Tp, fixed_size>::operator = (const AutoBuffer<_Tp, fixed_size>& abuf) +{ + if( this != &abuf ) + { + deallocate(); + allocate(abuf.size()); + for( size_t i = 0; i < sz; i++ ) + ptr[i] = abuf.ptr[i]; + } + return *this; +} + +template<typename _Tp, size_t fixed_size> inline +AutoBuffer<_Tp, fixed_size>::~AutoBuffer() +{ deallocate(); } + +template<typename _Tp, size_t fixed_size> inline void +AutoBuffer<_Tp, fixed_size>::allocate(size_t _size) +{ + if(_size <= sz) + { + sz = _size; + return; + } + deallocate(); + sz = _size; + if(_size > fixed_size) + { + ptr = new _Tp[_size]; + } +} + +template<typename _Tp, size_t fixed_size> inline void +AutoBuffer<_Tp, fixed_size>::deallocate() +{ + if( ptr != buf ) + { + delete[] ptr; + ptr = buf; + sz = fixed_size; + } +} + +template<typename _Tp, size_t fixed_size> inline void +AutoBuffer<_Tp, fixed_size>::resize(size_t _size) +{ + if(_size <= sz) + { + sz = _size; + return; + } + size_t i, prevsize = sz, minsize = MIN(prevsize, _size); + _Tp* prevptr = ptr; + + ptr = _size > fixed_size ? new _Tp[_size] : buf; + sz = _size; + + if( ptr != prevptr ) + for( i = 0; i < minsize; i++ ) + ptr[i] = prevptr[i]; + for( i = prevsize; i < _size; i++ ) + ptr[i] = _Tp(); + + if( prevptr != buf ) + delete[] prevptr; +} + +template<typename _Tp, size_t fixed_size> inline size_t +AutoBuffer<_Tp, fixed_size>::size() const +{ return sz; } + +template<typename _Tp, size_t fixed_size> inline +AutoBuffer<_Tp, fixed_size>::operator _Tp* () +{ return ptr; } + +template<typename _Tp, size_t fixed_size> inline +AutoBuffer<_Tp, fixed_size>::operator const _Tp* () const +{ return ptr; } + +#ifndef OPENCV_NOSTL +template<> inline std::string CommandLineParser::get<std::string>(int index, bool space_delete) const +{ + return get<String>(index, space_delete); +} +template<> inline std::string CommandLineParser::get<std::string>(const String& name, bool space_delete) const +{ + return get<String>(name, space_delete); +} +#endif // OPENCV_NOSTL + +//! @endcond + + +// Basic Node class for tree building +template<class OBJECT> +class CV_EXPORTS Node +{ +public: + Node() + { + m_pParent = 0; + } + Node(OBJECT& payload) : m_payload(payload) + { + m_pParent = 0; + } + ~Node() + { + removeChilds(); + if (m_pParent) + { + int idx = m_pParent->findChild(this); + if (idx >= 0) + m_pParent->m_childs.erase(m_pParent->m_childs.begin() + idx); + } + } + + Node<OBJECT>* findChild(OBJECT& payload) const + { + for(size_t i = 0; i < this->m_childs.size(); i++) + { + if(this->m_childs[i]->m_payload == payload) + return this->m_childs[i]; + } + return NULL; + } + + int findChild(Node<OBJECT> *pNode) const + { + for (size_t i = 0; i < this->m_childs.size(); i++) + { + if(this->m_childs[i] == pNode) + return (int)i; + } + return -1; + } + + void addChild(Node<OBJECT> *pNode) + { + if(!pNode) + return; + + CV_Assert(pNode->m_pParent == 0); + pNode->m_pParent = this; + this->m_childs.push_back(pNode); + } + + void removeChilds() + { + for(size_t i = 0; i < m_childs.size(); i++) + { + m_childs[i]->m_pParent = 0; // avoid excessive parent vector trimming + delete m_childs[i]; + } + m_childs.clear(); + } + + int getDepth() + { + int count = 0; + Node *pParent = m_pParent; + while(pParent) count++, pParent = pParent->m_pParent; + return count; + } + +public: + OBJECT m_payload; + Node<OBJECT>* m_pParent; + std::vector<Node<OBJECT>*> m_childs; +}; + +// Instrumentation external interface +namespace instr +{ + +#if !defined OPENCV_ABI_CHECK + +enum TYPE +{ + TYPE_GENERAL = 0, // OpenCV API function, e.g. exported function + TYPE_MARKER, // Information marker + TYPE_WRAPPER, // Wrapper function for implementation + TYPE_FUN, // Simple function call +}; + +enum IMPL +{ + IMPL_PLAIN = 0, + IMPL_IPP, + IMPL_OPENCL, +}; + +struct NodeDataTls +{ + NodeDataTls() + { + m_ticksTotal = 0; + } + uint64 m_ticksTotal; +}; + +class CV_EXPORTS NodeData +{ +public: + NodeData(const char* funName = 0, const char* fileName = NULL, int lineNum = 0, void* retAddress = NULL, bool alwaysExpand = false, cv::instr::TYPE instrType = TYPE_GENERAL, cv::instr::IMPL implType = IMPL_PLAIN); + NodeData(NodeData &ref); + ~NodeData(); + NodeData& operator=(const NodeData&); + + cv::String m_funName; + cv::instr::TYPE m_instrType; + cv::instr::IMPL m_implType; + const char* m_fileName; + int m_lineNum; + void* m_retAddress; + bool m_alwaysExpand; + bool m_funError; + + volatile int m_counter; + volatile uint64 m_ticksTotal; + TLSData<NodeDataTls> m_tls; + int m_threads; + + // No synchronization + double getTotalMs() const { return ((double)m_ticksTotal / cv::getTickFrequency()) * 1000; } + double getMeanMs() const { return (((double)m_ticksTotal/m_counter) / cv::getTickFrequency()) * 1000; } +}; +bool operator==(const NodeData& lhs, const NodeData& rhs); + +typedef Node<NodeData> InstrNode; + +CV_EXPORTS InstrNode* getTrace(); + +#endif // !defined OPENCV_ABI_CHECK + + +CV_EXPORTS bool useInstrumentation(); +CV_EXPORTS void setUseInstrumentation(bool flag); +CV_EXPORTS void resetTrace(); + +enum FLAGS +{ + FLAGS_NONE = 0, + FLAGS_MAPPING = 0x01, + FLAGS_EXPAND_SAME_NAMES = 0x02, +}; + +CV_EXPORTS void setFlags(FLAGS modeFlags); +static inline void setFlags(int modeFlags) { setFlags((FLAGS)modeFlags); } +CV_EXPORTS FLAGS getFlags(); +} + +} //namespace cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/core/core_c.h" +#endif + +#endif //OPENCV_CORE_UTILITY_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/va_intel.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,77 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +// Copyright (C) 2015, Itseez, Inc., all rights reserved. +// Third party copyrights are property of their respective owners. + +#ifndef OPENCV_CORE_VA_INTEL_HPP +#define OPENCV_CORE_VA_INTEL_HPP + +#ifndef __cplusplus +# error va_intel.hpp header must be compiled as C++ +#endif + +#include "opencv2/core.hpp" +#include "ocl.hpp" + +#if defined(HAVE_VA) +# include "va/va.h" +#else // HAVE_VA +# if !defined(_VA_H_) + typedef void* VADisplay; + typedef unsigned int VASurfaceID; +# endif // !_VA_H_ +#endif // HAVE_VA + +namespace cv { namespace va_intel { + +/** @addtogroup core_va_intel +This section describes Intel VA-API/OpenCL (CL-VA) interoperability. + +To enable CL-VA interoperability support, configure OpenCV using CMake with WITH_VA_INTEL=ON . Currently VA-API is +supported on Linux only. You should also install Intel Media Server Studio (MSS) to use this feature. You may +have to specify the path(s) to MSS components for cmake in environment variables: VA_INTEL_MSDK_ROOT for Media SDK +(default is "/opt/intel/mediasdk"), and VA_INTEL_IOCL_ROOT for Intel OpenCL (default is "/opt/intel/opencl"). + +To use CL-VA interoperability you should first create VADisplay (libva), and then call initializeContextFromVA() +function to create OpenCL context and set up interoperability. +*/ +//! @{ + +/////////////////// CL-VA Interoperability Functions /////////////////// + +namespace ocl { +using namespace cv::ocl; + +// TODO static functions in the Context class +/** @brief Creates OpenCL context from VA. +@param display - VADisplay for which CL interop should be established. +@param tryInterop - try to set up for interoperability, if true; set up for use slow copy if false. +@return Returns reference to OpenCL Context + */ +CV_EXPORTS Context& initializeContextFromVA(VADisplay display, bool tryInterop = true); + +} // namespace cv::va_intel::ocl + +/** @brief Converts InputArray to VASurfaceID object. +@param display - VADisplay object. +@param src - source InputArray. +@param surface - destination VASurfaceID object. +@param size - size of image represented by VASurfaceID object. + */ +CV_EXPORTS void convertToVASurface(VADisplay display, InputArray src, VASurfaceID surface, Size size); + +/** @brief Converts VASurfaceID object to OutputArray. +@param display - VADisplay object. +@param surface - source VASurfaceID object. +@param size - size of image represented by VASurfaceID object. +@param dst - destination OutputArray. + */ +CV_EXPORTS void convertFromVASurface(VADisplay display, VASurfaceID surface, Size size, OutputArray dst); + +//! @} + +}} // namespace cv::va_intel + +#endif /* OPENCV_CORE_VA_INTEL_HPP */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/version.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,71 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// For Open Source Computer Vision Library +// +// Copyright( C) 2000-2015, Intel Corporation, all rights reserved. +// Copyright (C) 2011-2013, NVIDIA Corporation, all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +//(including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort(including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +/* + definition of the current version of OpenCV + Usefull to test in user programs +*/ + +#ifndef OPENCV_VERSION_HPP +#define OPENCV_VERSION_HPP + +#define CV_VERSION_MAJOR 3 +#define CV_VERSION_MINOR 2 +#define CV_VERSION_REVISION 0 +#define CV_VERSION_STATUS "" + +#define CVAUX_STR_EXP(__A) #__A +#define CVAUX_STR(__A) CVAUX_STR_EXP(__A) + +#define CVAUX_STRW_EXP(__A) L ## #__A +#define CVAUX_STRW(__A) CVAUX_STRW_EXP(__A) + +#define CV_VERSION CVAUX_STR(CV_VERSION_MAJOR) "." CVAUX_STR(CV_VERSION_MINOR) "." CVAUX_STR(CV_VERSION_REVISION) CV_VERSION_STATUS + +/* old style version constants*/ +#define CV_MAJOR_VERSION CV_VERSION_MAJOR +#define CV_MINOR_VERSION CV_VERSION_MINOR +#define CV_SUBMINOR_VERSION CV_VERSION_REVISION + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/wimage.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,603 @@ +/*M////////////////////////////////////////////////////////////////////////////// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to +// this license. If you do not agree to this license, do not download, +// install, copy or use the software. +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2008, Google, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation or contributors may not be used to endorse +// or promote products derived from this software without specific +// prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" +// and any express or implied warranties, including, but not limited to, the +// implied warranties of merchantability and fitness for a particular purpose +// are disclaimed. In no event shall the Intel Corporation or contributors be +// liable for any direct, indirect, incidental, special, exemplary, or +// consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +///////////////////////////////////////////////////////////////////////////////// +//M*/ + +#ifndef OPENCV_CORE_WIMAGE_HPP +#define OPENCV_CORE_WIMAGE_HPP + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus + +namespace cv { + +//! @addtogroup core +//! @{ + +template <typename T> class WImage; +template <typename T> class WImageBuffer; +template <typename T> class WImageView; + +template<typename T, int C> class WImageC; +template<typename T, int C> class WImageBufferC; +template<typename T, int C> class WImageViewC; + +// Commonly used typedefs. +typedef WImage<uchar> WImage_b; +typedef WImageView<uchar> WImageView_b; +typedef WImageBuffer<uchar> WImageBuffer_b; + +typedef WImageC<uchar, 1> WImage1_b; +typedef WImageViewC<uchar, 1> WImageView1_b; +typedef WImageBufferC<uchar, 1> WImageBuffer1_b; + +typedef WImageC<uchar, 3> WImage3_b; +typedef WImageViewC<uchar, 3> WImageView3_b; +typedef WImageBufferC<uchar, 3> WImageBuffer3_b; + +typedef WImage<float> WImage_f; +typedef WImageView<float> WImageView_f; +typedef WImageBuffer<float> WImageBuffer_f; + +typedef WImageC<float, 1> WImage1_f; +typedef WImageViewC<float, 1> WImageView1_f; +typedef WImageBufferC<float, 1> WImageBuffer1_f; + +typedef WImageC<float, 3> WImage3_f; +typedef WImageViewC<float, 3> WImageView3_f; +typedef WImageBufferC<float, 3> WImageBuffer3_f; + +// There isn't a standard for signed and unsigned short so be more +// explicit in the typename for these cases. +typedef WImage<short> WImage_16s; +typedef WImageView<short> WImageView_16s; +typedef WImageBuffer<short> WImageBuffer_16s; + +typedef WImageC<short, 1> WImage1_16s; +typedef WImageViewC<short, 1> WImageView1_16s; +typedef WImageBufferC<short, 1> WImageBuffer1_16s; + +typedef WImageC<short, 3> WImage3_16s; +typedef WImageViewC<short, 3> WImageView3_16s; +typedef WImageBufferC<short, 3> WImageBuffer3_16s; + +typedef WImage<ushort> WImage_16u; +typedef WImageView<ushort> WImageView_16u; +typedef WImageBuffer<ushort> WImageBuffer_16u; + +typedef WImageC<ushort, 1> WImage1_16u; +typedef WImageViewC<ushort, 1> WImageView1_16u; +typedef WImageBufferC<ushort, 1> WImageBuffer1_16u; + +typedef WImageC<ushort, 3> WImage3_16u; +typedef WImageViewC<ushort, 3> WImageView3_16u; +typedef WImageBufferC<ushort, 3> WImageBuffer3_16u; + +/** @brief Image class which provides a thin layer around an IplImage. + +The goals of the class design are: + + -# All the data has explicit ownership to avoid memory leaks + -# No hidden allocations or copies for performance. + -# Easy access to OpenCV methods (which will access IPP if available) + -# Can easily treat external data as an image + -# Easy to create images which are subsets of other images + -# Fast pixel access which can take advantage of number of channels if known at compile time. + +The WImage class is the image class which provides the data accessors. The 'W' comes from the fact +that it is also a wrapper around the popular but inconvenient IplImage class. A WImage can be +constructed either using a WImageBuffer class which allocates and frees the data, or using a +WImageView class which constructs a subimage or a view into external data. The view class does no +memory management. Each class actually has two versions, one when the number of channels is known +at compile time and one when it isn't. Using the one with the number of channels specified can +provide some compile time optimizations by using the fact that the number of channels is a +constant. + +We use the convention (c,r) to refer to column c and row r with (0,0) being the upper left corner. +This is similar to standard Euclidean coordinates with the first coordinate varying in the +horizontal direction and the second coordinate varying in the vertical direction. Thus (c,r) is +usually in the domain [0, width) X [0, height) + +Example usage: +@code +WImageBuffer3_b im(5,7); // Make a 5X7 3 channel image of type uchar +WImageView3_b sub_im(im, 2,2, 3,3); // 3X3 submatrix +vector<float> vec(10, 3.0f); +WImageView1_f user_im(&vec[0], 2, 5); // 2X5 image w/ supplied data + +im.SetZero(); // same as cvSetZero(im.Ipl()) +*im(2, 3) = 15; // Modify the element at column 2, row 3 +MySetRand(&sub_im); + +// Copy the second row into the first. This can be done with no memory +// allocation and will use SSE if IPP is available. +int w = im.Width(); +im.View(0,0, w,1).CopyFrom(im.View(0,1, w,1)); + +// Doesn't care about source of data since using WImage +void MySetRand(WImage_b* im) { // Works with any number of channels +for (int r = 0; r < im->Height(); ++r) { + float* row = im->Row(r); + for (int c = 0; c < im->Width(); ++c) { + for (int ch = 0; ch < im->Channels(); ++ch, ++row) { + *row = uchar(rand() & 255); + } + } +} +} +@endcode + +Functions that are not part of the basic image allocation, viewing, and access should come from +OpenCV, except some useful functions that are not part of OpenCV can be found in wimage_util.h +*/ +template<typename T> +class WImage +{ +public: + typedef T BaseType; + + // WImage is an abstract class with no other virtual methods so make the + // destructor virtual. + virtual ~WImage() = 0; + + // Accessors + IplImage* Ipl() {return image_; } + const IplImage* Ipl() const {return image_; } + T* ImageData() { return reinterpret_cast<T*>(image_->imageData); } + const T* ImageData() const { + return reinterpret_cast<const T*>(image_->imageData); + } + + int Width() const {return image_->width; } + int Height() const {return image_->height; } + + // WidthStep is the number of bytes to go to the pixel with the next y coord + int WidthStep() const {return image_->widthStep; } + + int Channels() const {return image_->nChannels; } + int ChannelSize() const {return sizeof(T); } // number of bytes per channel + + // Number of bytes per pixel + int PixelSize() const {return Channels() * ChannelSize(); } + + // Return depth type (e.g. IPL_DEPTH_8U, IPL_DEPTH_32F) which is the number + // of bits per channel and with the signed bit set. + // This is known at compile time using specializations. + int Depth() const; + + inline const T* Row(int r) const { + return reinterpret_cast<T*>(image_->imageData + r*image_->widthStep); + } + + inline T* Row(int r) { + return reinterpret_cast<T*>(image_->imageData + r*image_->widthStep); + } + + // Pixel accessors which returns a pointer to the start of the channel + inline T* operator() (int c, int r) { + return reinterpret_cast<T*>(image_->imageData + r*image_->widthStep) + + c*Channels(); + } + + inline const T* operator() (int c, int r) const { + return reinterpret_cast<T*>(image_->imageData + r*image_->widthStep) + + c*Channels(); + } + + // Copy the contents from another image which is just a convenience to cvCopy + void CopyFrom(const WImage<T>& src) { cvCopy(src.Ipl(), image_); } + + // Set contents to zero which is just a convenient to cvSetZero + void SetZero() { cvSetZero(image_); } + + // Construct a view into a region of this image + WImageView<T> View(int c, int r, int width, int height); + +protected: + // Disallow copy and assignment + WImage(const WImage&); + void operator=(const WImage&); + + explicit WImage(IplImage* img) : image_(img) { + assert(!img || img->depth == Depth()); + } + + void SetIpl(IplImage* image) { + assert(!image || image->depth == Depth()); + image_ = image; + } + + IplImage* image_; +}; + + +/** Image class when both the pixel type and number of channels +are known at compile time. This wrapper will speed up some of the operations +like accessing individual pixels using the () operator. +*/ +template<typename T, int C> +class WImageC : public WImage<T> +{ +public: + typedef typename WImage<T>::BaseType BaseType; + enum { kChannels = C }; + + explicit WImageC(IplImage* img) : WImage<T>(img) { + assert(!img || img->nChannels == Channels()); + } + + // Construct a view into a region of this image + WImageViewC<T, C> View(int c, int r, int width, int height); + + // Copy the contents from another image which is just a convenience to cvCopy + void CopyFrom(const WImageC<T, C>& src) { + cvCopy(src.Ipl(), WImage<T>::image_); + } + + // WImageC is an abstract class with no other virtual methods so make the + // destructor virtual. + virtual ~WImageC() = 0; + + int Channels() const {return C; } + +protected: + // Disallow copy and assignment + WImageC(const WImageC&); + void operator=(const WImageC&); + + void SetIpl(IplImage* image) { + assert(!image || image->depth == WImage<T>::Depth()); + WImage<T>::SetIpl(image); + } +}; + +/** Image class which owns the data, so it can be allocated and is always +freed. It cannot be copied but can be explicity cloned. +*/ +template<typename T> +class WImageBuffer : public WImage<T> +{ +public: + typedef typename WImage<T>::BaseType BaseType; + + // Default constructor which creates an object that can be + WImageBuffer() : WImage<T>(0) {} + + WImageBuffer(int width, int height, int nchannels) : WImage<T>(0) { + Allocate(width, height, nchannels); + } + + // Constructor which takes ownership of a given IplImage so releases + // the image on destruction. + explicit WImageBuffer(IplImage* img) : WImage<T>(img) {} + + // Allocate an image. Does nothing if current size is the same as + // the new size. + void Allocate(int width, int height, int nchannels); + + // Set the data to point to an image, releasing the old data + void SetIpl(IplImage* img) { + ReleaseImage(); + WImage<T>::SetIpl(img); + } + + // Clone an image which reallocates the image if of a different dimension. + void CloneFrom(const WImage<T>& src) { + Allocate(src.Width(), src.Height(), src.Channels()); + CopyFrom(src); + } + + ~WImageBuffer() { + ReleaseImage(); + } + + // Release the image if it isn't null. + void ReleaseImage() { + if (WImage<T>::image_) { + IplImage* image = WImage<T>::image_; + cvReleaseImage(&image); + WImage<T>::SetIpl(0); + } + } + + bool IsNull() const {return WImage<T>::image_ == NULL; } + +private: + // Disallow copy and assignment + WImageBuffer(const WImageBuffer&); + void operator=(const WImageBuffer&); +}; + +/** Like a WImageBuffer class but when the number of channels is known at compile time. +*/ +template<typename T, int C> +class WImageBufferC : public WImageC<T, C> +{ +public: + typedef typename WImage<T>::BaseType BaseType; + enum { kChannels = C }; + + // Default constructor which creates an object that can be + WImageBufferC() : WImageC<T, C>(0) {} + + WImageBufferC(int width, int height) : WImageC<T, C>(0) { + Allocate(width, height); + } + + // Constructor which takes ownership of a given IplImage so releases + // the image on destruction. + explicit WImageBufferC(IplImage* img) : WImageC<T, C>(img) {} + + // Allocate an image. Does nothing if current size is the same as + // the new size. + void Allocate(int width, int height); + + // Set the data to point to an image, releasing the old data + void SetIpl(IplImage* img) { + ReleaseImage(); + WImageC<T, C>::SetIpl(img); + } + + // Clone an image which reallocates the image if of a different dimension. + void CloneFrom(const WImageC<T, C>& src) { + Allocate(src.Width(), src.Height()); + CopyFrom(src); + } + + ~WImageBufferC() { + ReleaseImage(); + } + + // Release the image if it isn't null. + void ReleaseImage() { + if (WImage<T>::image_) { + IplImage* image = WImage<T>::image_; + cvReleaseImage(&image); + WImageC<T, C>::SetIpl(0); + } + } + + bool IsNull() const {return WImage<T>::image_ == NULL; } + +private: + // Disallow copy and assignment + WImageBufferC(const WImageBufferC&); + void operator=(const WImageBufferC&); +}; + +/** View into an image class which allows treating a subimage as an image or treating external data +as an image +*/ +template<typename T> class WImageView : public WImage<T> +{ +public: + typedef typename WImage<T>::BaseType BaseType; + + // Construct a subimage. No checks are done that the subimage lies + // completely inside the original image. + WImageView(WImage<T>* img, int c, int r, int width, int height); + + // Refer to external data. + // If not given width_step assumed to be same as width. + WImageView(T* data, int width, int height, int channels, int width_step = -1); + + // Refer to external data. This does NOT take ownership + // of the supplied IplImage. + WImageView(IplImage* img) : WImage<T>(img) {} + + // Copy constructor + WImageView(const WImage<T>& img) : WImage<T>(0) { + header_ = *(img.Ipl()); + WImage<T>::SetIpl(&header_); + } + + WImageView& operator=(const WImage<T>& img) { + header_ = *(img.Ipl()); + WImage<T>::SetIpl(&header_); + return *this; + } + +protected: + IplImage header_; +}; + + +template<typename T, int C> +class WImageViewC : public WImageC<T, C> +{ +public: + typedef typename WImage<T>::BaseType BaseType; + enum { kChannels = C }; + + // Default constructor needed for vectors of views. + WImageViewC(); + + virtual ~WImageViewC() {} + + // Construct a subimage. No checks are done that the subimage lies + // completely inside the original image. + WImageViewC(WImageC<T, C>* img, + int c, int r, int width, int height); + + // Refer to external data + WImageViewC(T* data, int width, int height, int width_step = -1); + + // Refer to external data. This does NOT take ownership + // of the supplied IplImage. + WImageViewC(IplImage* img) : WImageC<T, C>(img) {} + + // Copy constructor which does a shallow copy to allow multiple views + // of same data. gcc-4.1.1 gets confused if both versions of + // the constructor and assignment operator are not provided. + WImageViewC(const WImageC<T, C>& img) : WImageC<T, C>(0) { + header_ = *(img.Ipl()); + WImageC<T, C>::SetIpl(&header_); + } + WImageViewC(const WImageViewC<T, C>& img) : WImageC<T, C>(0) { + header_ = *(img.Ipl()); + WImageC<T, C>::SetIpl(&header_); + } + + WImageViewC& operator=(const WImageC<T, C>& img) { + header_ = *(img.Ipl()); + WImageC<T, C>::SetIpl(&header_); + return *this; + } + WImageViewC& operator=(const WImageViewC<T, C>& img) { + header_ = *(img.Ipl()); + WImageC<T, C>::SetIpl(&header_); + return *this; + } + +protected: + IplImage header_; +}; + + +// Specializations for depth +template<> +inline int WImage<uchar>::Depth() const {return IPL_DEPTH_8U; } +template<> +inline int WImage<signed char>::Depth() const {return IPL_DEPTH_8S; } +template<> +inline int WImage<short>::Depth() const {return IPL_DEPTH_16S; } +template<> +inline int WImage<ushort>::Depth() const {return IPL_DEPTH_16U; } +template<> +inline int WImage<int>::Depth() const {return IPL_DEPTH_32S; } +template<> +inline int WImage<float>::Depth() const {return IPL_DEPTH_32F; } +template<> +inline int WImage<double>::Depth() const {return IPL_DEPTH_64F; } + +template<typename T> inline WImage<T>::~WImage() {} +template<typename T, int C> inline WImageC<T, C>::~WImageC() {} + +template<typename T> +inline void WImageBuffer<T>::Allocate(int width, int height, int nchannels) +{ + if (IsNull() || WImage<T>::Width() != width || + WImage<T>::Height() != height || WImage<T>::Channels() != nchannels) { + ReleaseImage(); + WImage<T>::image_ = cvCreateImage(cvSize(width, height), + WImage<T>::Depth(), nchannels); + } +} + +template<typename T, int C> +inline void WImageBufferC<T, C>::Allocate(int width, int height) +{ + if (IsNull() || WImage<T>::Width() != width || WImage<T>::Height() != height) { + ReleaseImage(); + WImageC<T, C>::SetIpl(cvCreateImage(cvSize(width, height),WImage<T>::Depth(), C)); + } +} + +template<typename T> +WImageView<T>::WImageView(WImage<T>* img, int c, int r, int width, int height) + : WImage<T>(0) +{ + header_ = *(img->Ipl()); + header_.imageData = reinterpret_cast<char*>((*img)(c, r)); + header_.width = width; + header_.height = height; + WImage<T>::SetIpl(&header_); +} + +template<typename T> +WImageView<T>::WImageView(T* data, int width, int height, int nchannels, int width_step) + : WImage<T>(0) +{ + cvInitImageHeader(&header_, cvSize(width, height), WImage<T>::Depth(), nchannels); + header_.imageData = reinterpret_cast<char*>(data); + if (width_step > 0) { + header_.widthStep = width_step; + } + WImage<T>::SetIpl(&header_); +} + +template<typename T, int C> +WImageViewC<T, C>::WImageViewC(WImageC<T, C>* img, int c, int r, int width, int height) + : WImageC<T, C>(0) +{ + header_ = *(img->Ipl()); + header_.imageData = reinterpret_cast<char*>((*img)(c, r)); + header_.width = width; + header_.height = height; + WImageC<T, C>::SetIpl(&header_); +} + +template<typename T, int C> +WImageViewC<T, C>::WImageViewC() : WImageC<T, C>(0) { + cvInitImageHeader(&header_, cvSize(0, 0), WImage<T>::Depth(), C); + header_.imageData = reinterpret_cast<char*>(0); + WImageC<T, C>::SetIpl(&header_); +} + +template<typename T, int C> +WImageViewC<T, C>::WImageViewC(T* data, int width, int height, int width_step) + : WImageC<T, C>(0) +{ + cvInitImageHeader(&header_, cvSize(width, height), WImage<T>::Depth(), C); + header_.imageData = reinterpret_cast<char*>(data); + if (width_step > 0) { + header_.widthStep = width_step; + } + WImageC<T, C>::SetIpl(&header_); +} + +// Construct a view into a region of an image +template<typename T> +WImageView<T> WImage<T>::View(int c, int r, int width, int height) { + return WImageView<T>(this, c, r, width, height); +} + +template<typename T, int C> +WImageViewC<T, C> WImageC<T, C>::View(int c, int r, int width, int height) { + return WImageViewC<T, C>(this, c, r, width, height); +} + +//! @} core + +} // end of namespace + +#endif // __cplusplus + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/custom_hal.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,5 @@ +#ifndef _CUSTOM_HAL_INCLUDED_ +#define _CUSTOM_HAL_INCLUDED_ + + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/cvconfig.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,208 @@ +/* OpenCV compiled as static or dynamic libs */ +/* #undef BUILD_SHARED_LIBS */ + +/* Compile for 'real' NVIDIA GPU architectures */ +#define CUDA_ARCH_BIN "" + +/* Create PTX or BIN for 1.0 compute capability */ +/* #undef CUDA_ARCH_BIN_OR_PTX_10 */ + +/* NVIDIA GPU features are used */ +#define CUDA_ARCH_FEATURES "" + +/* Compile for 'virtual' NVIDIA PTX architectures */ +#define CUDA_ARCH_PTX "" + +/* AVFoundation video libraries */ +/* #undef HAVE_AVFOUNDATION */ + +/* V4L capturing support */ +/* #undef HAVE_CAMV4L */ + +/* V4L2 capturing support */ +/* #undef HAVE_CAMV4L2 */ + +/* Carbon windowing environment */ +/* #undef HAVE_CARBON */ + +/* AMD's Basic Linear Algebra Subprograms Library*/ +/* #undef HAVE_CLAMDBLAS */ + +/* AMD's OpenCL Fast Fourier Transform Library*/ +/* #undef HAVE_CLAMDFFT */ + +/* Clp support */ +/* #undef HAVE_CLP */ + +/* Cocoa API */ +/* #undef HAVE_COCOA */ + +/* C= */ +/* #undef HAVE_CSTRIPES */ + +/* NVidia Cuda Basic Linear Algebra Subprograms (BLAS) API*/ +/* #undef HAVE_CUBLAS */ + +/* NVidia Cuda Runtime API*/ +/* #undef HAVE_CUDA */ + +/* NVidia Cuda Fast Fourier Transform (FFT) API*/ +/* #undef HAVE_CUFFT */ + +/* IEEE1394 capturing support */ +/* #undef HAVE_DC1394 */ + +/* IEEE1394 capturing support - libdc1394 v2.x */ +/* #undef HAVE_DC1394_2 */ + +/* DirectX */ +/* #undef HAVE_DIRECTX */ +/* #undef HAVE_DIRECTX_NV12 */ +/* #undef HAVE_D3D11 */ +/* #undef HAVE_D3D10 */ +/* #undef HAVE_D3D9 */ + +/* DirectShow Video Capture library */ +/* #undef HAVE_DSHOW */ + +/* Eigen Matrix & Linear Algebra Library */ +/* #undef HAVE_EIGEN */ + +/* FFMpeg video library */ +/* #undef HAVE_FFMPEG */ + +/* Geospatial Data Abstraction Library */ +/* #undef HAVE_GDAL */ + +/* GStreamer multimedia framework */ +/* #undef HAVE_GSTREAMER */ + +/* GTK+ 2.0 Thread support */ +/* #undef HAVE_GTHREAD */ + +/* GTK+ 2.x toolkit */ +/* #undef HAVE_GTK */ + +/* Define to 1 if you have the <inttypes.h> header file. */ +/* #undef HAVE_INTTYPES_H */ + +/* Intel Perceptual Computing SDK library */ +/* #undef HAVE_INTELPERC */ + +/* Intel Integrated Performance Primitives */ +/* #undef HAVE_IPP */ +/* #undef HAVE_IPP_ICV_ONLY */ + +/* Intel IPP Async */ +/* #undef HAVE_IPP_A */ + +/* JPEG-2000 codec */ +/* #undef HAVE_JASPER */ + +/* IJG JPEG codec */ +/* #undef HAVE_JPEG */ + +/* libpng/png.h needs to be included */ +/* #undef HAVE_LIBPNG_PNG_H */ + +/* GDCM DICOM codec */ +/* #undef HAVE_GDCM */ + +/* V4L/V4L2 capturing support via libv4l */ +/* #undef HAVE_LIBV4L */ + +/* Microsoft Media Foundation Capture library */ +/* #undef HAVE_MSMF */ + +/* NVidia Video Decoding API*/ +/* #undef HAVE_NVCUVID */ + +/* NVidia Video Encoding API*/ +/* #undef HAVE_NVCUVENC */ + +/* OpenCL Support */ +/* #undef HAVE_OPENCL */ +/* #undef HAVE_OPENCL_STATIC */ +/* #undef HAVE_OPENCL_SVM */ + +/* OpenEXR codec */ +/* #undef HAVE_OPENEXR */ + +/* OpenGL support*/ +/* #undef HAVE_OPENGL */ + +/* OpenNI library */ +/* #undef HAVE_OPENNI */ + +/* OpenNI library */ +/* #undef HAVE_OPENNI2 */ + +/* PNG codec */ +/* #undef HAVE_PNG */ + +/* Posix threads (pthreads) */ +#define HAVE_PTHREADS + +/* parallel_for with pthreads */ +/* #undef HAVE_PTHREADS_PF */ + +/* Qt support */ +/* #undef HAVE_QT */ + +/* Qt OpenGL support */ +/* #undef HAVE_QT_OPENGL */ + +/* QuickTime video libraries */ +/* #undef HAVE_QUICKTIME */ + +/* QTKit video libraries */ +/* #undef HAVE_QTKIT */ + +/* Intel Threading Building Blocks */ +/* #undef HAVE_TBB */ + +/* TIFF codec */ +/* #undef HAVE_TIFF */ + +/* Unicap video capture library */ +/* #undef HAVE_UNICAP */ + +/* Video for Windows support */ +/* #undef HAVE_VFW */ + +/* V4L2 capturing support in videoio.h */ +/* #undef HAVE_VIDEOIO */ + +/* Win32 UI */ +/* #undef HAVE_WIN32UI */ + +/* XIMEA camera support */ +/* #undef HAVE_XIMEA */ + +/* Xine video library */ +/* #undef HAVE_XINE */ + +/* Define if your processor stores words with the most significant byte + first (like Motorola and SPARC, unlike Intel and VAX). */ +/* #undef WORDS_BIGENDIAN */ + +/* gPhoto2 library */ +/* #undef HAVE_GPHOTO2 */ + +/* VA library (libva) */ +/* #undef HAVE_VA */ + +/* Intel VA-API/OpenCL */ +/* #undef HAVE_VA_INTEL */ + +/* Lapack */ +/* #undef HAVE_LAPACK */ + +/* FP16 */ +/* #undef HAVE_FP16 */ + +/* Library was compiled with functions instrumentation */ +/* #undef ENABLE_INSTRUMENTATION */ + +/* OpenVX */ +/* #undef HAVE_OPENVX */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/features2d.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1365 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_FEATURES_2D_HPP +#define OPENCV_FEATURES_2D_HPP + +#include "opencv2/core.hpp" +#include "opencv2/flann/miniflann.hpp" + +/** + @defgroup features2d 2D Features Framework + @{ + @defgroup features2d_main Feature Detection and Description + @defgroup features2d_match Descriptor Matchers + +Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to +easily switch between different algorithms solving the same problem. This section is devoted to +matching descriptors that are represented as vectors in a multidimensional space. All objects that +implement vector descriptor matchers inherit the DescriptorMatcher interface. + +@note + - An example explaining keypoint matching can be found at + opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp + - An example on descriptor matching evaluation can be found at + opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp + - An example on one to many image matching can be found at + opencv_source_code/samples/cpp/matching_to_many_images.cpp + + @defgroup features2d_draw Drawing Function of Keypoints and Matches + @defgroup features2d_category Object Categorization + +This section describes approaches based on local 2D features and used to categorize objects. + +@note + - A complete Bag-Of-Words sample can be found at + opencv_source_code/samples/cpp/bagofwords_classification.cpp + - (Python) An example using the features2D framework to perform object categorization can be + found at opencv_source_code/samples/python/find_obj.py + + @} + */ + +namespace cv +{ + +//! @addtogroup features2d +//! @{ + +// //! writes vector of keypoints to the file storage +// CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector<KeyPoint>& keypoints); +// //! reads vector of keypoints from the specified file storage node +// CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector<KeyPoint>& keypoints); + +/** @brief A class filters a vector of keypoints. + + Because now it is difficult to provide a convenient interface for all usage scenarios of the + keypoints filter class, it has only several needed by now static methods. + */ +class CV_EXPORTS KeyPointsFilter +{ +public: + KeyPointsFilter(){} + + /* + * Remove keypoints within borderPixels of an image edge. + */ + static void runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize ); + /* + * Remove keypoints of sizes out of range. + */ + static void runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize, + float maxSize=FLT_MAX ); + /* + * Remove keypoints from some image by mask for pixels of this image. + */ + static void runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask ); + /* + * Remove duplicated keypoints. + */ + static void removeDuplicated( std::vector<KeyPoint>& keypoints ); + + /* + * Retain the specified number of the best keypoints (according to the response) + */ + static void retainBest( std::vector<KeyPoint>& keypoints, int npoints ); +}; + + +/************************************ Base Classes ************************************/ + +/** @brief Abstract base class for 2D image feature detectors and descriptor extractors +*/ +class CV_EXPORTS_W Feature2D : public virtual Algorithm +{ +public: + virtual ~Feature2D(); + + /** @brief Detects keypoints in an image (first variant) or image set (second variant). + + @param image Image. + @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set + of keypoints detected in images[i] . + @param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer + matrix with non-zero values in the region of interest. + */ + CV_WRAP virtual void detect( InputArray image, + CV_OUT std::vector<KeyPoint>& keypoints, + InputArray mask=noArray() ); + + /** @overload + @param images Image set. + @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set + of keypoints detected in images[i] . + @param masks Masks for each input image specifying where to look for keypoints (optional). + masks[i] is a mask for images[i]. + */ + CV_WRAP virtual void detect( InputArrayOfArrays images, + CV_OUT std::vector<std::vector<KeyPoint> >& keypoints, + InputArrayOfArrays masks=noArray() ); + + /** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set + (second variant). + + @param image Image. + @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be + computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint + with several dominant orientations (for each orientation). + @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are + descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the + descriptor for keypoint j-th keypoint. + */ + CV_WRAP virtual void compute( InputArray image, + CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, + OutputArray descriptors ); + + /** @overload + + @param images Image set. + @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be + computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint + with several dominant orientations (for each orientation). + @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are + descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the + descriptor for keypoint j-th keypoint. + */ + CV_WRAP virtual void compute( InputArrayOfArrays images, + CV_OUT CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints, + OutputArrayOfArrays descriptors ); + + /** Detects keypoints and computes the descriptors */ + CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask, + CV_OUT std::vector<KeyPoint>& keypoints, + OutputArray descriptors, + bool useProvidedKeypoints=false ); + + CV_WRAP virtual int descriptorSize() const; + CV_WRAP virtual int descriptorType() const; + CV_WRAP virtual int defaultNorm() const; + + CV_WRAP void write( const String& fileName ) const; + + CV_WRAP void read( const String& fileName ); + + virtual void write( FileStorage&) const; + + virtual void read( const FileNode&); + + //! Return true if detector object is empty + CV_WRAP virtual bool empty() const; +}; + +/** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch +between different algorithms solving the same problem. All objects that implement keypoint detectors +inherit the FeatureDetector interface. */ +typedef Feature2D FeatureDetector; + +/** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you +to easily switch between different algorithms solving the same problem. This section is devoted to +computing descriptors represented as vectors in a multidimensional space. All objects that implement +the vector descriptor extractors inherit the DescriptorExtractor interface. + */ +typedef Feature2D DescriptorExtractor; + +//! @addtogroup features2d_main +//! @{ + +/** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 . + */ +class CV_EXPORTS_W BRISK : public Feature2D +{ +public: + /** @brief The BRISK constructor + + @param thresh AGAST detection threshold score. + @param octaves detection octaves. Use 0 to do single scale. + @param patternScale apply this scale to the pattern used for sampling the neighbourhood of a + keypoint. + */ + CV_WRAP static Ptr<BRISK> create(int thresh=30, int octaves=3, float patternScale=1.0f); + + /** @brief The BRISK constructor for a custom pattern + + @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for + keypoint scale 1). + @param numberList defines the number of sampling points on the sampling circle. Must be the same + size as radiusList.. + @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint + scale 1). + @param dMin threshold for the long pairings used for orientation determination (in pixels for + keypoint scale 1). + @param indexChange index remapping of the bits. */ + CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList, + float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>()); +}; + +/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor + +described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects +the strongest features using FAST or Harris response, finds their orientation using first-order +moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or +k-tuples) are rotated according to the measured orientation). + */ +class CV_EXPORTS_W ORB : public Feature2D +{ +public: + enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 }; + + /** @brief The ORB constructor + + @param nfeatures The maximum number of features to retain. + @param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical + pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor + will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor + will mean that to cover certain scale range you will need more pyramid levels and so the speed + will suffer. + @param nlevels The number of pyramid levels. The smallest level will have linear size equal to + input_image_linear_size/pow(scaleFactor, nlevels). + @param edgeThreshold This is size of the border where the features are not detected. It should + roughly match the patchSize parameter. + @param firstLevel It should be 0 in the current implementation. + @param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The + default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, + so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 + random points (of course, those point coordinates are random, but they are generated from the + pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel + rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such + output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, + denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each + bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3). + @param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features + (the score is written to KeyPoint::score and is used to retain best nfeatures features); + FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints, + but it is a little faster to compute. + @param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller + pyramid layers the perceived image area covered by a feature will be larger. + @param fastThreshold + */ + CV_WRAP static Ptr<ORB> create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31, + int firstLevel=0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20); + + CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0; + CV_WRAP virtual int getMaxFeatures() const = 0; + + CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0; + CV_WRAP virtual double getScaleFactor() const = 0; + + CV_WRAP virtual void setNLevels(int nlevels) = 0; + CV_WRAP virtual int getNLevels() const = 0; + + CV_WRAP virtual void setEdgeThreshold(int edgeThreshold) = 0; + CV_WRAP virtual int getEdgeThreshold() const = 0; + + CV_WRAP virtual void setFirstLevel(int firstLevel) = 0; + CV_WRAP virtual int getFirstLevel() const = 0; + + CV_WRAP virtual void setWTA_K(int wta_k) = 0; + CV_WRAP virtual int getWTA_K() const = 0; + + CV_WRAP virtual void setScoreType(int scoreType) = 0; + CV_WRAP virtual int getScoreType() const = 0; + + CV_WRAP virtual void setPatchSize(int patchSize) = 0; + CV_WRAP virtual int getPatchSize() const = 0; + + CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0; + CV_WRAP virtual int getFastThreshold() const = 0; +}; + +/** @brief Maximally stable extremal region extractor + +The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki +article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)). + +- there are two different implementation of %MSER: one for grey image, one for color image + +- the grey image algorithm is taken from: @cite nister2008linear ; the paper claims to be faster +than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop. + +- the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower +than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source +code which is distributed under GPL. + +- (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py +*/ +class CV_EXPORTS_W MSER : public Feature2D +{ +public: + /** @brief Full consturctor for %MSER detector + + @param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$ + @param _min_area prune the area which smaller than minArea + @param _max_area prune the area which bigger than maxArea + @param _max_variation prune the area have simliar size to its children + @param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity + @param _max_evolution for color image, the evolution steps + @param _area_threshold for color image, the area threshold to cause re-initialize + @param _min_margin for color image, ignore too small margin + @param _edge_blur_size for color image, the aperture size for edge blur + */ + CV_WRAP static Ptr<MSER> create( int _delta=5, int _min_area=60, int _max_area=14400, + double _max_variation=0.25, double _min_diversity=.2, + int _max_evolution=200, double _area_threshold=1.01, + double _min_margin=0.003, int _edge_blur_size=5 ); + + /** @brief Detect %MSER regions + + @param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3) + @param msers resulting list of point sets + @param bboxes resulting bounding boxes + */ + CV_WRAP virtual void detectRegions( InputArray image, + CV_OUT std::vector<std::vector<Point> >& msers, + CV_OUT std::vector<Rect>& bboxes ) = 0; + + CV_WRAP virtual void setDelta(int delta) = 0; + CV_WRAP virtual int getDelta() const = 0; + + CV_WRAP virtual void setMinArea(int minArea) = 0; + CV_WRAP virtual int getMinArea() const = 0; + + CV_WRAP virtual void setMaxArea(int maxArea) = 0; + CV_WRAP virtual int getMaxArea() const = 0; + + CV_WRAP virtual void setPass2Only(bool f) = 0; + CV_WRAP virtual bool getPass2Only() const = 0; +}; + +/** @overload */ +CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, + int threshold, bool nonmaxSuppression=true ); + +/** @brief Detects corners using the FAST algorithm + +@param image grayscale image where keypoints (corners) are detected. +@param keypoints keypoints detected on the image. +@param threshold threshold on difference between intensity of the central pixel and pixels of a +circle around this pixel. +@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners +(keypoints). +@param type one of the three neighborhoods as defined in the paper: +FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12, +FastFeatureDetector::TYPE_5_8 + +Detects corners using the FAST algorithm by @cite Rosten06 . + +@note In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8, +cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner +detection, use cv2.FAST.detect() method. + */ +CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, + int threshold, bool nonmaxSuppression, int type ); + +//! @} features2d_main + +//! @addtogroup features2d_main +//! @{ + +/** @brief Wrapping class for feature detection using the FAST method. : + */ +class CV_EXPORTS_W FastFeatureDetector : public Feature2D +{ +public: + enum + { + TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2, + THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002, + }; + + CV_WRAP static Ptr<FastFeatureDetector> create( int threshold=10, + bool nonmaxSuppression=true, + int type=FastFeatureDetector::TYPE_9_16 ); + + CV_WRAP virtual void setThreshold(int threshold) = 0; + CV_WRAP virtual int getThreshold() const = 0; + + CV_WRAP virtual void setNonmaxSuppression(bool f) = 0; + CV_WRAP virtual bool getNonmaxSuppression() const = 0; + + CV_WRAP virtual void setType(int type) = 0; + CV_WRAP virtual int getType() const = 0; +}; + +/** @overload */ +CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, + int threshold, bool nonmaxSuppression=true ); + +/** @brief Detects corners using the AGAST algorithm + +@param image grayscale image where keypoints (corners) are detected. +@param keypoints keypoints detected on the image. +@param threshold threshold on difference between intensity of the central pixel and pixels of a +circle around this pixel. +@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners +(keypoints). +@param type one of the four neighborhoods as defined in the paper: +AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d, +AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16 + +For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results. +The 32-bit binary tree tables were generated automatically from original code using perl script. +The perl script and examples of tree generation are placed in features2d/doc folder. +Detects corners using the AGAST algorithm by @cite mair2010_agast . + + */ +CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, + int threshold, bool nonmaxSuppression, int type ); +//! @} features2d_main + +//! @addtogroup features2d_main +//! @{ + +/** @brief Wrapping class for feature detection using the AGAST method. : + */ +class CV_EXPORTS_W AgastFeatureDetector : public Feature2D +{ +public: + enum + { + AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3, + THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001, + }; + + CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10, + bool nonmaxSuppression=true, + int type=AgastFeatureDetector::OAST_9_16 ); + + CV_WRAP virtual void setThreshold(int threshold) = 0; + CV_WRAP virtual int getThreshold() const = 0; + + CV_WRAP virtual void setNonmaxSuppression(bool f) = 0; + CV_WRAP virtual bool getNonmaxSuppression() const = 0; + + CV_WRAP virtual void setType(int type) = 0; + CV_WRAP virtual int getType() const = 0; +}; + +/** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. : + */ +class CV_EXPORTS_W GFTTDetector : public Feature2D +{ +public: + CV_WRAP static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1, + int blockSize=3, bool useHarrisDetector=false, double k=0.04 ); + CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0; + CV_WRAP virtual int getMaxFeatures() const = 0; + + CV_WRAP virtual void setQualityLevel(double qlevel) = 0; + CV_WRAP virtual double getQualityLevel() const = 0; + + CV_WRAP virtual void setMinDistance(double minDistance) = 0; + CV_WRAP virtual double getMinDistance() const = 0; + + CV_WRAP virtual void setBlockSize(int blockSize) = 0; + CV_WRAP virtual int getBlockSize() const = 0; + + CV_WRAP virtual void setHarrisDetector(bool val) = 0; + CV_WRAP virtual bool getHarrisDetector() const = 0; + + CV_WRAP virtual void setK(double k) = 0; + CV_WRAP virtual double getK() const = 0; +}; + +/** @brief Class for extracting blobs from an image. : + +The class implements a simple algorithm for extracting blobs from an image: + +1. Convert the source image to binary images by applying thresholding with several thresholds from + minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between + neighboring thresholds. +2. Extract connected components from every binary image by findContours and calculate their + centers. +3. Group centers from several binary images by their coordinates. Close centers form one group that + corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter. +4. From the groups, estimate final centers of blobs and their radiuses and return as locations and + sizes of keypoints. + +This class performs several filtrations of returned blobs. You should set filterBy\* to true/false +to turn on/off corresponding filtration. Available filtrations: + +- **By color**. This filter compares the intensity of a binary image at the center of a blob to +blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs +and blobColor = 255 to extract light blobs. +- **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive). +- **By circularity**. Extracted blobs have circularity +(\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and +maxCircularity (exclusive). +- **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio +between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive). +- **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between +minConvexity (inclusive) and maxConvexity (exclusive). + +Default values of parameters are tuned to extract dark circular blobs. + */ +class CV_EXPORTS_W SimpleBlobDetector : public Feature2D +{ +public: + struct CV_EXPORTS_W_SIMPLE Params + { + CV_WRAP Params(); + CV_PROP_RW float thresholdStep; + CV_PROP_RW float minThreshold; + CV_PROP_RW float maxThreshold; + CV_PROP_RW size_t minRepeatability; + CV_PROP_RW float minDistBetweenBlobs; + + CV_PROP_RW bool filterByColor; + CV_PROP_RW uchar blobColor; + + CV_PROP_RW bool filterByArea; + CV_PROP_RW float minArea, maxArea; + + CV_PROP_RW bool filterByCircularity; + CV_PROP_RW float minCircularity, maxCircularity; + + CV_PROP_RW bool filterByInertia; + CV_PROP_RW float minInertiaRatio, maxInertiaRatio; + + CV_PROP_RW bool filterByConvexity; + CV_PROP_RW float minConvexity, maxConvexity; + + void read( const FileNode& fn ); + void write( FileStorage& fs ) const; + }; + + CV_WRAP static Ptr<SimpleBlobDetector> + create(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params()); +}; + +//! @} features2d_main + +//! @addtogroup features2d_main +//! @{ + +/** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 . + +@note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo +F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision +(ECCV), Fiorenze, Italy, October 2012. +*/ +class CV_EXPORTS_W KAZE : public Feature2D +{ +public: + enum + { + DIFF_PM_G1 = 0, + DIFF_PM_G2 = 1, + DIFF_WEICKERT = 2, + DIFF_CHARBONNIER = 3 + }; + + /** @brief The KAZE constructor + + @param extended Set to enable extraction of extended (128-byte) descriptor. + @param upright Set to enable use of upright descriptors (non rotation-invariant). + @param threshold Detector response threshold to accept point + @param nOctaves Maximum octave evolution of the image + @param nOctaveLayers Default number of sublevels per scale level + @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or + DIFF_CHARBONNIER + */ + CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false, + float threshold = 0.001f, + int nOctaves = 4, int nOctaveLayers = 4, + int diffusivity = KAZE::DIFF_PM_G2); + + CV_WRAP virtual void setExtended(bool extended) = 0; + CV_WRAP virtual bool getExtended() const = 0; + + CV_WRAP virtual void setUpright(bool upright) = 0; + CV_WRAP virtual bool getUpright() const = 0; + + CV_WRAP virtual void setThreshold(double threshold) = 0; + CV_WRAP virtual double getThreshold() const = 0; + + CV_WRAP virtual void setNOctaves(int octaves) = 0; + CV_WRAP virtual int getNOctaves() const = 0; + + CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0; + CV_WRAP virtual int getNOctaveLayers() const = 0; + + CV_WRAP virtual void setDiffusivity(int diff) = 0; + CV_WRAP virtual int getDiffusivity() const = 0; +}; + +/** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13 . : + +@note AKAZE descriptors can only be used with KAZE or AKAZE keypoints. Try to avoid using *extract* +and *detect* instead of *operator()* due to performance reasons. .. [ANB13] Fast Explicit Diffusion +for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien +Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013. + */ +class CV_EXPORTS_W AKAZE : public Feature2D +{ +public: + // AKAZE descriptor type + enum + { + DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation + DESCRIPTOR_KAZE = 3, + DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation + DESCRIPTOR_MLDB = 5 + }; + + /** @brief The AKAZE constructor + + @param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE, + DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT. + @param descriptor_size Size of the descriptor in bits. 0 -\> Full size + @param descriptor_channels Number of channels in the descriptor (1, 2, 3) + @param threshold Detector response threshold to accept point + @param nOctaves Maximum octave evolution of the image + @param nOctaveLayers Default number of sublevels per scale level + @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or + DIFF_CHARBONNIER + */ + CV_WRAP static Ptr<AKAZE> create(int descriptor_type=AKAZE::DESCRIPTOR_MLDB, + int descriptor_size = 0, int descriptor_channels = 3, + float threshold = 0.001f, int nOctaves = 4, + int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2); + + CV_WRAP virtual void setDescriptorType(int dtype) = 0; + CV_WRAP virtual int getDescriptorType() const = 0; + + CV_WRAP virtual void setDescriptorSize(int dsize) = 0; + CV_WRAP virtual int getDescriptorSize() const = 0; + + CV_WRAP virtual void setDescriptorChannels(int dch) = 0; + CV_WRAP virtual int getDescriptorChannels() const = 0; + + CV_WRAP virtual void setThreshold(double threshold) = 0; + CV_WRAP virtual double getThreshold() const = 0; + + CV_WRAP virtual void setNOctaves(int octaves) = 0; + CV_WRAP virtual int getNOctaves() const = 0; + + CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0; + CV_WRAP virtual int getNOctaveLayers() const = 0; + + CV_WRAP virtual void setDiffusivity(int diff) = 0; + CV_WRAP virtual int getDiffusivity() const = 0; +}; + +//! @} features2d_main + +/****************************************************************************************\ +* Distance * +\****************************************************************************************/ + +template<typename T> +struct CV_EXPORTS Accumulator +{ + typedef T Type; +}; + +template<> struct Accumulator<unsigned char> { typedef float Type; }; +template<> struct Accumulator<unsigned short> { typedef float Type; }; +template<> struct Accumulator<char> { typedef float Type; }; +template<> struct Accumulator<short> { typedef float Type; }; + +/* + * Squared Euclidean distance functor + */ +template<class T> +struct CV_EXPORTS SL2 +{ + enum { normType = NORM_L2SQR }; + typedef T ValueType; + typedef typename Accumulator<T>::Type ResultType; + + ResultType operator()( const T* a, const T* b, int size ) const + { + return normL2Sqr<ValueType, ResultType>(a, b, size); + } +}; + +/* + * Euclidean distance functor + */ +template<class T> +struct CV_EXPORTS L2 +{ + enum { normType = NORM_L2 }; + typedef T ValueType; + typedef typename Accumulator<T>::Type ResultType; + + ResultType operator()( const T* a, const T* b, int size ) const + { + return (ResultType)std::sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size)); + } +}; + +/* + * Manhattan distance (city block distance) functor + */ +template<class T> +struct CV_EXPORTS L1 +{ + enum { normType = NORM_L1 }; + typedef T ValueType; + typedef typename Accumulator<T>::Type ResultType; + + ResultType operator()( const T* a, const T* b, int size ) const + { + return normL1<ValueType, ResultType>(a, b, size); + } +}; + +/****************************************************************************************\ +* DescriptorMatcher * +\****************************************************************************************/ + +//! @addtogroup features2d_match +//! @{ + +/** @brief Abstract base class for matching keypoint descriptors. + +It has two groups of match methods: for matching descriptors of an image with another image or with +an image set. + */ +class CV_EXPORTS_W DescriptorMatcher : public Algorithm +{ +public: + enum + { + FLANNBASED = 1, + BRUTEFORCE = 2, + BRUTEFORCE_L1 = 3, + BRUTEFORCE_HAMMING = 4, + BRUTEFORCE_HAMMINGLUT = 5, + BRUTEFORCE_SL2 = 6 + }; + virtual ~DescriptorMatcher(); + + /** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor + collection. + + If the collection is not empty, the new descriptors are added to existing train descriptors. + + @param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same + train image. + */ + CV_WRAP virtual void add( InputArrayOfArrays descriptors ); + + /** @brief Returns a constant link to the train descriptor collection trainDescCollection . + */ + CV_WRAP const std::vector<Mat>& getTrainDescriptors() const; + + /** @brief Clears the train descriptor collections. + */ + CV_WRAP virtual void clear(); + + /** @brief Returns true if there are no train descriptors in the both collections. + */ + CV_WRAP virtual bool empty() const; + + /** @brief Returns true if the descriptor matcher supports masking permissible matches. + */ + CV_WRAP virtual bool isMaskSupported() const = 0; + + /** @brief Trains a descriptor matcher + + Trains a descriptor matcher (for example, the flann index). In all methods to match, the method + train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher) + have an empty implementation of this method. Other matchers really train their inner structures (for + example, FlannBasedMatcher trains flann::Index ). + */ + CV_WRAP virtual void train(); + + /** @brief Finds the best match for each descriptor from a query set. + + @param queryDescriptors Query set of descriptors. + @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors + collection stored in the class object. + @param matches Matches. If a query descriptor is masked out in mask , no match is added for this + descriptor. So, matches size may be smaller than the query descriptors count. + @param mask Mask specifying permissible matches between an input query and train matrices of + descriptors. + + In the first variant of this method, the train descriptors are passed as an input argument. In the + second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is + used. Optional mask (or masks) can be passed to specify which query and training descriptors can be + matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if + mask.at\<uchar\>(i,j) is non-zero. + */ + CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors, + CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const; + + /** @brief Finds the k best matches for each descriptor from a query set. + + @param queryDescriptors Query set of descriptors. + @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors + collection stored in the class object. + @param mask Mask specifying permissible matches between an input query and train matrices of + descriptors. + @param matches Matches. Each matches[i] is k or less matches for the same query descriptor. + @param k Count of best matches found per each query descriptor or less if a query descriptor has + less than k possible matches in total. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + + These extended variants of DescriptorMatcher::match methods find several best matches for each query + descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match + for the details about query and train descriptors. + */ + CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors, + CV_OUT std::vector<std::vector<DMatch> >& matches, int k, + InputArray mask=noArray(), bool compactResult=false ) const; + + /** @brief For each query descriptor, finds the training descriptors not farther than the specified distance. + + @param queryDescriptors Query set of descriptors. + @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors + collection stored in the class object. + @param matches Found matches. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + @param maxDistance Threshold for the distance between matched descriptors. Distance means here + metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured + in Pixels)! + @param mask Mask specifying permissible matches between an input query and train matrices of + descriptors. + + For each query descriptor, the methods find such training descriptors that the distance between the + query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are + returned in the distance increasing order. + */ + CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, + CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArray mask=noArray(), bool compactResult=false ) const; + + /** @overload + @param queryDescriptors Query set of descriptors. + @param matches Matches. If a query descriptor is masked out in mask , no match is added for this + descriptor. So, matches size may be smaller than the query descriptors count. + @param masks Set of masks. Each masks[i] specifies permissible matches between the input query + descriptors and stored train descriptors from the i-th image trainDescCollection[i]. + */ + CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches, + InputArrayOfArrays masks=noArray() ); + /** @overload + @param queryDescriptors Query set of descriptors. + @param matches Matches. Each matches[i] is k or less matches for the same query descriptor. + @param k Count of best matches found per each query descriptor or less if a query descriptor has + less than k possible matches in total. + @param masks Set of masks. Each masks[i] specifies permissible matches between the input query + descriptors and stored train descriptors from the i-th image trainDescCollection[i]. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + */ + CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + /** @overload + @param queryDescriptors Query set of descriptors. + @param matches Found matches. + @param maxDistance Threshold for the distance between matched descriptors. Distance means here + metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured + in Pixels)! + @param masks Set of masks. Each masks[i] specifies permissible matches between the input query + descriptors and stored train descriptors from the i-th image trainDescCollection[i]. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + */ + CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + + + CV_WRAP void write( const String& fileName ) const + { + FileStorage fs(fileName, FileStorage::WRITE); + write(fs); + } + + CV_WRAP void read( const String& fileName ) + { + FileStorage fs(fileName, FileStorage::READ); + read(fs.root()); + } + // Reads matcher object from a file node + virtual void read( const FileNode& ); + // Writes matcher object to a file storage + virtual void write( FileStorage& ) const; + + /** @brief Clones the matcher. + + @param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object, + that is, copies both parameters and train data. If emptyTrainData is true, the method creates an + object copy with the current parameters but with empty train data. + */ + CV_WRAP virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0; + + /** @brief Creates a descriptor matcher of a given type with the default parameters (using default + constructor). + + @param descriptorMatcherType Descriptor matcher type. Now the following matcher types are + supported: + - `BruteForce` (it uses L2 ) + - `BruteForce-L1` + - `BruteForce-Hamming` + - `BruteForce-Hamming(2)` + - `FlannBased` + */ + CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType ); + + CV_WRAP static Ptr<DescriptorMatcher> create( int matcherType ); + +protected: + /** + * Class to work with descriptors from several images as with one merged matrix. + * It is used e.g. in FlannBasedMatcher. + */ + class CV_EXPORTS DescriptorCollection + { + public: + DescriptorCollection(); + DescriptorCollection( const DescriptorCollection& collection ); + virtual ~DescriptorCollection(); + + // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here. + void set( const std::vector<Mat>& descriptors ); + virtual void clear(); + + const Mat& getDescriptors() const; + const Mat getDescriptor( int imgIdx, int localDescIdx ) const; + const Mat getDescriptor( int globalDescIdx ) const; + void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const; + + int size() const; + + protected: + Mat mergedDescriptors; + std::vector<int> startIdxs; + }; + + //! In fact the matching is implemented only by the following two methods. These methods suppose + //! that the class object has been trained already. Public match methods call these methods + //! after calling train(). + virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0; + virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0; + + static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx ); + static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx ); + + static Mat clone_op( Mat m ) { return m.clone(); } + void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const; + + //! Collection of descriptors from train images. + std::vector<Mat> trainDescCollection; + std::vector<UMat> utrainDescCollection; +}; + +/** @brief Brute-force descriptor matcher. + +For each descriptor in the first set, this matcher finds the closest descriptor in the second set +by trying each one. This descriptor matcher supports masking permissible matches of descriptor +sets. + */ +class CV_EXPORTS_W BFMatcher : public DescriptorMatcher +{ +public: + /** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create() + * + * + */ + CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false ); + + virtual ~BFMatcher() {} + + virtual bool isMaskSupported() const { return true; } + + /* @brief Brute-force matcher create method. + @param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are + preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and + BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor + description). + @param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k + nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with + k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the + matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent + pairs. Such technique usually produces best results with minimal number of outliers when there are + enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper. + */ + CV_WRAP static Ptr<BFMatcher> create( int normType=NORM_L2, bool crossCheck=false ) ; + + virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; +protected: + virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + + int normType; + bool crossCheck; +}; + + +/** @brief Flann-based descriptor matcher. + +This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search +methods to find the best matches. So, this matcher may be faster when matching a large train +collection than the brute force matcher. FlannBasedMatcher does not support masking permissible +matches of descriptor sets because flann::Index does not support this. : + */ +class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher +{ +public: + CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=makePtr<flann::KDTreeIndexParams>(), + const Ptr<flann::SearchParams>& searchParams=makePtr<flann::SearchParams>() ); + + virtual void add( InputArrayOfArrays descriptors ); + virtual void clear(); + + // Reads matcher object from a file node + virtual void read( const FileNode& ); + // Writes matcher object to a file storage + virtual void write( FileStorage& ) const; + + virtual void train(); + virtual bool isMaskSupported() const; + + CV_WRAP static Ptr<FlannBasedMatcher> create(); + + virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; +protected: + static void convertToDMatches( const DescriptorCollection& descriptors, + const Mat& indices, const Mat& distances, + std::vector<std::vector<DMatch> >& matches ); + + virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + + Ptr<flann::IndexParams> indexParams; + Ptr<flann::SearchParams> searchParams; + Ptr<flann::Index> flannIndex; + + DescriptorCollection mergedDescriptors; + int addedDescCount; +}; + +//! @} features2d_match + +/****************************************************************************************\ +* Drawing functions * +\****************************************************************************************/ + +//! @addtogroup features2d_draw +//! @{ + +struct CV_EXPORTS DrawMatchesFlags +{ + enum{ DEFAULT = 0, //!< Output image matrix will be created (Mat::create), + //!< i.e. existing memory of output image may be reused. + //!< Two source image, matches and single keypoints will be drawn. + //!< For each keypoint only the center point will be drawn (without + //!< the circle around keypoint with keypoint size and orientation). + DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create). + //!< Matches will be drawn on existing content of output image. + NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn. + DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and + //!< orientation will be drawn. + }; +}; + +/** @brief Draws keypoints. + +@param image Source image. +@param keypoints Keypoints from the source image. +@param outImage Output image. Its content depends on the flags value defining what is drawn in the +output image. See possible flags bit values below. +@param color Color of keypoints. +@param flags Flags setting drawing features. Possible flags bit values are defined by +DrawMatchesFlags. See details above in drawMatches . + +@note +For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT, +cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG, +cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS + */ +CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage, + const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT ); + +/** @brief Draws the found matches of keypoints from two images. + +@param img1 First source image. +@param keypoints1 Keypoints from the first source image. +@param img2 Second source image. +@param keypoints2 Keypoints from the second source image. +@param matches1to2 Matches from the first image to the second one, which means that keypoints1[i] +has a corresponding point in keypoints2[matches[i]] . +@param outImg Output image. Its content depends on the flags value defining what is drawn in the +output image. See possible flags bit values below. +@param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1) +, the color is generated randomly. +@param singlePointColor Color of single keypoints (circles), which means that keypoints do not +have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly. +@param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are +drawn. +@param flags Flags setting drawing features. Possible flags bit values are defined by +DrawMatchesFlags. + +This function draws matches of keypoints from two images in the output image. Match is a line +connecting two keypoints (circles). See cv::DrawMatchesFlags. + */ +CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1, + InputArray img2, const std::vector<KeyPoint>& keypoints2, + const std::vector<DMatch>& matches1to2, InputOutputArray outImg, + const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), + const std::vector<char>& matchesMask=std::vector<char>(), int flags=DrawMatchesFlags::DEFAULT ); + +/** @overload */ +CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1, + InputArray img2, const std::vector<KeyPoint>& keypoints2, + const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg, + const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), + const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=DrawMatchesFlags::DEFAULT ); + +//! @} features2d_draw + +/****************************************************************************************\ +* Functions to evaluate the feature detectors and [generic] descriptor extractors * +\****************************************************************************************/ + +CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2, + std::vector<KeyPoint>* keypoints1, std::vector<KeyPoint>* keypoints2, + float& repeatability, int& correspCount, + const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() ); + +CV_EXPORTS void computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2, + const std::vector<std::vector<uchar> >& correctMatches1to2Mask, + std::vector<Point2f>& recallPrecisionCurve ); + +CV_EXPORTS float getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision ); +CV_EXPORTS int getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision ); + +/****************************************************************************************\ +* Bag of visual words * +\****************************************************************************************/ + +//! @addtogroup features2d_category +//! @{ + +/** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors. + +For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka, +Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. : + */ +class CV_EXPORTS_W BOWTrainer +{ +public: + BOWTrainer(); + virtual ~BOWTrainer(); + + /** @brief Adds descriptors to a training set. + + @param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a + descriptor. + + The training set is clustered using clustermethod to construct the vocabulary. + */ + CV_WRAP void add( const Mat& descriptors ); + + /** @brief Returns a training set of descriptors. + */ + CV_WRAP const std::vector<Mat>& getDescriptors() const; + + /** @brief Returns the count of all descriptors stored in the training set. + */ + CV_WRAP int descriptorsCount() const; + + CV_WRAP virtual void clear(); + + /** @overload */ + CV_WRAP virtual Mat cluster() const = 0; + + /** @brief Clusters train descriptors. + + @param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor. + Descriptors are not added to the inner train descriptor set. + + The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first + variant of the method, train descriptors stored in the object are clustered. In the second variant, + input descriptors are clustered. + */ + CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0; + +protected: + std::vector<Mat> descriptors; + int size; +}; + +/** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. : + */ +class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer +{ +public: + /** @brief The constructor. + + @see cv::kmeans + */ + CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(), + int attempts=3, int flags=KMEANS_PP_CENTERS ); + virtual ~BOWKMeansTrainer(); + + // Returns trained vocabulary (i.e. cluster centers). + CV_WRAP virtual Mat cluster() const; + CV_WRAP virtual Mat cluster( const Mat& descriptors ) const; + +protected: + + int clusterCount; + TermCriteria termcrit; + int attempts; + int flags; +}; + +/** @brief Class to compute an image descriptor using the *bag of visual words*. + +Such a computation consists of the following steps: + +1. Compute descriptors for a given image and its keypoints set. +2. Find the nearest visual words from the vocabulary for each keypoint descriptor. +3. Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words +encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the +vocabulary in the given image. + */ +class CV_EXPORTS_W BOWImgDescriptorExtractor +{ +public: + /** @brief The constructor. + + @param dextractor Descriptor extractor that is used to compute descriptors for an input image and + its keypoints. + @param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary + for each keypoint descriptor of the image. + */ + CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor, + const Ptr<DescriptorMatcher>& dmatcher ); + /** @overload */ + BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& dmatcher ); + virtual ~BOWImgDescriptorExtractor(); + + /** @brief Sets a visual vocabulary. + + @param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the + vocabulary is a visual word (cluster center). + */ + CV_WRAP void setVocabulary( const Mat& vocabulary ); + + /** @brief Returns the set vocabulary. + */ + CV_WRAP const Mat& getVocabulary() const; + + /** @brief Computes an image descriptor using the set visual vocabulary. + + @param image Image, for which the descriptor is computed. + @param keypoints Keypoints detected in the input image. + @param imgDescriptor Computed output image descriptor. + @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that + pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary) + returned if it is non-zero. + @param descriptors Descriptors of the image keypoints that are returned if they are non-zero. + */ + void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor, + std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 ); + /** @overload + @param keypointDescriptors Computed descriptors to match with vocabulary. + @param imgDescriptor Computed output image descriptor. + @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that + pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary) + returned if it is non-zero. + */ + void compute( InputArray keypointDescriptors, OutputArray imgDescriptor, + std::vector<std::vector<int> >* pointIdxsOfClusters=0 ); + // compute() is not constant because DescriptorMatcher::match is not constant + + CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor ) + { compute(image,keypoints,imgDescriptor); } + + /** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0. + */ + CV_WRAP int descriptorSize() const; + + /** @brief Returns an image descriptor type. + */ + CV_WRAP int descriptorType() const; + +protected: + Mat vocabulary; + Ptr<DescriptorExtractor> dextractor; + Ptr<DescriptorMatcher> dmatcher; +}; + +//! @} features2d_category + +//! @} features2d + +} /* namespace cv */ + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/features2d/features2d.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/features2d.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,531 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_FLANN_HPP +#define OPENCV_FLANN_HPP + +#include "opencv2/core.hpp" +#include "opencv2/flann/miniflann.hpp" +#include "opencv2/flann/flann_base.hpp" + +/** +@defgroup flann Clustering and Search in Multi-Dimensional Spaces + +This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate +Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest +neighbor search in large datasets and for high dimensional features. More information about FLANN +can be found in @cite Muja2009 . +*/ + +namespace cvflann +{ + CV_EXPORTS flann_distance_t flann_distance_type(); + FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order); +} + + +namespace cv +{ +namespace flann +{ + + +//! @addtogroup flann +//! @{ + +template <typename T> struct CvType {}; +template <> struct CvType<unsigned char> { static int type() { return CV_8U; } }; +template <> struct CvType<char> { static int type() { return CV_8S; } }; +template <> struct CvType<unsigned short> { static int type() { return CV_16U; } }; +template <> struct CvType<short> { static int type() { return CV_16S; } }; +template <> struct CvType<int> { static int type() { return CV_32S; } }; +template <> struct CvType<float> { static int type() { return CV_32F; } }; +template <> struct CvType<double> { static int type() { return CV_64F; } }; + + +// bring the flann parameters into this namespace +using ::cvflann::get_param; +using ::cvflann::print_params; + +// bring the flann distances into this namespace +using ::cvflann::L2_Simple; +using ::cvflann::L2; +using ::cvflann::L1; +using ::cvflann::MinkowskiDistance; +using ::cvflann::MaxDistance; +using ::cvflann::HammingLUT; +using ::cvflann::Hamming; +using ::cvflann::Hamming2; +using ::cvflann::HistIntersectionDistance; +using ::cvflann::HellingerDistance; +using ::cvflann::ChiSquareDistance; +using ::cvflann::KL_Divergence; + + +/** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which +the index is built. + */ +template <typename Distance> +class GenericIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + /** @brief Constructs a nearest neighbor search index for a given dataset. + + @param features Matrix of containing the features(points) to index. The size of the matrix is + num_features x feature_dimensionality and the data type of the elements in the matrix must + coincide with the type of the index. + @param params Structure containing the index parameters. The type of index that will be + constructed depends on the type of this parameter. See the description. + @param distance + + The method constructs a fast search structure from a set of features using the specified algorithm + with specified parameters, as defined by params. params is a reference to one of the following class + IndexParams descendants: + + - **LinearIndexParams** When passing an object of this type, the index will perform a linear, + brute-force search. : + @code + struct LinearIndexParams : public IndexParams + { + }; + @endcode + - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of + a set of randomized kd-trees which will be searched in parallel. : + @code + struct KDTreeIndexParams : public IndexParams + { + KDTreeIndexParams( int trees = 4 ); + }; + @endcode + - **KMeansIndexParams** When passing an object of this type the index constructed will be a + hierarchical k-means tree. : + @code + struct KMeansIndexParams : public IndexParams + { + KMeansIndexParams( + int branching = 32, + int iterations = 11, + flann_centers_init_t centers_init = CENTERS_RANDOM, + float cb_index = 0.2 ); + }; + @endcode + - **CompositeIndexParams** When using a parameters object of this type the index created + combines the randomized kd-trees and the hierarchical k-means tree. : + @code + struct CompositeIndexParams : public IndexParams + { + CompositeIndexParams( + int trees = 4, + int branching = 32, + int iterations = 11, + flann_centers_init_t centers_init = CENTERS_RANDOM, + float cb_index = 0.2 ); + }; + @endcode + - **LshIndexParams** When using a parameters object of this type the index created uses + multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search + by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd + International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007) : + @code + struct LshIndexParams : public IndexParams + { + LshIndexParams( + unsigned int table_number, + unsigned int key_size, + unsigned int multi_probe_level ); + }; + @endcode + - **AutotunedIndexParams** When passing an object of this type the index created is + automatically tuned to offer the best performance, by choosing the optimal index type + (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. : + @code + struct AutotunedIndexParams : public IndexParams + { + AutotunedIndexParams( + float target_precision = 0.9, + float build_weight = 0.01, + float memory_weight = 0, + float sample_fraction = 0.1 ); + }; + @endcode + - **SavedIndexParams** This object type is used for loading a previously saved index from the + disk. : + @code + struct SavedIndexParams : public IndexParams + { + SavedIndexParams( String filename ); + }; + @endcode + */ + GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance()); + + ~GenericIndex(); + + /** @brief Performs a K-nearest neighbor search for a given query point using the index. + + @param query The query point + @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have + at least knn size. + @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have + at least knn size. + @param knn Number of nearest neighbors to search for. + @param params SearchParams + */ + void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, + std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); + void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); + + int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, + std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); + int radiusSearch(const Mat& query, Mat& indices, Mat& dists, + DistanceType radius, const ::cvflann::SearchParams& params); + + void save(String filename) { nnIndex->save(filename); } + + int veclen() const { return nnIndex->veclen(); } + + int size() const { return nnIndex->size(); } + + ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); } + + FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); } + +private: + ::cvflann::Index<Distance>* nnIndex; +}; + +//! @cond IGNORED + +#define FLANN_DISTANCE_CHECK \ + if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \ + printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\ + "the distance using cvflann::set_distance_type. This is no longer working as expected "\ + "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\ + "for example for L1 distance use: GenericIndex< L1<float> > \n"); \ + } + + +template <typename Distance> +GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance) +{ + CV_Assert(dataset.type() == CvType<ElementType>::type()); + CV_Assert(dataset.isContinuous()); + ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); + + nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance); + + FLANN_DISTANCE_CHECK + + nnIndex->buildIndex(); +} + +template <typename Distance> +GenericIndex<Distance>::~GenericIndex() +{ + delete nnIndex; +} + +template <typename Distance> +void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) +{ + ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); + + FLANN_DISTANCE_CHECK + + nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams); +} + + +template <typename Distance> +void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) +{ + CV_Assert(queries.type() == CvType<ElementType>::type()); + CV_Assert(queries.isContinuous()); + ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType<DistanceType>::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); + + FLANN_DISTANCE_CHECK + + nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); +} + +template <typename Distance> +int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) +{ + ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); + + FLANN_DISTANCE_CHECK + + return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); +} + +template <typename Distance> +int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) +{ + CV_Assert(query.type() == CvType<ElementType>::type()); + CV_Assert(query.isContinuous()); + ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType<DistanceType>::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); + + FLANN_DISTANCE_CHECK + + return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); +} + +//! @endcond + +/** + * @deprecated Use GenericIndex class instead + */ +template <typename T> +class Index_ +{ +public: + typedef typename L2<T>::ElementType ElementType; + typedef typename L2<T>::ResultType DistanceType; + + FLANN_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params) + { + printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n"); + + CV_Assert(dataset.type() == CvType<ElementType>::type()); + CV_Assert(dataset.isContinuous()); + ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); + + if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { + nnIndex_L1 = NULL; + nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params); + } + else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { + nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params); + nnIndex_L2 = NULL; + } + else { + printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. " + "For other distance types you must use cv::flann::GenericIndex<Distance>\n"); + CV_Assert(0); + } + if (nnIndex_L1) nnIndex_L1->buildIndex(); + if (nnIndex_L2) nnIndex_L2->buildIndex(); + } + FLANN_DEPRECATED ~Index_() + { + if (nnIndex_L1) delete nnIndex_L1; + if (nnIndex_L2) delete nnIndex_L2; + } + + FLANN_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) + { + ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); + + if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams); + if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams); + } + FLANN_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) + { + CV_Assert(queries.type() == CvType<ElementType>::type()); + CV_Assert(queries.isContinuous()); + ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType<DistanceType>::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); + + if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); + if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); + } + + FLANN_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) + { + ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); + + if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + } + + FLANN_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) + { + CV_Assert(query.type() == CvType<ElementType>::type()); + CV_Assert(query.isContinuous()); + ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType<DistanceType>::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); + + if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + } + + FLANN_DEPRECATED void save(String filename) + { + if (nnIndex_L1) nnIndex_L1->save(filename); + if (nnIndex_L2) nnIndex_L2->save(filename); + } + + FLANN_DEPRECATED int veclen() const + { + if (nnIndex_L1) return nnIndex_L1->veclen(); + if (nnIndex_L2) return nnIndex_L2->veclen(); + } + + FLANN_DEPRECATED int size() const + { + if (nnIndex_L1) return nnIndex_L1->size(); + if (nnIndex_L2) return nnIndex_L2->size(); + } + + FLANN_DEPRECATED ::cvflann::IndexParams getParameters() + { + if (nnIndex_L1) return nnIndex_L1->getParameters(); + if (nnIndex_L2) return nnIndex_L2->getParameters(); + + } + + FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() + { + if (nnIndex_L1) return nnIndex_L1->getIndexParameters(); + if (nnIndex_L2) return nnIndex_L2->getIndexParameters(); + } + +private: + // providing backwards compatibility for L2 and L1 distances (most common) + ::cvflann::Index< L2<ElementType> >* nnIndex_L2; + ::cvflann::Index< L1<ElementType> >* nnIndex_L1; +}; + + +/** @brief Clusters features using hierarchical k-means algorithm. + +@param features The points to be clustered. The matrix must have elements of type +Distance::ElementType. +@param centers The centers of the clusters obtained. The matrix must have type +Distance::ResultType. The number of rows in this matrix represents the number of clusters desired, +however, because of the way the cut in the hierarchical tree is chosen, the number of clusters +computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of +clusters desired, where branching is the tree's branching factor (see description of the +KMeansIndexParams). +@param params Parameters used in the construction of the hierarchical k-means tree. +@param d Distance to be used for clustering. + +The method clusters the given feature vectors by constructing a hierarchical k-means tree and +choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters +found. + */ +template <typename Distance> +int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params, + Distance d = Distance()) +{ + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + CV_Assert(features.type() == CvType<ElementType>::type()); + CV_Assert(features.isContinuous()); + ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols); + + CV_Assert(centers.type() == CvType<DistanceType>::type()); + CV_Assert(centers.isContinuous()); + ::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols); + + return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d); +} + +/** @deprecated +*/ +template <typename ELEM_TYPE, typename DIST_TYPE> +FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params) +{ + printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use " + "cv::flann::hierarchicalClustering<Distance> instead\n"); + + if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { + return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params); + } + else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { + return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params); + } + else { + printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards " + "compatibility for the L1 and L2 distances. " + "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n"); + CV_Assert(0); + } +} + +//! @} flann + +} } // namespace cv::flann + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/all_indices.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,155 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_ALL_INDICES_H_ +#define OPENCV_FLANN_ALL_INDICES_H_ + +#include "general.h" + +#include "nn_index.h" +#include "kdtree_index.h" +#include "kdtree_single_index.h" +#include "kmeans_index.h" +#include "composite_index.h" +#include "linear_index.h" +#include "hierarchical_clustering_index.h" +#include "lsh_index.h" +#include "autotuned_index.h" + + +namespace cvflann +{ + +template<typename KDTreeCapability, typename VectorSpace, typename Distance> +struct index_creator +{ + static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance) + { + flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm"); + + NNIndex<Distance>* nnIndex; + switch (index_type) { + case FLANN_INDEX_LINEAR: + nnIndex = new LinearIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_KDTREE_SINGLE: + nnIndex = new KDTreeSingleIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_KDTREE: + nnIndex = new KDTreeIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_KMEANS: + nnIndex = new KMeansIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_COMPOSITE: + nnIndex = new CompositeIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_AUTOTUNED: + nnIndex = new AutotunedIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_HIERARCHICAL: + nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_LSH: + nnIndex = new LshIndex<Distance>(dataset, params, distance); + break; + default: + throw FLANNException("Unknown index type"); + } + + return nnIndex; + } +}; + +template<typename VectorSpace, typename Distance> +struct index_creator<False,VectorSpace,Distance> +{ + static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance) + { + flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm"); + + NNIndex<Distance>* nnIndex; + switch (index_type) { + case FLANN_INDEX_LINEAR: + nnIndex = new LinearIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_KMEANS: + nnIndex = new KMeansIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_HIERARCHICAL: + nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_LSH: + nnIndex = new LshIndex<Distance>(dataset, params, distance); + break; + default: + throw FLANNException("Unknown index type"); + } + + return nnIndex; + } +}; + +template<typename Distance> +struct index_creator<False,False,Distance> +{ + static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance) + { + flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm"); + + NNIndex<Distance>* nnIndex; + switch (index_type) { + case FLANN_INDEX_LINEAR: + nnIndex = new LinearIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_HIERARCHICAL: + nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance); + break; + case FLANN_INDEX_LSH: + nnIndex = new LshIndex<Distance>(dataset, params, distance); + break; + default: + throw FLANNException("Unknown index type"); + } + + return nnIndex; + } +}; + +template<typename Distance> +NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance) +{ + return index_creator<typename Distance::is_kdtree_distance, + typename Distance::is_vector_space_distance, + Distance>::create(dataset, params,distance); +} + +} + +#endif /* OPENCV_FLANN_ALL_INDICES_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/allocator.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,188 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_ALLOCATOR_H_ +#define OPENCV_FLANN_ALLOCATOR_H_ + +#include <stdlib.h> +#include <stdio.h> + + +namespace cvflann +{ + +/** + * Allocates (using C's malloc) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ +template <typename T> +T* allocate(size_t count = 1) +{ + T* mem = (T*) ::malloc(sizeof(T)*count); + return mem; +} + + +/** + * Pooled storage allocator + * + * The following routines allow for the efficient allocation of storage in + * small chunks from a specified pool. Rather than allowing each structure + * to be freed individually, an entire pool of storage is freed at once. + * This method has two advantages over just using malloc() and free(). First, + * it is far more efficient for allocating small objects, as there is + * no overhead for remembering all the information needed to free each + * object or consolidating fragmented memory. Second, the decision about + * how long to keep an object is made at the time of allocation, and there + * is no need to track down all the objects to free them. + * + */ + +const size_t WORDSIZE=16; +const size_t BLOCKSIZE=8192; + +class PooledAllocator +{ + /* We maintain memory alignment to word boundaries by requiring that all + allocations be in multiples of the machine wordsize. */ + /* Size of machine word in bytes. Must be power of 2. */ + /* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */ + + + int remaining; /* Number of bytes left in current block of storage. */ + void* base; /* Pointer to base of current block of storage. */ + void* loc; /* Current location in block to next allocate memory. */ + int blocksize; + + +public: + int usedMemory; + int wastedMemory; + + /** + Default constructor. Initializes a new pool. + */ + PooledAllocator(int blockSize = BLOCKSIZE) + { + blocksize = blockSize; + remaining = 0; + base = NULL; + + usedMemory = 0; + wastedMemory = 0; + } + + /** + * Destructor. Frees all the memory allocated in this pool. + */ + ~PooledAllocator() + { + void* prev; + + while (base != NULL) { + prev = *((void**) base); /* Get pointer to prev block. */ + ::free(base); + base = prev; + } + } + + /** + * Returns a pointer to a piece of new memory of the given size in bytes + * allocated from the pool. + */ + void* allocateMemory(int size) + { + int blockSize; + + /* Round size up to a multiple of wordsize. The following expression + only works for WORDSIZE that is a power of 2, by masking last bits of + incremented size to zero. + */ + size = (size + (WORDSIZE - 1)) & ~(WORDSIZE - 1); + + /* Check whether a new block must be allocated. Note that the first word + of a block is reserved for a pointer to the previous block. + */ + if (size > remaining) { + + wastedMemory += remaining; + + /* Allocate new storage. */ + blockSize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ? + size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE; + + // use the standard C malloc to allocate memory + void* m = ::malloc(blockSize); + if (!m) { + fprintf(stderr,"Failed to allocate memory.\n"); + return NULL; + } + + /* Fill first word of new block with pointer to previous block. */ + ((void**) m)[0] = base; + base = m; + + int shift = 0; + //int shift = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1); + + remaining = blockSize - sizeof(void*) - shift; + loc = ((char*)m + sizeof(void*) + shift); + } + void* rloc = loc; + loc = (char*)loc + size; + remaining -= size; + + usedMemory += size; + + return rloc; + } + + /** + * Allocates (using this pool) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ + template <typename T> + T* allocate(size_t count = 1) + { + T* mem = (T*) this->allocateMemory((int)(sizeof(T)*count)); + return mem; + } + +}; + +} + +#endif //OPENCV_FLANN_ALLOCATOR_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/any.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,324 @@ +#ifndef OPENCV_FLANN_ANY_H_ +#define OPENCV_FLANN_ANY_H_ +/* + * (C) Copyright Christopher Diggins 2005-2011 + * (C) Copyright Pablo Aguilar 2005 + * (C) Copyright Kevlin Henney 2001 + * + * Distributed under the Boost Software License, Version 1.0. (See + * accompanying file LICENSE_1_0.txt or copy at + * http://www.boost.org/LICENSE_1_0.txt + * + * Adapted for FLANN by Marius Muja + */ + +#include "defines.h" +#include <stdexcept> +#include <ostream> +#include <typeinfo> + +namespace cvflann +{ + +namespace anyimpl +{ + +struct bad_any_cast +{ +}; + +struct empty_any +{ +}; + +inline std::ostream& operator <<(std::ostream& out, const empty_any&) +{ + out << "[empty_any]"; + return out; +} + +struct base_any_policy +{ + virtual void static_delete(void** x) = 0; + virtual void copy_from_value(void const* src, void** dest) = 0; + virtual void clone(void* const* src, void** dest) = 0; + virtual void move(void* const* src, void** dest) = 0; + virtual void* get_value(void** src) = 0; + virtual const void* get_value(void* const * src) = 0; + virtual ::size_t get_size() = 0; + virtual const std::type_info& type() = 0; + virtual void print(std::ostream& out, void* const* src) = 0; + virtual ~base_any_policy() {} +}; + +template<typename T> +struct typed_base_any_policy : base_any_policy +{ + virtual ::size_t get_size() { return sizeof(T); } + virtual const std::type_info& type() { return typeid(T); } + +}; + +template<typename T> +struct small_any_policy : typed_base_any_policy<T> +{ + virtual void static_delete(void**) { } + virtual void copy_from_value(void const* src, void** dest) + { + new (dest) T(* reinterpret_cast<T const*>(src)); + } + virtual void clone(void* const* src, void** dest) { *dest = *src; } + virtual void move(void* const* src, void** dest) { *dest = *src; } + virtual void* get_value(void** src) { return reinterpret_cast<void*>(src); } + virtual const void* get_value(void* const * src) { return reinterpret_cast<const void*>(src); } + virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast<T const*>(src); } +}; + +template<typename T> +struct big_any_policy : typed_base_any_policy<T> +{ + virtual void static_delete(void** x) + { + if (* x) delete (* reinterpret_cast<T**>(x)); + *x = NULL; + } + virtual void copy_from_value(void const* src, void** dest) + { + *dest = new T(*reinterpret_cast<T const*>(src)); + } + virtual void clone(void* const* src, void** dest) + { + *dest = new T(**reinterpret_cast<T* const*>(src)); + } + virtual void move(void* const* src, void** dest) + { + (*reinterpret_cast<T**>(dest))->~T(); + **reinterpret_cast<T**>(dest) = **reinterpret_cast<T* const*>(src); + } + virtual void* get_value(void** src) { return *src; } + virtual const void* get_value(void* const * src) { return *src; } + virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast<T const*>(*src); } +}; + +template<> inline void big_any_policy<flann_centers_init_t>::print(std::ostream& out, void* const* src) +{ + out << int(*reinterpret_cast<flann_centers_init_t const*>(*src)); +} + +template<> inline void big_any_policy<flann_algorithm_t>::print(std::ostream& out, void* const* src) +{ + out << int(*reinterpret_cast<flann_algorithm_t const*>(*src)); +} + +template<> inline void big_any_policy<cv::String>::print(std::ostream& out, void* const* src) +{ + out << (*reinterpret_cast<cv::String const*>(*src)).c_str(); +} + +template<typename T> +struct choose_policy +{ + typedef big_any_policy<T> type; +}; + +template<typename T> +struct choose_policy<T*> +{ + typedef small_any_policy<T*> type; +}; + +struct any; + +/// Choosing the policy for an any type is illegal, but should never happen. +/// This is designed to throw a compiler error. +template<> +struct choose_policy<any> +{ + typedef void type; +}; + +/// Specializations for small types. +#define SMALL_POLICY(TYPE) \ + template<> \ + struct choose_policy<TYPE> { typedef small_any_policy<TYPE> type; \ + } + +SMALL_POLICY(signed char); +SMALL_POLICY(unsigned char); +SMALL_POLICY(signed short); +SMALL_POLICY(unsigned short); +SMALL_POLICY(signed int); +SMALL_POLICY(unsigned int); +SMALL_POLICY(signed long); +SMALL_POLICY(unsigned long); +SMALL_POLICY(float); +SMALL_POLICY(bool); + +#undef SMALL_POLICY + +template <typename T> +class SinglePolicy +{ + SinglePolicy(); + SinglePolicy(const SinglePolicy& other); + SinglePolicy& operator=(const SinglePolicy& other); + +public: + static base_any_policy* get_policy(); + +private: + static typename choose_policy<T>::type policy; +}; + +template <typename T> +typename choose_policy<T>::type SinglePolicy<T>::policy; + +/// This function will return a different policy for each type. +template <typename T> +inline base_any_policy* SinglePolicy<T>::get_policy() { return &policy; } + +} // namespace anyimpl + +struct any +{ +private: + // fields + anyimpl::base_any_policy* policy; + void* object; + +public: + /// Initializing constructor. + template <typename T> + any(const T& x) + : policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL) + { + assign(x); + } + + /// Empty constructor. + any() + : policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL) + { } + + /// Special initializing constructor for string literals. + any(const char* x) + : policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL) + { + assign(x); + } + + /// Copy constructor. + any(const any& x) + : policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL) + { + assign(x); + } + + /// Destructor. + ~any() + { + policy->static_delete(&object); + } + + /// Assignment function from another any. + any& assign(const any& x) + { + reset(); + policy = x.policy; + policy->clone(&x.object, &object); + return *this; + } + + /// Assignment function. + template <typename T> + any& assign(const T& x) + { + reset(); + policy = anyimpl::SinglePolicy<T>::get_policy(); + policy->copy_from_value(&x, &object); + return *this; + } + + /// Assignment operator. + template<typename T> + any& operator=(const T& x) + { + return assign(x); + } + + /// Assignment operator, specialed for literal strings. + /// They have types like const char [6] which don't work as expected. + any& operator=(const char* x) + { + return assign(x); + } + + /// Utility functions + any& swap(any& x) + { + std::swap(policy, x.policy); + std::swap(object, x.object); + return *this; + } + + /// Cast operator. You can only cast to the original type. + template<typename T> + T& cast() + { + if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast(); + T* r = reinterpret_cast<T*>(policy->get_value(&object)); + return *r; + } + + /// Cast operator. You can only cast to the original type. + template<typename T> + const T& cast() const + { + if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast(); + const T* r = reinterpret_cast<const T*>(policy->get_value(&object)); + return *r; + } + + /// Returns true if the any contains no value. + bool empty() const + { + return policy->type() == typeid(anyimpl::empty_any); + } + + /// Frees any allocated memory, and sets the value to NULL. + void reset() + { + policy->static_delete(&object); + policy = anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy(); + } + + /// Returns true if the two types are the same. + bool compatible(const any& x) const + { + return policy->type() == x.policy->type(); + } + + /// Returns if the type is compatible with the policy + template<typename T> + bool has_type() + { + return policy->type() == typeid(T); + } + + const std::type_info& type() const + { + return policy->type(); + } + + friend std::ostream& operator <<(std::ostream& out, const any& any_val); +}; + +inline std::ostream& operator <<(std::ostream& out, const any& any_val) +{ + any_val.policy->print(out,&any_val.object); + return out; +} + +} + +#endif // OPENCV_FLANN_ANY_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/autotuned_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,588 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ +#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_ +#define OPENCV_FLANN_AUTOTUNED_INDEX_H_ + +#include "general.h" +#include "nn_index.h" +#include "ground_truth.h" +#include "index_testing.h" +#include "sampling.h" +#include "kdtree_index.h" +#include "kdtree_single_index.h" +#include "kmeans_index.h" +#include "composite_index.h" +#include "linear_index.h" +#include "logger.h" + +namespace cvflann +{ + +template<typename Distance> +NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance); + + +struct AutotunedIndexParams : public IndexParams +{ + AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1) + { + (*this)["algorithm"] = FLANN_INDEX_AUTOTUNED; + // precision desired (used for autotuning, -1 otherwise) + (*this)["target_precision"] = target_precision; + // build tree time weighting factor + (*this)["build_weight"] = build_weight; + // index memory weighting factor + (*this)["memory_weight"] = memory_weight; + // what fraction of the dataset to use for autotuning + (*this)["sample_fraction"] = sample_fraction; + } +}; + + +template <typename Distance> +class AutotunedIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) : + dataset_(inputData), distance_(d) + { + target_precision_ = get_param(params, "target_precision",0.8f); + build_weight_ = get_param(params,"build_weight", 0.01f); + memory_weight_ = get_param(params, "memory_weight", 0.0f); + sample_fraction_ = get_param(params,"sample_fraction", 0.1f); + bestIndex_ = NULL; + } + + AutotunedIndex(const AutotunedIndex&); + AutotunedIndex& operator=(const AutotunedIndex&); + + virtual ~AutotunedIndex() + { + if (bestIndex_ != NULL) { + delete bestIndex_; + bestIndex_ = NULL; + } + } + + /** + * Method responsible with building the index. + */ + virtual void buildIndex() + { + std::ostringstream stream; + bestParams_ = estimateBuildParams(); + print_params(bestParams_, stream); + Logger::info("----------------------------------------------------\n"); + Logger::info("Autotuned parameters:\n"); + Logger::info("%s", stream.str().c_str()); + Logger::info("----------------------------------------------------\n"); + + bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_); + bestIndex_->buildIndex(); + speedup_ = estimateSearchParams(bestSearchParams_); + stream.str(std::string()); + print_params(bestSearchParams_, stream); + Logger::info("----------------------------------------------------\n"); + Logger::info("Search parameters:\n"); + Logger::info("%s", stream.str().c_str()); + Logger::info("----------------------------------------------------\n"); + } + + /** + * Saves the index to a stream + */ + virtual void saveIndex(FILE* stream) + { + save_value(stream, (int)bestIndex_->getType()); + bestIndex_->saveIndex(stream); + save_value(stream, get_param<int>(bestSearchParams_, "checks")); + } + + /** + * Loads the index from a stream + */ + virtual void loadIndex(FILE* stream) + { + int index_type; + + load_value(stream, index_type); + IndexParams params; + params["algorithm"] = (flann_algorithm_t)index_type; + bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_); + bestIndex_->loadIndex(stream); + int checks; + load_value(stream, checks); + bestSearchParams_["checks"] = checks; + } + + /** + * Method that searches for nearest-neighbors + */ + virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + int checks = get_param<int>(searchParams,"checks",FLANN_CHECKS_AUTOTUNED); + if (checks == FLANN_CHECKS_AUTOTUNED) { + bestIndex_->findNeighbors(result, vec, bestSearchParams_); + } + else { + bestIndex_->findNeighbors(result, vec, searchParams); + } + } + + + IndexParams getParameters() const + { + return bestIndex_->getParameters(); + } + + SearchParams getSearchParameters() const + { + return bestSearchParams_; + } + + float getSpeedup() const + { + return speedup_; + } + + + /** + * Number of features in this index. + */ + virtual size_t size() const + { + return bestIndex_->size(); + } + + /** + * The length of each vector in this index. + */ + virtual size_t veclen() const + { + return bestIndex_->veclen(); + } + + /** + * The amount of memory (in bytes) this index uses. + */ + virtual int usedMemory() const + { + return bestIndex_->usedMemory(); + } + + /** + * Algorithm name + */ + virtual flann_algorithm_t getType() const + { + return FLANN_INDEX_AUTOTUNED; + } + +private: + + struct CostData + { + float searchTimeCost; + float buildTimeCost; + float memoryCost; + float totalCost; + IndexParams params; + }; + + void evaluate_kmeans(CostData& cost) + { + StartStopTimer t; + int checks; + const int nn = 1; + + Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n", + get_param<int>(cost.params,"iterations"), + get_param<int>(cost.params,"branching")); + KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_); + // measure index build time + t.start(); + kmeans.buildIndex(); + t.stop(); + float buildTime = (float)t.value; + + // measure search time + float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn); + + float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float)); + cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory; + cost.searchTimeCost = searchTime; + cost.buildTimeCost = buildTime; + Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_); + } + + + void evaluate_kdtree(CostData& cost) + { + StartStopTimer t; + int checks; + const int nn = 1; + + Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees")); + KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_); + + t.start(); + kdtree.buildIndex(); + t.stop(); + float buildTime = (float)t.value; + + //measure search time + float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn); + + float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float)); + cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory; + cost.searchTimeCost = searchTime; + cost.buildTimeCost = buildTime; + Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime); + } + + + // struct KMeansSimpleDownhillFunctor { + // + // Autotune& autotuner; + // KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {} + // + // float operator()(int* params) { + // + // float maxFloat = numeric_limits<float>::max(); + // + // if (params[0]<2) return maxFloat; + // if (params[1]<0) return maxFloat; + // + // CostData c; + // c.params["algorithm"] = KMEANS; + // c.params["centers-init"] = CENTERS_RANDOM; + // c.params["branching"] = params[0]; + // c.params["max-iterations"] = params[1]; + // + // autotuner.evaluate_kmeans(c); + // + // return c.timeCost; + // + // } + // }; + // + // struct KDTreeSimpleDownhillFunctor { + // + // Autotune& autotuner; + // KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {} + // + // float operator()(int* params) { + // float maxFloat = numeric_limits<float>::max(); + // + // if (params[0]<1) return maxFloat; + // + // CostData c; + // c.params["algorithm"] = KDTREE; + // c.params["trees"] = params[0]; + // + // autotuner.evaluate_kdtree(c); + // + // return c.timeCost; + // + // } + // }; + + + + void optimizeKMeans(std::vector<CostData>& costs) + { + Logger::info("KMEANS, Step 1: Exploring parameter space\n"); + + // explore kmeans parameters space using combinations of the parameters below + int maxIterations[] = { 1, 5, 10, 15 }; + int branchingFactors[] = { 16, 32, 64, 128, 256 }; + + int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors); + costs.reserve(costs.size() + kmeansParamSpaceSize); + + // evaluate kmeans for all parameter combinations + for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) { + for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) { + CostData cost; + cost.params["algorithm"] = FLANN_INDEX_KMEANS; + cost.params["centers_init"] = FLANN_CENTERS_RANDOM; + cost.params["iterations"] = maxIterations[i]; + cost.params["branching"] = branchingFactors[j]; + + evaluate_kmeans(cost); + costs.push_back(cost); + } + } + + // Logger::info("KMEANS, Step 2: simplex-downhill optimization\n"); + // + // const int n = 2; + // // choose initial simplex points as the best parameters so far + // int kmeansNMPoints[n*(n+1)]; + // float kmeansVals[n+1]; + // for (int i=0;i<n+1;++i) { + // kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"]; + // kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"]; + // kmeansVals[i] = kmeansCosts[i].timeCost; + // } + // KMeansSimpleDownhillFunctor kmeans_cost_func(*this); + // // run optimization + // optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals); + // // store results + // for (int i=0;i<n+1;++i) { + // kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2]; + // kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1]; + // kmeansCosts[i].timeCost = kmeansVals[i]; + // } + } + + + void optimizeKDTree(std::vector<CostData>& costs) + { + Logger::info("KD-TREE, Step 1: Exploring parameter space\n"); + + // explore kd-tree parameters space using the parameters below + int testTrees[] = { 1, 4, 8, 16, 32 }; + + // evaluate kdtree for all parameter combinations + for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) { + CostData cost; + cost.params["algorithm"] = FLANN_INDEX_KDTREE; + cost.params["trees"] = testTrees[i]; + + evaluate_kdtree(cost); + costs.push_back(cost); + } + + // Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n"); + // + // const int n = 1; + // // choose initial simplex points as the best parameters so far + // int kdtreeNMPoints[n*(n+1)]; + // float kdtreeVals[n+1]; + // for (int i=0;i<n+1;++i) { + // kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"]; + // kdtreeVals[i] = kdtreeCosts[i].timeCost; + // } + // KDTreeSimpleDownhillFunctor kdtree_cost_func(*this); + // // run optimization + // optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals); + // // store results + // for (int i=0;i<n+1;++i) { + // kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i]; + // kdtreeCosts[i].timeCost = kdtreeVals[i]; + // } + } + + /** + * Chooses the best nearest-neighbor algorithm and estimates the optimal + * parameters to use when building the index (for a given precision). + * Returns a dictionary with the optimal parameters. + */ + IndexParams estimateBuildParams() + { + std::vector<CostData> costs; + + int sampleSize = int(sample_fraction_ * dataset_.rows); + int testSampleSize = std::min(sampleSize / 10, 1000); + + Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_); + + // For a very small dataset, it makes no sense to build any fancy index, just + // use linear search + if (testSampleSize < 10) { + Logger::info("Choosing linear, dataset too small\n"); + return LinearIndexParams(); + } + + // We use a fraction of the original dataset to speedup the autotune algorithm + sampledDataset_ = random_sample(dataset_, sampleSize); + // We use a cross-validation approach, first we sample a testset from the dataset + testDataset_ = random_sample(sampledDataset_, testSampleSize, true); + + // We compute the ground truth using linear search + Logger::info("Computing ground truth... \n"); + gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1); + StartStopTimer t; + t.start(); + compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_); + t.stop(); + + CostData linear_cost; + linear_cost.searchTimeCost = (float)t.value; + linear_cost.buildTimeCost = 0; + linear_cost.memoryCost = 0; + linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR; + + costs.push_back(linear_cost); + + // Start parameter autotune process + Logger::info("Autotuning parameters...\n"); + + optimizeKMeans(costs); + optimizeKDTree(costs); + + float bestTimeCost = costs[0].searchTimeCost; + for (size_t i = 0; i < costs.size(); ++i) { + float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost; + if (timeCost < bestTimeCost) { + bestTimeCost = timeCost; + } + } + + float bestCost = costs[0].searchTimeCost / bestTimeCost; + IndexParams bestParams = costs[0].params; + if (bestTimeCost > 0) { + for (size_t i = 0; i < costs.size(); ++i) { + float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost + + memory_weight_ * costs[i].memoryCost; + if (crtCost < bestCost) { + bestCost = crtCost; + bestParams = costs[i].params; + } + } + } + + delete[] gt_matches_.data; + delete[] testDataset_.data; + delete[] sampledDataset_.data; + + return bestParams; + } + + + + /** + * Estimates the search time parameters needed to get the desired precision. + * Precondition: the index is built + * Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search. + */ + float estimateSearchParams(SearchParams& searchParams) + { + const int nn = 1; + const size_t SAMPLE_COUNT = 1000; + + assert(bestIndex_ != NULL); // must have a valid index + + float speedup = 0; + + int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT); + if (samples > 0) { + Matrix<ElementType> testDataset = random_sample(dataset_, samples); + + Logger::info("Computing ground truth\n"); + + // we need to compute the ground truth first + Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1); + StartStopTimer t; + t.start(); + compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_); + t.stop(); + float linear = (float)t.value; + + int checks; + Logger::info("Estimating number of checks\n"); + + float searchTime; + float cb_index; + if (bestIndex_->getType() == FLANN_INDEX_KMEANS) { + Logger::info("KMeans algorithm, estimating cluster border factor\n"); + KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_; + float bestSearchTime = -1; + float best_cb_index = -1; + int best_checks = -1; + for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) { + kmeans->set_cb_index(cb_index); + searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1); + if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) { + bestSearchTime = searchTime; + best_cb_index = cb_index; + best_checks = checks; + } + } + searchTime = bestSearchTime; + cb_index = best_cb_index; + checks = best_checks; + + kmeans->set_cb_index(best_cb_index); + Logger::info("Optimum cb_index: %g\n", cb_index); + bestParams_["cb_index"] = cb_index; + } + else { + searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1); + } + + Logger::info("Required number of checks: %d \n", checks); + searchParams["checks"] = checks; + + speedup = linear / searchTime; + + delete[] gt_matches.data; + delete[] testDataset.data; + } + + return speedup; + } + +private: + NNIndex<Distance>* bestIndex_; + + IndexParams bestParams_; + SearchParams bestSearchParams_; + + Matrix<ElementType> sampledDataset_; + Matrix<ElementType> testDataset_; + Matrix<int> gt_matches_; + + float speedup_; + + /** + * The dataset used by this index + */ + const Matrix<ElementType> dataset_; + + /** + * Index parameters + */ + float target_precision_; + float build_weight_; + float memory_weight_; + float sample_fraction_; + + Distance distance_; + + +}; +} + +#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/composite_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,194 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_ +#define OPENCV_FLANN_COMPOSITE_INDEX_H_ + +#include "general.h" +#include "nn_index.h" +#include "kdtree_index.h" +#include "kmeans_index.h" + +namespace cvflann +{ + +/** + * Index parameters for the CompositeIndex. + */ +struct CompositeIndexParams : public IndexParams +{ + CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11, + flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) + { + (*this)["algorithm"] = FLANN_INDEX_KMEANS; + // number of randomized trees to use (for kdtree) + (*this)["trees"] = trees; + // branching factor + (*this)["branching"] = branching; + // max iterations to perform in one kmeans clustering (kmeans tree) + (*this)["iterations"] = iterations; + // algorithm used for picking the initial cluster centers for kmeans tree + (*this)["centers_init"] = centers_init; + // cluster boundary index. Used when searching the kmeans tree + (*this)["cb_index"] = cb_index; + } +}; + + +/** + * This index builds a kd-tree index and a k-means index and performs nearest + * neighbour search both indexes. This gives a slight boost in search performance + * as some of the neighbours that are missed by one index are found by the other. + */ +template <typename Distance> +class CompositeIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + /** + * Index constructor + * @param inputData dataset containing the points to index + * @param params Index parameters + * @param d Distance functor + * @return + */ + CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(), + Distance d = Distance()) : index_params_(params) + { + kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d); + kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d); + + } + + CompositeIndex(const CompositeIndex&); + CompositeIndex& operator=(const CompositeIndex&); + + virtual ~CompositeIndex() + { + delete kdtree_index_; + delete kmeans_index_; + } + + /** + * @return The index type + */ + flann_algorithm_t getType() const + { + return FLANN_INDEX_COMPOSITE; + } + + /** + * @return Size of the index + */ + size_t size() const + { + return kdtree_index_->size(); + } + + /** + * \returns The dimensionality of the features in this index. + */ + size_t veclen() const + { + return kdtree_index_->veclen(); + } + + /** + * \returns The amount of memory (in bytes) used by the index. + */ + int usedMemory() const + { + return kmeans_index_->usedMemory() + kdtree_index_->usedMemory(); + } + + /** + * \brief Builds the index + */ + void buildIndex() + { + Logger::info("Building kmeans tree...\n"); + kmeans_index_->buildIndex(); + Logger::info("Building kdtree tree...\n"); + kdtree_index_->buildIndex(); + } + + /** + * \brief Saves the index to a stream + * \param stream The stream to save the index to + */ + void saveIndex(FILE* stream) + { + kmeans_index_->saveIndex(stream); + kdtree_index_->saveIndex(stream); + } + + /** + * \brief Loads the index from a stream + * \param stream The stream from which the index is loaded + */ + void loadIndex(FILE* stream) + { + kmeans_index_->loadIndex(stream); + kdtree_index_->loadIndex(stream); + } + + /** + * \returns The index parameters + */ + IndexParams getParameters() const + { + return index_params_; + } + + /** + * \brief Method that searches for nearest-neighbours + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + kmeans_index_->findNeighbors(result, vec, searchParams); + kdtree_index_->findNeighbors(result, vec, searchParams); + } + +private: + /** The k-means index */ + KMeansIndex<Distance>* kmeans_index_; + + /** The kd-tree index */ + KDTreeIndex<Distance>* kdtree_index_; + + /** The index parameters */ + const IndexParams index_params_; +}; + +} + +#endif //OPENCV_FLANN_COMPOSITE_INDEX_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/config.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,38 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_CONFIG_H_ +#define OPENCV_FLANN_CONFIG_H_ + +#ifdef FLANN_VERSION_ +#undef FLANN_VERSION_ +#endif +#define FLANN_VERSION_ "1.6.10" + +#endif /* OPENCV_FLANN_CONFIG_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/defines.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,177 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_DEFINES_H_ +#define OPENCV_FLANN_DEFINES_H_ + +#include "config.h" + +#ifdef FLANN_EXPORT +#undef FLANN_EXPORT +#endif +#ifdef WIN32 +/* win32 dll export/import directives */ + #ifdef FLANN_EXPORTS + #define FLANN_EXPORT __declspec(dllexport) + #elif defined(FLANN_STATIC) + #define FLANN_EXPORT + #else + #define FLANN_EXPORT __declspec(dllimport) + #endif +#else +/* unix needs nothing */ + #define FLANN_EXPORT +#endif + + +#ifdef FLANN_DEPRECATED +#undef FLANN_DEPRECATED +#endif +#ifdef __GNUC__ +#define FLANN_DEPRECATED __attribute__ ((deprecated)) +#elif defined(_MSC_VER) +#define FLANN_DEPRECATED __declspec(deprecated) +#else +#pragma message("WARNING: You need to implement FLANN_DEPRECATED for this compiler") +#define FLANN_DEPRECATED +#endif + + +#undef FLANN_PLATFORM_32_BIT +#undef FLANN_PLATFORM_64_BIT +#if defined __amd64__ || defined __x86_64__ || defined _WIN64 || defined _M_X64 +#define FLANN_PLATFORM_64_BIT +#else +#define FLANN_PLATFORM_32_BIT +#endif + + +#undef FLANN_ARRAY_LEN +#define FLANN_ARRAY_LEN(a) (sizeof(a)/sizeof(a[0])) + +namespace cvflann { + +/* Nearest neighbour index algorithms */ +enum flann_algorithm_t +{ + FLANN_INDEX_LINEAR = 0, + FLANN_INDEX_KDTREE = 1, + FLANN_INDEX_KMEANS = 2, + FLANN_INDEX_COMPOSITE = 3, + FLANN_INDEX_KDTREE_SINGLE = 4, + FLANN_INDEX_HIERARCHICAL = 5, + FLANN_INDEX_LSH = 6, + FLANN_INDEX_SAVED = 254, + FLANN_INDEX_AUTOTUNED = 255, + + // deprecated constants, should use the FLANN_INDEX_* ones instead + LINEAR = 0, + KDTREE = 1, + KMEANS = 2, + COMPOSITE = 3, + KDTREE_SINGLE = 4, + SAVED = 254, + AUTOTUNED = 255 +}; + + + +enum flann_centers_init_t +{ + FLANN_CENTERS_RANDOM = 0, + FLANN_CENTERS_GONZALES = 1, + FLANN_CENTERS_KMEANSPP = 2, + FLANN_CENTERS_GROUPWISE = 3, + + // deprecated constants, should use the FLANN_CENTERS_* ones instead + CENTERS_RANDOM = 0, + CENTERS_GONZALES = 1, + CENTERS_KMEANSPP = 2 +}; + +enum flann_log_level_t +{ + FLANN_LOG_NONE = 0, + FLANN_LOG_FATAL = 1, + FLANN_LOG_ERROR = 2, + FLANN_LOG_WARN = 3, + FLANN_LOG_INFO = 4 +}; + +enum flann_distance_t +{ + FLANN_DIST_EUCLIDEAN = 1, + FLANN_DIST_L2 = 1, + FLANN_DIST_MANHATTAN = 2, + FLANN_DIST_L1 = 2, + FLANN_DIST_MINKOWSKI = 3, + FLANN_DIST_MAX = 4, + FLANN_DIST_HIST_INTERSECT = 5, + FLANN_DIST_HELLINGER = 6, + FLANN_DIST_CHI_SQUARE = 7, + FLANN_DIST_CS = 7, + FLANN_DIST_KULLBACK_LEIBLER = 8, + FLANN_DIST_KL = 8, + FLANN_DIST_HAMMING = 9, + + // deprecated constants, should use the FLANN_DIST_* ones instead + EUCLIDEAN = 1, + MANHATTAN = 2, + MINKOWSKI = 3, + MAX_DIST = 4, + HIST_INTERSECT = 5, + HELLINGER = 6, + CS = 7, + KL = 8, + KULLBACK_LEIBLER = 8 +}; + +enum flann_datatype_t +{ + FLANN_INT8 = 0, + FLANN_INT16 = 1, + FLANN_INT32 = 2, + FLANN_INT64 = 3, + FLANN_UINT8 = 4, + FLANN_UINT16 = 5, + FLANN_UINT32 = 6, + FLANN_UINT64 = 7, + FLANN_FLOAT32 = 8, + FLANN_FLOAT64 = 9 +}; + +enum +{ + FLANN_CHECKS_UNLIMITED = -1, + FLANN_CHECKS_AUTOTUNED = -2 +}; + +} + +#endif /* OPENCV_FLANN_DEFINES_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/dist.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,905 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_DIST_H_ +#define OPENCV_FLANN_DIST_H_ + +#include <cmath> +#include <cstdlib> +#include <string.h> +#ifdef _MSC_VER +typedef unsigned __int32 uint32_t; +typedef unsigned __int64 uint64_t; +#else +#include <stdint.h> +#endif + +#include "defines.h" + +#if (defined WIN32 || defined _WIN32) && defined(_M_ARM) +# include <Intrin.h> +#endif + +#ifdef __ARM_NEON__ +# include "arm_neon.h" +#endif + +namespace cvflann +{ + +template<typename T> +inline T abs(T x) { return (x<0) ? -x : x; } + +template<> +inline int abs<int>(int x) { return ::abs(x); } + +template<> +inline float abs<float>(float x) { return fabsf(x); } + +template<> +inline double abs<double>(double x) { return fabs(x); } + +template<typename T> +struct Accumulator { typedef T Type; }; +template<> +struct Accumulator<unsigned char> { typedef float Type; }; +template<> +struct Accumulator<unsigned short> { typedef float Type; }; +template<> +struct Accumulator<unsigned int> { typedef float Type; }; +template<> +struct Accumulator<char> { typedef float Type; }; +template<> +struct Accumulator<short> { typedef float Type; }; +template<> +struct Accumulator<int> { typedef float Type; }; + +#undef True +#undef False + +class True +{ +}; + +class False +{ +}; + + +/** + * Squared Euclidean distance functor. + * + * This is the simpler, unrolled version. This is preferable for + * very low dimensionality data (eg 3D points) + */ +template<class T> +struct L2_Simple +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator<T>::Type ResultType; + + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const + { + ResultType result = ResultType(); + ResultType diff; + for(size_t i = 0; i < size; ++i ) { + diff = *a++ - *b++; + result += diff*diff; + } + return result; + } + + template <typename U, typename V> + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return (a-b)*(a-b); + } +}; + + + +/** + * Squared Euclidean distance functor, optimized version + */ +template<class T> +struct L2 +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator<T>::Type ResultType; + + /** + * Compute the squared Euclidean distance between two vectors. + * + * This is highly optimised, with loop unrolling, as it is one + * of the most expensive inner loops. + * + * The computation of squared root at the end is omitted for + * efficiency. + */ + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = (ResultType)(a[0] - b[0]); + diff1 = (ResultType)(a[1] - b[1]); + diff2 = (ResultType)(a[2] - b[2]); + diff3 = (ResultType)(a[3] - b[3]); + result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; + a += 4; + b += 4; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + diff0 = (ResultType)(*a++ - *b++); + result += diff0 * diff0; + } + return result; + } + + /** + * Partial euclidean distance, using just one dimension. This is used by the + * kd-tree when computing partial distances while traversing the tree. + * + * Squared root is omitted for efficiency. + */ + template <typename U, typename V> + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return (a-b)*(a-b); + } +}; + + +/* + * Manhattan distance functor, optimized version + */ +template<class T> +struct L1 +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator<T>::Type ResultType; + + /** + * Compute the Manhattan (L_1) distance between two vectors. + * + * This is highly optimised, with loop unrolling, as it is one + * of the most expensive inner loops. + */ + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = (ResultType)abs(a[0] - b[0]); + diff1 = (ResultType)abs(a[1] - b[1]); + diff2 = (ResultType)abs(a[2] - b[2]); + diff3 = (ResultType)abs(a[3] - b[3]); + result += diff0 + diff1 + diff2 + diff3; + a += 4; + b += 4; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + diff0 = (ResultType)abs(*a++ - *b++); + result += diff0; + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template <typename U, typename V> + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return abs(a-b); + } +}; + + + +template<class T> +struct MinkowskiDistance +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator<T>::Type ResultType; + + int order; + + MinkowskiDistance(int order_) : order(order_) {} + + /** + * Compute the Minkowsky (L_p) distance between two vectors. + * + * This is highly optimised, with loop unrolling, as it is one + * of the most expensive inner loops. + * + * The computation of squared root at the end is omitted for + * efficiency. + */ + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = (ResultType)abs(a[0] - b[0]); + diff1 = (ResultType)abs(a[1] - b[1]); + diff2 = (ResultType)abs(a[2] - b[2]); + diff3 = (ResultType)abs(a[3] - b[3]); + result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order); + a += 4; + b += 4; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + diff0 = (ResultType)abs(*a++ - *b++); + result += pow(diff0,order); + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template <typename U, typename V> + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return pow(static_cast<ResultType>(abs(a-b)),order); + } +}; + + + +template<class T> +struct MaxDistance +{ + typedef False is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator<T>::Type ResultType; + + /** + * Compute the max distance (L_infinity) between two vectors. + * + * This distance is not a valid kdtree distance, it's not dimensionwise additive. + */ + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = abs(a[0] - b[0]); + diff1 = abs(a[1] - b[1]); + diff2 = abs(a[2] - b[2]); + diff3 = abs(a[3] - b[3]); + if (diff0>result) {result = diff0; } + if (diff1>result) {result = diff1; } + if (diff2>result) {result = diff2; } + if (diff3>result) {result = diff3; } + a += 4; + b += 4; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + diff0 = abs(*a++ - *b++); + result = (diff0>result) ? diff0 : result; + } + return result; + } + + /* This distance functor is not dimension-wise additive, which + * makes it an invalid kd-tree distance, not implementing the accum_dist method */ + +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** + * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor + * bit count of A exclusive XOR'ed with B + */ +struct HammingLUT +{ + typedef False is_kdtree_distance; + typedef False is_vector_space_distance; + + typedef unsigned char ElementType; + typedef int ResultType; + + /** this will count the bits in a ^ b + */ + ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const + { + static const uchar popCountTable[] = + { + 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 + }; + ResultType result = 0; + for (size_t i = 0; i < size; i++) { + result += popCountTable[a[i] ^ b[i]]; + } + return result; + } +}; + +/** + * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set) + * That code was taken from brief.cpp in OpenCV + */ +template<class T> +struct Hamming +{ + typedef False is_kdtree_distance; + typedef False is_vector_space_distance; + + + typedef T ElementType; + typedef int ResultType; + + template<typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const + { + ResultType result = 0; +#ifdef __ARM_NEON__ + { + uint32x4_t bits = vmovq_n_u32(0); + for (size_t i = 0; i < size; i += 16) { + uint8x16_t A_vec = vld1q_u8 (a + i); + uint8x16_t B_vec = vld1q_u8 (b + i); + uint8x16_t AxorB = veorq_u8 (A_vec, B_vec); + uint8x16_t bitsSet = vcntq_u8 (AxorB); + uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet); + uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8); + bits = vaddq_u32(bits, bitSet4); + } + uint64x2_t bitSet2 = vpaddlq_u32 (bits); + result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0); + result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2); + } +#elif __GNUC__ + { + //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll) + typedef unsigned long long pop_t; + const size_t modulo = size % sizeof(pop_t); + const pop_t* a2 = reinterpret_cast<const pop_t*> (a); + const pop_t* b2 = reinterpret_cast<const pop_t*> (b); + const pop_t* a2_end = a2 + (size / sizeof(pop_t)); + + for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2)); + + if (modulo) { + //in the case where size is not dividable by sizeof(size_t) + //need to mask off the bits at the end + pop_t a_final = 0, b_final = 0; + memcpy(&a_final, a2, modulo); + memcpy(&b_final, b2, modulo); + result += __builtin_popcountll(a_final ^ b_final); + } + } +#else // NO NEON and NOT GNUC + typedef unsigned long long pop_t; + HammingLUT lut; + result = lut(reinterpret_cast<const unsigned char*> (a), + reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t)); +#endif + return result; + } +}; + +template<typename T> +struct Hamming2 +{ + typedef False is_kdtree_distance; + typedef False is_vector_space_distance; + + typedef T ElementType; + typedef int ResultType; + + /** This is popcount_3() from: + * http://en.wikipedia.org/wiki/Hamming_weight */ + unsigned int popcnt32(uint32_t n) const + { + n -= ((n >> 1) & 0x55555555); + n = (n & 0x33333333) + ((n >> 2) & 0x33333333); + return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24; + } + +#ifdef FLANN_PLATFORM_64_BIT + unsigned int popcnt64(uint64_t n) const + { + n -= ((n >> 1) & 0x5555555555555555); + n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333); + return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56; + } +#endif + + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const + { +#ifdef FLANN_PLATFORM_64_BIT + const uint64_t* pa = reinterpret_cast<const uint64_t*>(a); + const uint64_t* pb = reinterpret_cast<const uint64_t*>(b); + ResultType result = 0; + size /= (sizeof(uint64_t)/sizeof(unsigned char)); + for(size_t i = 0; i < size; ++i ) { + result += popcnt64(*pa ^ *pb); + ++pa; + ++pb; + } +#else + const uint32_t* pa = reinterpret_cast<const uint32_t*>(a); + const uint32_t* pb = reinterpret_cast<const uint32_t*>(b); + ResultType result = 0; + size /= (sizeof(uint32_t)/sizeof(unsigned char)); + for(size_t i = 0; i < size; ++i ) { + result += popcnt32(*pa ^ *pb); + ++pa; + ++pb; + } +#endif + return result; + } +}; + + + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +template<class T> +struct HistIntersectionDistance +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator<T>::Type ResultType; + + /** + * Compute the histogram intersection distance + */ + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType min0, min1, min2, min3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]); + min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]); + min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]); + min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]); + result += min0 + min1 + min2 + min3; + a += 4; + b += 4; + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + min0 = (ResultType)(*a < *b ? *a : *b); + result += min0; + ++a; + ++b; + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template <typename U, typename V> + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return a<b ? a : b; + } +}; + + + +template<class T> +struct HellingerDistance +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator<T>::Type ResultType; + + /** + * Compute the Hellinger distance + */ + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0])); + diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1])); + diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2])); + diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3])); + result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; + a += 4; + b += 4; + } + while (a < last) { + diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++)); + result += diff0 * diff0; + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template <typename U, typename V> + inline ResultType accum_dist(const U& a, const V& b, int) const + { + ResultType diff = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b)); + return diff * diff; + } +}; + + +template<class T> +struct ChiSquareDistance +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator<T>::Type ResultType; + + /** + * Compute the chi-square distance + */ + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType sum, diff; + Iterator1 last = a + size; + + while (a < last) { + sum = (ResultType)(*a + *b); + if (sum>0) { + diff = (ResultType)(*a - *b); + result += diff*diff/sum; + } + ++a; + ++b; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template <typename U, typename V> + inline ResultType accum_dist(const U& a, const V& b, int) const + { + ResultType result = ResultType(); + ResultType sum, diff; + + sum = (ResultType)(a+b); + if (sum>0) { + diff = (ResultType)(a-b); + result = diff*diff/sum; + } + return result; + } +}; + + +template<class T> +struct KL_Divergence +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator<T>::Type ResultType; + + /** + * Compute the Kullback–Leibler divergence + */ + template <typename Iterator1, typename Iterator2> + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + Iterator1 last = a + size; + + while (a < last) { + if (* b != 0) { + ResultType ratio = (ResultType)(*a / *b); + if (ratio>0) { + result += *a * log(ratio); + } + } + ++a; + ++b; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template <typename U, typename V> + inline ResultType accum_dist(const U& a, const V& b, int) const + { + ResultType result = ResultType(); + if( *b != 0 ) { + ResultType ratio = (ResultType)(a / b); + if (ratio>0) { + result = a * log(ratio); + } + } + return result; + } +}; + + + +/* + * This is a "zero iterator". It basically behaves like a zero filled + * array to all algorithms that use arrays as iterators (STL style). + * It's useful when there's a need to compute the distance between feature + * and origin it and allows for better compiler optimisation than using a + * zero-filled array. + */ +template <typename T> +struct ZeroIterator +{ + + T operator*() + { + return 0; + } + + T operator[](int) + { + return 0; + } + + const ZeroIterator<T>& operator ++() + { + return *this; + } + + ZeroIterator<T> operator ++(int) + { + return *this; + } + + ZeroIterator<T>& operator+=(int) + { + return *this; + } + +}; + + +/* + * Depending on processed distances, some of them are already squared (e.g. L2) + * and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure + * we are working on ^2 distances, thus following templates to ensure that. + */ +template <typename Distance, typename ElementType> +struct squareDistance +{ + typedef typename Distance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist*dist; } +}; + + +template <typename ElementType> +struct squareDistance<L2_Simple<ElementType>, ElementType> +{ + typedef typename L2_Simple<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + +template <typename ElementType> +struct squareDistance<L2<ElementType>, ElementType> +{ + typedef typename L2<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + + +template <typename ElementType> +struct squareDistance<MinkowskiDistance<ElementType>, ElementType> +{ + typedef typename MinkowskiDistance<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + +template <typename ElementType> +struct squareDistance<HellingerDistance<ElementType>, ElementType> +{ + typedef typename HellingerDistance<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + +template <typename ElementType> +struct squareDistance<ChiSquareDistance<ElementType>, ElementType> +{ + typedef typename ChiSquareDistance<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + + +template <typename Distance> +typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist ) +{ + typedef typename Distance::ElementType ElementType; + + squareDistance<Distance, ElementType> dummy; + return dummy( dist ); +} + + +/* + * ...and a template to ensure the user that he will process the normal distance, + * and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance) + * that will result in doing actually sqrt(dist*dist) for L1 distance for instance. + */ +template <typename Distance, typename ElementType> +struct simpleDistance +{ + typedef typename Distance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + + +template <typename ElementType> +struct simpleDistance<L2_Simple<ElementType>, ElementType> +{ + typedef typename L2_Simple<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + +template <typename ElementType> +struct simpleDistance<L2<ElementType>, ElementType> +{ + typedef typename L2<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + + +template <typename ElementType> +struct simpleDistance<MinkowskiDistance<ElementType>, ElementType> +{ + typedef typename MinkowskiDistance<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + +template <typename ElementType> +struct simpleDistance<HellingerDistance<ElementType>, ElementType> +{ + typedef typename HellingerDistance<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + +template <typename ElementType> +struct simpleDistance<ChiSquareDistance<ElementType>, ElementType> +{ + typedef typename ChiSquareDistance<ElementType>::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + + +template <typename Distance> +typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist ) +{ + typedef typename Distance::ElementType ElementType; + + simpleDistance<Distance, ElementType> dummy; + return dummy( dist ); +} + +} + +#endif //OPENCV_FLANN_DIST_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/dummy.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,16 @@ + +#ifndef OPENCV_FLANN_DUMMY_H_ +#define OPENCV_FLANN_DUMMY_H_ + +namespace cvflann +{ + +#if (defined WIN32 || defined _WIN32 || defined WINCE) && defined CVAPI_EXPORTS +__declspec(dllexport) +#endif +void dummyfunc(); + +} + + +#endif /* OPENCV_FLANN_DUMMY_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/dynamic_bitset.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,159 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +/*********************************************************************** + * Author: Vincent Rabaud + *************************************************************************/ + +#ifndef OPENCV_FLANN_DYNAMIC_BITSET_H_ +#define OPENCV_FLANN_DYNAMIC_BITSET_H_ + +#ifndef FLANN_USE_BOOST +# define FLANN_USE_BOOST 0 +#endif +//#define FLANN_USE_BOOST 1 +#if FLANN_USE_BOOST +#include <boost/dynamic_bitset.hpp> +typedef boost::dynamic_bitset<> DynamicBitset; +#else + +#include <limits.h> + +#include "dist.h" + +namespace cvflann { + +/** Class re-implementing the boost version of it + * This helps not depending on boost, it also does not do the bound checks + * and has a way to reset a block for speed + */ +class DynamicBitset +{ +public: + /** default constructor + */ + DynamicBitset() + { + } + + /** only constructor we use in our code + * @param sz the size of the bitset (in bits) + */ + DynamicBitset(size_t sz) + { + resize(sz); + reset(); + } + + /** Sets all the bits to 0 + */ + void clear() + { + std::fill(bitset_.begin(), bitset_.end(), 0); + } + + /** @brief checks if the bitset is empty + * @return true if the bitset is empty + */ + bool empty() const + { + return bitset_.empty(); + } + + /** set all the bits to 0 + */ + void reset() + { + std::fill(bitset_.begin(), bitset_.end(), 0); + } + + /** @brief set one bit to 0 + * @param index + */ + void reset(size_t index) + { + bitset_[index / cell_bit_size_] &= ~(size_t(1) << (index % cell_bit_size_)); + } + + /** @brief sets a specific bit to 0, and more bits too + * This function is useful when resetting a given set of bits so that the + * whole bitset ends up being 0: if that's the case, we don't care about setting + * other bits to 0 + * @param index + */ + void reset_block(size_t index) + { + bitset_[index / cell_bit_size_] = 0; + } + + /** resize the bitset so that it contains at least sz bits + * @param sz + */ + void resize(size_t sz) + { + size_ = sz; + bitset_.resize(sz / cell_bit_size_ + 1); + } + + /** set a bit to true + * @param index the index of the bit to set to 1 + */ + void set(size_t index) + { + bitset_[index / cell_bit_size_] |= size_t(1) << (index % cell_bit_size_); + } + + /** gives the number of contained bits + */ + size_t size() const + { + return size_; + } + + /** check if a bit is set + * @param index the index of the bit to check + * @return true if the bit is set + */ + bool test(size_t index) const + { + return (bitset_[index / cell_bit_size_] & (size_t(1) << (index % cell_bit_size_))) != 0; + } + +private: + std::vector<size_t> bitset_; + size_t size_; + static const unsigned int cell_bit_size_ = CHAR_BIT * sizeof(size_t); +}; + +} // namespace cvflann + +#endif + +#endif // OPENCV_FLANN_DYNAMIC_BITSET_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/flann.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/flann.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/flann_base.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,290 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_BASE_HPP_ +#define OPENCV_FLANN_BASE_HPP_ + +#include <vector> +#include <cassert> +#include <cstdio> + +#include "general.h" +#include "matrix.h" +#include "params.h" +#include "saving.h" + +#include "all_indices.h" + +namespace cvflann +{ + +/** + * Sets the log level used for all flann functions + * @param level Verbosity level + */ +inline void log_verbosity(int level) +{ + if (level >= 0) { + Logger::setLevel(level); + } +} + +/** + * (Deprecated) Index parameters for creating a saved index. + */ +struct SavedIndexParams : public IndexParams +{ + SavedIndexParams(cv::String filename) + { + (* this)["algorithm"] = FLANN_INDEX_SAVED; + (*this)["filename"] = filename; + } +}; + + +template<typename Distance> +NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const cv::String& filename, Distance distance) +{ + typedef typename Distance::ElementType ElementType; + + FILE* fin = fopen(filename.c_str(), "rb"); + if (fin == NULL) { + return NULL; + } + IndexHeader header = load_header(fin); + if (header.data_type != Datatype<ElementType>::type()) { + throw FLANNException("Datatype of saved index is different than of the one to be created."); + } + if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) { + throw FLANNException("The index saved belongs to a different dataset"); + } + + IndexParams params; + params["algorithm"] = header.index_type; + NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance); + nnIndex->loadIndex(fin); + fclose(fin); + + return nnIndex; +} + + +template<typename Distance> +class Index : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() ) + : index_params_(params) + { + flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm"); + loaded_ = false; + + if (index_type == FLANN_INDEX_SAVED) { + nnIndex_ = load_saved_index<Distance>(features, get_param<cv::String>(params,"filename"), distance); + loaded_ = true; + } + else { + nnIndex_ = create_index_by_type<Distance>(features, params, distance); + } + } + + ~Index() + { + delete nnIndex_; + } + + /** + * Builds the index. + */ + void buildIndex() + { + if (!loaded_) { + nnIndex_->buildIndex(); + } + } + + void save(cv::String filename) + { + FILE* fout = fopen(filename.c_str(), "wb"); + if (fout == NULL) { + throw FLANNException("Cannot open file"); + } + save_header(fout, *nnIndex_); + saveIndex(fout); + fclose(fout); + } + + /** + * \brief Saves the index to a stream + * \param stream The stream to save the index to + */ + virtual void saveIndex(FILE* stream) + { + nnIndex_->saveIndex(stream); + } + + /** + * \brief Loads the index from a stream + * \param stream The stream from which the index is loaded + */ + virtual void loadIndex(FILE* stream) + { + nnIndex_->loadIndex(stream); + } + + /** + * \returns number of features in this index. + */ + size_t veclen() const + { + return nnIndex_->veclen(); + } + + /** + * \returns The dimensionality of the features in this index. + */ + size_t size() const + { + return nnIndex_->size(); + } + + /** + * \returns The index type (kdtree, kmeans,...) + */ + flann_algorithm_t getType() const + { + return nnIndex_->getType(); + } + + /** + * \returns The amount of memory (in bytes) used by the index. + */ + virtual int usedMemory() const + { + return nnIndex_->usedMemory(); + } + + + /** + * \returns The index parameters + */ + IndexParams getParameters() const + { + return nnIndex_->getParameters(); + } + + /** + * \brief Perform k-nearest neighbor search + * \param[in] queries The query points for which to find the nearest neighbors + * \param[out] indices The indices of the nearest neighbors found + * \param[out] dists Distances to the nearest neighbors found + * \param[in] knn Number of nearest neighbors to return + * \param[in] params Search parameters + */ + void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) + { + nnIndex_->knnSearch(queries, indices, dists, knn, params); + } + + /** + * \brief Perform radius search + * \param[in] query The query point + * \param[out] indices The indinces of the neighbors found within the given radius + * \param[out] dists The distances to the nearest neighbors found + * \param[in] radius The radius used for search + * \param[in] params Search parameters + * \returns Number of neighbors found + */ + int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params) + { + return nnIndex_->radiusSearch(query, indices, dists, radius, params); + } + + /** + * \brief Method that searches for nearest-neighbours + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + nnIndex_->findNeighbors(result, vec, searchParams); + } + + /** + * \brief Returns actual index + */ + FLANN_DEPRECATED NNIndex<Distance>* getIndex() + { + return nnIndex_; + } + + /** + * \brief Returns index parameters. + * \deprecated use getParameters() instead. + */ + FLANN_DEPRECATED const IndexParams* getIndexParameters() + { + return &index_params_; + } + +private: + /** Pointer to actual index class */ + NNIndex<Distance>* nnIndex_; + /** Indices if the index was loaded from a file */ + bool loaded_; + /** Parameters passed to the index */ + IndexParams index_params_; +}; + +/** + * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the + * the clustering tree to return a flat clustering. + * @param[in] points Points to be clustered + * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the + * number of clusters requested. + * @param params Clustering parameters (The same as for cvflann::KMeansIndex) + * @param d Distance to be used for clustering (eg: cvflann::L2) + * @return number of clusters computed (can be different than clusters.rows and is the highest number + * of the form (branching-1)*K+1 smaller than clusters.rows). + */ +template <typename Distance> +int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers, + const KMeansIndexParams& params, Distance d = Distance()) +{ + KMeansIndex<Distance> kmeans(points, params, d); + kmeans.buildIndex(); + + int clusterNum = kmeans.getClusterCenters(centers); + return clusterNum; +} + +} +#endif /* OPENCV_FLANN_BASE_HPP_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/general.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,50 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_GENERAL_H_ +#define OPENCV_FLANN_GENERAL_H_ + +#include "opencv2/core.hpp" + +namespace cvflann +{ + +class FLANNException : public cv::Exception +{ +public: + FLANNException(const char* message) : cv::Exception(0, message, "", __FILE__, __LINE__) { } + + FLANNException(const cv::String& message) : cv::Exception(0, message, "", __FILE__, __LINE__) { } +}; + +} + + +#endif /* OPENCV_FLANN_GENERAL_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/ground_truth.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,94 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_GROUND_TRUTH_H_ +#define OPENCV_FLANN_GROUND_TRUTH_H_ + +#include "dist.h" +#include "matrix.h" + + +namespace cvflann +{ + +template <typename Distance> +void find_nearest(const Matrix<typename Distance::ElementType>& dataset, typename Distance::ElementType* query, int* matches, int nn, + int skip = 0, Distance distance = Distance()) +{ + typedef typename Distance::ResultType DistanceType; + int n = nn + skip; + + std::vector<int> match(n); + std::vector<DistanceType> dists(n); + + dists[0] = distance(dataset[0], query, dataset.cols); + match[0] = 0; + int dcnt = 1; + + for (size_t i=1; i<dataset.rows; ++i) { + DistanceType tmp = distance(dataset[i], query, dataset.cols); + + if (dcnt<n) { + match[dcnt] = (int)i; + dists[dcnt++] = tmp; + } + else if (tmp < dists[dcnt-1]) { + dists[dcnt-1] = tmp; + match[dcnt-1] = (int)i; + } + + int j = dcnt-1; + // bubble up + while (j>=1 && dists[j]<dists[j-1]) { + std::swap(dists[j],dists[j-1]); + std::swap(match[j],match[j-1]); + j--; + } + } + + for (int i=0; i<nn; ++i) { + matches[i] = match[i+skip]; + } +} + + +template <typename Distance> +void compute_ground_truth(const Matrix<typename Distance::ElementType>& dataset, const Matrix<typename Distance::ElementType>& testset, Matrix<int>& matches, + int skip=0, Distance d = Distance()) +{ + for (size_t i=0; i<testset.rows; ++i) { + find_nearest<Distance>(dataset, testset[i], matches[i], (int)matches.cols, skip, d); + } +} + + +} + +#endif //OPENCV_FLANN_GROUND_TRUTH_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/hdf5.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,231 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_HDF5_H_ +#define OPENCV_FLANN_HDF5_H_ + +#include <hdf5.h> + +#include "matrix.h" + + +namespace cvflann +{ + +namespace +{ + +template<typename T> +hid_t get_hdf5_type() +{ + throw FLANNException("Unsupported type for IO operations"); +} + +template<> +hid_t get_hdf5_type<char>() { return H5T_NATIVE_CHAR; } +template<> +hid_t get_hdf5_type<unsigned char>() { return H5T_NATIVE_UCHAR; } +template<> +hid_t get_hdf5_type<short int>() { return H5T_NATIVE_SHORT; } +template<> +hid_t get_hdf5_type<unsigned short int>() { return H5T_NATIVE_USHORT; } +template<> +hid_t get_hdf5_type<int>() { return H5T_NATIVE_INT; } +template<> +hid_t get_hdf5_type<unsigned int>() { return H5T_NATIVE_UINT; } +template<> +hid_t get_hdf5_type<long>() { return H5T_NATIVE_LONG; } +template<> +hid_t get_hdf5_type<unsigned long>() { return H5T_NATIVE_ULONG; } +template<> +hid_t get_hdf5_type<float>() { return H5T_NATIVE_FLOAT; } +template<> +hid_t get_hdf5_type<double>() { return H5T_NATIVE_DOUBLE; } +} + + +#define CHECK_ERROR(x,y) if ((x)<0) throw FLANNException((y)); + +template<typename T> +void save_to_file(const cvflann::Matrix<T>& dataset, const String& filename, const String& name) +{ + +#if H5Eset_auto_vers == 2 + H5Eset_auto( H5E_DEFAULT, NULL, NULL ); +#else + H5Eset_auto( NULL, NULL ); +#endif + + herr_t status; + hid_t file_id; + file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT); + if (file_id < 0) { + file_id = H5Fcreate(filename.c_str(), H5F_ACC_EXCL, H5P_DEFAULT, H5P_DEFAULT); + } + CHECK_ERROR(file_id,"Error creating hdf5 file."); + + hsize_t dimsf[2]; // dataset dimensions + dimsf[0] = dataset.rows; + dimsf[1] = dataset.cols; + + hid_t space_id = H5Screate_simple(2, dimsf, NULL); + hid_t memspace_id = H5Screate_simple(2, dimsf, NULL); + + hid_t dataset_id; +#if H5Dcreate_vers == 2 + dataset_id = H5Dcreate2(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); +#else + dataset_id = H5Dcreate(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT); +#endif + + if (dataset_id<0) { +#if H5Dopen_vers == 2 + dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT); +#else + dataset_id = H5Dopen(file_id, name.c_str()); +#endif + } + CHECK_ERROR(dataset_id,"Error creating or opening dataset in file."); + + status = H5Dwrite(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, H5P_DEFAULT, dataset.data ); + CHECK_ERROR(status, "Error writing to dataset"); + + H5Sclose(memspace_id); + H5Sclose(space_id); + H5Dclose(dataset_id); + H5Fclose(file_id); + +} + + +template<typename T> +void load_from_file(cvflann::Matrix<T>& dataset, const String& filename, const String& name) +{ + herr_t status; + hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT); + CHECK_ERROR(file_id,"Error opening hdf5 file."); + + hid_t dataset_id; +#if H5Dopen_vers == 2 + dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT); +#else + dataset_id = H5Dopen(file_id, name.c_str()); +#endif + CHECK_ERROR(dataset_id,"Error opening dataset in file."); + + hid_t space_id = H5Dget_space(dataset_id); + + hsize_t dims_out[2]; + H5Sget_simple_extent_dims(space_id, dims_out, NULL); + + dataset = cvflann::Matrix<T>(new T[dims_out[0]*dims_out[1]], dims_out[0], dims_out[1]); + + status = H5Dread(dataset_id, get_hdf5_type<T>(), H5S_ALL, H5S_ALL, H5P_DEFAULT, dataset[0]); + CHECK_ERROR(status, "Error reading dataset"); + + H5Sclose(space_id); + H5Dclose(dataset_id); + H5Fclose(file_id); +} + + +#ifdef HAVE_MPI + +namespace mpi +{ +/** + * Loads a the hyperslice corresponding to this processor from a hdf5 file. + * @param flann_dataset Dataset where the data is loaded + * @param filename HDF5 file name + * @param name Name of dataset inside file + */ +template<typename T> +void load_from_file(cvflann::Matrix<T>& dataset, const String& filename, const String& name) +{ + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + + int mpi_size, mpi_rank; + MPI_Comm_size(comm, &mpi_size); + MPI_Comm_rank(comm, &mpi_rank); + + herr_t status; + + hid_t plist_id = H5Pcreate(H5P_FILE_ACCESS); + H5Pset_fapl_mpio(plist_id, comm, info); + hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, plist_id); + CHECK_ERROR(file_id,"Error opening hdf5 file."); + H5Pclose(plist_id); + hid_t dataset_id; +#if H5Dopen_vers == 2 + dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT); +#else + dataset_id = H5Dopen(file_id, name.c_str()); +#endif + CHECK_ERROR(dataset_id,"Error opening dataset in file."); + + hid_t space_id = H5Dget_space(dataset_id); + hsize_t dims[2]; + H5Sget_simple_extent_dims(space_id, dims, NULL); + + hsize_t count[2]; + hsize_t offset[2]; + + hsize_t item_cnt = dims[0]/mpi_size+(dims[0]%mpi_size==0 ? 0 : 1); + hsize_t cnt = (mpi_rank<mpi_size-1 ? item_cnt : dims[0]-item_cnt*(mpi_size-1)); + + count[0] = cnt; + count[1] = dims[1]; + offset[0] = mpi_rank*item_cnt; + offset[1] = 0; + + hid_t memspace_id = H5Screate_simple(2,count,NULL); + + H5Sselect_hyperslab(space_id, H5S_SELECT_SET, offset, NULL, count, NULL); + + dataset.rows = count[0]; + dataset.cols = count[1]; + dataset.data = new T[dataset.rows*dataset.cols]; + + plist_id = H5Pcreate(H5P_DATASET_XFER); + H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE); + status = H5Dread(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, plist_id, dataset.data); + CHECK_ERROR(status, "Error reading dataset"); + + H5Pclose(plist_id); + H5Sclose(space_id); + H5Sclose(memspace_id); + H5Dclose(dataset_id); + H5Fclose(file_id); +} +} +#endif // HAVE_MPI +} // namespace cvflann::mpi + +#endif /* OPENCV_FLANN_HDF5_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/heap.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,165 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_HEAP_H_ +#define OPENCV_FLANN_HEAP_H_ + +#include <algorithm> +#include <vector> + +namespace cvflann +{ + +/** + * Priority Queue Implementation + * + * The priority queue is implemented with a heap. A heap is a complete + * (full) binary tree in which each parent is less than both of its + * children, but the order of the children is unspecified. + */ +template <typename T> +class Heap +{ + + /** + * Storage array for the heap. + * Type T must be comparable. + */ + std::vector<T> heap; + int length; + + /** + * Number of element in the heap + */ + int count; + + + +public: + /** + * Constructor. + * + * Params: + * sz = heap size + */ + + Heap(int sz) + { + length = sz; + heap.reserve(length); + count = 0; + } + + /** + * + * Returns: heap size + */ + int size() + { + return count; + } + + /** + * Tests if the heap is empty + * + * Returns: true is heap empty, false otherwise + */ + bool empty() + { + return size()==0; + } + + /** + * Clears the heap. + */ + void clear() + { + heap.clear(); + count = 0; + } + + struct CompareT + { + bool operator()(const T& t_1, const T& t_2) const + { + return t_2 < t_1; + } + }; + + /** + * Insert a new element in the heap. + * + * We select the next empty leaf node, and then keep moving any larger + * parents down until the right location is found to store this element. + * + * Params: + * value = the new element to be inserted in the heap + */ + void insert(T value) + { + /* If heap is full, then return without adding this element. */ + if (count == length) { + return; + } + + heap.push_back(value); + static CompareT compareT; + std::push_heap(heap.begin(), heap.end(), compareT); + ++count; + } + + + + /** + * Returns the node of minimum value from the heap (top of the heap). + * + * Params: + * value = out parameter used to return the min element + * Returns: false if heap empty + */ + bool popMin(T& value) + { + if (count == 0) { + return false; + } + + value = heap[0]; + static CompareT compareT; + std::pop_heap(heap.begin(), heap.end(), compareT); + heap.pop_back(); + --count; + + return true; /* Return old last node. */ + } +}; + +} + +#endif //OPENCV_FLANN_HEAP_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/hierarchical_clustering_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,848 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ +#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ + +#include <algorithm> +#include <map> +#include <cassert> +#include <limits> +#include <cmath> + +#include "general.h" +#include "nn_index.h" +#include "dist.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + + +namespace cvflann +{ + +struct HierarchicalClusteringIndexParams : public IndexParams +{ + HierarchicalClusteringIndexParams(int branching = 32, + flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, + int trees = 4, int leaf_size = 100) + { + (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL; + // The branching factor used in the hierarchical clustering + (*this)["branching"] = branching; + // Algorithm used for picking the initial cluster centers + (*this)["centers_init"] = centers_init; + // number of parallel trees to build + (*this)["trees"] = trees; + // maximum leaf size + (*this)["leaf_size"] = leaf_size; + } +}; + + +/** + * Hierarchical index + * + * Contains a tree constructed through a hierarchical clustering + * and other information for indexing a set of points for nearest-neighbour matching. + */ +template <typename Distance> +class HierarchicalClusteringIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + +private: + + + typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&); + + /** + * The function used for choosing the cluster centers. + */ + centersAlgFunction chooseCenters; + + + + /** + * Chooses the initial centers in the k-means clustering in a random manner. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * indices_length = length of indices vector + * + */ + void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length) + { + UniqueRandom r(indices_length); + + int index; + for (index=0; index<k; ++index) { + bool duplicate = true; + int rnd; + while (duplicate) { + duplicate = false; + rnd = r.next(); + if (rnd<0) { + centers_length = index; + return; + } + + centers[index] = dsindices[rnd]; + + for (int j=0; j<index; ++j) { + DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols); + if (sq<1e-16) { + duplicate = true; + } + } + } + } + + centers_length = index; + } + + + /** + * Chooses the initial centers in the k-means using Gonzales' algorithm + * so that the centers are spaced apart from each other. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length) + { + int n = indices_length; + + int rnd = rand_int(n); + assert(rnd >=0 && rnd < n); + + centers[0] = dsindices[rnd]; + + int index; + for (index=1; index<k; ++index) { + + int best_index = -1; + DistanceType best_val = 0; + for (int j=0; j<n; ++j) { + DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols); + for (int i=1; i<index; ++i) { + DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols); + if (tmp_dist<dist) { + dist = tmp_dist; + } + } + if (dist>best_val) { + best_val = dist; + best_index = j; + } + } + if (best_index!=-1) { + centers[index] = dsindices[best_index]; + } + else { + break; + } + } + centers_length = index; + } + + + /** + * Chooses the initial centers in the k-means using the algorithm + * proposed in the KMeans++ paper: + * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding + * + * Implementation of this function was converted from the one provided in Arthur's code. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length) + { + int n = indices_length; + + double currentPot = 0; + DistanceType* closestDistSq = new DistanceType[n]; + + // Choose one random center and set the closestDistSq values + int index = rand_int(n); + assert(index >=0 && index < n); + centers[0] = dsindices[index]; + + // Computing distance^2 will have the advantage of even higher probability further to pick new centers + // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article) + for (int i = 0; i < n; i++) { + closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); + closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] ); + currentPot += closestDistSq[i]; + } + + + const int numLocalTries = 1; + + // Choose each center + int centerCount; + for (centerCount = 1; centerCount < k; centerCount++) { + + // Repeat several trials + double bestNewPot = -1; + int bestNewIndex = 0; + for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { + + // Choose our center - have to be slightly careful to return a valid answer even accounting + // for possible rounding errors + double randVal = rand_double(currentPot); + for (index = 0; index < n-1; index++) { + if (randVal <= closestDistSq[index]) break; + else randVal -= closestDistSq[index]; + } + + // Compute the new potential + double newPot = 0; + for (int i = 0; i < n; i++) { + DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); + newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); + } + + // Store the best result + if ((bestNewPot < 0)||(newPot < bestNewPot)) { + bestNewPot = newPot; + bestNewIndex = index; + } + } + + // Add the appropriate center + centers[centerCount] = dsindices[bestNewIndex]; + currentPot = bestNewPot; + for (int i = 0; i < n; i++) { + DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols); + closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); + } + } + + centers_length = centerCount; + + delete[] closestDistSq; + } + + + /** + * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel): + * select the first point of the list as a candidate, then parse the points list. If another + * point is further than current candidate from the other centers, test if it is a good center + * of a local aggregation. If it is, replace current candidate by this point. And so on... + * + * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points, + * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex + * class that pick centers among existing points instead of computing the barycenters, there is a real + * improvement. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length) + { + const float kSpeedUpFactor = 1.3f; + + int n = indices_length; + + DistanceType* closestDistSq = new DistanceType[n]; + + // Choose one random center and set the closestDistSq values + int index = rand_int(n); + assert(index >=0 && index < n); + centers[0] = dsindices[index]; + + for (int i = 0; i < n; i++) { + closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); + } + + + // Choose each center + int centerCount; + for (centerCount = 1; centerCount < k; centerCount++) { + + // Repeat several trials + double bestNewPot = -1; + int bestNewIndex = 0; + DistanceType furthest = 0; + for (index = 0; index < n; index++) { + + // We will test only the potential of the points further than current candidate + if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) { + + // Compute the new potential + double newPot = 0; + for (int i = 0; i < n; i++) { + newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols) + , closestDistSq[i] ); + } + + // Store the best result + if ((bestNewPot < 0)||(newPot <= bestNewPot)) { + bestNewPot = newPot; + bestNewIndex = index; + furthest = closestDistSq[index]; + } + } + } + + // Add the appropriate center + centers[centerCount] = dsindices[bestNewIndex]; + for (int i = 0; i < n; i++) { + closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols) + , closestDistSq[i] ); + } + } + + centers_length = centerCount; + + delete[] closestDistSq; + } + + +public: + + + /** + * Index constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the hierarchical k-means algorithm + */ + HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(), + Distance d = Distance()) + : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d) + { + memoryCounter = 0; + + size_ = dataset.rows; + veclen_ = dataset.cols; + + branching_ = get_param(params,"branching",32); + centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM); + trees_ = get_param(params,"trees",4); + leaf_size_ = get_param(params,"leaf_size",100); + + if (centers_init_==FLANN_CENTERS_RANDOM) { + chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom; + } + else if (centers_init_==FLANN_CENTERS_GONZALES) { + chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales; + } + else if (centers_init_==FLANN_CENTERS_KMEANSPP) { + chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp; + } + else if (centers_init_==FLANN_CENTERS_GROUPWISE) { + chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser; + } + else { + throw FLANNException("Unknown algorithm for choosing initial centers."); + } + + trees_ = get_param(params,"trees",4); + root = new NodePtr[trees_]; + indices = new int*[trees_]; + + for (int i=0; i<trees_; ++i) { + root[i] = NULL; + indices[i] = NULL; + } + } + + HierarchicalClusteringIndex(const HierarchicalClusteringIndex&); + HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&); + + /** + * Index destructor. + * + * Release the memory used by the index. + */ + virtual ~HierarchicalClusteringIndex() + { + free_elements(); + + if (root!=NULL) { + delete[] root; + } + + if (indices!=NULL) { + delete[] indices; + } + } + + + /** + * Release the inner elements of indices[] + */ + void free_elements() + { + if (indices!=NULL) { + for(int i=0; i<trees_; ++i) { + if (indices[i]!=NULL) { + delete[] indices[i]; + indices[i] = NULL; + } + } + } + } + + + /** + * Returns size of index. + */ + size_t size() const + { + return size_; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return veclen_; + } + + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return pool.usedMemory+pool.wastedMemory+memoryCounter; + } + + /** + * Builds the index + */ + void buildIndex() + { + if (branching_<2) { + throw FLANNException("Branching factor must be at least 2"); + } + + free_elements(); + + for (int i=0; i<trees_; ++i) { + indices[i] = new int[size_]; + for (size_t j=0; j<size_; ++j) { + indices[i][j] = (int)j; + } + root[i] = pool.allocate<Node>(); + computeClustering(root[i], indices[i], (int)size_, branching_,0); + } + } + + + flann_algorithm_t getType() const + { + return FLANN_INDEX_HIERARCHICAL; + } + + + void saveIndex(FILE* stream) + { + save_value(stream, branching_); + save_value(stream, trees_); + save_value(stream, centers_init_); + save_value(stream, leaf_size_); + save_value(stream, memoryCounter); + for (int i=0; i<trees_; ++i) { + save_value(stream, *indices[i], size_); + save_tree(stream, root[i], i); + } + + } + + + void loadIndex(FILE* stream) + { + free_elements(); + + if (root!=NULL) { + delete[] root; + } + + if (indices!=NULL) { + delete[] indices; + } + + load_value(stream, branching_); + load_value(stream, trees_); + load_value(stream, centers_init_); + load_value(stream, leaf_size_); + load_value(stream, memoryCounter); + + indices = new int*[trees_]; + root = new NodePtr[trees_]; + for (int i=0; i<trees_; ++i) { + indices[i] = new int[size_]; + load_value(stream, *indices[i], size_); + load_tree(stream, root[i], i); + } + + params["algorithm"] = getType(); + params["branching"] = branching_; + params["trees"] = trees_; + params["centers_init"] = centers_init_; + params["leaf_size"] = leaf_size_; + } + + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * searchParams = parameters that influence the search algorithm (checks) + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + + int maxChecks = get_param(searchParams,"checks",32); + + // Priority queue storing intermediate branches in the best-bin-first search + Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); + + std::vector<bool> checked(size_,false); + int checks = 0; + for (int i=0; i<trees_; ++i) { + findNN(root[i], result, vec, checks, maxChecks, heap, checked); + } + + BranchSt branch; + while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { + NodePtr node = branch.node; + findNN(node, result, vec, checks, maxChecks, heap, checked); + } + assert(result.full()); + + delete heap; + + } + + IndexParams getParameters() const + { + return params; + } + + +private: + + /** + * Struture representing a node in the hierarchical k-means tree. + */ + struct Node + { + /** + * The cluster center index + */ + int pivot; + /** + * The cluster size (number of points in the cluster) + */ + int size; + /** + * Child nodes (only for non-terminal nodes) + */ + Node** childs; + /** + * Node points (only for terminal nodes) + */ + int* indices; + /** + * Level + */ + int level; + }; + typedef Node* NodePtr; + + + + /** + * Alias definition for a nicer syntax. + */ + typedef BranchStruct<NodePtr, DistanceType> BranchSt; + + + + void save_tree(FILE* stream, NodePtr node, int num) + { + save_value(stream, *node); + if (node->childs==NULL) { + int indices_offset = (int)(node->indices - indices[num]); + save_value(stream, indices_offset); + } + else { + for(int i=0; i<branching_; ++i) { + save_tree(stream, node->childs[i], num); + } + } + } + + + void load_tree(FILE* stream, NodePtr& node, int num) + { + node = pool.allocate<Node>(); + load_value(stream, *node); + if (node->childs==NULL) { + int indices_offset; + load_value(stream, indices_offset); + node->indices = indices[num] + indices_offset; + } + else { + node->childs = pool.allocate<NodePtr>(branching_); + for(int i=0; i<branching_; ++i) { + load_tree(stream, node->childs[i], num); + } + } + } + + + + + void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost) + { + cost = 0; + for (int i=0; i<indices_length; ++i) { + ElementType* point = dataset[dsindices[i]]; + DistanceType dist = distance(point, dataset[centers[0]], veclen_); + labels[i] = 0; + for (int j=1; j<centers_length; ++j) { + DistanceType new_dist = distance(point, dataset[centers[j]], veclen_); + if (dist>new_dist) { + labels[i] = j; + dist = new_dist; + } + } + cost += dist; + } + } + + /** + * The method responsible with actually doing the recursive hierarchical + * clustering + * + * Params: + * node = the node to cluster + * indices = indices of the points belonging to the current node + * branching = the branching factor to use in the clustering + * + * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) + */ + void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level) + { + node->size = indices_length; + node->level = level; + + if (indices_length < leaf_size_) { // leaf node + node->indices = dsindices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + std::vector<int> centers(branching); + std::vector<int> labels(indices_length); + + int centers_length; + (this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length); + + if (centers_length<branching) { + node->indices = dsindices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + + // assign points to clusters + DistanceType cost; + computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost); + + node->childs = pool.allocate<NodePtr>(branching); + int start = 0; + int end = start; + for (int i=0; i<branching; ++i) { + for (int j=0; j<indices_length; ++j) { + if (labels[j]==i) { + std::swap(dsindices[j],dsindices[end]); + std::swap(labels[j],labels[end]); + end++; + } + } + + node->childs[i] = pool.allocate<Node>(); + node->childs[i]->pivot = centers[i]; + node->childs[i]->indices = NULL; + computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1); + start=end; + } + } + + + + /** + * Performs one descent in the hierarchical k-means tree. The branches not + * visited are stored in a priority queue. + * + * Params: + * node = node to explore + * result = container for the k-nearest neighbors found + * vec = query points + * checks = how many points in the dataset have been checked so far + * maxChecks = maximum dataset points to checks + */ + + + void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks, + Heap<BranchSt>* heap, std::vector<bool>& checked) + { + if (node->childs==NULL) { + if (checks>=maxChecks) { + if (result.full()) return; + } + for (int i=0; i<node->size; ++i) { + int index = node->indices[i]; + if (!checked[index]) { + DistanceType dist = distance(dataset[index], vec, veclen_); + result.addPoint(dist, index); + checked[index] = true; + ++checks; + } + } + } + else { + DistanceType* domain_distances = new DistanceType[branching_]; + int best_index = 0; + domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_); + for (int i=1; i<branching_; ++i) { + domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_); + if (domain_distances[i]<domain_distances[best_index]) { + best_index = i; + } + } + for (int i=0; i<branching_; ++i) { + if (i!=best_index) { + heap->insert(BranchSt(node->childs[i],domain_distances[i])); + } + } + delete[] domain_distances; + findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked); + } + } + +private: + + + /** + * The dataset used by this index + */ + const Matrix<ElementType> dataset; + + /** + * Parameters used by this index + */ + IndexParams params; + + + /** + * Number of features in the dataset. + */ + size_t size_; + + /** + * Length of each feature. + */ + size_t veclen_; + + /** + * The root node in the tree. + */ + NodePtr* root; + + /** + * Array of indices to vectors in the dataset. + */ + int** indices; + + + /** + * The distance + */ + Distance distance; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool; + + /** + * Memory occupied by the index. + */ + int memoryCounter; + + /** index parameters */ + int branching_; + int trees_; + flann_centers_init_t centers_init_; + int leaf_size_; + + +}; + +} + +#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/index_testing.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,318 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_INDEX_TESTING_H_ +#define OPENCV_FLANN_INDEX_TESTING_H_ + +#include <cstring> +#include <cassert> +#include <cmath> + +#include "matrix.h" +#include "nn_index.h" +#include "result_set.h" +#include "logger.h" +#include "timer.h" + + +namespace cvflann +{ + +inline int countCorrectMatches(int* neighbors, int* groundTruth, int n) +{ + int count = 0; + for (int i=0; i<n; ++i) { + for (int k=0; k<n; ++k) { + if (neighbors[i]==groundTruth[k]) { + count++; + break; + } + } + } + return count; +} + + +template <typename Distance> +typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target, + int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance) +{ + typedef typename Distance::ResultType DistanceType; + + DistanceType ret = 0; + for (int i=0; i<n; ++i) { + DistanceType den = distance(inputData[groundTruth[i]], target, veclen); + DistanceType num = distance(inputData[neighbors[i]], target, veclen); + + if ((den==0)&&(num==0)) { + ret += 1; + } + else { + ret += num/den; + } + } + + return ret; +} + +template <typename Distance> +float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, + const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks, + float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches) +{ + typedef typename Distance::ResultType DistanceType; + + if (matches.cols<size_t(nn)) { + Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn); + + throw FLANNException("Ground truth is not computed for as many neighbors as requested"); + } + + KNNResultSet<DistanceType> resultSet(nn+skipMatches); + SearchParams searchParams(checks); + + std::vector<int> indices(nn+skipMatches); + std::vector<DistanceType> dists(nn+skipMatches); + int* neighbors = &indices[skipMatches]; + + int correct = 0; + DistanceType distR = 0; + StartStopTimer t; + int repeats = 0; + while (t.value<0.2) { + repeats++; + t.start(); + correct = 0; + distR = 0; + for (size_t i = 0; i < testData.rows; i++) { + resultSet.init(&indices[0], &dists[0]); + index.findNeighbors(resultSet, testData[i], searchParams); + + correct += countCorrectMatches(neighbors,matches[i], nn); + distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance); + } + t.stop(); + } + time = float(t.value/repeats); + + float precicion = (float)correct/(nn*testData.rows); + + dist = distR/(testData.rows*nn); + + Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n", + checks, precicion, time, 1000.0 * time / testData.rows, dist); + + return precicion; +} + + +template <typename Distance> +float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, + const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, + int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0) +{ + typedef typename Distance::ResultType DistanceType; + + Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); + Logger::info("---------------------------------------------------------\n"); + + float time = 0; + DistanceType dist = 0; + precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches); + + return time; +} + +template <typename Distance> +float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, + const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, + float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0) +{ + typedef typename Distance::ResultType DistanceType; + const float SEARCH_EPS = 0.001f; + + Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); + Logger::info("---------------------------------------------------------\n"); + + int c2 = 1; + float p2; + int c1 = 1; + //float p1; + float time; + DistanceType dist; + + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + + if (p2>precision) { + Logger::info("Got as close as I can\n"); + checks = c2; + return time; + } + + while (p2<precision) { + c1 = c2; + //p1 = p2; + c2 *=2; + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + } + + int cx; + float realPrecision; + if (fabs(p2-precision)>SEARCH_EPS) { + Logger::info("Start linear estimation\n"); + // after we got to values in the vecinity of the desired precision + // use linear approximation get a better estimation + + cx = (c1+c2)/2; + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + while (fabs(realPrecision-precision)>SEARCH_EPS) { + + if (realPrecision<precision) { + c1 = cx; + } + else { + c2 = cx; + } + cx = (c1+c2)/2; + if (cx==c1) { + Logger::info("Got as close as I can\n"); + break; + } + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + } + + c2 = cx; + p2 = realPrecision; + + } + else { + Logger::info("No need for linear estimation\n"); + cx = c2; + realPrecision = p2; + } + + checks = cx; + return time; +} + + +template <typename Distance> +void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, + const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, + float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0) +{ + typedef typename Distance::ResultType DistanceType; + + const float SEARCH_EPS = 0.001; + + // make sure precisions array is sorted + std::sort(precisions, precisions+precisions_length); + + int pindex = 0; + float precision = precisions[pindex]; + + Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); + Logger::info("---------------------------------------------------------\n"); + + int c2 = 1; + float p2; + + int c1 = 1; + float p1; + + float time; + DistanceType dist; + + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + + // if precision for 1 run down the tree is already + // better then some of the requested precisions, then + // skip those + while (precisions[pindex]<p2 && pindex<precisions_length) { + pindex++; + } + + if (pindex==precisions_length) { + Logger::info("Got as close as I can\n"); + return; + } + + for (int i=pindex; i<precisions_length; ++i) { + + precision = precisions[i]; + while (p2<precision) { + c1 = c2; + p1 = p2; + c2 *=2; + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return; + } + + int cx; + float realPrecision; + if (fabs(p2-precision)>SEARCH_EPS) { + Logger::info("Start linear estimation\n"); + // after we got to values in the vecinity of the desired precision + // use linear approximation get a better estimation + + cx = (c1+c2)/2; + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + while (fabs(realPrecision-precision)>SEARCH_EPS) { + + if (realPrecision<precision) { + c1 = cx; + } + else { + c2 = cx; + } + cx = (c1+c2)/2; + if (cx==c1) { + Logger::info("Got as close as I can\n"); + break; + } + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + } + + c2 = cx; + p2 = realPrecision; + + } + else { + Logger::info("No need for linear estimation\n"); + cx = c2; + realPrecision = p2; + } + + } +} + +} + +#endif //OPENCV_FLANN_INDEX_TESTING_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/kdtree_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,621 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_KDTREE_INDEX_H_ +#define OPENCV_FLANN_KDTREE_INDEX_H_ + +#include <algorithm> +#include <map> +#include <cassert> +#include <cstring> + +#include "general.h" +#include "nn_index.h" +#include "dynamic_bitset.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + + +namespace cvflann +{ + +struct KDTreeIndexParams : public IndexParams +{ + KDTreeIndexParams(int trees = 4) + { + (*this)["algorithm"] = FLANN_INDEX_KDTREE; + (*this)["trees"] = trees; + } +}; + + +/** + * Randomized kd-tree index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + */ +template <typename Distance> +class KDTreeIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + /** + * KDTree constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the kdtree algorithm + */ + KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(), + Distance d = Distance() ) : + dataset_(inputData), index_params_(params), distance_(d) + { + size_ = dataset_.rows; + veclen_ = dataset_.cols; + + trees_ = get_param(index_params_,"trees",4); + tree_roots_ = new NodePtr[trees_]; + + // Create a permutable array of indices to the input vectors. + vind_.resize(size_); + for (size_t i = 0; i < size_; ++i) { + vind_[i] = int(i); + } + + mean_ = new DistanceType[veclen_]; + var_ = new DistanceType[veclen_]; + } + + + KDTreeIndex(const KDTreeIndex&); + KDTreeIndex& operator=(const KDTreeIndex&); + + /** + * Standard destructor + */ + ~KDTreeIndex() + { + if (tree_roots_!=NULL) { + delete[] tree_roots_; + } + delete[] mean_; + delete[] var_; + } + + /** + * Builds the index + */ + void buildIndex() + { + /* Construct the randomized trees. */ + for (int i = 0; i < trees_; i++) { + /* Randomize the order of vectors to allow for unbiased sampling. */ + std::random_shuffle(vind_.begin(), vind_.end()); + tree_roots_[i] = divideTree(&vind_[0], int(size_) ); + } + } + + + flann_algorithm_t getType() const + { + return FLANN_INDEX_KDTREE; + } + + + void saveIndex(FILE* stream) + { + save_value(stream, trees_); + for (int i=0; i<trees_; ++i) { + save_tree(stream, tree_roots_[i]); + } + } + + + + void loadIndex(FILE* stream) + { + load_value(stream, trees_); + if (tree_roots_!=NULL) { + delete[] tree_roots_; + } + tree_roots_ = new NodePtr[trees_]; + for (int i=0; i<trees_; ++i) { + load_tree(stream,tree_roots_[i]); + } + + index_params_["algorithm"] = getType(); + index_params_["trees"] = tree_roots_; + } + + /** + * Returns size of index. + */ + size_t size() const + { + return size_; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return veclen_; + } + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory + } + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * maxCheck = the maximum number of restarts (in a best-bin-first manner) + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + int maxChecks = get_param(searchParams,"checks", 32); + float epsError = 1+get_param(searchParams,"eps",0.0f); + + if (maxChecks==FLANN_CHECKS_UNLIMITED) { + getExactNeighbors(result, vec, epsError); + } + else { + getNeighbors(result, vec, maxChecks, epsError); + } + } + + IndexParams getParameters() const + { + return index_params_; + } + +private: + + + /*--------------------- Internal Data Structures --------------------------*/ + struct Node + { + /** + * Dimension used for subdivision. + */ + int divfeat; + /** + * The values used for subdivision. + */ + DistanceType divval; + /** + * The child nodes. + */ + Node* child1, * child2; + }; + typedef Node* NodePtr; + typedef BranchStruct<NodePtr, DistanceType> BranchSt; + typedef BranchSt* Branch; + + + + void save_tree(FILE* stream, NodePtr tree) + { + save_value(stream, *tree); + if (tree->child1!=NULL) { + save_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + save_tree(stream, tree->child2); + } + } + + + void load_tree(FILE* stream, NodePtr& tree) + { + tree = pool_.allocate<Node>(); + load_value(stream, *tree); + if (tree->child1!=NULL) { + load_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + load_tree(stream, tree->child2); + } + } + + + /** + * Create a tree node that subdivides the list of vecs from vind[first] + * to vind[last]. The routine is called recursively on each sublist. + * Place a pointer to this new tree node in the location pTree. + * + * Params: pTree = the new node to create + * first = index of the first vector + * last = index of the last vector + */ + NodePtr divideTree(int* ind, int count) + { + NodePtr node = pool_.allocate<Node>(); // allocate memory + + /* If too few exemplars remain, then make this a leaf node. */ + if ( count == 1) { + node->child1 = node->child2 = NULL; /* Mark as leaf node. */ + node->divfeat = *ind; /* Store index of this vec. */ + } + else { + int idx; + int cutfeat; + DistanceType cutval; + meanSplit(ind, count, idx, cutfeat, cutval); + + node->divfeat = cutfeat; + node->divval = cutval; + node->child1 = divideTree(ind, idx); + node->child2 = divideTree(ind+idx, count-idx); + } + + return node; + } + + + /** + * Choose which feature to use in order to subdivide this set of vectors. + * Make a random choice among those with the highest variance, and use + * its variance as the threshold value. + */ + void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval) + { + memset(mean_,0,veclen_*sizeof(DistanceType)); + memset(var_,0,veclen_*sizeof(DistanceType)); + + /* Compute mean values. Only the first SAMPLE_MEAN values need to be + sampled to get a good estimate. + */ + int cnt = std::min((int)SAMPLE_MEAN+1, count); + for (int j = 0; j < cnt; ++j) { + ElementType* v = dataset_[ind[j]]; + for (size_t k=0; k<veclen_; ++k) { + mean_[k] += v[k]; + } + } + for (size_t k=0; k<veclen_; ++k) { + mean_[k] /= cnt; + } + + /* Compute variances (no need to divide by count). */ + for (int j = 0; j < cnt; ++j) { + ElementType* v = dataset_[ind[j]]; + for (size_t k=0; k<veclen_; ++k) { + DistanceType dist = v[k] - mean_[k]; + var_[k] += dist * dist; + } + } + /* Select one of the highest variance indices at random. */ + cutfeat = selectDivision(var_); + cutval = mean_[cutfeat]; + + int lim1, lim2; + planeSplit(ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1>count/2) index = lim1; + else if (lim2<count/2) index = lim2; + else index = count/2; + + /* If either list is empty, it means that all remaining features + * are identical. Split in the middle to maintain a balanced tree. + */ + if ((lim1==count)||(lim2==0)) index = count/2; + } + + + /** + * Select the top RAND_DIM largest values from v and return the index of + * one of these selected at random. + */ + int selectDivision(DistanceType* v) + { + int num = 0; + size_t topind[RAND_DIM]; + + /* Create a list of the indices of the top RAND_DIM values. */ + for (size_t i = 0; i < veclen_; ++i) { + if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) { + /* Put this element at end of topind. */ + if (num < RAND_DIM) { + topind[num++] = i; /* Add to list. */ + } + else { + topind[num-1] = i; /* Replace last element. */ + } + /* Bubble end value down to right location by repeated swapping. */ + int j = num - 1; + while (j > 0 && v[topind[j]] > v[topind[j-1]]) { + std::swap(topind[j], topind[j-1]); + --j; + } + } + } + /* Select a random integer in range [0,num-1], and return that index. */ + int rnd = rand_int(num); + return (int)topind[rnd]; + } + + + /** + * Subdivide the list of points by a plane perpendicular on axe corresponding + * to the 'cutfeat' dimension at 'cutval' position. + * + * On return: + * dataset[ind[0..lim1-1]][cutfeat]<cutval + * dataset[ind[lim1..lim2-1]][cutfeat]==cutval + * dataset[ind[lim2..count]][cutfeat]>cutval + */ + void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2) + { + /* Move vector indices for left subtree to front of list. */ + int left = 0; + int right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left; + while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + lim1 = left; + right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left; + while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + lim2 = left; + } + + /** + * Performs an exact nearest neighbor search. The exact search performs a full + * traversal of the tree. + */ + void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError) + { + // checkID -= 1; /* Set a different unique ID for each search. */ + + if (trees_ > 1) { + fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search"); + } + if (trees_>0) { + searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError); + } + assert(result.full()); + } + + /** + * Performs the approximate nearest-neighbor search. The search is approximate + * because the tree traversal is abandoned after a given number of descends in + * the tree. + */ + void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError) + { + int i; + BranchSt branch; + + int checkCount = 0; + Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); + DynamicBitset checked(size_); + + /* Search once through each tree down to root. */ + for (i = 0; i < trees_; ++i) { + searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked); + } + + /* Keep searching other branches from heap until finished. */ + while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) { + searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked); + } + + delete heap; + + assert(result.full()); + } + + + /** + * Search starting from a given node of the tree. Based on any mismatches at + * higher levels, all exemplars below this level must have a distance of + * at least "mindistsq". + */ + void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck, + float epsError, Heap<BranchSt>* heap, DynamicBitset& checked) + { + if (result_set.worstDist()<mindist) { + // printf("Ignoring branch, too far\n"); + return; + } + + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL)&&(node->child2 == NULL)) { + /* Do not check same node more than once when searching multiple trees. + Once a vector is checked, we set its location in vind to the + current checkID. + */ + int index = node->divfeat; + if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return; + checked.set(index); + checkCount++; + + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result_set.addPoint(dist,index); + + return; + } + + /* Which child branch should be taken first? */ + ElementType val = vec[node->divfeat]; + DistanceType diff = val - node->divval; + NodePtr bestChild = (diff < 0) ? node->child1 : node->child2; + NodePtr otherChild = (diff < 0) ? node->child2 : node->child1; + + /* Create a branch record for the branch not taken. Add distance + of this feature boundary (we don't attempt to correct for any + use of this feature in a parent node, which is unlikely to + happen and would have only a small effect). Don't bother + adding more branches to heap after halfway point, as cost of + adding exceeds their value. + */ + + DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat); + // if (2 * checkCount < maxCheck || !result.full()) { + if ((new_distsq*epsError < result_set.worstDist())|| !result_set.full()) { + heap->insert( BranchSt(otherChild, new_distsq) ); + } + + /* Call recursively to search next level down. */ + searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked); + } + + /** + * Performs an exact search in the tree starting from a node. + */ + void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError) + { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL)&&(node->child2 == NULL)) { + int index = node->divfeat; + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result_set.addPoint(dist,index); + return; + } + + /* Which child branch should be taken first? */ + ElementType val = vec[node->divfeat]; + DistanceType diff = val - node->divval; + NodePtr bestChild = (diff < 0) ? node->child1 : node->child2; + NodePtr otherChild = (diff < 0) ? node->child2 : node->child1; + + /* Create a branch record for the branch not taken. Add distance + of this feature boundary (we don't attempt to correct for any + use of this feature in a parent node, which is unlikely to + happen and would have only a small effect). Don't bother + adding more branches to heap after halfway point, as cost of + adding exceeds their value. + */ + + DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat); + + /* Call recursively to search next level down. */ + searchLevelExact(result_set, vec, bestChild, mindist, epsError); + + if (new_distsq*epsError<=result_set.worstDist()) { + searchLevelExact(result_set, vec, otherChild, new_distsq, epsError); + } + } + + +private: + + enum + { + /** + * To improve efficiency, only SAMPLE_MEAN random values are used to + * compute the mean and variance at each level when building a tree. + * A value of 100 seems to perform as well as using all values. + */ + SAMPLE_MEAN = 100, + /** + * Top random dimensions to consider + * + * When creating random trees, the dimension on which to subdivide is + * selected at random from among the top RAND_DIM dimensions with the + * highest variance. A value of 5 works well. + */ + RAND_DIM=5 + }; + + + /** + * Number of randomized trees that are used + */ + int trees_; + + /** + * Array of indices to vectors in the dataset. + */ + std::vector<int> vind_; + + /** + * The dataset used by this index + */ + const Matrix<ElementType> dataset_; + + IndexParams index_params_; + + size_t size_; + size_t veclen_; + + + DistanceType* mean_; + DistanceType* var_; + + + /** + * Array of k-d trees used to find neighbours. + */ + NodePtr* tree_roots_; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool_; + + Distance distance_; + + +}; // class KDTreeForest + +} + +#endif //OPENCV_FLANN_KDTREE_INDEX_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/kdtree_single_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,634 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_ +#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_ + +#include <algorithm> +#include <map> +#include <cassert> +#include <cstring> + +#include "general.h" +#include "nn_index.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + +namespace cvflann +{ + +struct KDTreeSingleIndexParams : public IndexParams +{ + KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1) + { + (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE; + (*this)["leaf_max_size"] = leaf_max_size; + (*this)["reorder"] = reorder; + (*this)["dim"] = dim; + } +}; + + +/** + * Randomized kd-tree index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + */ +template <typename Distance> +class KDTreeSingleIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + /** + * KDTree constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the kdtree algorithm + */ + KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(), + Distance d = Distance() ) : + dataset_(inputData), index_params_(params), distance_(d) + { + size_ = dataset_.rows; + dim_ = dataset_.cols; + int dim_param = get_param(params,"dim",-1); + if (dim_param>0) dim_ = dim_param; + leaf_max_size_ = get_param(params,"leaf_max_size",10); + reorder_ = get_param(params,"reorder",true); + + // Create a permutable array of indices to the input vectors. + vind_.resize(size_); + for (size_t i = 0; i < size_; i++) { + vind_[i] = (int)i; + } + } + + KDTreeSingleIndex(const KDTreeSingleIndex&); + KDTreeSingleIndex& operator=(const KDTreeSingleIndex&); + + /** + * Standard destructor + */ + ~KDTreeSingleIndex() + { + if (reorder_) delete[] data_.data; + } + + /** + * Builds the index + */ + void buildIndex() + { + computeBoundingBox(root_bbox_); + root_node_ = divideTree(0, (int)size_, root_bbox_ ); // construct the tree + + if (reorder_) { + delete[] data_.data; + data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_); + for (size_t i=0; i<size_; ++i) { + for (size_t j=0; j<dim_; ++j) { + data_[i][j] = dataset_[vind_[i]][j]; + } + } + } + else { + data_ = dataset_; + } + } + + flann_algorithm_t getType() const + { + return FLANN_INDEX_KDTREE_SINGLE; + } + + + void saveIndex(FILE* stream) + { + save_value(stream, size_); + save_value(stream, dim_); + save_value(stream, root_bbox_); + save_value(stream, reorder_); + save_value(stream, leaf_max_size_); + save_value(stream, vind_); + if (reorder_) { + save_value(stream, data_); + } + save_tree(stream, root_node_); + } + + + void loadIndex(FILE* stream) + { + load_value(stream, size_); + load_value(stream, dim_); + load_value(stream, root_bbox_); + load_value(stream, reorder_); + load_value(stream, leaf_max_size_); + load_value(stream, vind_); + if (reorder_) { + load_value(stream, data_); + } + else { + data_ = dataset_; + } + load_tree(stream, root_node_); + + + index_params_["algorithm"] = getType(); + index_params_["leaf_max_size"] = leaf_max_size_; + index_params_["reorder"] = reorder_; + } + + /** + * Returns size of index. + */ + size_t size() const + { + return size_; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return dim_; + } + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory + } + + + /** + * \brief Perform k-nearest neighbor search + * \param[in] queries The query points for which to find the nearest neighbors + * \param[out] indices The indices of the nearest neighbors found + * \param[out] dists Distances to the nearest neighbors found + * \param[in] knn Number of nearest neighbors to return + * \param[in] params Search parameters + */ + void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) + { + assert(queries.cols == veclen()); + assert(indices.rows >= queries.rows); + assert(dists.rows >= queries.rows); + assert(int(indices.cols) >= knn); + assert(int(dists.cols) >= knn); + + KNNSimpleResultSet<DistanceType> resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.init(indices[i], dists[i]); + findNeighbors(resultSet, queries[i], params); + } + } + + IndexParams getParameters() const + { + return index_params_; + } + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * maxCheck = the maximum number of restarts (in a best-bin-first manner) + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + float epsError = 1+get_param(searchParams,"eps",0.0f); + + std::vector<DistanceType> dists(dim_,0); + DistanceType distsq = computeInitialDistances(vec, dists); + searchLevel(result, vec, root_node_, distsq, dists, epsError); + } + +private: + + + /*--------------------- Internal Data Structures --------------------------*/ + struct Node + { + /** + * Indices of points in leaf node + */ + int left, right; + /** + * Dimension used for subdivision. + */ + int divfeat; + /** + * The values used for subdivision. + */ + DistanceType divlow, divhigh; + /** + * The child nodes. + */ + Node* child1, * child2; + }; + typedef Node* NodePtr; + + + struct Interval + { + DistanceType low, high; + }; + + typedef std::vector<Interval> BoundingBox; + + typedef BranchStruct<NodePtr, DistanceType> BranchSt; + typedef BranchSt* Branch; + + + + + void save_tree(FILE* stream, NodePtr tree) + { + save_value(stream, *tree); + if (tree->child1!=NULL) { + save_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + save_tree(stream, tree->child2); + } + } + + + void load_tree(FILE* stream, NodePtr& tree) + { + tree = pool_.allocate<Node>(); + load_value(stream, *tree); + if (tree->child1!=NULL) { + load_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + load_tree(stream, tree->child2); + } + } + + + void computeBoundingBox(BoundingBox& bbox) + { + bbox.resize(dim_); + for (size_t i=0; i<dim_; ++i) { + bbox[i].low = (DistanceType)dataset_[0][i]; + bbox[i].high = (DistanceType)dataset_[0][i]; + } + for (size_t k=1; k<dataset_.rows; ++k) { + for (size_t i=0; i<dim_; ++i) { + if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i]; + if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i]; + } + } + } + + + /** + * Create a tree node that subdivides the list of vecs from vind[first] + * to vind[last]. The routine is called recursively on each sublist. + * Place a pointer to this new tree node in the location pTree. + * + * Params: pTree = the new node to create + * first = index of the first vector + * last = index of the last vector + */ + NodePtr divideTree(int left, int right, BoundingBox& bbox) + { + NodePtr node = pool_.allocate<Node>(); // allocate memory + + /* If too few exemplars remain, then make this a leaf node. */ + if ( (right-left) <= leaf_max_size_) { + node->child1 = node->child2 = NULL; /* Mark as leaf node. */ + node->left = left; + node->right = right; + + // compute bounding-box of leaf points + for (size_t i=0; i<dim_; ++i) { + bbox[i].low = (DistanceType)dataset_[vind_[left]][i]; + bbox[i].high = (DistanceType)dataset_[vind_[left]][i]; + } + for (int k=left+1; k<right; ++k) { + for (size_t i=0; i<dim_; ++i) { + if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i]; + if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i]; + } + } + } + else { + int idx; + int cutfeat; + DistanceType cutval; + middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox); + + node->divfeat = cutfeat; + + BoundingBox left_bbox(bbox); + left_bbox[cutfeat].high = cutval; + node->child1 = divideTree(left, left+idx, left_bbox); + + BoundingBox right_bbox(bbox); + right_bbox[cutfeat].low = cutval; + node->child2 = divideTree(left+idx, right, right_bbox); + + node->divlow = left_bbox[cutfeat].high; + node->divhigh = right_bbox[cutfeat].low; + + for (size_t i=0; i<dim_; ++i) { + bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low); + bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high); + } + } + + return node; + } + + void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem) + { + min_elem = dataset_[ind[0]][dim]; + max_elem = dataset_[ind[0]][dim]; + for (int i=1; i<count; ++i) { + ElementType val = dataset_[ind[i]][dim]; + if (val<min_elem) min_elem = val; + if (val>max_elem) max_elem = val; + } + } + + void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) + { + // find the largest span from the approximate bounding box + ElementType max_span = bbox[0].high-bbox[0].low; + cutfeat = 0; + cutval = (bbox[0].high+bbox[0].low)/2; + for (size_t i=1; i<dim_; ++i) { + ElementType span = bbox[i].high-bbox[i].low; + if (span>max_span) { + max_span = span; + cutfeat = i; + cutval = (bbox[i].high+bbox[i].low)/2; + } + } + + // compute exact span on the found dimension + ElementType min_elem, max_elem; + computeMinMax(ind, count, cutfeat, min_elem, max_elem); + cutval = (min_elem+max_elem)/2; + max_span = max_elem - min_elem; + + // check if a dimension of a largest span exists + size_t k = cutfeat; + for (size_t i=0; i<dim_; ++i) { + if (i==k) continue; + ElementType span = bbox[i].high-bbox[i].low; + if (span>max_span) { + computeMinMax(ind, count, i, min_elem, max_elem); + span = max_elem - min_elem; + if (span>max_span) { + max_span = span; + cutfeat = i; + cutval = (min_elem+max_elem)/2; + } + } + } + int lim1, lim2; + planeSplit(ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1>count/2) index = lim1; + else if (lim2<count/2) index = lim2; + else index = count/2; + } + + + void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) + { + const float EPS=0.00001f; + DistanceType max_span = bbox[0].high-bbox[0].low; + for (size_t i=1; i<dim_; ++i) { + DistanceType span = bbox[i].high-bbox[i].low; + if (span>max_span) { + max_span = span; + } + } + DistanceType max_spread = -1; + cutfeat = 0; + for (size_t i=0; i<dim_; ++i) { + DistanceType span = bbox[i].high-bbox[i].low; + if (span>(DistanceType)((1-EPS)*max_span)) { + ElementType min_elem, max_elem; + computeMinMax(ind, count, cutfeat, min_elem, max_elem); + DistanceType spread = (DistanceType)(max_elem-min_elem); + if (spread>max_spread) { + cutfeat = (int)i; + max_spread = spread; + } + } + } + // split in the middle + DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2; + ElementType min_elem, max_elem; + computeMinMax(ind, count, cutfeat, min_elem, max_elem); + + if (split_val<min_elem) cutval = (DistanceType)min_elem; + else if (split_val>max_elem) cutval = (DistanceType)max_elem; + else cutval = split_val; + + int lim1, lim2; + planeSplit(ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1>count/2) index = lim1; + else if (lim2<count/2) index = lim2; + else index = count/2; + } + + + /** + * Subdivide the list of points by a plane perpendicular on axe corresponding + * to the 'cutfeat' dimension at 'cutval' position. + * + * On return: + * dataset[ind[0..lim1-1]][cutfeat]<cutval + * dataset[ind[lim1..lim2-1]][cutfeat]==cutval + * dataset[ind[lim2..count]][cutfeat]>cutval + */ + void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2) + { + /* Move vector indices for left subtree to front of list. */ + int left = 0; + int right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left; + while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + /* If either list is empty, it means that all remaining features + * are identical. Split in the middle to maintain a balanced tree. + */ + lim1 = left; + right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left; + while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + lim2 = left; + } + + DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists) + { + DistanceType distsq = 0.0; + + for (size_t i = 0; i < dim_; ++i) { + if (vec[i] < root_bbox_[i].low) { + dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i); + distsq += dists[i]; + } + if (vec[i] > root_bbox_[i].high) { + dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i); + distsq += dists[i]; + } + } + + return distsq; + } + + /** + * Performs an exact search in the tree starting from a node. + */ + void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq, + std::vector<DistanceType>& dists, const float epsError) + { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL)&&(node->child2 == NULL)) { + DistanceType worst_dist = result_set.worstDist(); + for (int i=node->left; i<node->right; ++i) { + int index = reorder_ ? i : vind_[i]; + DistanceType dist = distance_(vec, data_[index], dim_, worst_dist); + if (dist<worst_dist) { + result_set.addPoint(dist,vind_[i]); + } + } + return; + } + + /* Which child branch should be taken first? */ + int idx = node->divfeat; + ElementType val = vec[idx]; + DistanceType diff1 = val - node->divlow; + DistanceType diff2 = val - node->divhigh; + + NodePtr bestChild; + NodePtr otherChild; + DistanceType cut_dist; + if ((diff1+diff2)<0) { + bestChild = node->child1; + otherChild = node->child2; + cut_dist = distance_.accum_dist(val, node->divhigh, idx); + } + else { + bestChild = node->child2; + otherChild = node->child1; + cut_dist = distance_.accum_dist( val, node->divlow, idx); + } + + /* Call recursively to search next level down. */ + searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError); + + DistanceType dst = dists[idx]; + mindistsq = mindistsq + cut_dist - dst; + dists[idx] = cut_dist; + if (mindistsq*epsError<=result_set.worstDist()) { + searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError); + } + dists[idx] = dst; + } + +private: + + /** + * The dataset used by this index + */ + const Matrix<ElementType> dataset_; + + IndexParams index_params_; + + int leaf_max_size_; + bool reorder_; + + + /** + * Array of indices to vectors in the dataset. + */ + std::vector<int> vind_; + + Matrix<ElementType> data_; + + size_t size_; + size_t dim_; + + /** + * Array of k-d trees used to find neighbours. + */ + NodePtr root_node_; + + BoundingBox root_bbox_; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool_; + + Distance distance_; +}; // class KDTree + +} + +#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/kmeans_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1171 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_KMEANS_INDEX_H_ +#define OPENCV_FLANN_KMEANS_INDEX_H_ + +#include <algorithm> +#include <map> +#include <cassert> +#include <limits> +#include <cmath> + +#include "general.h" +#include "nn_index.h" +#include "dist.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" +#include "logger.h" + + +namespace cvflann +{ + +struct KMeansIndexParams : public IndexParams +{ + KMeansIndexParams(int branching = 32, int iterations = 11, + flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) + { + (*this)["algorithm"] = FLANN_INDEX_KMEANS; + // branching factor + (*this)["branching"] = branching; + // max iterations to perform in one kmeans clustering (kmeans tree) + (*this)["iterations"] = iterations; + // algorithm used for picking the initial cluster centers for kmeans tree + (*this)["centers_init"] = centers_init; + // cluster boundary index. Used when searching the kmeans tree + (*this)["cb_index"] = cb_index; + } +}; + + +/** + * Hierarchical kmeans index + * + * Contains a tree constructed through a hierarchical kmeans clustering + * and other information for indexing a set of points for nearest-neighbour matching. + */ +template <typename Distance> +class KMeansIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + + typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&); + + /** + * The function used for choosing the cluster centers. + */ + centersAlgFunction chooseCenters; + + + + /** + * Chooses the initial centers in the k-means clustering in a random manner. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * indices_length = length of indices vector + * + */ + void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length) + { + UniqueRandom r(indices_length); + + int index; + for (index=0; index<k; ++index) { + bool duplicate = true; + int rnd; + while (duplicate) { + duplicate = false; + rnd = r.next(); + if (rnd<0) { + centers_length = index; + return; + } + + centers[index] = indices[rnd]; + + for (int j=0; j<index; ++j) { + DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols); + if (sq<1e-16) { + duplicate = true; + } + } + } + } + + centers_length = index; + } + + + /** + * Chooses the initial centers in the k-means using Gonzales' algorithm + * so that the centers are spaced apart from each other. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length) + { + int n = indices_length; + + int rnd = rand_int(n); + assert(rnd >=0 && rnd < n); + + centers[0] = indices[rnd]; + + int index; + for (index=1; index<k; ++index) { + + int best_index = -1; + DistanceType best_val = 0; + for (int j=0; j<n; ++j) { + DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols); + for (int i=1; i<index; ++i) { + DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols); + if (tmp_dist<dist) { + dist = tmp_dist; + } + } + if (dist>best_val) { + best_val = dist; + best_index = j; + } + } + if (best_index!=-1) { + centers[index] = indices[best_index]; + } + else { + break; + } + } + centers_length = index; + } + + + /** + * Chooses the initial centers in the k-means using the algorithm + * proposed in the KMeans++ paper: + * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding + * + * Implementation of this function was converted from the one provided in Arthur's code. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length) + { + int n = indices_length; + + double currentPot = 0; + DistanceType* closestDistSq = new DistanceType[n]; + + // Choose one random center and set the closestDistSq values + int index = rand_int(n); + assert(index >=0 && index < n); + centers[0] = indices[index]; + + for (int i = 0; i < n; i++) { + closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); + closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] ); + currentPot += closestDistSq[i]; + } + + + const int numLocalTries = 1; + + // Choose each center + int centerCount; + for (centerCount = 1; centerCount < k; centerCount++) { + + // Repeat several trials + double bestNewPot = -1; + int bestNewIndex = -1; + for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { + + // Choose our center - have to be slightly careful to return a valid answer even accounting + // for possible rounding errors + double randVal = rand_double(currentPot); + for (index = 0; index < n-1; index++) { + if (randVal <= closestDistSq[index]) break; + else randVal -= closestDistSq[index]; + } + + // Compute the new potential + double newPot = 0; + for (int i = 0; i < n; i++) { + DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); + newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); + } + + // Store the best result + if ((bestNewPot < 0)||(newPot < bestNewPot)) { + bestNewPot = newPot; + bestNewIndex = index; + } + } + + // Add the appropriate center + centers[centerCount] = indices[bestNewIndex]; + currentPot = bestNewPot; + for (int i = 0; i < n; i++) { + DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols); + closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); + } + } + + centers_length = centerCount; + + delete[] closestDistSq; + } + + + +public: + + flann_algorithm_t getType() const + { + return FLANN_INDEX_KMEANS; + } + + class KMeansDistanceComputer : public cv::ParallelLoopBody + { + public: + KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset, + const int _branching, const int* _indices, const Matrix<double>& _dcenters, const size_t _veclen, + int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool& _converged, cv::Mutex& _mtx) + : distance(_distance) + , dataset(_dataset) + , branching(_branching) + , indices(_indices) + , dcenters(_dcenters) + , veclen(_veclen) + , count(_count) + , belongs_to(_belongs_to) + , radiuses(_radiuses) + , converged(_converged) + , mtx(_mtx) + { + } + + void operator()(const cv::Range& range) const + { + const int begin = range.start; + const int end = range.end; + + for( int i = begin; i<end; ++i) + { + DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen); + int new_centroid = 0; + for (int j=1; j<branching; ++j) { + DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen); + if (sq_dist>new_sq_dist) { + new_centroid = j; + sq_dist = new_sq_dist; + } + } + if (sq_dist > radiuses[new_centroid]) { + radiuses[new_centroid] = sq_dist; + } + if (new_centroid != belongs_to[i]) { + count[belongs_to[i]]--; + count[new_centroid]++; + belongs_to[i] = new_centroid; + mtx.lock(); + converged = false; + mtx.unlock(); + } + } + } + + private: + Distance distance; + const Matrix<ElementType>& dataset; + const int branching; + const int* indices; + const Matrix<double>& dcenters; + const size_t veclen; + int* count; + int* belongs_to; + std::vector<DistanceType>& radiuses; + bool& converged; + cv::Mutex& mtx; + KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; } + }; + + /** + * Index constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the hierarchical k-means algorithm + */ + KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(), + Distance d = Distance()) + : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d) + { + memoryCounter_ = 0; + + size_ = dataset_.rows; + veclen_ = dataset_.cols; + + branching_ = get_param(params,"branching",32); + iterations_ = get_param(params,"iterations",11); + if (iterations_<0) { + iterations_ = (std::numeric_limits<int>::max)(); + } + centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM); + + if (centers_init_==FLANN_CENTERS_RANDOM) { + chooseCenters = &KMeansIndex::chooseCentersRandom; + } + else if (centers_init_==FLANN_CENTERS_GONZALES) { + chooseCenters = &KMeansIndex::chooseCentersGonzales; + } + else if (centers_init_==FLANN_CENTERS_KMEANSPP) { + chooseCenters = &KMeansIndex::chooseCentersKMeanspp; + } + else { + throw FLANNException("Unknown algorithm for choosing initial centers."); + } + cb_index_ = 0.4f; + + } + + + KMeansIndex(const KMeansIndex&); + KMeansIndex& operator=(const KMeansIndex&); + + + /** + * Index destructor. + * + * Release the memory used by the index. + */ + virtual ~KMeansIndex() + { + if (root_ != NULL) { + free_centers(root_); + } + if (indices_!=NULL) { + delete[] indices_; + } + } + + /** + * Returns size of index. + */ + size_t size() const + { + return size_; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return veclen_; + } + + + void set_cb_index( float index) + { + cb_index_ = index; + } + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return pool_.usedMemory+pool_.wastedMemory+memoryCounter_; + } + + /** + * Builds the index + */ + void buildIndex() + { + if (branching_<2) { + throw FLANNException("Branching factor must be at least 2"); + } + + indices_ = new int[size_]; + for (size_t i=0; i<size_; ++i) { + indices_[i] = int(i); + } + + root_ = pool_.allocate<KMeansNode>(); + std::memset(root_, 0, sizeof(KMeansNode)); + + computeNodeStatistics(root_, indices_, (int)size_); + computeClustering(root_, indices_, (int)size_, branching_,0); + } + + + void saveIndex(FILE* stream) + { + save_value(stream, branching_); + save_value(stream, iterations_); + save_value(stream, memoryCounter_); + save_value(stream, cb_index_); + save_value(stream, *indices_, (int)size_); + + save_tree(stream, root_); + } + + + void loadIndex(FILE* stream) + { + load_value(stream, branching_); + load_value(stream, iterations_); + load_value(stream, memoryCounter_); + load_value(stream, cb_index_); + if (indices_!=NULL) { + delete[] indices_; + } + indices_ = new int[size_]; + load_value(stream, *indices_, size_); + + if (root_!=NULL) { + free_centers(root_); + } + load_tree(stream, root_); + + index_params_["algorithm"] = getType(); + index_params_["branching"] = branching_; + index_params_["iterations"] = iterations_; + index_params_["centers_init"] = centers_init_; + index_params_["cb_index"] = cb_index_; + + } + + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * searchParams = parameters that influence the search algorithm (checks, cb_index) + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + + int maxChecks = get_param(searchParams,"checks",32); + + if (maxChecks==FLANN_CHECKS_UNLIMITED) { + findExactNN(root_, result, vec); + } + else { + // Priority queue storing intermediate branches in the best-bin-first search + Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); + + int checks = 0; + findNN(root_, result, vec, checks, maxChecks, heap); + + BranchSt branch; + while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { + KMeansNodePtr node = branch.node; + findNN(node, result, vec, checks, maxChecks, heap); + } + assert(result.full()); + + delete heap; + } + + } + + /** + * Clustering function that takes a cut in the hierarchical k-means + * tree and return the clusters centers of that clustering. + * Params: + * numClusters = number of clusters to have in the clustering computed + * Returns: number of cluster centers + */ + int getClusterCenters(Matrix<DistanceType>& centers) + { + int numClusters = centers.rows; + if (numClusters<1) { + throw FLANNException("Number of clusters must be at least 1"); + } + + DistanceType variance; + KMeansNodePtr* clusters = new KMeansNodePtr[numClusters]; + + int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance); + + Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount); + + for (int i=0; i<clusterCount; ++i) { + DistanceType* center = clusters[i]->pivot; + for (size_t j=0; j<veclen_; ++j) { + centers[i][j] = center[j]; + } + } + delete[] clusters; + + return clusterCount; + } + + IndexParams getParameters() const + { + return index_params_; + } + + +private: + /** + * Struture representing a node in the hierarchical k-means tree. + */ + struct KMeansNode + { + /** + * The cluster center. + */ + DistanceType* pivot; + /** + * The cluster radius. + */ + DistanceType radius; + /** + * The cluster mean radius. + */ + DistanceType mean_radius; + /** + * The cluster variance. + */ + DistanceType variance; + /** + * The cluster size (number of points in the cluster) + */ + int size; + /** + * Child nodes (only for non-terminal nodes) + */ + KMeansNode** childs; + /** + * Node points (only for terminal nodes) + */ + int* indices; + /** + * Level + */ + int level; + }; + typedef KMeansNode* KMeansNodePtr; + + /** + * Alias definition for a nicer syntax. + */ + typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt; + + + + + void save_tree(FILE* stream, KMeansNodePtr node) + { + save_value(stream, *node); + save_value(stream, *(node->pivot), (int)veclen_); + if (node->childs==NULL) { + int indices_offset = (int)(node->indices - indices_); + save_value(stream, indices_offset); + } + else { + for(int i=0; i<branching_; ++i) { + save_tree(stream, node->childs[i]); + } + } + } + + + void load_tree(FILE* stream, KMeansNodePtr& node) + { + node = pool_.allocate<KMeansNode>(); + load_value(stream, *node); + node->pivot = new DistanceType[veclen_]; + load_value(stream, *(node->pivot), (int)veclen_); + if (node->childs==NULL) { + int indices_offset; + load_value(stream, indices_offset); + node->indices = indices_ + indices_offset; + } + else { + node->childs = pool_.allocate<KMeansNodePtr>(branching_); + for(int i=0; i<branching_; ++i) { + load_tree(stream, node->childs[i]); + } + } + } + + + /** + * Helper function + */ + void free_centers(KMeansNodePtr node) + { + delete[] node->pivot; + if (node->childs!=NULL) { + for (int k=0; k<branching_; ++k) { + free_centers(node->childs[k]); + } + } + } + + /** + * Computes the statistics of a node (mean, radius, variance). + * + * Params: + * node = the node to use + * indices = the indices of the points belonging to the node + */ + void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length) + { + + DistanceType radius = 0; + DistanceType variance = 0; + DistanceType* mean = new DistanceType[veclen_]; + memoryCounter_ += int(veclen_*sizeof(DistanceType)); + + memset(mean,0,veclen_*sizeof(DistanceType)); + + for (size_t i=0; i<size_; ++i) { + ElementType* vec = dataset_[indices[i]]; + for (size_t j=0; j<veclen_; ++j) { + mean[j] += vec[j]; + } + variance += distance_(vec, ZeroIterator<ElementType>(), veclen_); + } + for (size_t j=0; j<veclen_; ++j) { + mean[j] /= size_; + } + variance /= size_; + variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_); + + DistanceType tmp = 0; + for (int i=0; i<indices_length; ++i) { + tmp = distance_(mean, dataset_[indices[i]], veclen_); + if (tmp>radius) { + radius = tmp; + } + } + + node->variance = variance; + node->radius = radius; + node->pivot = mean; + } + + + /** + * The method responsible with actually doing the recursive hierarchical + * clustering + * + * Params: + * node = the node to cluster + * indices = indices of the points belonging to the current node + * branching = the branching factor to use in the clustering + * + * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) + */ + void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level) + { + node->size = indices_length; + node->level = level; + + if (indices_length < branching) { + node->indices = indices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + cv::AutoBuffer<int> centers_idx_buf(branching); + int* centers_idx = (int*)centers_idx_buf; + int centers_length; + (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); + + if (centers_length<branching) { + node->indices = indices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + + cv::AutoBuffer<double> dcenters_buf(branching*veclen_); + Matrix<double> dcenters((double*)dcenters_buf,branching,veclen_); + for (int i=0; i<centers_length; ++i) { + ElementType* vec = dataset_[centers_idx[i]]; + for (size_t k=0; k<veclen_; ++k) { + dcenters[i][k] = double(vec[k]); + } + } + + std::vector<DistanceType> radiuses(branching); + cv::AutoBuffer<int> count_buf(branching); + int* count = (int*)count_buf; + for (int i=0; i<branching; ++i) { + radiuses[i] = 0; + count[i] = 0; + } + + // assign points to clusters + cv::AutoBuffer<int> belongs_to_buf(indices_length); + int* belongs_to = (int*)belongs_to_buf; + for (int i=0; i<indices_length; ++i) { + + DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_); + belongs_to[i] = 0; + for (int j=1; j<branching; ++j) { + DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_); + if (sq_dist>new_sq_dist) { + belongs_to[i] = j; + sq_dist = new_sq_dist; + } + } + if (sq_dist>radiuses[belongs_to[i]]) { + radiuses[belongs_to[i]] = sq_dist; + } + count[belongs_to[i]]++; + } + + bool converged = false; + int iteration = 0; + while (!converged && iteration<iterations_) { + converged = true; + iteration++; + + // compute the new cluster centers + for (int i=0; i<branching; ++i) { + memset(dcenters[i],0,sizeof(double)*veclen_); + radiuses[i] = 0; + } + for (int i=0; i<indices_length; ++i) { + ElementType* vec = dataset_[indices[i]]; + double* center = dcenters[belongs_to[i]]; + for (size_t k=0; k<veclen_; ++k) { + center[k] += vec[k]; + } + } + for (int i=0; i<branching; ++i) { + int cnt = count[i]; + for (size_t k=0; k<veclen_; ++k) { + dcenters[i][k] /= cnt; + } + } + + // reassign points to clusters + cv::Mutex mtx; + KMeansDistanceComputer invoker(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, converged, mtx); + parallel_for_(cv::Range(0, (int)indices_length), invoker); + + for (int i=0; i<branching; ++i) { + // if one cluster converges to an empty cluster, + // move an element into that cluster + if (count[i]==0) { + int j = (i+1)%branching; + while (count[j]<=1) { + j = (j+1)%branching; + } + + for (int k=0; k<indices_length; ++k) { + if (belongs_to[k]==j) { + // for cluster j, we move the furthest element from the center to the empty cluster i + if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) { + belongs_to[k] = i; + count[j]--; + count[i]++; + break; + } + } + } + converged = false; + } + } + + } + + DistanceType** centers = new DistanceType*[branching]; + + for (int i=0; i<branching; ++i) { + centers[i] = new DistanceType[veclen_]; + memoryCounter_ += (int)(veclen_*sizeof(DistanceType)); + for (size_t k=0; k<veclen_; ++k) { + centers[i][k] = (DistanceType)dcenters[i][k]; + } + } + + + // compute kmeans clustering for each of the resulting clusters + node->childs = pool_.allocate<KMeansNodePtr>(branching); + int start = 0; + int end = start; + for (int c=0; c<branching; ++c) { + int s = count[c]; + + DistanceType variance = 0; + DistanceType mean_radius =0; + for (int i=0; i<indices_length; ++i) { + if (belongs_to[i]==c) { + DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_); + variance += d; + mean_radius += sqrt(d); + std::swap(indices[i],indices[end]); + std::swap(belongs_to[i],belongs_to[end]); + end++; + } + } + variance /= s; + mean_radius /= s; + variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_); + + node->childs[c] = pool_.allocate<KMeansNode>(); + std::memset(node->childs[c], 0, sizeof(KMeansNode)); + node->childs[c]->radius = radiuses[c]; + node->childs[c]->pivot = centers[c]; + node->childs[c]->variance = variance; + node->childs[c]->mean_radius = mean_radius; + computeClustering(node->childs[c],indices+start, end-start, branching, level+1); + start=end; + } + + delete[] centers; + } + + + + /** + * Performs one descent in the hierarchical k-means tree. The branches not + * visited are stored in a priority queue. + * + * Params: + * node = node to explore + * result = container for the k-nearest neighbors found + * vec = query points + * checks = how many points in the dataset have been checked so far + * maxChecks = maximum dataset points to checks + */ + + + void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks, + Heap<BranchSt>* heap) + { + // Ignore those clusters that are too far away + { + DistanceType bsq = distance_(vec, node->pivot, veclen_); + DistanceType rsq = node->radius; + DistanceType wsq = result.worstDist(); + + DistanceType val = bsq-rsq-wsq; + DistanceType val2 = val*val-4*rsq*wsq; + + //if (val>0) { + if ((val>0)&&(val2>0)) { + return; + } + } + + if (node->childs==NULL) { + if (checks>=maxChecks) { + if (result.full()) return; + } + checks += node->size; + for (int i=0; i<node->size; ++i) { + int index = node->indices[i]; + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result.addPoint(dist, index); + } + } + else { + DistanceType* domain_distances = new DistanceType[branching_]; + int closest_center = exploreNodeBranches(node, vec, domain_distances, heap); + delete[] domain_distances; + findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap); + } + } + + /** + * Helper function that computes the nearest childs of a node to a given query point. + * Params: + * node = the node + * q = the query point + * distances = array with the distances to each child node. + * Returns: + */ + int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap) + { + + int best_index = 0; + domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_); + for (int i=1; i<branching_; ++i) { + domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_); + if (domain_distances[i]<domain_distances[best_index]) { + best_index = i; + } + } + + // float* best_center = node->childs[best_index]->pivot; + for (int i=0; i<branching_; ++i) { + if (i != best_index) { + domain_distances[i] -= cb_index_*node->childs[i]->variance; + + // float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q); + // if (domain_distances[i]<dist_to_border) { + // domain_distances[i] = dist_to_border; + // } + heap->insert(BranchSt(node->childs[i],domain_distances[i])); + } + } + + return best_index; + } + + + /** + * Function the performs exact nearest neighbor search by traversing the entire tree. + */ + void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec) + { + // Ignore those clusters that are too far away + { + DistanceType bsq = distance_(vec, node->pivot, veclen_); + DistanceType rsq = node->radius; + DistanceType wsq = result.worstDist(); + + DistanceType val = bsq-rsq-wsq; + DistanceType val2 = val*val-4*rsq*wsq; + + // if (val>0) { + if ((val>0)&&(val2>0)) { + return; + } + } + + + if (node->childs==NULL) { + for (int i=0; i<node->size; ++i) { + int index = node->indices[i]; + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result.addPoint(dist, index); + } + } + else { + int* sort_indices = new int[branching_]; + + getCenterOrdering(node, vec, sort_indices); + + for (int i=0; i<branching_; ++i) { + findExactNN(node->childs[sort_indices[i]],result,vec); + } + + delete[] sort_indices; + } + } + + + /** + * Helper function. + * + * I computes the order in which to traverse the child nodes of a particular node. + */ + void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices) + { + DistanceType* domain_distances = new DistanceType[branching_]; + for (int i=0; i<branching_; ++i) { + DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_); + + int j=0; + while (domain_distances[j]<dist && j<i) j++; + for (int k=i; k>j; --k) { + domain_distances[k] = domain_distances[k-1]; + sort_indices[k] = sort_indices[k-1]; + } + domain_distances[j] = dist; + sort_indices[j] = i; + } + delete[] domain_distances; + } + + /** + * Method that computes the squared distance from the query point q + * from inside region with center c to the border between this + * region and the region with center p + */ + DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q) + { + DistanceType sum = 0; + DistanceType sum2 = 0; + + for (int i=0; i<veclen_; ++i) { + DistanceType t = c[i]-p[i]; + sum += t*(q[i]-(c[i]+p[i])/2); + sum2 += t*t; + } + + return sum*sum/sum2; + } + + + /** + * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize + * the overall variance of the clustering. + * Params: + * root = root node + * clusters = array with clusters centers (return value) + * varianceValue = variance of the clustering (return value) + * Returns: + */ + int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue) + { + int clusterCount = 1; + clusters[0] = root; + + DistanceType meanVariance = root->variance*root->size; + + while (clusterCount<clusters_length) { + DistanceType minVariance = (std::numeric_limits<DistanceType>::max)(); + int splitIndex = -1; + + for (int i=0; i<clusterCount; ++i) { + if (clusters[i]->childs != NULL) { + + DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size; + + for (int j=0; j<branching_; ++j) { + variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size; + } + if (variance<minVariance) { + minVariance = variance; + splitIndex = i; + } + } + } + + if (splitIndex==-1) break; + if ( (branching_+clusterCount-1) > clusters_length) break; + + meanVariance = minVariance; + + // split node + KMeansNodePtr toSplit = clusters[splitIndex]; + clusters[splitIndex] = toSplit->childs[0]; + for (int i=1; i<branching_; ++i) { + clusters[clusterCount++] = toSplit->childs[i]; + } + } + + varianceValue = meanVariance/root->size; + return clusterCount; + } + +private: + /** The branching factor used in the hierarchical k-means clustering */ + int branching_; + + /** Maximum number of iterations to use when performing k-means clustering */ + int iterations_; + + /** Algorithm for choosing the cluster centers */ + flann_centers_init_t centers_init_; + + /** + * Cluster border index. This is used in the tree search phase when determining + * the closest cluster to explore next. A zero value takes into account only + * the cluster centres, a value greater then zero also take into account the size + * of the cluster. + */ + float cb_index_; + + /** + * The dataset used by this index + */ + const Matrix<ElementType> dataset_; + + /** Index parameters */ + IndexParams index_params_; + + /** + * Number of features in the dataset. + */ + size_t size_; + + /** + * Length of each feature. + */ + size_t veclen_; + + /** + * The root node in the tree. + */ + KMeansNodePtr root_; + + /** + * Array of indices to vectors in the dataset. + */ + int* indices_; + + /** + * The distance + */ + Distance distance_; + + /** + * Pooled memory allocator. + */ + PooledAllocator pool_; + + /** + * Memory occupied by the index. + */ + int memoryCounter_; +}; + +} + +#endif //OPENCV_FLANN_KMEANS_INDEX_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/linear_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,132 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_LINEAR_INDEX_H_ +#define OPENCV_FLANN_LINEAR_INDEX_H_ + +#include "general.h" +#include "nn_index.h" + +namespace cvflann +{ + +struct LinearIndexParams : public IndexParams +{ + LinearIndexParams() + { + (* this)["algorithm"] = FLANN_INDEX_LINEAR; + } +}; + +template <typename Distance> +class LinearIndex : public NNIndex<Distance> +{ +public: + + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + LinearIndex(const Matrix<ElementType>& inputData, const IndexParams& params = LinearIndexParams(), + Distance d = Distance()) : + dataset_(inputData), index_params_(params), distance_(d) + { + } + + LinearIndex(const LinearIndex&); + LinearIndex& operator=(const LinearIndex&); + + flann_algorithm_t getType() const + { + return FLANN_INDEX_LINEAR; + } + + + size_t size() const + { + return dataset_.rows; + } + + size_t veclen() const + { + return dataset_.cols; + } + + + int usedMemory() const + { + return 0; + } + + void buildIndex() + { + /* nothing to do here for linear search */ + } + + void saveIndex(FILE*) + { + /* nothing to do here for linear search */ + } + + + void loadIndex(FILE*) + { + /* nothing to do here for linear search */ + + index_params_["algorithm"] = getType(); + } + + void findNeighbors(ResultSet<DistanceType>& resultSet, const ElementType* vec, const SearchParams& /*searchParams*/) + { + ElementType* data = dataset_.data; + for (size_t i = 0; i < dataset_.rows; ++i, data += dataset_.cols) { + DistanceType dist = distance_(data, vec, dataset_.cols); + resultSet.addPoint(dist, (int)i); + } + } + + IndexParams getParameters() const + { + return index_params_; + } + +private: + /** The dataset */ + const Matrix<ElementType> dataset_; + /** Index parameters */ + IndexParams index_params_; + /** Index distance */ + Distance distance_; + +}; + +} + +#endif // OPENCV_FLANN_LINEAR_INDEX_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/logger.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,130 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_LOGGER_H +#define OPENCV_FLANN_LOGGER_H + +#include <stdio.h> +#include <stdarg.h> + +#include "defines.h" + + +namespace cvflann +{ + +class Logger +{ + Logger() : stream(stdout), logLevel(FLANN_LOG_WARN) {} + + ~Logger() + { + if ((stream!=NULL)&&(stream!=stdout)) { + fclose(stream); + } + } + + static Logger& instance() + { + static Logger logger; + return logger; + } + + void _setDestination(const char* name) + { + if (name==NULL) { + stream = stdout; + } + else { + stream = fopen(name,"w"); + if (stream == NULL) { + stream = stdout; + } + } + } + + int _log(int level, const char* fmt, va_list arglist) + { + if (level > logLevel ) return -1; + int ret = vfprintf(stream, fmt, arglist); + return ret; + } + +public: + /** + * Sets the logging level. All messages with lower priority will be ignored. + * @param level Logging level + */ + static void setLevel(int level) { instance().logLevel = level; } + + /** + * Sets the logging destination + * @param name Filename or NULL for console + */ + static void setDestination(const char* name) { instance()._setDestination(name); } + + /** + * Print log message + * @param level Log level + * @param fmt Message format + * @return + */ + static int log(int level, const char* fmt, ...) + { + va_list arglist; + va_start(arglist, fmt); + int ret = instance()._log(level,fmt,arglist); + va_end(arglist); + return ret; + } + +#define LOG_METHOD(NAME,LEVEL) \ + static int NAME(const char* fmt, ...) \ + { \ + va_list ap; \ + va_start(ap, fmt); \ + int ret = instance()._log(LEVEL, fmt, ap); \ + va_end(ap); \ + return ret; \ + } + + LOG_METHOD(fatal, FLANN_LOG_FATAL) + LOG_METHOD(error, FLANN_LOG_ERROR) + LOG_METHOD(warn, FLANN_LOG_WARN) + LOG_METHOD(info, FLANN_LOG_INFO) + +private: + FILE* stream; + int logLevel; +}; + +} + +#endif //OPENCV_FLANN_LOGGER_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/lsh_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,392 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +/*********************************************************************** + * Author: Vincent Rabaud + *************************************************************************/ + +#ifndef OPENCV_FLANN_LSH_INDEX_H_ +#define OPENCV_FLANN_LSH_INDEX_H_ + +#include <algorithm> +#include <cassert> +#include <cstring> +#include <map> +#include <vector> + +#include "general.h" +#include "nn_index.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "lsh_table.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + +namespace cvflann +{ + +struct LshIndexParams : public IndexParams +{ + LshIndexParams(unsigned int table_number = 12, unsigned int key_size = 20, unsigned int multi_probe_level = 2) + { + (* this)["algorithm"] = FLANN_INDEX_LSH; + // The number of hash tables to use + (*this)["table_number"] = table_number; + // The length of the key in the hash tables + (*this)["key_size"] = key_size; + // Number of levels to use in multi-probe (0 for standard LSH) + (*this)["multi_probe_level"] = multi_probe_level; + } +}; + +/** + * Randomized kd-tree index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + */ +template<typename Distance> +class LshIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + /** Constructor + * @param input_data dataset with the input features + * @param params parameters passed to the LSH algorithm + * @param d the distance used + */ + LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(), + Distance d = Distance()) : + dataset_(input_data), index_params_(params), distance_(d) + { + // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param + // in place of 'unsigned int' + table_number_ = (unsigned int)get_param<int>(index_params_,"table_number",12); + key_size_ = (unsigned int)get_param<int>(index_params_,"key_size",20); + multi_probe_level_ = (unsigned int)get_param<int>(index_params_,"multi_probe_level",2); + + feature_size_ = (unsigned)dataset_.cols; + fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_); + } + + + LshIndex(const LshIndex&); + LshIndex& operator=(const LshIndex&); + + /** + * Builds the index + */ + void buildIndex() + { + tables_.resize(table_number_); + for (unsigned int i = 0; i < table_number_; ++i) { + lsh::LshTable<ElementType>& table = tables_[i]; + table = lsh::LshTable<ElementType>(feature_size_, key_size_); + + // Add the features to the table + table.add(dataset_); + } + } + + flann_algorithm_t getType() const + { + return FLANN_INDEX_LSH; + } + + + void saveIndex(FILE* stream) + { + save_value(stream,table_number_); + save_value(stream,key_size_); + save_value(stream,multi_probe_level_); + save_value(stream, dataset_); + } + + void loadIndex(FILE* stream) + { + load_value(stream, table_number_); + load_value(stream, key_size_); + load_value(stream, multi_probe_level_); + load_value(stream, dataset_); + // Building the index is so fast we can afford not storing it + buildIndex(); + + index_params_["algorithm"] = getType(); + index_params_["table_number"] = table_number_; + index_params_["key_size"] = key_size_; + index_params_["multi_probe_level"] = multi_probe_level_; + } + + /** + * Returns size of index. + */ + size_t size() const + { + return dataset_.rows; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return feature_size_; + } + + /** + * Computes the index memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return (int)(dataset_.rows * sizeof(int)); + } + + + IndexParams getParameters() const + { + return index_params_; + } + + /** + * \brief Perform k-nearest neighbor search + * \param[in] queries The query points for which to find the nearest neighbors + * \param[out] indices The indices of the nearest neighbors found + * \param[out] dists Distances to the nearest neighbors found + * \param[in] knn Number of nearest neighbors to return + * \param[in] params Search parameters + */ + virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) + { + assert(queries.cols == veclen()); + assert(indices.rows >= queries.rows); + assert(dists.rows >= queries.rows); + assert(int(indices.cols) >= knn); + assert(int(dists.cols) >= knn); + + + KNNUniqueResultSet<DistanceType> resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.clear(); + std::fill_n(indices[i], knn, -1); + std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max()); + findNeighbors(resultSet, queries[i], params); + if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); + else resultSet.copy(indices[i], dists[i], knn); + } + } + + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * maxCheck = the maximum number of restarts (in a best-bin-first manner) + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/) + { + getNeighbors(vec, result); + } + +private: + /** Defines the comparator on score and index + */ + typedef std::pair<float, unsigned int> ScoreIndexPair; + struct SortScoreIndexPairOnSecond + { + bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const + { + return left.second < right.second; + } + }; + + /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH + * @param key the key we build neighbors from + * @param lowest_index the lowest index of the bit set + * @param level the multi-probe level we are at + * @param xor_masks all the xor mask + */ + void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level, + std::vector<lsh::BucketKey>& xor_masks) + { + xor_masks.push_back(key); + if (level == 0) return; + for (int index = lowest_index - 1; index >= 0; --index) { + // Create a new key + lsh::BucketKey new_key = key | (1 << index); + fill_xor_mask(new_key, index, level - 1, xor_masks); + } + } + + /** Performs the approximate nearest-neighbor search. + * @param vec the feature to analyze + * @param do_radius flag indicating if we check the radius too + * @param radius the radius if it is a radius search + * @param do_k flag indicating if we limit the number of nn + * @param k_nn the number of nearest neighbors + * @param checked_average used for debugging + */ + void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn, + float& /*checked_average*/) + { + static std::vector<ScoreIndexPair> score_index_heap; + + if (do_k) { + unsigned int worst_score = std::numeric_limits<unsigned int>::max(); + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); + for (; table != table_end; ++table) { + size_t key = table->getKey(vec); + std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); + std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); + for (; xor_mask != xor_mask_end; ++xor_mask) { + size_t sub_key = key ^ (*xor_mask); + const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); + if (bucket == 0) continue; + + // Go over each descriptor index + std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); + std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); + DistanceType hamming_distance; + + // Process the rest of the candidates + for (; training_index < last_training_index; ++training_index) { + hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); + + if (hamming_distance < worst_score) { + // Insert the new element + score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); + std::push_heap(score_index_heap.begin(), score_index_heap.end()); + + if (score_index_heap.size() > (unsigned int)k_nn) { + // Remove the highest distance value as we have too many elements + std::pop_heap(score_index_heap.begin(), score_index_heap.end()); + score_index_heap.pop_back(); + // Keep track of the worst score + worst_score = score_index_heap.front().first; + } + } + } + } + } + } + else { + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); + for (; table != table_end; ++table) { + size_t key = table->getKey(vec); + std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); + std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); + for (; xor_mask != xor_mask_end; ++xor_mask) { + size_t sub_key = key ^ (*xor_mask); + const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); + if (bucket == 0) continue; + + // Go over each descriptor index + std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); + std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); + DistanceType hamming_distance; + + // Process the rest of the candidates + for (; training_index < last_training_index; ++training_index) { + // Compute the Hamming distance + hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); + if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); + } + } + } + } + } + + /** Performs the approximate nearest-neighbor search. + * This is a slower version than the above as it uses the ResultSet + * @param vec the feature to analyze + */ + void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result) + { + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); + for (; table != table_end; ++table) { + size_t key = table->getKey(vec); + std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); + std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); + for (; xor_mask != xor_mask_end; ++xor_mask) { + size_t sub_key = key ^ (*xor_mask); + const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key); + if (bucket == 0) continue; + + // Go over each descriptor index + std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); + std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); + DistanceType hamming_distance; + + // Process the rest of the candidates + for (; training_index < last_training_index; ++training_index) { + // Compute the Hamming distance + hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols); + result.addPoint(hamming_distance, *training_index); + } + } + } + } + + /** The different hash tables */ + std::vector<lsh::LshTable<ElementType> > tables_; + + /** The data the LSH tables where built from */ + Matrix<ElementType> dataset_; + + /** The size of the features (as ElementType[]) */ + unsigned int feature_size_; + + IndexParams index_params_; + + /** table number */ + unsigned int table_number_; + /** key size */ + unsigned int key_size_; + /** How far should we look for neighbors in multi-probe LSH */ + unsigned int multi_probe_level_; + + /** The XOR masks to apply to a key to get the neighboring buckets */ + std::vector<lsh::BucketKey> xor_masks_; + + Distance distance_; +}; +} + +#endif //OPENCV_FLANN_LSH_INDEX_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/lsh_table.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,492 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +/*********************************************************************** + * Author: Vincent Rabaud + *************************************************************************/ + +#ifndef OPENCV_FLANN_LSH_TABLE_H_ +#define OPENCV_FLANN_LSH_TABLE_H_ + +#include <algorithm> +#include <iostream> +#include <iomanip> +#include <limits.h> +// TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP +#ifdef __GXX_EXPERIMENTAL_CXX0X__ +# define USE_UNORDERED_MAP 1 +#else +# define USE_UNORDERED_MAP 0 +#endif +#if USE_UNORDERED_MAP +#include <unordered_map> +#else +#include <map> +#endif +#include <math.h> +#include <stddef.h> + +#include "dynamic_bitset.h" +#include "matrix.h" + +namespace cvflann +{ + +namespace lsh +{ + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** What is stored in an LSH bucket + */ +typedef uint32_t FeatureIndex; +/** The id from which we can get a bucket back in an LSH table + */ +typedef unsigned int BucketKey; + +/** A bucket in an LSH table + */ +typedef std::vector<FeatureIndex> Bucket; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** POD for stats about an LSH table + */ +struct LshStats +{ + std::vector<unsigned int> bucket_sizes_; + size_t n_buckets_; + size_t bucket_size_mean_; + size_t bucket_size_median_; + size_t bucket_size_min_; + size_t bucket_size_max_; + size_t bucket_size_std_dev; + /** Each contained vector contains three value: beginning/end for interval, number of elements in the bin + */ + std::vector<std::vector<unsigned int> > size_histogram_; +}; + +/** Overload the << operator for LshStats + * @param out the streams + * @param stats the stats to display + * @return the streams + */ +inline std::ostream& operator <<(std::ostream& out, const LshStats& stats) +{ + int w = 20; + out << "Lsh Table Stats:\n" << std::setw(w) << std::setiosflags(std::ios::right) << "N buckets : " + << stats.n_buckets_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "mean size : " + << std::setiosflags(std::ios::left) << stats.bucket_size_mean_ << "\n" << std::setw(w) + << std::setiosflags(std::ios::right) << "median size : " << stats.bucket_size_median_ << "\n" << std::setw(w) + << std::setiosflags(std::ios::right) << "min size : " << std::setiosflags(std::ios::left) + << stats.bucket_size_min_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "max size : " + << std::setiosflags(std::ios::left) << stats.bucket_size_max_; + + // Display the histogram + out << std::endl << std::setw(w) << std::setiosflags(std::ios::right) << "histogram : " + << std::setiosflags(std::ios::left); + for (std::vector<std::vector<unsigned int> >::const_iterator iterator = stats.size_histogram_.begin(), end = + stats.size_histogram_.end(); iterator != end; ++iterator) out << (*iterator)[0] << "-" << (*iterator)[1] << ": " << (*iterator)[2] << ", "; + + return out; +} + + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Lsh hash table. As its key is a sub-feature, and as usually + * the size of it is pretty small, we keep it as a continuous memory array. + * The value is an index in the corpus of features (we keep it as an unsigned + * int for pure memory reasons, it could be a size_t) + */ +template<typename ElementType> +class LshTable +{ +public: + /** A container of all the feature indices. Optimized for space + */ +#if USE_UNORDERED_MAP + typedef std::unordered_map<BucketKey, Bucket> BucketsSpace; +#else + typedef std::map<BucketKey, Bucket> BucketsSpace; +#endif + + /** A container of all the feature indices. Optimized for speed + */ + typedef std::vector<Bucket> BucketsSpeed; + + /** Default constructor + */ + LshTable() + { + } + + /** Default constructor + * Create the mask and allocate the memory + * @param feature_size is the size of the feature (considered as a ElementType[]) + * @param key_size is the number of bits that are turned on in the feature + */ + LshTable(unsigned int feature_size, unsigned int key_size) + { + (void)feature_size; + (void)key_size; + std::cerr << "LSH is not implemented for that type" << std::endl; + assert(0); + } + + /** Add a feature to the table + * @param value the value to store for that feature + * @param feature the feature itself + */ + void add(unsigned int value, const ElementType* feature) + { + // Add the value to the corresponding bucket + BucketKey key = (lsh::BucketKey)getKey(feature); + + switch (speed_level_) { + case kArray: + // That means we get the buckets from an array + buckets_speed_[key].push_back(value); + break; + case kBitsetHash: + // That means we can check the bitset for the presence of a key + key_bitset_.set(key); + buckets_space_[key].push_back(value); + break; + case kHash: + { + // That means we have to check for the hash table for the presence of a key + buckets_space_[key].push_back(value); + break; + } + } + } + + /** Add a set of features to the table + * @param dataset the values to store + */ + void add(Matrix<ElementType> dataset) + { +#if USE_UNORDERED_MAP + buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2); +#endif + // Add the features to the table + for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]); + // Now that the table is full, optimize it for speed/space + optimize(); + } + + /** Get a bucket given the key + * @param key + * @return + */ + inline const Bucket* getBucketFromKey(BucketKey key) const + { + // Generate other buckets + switch (speed_level_) { + case kArray: + // That means we get the buckets from an array + return &buckets_speed_[key]; + break; + case kBitsetHash: + // That means we can check the bitset for the presence of a key + if (key_bitset_.test(key)) return &buckets_space_.find(key)->second; + else return 0; + break; + case kHash: + { + // That means we have to check for the hash table for the presence of a key + BucketsSpace::const_iterator bucket_it, bucket_end = buckets_space_.end(); + bucket_it = buckets_space_.find(key); + // Stop here if that bucket does not exist + if (bucket_it == bucket_end) return 0; + else return &bucket_it->second; + break; + } + } + return 0; + } + + /** Compute the sub-signature of a feature + */ + size_t getKey(const ElementType* /*feature*/) const + { + std::cerr << "LSH is not implemented for that type" << std::endl; + assert(0); + return 1; + } + + /** Get statistics about the table + * @return + */ + LshStats getStats() const; + +private: + /** defines the speed fo the implementation + * kArray uses a vector for storing data + * kBitsetHash uses a hash map but checks for the validity of a key with a bitset + * kHash uses a hash map only + */ + enum SpeedLevel + { + kArray, kBitsetHash, kHash + }; + + /** Initialize some variables + */ + void initialize(size_t key_size) + { + const size_t key_size_lower_bound = 1; + //a value (size_t(1) << key_size) must fit the size_t type so key_size has to be strictly less than size of size_t + const size_t key_size_upper_bound = (std::min)(sizeof(BucketKey) * CHAR_BIT + 1, sizeof(size_t) * CHAR_BIT); + if (key_size < key_size_lower_bound || key_size >= key_size_upper_bound) + { + CV_Error(cv::Error::StsBadArg, cv::format("Invalid key_size (=%d). Valid values for your system are %d <= key_size < %d.", (int)key_size, (int)key_size_lower_bound, (int)key_size_upper_bound)); + } + + speed_level_ = kHash; + key_size_ = (unsigned)key_size; + } + + /** Optimize the table for speed/space + */ + void optimize() + { + // If we are already using the fast storage, no need to do anything + if (speed_level_ == kArray) return; + + // Use an array if it will be more than half full + if (buckets_space_.size() > ((size_t(1) << key_size_) / 2)) { + speed_level_ = kArray; + // Fill the array version of it + buckets_speed_.resize(size_t(1) << key_size_); + for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) buckets_speed_[key_bucket->first] = key_bucket->second; + + // Empty the hash table + buckets_space_.clear(); + return; + } + + // If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two + // for the vector) or less than 512MB (key_size_ <= 30) + if (((std::max(buckets_space_.size(), buckets_speed_.size()) * CHAR_BIT * 3 * sizeof(BucketKey)) / 10 + >= (size_t(1) << key_size_)) || (key_size_ <= 32)) { + speed_level_ = kBitsetHash; + key_bitset_.resize(size_t(1) << key_size_); + key_bitset_.reset(); + // Try with the BucketsSpace + for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) key_bitset_.set(key_bucket->first); + } + else { + speed_level_ = kHash; + key_bitset_.clear(); + } + } + + /** The vector of all the buckets if they are held for speed + */ + BucketsSpeed buckets_speed_; + + /** The hash table of all the buckets in case we cannot use the speed version + */ + BucketsSpace buckets_space_; + + /** What is used to store the data */ + SpeedLevel speed_level_; + + /** If the subkey is small enough, it will keep track of which subkeys are set through that bitset + * That is just a speedup so that we don't look in the hash table (which can be mush slower that checking a bitset) + */ + DynamicBitset key_bitset_; + + /** The size of the sub-signature in bits + */ + unsigned int key_size_; + + // Members only used for the unsigned char specialization + /** The mask to apply to a feature to get the hash key + * Only used in the unsigned char case + */ + std::vector<size_t> mask_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Specialization for unsigned char + +template<> +inline LshTable<unsigned char>::LshTable(unsigned int feature_size, unsigned int subsignature_size) +{ + initialize(subsignature_size); + // Allocate the mask + mask_ = std::vector<size_t>((size_t)ceil((float)(feature_size * sizeof(char)) / (float)sizeof(size_t)), 0); + + // A bit brutal but fast to code + std::vector<size_t> indices(feature_size * CHAR_BIT); + for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = i; + std::random_shuffle(indices.begin(), indices.end()); + + // Generate a random set of order of subsignature_size_ bits + for (unsigned int i = 0; i < key_size_; ++i) { + size_t index = indices[i]; + + // Set that bit in the mask + size_t divisor = CHAR_BIT * sizeof(size_t); + size_t idx = index / divisor; //pick the right size_t index + mask_[idx] |= size_t(1) << (index % divisor); //use modulo to find the bit offset + } + + // Set to 1 if you want to display the mask for debug +#if 0 + { + size_t bcount = 0; + BOOST_FOREACH(size_t mask_block, mask_){ + out << std::setw(sizeof(size_t) * CHAR_BIT / 4) << std::setfill('0') << std::hex << mask_block + << std::endl; + bcount += __builtin_popcountll(mask_block); + } + out << "bit count : " << std::dec << bcount << std::endl; + out << "mask size : " << mask_.size() << std::endl; + return out; + } +#endif +} + +/** Return the Subsignature of a feature + * @param feature the feature to analyze + */ +template<> +inline size_t LshTable<unsigned char>::getKey(const unsigned char* feature) const +{ + // no need to check if T is dividable by sizeof(size_t) like in the Hamming + // distance computation as we have a mask + const size_t* feature_block_ptr = reinterpret_cast<const size_t*> ((const void*)feature); + + // Figure out the subsignature of the feature + // Given the feature ABCDEF, and the mask 001011, the output will be + // 000CEF + size_t subsignature = 0; + size_t bit_index = 1; + + for (std::vector<size_t>::const_iterator pmask_block = mask_.begin(); pmask_block != mask_.end(); ++pmask_block) { + // get the mask and signature blocks + size_t feature_block = *feature_block_ptr; + size_t mask_block = *pmask_block; + while (mask_block) { + // Get the lowest set bit in the mask block + size_t lowest_bit = mask_block & (-(ptrdiff_t)mask_block); + // Add it to the current subsignature if necessary + subsignature += (feature_block & lowest_bit) ? bit_index : 0; + // Reset the bit in the mask block + mask_block ^= lowest_bit; + // increment the bit index for the subsignature + bit_index <<= 1; + } + // Check the next feature block + ++feature_block_ptr; + } + return subsignature; +} + +template<> +inline LshStats LshTable<unsigned char>::getStats() const +{ + LshStats stats; + stats.bucket_size_mean_ = 0; + if ((buckets_speed_.empty()) && (buckets_space_.empty())) { + stats.n_buckets_ = 0; + stats.bucket_size_median_ = 0; + stats.bucket_size_min_ = 0; + stats.bucket_size_max_ = 0; + return stats; + } + + if (!buckets_speed_.empty()) { + for (BucketsSpeed::const_iterator pbucket = buckets_speed_.begin(); pbucket != buckets_speed_.end(); ++pbucket) { + stats.bucket_sizes_.push_back((lsh::FeatureIndex)pbucket->size()); + stats.bucket_size_mean_ += pbucket->size(); + } + stats.bucket_size_mean_ /= buckets_speed_.size(); + stats.n_buckets_ = buckets_speed_.size(); + } + else { + for (BucketsSpace::const_iterator x = buckets_space_.begin(); x != buckets_space_.end(); ++x) { + stats.bucket_sizes_.push_back((lsh::FeatureIndex)x->second.size()); + stats.bucket_size_mean_ += x->second.size(); + } + stats.bucket_size_mean_ /= buckets_space_.size(); + stats.n_buckets_ = buckets_space_.size(); + } + + std::sort(stats.bucket_sizes_.begin(), stats.bucket_sizes_.end()); + + // BOOST_FOREACH(int size, stats.bucket_sizes_) + // std::cout << size << " "; + // std::cout << std::endl; + stats.bucket_size_median_ = stats.bucket_sizes_[stats.bucket_sizes_.size() / 2]; + stats.bucket_size_min_ = stats.bucket_sizes_.front(); + stats.bucket_size_max_ = stats.bucket_sizes_.back(); + + // TODO compute mean and std + /*float mean, stddev; + stats.bucket_size_mean_ = mean; + stats.bucket_size_std_dev = stddev;*/ + + // Include a histogram of the buckets + unsigned int bin_start = 0; + unsigned int bin_end = 20; + bool is_new_bin = true; + for (std::vector<unsigned int>::iterator iterator = stats.bucket_sizes_.begin(), end = stats.bucket_sizes_.end(); iterator + != end; ) + if (*iterator < bin_end) { + if (is_new_bin) { + stats.size_histogram_.push_back(std::vector<unsigned int>(3, 0)); + stats.size_histogram_.back()[0] = bin_start; + stats.size_histogram_.back()[1] = bin_end - 1; + is_new_bin = false; + } + ++stats.size_histogram_.back()[2]; + ++iterator; + } + else { + bin_start += 20; + bin_end += 20; + is_new_bin = true; + } + + return stats; +} + +// End the two namespaces +} +} + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +#endif /* OPENCV_FLANN_LSH_TABLE_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/matrix.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,116 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_DATASET_H_ +#define OPENCV_FLANN_DATASET_H_ + +#include <stdio.h> + +#include "general.h" + +namespace cvflann +{ + +/** + * Class that implements a simple rectangular matrix stored in a memory buffer and + * provides convenient matrix-like access using the [] operators. + */ +template <typename T> +class Matrix +{ +public: + typedef T type; + + size_t rows; + size_t cols; + size_t stride; + T* data; + + Matrix() : rows(0), cols(0), stride(0), data(NULL) + { + } + + Matrix(T* data_, size_t rows_, size_t cols_, size_t stride_ = 0) : + rows(rows_), cols(cols_), stride(stride_), data(data_) + { + if (stride==0) stride = cols; + } + + /** + * Convenience function for deallocating the storage data. + */ + FLANN_DEPRECATED void free() + { + fprintf(stderr, "The cvflann::Matrix<T>::free() method is deprecated " + "and it does not do any memory deallocation any more. You are" + "responsible for deallocating the matrix memory (by doing" + "'delete[] matrix.data' for example)"); + } + + /** + * Operator that return a (pointer to a) row of the data. + */ + T* operator[](size_t index) const + { + return data+index*stride; + } +}; + + +class UntypedMatrix +{ +public: + size_t rows; + size_t cols; + void* data; + flann_datatype_t type; + + UntypedMatrix(void* data_, long rows_, long cols_) : + rows(rows_), cols(cols_), data(data_) + { + } + + ~UntypedMatrix() + { + } + + + template<typename T> + Matrix<T> as() + { + return Matrix<T>((T*)data, rows, cols); + } +}; + + + +} + +#endif //OPENCV_FLANN_DATASET_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/miniflann.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,158 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_MINIFLANN_HPP +#define OPENCV_MINIFLANN_HPP + +#include "opencv2/core.hpp" +#include "opencv2/flann/defines.h" + +namespace cv +{ + +namespace flann +{ + +struct CV_EXPORTS IndexParams +{ + IndexParams(); + ~IndexParams(); + + String getString(const String& key, const String& defaultVal=String()) const; + int getInt(const String& key, int defaultVal=-1) const; + double getDouble(const String& key, double defaultVal=-1) const; + + void setString(const String& key, const String& value); + void setInt(const String& key, int value); + void setDouble(const String& key, double value); + void setFloat(const String& key, float value); + void setBool(const String& key, bool value); + void setAlgorithm(int value); + + void getAll(std::vector<String>& names, + std::vector<int>& types, + std::vector<String>& strValues, + std::vector<double>& numValues) const; + + void* params; +}; + +struct CV_EXPORTS KDTreeIndexParams : public IndexParams +{ + KDTreeIndexParams(int trees=4); +}; + +struct CV_EXPORTS LinearIndexParams : public IndexParams +{ + LinearIndexParams(); +}; + +struct CV_EXPORTS CompositeIndexParams : public IndexParams +{ + CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11, + cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, float cb_index = 0.2f ); +}; + +struct CV_EXPORTS AutotunedIndexParams : public IndexParams +{ + AutotunedIndexParams(float target_precision = 0.8f, float build_weight = 0.01f, + float memory_weight = 0, float sample_fraction = 0.1f); +}; + +struct CV_EXPORTS HierarchicalClusteringIndexParams : public IndexParams +{ + HierarchicalClusteringIndexParams(int branching = 32, + cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, int trees = 4, int leaf_size = 100 ); +}; + +struct CV_EXPORTS KMeansIndexParams : public IndexParams +{ + KMeansIndexParams(int branching = 32, int iterations = 11, + cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, float cb_index = 0.2f ); +}; + +struct CV_EXPORTS LshIndexParams : public IndexParams +{ + LshIndexParams(int table_number, int key_size, int multi_probe_level); +}; + +struct CV_EXPORTS SavedIndexParams : public IndexParams +{ + SavedIndexParams(const String& filename); +}; + +struct CV_EXPORTS SearchParams : public IndexParams +{ + SearchParams( int checks = 32, float eps = 0, bool sorted = true ); +}; + +class CV_EXPORTS_W Index +{ +public: + CV_WRAP Index(); + CV_WRAP Index(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2); + virtual ~Index(); + + CV_WRAP virtual void build(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2); + CV_WRAP virtual void knnSearch(InputArray query, OutputArray indices, + OutputArray dists, int knn, const SearchParams& params=SearchParams()); + + CV_WRAP virtual int radiusSearch(InputArray query, OutputArray indices, + OutputArray dists, double radius, int maxResults, + const SearchParams& params=SearchParams()); + + CV_WRAP virtual void save(const String& filename) const; + CV_WRAP virtual bool load(InputArray features, const String& filename); + CV_WRAP virtual void release(); + CV_WRAP cvflann::flann_distance_t getDistance() const; + CV_WRAP cvflann::flann_algorithm_t getAlgorithm() const; + +protected: + cvflann::flann_distance_t distType; + cvflann::flann_algorithm_t algo; + int featureType; + void* index; +}; + +} } // namespace cv::flann + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/nn_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,177 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_NNINDEX_H +#define OPENCV_FLANN_NNINDEX_H + +#include "general.h" +#include "matrix.h" +#include "result_set.h" +#include "params.h" + +namespace cvflann +{ + +/** + * Nearest-neighbour index base class + */ +template <typename Distance> +class NNIndex +{ + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + +public: + + virtual ~NNIndex() {} + + /** + * \brief Builds the index + */ + virtual void buildIndex() = 0; + + /** + * \brief Perform k-nearest neighbor search + * \param[in] queries The query points for which to find the nearest neighbors + * \param[out] indices The indices of the nearest neighbors found + * \param[out] dists Distances to the nearest neighbors found + * \param[in] knn Number of nearest neighbors to return + * \param[in] params Search parameters + */ + virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) + { + assert(queries.cols == veclen()); + assert(indices.rows >= queries.rows); + assert(dists.rows >= queries.rows); + assert(int(indices.cols) >= knn); + assert(int(dists.cols) >= knn); + +#if 0 + KNNResultSet<DistanceType> resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.init(indices[i], dists[i]); + findNeighbors(resultSet, queries[i], params); + } +#else + KNNUniqueResultSet<DistanceType> resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.clear(); + findNeighbors(resultSet, queries[i], params); + if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); + else resultSet.copy(indices[i], dists[i], knn); + } +#endif + } + + /** + * \brief Perform radius search + * \param[in] query The query point + * \param[out] indices The indinces of the neighbors found within the given radius + * \param[out] dists The distances to the nearest neighbors found + * \param[in] radius The radius used for search + * \param[in] params Search parameters + * \returns Number of neighbors found + */ + virtual int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params) + { + if (query.rows != 1) { + fprintf(stderr, "I can only search one feature at a time for range search\n"); + return -1; + } + assert(query.cols == veclen()); + assert(indices.cols == dists.cols); + + int n = 0; + int* indices_ptr = NULL; + DistanceType* dists_ptr = NULL; + if (indices.cols > 0) { + n = (int)indices.cols; + indices_ptr = indices[0]; + dists_ptr = dists[0]; + } + + RadiusUniqueResultSet<DistanceType> resultSet((DistanceType)radius); + resultSet.clear(); + findNeighbors(resultSet, query[0], params); + if (n>0) { + if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices_ptr, dists_ptr, n); + else resultSet.copy(indices_ptr, dists_ptr, n); + } + + return (int)resultSet.size(); + } + + /** + * \brief Saves the index to a stream + * \param stream The stream to save the index to + */ + virtual void saveIndex(FILE* stream) = 0; + + /** + * \brief Loads the index from a stream + * \param stream The stream from which the index is loaded + */ + virtual void loadIndex(FILE* stream) = 0; + + /** + * \returns number of features in this index. + */ + virtual size_t size() const = 0; + + /** + * \returns The dimensionality of the features in this index. + */ + virtual size_t veclen() const = 0; + + /** + * \returns The amount of memory (in bytes) used by the index. + */ + virtual int usedMemory() const = 0; + + /** + * \returns The index type (kdtree, kmeans,...) + */ + virtual flann_algorithm_t getType() const = 0; + + /** + * \returns The index parameters + */ + virtual IndexParams getParameters() const = 0; + + + /** + * \brief Method that searches for nearest-neighbours + */ + virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) = 0; +}; + +} + +#endif //OPENCV_FLANN_NNINDEX_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/object_factory.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,91 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_OBJECT_FACTORY_H_ +#define OPENCV_FLANN_OBJECT_FACTORY_H_ + +#include <map> + +namespace cvflann +{ + +class CreatorNotFound +{ +}; + +template<typename BaseClass, + typename UniqueIdType, + typename ObjectCreator = BaseClass* (*)()> +class ObjectFactory +{ + typedef ObjectFactory<BaseClass,UniqueIdType,ObjectCreator> ThisClass; + typedef std::map<UniqueIdType, ObjectCreator> ObjectRegistry; + + // singleton class, private constructor + ObjectFactory() {} + +public: + + bool subscribe(UniqueIdType id, ObjectCreator creator) + { + if (object_registry.find(id) != object_registry.end()) return false; + + object_registry[id] = creator; + return true; + } + + bool unregister(UniqueIdType id) + { + return object_registry.erase(id) == 1; + } + + ObjectCreator create(UniqueIdType id) + { + typename ObjectRegistry::const_iterator iter = object_registry.find(id); + + if (iter == object_registry.end()) { + throw CreatorNotFound(); + } + + return iter->second; + } + + static ThisClass& instance() + { + static ThisClass the_factory; + return the_factory; + } +private: + ObjectRegistry object_registry; +}; + +} + +#endif /* OPENCV_FLANN_OBJECT_FACTORY_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/params.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,99 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_PARAMS_H_ +#define OPENCV_FLANN_PARAMS_H_ + +#include "any.h" +#include "general.h" +#include <iostream> +#include <map> + + +namespace cvflann +{ + +typedef std::map<cv::String, any> IndexParams; + +struct SearchParams : public IndexParams +{ + SearchParams(int checks = 32, float eps = 0, bool sorted = true ) + { + // how many leafs to visit when searching for neighbours (-1 for unlimited) + (*this)["checks"] = checks; + // search for eps-approximate neighbours (default: 0) + (*this)["eps"] = eps; + // only for radius search, require neighbours sorted by distance (default: true) + (*this)["sorted"] = sorted; + } +}; + + +template<typename T> +T get_param(const IndexParams& params, cv::String name, const T& default_value) +{ + IndexParams::const_iterator it = params.find(name); + if (it != params.end()) { + return it->second.cast<T>(); + } + else { + return default_value; + } +} + +template<typename T> +T get_param(const IndexParams& params, cv::String name) +{ + IndexParams::const_iterator it = params.find(name); + if (it != params.end()) { + return it->second.cast<T>(); + } + else { + throw FLANNException(cv::String("Missing parameter '")+name+cv::String("' in the parameters given")); + } +} + +inline void print_params(const IndexParams& params, std::ostream& stream) +{ + IndexParams::const_iterator it; + + for(it=params.begin(); it!=params.end(); ++it) { + stream << it->first << " : " << it->second << std::endl; + } +} + +inline void print_params(const IndexParams& params) +{ + print_params(params, std::cout); +} + +} + + +#endif /* OPENCV_FLANN_PARAMS_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/random.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,133 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_RANDOM_H +#define OPENCV_FLANN_RANDOM_H + +#include <algorithm> +#include <cstdlib> +#include <vector> + +#include "general.h" + +namespace cvflann +{ + +/** + * Seeds the random number generator + * @param seed Random seed + */ +inline void seed_random(unsigned int seed) +{ + srand(seed); +} + +/* + * Generates a random double value. + */ +/** + * Generates a random double value. + * @param high Upper limit + * @param low Lower limit + * @return Random double value + */ +inline double rand_double(double high = 1.0, double low = 0) +{ + return low + ((high-low) * (std::rand() / (RAND_MAX + 1.0))); +} + +/** + * Generates a random integer value. + * @param high Upper limit + * @param low Lower limit + * @return Random integer value + */ +inline int rand_int(int high = RAND_MAX, int low = 0) +{ + return low + (int) ( double(high-low) * (std::rand() / (RAND_MAX + 1.0))); +} + +/** + * Random number generator that returns a distinct number from + * the [0,n) interval each time. + */ +class UniqueRandom +{ + std::vector<int> vals_; + int size_; + int counter_; + +public: + /** + * Constructor. + * @param n Size of the interval from which to generate + * @return + */ + UniqueRandom(int n) + { + init(n); + } + + /** + * Initializes the number generator. + * @param n the size of the interval from which to generate random numbers. + */ + void init(int n) + { + // create and initialize an array of size n + vals_.resize(n); + size_ = n; + for (int i = 0; i < size_; ++i) vals_[i] = i; + + // shuffle the elements in the array + std::random_shuffle(vals_.begin(), vals_.end()); + + counter_ = 0; + } + + /** + * Return a distinct random integer in greater or equal to 0 and less + * than 'n' on each call. It should be called maximum 'n' times. + * Returns: a random integer + */ + int next() + { + if (counter_ == size_) { + return -1; + } + else { + return vals_[counter_++]; + } + } +}; + +} + +#endif //OPENCV_FLANN_RANDOM_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/result_set.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,543 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_RESULTSET_H +#define OPENCV_FLANN_RESULTSET_H + +#include <algorithm> +#include <cstring> +#include <iostream> +#include <limits> +#include <set> +#include <vector> + +namespace cvflann +{ + +/* This record represents a branch point when finding neighbors in + the tree. It contains a record of the minimum distance to the query + point, as well as the node at which the search resumes. + */ + +template <typename T, typename DistanceType> +struct BranchStruct +{ + T node; /* Tree node at which search resumes */ + DistanceType mindist; /* Minimum distance to query for all nodes below. */ + + BranchStruct() {} + BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {} + + bool operator<(const BranchStruct<T, DistanceType>& rhs) const + { + return mindist<rhs.mindist; + } +}; + + +template <typename DistanceType> +class ResultSet +{ +public: + virtual ~ResultSet() {} + + virtual bool full() const = 0; + + virtual void addPoint(DistanceType dist, int index) = 0; + + virtual DistanceType worstDist() const = 0; + +}; + +/** + * KNNSimpleResultSet does not ensure that the element it holds are unique. + * Is used in those cases where the nearest neighbour algorithm used does not + * attempt to insert the same element multiple times. + */ +template <typename DistanceType> +class KNNSimpleResultSet : public ResultSet<DistanceType> +{ + int* indices; + DistanceType* dists; + int capacity; + int count; + DistanceType worst_distance_; + +public: + KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0) + { + } + + void init(int* indices_, DistanceType* dists_) + { + indices = indices_; + dists = dists_; + count = 0; + worst_distance_ = (std::numeric_limits<DistanceType>::max)(); + dists[capacity-1] = worst_distance_; + } + + size_t size() const + { + return count; + } + + bool full() const + { + return count == capacity; + } + + + void addPoint(DistanceType dist, int index) + { + if (dist >= worst_distance_) return; + int i; + for (i=count; i>0; --i) { +#ifdef FLANN_FIRST_MATCH + if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) ) +#else + if (dists[i-1]>dist) +#endif + { + if (i<capacity) { + dists[i] = dists[i-1]; + indices[i] = indices[i-1]; + } + } + else break; + } + if (count < capacity) ++count; + dists[i] = dist; + indices[i] = index; + worst_distance_ = dists[capacity-1]; + } + + DistanceType worstDist() const + { + return worst_distance_; + } +}; + +/** + * K-Nearest neighbour result set. Ensures that the elements inserted are unique + */ +template <typename DistanceType> +class KNNResultSet : public ResultSet<DistanceType> +{ + int* indices; + DistanceType* dists; + int capacity; + int count; + DistanceType worst_distance_; + +public: + KNNResultSet(int capacity_) : capacity(capacity_), count(0) + { + } + + void init(int* indices_, DistanceType* dists_) + { + indices = indices_; + dists = dists_; + count = 0; + worst_distance_ = (std::numeric_limits<DistanceType>::max)(); + dists[capacity-1] = worst_distance_; + } + + size_t size() const + { + return count; + } + + bool full() const + { + return count == capacity; + } + + + void addPoint(DistanceType dist, int index) + { + if (dist >= worst_distance_) return; + int i; + for (i = count; i > 0; --i) { +#ifdef FLANN_FIRST_MATCH + if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) ) +#else + if (dists[i-1]<=dist) +#endif + { + // Check for duplicate indices + int j = i - 1; + while ((j >= 0) && (dists[j] == dist)) { + if (indices[j] == index) { + return; + } + --j; + } + break; + } + } + + if (count < capacity) ++count; + for (int j = count-1; j > i; --j) { + dists[j] = dists[j-1]; + indices[j] = indices[j-1]; + } + dists[i] = dist; + indices[i] = index; + worst_distance_ = dists[capacity-1]; + } + + DistanceType worstDist() const + { + return worst_distance_; + } +}; + + +/** + * A result-set class used when performing a radius based search. + */ +template <typename DistanceType> +class RadiusResultSet : public ResultSet<DistanceType> +{ + DistanceType radius; + int* indices; + DistanceType* dists; + size_t capacity; + size_t count; + +public: + RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) : + radius(radius_), indices(indices_), dists(dists_), capacity(capacity_) + { + init(); + } + + ~RadiusResultSet() + { + } + + void init() + { + count = 0; + } + + size_t size() const + { + return count; + } + + bool full() const + { + return true; + } + + void addPoint(DistanceType dist, int index) + { + if (dist<radius) { + if ((capacity>0)&&(count < capacity)) { + dists[count] = dist; + indices[count] = index; + } + count++; + } + } + + DistanceType worstDist() const + { + return radius; + } + +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the k NN neighbors + * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays + */ +template<typename DistanceType> +class UniqueResultSet : public ResultSet<DistanceType> +{ +public: + struct DistIndex + { + DistIndex(DistanceType dist, unsigned int index) : + dist_(dist), index_(index) + { + } + bool operator<(const DistIndex dist_index) const + { + return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_); + } + DistanceType dist_; + unsigned int index_; + }; + + /** Default cosntructor */ + UniqueResultSet() : + worst_distance_(std::numeric_limits<DistanceType>::max()) + { + } + + /** Check the status of the set + * @return true if we have k NN + */ + inline bool full() const + { + return is_full_; + } + + /** Remove all elements in the set + */ + virtual void clear() = 0; + + /** Copy the set to two C arrays + * @param indices pointer to a C array of indices + * @param dist pointer to a C array of distances + * @param n_neighbors the number of neighbors to copy + */ + virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const + { + if (n_neighbors < 0) { + for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end = + dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) { + *indices = dist_index->index_; + *dist = dist_index->dist_; + } + } + else { + int i = 0; + for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end = + dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) { + *indices = dist_index->index_; + *dist = dist_index->dist_; + } + } + } + + /** Copy the set to two C arrays but sort it according to the distance first + * @param indices pointer to a C array of indices + * @param dist pointer to a C array of distances + * @param n_neighbors the number of neighbors to copy + */ + virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const + { + copy(indices, dist, n_neighbors); + } + + /** The number of neighbors in the set + * @return + */ + size_t size() const + { + return dist_indices_.size(); + } + + /** The distance of the furthest neighbor + * If we don't have enough neighbors, it returns the max possible value + * @return + */ + inline DistanceType worstDist() const + { + return worst_distance_; + } +protected: + /** Flag to say if the set is full */ + bool is_full_; + + /** The worst distance found so far */ + DistanceType worst_distance_; + + /** The best candidates so far */ + std::set<DistIndex> dist_indices_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the k NN neighbors + * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays + */ +template<typename DistanceType> +class KNNUniqueResultSet : public UniqueResultSet<DistanceType> +{ +public: + /** Constructor + * @param capacity the number of neighbors to store at max + */ + KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity) + { + this->is_full_ = false; + this->clear(); + } + + /** Add a possible candidate to the best neighbors + * @param dist distance for that neighbor + * @param index index of that neighbor + */ + inline void addPoint(DistanceType dist, int index) + { + // Don't do anything if we are worse than the worst + if (dist >= worst_distance_) return; + dist_indices_.insert(DistIndex(dist, index)); + + if (is_full_) { + if (dist_indices_.size() > capacity_) { + dist_indices_.erase(*dist_indices_.rbegin()); + worst_distance_ = dist_indices_.rbegin()->dist_; + } + } + else if (dist_indices_.size() == capacity_) { + is_full_ = true; + worst_distance_ = dist_indices_.rbegin()->dist_; + } + } + + /** Remove all elements in the set + */ + void clear() + { + dist_indices_.clear(); + worst_distance_ = std::numeric_limits<DistanceType>::max(); + is_full_ = false; + } + +protected: + typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex; + using UniqueResultSet<DistanceType>::is_full_; + using UniqueResultSet<DistanceType>::worst_distance_; + using UniqueResultSet<DistanceType>::dist_indices_; + + /** The number of neighbors to keep */ + unsigned int capacity_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the radius nearest neighbors + * It is more accurate than RadiusResult as it is not limited in the number of neighbors + */ +template<typename DistanceType> +class RadiusUniqueResultSet : public UniqueResultSet<DistanceType> +{ +public: + /** Constructor + * @param radius the maximum distance of a neighbor + */ + RadiusUniqueResultSet(DistanceType radius) : + radius_(radius) + { + is_full_ = true; + } + + /** Add a possible candidate to the best neighbors + * @param dist distance for that neighbor + * @param index index of that neighbor + */ + void addPoint(DistanceType dist, int index) + { + if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index)); + } + + /** Remove all elements in the set + */ + inline void clear() + { + dist_indices_.clear(); + } + + + /** Check the status of the set + * @return alwys false + */ + inline bool full() const + { + return true; + } + + /** The distance of the furthest neighbor + * If we don't have enough neighbors, it returns the max possible value + * @return + */ + inline DistanceType worstDist() const + { + return radius_; + } +private: + typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex; + using UniqueResultSet<DistanceType>::dist_indices_; + using UniqueResultSet<DistanceType>::is_full_; + + /** The furthest distance a neighbor can be */ + DistanceType radius_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the k NN neighbors within a radius distance + */ +template<typename DistanceType> +class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType> +{ +public: + /** Constructor + * @param capacity the number of neighbors to store at max + * @param radius the maximum distance of a neighbor + */ + KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius) + { + this->capacity_ = capacity; + this->radius_ = radius; + this->dist_indices_.reserve(capacity_); + this->clear(); + } + + /** Remove all elements in the set + */ + void clear() + { + dist_indices_.clear(); + worst_distance_ = radius_; + is_full_ = false; + } +private: + using KNNUniqueResultSet<DistanceType>::dist_indices_; + using KNNUniqueResultSet<DistanceType>::is_full_; + using KNNUniqueResultSet<DistanceType>::worst_distance_; + + /** The maximum number of neighbors to consider */ + unsigned int capacity_; + + /** The maximum distance of a neighbor */ + DistanceType radius_; +}; +} + +#endif //OPENCV_FLANN_RESULTSET_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/sampling.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,81 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_SAMPLING_H_ +#define OPENCV_FLANN_SAMPLING_H_ + +#include "matrix.h" +#include "random.h" + +namespace cvflann +{ + +template<typename T> +Matrix<T> random_sample(Matrix<T>& srcMatrix, long size, bool remove = false) +{ + Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols); + + T* src,* dest; + for (long i=0; i<size; ++i) { + long r = rand_int((int)(srcMatrix.rows-i)); + dest = newSet[i]; + src = srcMatrix[r]; + std::copy(src, src+srcMatrix.cols, dest); + if (remove) { + src = srcMatrix[srcMatrix.rows-i-1]; + dest = srcMatrix[r]; + std::copy(src, src+srcMatrix.cols, dest); + } + } + if (remove) { + srcMatrix.rows -= size; + } + return newSet; +} + +template<typename T> +Matrix<T> random_sample(const Matrix<T>& srcMatrix, size_t size) +{ + UniqueRandom rand((int)srcMatrix.rows); + Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols); + + T* src,* dest; + for (size_t i=0; i<size; ++i) { + long r = rand.next(); + dest = newSet[i]; + src = srcMatrix[r]; + std::copy(src, src+srcMatrix.cols, dest); + } + return newSet; +} + +} // namespace + + +#endif /* OPENCV_FLANN_SAMPLING_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/saving.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,187 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE NNIndexGOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_SAVING_H_ +#define OPENCV_FLANN_SAVING_H_ + +#include <cstring> +#include <vector> + +#include "general.h" +#include "nn_index.h" + +#ifdef FLANN_SIGNATURE_ +#undef FLANN_SIGNATURE_ +#endif +#define FLANN_SIGNATURE_ "FLANN_INDEX" + +namespace cvflann +{ + +template <typename T> +struct Datatype {}; +template<> +struct Datatype<char> { static flann_datatype_t type() { return FLANN_INT8; } }; +template<> +struct Datatype<short> { static flann_datatype_t type() { return FLANN_INT16; } }; +template<> +struct Datatype<int> { static flann_datatype_t type() { return FLANN_INT32; } }; +template<> +struct Datatype<unsigned char> { static flann_datatype_t type() { return FLANN_UINT8; } }; +template<> +struct Datatype<unsigned short> { static flann_datatype_t type() { return FLANN_UINT16; } }; +template<> +struct Datatype<unsigned int> { static flann_datatype_t type() { return FLANN_UINT32; } }; +template<> +struct Datatype<float> { static flann_datatype_t type() { return FLANN_FLOAT32; } }; +template<> +struct Datatype<double> { static flann_datatype_t type() { return FLANN_FLOAT64; } }; + + +/** + * Structure representing the index header. + */ +struct IndexHeader +{ + char signature[16]; + char version[16]; + flann_datatype_t data_type; + flann_algorithm_t index_type; + size_t rows; + size_t cols; +}; + +/** + * Saves index header to stream + * + * @param stream - Stream to save to + * @param index - The index to save + */ +template<typename Distance> +void save_header(FILE* stream, const NNIndex<Distance>& index) +{ + IndexHeader header; + memset(header.signature, 0, sizeof(header.signature)); + strcpy(header.signature, FLANN_SIGNATURE_); + memset(header.version, 0, sizeof(header.version)); + strcpy(header.version, FLANN_VERSION_); + header.data_type = Datatype<typename Distance::ElementType>::type(); + header.index_type = index.getType(); + header.rows = index.size(); + header.cols = index.veclen(); + + std::fwrite(&header, sizeof(header),1,stream); +} + + +/** + * + * @param stream - Stream to load from + * @return Index header + */ +inline IndexHeader load_header(FILE* stream) +{ + IndexHeader header; + size_t read_size = fread(&header,sizeof(header),1,stream); + + if (read_size!=(size_t)1) { + throw FLANNException("Invalid index file, cannot read"); + } + + if (strcmp(header.signature,FLANN_SIGNATURE_)!=0) { + throw FLANNException("Invalid index file, wrong signature"); + } + + return header; + +} + + +template<typename T> +void save_value(FILE* stream, const T& value, size_t count = 1) +{ + fwrite(&value, sizeof(value),count, stream); +} + +template<typename T> +void save_value(FILE* stream, const cvflann::Matrix<T>& value) +{ + fwrite(&value, sizeof(value),1, stream); + fwrite(value.data, sizeof(T),value.rows*value.cols, stream); +} + +template<typename T> +void save_value(FILE* stream, const std::vector<T>& value) +{ + size_t size = value.size(); + fwrite(&size, sizeof(size_t), 1, stream); + fwrite(&value[0], sizeof(T), size, stream); +} + +template<typename T> +void load_value(FILE* stream, T& value, size_t count = 1) +{ + size_t read_cnt = fread(&value, sizeof(value), count, stream); + if (read_cnt != count) { + throw FLANNException("Cannot read from file"); + } +} + +template<typename T> +void load_value(FILE* stream, cvflann::Matrix<T>& value) +{ + size_t read_cnt = fread(&value, sizeof(value), 1, stream); + if (read_cnt != 1) { + throw FLANNException("Cannot read from file"); + } + value.data = new T[value.rows*value.cols]; + read_cnt = fread(value.data, sizeof(T), value.rows*value.cols, stream); + if (read_cnt != (size_t)(value.rows*value.cols)) { + throw FLANNException("Cannot read from file"); + } +} + + +template<typename T> +void load_value(FILE* stream, std::vector<T>& value) +{ + size_t size; + size_t read_cnt = fread(&size, sizeof(size_t), 1, stream); + if (read_cnt!=1) { + throw FLANNException("Cannot read from file"); + } + value.resize(size); + read_cnt = fread(&value[0], sizeof(T), size, stream); + if (read_cnt != size) { + throw FLANNException("Cannot read from file"); + } +} + +} + +#endif /* OPENCV_FLANN_SAVING_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/simplex_downhill.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,186 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_ +#define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_ + +namespace cvflann +{ + +/** + Adds val to array vals (and point to array points) and keeping the arrays sorted by vals. + */ +template <typename T> +void addValue(int pos, float val, float* vals, T* point, T* points, int n) +{ + vals[pos] = val; + for (int i=0; i<n; ++i) { + points[pos*n+i] = point[i]; + } + + // bubble down + int j=pos; + while (j>0 && vals[j]<vals[j-1]) { + swap(vals[j],vals[j-1]); + for (int i=0; i<n; ++i) { + swap(points[j*n+i],points[(j-1)*n+i]); + } + --j; + } +} + + +/** + Simplex downhill optimization function. + Preconditions: points is a 2D mattrix of size (n+1) x n + func is the cost function taking n an array of n params and returning float + vals is the cost function in the n+1 simplex points, if NULL it will be computed + + Postcondition: returns optimum value and points[0..n] are the optimum parameters + */ +template <typename T, typename F> +float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL ) +{ + const int MAX_ITERATIONS = 10; + + assert(n>0); + + T* p_o = new T[n]; + T* p_r = new T[n]; + T* p_e = new T[n]; + + int alpha = 1; + + int iterations = 0; + + bool ownVals = false; + if (vals == NULL) { + ownVals = true; + vals = new float[n+1]; + for (int i=0; i<n+1; ++i) { + float val = func(points+i*n); + addValue(i, val, vals, points+i*n, points, n); + } + } + int nn = n*n; + + while (true) { + + if (iterations++ > MAX_ITERATIONS) break; + + // compute average of simplex points (except the highest point) + for (int j=0; j<n; ++j) { + p_o[j] = 0; + for (int i=0; i<n; ++i) { + p_o[i] += points[j*n+i]; + } + } + for (int i=0; i<n; ++i) { + p_o[i] /= n; + } + + bool converged = true; + for (int i=0; i<n; ++i) { + if (p_o[i] != points[nn+i]) { + converged = false; + } + } + if (converged) break; + + // trying a reflection + for (int i=0; i<n; ++i) { + p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]); + } + float val_r = func(p_r); + + if ((val_r>=vals[0])&&(val_r<vals[n])) { + // reflection between second highest and lowest + // add it to the simplex + Logger::info("Choosing reflection\n"); + addValue(n, val_r,vals, p_r, points, n); + continue; + } + + if (val_r<vals[0]) { + // value is smaller than smalest in simplex + + // expand some more to see if it drops further + for (int i=0; i<n; ++i) { + p_e[i] = 2*p_r[i]-p_o[i]; + } + float val_e = func(p_e); + + if (val_e<val_r) { + Logger::info("Choosing reflection and expansion\n"); + addValue(n, val_e,vals,p_e,points,n); + } + else { + Logger::info("Choosing reflection\n"); + addValue(n, val_r,vals,p_r,points,n); + } + continue; + } + if (val_r>=vals[n]) { + for (int i=0; i<n; ++i) { + p_e[i] = (p_o[i]+points[nn+i])/2; + } + float val_e = func(p_e); + + if (val_e<vals[n]) { + Logger::info("Choosing contraction\n"); + addValue(n,val_e,vals,p_e,points,n); + continue; + } + } + { + Logger::info("Full contraction\n"); + for (int j=1; j<=n; ++j) { + for (int i=0; i<n; ++i) { + points[j*n+i] = (points[j*n+i]+points[i])/2; + } + float val = func(points+j*n); + addValue(j,val,vals,points+j*n,points,n); + } + } + } + + float bestVal = vals[0]; + + delete[] p_r; + delete[] p_o; + delete[] p_e; + if (ownVals) delete[] vals; + + return bestVal; +} + +} + +#endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/timer.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,94 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_TIMER_H +#define OPENCV_FLANN_TIMER_H + +#include <time.h> +#include "opencv2/core.hpp" +#include "opencv2/core/utility.hpp" + +namespace cvflann +{ + +/** + * A start-stop timer class. + * + * Can be used to time portions of code. + */ +class StartStopTimer +{ + int64 startTime; + +public: + /** + * Value of the timer. + */ + double value; + + + /** + * Constructor. + */ + StartStopTimer() + { + reset(); + } + + /** + * Starts the timer. + */ + void start() + { + startTime = cv::getTickCount(); + } + + /** + * Stops the timer and updates timer value. + */ + void stop() + { + int64 stopTime = cv::getTickCount(); + value += ( (double)stopTime - startTime) / cv::getTickFrequency(); + } + + /** + * Resets the timer value to 0. + */ + void reset() + { + value = 0; + } + +}; + +} + +#endif // FLANN_TIMER_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgcodecs.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,281 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGCODECS_HPP +#define OPENCV_IMGCODECS_HPP + +#include "opencv2/core.hpp" + +/** + @defgroup imgcodecs Image file reading and writing + @{ + @defgroup imgcodecs_c C API + @defgroup imgcodecs_ios iOS glue + @} +*/ + +//////////////////////////////// image codec //////////////////////////////// +namespace cv +{ + +//! @addtogroup imgcodecs +//! @{ + +//! Imread flags +enum ImreadModes { + IMREAD_UNCHANGED = -1, //!< If set, return the loaded image as is (with alpha channel, otherwise it gets cropped). + IMREAD_GRAYSCALE = 0, //!< If set, always convert image to the single channel grayscale image. + IMREAD_COLOR = 1, //!< If set, always convert image to the 3 channel BGR color image. + IMREAD_ANYDEPTH = 2, //!< If set, return 16-bit/32-bit image when the input has the corresponding depth, otherwise convert it to 8-bit. + IMREAD_ANYCOLOR = 4, //!< If set, the image is read in any possible color format. + IMREAD_LOAD_GDAL = 8, //!< If set, use the gdal driver for loading the image. + IMREAD_REDUCED_GRAYSCALE_2 = 16, //!< If set, always convert image to the single channel grayscale image and the image size reduced 1/2. + IMREAD_REDUCED_COLOR_2 = 17, //!< If set, always convert image to the 3 channel BGR color image and the image size reduced 1/2. + IMREAD_REDUCED_GRAYSCALE_4 = 32, //!< If set, always convert image to the single channel grayscale image and the image size reduced 1/4. + IMREAD_REDUCED_COLOR_4 = 33, //!< If set, always convert image to the 3 channel BGR color image and the image size reduced 1/4. + IMREAD_REDUCED_GRAYSCALE_8 = 64, //!< If set, always convert image to the single channel grayscale image and the image size reduced 1/8. + IMREAD_REDUCED_COLOR_8 = 65, //!< If set, always convert image to the 3 channel BGR color image and the image size reduced 1/8. + IMREAD_IGNORE_ORIENTATION = 128 //!< If set, do not rotate the image according to EXIF's orientation flag. + }; + +//! Imwrite flags +enum ImwriteFlags { + IMWRITE_JPEG_QUALITY = 1, //!< For JPEG, it can be a quality from 0 to 100 (the higher is the better). Default value is 95. + IMWRITE_JPEG_PROGRESSIVE = 2, //!< Enable JPEG features, 0 or 1, default is False. + IMWRITE_JPEG_OPTIMIZE = 3, //!< Enable JPEG features, 0 or 1, default is False. + IMWRITE_JPEG_RST_INTERVAL = 4, //!< JPEG restart interval, 0 - 65535, default is 0 - no restart. + IMWRITE_JPEG_LUMA_QUALITY = 5, //!< Separate luma quality level, 0 - 100, default is 0 - don't use. + IMWRITE_JPEG_CHROMA_QUALITY = 6, //!< Separate chroma quality level, 0 - 100, default is 0 - don't use. + IMWRITE_PNG_COMPRESSION = 16, //!< For PNG, it can be the compression level from 0 to 9. A higher value means a smaller size and longer compression time. Default value is 3. Also strategy is changed to IMWRITE_PNG_STRATEGY_DEFAULT (Z_DEFAULT_STRATEGY). + IMWRITE_PNG_STRATEGY = 17, //!< One of cv::ImwritePNGFlags, default is IMWRITE_PNG_STRATEGY_DEFAULT. + IMWRITE_PNG_BILEVEL = 18, //!< Binary level PNG, 0 or 1, default is 0. + IMWRITE_PXM_BINARY = 32, //!< For PPM, PGM, or PBM, it can be a binary format flag, 0 or 1. Default value is 1. + IMWRITE_WEBP_QUALITY = 64, //!< For WEBP, it can be a quality from 1 to 100 (the higher is the better). By default (without any parameter) and for quality above 100 the lossless compression is used. + IMWRITE_PAM_TUPLETYPE = 128,//!< For PAM, sets the TUPLETYPE field to the corresponding string value that is defined for the format + }; + +//! Imwrite PNG specific flags used to tune the compression algorithm. +/** These flags will be modify the way of PNG image compression and will be passed to the underlying zlib processing stage. + +- The effect of IMWRITE_PNG_STRATEGY_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between IMWRITE_PNG_STRATEGY_DEFAULT and IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY. +- IMWRITE_PNG_STRATEGY_RLE is designed to be almost as fast as IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY, but give better compression for PNG image data. +- The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. +- IMWRITE_PNG_STRATEGY_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. +*/ +enum ImwritePNGFlags { + IMWRITE_PNG_STRATEGY_DEFAULT = 0, //!< Use this value for normal data. + IMWRITE_PNG_STRATEGY_FILTERED = 1, //!< Use this value for data produced by a filter (or predictor).Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. + IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY = 2, //!< Use this value to force Huffman encoding only (no string match). + IMWRITE_PNG_STRATEGY_RLE = 3, //!< Use this value to limit match distances to one (run-length encoding). + IMWRITE_PNG_STRATEGY_FIXED = 4 //!< Using this value prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. + }; + +//! Imwrite PAM specific tupletype flags used to define the 'TUPETYPE' field of a PAM file. +enum ImwritePAMFlags { + IMWRITE_PAM_FORMAT_NULL = 0, + IMWRITE_PAM_FORMAT_BLACKANDWHITE = 1, + IMWRITE_PAM_FORMAT_GRAYSCALE = 2, + IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA = 3, + IMWRITE_PAM_FORMAT_RGB = 4, + IMWRITE_PAM_FORMAT_RGB_ALPHA = 5, + }; + +/** @brief Loads an image from a file. + +@anchor imread + +The function imread loads an image from the specified file and returns it. If the image cannot be +read (because of missing file, improper permissions, unsupported or invalid format), the function +returns an empty matrix ( Mat::data==NULL ). + +Currently, the following file formats are supported: + +- Windows bitmaps - \*.bmp, \*.dib (always supported) +- JPEG files - \*.jpeg, \*.jpg, \*.jpe (see the *Notes* section) +- JPEG 2000 files - \*.jp2 (see the *Notes* section) +- Portable Network Graphics - \*.png (see the *Notes* section) +- WebP - \*.webp (see the *Notes* section) +- Portable image format - \*.pbm, \*.pgm, \*.ppm \*.pxm, \*.pnm (always supported) +- Sun rasters - \*.sr, \*.ras (always supported) +- TIFF files - \*.tiff, \*.tif (see the *Notes* section) +- OpenEXR Image files - \*.exr (see the *Notes* section) +- Radiance HDR - \*.hdr, \*.pic (always supported) +- Raster and Vector geospatial data supported by Gdal (see the *Notes* section) + +@note + +- The function determines the type of an image by the content, not by the file extension. +- In the case of color images, the decoded images will have the channels stored in **B G R** order. +- On Microsoft Windows\* OS and MacOSX\*, the codecs shipped with an OpenCV image (libjpeg, + libpng, libtiff, and libjasper) are used by default. So, OpenCV can always read JPEGs, PNGs, + and TIFFs. On MacOSX, there is also an option to use native MacOSX image readers. But beware + that currently these native image loaders give images with different pixel values because of + the color management embedded into MacOSX. +- On Linux\*, BSD flavors and other Unix-like open-source operating systems, OpenCV looks for + codecs supplied with an OS image. Install the relevant packages (do not forget the development + files, for example, "libjpeg-dev", in Debian\* and Ubuntu\*) to get the codec support or turn + on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake. +- In the case you set *WITH_GDAL* flag to true in CMake and @ref IMREAD_LOAD_GDAL to load the image, + then [GDAL](http://www.gdal.org) driver will be used in order to decode the image by supporting + the following formats: [Raster](http://www.gdal.org/formats_list.html), + [Vector](http://www.gdal.org/ogr_formats.html). +- If EXIF information are embedded in the image file, the EXIF orientation will be taken into account + and thus the image will be rotated accordingly except if the flag @ref IMREAD_IGNORE_ORIENTATION is passed. +@param filename Name of file to be loaded. +@param flags Flag that can take values of cv::ImreadModes +*/ +CV_EXPORTS_W Mat imread( const String& filename, int flags = IMREAD_COLOR ); + +/** @brief Loads a multi-page image from a file. + +The function imreadmulti loads a multi-page image from the specified file into a vector of Mat objects. +@param filename Name of file to be loaded. +@param flags Flag that can take values of cv::ImreadModes, default with cv::IMREAD_ANYCOLOR. +@param mats A vector of Mat objects holding each page, if more than one. +@sa cv::imread +*/ +CV_EXPORTS_W bool imreadmulti(const String& filename, std::vector<Mat>& mats, int flags = IMREAD_ANYCOLOR); + +/** @brief Saves an image to a specified file. + +The function imwrite saves the image to the specified file. The image format is chosen based on the +filename extension (see cv::imread for the list of extensions). Only 8-bit (or 16-bit unsigned (CV_16U) +in case of PNG, JPEG 2000, and TIFF) single-channel or 3-channel (with 'BGR' channel order) images +can be saved using this function. If the format, depth or channel order is different, use +Mat::convertTo , and cv::cvtColor to convert it before saving. Or, use the universal FileStorage I/O +functions to save the image to XML or YAML format. + +It is possible to store PNG images with an alpha channel using this function. To do this, create +8-bit (or 16-bit) 4-channel image BGRA, where the alpha channel goes last. Fully transparent pixels +should have alpha set to 0, fully opaque pixels should have alpha set to 255/65535. + +The sample below shows how to create such a BGRA image and store to PNG file. It also demonstrates how to set custom +compression parameters : +@code + #include <opencv2/opencv.hpp> + + using namespace cv; + using namespace std; + + void createAlphaMat(Mat &mat) + { + CV_Assert(mat.channels() == 4); + for (int i = 0; i < mat.rows; ++i) { + for (int j = 0; j < mat.cols; ++j) { + Vec4b& bgra = mat.at<Vec4b>(i, j); + bgra[0] = UCHAR_MAX; // Blue + bgra[1] = saturate_cast<uchar>((float (mat.cols - j)) / ((float)mat.cols) * UCHAR_MAX); // Green + bgra[2] = saturate_cast<uchar>((float (mat.rows - i)) / ((float)mat.rows) * UCHAR_MAX); // Red + bgra[3] = saturate_cast<uchar>(0.5 * (bgra[1] + bgra[2])); // Alpha + } + } + } + + int main(int argv, char **argc) + { + // Create mat with alpha channel + Mat mat(480, 640, CV_8UC4); + createAlphaMat(mat); + + vector<int> compression_params; + compression_params.push_back(IMWRITE_PNG_COMPRESSION); + compression_params.push_back(9); + + try { + imwrite("alpha.png", mat, compression_params); + } + catch (cv::Exception& ex) { + fprintf(stderr, "Exception converting image to PNG format: %s\n", ex.what()); + return 1; + } + + fprintf(stdout, "Saved PNG file with alpha data.\n"); + return 0; + } +@endcode +@param filename Name of the file. +@param img Image to be saved. +@param params Format-specific parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ... .) see cv::ImwriteFlags +*/ +CV_EXPORTS_W bool imwrite( const String& filename, InputArray img, + const std::vector<int>& params = std::vector<int>()); + +/** @brief Reads an image from a buffer in memory. + +The function imdecode reads an image from the specified buffer in the memory. If the buffer is too short or +contains invalid data, the function returns an empty matrix ( Mat::data==NULL ). + +See cv::imread for the list of supported formats and flags description. + +@note In the case of color images, the decoded images will have the channels stored in **B G R** order. +@param buf Input array or vector of bytes. +@param flags The same flags as in cv::imread, see cv::ImreadModes. +*/ +CV_EXPORTS_W Mat imdecode( InputArray buf, int flags ); + +/** @overload +@param buf +@param flags +@param dst The optional output placeholder for the decoded matrix. It can save the image +reallocations when the function is called repeatedly for images of the same size. +*/ +CV_EXPORTS Mat imdecode( InputArray buf, int flags, Mat* dst); + +/** @brief Encodes an image into a memory buffer. + +The function imencode compresses the image and stores it in the memory buffer that is resized to fit the +result. See cv::imwrite for the list of supported formats and flags description. + +@param ext File extension that defines the output format. +@param img Image to be written. +@param buf Output buffer resized to fit the compressed image. +@param params Format-specific parameters. See cv::imwrite and cv::ImwriteFlags. +*/ +CV_EXPORTS_W bool imencode( const String& ext, InputArray img, + CV_OUT std::vector<uchar>& buf, + const std::vector<int>& params = std::vector<int>()); + +//! @} imgcodecs + +} // cv + +#endif //OPENCV_IMGCODECS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgcodecs/imgcodecs.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/imgcodecs.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgcodecs/imgcodecs_c.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,148 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGCODECS_H +#define OPENCV_IMGCODECS_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ + +/** @addtogroup imgcodecs_c + @{ + */ + +enum +{ +/* 8bit, color or not */ + CV_LOAD_IMAGE_UNCHANGED =-1, +/* 8bit, gray */ + CV_LOAD_IMAGE_GRAYSCALE =0, +/* ?, color */ + CV_LOAD_IMAGE_COLOR =1, +/* any depth, ? */ + CV_LOAD_IMAGE_ANYDEPTH =2, +/* ?, any color */ + CV_LOAD_IMAGE_ANYCOLOR =4, +/* ?, no rotate */ + CV_LOAD_IMAGE_IGNORE_ORIENTATION =128 +}; + +/* load image from file + iscolor can be a combination of above flags where CV_LOAD_IMAGE_UNCHANGED + overrides the other flags + using CV_LOAD_IMAGE_ANYCOLOR alone is equivalent to CV_LOAD_IMAGE_UNCHANGED + unless CV_LOAD_IMAGE_ANYDEPTH is specified images are converted to 8bit +*/ +CVAPI(IplImage*) cvLoadImage( const char* filename, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); +CVAPI(CvMat*) cvLoadImageM( const char* filename, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); + +enum +{ + CV_IMWRITE_JPEG_QUALITY =1, + CV_IMWRITE_JPEG_PROGRESSIVE =2, + CV_IMWRITE_JPEG_OPTIMIZE =3, + CV_IMWRITE_JPEG_RST_INTERVAL =4, + CV_IMWRITE_JPEG_LUMA_QUALITY =5, + CV_IMWRITE_JPEG_CHROMA_QUALITY =6, + CV_IMWRITE_PNG_COMPRESSION =16, + CV_IMWRITE_PNG_STRATEGY =17, + CV_IMWRITE_PNG_BILEVEL =18, + CV_IMWRITE_PNG_STRATEGY_DEFAULT =0, + CV_IMWRITE_PNG_STRATEGY_FILTERED =1, + CV_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY =2, + CV_IMWRITE_PNG_STRATEGY_RLE =3, + CV_IMWRITE_PNG_STRATEGY_FIXED =4, + CV_IMWRITE_PXM_BINARY =32, + CV_IMWRITE_WEBP_QUALITY =64, + CV_IMWRITE_PAM_TUPLETYPE = 128, + CV_IMWRITE_PAM_FORMAT_NULL = 0, + CV_IMWRITE_PAM_FORMAT_BLACKANDWHITE = 1, + CV_IMWRITE_PAM_FORMAT_GRAYSCALE = 2, + CV_IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA = 3, + CV_IMWRITE_PAM_FORMAT_RGB = 4, + CV_IMWRITE_PAM_FORMAT_RGB_ALPHA = 5, +}; + + + +/* save image to file */ +CVAPI(int) cvSaveImage( const char* filename, const CvArr* image, + const int* params CV_DEFAULT(0) ); + +/* decode image stored in the buffer */ +CVAPI(IplImage*) cvDecodeImage( const CvMat* buf, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); +CVAPI(CvMat*) cvDecodeImageM( const CvMat* buf, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); + +/* encode image and store the result as a byte vector (single-row 8uC1 matrix) */ +CVAPI(CvMat*) cvEncodeImage( const char* ext, const CvArr* image, + const int* params CV_DEFAULT(0) ); + +enum +{ + CV_CVTIMG_FLIP =1, + CV_CVTIMG_SWAP_RB =2 +}; + +/* utility function: convert one image to another with optional vertical flip */ +CVAPI(void) cvConvertImage( const CvArr* src, CvArr* dst, int flags CV_DEFAULT(0)); + +CVAPI(int) cvHaveImageReader(const char* filename); +CVAPI(int) cvHaveImageWriter(const char* filename); + + +/****************************************************************************************\ +* Obsolete functions/synonyms * +\****************************************************************************************/ + +#define cvvLoadImage(name) cvLoadImage((name),1) +#define cvvSaveImage cvSaveImage +#define cvvConvertImage cvConvertImage + +/** @} imgcodecs_c */ + +#ifdef __cplusplus +} +#endif + +#endif // OPENCV_IMGCODECS_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgcodecs/ios.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,57 @@ + +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#import <UIKit/UIKit.h> +#import <Accelerate/Accelerate.h> +#import <AVFoundation/AVFoundation.h> +#import <ImageIO/ImageIO.h> +#include "opencv2/core/core.hpp" + +//! @addtogroup imgcodecs_ios +//! @{ + +UIImage* MatToUIImage(const cv::Mat& image); +void UIImageToMat(const UIImage* image, + cv::Mat& m, bool alphaExist = false); + +//! @}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgproc.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,4649 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGPROC_HPP +#define OPENCV_IMGPROC_HPP + +#include "opencv2/core.hpp" + +/** + @defgroup imgproc Image processing + @{ + @defgroup imgproc_filter Image Filtering + +Functions and classes described in this section are used to perform various linear or non-linear +filtering operations on 2D images (represented as Mat's). It means that for each pixel location +\f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to +compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of +morphological operations, it is the minimum or maximum values, and so on. The computed response is +stored in the destination image at the same location \f$(x,y)\f$. It means that the output image +will be of the same size as the input image. Normally, the functions support multi-channel arrays, +in which case every channel is processed independently. Therefore, the output image will also have +the same number of channels as the input one. + +Another common feature of the functions and classes described in this section is that, unlike +simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For +example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when +processing the left-most pixels in each row, you need pixels to the left of them, that is, outside +of the image. You can let these pixels be the same as the left-most image pixels ("replicated +border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant +border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method. +For details, see cv::BorderTypes + +@anchor filter_depths +### Depth combinations +Input depth (src.depth()) | Output depth (ddepth) +--------------------------|---------------------- +CV_8U | -1/CV_16S/CV_32F/CV_64F +CV_16U/CV_16S | -1/CV_32F/CV_64F +CV_32F | -1/CV_32F/CV_64F +CV_64F | -1/CV_64F + +@note when ddepth=-1, the output image will have the same depth as the source. + + @defgroup imgproc_transform Geometric Image Transformations + +The functions in this section perform various geometrical transformations of 2D images. They do not +change the image content but deform the pixel grid and map this deformed grid to the destination +image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from +destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the +functions compute coordinates of the corresponding "donor" pixel in the source image and copy the +pixel value: + +\f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f] + +In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow +\texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping +\f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula. + +The actual implementations of the geometrical transformations, from the most generic remap and to +the simplest and the fastest resize, need to solve two main problems with the above formula: + +- Extrapolation of non-existing pixels. Similarly to the filtering functions described in the +previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both +of them may fall outside of the image. In this case, an extrapolation method needs to be used. +OpenCV provides the same selection of extrapolation methods as in the filtering functions. In +addition, it provides the method BORDER_TRANSPARENT. This means that the corresponding pixels in +the destination image will not be modified at all. + +- Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point +numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective +transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional +coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the +nearest integer coordinates and the corresponding pixel can be used. This is called a +nearest-neighbor interpolation. However, a better result can be achieved by using more +sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) , +where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y), +f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the +interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See +resize for details. + + @defgroup imgproc_misc Miscellaneous Image Transformations + @defgroup imgproc_draw Drawing Functions + +Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be +rendered with antialiasing (implemented only for 8-bit images for now). All the functions include +the parameter color that uses an RGB value (that may be constructed with the Scalar constructor ) +for color images and brightness for grayscale images. For color images, the channel ordering is +normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a +color using the Scalar constructor, it should look like: + +\f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f] + +If you are using your own image rendering and I/O functions, you can use any channel ordering. The +drawing functions process each channel independently and do not depend on the channel order or even +on the used color space. The whole image can be converted from BGR to RGB or to a different color +space using cvtColor . + +If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also, +many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means +that the coordinates can be passed as fixed-point numbers encoded as integers. The number of +fractional bits is specified by the shift parameter and the real point coordinates are calculated as +\f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is +especially effective when rendering antialiased shapes. + +@note The functions do not support alpha-transparency when the target image is 4-channel. In this +case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint +semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main +image. + + @defgroup imgproc_colormap ColorMaps in OpenCV + +The human perception isn't built for observing fine changes in grayscale images. Human eyes are more +sensitive to observing changes between colors, so you often need to recolor your grayscale images to +get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your +computer vision application. + +In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample +code reads the path to an image from command line, applies a Jet colormap on it and shows the +result: + +@code +#include <opencv2/core.hpp> +#include <opencv2/imgproc.hpp> +#include <opencv2/imgcodecs.hpp> +#include <opencv2/highgui.hpp> +using namespace cv; + +#include <iostream> +using namespace std; + +int main(int argc, const char *argv[]) +{ + // We need an input image. (can be grayscale or color) + if (argc < 2) + { + cerr << "We need an image to process here. Please run: colorMap [path_to_image]" << endl; + return -1; + } + Mat img_in = imread(argv[1]); + if(img_in.empty()) + { + cerr << "Sample image (" << argv[1] << ") is empty. Please adjust your path, so it points to a valid input image!" << endl; + return -1; + } + // Holds the colormap version of the image: + Mat img_color; + // Apply the colormap: + applyColorMap(img_in, img_color, COLORMAP_JET); + // Show the result: + imshow("colorMap", img_color); + waitKey(0); + return 0; +} +@endcode + +@see cv::ColormapTypes + + @defgroup imgproc_subdiv2d Planar Subdivision + +The Subdiv2D class described in this section is used to perform various planar subdivision on +a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles +using the Delaunay’s algorithm, which corresponds to the dual graph of the Voronoi diagram. +In the figure below, the Delaunay’s triangulation is marked with black lines and the Voronoi +diagram with red lines. + +![Delaunay triangulation (black) and Voronoi (red)](pics/delaunay_voronoi.png) + +The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast +location of points on the plane, building special graphs (such as NNG,RNG), and so forth. + + @defgroup imgproc_hist Histograms + @defgroup imgproc_shape Structural Analysis and Shape Descriptors + @defgroup imgproc_motion Motion Analysis and Object Tracking + @defgroup imgproc_feature Feature Detection + @defgroup imgproc_object Object Detection + @defgroup imgproc_c C API + @defgroup imgproc_hal Hardware Acceleration Layer + @{ + @defgroup imgproc_hal_functions Functions + @defgroup imgproc_hal_interface Interface + @} + @} +*/ + +namespace cv +{ + +/** @addtogroup imgproc +@{ +*/ + +//! @addtogroup imgproc_filter +//! @{ + +//! type of morphological operation +enum MorphTypes{ + MORPH_ERODE = 0, //!< see cv::erode + MORPH_DILATE = 1, //!< see cv::dilate + MORPH_OPEN = 2, //!< an opening operation + //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f] + MORPH_CLOSE = 3, //!< a closing operation + //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f] + MORPH_GRADIENT = 4, //!< a morphological gradient + //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f] + MORPH_TOPHAT = 5, //!< "top hat" + //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f] + MORPH_BLACKHAT = 6, //!< "black hat" + //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f] + MORPH_HITMISS = 7 //!< "hit and miss" + //!< .- Only supported for CV_8UC1 binary images. Tutorial can be found in [this page](https://web.archive.org/web/20160316070407/http://opencv-code.com/tutorials/hit-or-miss-transform-in-opencv/) +}; + +//! shape of the structuring element +enum MorphShapes { + MORPH_RECT = 0, //!< a rectangular structuring element: \f[E_{ij}=1\f] + MORPH_CROSS = 1, //!< a cross-shaped structuring element: + //!< \f[E_{ij} = \fork{1}{if i=\texttt{anchor.y} or j=\texttt{anchor.x}}{0}{otherwise}\f] + MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed + //!< into the rectangle Rect(0, 0, esize.width, 0.esize.height) +}; + +//! @} imgproc_filter + +//! @addtogroup imgproc_transform +//! @{ + +//! interpolation algorithm +enum InterpolationFlags{ + /** nearest neighbor interpolation */ + INTER_NEAREST = 0, + /** bilinear interpolation */ + INTER_LINEAR = 1, + /** bicubic interpolation */ + INTER_CUBIC = 2, + /** resampling using pixel area relation. It may be a preferred method for image decimation, as + it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST + method. */ + INTER_AREA = 3, + /** Lanczos interpolation over 8x8 neighborhood */ + INTER_LANCZOS4 = 4, + /** mask for interpolation codes */ + INTER_MAX = 7, + /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the + source image, they are set to zero */ + WARP_FILL_OUTLIERS = 8, + /** flag, inverse transformation + + For example, @ref cv::linearPolar or @ref cv::logPolar transforms: + - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$ + - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$ + */ + WARP_INVERSE_MAP = 16 +}; + +enum InterpolationMasks { + INTER_BITS = 5, + INTER_BITS2 = INTER_BITS * 2, + INTER_TAB_SIZE = 1 << INTER_BITS, + INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE + }; + +//! @} imgproc_transform + +//! @addtogroup imgproc_misc +//! @{ + +//! Distance types for Distance Transform and M-estimators +//! @see cv::distanceTransform, cv::fitLine +enum DistanceTypes { + DIST_USER = -1, //!< User defined distance + DIST_L1 = 1, //!< distance = |x1-x2| + |y1-y2| + DIST_L2 = 2, //!< the simple euclidean distance + DIST_C = 3, //!< distance = max(|x1-x2|,|y1-y2|) + DIST_L12 = 4, //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) + DIST_FAIR = 5, //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 + DIST_WELSCH = 6, //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 + DIST_HUBER = 7 //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345 +}; + +//! Mask size for distance transform +enum DistanceTransformMasks { + DIST_MASK_3 = 3, //!< mask=3 + DIST_MASK_5 = 5, //!< mask=5 + DIST_MASK_PRECISE = 0 //!< +}; + +//! type of the threshold operation +//! ![threshold types](pics/threshold.png) +enum ThresholdTypes { + THRESH_BINARY = 0, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f] + THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f] + THRESH_TRUNC = 2, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] + THRESH_TOZERO = 3, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f] + THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] + THRESH_MASK = 7, + THRESH_OTSU = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value + THRESH_TRIANGLE = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value +}; + +//! adaptive threshold algorithm +//! see cv::adaptiveThreshold +enum AdaptiveThresholdTypes { + /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times + \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */ + ADAPTIVE_THRESH_MEAN_C = 0, + /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian + window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ + minus C . The default sigma (standard deviation) is used for the specified blockSize . See + cv::getGaussianKernel*/ + ADAPTIVE_THRESH_GAUSSIAN_C = 1 +}; + +//! cv::undistort mode +enum UndistortTypes { + PROJ_SPHERICAL_ORTHO = 0, + PROJ_SPHERICAL_EQRECT = 1 + }; + +//! class of the pixel in GrabCut algorithm +enum GrabCutClasses { + GC_BGD = 0, //!< an obvious background pixels + GC_FGD = 1, //!< an obvious foreground (object) pixel + GC_PR_BGD = 2, //!< a possible background pixel + GC_PR_FGD = 3 //!< a possible foreground pixel +}; + +//! GrabCut algorithm flags +enum GrabCutModes { + /** The function initializes the state and the mask using the provided rectangle. After that it + runs iterCount iterations of the algorithm. */ + GC_INIT_WITH_RECT = 0, + /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT + and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are + automatically initialized with GC_BGD .*/ + GC_INIT_WITH_MASK = 1, + /** The value means that the algorithm should just resume. */ + GC_EVAL = 2 +}; + +//! distanceTransform algorithm flags +enum DistanceTransformLabelTypes { + /** each connected component of zeros in src (as well as all the non-zero pixels closest to the + connected component) will be assigned the same label */ + DIST_LABEL_CCOMP = 0, + /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */ + DIST_LABEL_PIXEL = 1 +}; + +//! floodfill algorithm flags +enum FloodFillFlags { + /** If set, the difference between the current pixel and seed pixel is considered. Otherwise, + the difference between neighbor pixels is considered (that is, the range is floating). */ + FLOODFILL_FIXED_RANGE = 1 << 16, + /** If set, the function does not change the image ( newVal is ignored), and only fills the + mask with the value specified in bits 8-16 of flags as described above. This option only make + sense in function variants that have the mask parameter. */ + FLOODFILL_MASK_ONLY = 1 << 17 +}; + +//! @} imgproc_misc + +//! @addtogroup imgproc_shape +//! @{ + +//! connected components algorithm output formats +enum ConnectedComponentsTypes { + CC_STAT_LEFT = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding + //!< box in the horizontal direction. + CC_STAT_TOP = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding + //!< box in the vertical direction. + CC_STAT_WIDTH = 2, //!< The horizontal size of the bounding box + CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box + CC_STAT_AREA = 4, //!< The total area (in pixels) of the connected component + CC_STAT_MAX = 5 +}; + +//! connected components algorithm +enum ConnectedComponentsAlgorithmsTypes { + CCL_WU = 0, //!< SAUF algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity + CCL_DEFAULT = -1, //!< BBDT algortihm for 8-way connectivity, SAUF algorithm for 4-way connectivity + CCL_GRANA = 1 //!< BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity +}; + +//! mode of the contour retrieval algorithm +enum RetrievalModes { + /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for + all the contours. */ + RETR_EXTERNAL = 0, + /** retrieves all of the contours without establishing any hierarchical relationships. */ + RETR_LIST = 1, + /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top + level, there are external boundaries of the components. At the second level, there are + boundaries of the holes. If there is another contour inside a hole of a connected component, it + is still put at the top level. */ + RETR_CCOMP = 2, + /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/ + RETR_TREE = 3, + RETR_FLOODFILL = 4 //!< +}; + +//! the contour approximation algorithm +enum ContourApproximationModes { + /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and + (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is, + max(abs(x1-x2),abs(y2-y1))==1. */ + CHAIN_APPROX_NONE = 1, + /** compresses horizontal, vertical, and diagonal segments and leaves only their end points. + For example, an up-right rectangular contour is encoded with 4 points. */ + CHAIN_APPROX_SIMPLE = 2, + /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ + CHAIN_APPROX_TC89_L1 = 3, + /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ + CHAIN_APPROX_TC89_KCOS = 4 +}; + +//! @} imgproc_shape + +//! Variants of a Hough transform +enum HoughModes { + + /** classical or standard Hough transform. Every line is represented by two floating-point + numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line, + and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must + be (the created sequence will be) of CV_32FC2 type */ + HOUGH_STANDARD = 0, + /** probabilistic Hough transform (more efficient in case if the picture contains a few long + linear segments). It returns line segments rather than the whole line. Each segment is + represented by starting and ending points, and the matrix must be (the created sequence will + be) of the CV_32SC4 type. */ + HOUGH_PROBABILISTIC = 1, + /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as + HOUGH_STANDARD. */ + HOUGH_MULTI_SCALE = 2, + HOUGH_GRADIENT = 3 //!< basically *21HT*, described in @cite Yuen90 +}; + +//! Variants of Line Segment %Detector +//! @ingroup imgproc_feature +enum LineSegmentDetectorModes { + LSD_REFINE_NONE = 0, //!< No refinement applied + LSD_REFINE_STD = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations. + LSD_REFINE_ADV = 2 //!< Advanced refinement. Number of false alarms is calculated, lines are + //!< refined through increase of precision, decrement in size, etc. +}; + +/** Histogram comparison methods + @ingroup imgproc_hist +*/ +enum HistCompMethods { + /** Correlation + \f[d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f] + where + \f[\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\f] + and \f$N\f$ is a total number of histogram bins. */ + HISTCMP_CORREL = 0, + /** Chi-Square + \f[d(H_1,H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */ + HISTCMP_CHISQR = 1, + /** Intersection + \f[d(H_1,H_2) = \sum _I \min (H_1(I), H_2(I))\f] */ + HISTCMP_INTERSECT = 2, + /** Bhattacharyya distance + (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.) + \f[d(H_1,H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */ + HISTCMP_BHATTACHARYYA = 3, + HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA + /** Alternative Chi-Square + \f[d(H_1,H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f] + This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */ + HISTCMP_CHISQR_ALT = 4, + /** Kullback-Leibler divergence + \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */ + HISTCMP_KL_DIV = 5 +}; + +/** the color conversion code +@see @ref imgproc_color_conversions +@ingroup imgproc_misc + */ +enum ColorConversionCodes { + COLOR_BGR2BGRA = 0, //!< add alpha channel to RGB or BGR image + COLOR_RGB2RGBA = COLOR_BGR2BGRA, + + COLOR_BGRA2BGR = 1, //!< remove alpha channel from RGB or BGR image + COLOR_RGBA2RGB = COLOR_BGRA2BGR, + + COLOR_BGR2RGBA = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel) + COLOR_RGB2BGRA = COLOR_BGR2RGBA, + + COLOR_RGBA2BGR = 3, + COLOR_BGRA2RGB = COLOR_RGBA2BGR, + + COLOR_BGR2RGB = 4, + COLOR_RGB2BGR = COLOR_BGR2RGB, + + COLOR_BGRA2RGBA = 5, + COLOR_RGBA2BGRA = COLOR_BGRA2RGBA, + + COLOR_BGR2GRAY = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions" + COLOR_RGB2GRAY = 7, + COLOR_GRAY2BGR = 8, + COLOR_GRAY2RGB = COLOR_GRAY2BGR, + COLOR_GRAY2BGRA = 9, + COLOR_GRAY2RGBA = COLOR_GRAY2BGRA, + COLOR_BGRA2GRAY = 10, + COLOR_RGBA2GRAY = 11, + + COLOR_BGR2BGR565 = 12, //!< convert between RGB/BGR and BGR565 (16-bit images) + COLOR_RGB2BGR565 = 13, + COLOR_BGR5652BGR = 14, + COLOR_BGR5652RGB = 15, + COLOR_BGRA2BGR565 = 16, + COLOR_RGBA2BGR565 = 17, + COLOR_BGR5652BGRA = 18, + COLOR_BGR5652RGBA = 19, + + COLOR_GRAY2BGR565 = 20, //!< convert between grayscale to BGR565 (16-bit images) + COLOR_BGR5652GRAY = 21, + + COLOR_BGR2BGR555 = 22, //!< convert between RGB/BGR and BGR555 (16-bit images) + COLOR_RGB2BGR555 = 23, + COLOR_BGR5552BGR = 24, + COLOR_BGR5552RGB = 25, + COLOR_BGRA2BGR555 = 26, + COLOR_RGBA2BGR555 = 27, + COLOR_BGR5552BGRA = 28, + COLOR_BGR5552RGBA = 29, + + COLOR_GRAY2BGR555 = 30, //!< convert between grayscale and BGR555 (16-bit images) + COLOR_BGR5552GRAY = 31, + + COLOR_BGR2XYZ = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions" + COLOR_RGB2XYZ = 33, + COLOR_XYZ2BGR = 34, + COLOR_XYZ2RGB = 35, + + COLOR_BGR2YCrCb = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions" + COLOR_RGB2YCrCb = 37, + COLOR_YCrCb2BGR = 38, + COLOR_YCrCb2RGB = 39, + + COLOR_BGR2HSV = 40, //!< convert RGB/BGR to HSV (hue saturation value), @ref color_convert_rgb_hsv "color conversions" + COLOR_RGB2HSV = 41, + + COLOR_BGR2Lab = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions" + COLOR_RGB2Lab = 45, + + COLOR_BGR2Luv = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions" + COLOR_RGB2Luv = 51, + COLOR_BGR2HLS = 52, //!< convert RGB/BGR to HLS (hue lightness saturation), @ref color_convert_rgb_hls "color conversions" + COLOR_RGB2HLS = 53, + + COLOR_HSV2BGR = 54, //!< backward conversions to RGB/BGR + COLOR_HSV2RGB = 55, + + COLOR_Lab2BGR = 56, + COLOR_Lab2RGB = 57, + COLOR_Luv2BGR = 58, + COLOR_Luv2RGB = 59, + COLOR_HLS2BGR = 60, + COLOR_HLS2RGB = 61, + + COLOR_BGR2HSV_FULL = 66, //!< + COLOR_RGB2HSV_FULL = 67, + COLOR_BGR2HLS_FULL = 68, + COLOR_RGB2HLS_FULL = 69, + + COLOR_HSV2BGR_FULL = 70, + COLOR_HSV2RGB_FULL = 71, + COLOR_HLS2BGR_FULL = 72, + COLOR_HLS2RGB_FULL = 73, + + COLOR_LBGR2Lab = 74, + COLOR_LRGB2Lab = 75, + COLOR_LBGR2Luv = 76, + COLOR_LRGB2Luv = 77, + + COLOR_Lab2LBGR = 78, + COLOR_Lab2LRGB = 79, + COLOR_Luv2LBGR = 80, + COLOR_Luv2LRGB = 81, + + COLOR_BGR2YUV = 82, //!< convert between RGB/BGR and YUV + COLOR_RGB2YUV = 83, + COLOR_YUV2BGR = 84, + COLOR_YUV2RGB = 85, + + //! YUV 4:2:0 family to RGB + COLOR_YUV2RGB_NV12 = 90, + COLOR_YUV2BGR_NV12 = 91, + COLOR_YUV2RGB_NV21 = 92, + COLOR_YUV2BGR_NV21 = 93, + COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21, + COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21, + + COLOR_YUV2RGBA_NV12 = 94, + COLOR_YUV2BGRA_NV12 = 95, + COLOR_YUV2RGBA_NV21 = 96, + COLOR_YUV2BGRA_NV21 = 97, + COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, + COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, + + COLOR_YUV2RGB_YV12 = 98, + COLOR_YUV2BGR_YV12 = 99, + COLOR_YUV2RGB_IYUV = 100, + COLOR_YUV2BGR_IYUV = 101, + COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV, + COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV, + COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12, + COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12, + + COLOR_YUV2RGBA_YV12 = 102, + COLOR_YUV2BGRA_YV12 = 103, + COLOR_YUV2RGBA_IYUV = 104, + COLOR_YUV2BGRA_IYUV = 105, + COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, + COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, + COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12, + COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12, + + COLOR_YUV2GRAY_420 = 106, + COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, + COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, + COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420, + + //! YUV 4:2:2 family to RGB + COLOR_YUV2RGB_UYVY = 107, + COLOR_YUV2BGR_UYVY = 108, + //COLOR_YUV2RGB_VYUY = 109, + //COLOR_YUV2BGR_VYUY = 110, + COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, + COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, + COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, + COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, + + COLOR_YUV2RGBA_UYVY = 111, + COLOR_YUV2BGRA_UYVY = 112, + //COLOR_YUV2RGBA_VYUY = 113, + //COLOR_YUV2BGRA_VYUY = 114, + COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, + COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, + COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, + COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, + + COLOR_YUV2RGB_YUY2 = 115, + COLOR_YUV2BGR_YUY2 = 116, + COLOR_YUV2RGB_YVYU = 117, + COLOR_YUV2BGR_YVYU = 118, + COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, + COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, + COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, + COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, + + COLOR_YUV2RGBA_YUY2 = 119, + COLOR_YUV2BGRA_YUY2 = 120, + COLOR_YUV2RGBA_YVYU = 121, + COLOR_YUV2BGRA_YVYU = 122, + COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, + COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, + COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, + COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, + + COLOR_YUV2GRAY_UYVY = 123, + COLOR_YUV2GRAY_YUY2 = 124, + //CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, + COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, + COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, + + //! alpha premultiplication + COLOR_RGBA2mRGBA = 125, + COLOR_mRGBA2RGBA = 126, + + //! RGB to YUV 4:2:0 family + COLOR_RGB2YUV_I420 = 127, + COLOR_BGR2YUV_I420 = 128, + COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420, + COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420, + + COLOR_RGBA2YUV_I420 = 129, + COLOR_BGRA2YUV_I420 = 130, + COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, + COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, + COLOR_RGB2YUV_YV12 = 131, + COLOR_BGR2YUV_YV12 = 132, + COLOR_RGBA2YUV_YV12 = 133, + COLOR_BGRA2YUV_YV12 = 134, + + //! Demosaicing + COLOR_BayerBG2BGR = 46, + COLOR_BayerGB2BGR = 47, + COLOR_BayerRG2BGR = 48, + COLOR_BayerGR2BGR = 49, + + COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, + COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, + COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, + COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, + + COLOR_BayerBG2GRAY = 86, + COLOR_BayerGB2GRAY = 87, + COLOR_BayerRG2GRAY = 88, + COLOR_BayerGR2GRAY = 89, + + //! Demosaicing using Variable Number of Gradients + COLOR_BayerBG2BGR_VNG = 62, + COLOR_BayerGB2BGR_VNG = 63, + COLOR_BayerRG2BGR_VNG = 64, + COLOR_BayerGR2BGR_VNG = 65, + + COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, + COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, + COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, + COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, + + //! Edge-Aware Demosaicing + COLOR_BayerBG2BGR_EA = 135, + COLOR_BayerGB2BGR_EA = 136, + COLOR_BayerRG2BGR_EA = 137, + COLOR_BayerGR2BGR_EA = 138, + + COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA, + COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA, + COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA, + COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA, + + + COLOR_COLORCVT_MAX = 139 +}; + +/** types of intersection between rectangles +@ingroup imgproc_shape +*/ +enum RectanglesIntersectTypes { + INTERSECT_NONE = 0, //!< No intersection + INTERSECT_PARTIAL = 1, //!< There is a partial intersection + INTERSECT_FULL = 2 //!< One of the rectangle is fully enclosed in the other +}; + +//! finds arbitrary template in the grayscale image using Generalized Hough Transform +class CV_EXPORTS GeneralizedHough : public Algorithm +{ +public: + //! set template to search + virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0; + virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0; + + //! find template on image + virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0; + virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0; + + //! Canny low threshold. + virtual void setCannyLowThresh(int cannyLowThresh) = 0; + virtual int getCannyLowThresh() const = 0; + + //! Canny high threshold. + virtual void setCannyHighThresh(int cannyHighThresh) = 0; + virtual int getCannyHighThresh() const = 0; + + //! Minimum distance between the centers of the detected objects. + virtual void setMinDist(double minDist) = 0; + virtual double getMinDist() const = 0; + + //! Inverse ratio of the accumulator resolution to the image resolution. + virtual void setDp(double dp) = 0; + virtual double getDp() const = 0; + + //! Maximal size of inner buffers. + virtual void setMaxBufferSize(int maxBufferSize) = 0; + virtual int getMaxBufferSize() const = 0; +}; + +//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. +//! Detects position only without traslation and rotation +class CV_EXPORTS GeneralizedHoughBallard : public GeneralizedHough +{ +public: + //! R-Table levels. + virtual void setLevels(int levels) = 0; + virtual int getLevels() const = 0; + + //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected. + virtual void setVotesThreshold(int votesThreshold) = 0; + virtual int getVotesThreshold() const = 0; +}; + +//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. +//! Detects position, traslation and rotation +class CV_EXPORTS GeneralizedHoughGuil : public GeneralizedHough +{ +public: + //! Angle difference in degrees between two points in feature. + virtual void setXi(double xi) = 0; + virtual double getXi() const = 0; + + //! Feature table levels. + virtual void setLevels(int levels) = 0; + virtual int getLevels() const = 0; + + //! Maximal difference between angles that treated as equal. + virtual void setAngleEpsilon(double angleEpsilon) = 0; + virtual double getAngleEpsilon() const = 0; + + //! Minimal rotation angle to detect in degrees. + virtual void setMinAngle(double minAngle) = 0; + virtual double getMinAngle() const = 0; + + //! Maximal rotation angle to detect in degrees. + virtual void setMaxAngle(double maxAngle) = 0; + virtual double getMaxAngle() const = 0; + + //! Angle step in degrees. + virtual void setAngleStep(double angleStep) = 0; + virtual double getAngleStep() const = 0; + + //! Angle votes threshold. + virtual void setAngleThresh(int angleThresh) = 0; + virtual int getAngleThresh() const = 0; + + //! Minimal scale to detect. + virtual void setMinScale(double minScale) = 0; + virtual double getMinScale() const = 0; + + //! Maximal scale to detect. + virtual void setMaxScale(double maxScale) = 0; + virtual double getMaxScale() const = 0; + + //! Scale step. + virtual void setScaleStep(double scaleStep) = 0; + virtual double getScaleStep() const = 0; + + //! Scale votes threshold. + virtual void setScaleThresh(int scaleThresh) = 0; + virtual int getScaleThresh() const = 0; + + //! Position votes threshold. + virtual void setPosThresh(int posThresh) = 0; + virtual int getPosThresh() const = 0; +}; + + +class CV_EXPORTS_W CLAHE : public Algorithm +{ +public: + CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0; + + CV_WRAP virtual void setClipLimit(double clipLimit) = 0; + CV_WRAP virtual double getClipLimit() const = 0; + + CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0; + CV_WRAP virtual Size getTilesGridSize() const = 0; + + CV_WRAP virtual void collectGarbage() = 0; +}; + + +//! @addtogroup imgproc_subdiv2d +//! @{ + +class CV_EXPORTS_W Subdiv2D +{ +public: + /** Subdiv2D point location cases */ + enum { PTLOC_ERROR = -2, //!< Point location error + PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect + PTLOC_INSIDE = 0, //!< Point inside some facet + PTLOC_VERTEX = 1, //!< Point coincides with one of the subdivision vertices + PTLOC_ON_EDGE = 2 //!< Point on some edge + }; + + /** Subdiv2D edge type navigation (see: getEdge()) */ + enum { NEXT_AROUND_ORG = 0x00, + NEXT_AROUND_DST = 0x22, + PREV_AROUND_ORG = 0x11, + PREV_AROUND_DST = 0x33, + NEXT_AROUND_LEFT = 0x13, + NEXT_AROUND_RIGHT = 0x31, + PREV_AROUND_LEFT = 0x20, + PREV_AROUND_RIGHT = 0x02 + }; + + /** creates an empty Subdiv2D object. + To create a new empty Delaunay subdivision you need to use the initDelaunay() function. + */ + CV_WRAP Subdiv2D(); + + /** @overload + + @param rect – Rectangle that includes all of the 2D points that are to be added to the subdivision. + + The function creates an empty Delaunay subdivision where 2D points can be added using the function + insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime + error is raised. + */ + CV_WRAP Subdiv2D(Rect rect); + + /** @brief Creates a new empty Delaunay subdivision + + @param rect – Rectangle that includes all of the 2D points that are to be added to the subdivision. + + */ + CV_WRAP void initDelaunay(Rect rect); + + /** @brief Insert a single point into a Delaunay triangulation. + + @param pt – Point to insert. + + The function inserts a single point into a subdivision and modifies the subdivision topology + appropriately. If a point with the same coordinates exists already, no new point is added. + @returns the ID of the point. + + @note If the point is outside of the triangulation specified rect a runtime error is raised. + */ + CV_WRAP int insert(Point2f pt); + + /** @brief Insert multiple points into a Delaunay triangulation. + + @param ptvec – Points to insert. + + The function inserts a vector of points into a subdivision and modifies the subdivision topology + appropriately. + */ + CV_WRAP void insert(const std::vector<Point2f>& ptvec); + + /** @brief Returns the location of a point within a Delaunay triangulation. + + @param pt – Point to locate. + @param edge – Output edge that the point belongs to or is located to the right of it. + @param vertex – Optional output vertex the input point coincides with. + + The function locates the input point within the subdivision and gives one of the triangle edges + or vertices. + + @returns an integer which specify one of the following five cases for point location: + - The point falls into some facet. The function returns PTLOC_INSIDE and edge will contain one of + edges of the facet. + - The point falls onto the edge. The function returns PTLOC_ON_EDGE and edge will contain this edge. + - The point coincides with one of the subdivision vertices. The function returns PTLOC_VERTEX and + vertex will contain a pointer to the vertex. + - The point is outside the subdivision reference rectangle. The function returns PTLOC_OUTSIDE_RECT + and no pointers are filled. + - One of input arguments is invalid. A runtime error is raised or, if silent or “parent” error + processing mode is selected, CV_PTLOC_ERROR is returnd. + */ + CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); + + /** @brief Finds the subdivision vertex closest to the given point. + + @param pt – Input point. + @param nearestPt – Output subdivision vertex point. + + The function is another function that locates the input point within the subdivision. It finds the + subdivision vertex that is the closest to the input point. It is not necessarily one of vertices + of the facet containing the input point, though the facet (located using locate() ) is used as a + starting point. + + @returns vertex ID. + */ + CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0); + + /** @brief Returns a list of all edges. + + @param edgeList – Output vector. + + The function gives each edge as a 4 numbers vector, where each two are one of the edge + vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3]. + */ + CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const; + + /** @brief Returns a list of the leading edge ID connected to each triangle. + + @param leadingEdgeList – Output vector. + + The function gives one edge ID for each triangle. + */ + CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const; + + /** @brief Returns a list of all triangles. + + @param triangleList – Output vector. + + The function gives each triangle as a 6 numbers vector, where each two are one of the triangle + vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5]. + */ + CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const; + + /** @brief Returns a list of all Voroni facets. + + @param idx – Vector of vertices IDs to consider. For all vertices you can pass empty vector. + @param facetList – Output vector of the Voroni facets. + @param facetCenters – Output vector of the Voroni facets center points. + + */ + CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList, + CV_OUT std::vector<Point2f>& facetCenters); + + /** @brief Returns vertex location from vertex ID. + + @param vertex – vertex ID. + @param firstEdge – Optional. The first edge ID which is connected to the vertex. + @returns vertex (x,y) + + */ + CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const; + + /** @brief Returns one of the edges related to the given edge. + + @param edge – Subdivision edge ID. + @param nextEdgeType - Parameter specifying which of the related edges to return. + The following values are possible: + - NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge) + - NEXT_AROUND_DST next around the edge vertex ( eDnext ) + - PREV_AROUND_ORG previous around the edge origin (reversed eRnext ) + - PREV_AROUND_DST previous around the edge destination (reversed eLnext ) + - NEXT_AROUND_LEFT next around the left facet ( eLnext ) + - NEXT_AROUND_RIGHT next around the right facet ( eRnext ) + - PREV_AROUND_LEFT previous around the left facet (reversed eOnext ) + - PREV_AROUND_RIGHT previous around the right facet (reversed eDnext ) + + ![sample output](pics/quadedge.png) + + @returns edge ID related to the input edge. + */ + CV_WRAP int getEdge( int edge, int nextEdgeType ) const; + + /** @brief Returns next edge around the edge origin. + + @param edge – Subdivision edge ID. + + @returns an integer which is next edge ID around the edge origin: eOnext on the + picture above if e is the input edge). + */ + CV_WRAP int nextEdge(int edge) const; + + /** @brief Returns another edge of the same quad-edge. + + @param edge – Subdivision edge ID. + @param rotate - Parameter specifying which of the edges of the same quad-edge as the input + one to return. The following values are possible: + - 0 - the input edge ( e on the picture below if e is the input edge) + - 1 - the rotated edge ( eRot ) + - 2 - the reversed edge (reversed e (in green)) + - 3 - the reversed rotated edge (reversed eRot (in green)) + + @returns one of the edges ID of the same quad-edge as the input edge. + */ + CV_WRAP int rotateEdge(int edge, int rotate) const; + CV_WRAP int symEdge(int edge) const; + + /** @brief Returns the edge origin. + + @param edge – Subdivision edge ID. + @param orgpt – Output vertex location. + + @returns vertex ID. + */ + CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const; + + /** @brief Returns the edge destination. + + @param edge – Subdivision edge ID. + @param dstpt – Output vertex location. + + @returns vertex ID. + */ + CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const; + +protected: + int newEdge(); + void deleteEdge(int edge); + int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0); + void deletePoint(int vtx); + void setEdgePoints( int edge, int orgPt, int dstPt ); + void splice( int edgeA, int edgeB ); + int connectEdges( int edgeA, int edgeB ); + void swapEdges( int edge ); + int isRightOf(Point2f pt, int edge) const; + void calcVoronoi(); + void clearVoronoi(); + void checkSubdiv() const; + + struct CV_EXPORTS Vertex + { + Vertex(); + Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0); + bool isvirtual() const; + bool isfree() const; + + int firstEdge; + int type; + Point2f pt; + }; + + struct CV_EXPORTS QuadEdge + { + QuadEdge(); + QuadEdge(int edgeidx); + bool isfree() const; + + int next[4]; + int pt[4]; + }; + + //! All of the vertices + std::vector<Vertex> vtx; + //! All of the edges + std::vector<QuadEdge> qedges; + int freeQEdge; + int freePoint; + bool validGeometry; + + int recentEdge; + //! Top left corner of the bounding rect + Point2f topLeft; + //! Bottom right corner of the bounding rect + Point2f bottomRight; +}; + +//! @} imgproc_subdiv2d + +//! @addtogroup imgproc_feature +//! @{ + +/** @example lsd_lines.cpp +An example using the LineSegmentDetector +*/ + +/** @brief Line segment detector class + +following the algorithm described at @cite Rafael12 . +*/ +class CV_EXPORTS_W LineSegmentDetector : public Algorithm +{ +public: + + /** @brief Finds lines in the input image. + + This is the output of the default parameters of the algorithm on the above shown image. + + ![image](pics/building_lsd.png) + + @param _image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use: + `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);` + @param _lines A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line. Where + Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly + oriented depending on the gradient. + @param width Vector of widths of the regions, where the lines are found. E.g. Width of line. + @param prec Vector of precisions with which the lines are found. + @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The + bigger the value, logarithmically better the detection. + - -1 corresponds to 10 mean false alarms + - 0 corresponds to 1 mean false alarm + - 1 corresponds to 0.1 mean false alarms + This vector will be calculated only when the objects type is LSD_REFINE_ADV. + */ + CV_WRAP virtual void detect(InputArray _image, OutputArray _lines, + OutputArray width = noArray(), OutputArray prec = noArray(), + OutputArray nfa = noArray()) = 0; + + /** @brief Draws the line segments on a given image. + @param _image The image, where the liens will be drawn. Should be bigger or equal to the image, + where the lines were found. + @param lines A vector of the lines that needed to be drawn. + */ + CV_WRAP virtual void drawSegments(InputOutputArray _image, InputArray lines) = 0; + + /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels. + + @param size The size of the image, where lines1 and lines2 were found. + @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color. + @param lines2 The second group of lines. They visualized in red color. + @param _image Optional image, where the lines will be drawn. The image should be color(3-channel) + in order for lines1 and lines2 to be drawn in the above mentioned colors. + */ + CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) = 0; + + virtual ~LineSegmentDetector() { } +}; + +/** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it. + +The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want +to edit those, as to tailor it for their own application. + +@param _refine The way found lines will be refined, see cv::LineSegmentDetectorModes +@param _scale The scale of the image that will be used to find the lines. Range (0..1]. +@param _sigma_scale Sigma for Gaussian filter. It is computed as sigma = _sigma_scale/_scale. +@param _quant Bound to the quantization error on the gradient norm. +@param _ang_th Gradient angle tolerance in degrees. +@param _log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advancent refinement +is chosen. +@param _density_th Minimal density of aligned region points in the enclosing rectangle. +@param _n_bins Number of bins in pseudo-ordering of gradient modulus. + */ +CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector( + int _refine = LSD_REFINE_STD, double _scale = 0.8, + double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5, + double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024); + +//! @} imgproc_feature + +//! @addtogroup imgproc_filter +//! @{ + +/** @brief Returns Gaussian filter coefficients. + +The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter +coefficients: + +\f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f] + +where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$. + +Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize +smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly. +You may also use the higher-level GaussianBlur. +@param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive. +@param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as +`sigma = 0.3\*((ksize-1)\*0.5 - 1) + 0.8`. +@param ktype Type of filter coefficients. It can be CV_32F or CV_64F . +@sa sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur + */ +CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F ); + +/** @brief Returns filter coefficients for computing spatial image derivatives. + +The function computes and returns the filter coefficients for spatial image derivatives. When +`ksize=CV_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see cv::Scharr). Otherwise, Sobel +kernels are generated (see cv::Sobel). The filters are normally passed to sepFilter2D or to + +@param kx Output matrix of row filter coefficients. It has the type ktype . +@param ky Output matrix of column filter coefficients. It has the type ktype . +@param dx Derivative order in respect of x. +@param dy Derivative order in respect of y. +@param ksize Aperture size. It can be CV_SCHARR, 1, 3, 5, or 7. +@param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not. +Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are +going to filter floating-point images, you are likely to use the normalized kernels. But if you +compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve +all the fractional bits, you may want to set normalize=false . +@param ktype Type of filter coefficients. It can be CV_32f or CV_64F . + */ +CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky, + int dx, int dy, int ksize, + bool normalize = false, int ktype = CV_32F ); + +/** @brief Returns Gabor filter coefficients. + +For more details about gabor filter equations and parameters, see: [Gabor +Filter](http://en.wikipedia.org/wiki/Gabor_filter). + +@param ksize Size of the filter returned. +@param sigma Standard deviation of the gaussian envelope. +@param theta Orientation of the normal to the parallel stripes of a Gabor function. +@param lambd Wavelength of the sinusoidal factor. +@param gamma Spatial aspect ratio. +@param psi Phase offset. +@param ktype Type of filter coefficients. It can be CV_32F or CV_64F . + */ +CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd, + double gamma, double psi = CV_PI*0.5, int ktype = CV_64F ); + +//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation. +static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); } + +/** @brief Returns a structuring element of the specified size and shape for morphological operations. + +The function constructs and returns the structuring element that can be further passed to cv::erode, +cv::dilate or cv::morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as +the structuring element. + +@param shape Element shape that could be one of cv::MorphShapes +@param ksize Size of the structuring element. +@param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the +anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor +position. In other cases the anchor just regulates how much the result of the morphological +operation is shifted. + */ +CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)); + +/** @brief Blurs an image using the median filter. + +The function smoothes an image using the median filter with the \f$\texttt{ksize} \times +\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently. +In-place operation is supported. + +@note The median filter uses BORDER_REPLICATE internally to cope with border pixels, see cv::BorderTypes + +@param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be +CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U. +@param dst destination array of the same size and type as src. +@param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ... +@sa bilateralFilter, blur, boxFilter, GaussianBlur + */ +CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize ); + +/** @brief Blurs an image using a Gaussian filter. + +The function convolves the source image with the specified Gaussian kernel. In-place filtering is +supported. + +@param src input image; the image can have any number of channels, which are processed +independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst output image of the same size and type as src. +@param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be +positive and odd. Or, they can be zero's and then they are computed from sigma. +@param sigmaX Gaussian kernel standard deviation in X direction. +@param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be +equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, +respectively (see cv::getGaussianKernel for details); to fully control the result regardless of +possible future modifications of all this semantics, it is recommended to specify all of ksize, +sigmaX, and sigmaY. +@param borderType pixel extrapolation method, see cv::BorderTypes + +@sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur + */ +CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize, + double sigmaX, double sigmaY = 0, + int borderType = BORDER_DEFAULT ); + +/** @brief Applies the bilateral filter to an image. + +The function applies bilateral filtering to the input image, as described in +http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html +bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is +very slow compared to most filters. + +_Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\< +10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very +strong effect, making the image look "cartoonish". + +_Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time +applications, and perhaps d=9 for offline applications that need heavy noise filtering. + +This filter does not work inplace. +@param src Source 8-bit or floating-point, 1-channel or 3-channel image. +@param dst Destination image of the same size and type as src . +@param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, +it is computed from sigmaSpace. +@param sigmaColor Filter sigma in the color space. A larger value of the parameter means that +farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting +in larger areas of semi-equal color. +@param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that +farther pixels will influence each other as long as their colors are close enough (see sigmaColor +). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is +proportional to sigmaSpace. +@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes + */ +CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d, + double sigmaColor, double sigmaSpace, + int borderType = BORDER_DEFAULT ); + +/** @brief Blurs an image using the box filter. + +The function smoothes an image using the kernel: + +\f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f] + +where + +\f[\alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}\f] + +Unnormalized box filter is useful for computing various integral characteristics over each pixel +neighborhood, such as covariance matrices of image derivatives (used in dense optical flow +algorithms, and so on). If you need to compute pixel sums over variable-size windows, use cv::integral. + +@param src input image. +@param dst output image of the same size and type as src. +@param ddepth the output image depth (-1 to use src.depth()). +@param ksize blurring kernel size. +@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel +center. +@param normalize flag, specifying whether the kernel is normalized by its area or not. +@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes +@sa blur, bilateralFilter, GaussianBlur, medianBlur, integral + */ +CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth, + Size ksize, Point anchor = Point(-1,-1), + bool normalize = true, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter. + +For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring +pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$. + +The unnormalized square box filter can be useful in computing local image statistics such as the the local +variance and standard deviation around the neighborhood of a pixel. + +@param _src input image +@param _dst output image of the same size and type as _src +@param ddepth the output image depth (-1 to use src.depth()) +@param ksize kernel size +@param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel +center. +@param normalize flag, specifying whether the kernel is to be normalized by it's area or not. +@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes +@sa boxFilter +*/ +CV_EXPORTS_W void sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth, + Size ksize, Point anchor = Point(-1, -1), + bool normalize = true, + int borderType = BORDER_DEFAULT ); + +/** @brief Blurs an image using the normalized box filter. + +The function smoothes an image using the kernel: + +\f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f] + +The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), +anchor, true, borderType)`. + +@param src input image; it can have any number of channels, which are processed independently, but +the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst output image of the same size and type as src. +@param ksize blurring kernel size. +@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel +center. +@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes +@sa boxFilter, bilateralFilter, GaussianBlur, medianBlur + */ +CV_EXPORTS_W void blur( InputArray src, OutputArray dst, + Size ksize, Point anchor = Point(-1,-1), + int borderType = BORDER_DEFAULT ); + +/** @brief Convolves an image with the kernel. + +The function applies an arbitrary linear filter to an image. In-place operation is supported. When +the aperture is partially outside the image, the function interpolates outlier pixel values +according to the specified border mode. + +The function does actually compute correlation, not the convolution: + +\f[\texttt{dst} (x,y) = \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} } \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f] + +That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip +the kernel using cv::flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - +anchor.y - 1)`. + +The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or +larger) and the direct algorithm for small kernels. + +@param src input image. +@param dst output image of the same size and the same number of channels as src. +@param ddepth desired depth of the destination image, see @ref filter_depths "combinations" +@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point +matrix; if you want to apply different kernels to different channels, split the image into +separate color planes using split and process them individually. +@param anchor anchor of the kernel that indicates the relative position of a filtered point within +the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor +is at the kernel center. +@param delta optional value added to the filtered pixels before storing them in dst. +@param borderType pixel extrapolation method, see cv::BorderTypes +@sa sepFilter2D, dft, matchTemplate + */ +CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth, + InputArray kernel, Point anchor = Point(-1,-1), + double delta = 0, int borderType = BORDER_DEFAULT ); + +/** @brief Applies a separable linear filter to an image. + +The function applies a separable linear filter to the image. That is, first, every row of src is +filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D +kernel kernelY. The final result shifted by delta is stored in dst . + +@param src Source image. +@param dst Destination image of the same size and the same number of channels as src . +@param ddepth Destination image depth, see @ref filter_depths "combinations" +@param kernelX Coefficients for filtering each row. +@param kernelY Coefficients for filtering each column. +@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor +is at the kernel center. +@param delta Value added to the filtered results before storing them. +@param borderType Pixel extrapolation method, see cv::BorderTypes +@sa filter2D, Sobel, GaussianBlur, boxFilter, blur + */ +CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth, + InputArray kernelX, InputArray kernelY, + Point anchor = Point(-1,-1), + double delta = 0, int borderType = BORDER_DEFAULT ); + +/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. + +In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to +calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$ +kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first +or the second x- or y- derivatives. + +There is also the special value `ksize = CV_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr +filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is + +\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f] + +for the x-derivative, or transposed for the y-derivative. + +The function calculates an image derivative by convolving the image with the appropriate kernel: + +\f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f] + +The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less +resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) +or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first +case corresponds to a kernel of: + +\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f] + +The second case corresponds to a kernel of: + +\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f] + +@param src input image. +@param dst output image of the same size and the same number of channels as src . +@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of + 8-bit input images it will result in truncated derivatives. +@param dx order of the derivative x. +@param dy order of the derivative y. +@param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. +@param scale optional scale factor for the computed derivative values; by default, no scaling is +applied (see cv::getDerivKernels for details). +@param delta optional delta value that is added to the results prior to storing them in dst. +@param borderType pixel extrapolation method, see cv::BorderTypes +@sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar + */ +CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth, + int dx, int dy, int ksize = 3, + double scale = 1, double delta = 0, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates the first order image derivative in both x and y using a Sobel operator + +Equivalent to calling: + +@code +Sobel( src, dx, CV_16SC1, 1, 0, 3 ); +Sobel( src, dy, CV_16SC1, 0, 1, 3 ); +@endcode + +@param src input image. +@param dx output image with first-order derivative in x. +@param dy output image with first-order derivative in y. +@param ksize size of Sobel kernel. It must be 3. +@param borderType pixel extrapolation method, see cv::BorderTypes + +@sa Sobel + */ + +CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx, + OutputArray dy, int ksize = 3, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates the first x- or y- image derivative using Scharr operator. + +The function computes the first x- or y- spatial image derivative using the Scharr operator. The +call + +\f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f] + +is equivalent to + +\f[\texttt{Sobel(src, dst, ddepth, dx, dy, CV\_SCHARR, scale, delta, borderType)} .\f] + +@param src input image. +@param dst output image of the same size and the same number of channels as src. +@param ddepth output image depth, see @ref filter_depths "combinations" +@param dx order of the derivative x. +@param dy order of the derivative y. +@param scale optional scale factor for the computed derivative values; by default, no scaling is +applied (see getDerivKernels for details). +@param delta optional delta value that is added to the results prior to storing them in dst. +@param borderType pixel extrapolation method, see cv::BorderTypes +@sa cartToPolar + */ +CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth, + int dx, int dy, double scale = 1, double delta = 0, + int borderType = BORDER_DEFAULT ); + +/** @example laplace.cpp + An example using Laplace transformations for edge detection +*/ + +/** @brief Calculates the Laplacian of an image. + +The function calculates the Laplacian of the source image by adding up the second x and y +derivatives calculated using the Sobel operator: + +\f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f] + +This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image +with the following \f$3 \times 3\f$ aperture: + +\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f] + +@param src Source image. +@param dst Destination image of the same size and the same number of channels as src . +@param ddepth Desired depth of the destination image. +@param ksize Aperture size used to compute the second-derivative filters. See getDerivKernels for +details. The size must be positive and odd. +@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is +applied. See getDerivKernels for details. +@param delta Optional delta value that is added to the results prior to storing them in dst . +@param borderType Pixel extrapolation method, see cv::BorderTypes +@sa Sobel, Scharr + */ +CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth, + int ksize = 1, double scale = 1, double delta = 0, + int borderType = BORDER_DEFAULT ); + +//! @} imgproc_filter + +//! @addtogroup imgproc_feature +//! @{ + +/** @example edge.cpp + An example on using the canny edge detector +*/ + +/** @brief Finds edges in an image using the Canny algorithm @cite Canny86 . + +The function finds edges in the input image image and marks them in the output map edges using the +Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The +largest value is used to find initial segments of strong edges. See +<http://en.wikipedia.org/wiki/Canny_edge_detector> + +@param image 8-bit input image. +@param edges output edge map; single channels 8-bit image, which has the same size as image . +@param threshold1 first threshold for the hysteresis procedure. +@param threshold2 second threshold for the hysteresis procedure. +@param apertureSize aperture size for the Sobel operator. +@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm +\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude ( +L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( +L2gradient=false ). + */ +CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, + double threshold1, double threshold2, + int apertureSize = 3, bool L2gradient = false ); + +/** \overload + +Finds edges in an image using the Canny algorithm with custom image gradient. + +@param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3). +@param dy 16-bit y derivative of input image (same type as dx). +@param edges,threshold1,threshold2,L2gradient See cv::Canny + */ +CV_EXPORTS_W void Canny( InputArray dx, InputArray dy, + OutputArray edges, + double threshold1, double threshold2, + bool L2gradient = false ); + +/** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection. + +The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal +eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms +of the formulae in the cornerEigenValsAndVecs description. + +@param src Input single-channel 8-bit or floating-point image. +@param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as +src . +@param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ). +@param ksize Aperture parameter for the Sobel operator. +@param borderType Pixel extrapolation method. See cv::BorderTypes. + */ +CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst, + int blockSize, int ksize = 3, + int borderType = BORDER_DEFAULT ); + +/** @brief Harris corner detector. + +The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and +cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance +matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it +computes the following characteristic: + +\f[\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f] + +Corners in the image can be found as the local maxima of this response map. + +@param src Input single-channel 8-bit or floating-point image. +@param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same +size as src . +@param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ). +@param ksize Aperture parameter for the Sobel operator. +@param k Harris detector free parameter. See the formula below. +@param borderType Pixel extrapolation method. See cv::BorderTypes. + */ +CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize, + int ksize, double k, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection. + +For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize +neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as: + +\f[M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f] + +where the derivatives are computed using the Sobel operator. + +After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as +\f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where + +- \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$ +- \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$ +- \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$ + +The output of the function can be used for robust edge or corner detection. + +@param src Input single-channel 8-bit or floating-point image. +@param dst Image to store the results. It has the same size as src and the type CV_32FC(6) . +@param blockSize Neighborhood size (see details below). +@param ksize Aperture parameter for the Sobel operator. +@param borderType Pixel extrapolation method. See cv::BorderTypes. + +@sa cornerMinEigenVal, cornerHarris, preCornerDetect + */ +CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst, + int blockSize, int ksize, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates a feature map for corner detection. + +The function calculates the complex spatial derivative-based function of the source image + +\f[\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\f] + +where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image +derivatives, and \f$D_{xy}\f$ is the mixed derivative. + +The corners can be found as local maximums of the functions, as shown below: +@code + Mat corners, dilated_corners; + preCornerDetect(image, corners, 3); + // dilation with 3x3 rectangular structuring element + dilate(corners, dilated_corners, Mat(), 1); + Mat corner_mask = corners == dilated_corners; +@endcode + +@param src Source single-channel 8-bit of floating-point image. +@param dst Output image that has the type CV_32F and the same size as src . +@param ksize %Aperture size of the Sobel . +@param borderType Pixel extrapolation method. See cv::BorderTypes. + */ +CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize, + int borderType = BORDER_DEFAULT ); + +/** @brief Refines the corner locations. + +The function iterates to find the sub-pixel accurate location of corners or radial saddle points, as +shown on the figure below. + +![image](pics/cornersubpix.png) + +Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$ +to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$ +subject to image and measurement noise. Consider the expression: + +\f[\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)\f] + +where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The +value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up +with \f$\epsilon_i\f$ set to zero: + +\f[\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)\f] + +where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first +gradient term \f$G\f$ and the second gradient term \f$b\f$ gives: + +\f[q = G^{-1} \cdot b\f] + +The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates +until the center stays within a set threshold. + +@param image Input image. +@param corners Initial coordinates of the input corners and refined coordinates provided for +output. +@param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) , +then a \f$5*2+1 \times 5*2+1 = 11 \times 11\f$ search window is used. +@param zeroZone Half of the size of the dead region in the middle of the search zone over which +the summation in the formula below is not done. It is used sometimes to avoid possible +singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such +a size. +@param criteria Criteria for termination of the iterative process of corner refinement. That is, +the process of corner position refinement stops either after criteria.maxCount iterations or when +the corner position moves by less than criteria.epsilon on some iteration. + */ +CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners, + Size winSize, Size zeroZone, + TermCriteria criteria ); + +/** @brief Determines strong corners on an image. + +The function finds the most prominent corners in the image or in the specified image region, as +described in @cite Shi94 + +- Function calculates the corner quality measure at every source image pixel using the + cornerMinEigenVal or cornerHarris . +- Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are + retained). +- The corners with the minimal eigenvalue less than + \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected. +- The remaining corners are sorted by the quality measure in the descending order. +- Function throws away each corner for which there is a stronger corner at a distance less than + maxDistance. + +The function can be used to initialize a point-based tracker of an object. + +@note If the function is called with different values A and B of the parameter qualityLevel , and +A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector +with qualityLevel=B . + +@param image Input 8-bit or floating-point 32-bit, single-channel image. +@param corners Output vector of detected corners. +@param maxCorners Maximum number of corners to return. If there are more corners than are found, +the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set +and all detected corners are returned. +@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The +parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue +(see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the +quality measure less than the product are rejected. For example, if the best corner has the +quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure +less than 15 are rejected. +@param minDistance Minimum possible Euclidean distance between the returned corners. +@param mask Optional region of interest. If the image is not empty (it needs to have the type +CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. +@param blockSize Size of an average block for computing a derivative covariation matrix over each +pixel neighborhood. See cornerEigenValsAndVecs . +@param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris) +or cornerMinEigenVal. +@param k Free parameter of the Harris detector. + +@sa cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, + */ +CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, + int maxCorners, double qualityLevel, double minDistance, + InputArray mask = noArray(), int blockSize = 3, + bool useHarrisDetector = false, double k = 0.04 ); + +/** @example houghlines.cpp +An example using the Hough line detector +*/ + +/** @brief Finds lines in a binary image using the standard Hough transform. + +The function implements the standard or standard multi-scale Hough transform algorithm for line +detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough +transform. + +@param image 8-bit, single-channel binary source image. The image may be modified by the function. +@param lines Output vector of lines. Each line is represented by a two-element vector +\f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of +the image). \f$\theta\f$ is the line rotation angle in radians ( +\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ). +@param rho Distance resolution of the accumulator in pixels. +@param theta Angle resolution of the accumulator in radians. +@param threshold Accumulator threshold parameter. Only those lines are returned that get enough +votes ( \f$>\texttt{threshold}\f$ ). +@param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho . +The coarse accumulator distance resolution is rho and the accurate accumulator resolution is +rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these +parameters should be positive. +@param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta. +@param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines. +Must fall between 0 and max_theta. +@param max_theta For standard and multi-scale Hough transform, maximum angle to check for lines. +Must fall between min_theta and CV_PI. + */ +CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines, + double rho, double theta, int threshold, + double srn = 0, double stn = 0, + double min_theta = 0, double max_theta = CV_PI ); + +/** @brief Finds line segments in a binary image using the probabilistic Hough transform. + +The function implements the probabilistic Hough transform algorithm for line detection, described +in @cite Matas00 + +See the line detection example below: + +@code + #include <opencv2/imgproc.hpp> + #include <opencv2/highgui.hpp> + + using namespace cv; + using namespace std; + + int main(int argc, char** argv) + { + Mat src, dst, color_dst; + if( argc != 2 || !(src=imread(argv[1], 0)).data) + return -1; + + Canny( src, dst, 50, 200, 3 ); + cvtColor( dst, color_dst, COLOR_GRAY2BGR ); + + #if 0 + vector<Vec2f> lines; + HoughLines( dst, lines, 1, CV_PI/180, 100 ); + + for( size_t i = 0; i < lines.size(); i++ ) + { + float rho = lines[i][0]; + float theta = lines[i][1]; + double a = cos(theta), b = sin(theta); + double x0 = a*rho, y0 = b*rho; + Point pt1(cvRound(x0 + 1000*(-b)), + cvRound(y0 + 1000*(a))); + Point pt2(cvRound(x0 - 1000*(-b)), + cvRound(y0 - 1000*(a))); + line( color_dst, pt1, pt2, Scalar(0,0,255), 3, 8 ); + } + #else + vector<Vec4i> lines; + HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 ); + for( size_t i = 0; i < lines.size(); i++ ) + { + line( color_dst, Point(lines[i][0], lines[i][1]), + Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 ); + } + #endif + namedWindow( "Source", 1 ); + imshow( "Source", src ); + + namedWindow( "Detected Lines", 1 ); + imshow( "Detected Lines", color_dst ); + + waitKey(0); + return 0; + } +@endcode +This is a sample picture the function parameters have been tuned for: + +![image](pics/building.jpg) + +And this is the output of the above program in case of the probabilistic Hough transform: + +![image](pics/houghp.png) + +@param image 8-bit, single-channel binary source image. The image may be modified by the function. +@param lines Output vector of lines. Each line is represented by a 4-element vector +\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected +line segment. +@param rho Distance resolution of the accumulator in pixels. +@param theta Angle resolution of the accumulator in radians. +@param threshold Accumulator threshold parameter. Only those lines are returned that get enough +votes ( \f$>\texttt{threshold}\f$ ). +@param minLineLength Minimum line length. Line segments shorter than that are rejected. +@param maxLineGap Maximum allowed gap between points on the same line to link them. + +@sa LineSegmentDetector + */ +CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines, + double rho, double theta, int threshold, + double minLineLength = 0, double maxLineGap = 0 ); + +/** @example houghcircles.cpp +An example using the Hough circle detector +*/ + +/** @brief Finds circles in a grayscale image using the Hough transform. + +The function finds circles in a grayscale image using a modification of the Hough transform. + +Example: : +@code + #include <opencv2/imgproc.hpp> + #include <opencv2/highgui.hpp> + #include <math.h> + + using namespace cv; + using namespace std; + + int main(int argc, char** argv) + { + Mat img, gray; + if( argc != 2 || !(img=imread(argv[1], 1)).data) + return -1; + cvtColor(img, gray, COLOR_BGR2GRAY); + // smooth it, otherwise a lot of false circles may be detected + GaussianBlur( gray, gray, Size(9, 9), 2, 2 ); + vector<Vec3f> circles; + HoughCircles(gray, circles, HOUGH_GRADIENT, + 2, gray.rows/4, 200, 100 ); + for( size_t i = 0; i < circles.size(); i++ ) + { + Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); + int radius = cvRound(circles[i][2]); + // draw the circle center + circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 ); + // draw the circle outline + circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 ); + } + namedWindow( "circles", 1 ); + imshow( "circles", img ); + + waitKey(0); + return 0; + } +@endcode + +@note Usually the function detects the centers of circles well. However, it may fail to find correct +radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if +you know it. Or, you may ignore the returned radius, use only the center, and find the correct +radius using an additional procedure. + +@param image 8-bit, single-channel, grayscale input image. +@param circles Output vector of found circles. Each vector is encoded as a 3-element +floating-point vector \f$(x, y, radius)\f$ . +@param method Detection method, see cv::HoughModes. Currently, the only implemented method is HOUGH_GRADIENT +@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if +dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has +half as big width and height. +@param minDist Minimum distance between the centers of the detected circles. If the parameter is +too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is +too large, some circles may be missed. +@param param1 First method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the higher +threshold of the two passed to the Canny edge detector (the lower one is twice smaller). +@param param2 Second method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the +accumulator threshold for the circle centers at the detection stage. The smaller it is, the more +false circles may be detected. Circles, corresponding to the larger accumulator values, will be +returned first. +@param minRadius Minimum circle radius. +@param maxRadius Maximum circle radius. + +@sa fitEllipse, minEnclosingCircle + */ +CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles, + int method, double dp, double minDist, + double param1 = 100, double param2 = 100, + int minRadius = 0, int maxRadius = 0 ); + +//! @} imgproc_feature + +//! @addtogroup imgproc_filter +//! @{ + +/** @example morphology2.cpp + An example using the morphological operations +*/ + +/** @brief Erodes an image by using a specific structuring element. + +The function erodes the source image using the specified structuring element that determines the +shape of a pixel neighborhood over which the minimum is taken: + +\f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] + +The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In +case of multi-channel images, each channel is processed independently. + +@param src input image; the number of channels can be arbitrary, but the depth should be one of +CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst output image of the same size and type as src. +@param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular +structuring element is used. Kernel can be created using getStructuringElement. +@param anchor position of the anchor within the element; default value (-1, -1) means that the +anchor is at the element center. +@param iterations number of times erosion is applied. +@param borderType pixel extrapolation method, see cv::BorderTypes +@param borderValue border value in case of a constant border +@sa dilate, morphologyEx, getStructuringElement + */ +CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, + Point anchor = Point(-1,-1), int iterations = 1, + int borderType = BORDER_CONSTANT, + const Scalar& borderValue = morphologyDefaultBorderValue() ); + +/** @brief Dilates an image by using a specific structuring element. + +The function dilates the source image using the specified structuring element that determines the +shape of a pixel neighborhood over which the maximum is taken: +\f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] + +The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In +case of multi-channel images, each channel is processed independently. + +@param src input image; the number of channels can be arbitrary, but the depth should be one of +CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst output image of the same size and type as src\`. +@param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular +structuring element is used. Kernel can be created using getStructuringElement +@param anchor position of the anchor within the element; default value (-1, -1) means that the +anchor is at the element center. +@param iterations number of times dilation is applied. +@param borderType pixel extrapolation method, see cv::BorderTypes +@param borderValue border value in case of a constant border +@sa erode, morphologyEx, getStructuringElement + */ +CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel, + Point anchor = Point(-1,-1), int iterations = 1, + int borderType = BORDER_CONSTANT, + const Scalar& borderValue = morphologyDefaultBorderValue() ); + +/** @brief Performs advanced morphological transformations. + +The function morphologyEx can perform advanced morphological transformations using an erosion and dilation as +basic operations. + +Any of the operations can be done in-place. In case of multi-channel images, each channel is +processed independently. + +@param src Source image. The number of channels can be arbitrary. The depth should be one of +CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst Destination image of the same size and type as source image. +@param op Type of a morphological operation, see cv::MorphTypes +@param kernel Structuring element. It can be created using cv::getStructuringElement. +@param anchor Anchor position with the kernel. Negative values mean that the anchor is at the +kernel center. +@param iterations Number of times erosion and dilation are applied. +@param borderType Pixel extrapolation method, see cv::BorderTypes +@param borderValue Border value in case of a constant border. The default value has a special +meaning. +@sa dilate, erode, getStructuringElement + */ +CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst, + int op, InputArray kernel, + Point anchor = Point(-1,-1), int iterations = 1, + int borderType = BORDER_CONSTANT, + const Scalar& borderValue = morphologyDefaultBorderValue() ); + +//! @} imgproc_filter + +//! @addtogroup imgproc_transform +//! @{ + +/** @brief Resizes an image. + +The function resize resizes the image src down to or up to the specified size. Note that the +initial dst type or size are not taken into account. Instead, the size and type are derived from +the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst, +you may call the function as follows: +@code + // explicitly specify dsize=dst.size(); fx and fy will be computed from that. + resize(src, dst, dst.size(), 0, 0, interpolation); +@endcode +If you want to decimate the image by factor of 2 in each direction, you can call the function this +way: +@code + // specify fx and fy and let the function compute the destination image size. + resize(src, dst, Size(), 0.5, 0.5, interpolation); +@endcode +To shrink an image, it will generally look best with cv::INTER_AREA interpolation, whereas to +enlarge an image, it will generally look best with cv::INTER_CUBIC (slow) or cv::INTER_LINEAR +(faster but still looks OK). + +@param src input image. +@param dst output image; it has the size dsize (when it is non-zero) or the size computed from +src.size(), fx, and fy; the type of dst is the same as of src. +@param dsize output image size; if it equals zero, it is computed as: + \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f] + Either dsize or both fx and fy must be non-zero. +@param fx scale factor along the horizontal axis; when it equals 0, it is computed as +\f[\texttt{(double)dsize.width/src.cols}\f] +@param fy scale factor along the vertical axis; when it equals 0, it is computed as +\f[\texttt{(double)dsize.height/src.rows}\f] +@param interpolation interpolation method, see cv::InterpolationFlags + +@sa warpAffine, warpPerspective, remap + */ +CV_EXPORTS_W void resize( InputArray src, OutputArray dst, + Size dsize, double fx = 0, double fy = 0, + int interpolation = INTER_LINEAR ); + +/** @brief Applies an affine transformation to an image. + +The function warpAffine transforms the source image using the specified matrix: + +\f[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f] + +when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted +with cv::invertAffineTransform and then put in the formula above instead of M. The function cannot +operate in-place. + +@param src input image. +@param dst output image that has the size dsize and the same type as src . +@param M \f$2\times 3\f$ transformation matrix. +@param dsize size of the output image. +@param flags combination of interpolation methods (see cv::InterpolationFlags) and the optional +flag WARP_INVERSE_MAP that means that M is the inverse transformation ( +\f$\texttt{dst}\rightarrow\texttt{src}\f$ ). +@param borderMode pixel extrapolation method (see cv::BorderTypes); when +borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to +the "outliers" in the source image are not modified by the function. +@param borderValue value used in case of a constant border; by default, it is 0. + +@sa warpPerspective, resize, remap, getRectSubPix, transform + */ +CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst, + InputArray M, Size dsize, + int flags = INTER_LINEAR, + int borderMode = BORDER_CONSTANT, + const Scalar& borderValue = Scalar()); + +/** @brief Applies a perspective transformation to an image. + +The function warpPerspective transforms the source image using the specified matrix: + +\f[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , + \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f] + +when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert +and then put in the formula above instead of M. The function cannot operate in-place. + +@param src input image. +@param dst output image that has the size dsize and the same type as src . +@param M \f$3\times 3\f$ transformation matrix. +@param dsize size of the output image. +@param flags combination of interpolation methods (INTER_LINEAR or INTER_NEAREST) and the +optional flag WARP_INVERSE_MAP, that sets M as the inverse transformation ( +\f$\texttt{dst}\rightarrow\texttt{src}\f$ ). +@param borderMode pixel extrapolation method (BORDER_CONSTANT or BORDER_REPLICATE). +@param borderValue value used in case of a constant border; by default, it equals 0. + +@sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform + */ +CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst, + InputArray M, Size dsize, + int flags = INTER_LINEAR, + int borderMode = BORDER_CONSTANT, + const Scalar& borderValue = Scalar()); + +/** @brief Applies a generic geometrical transformation to an image. + +The function remap transforms the source image using the specified map: + +\f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f] + +where values of pixels with non-integer coordinates are computed using one of available +interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps +in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in +\f$map_1\f$, or fixed-point maps created by using convertMaps. The reason you might want to +convert from floating to fixed-point representations of a map is that they can yield much faster +(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x), +cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients. + +This function cannot operate in-place. + +@param src Source image. +@param dst Destination image. It has the same size as map1 and the same type as src . +@param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 , +CV_32FC1, or CV_32FC2. See convertMaps for details on converting a floating point +representation to fixed-point for speed. +@param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map +if map1 is (x,y) points), respectively. +@param interpolation Interpolation method (see cv::InterpolationFlags). The method INTER_AREA is +not supported by this function. +@param borderMode Pixel extrapolation method (see cv::BorderTypes). When +borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image that +corresponds to the "outliers" in the source image are not modified by the function. +@param borderValue Value used in case of a constant border. By default, it is 0. +@note +Due to current implementaion limitations the size of an input and output images should be less than 32767x32767. + */ +CV_EXPORTS_W void remap( InputArray src, OutputArray dst, + InputArray map1, InputArray map2, + int interpolation, int borderMode = BORDER_CONSTANT, + const Scalar& borderValue = Scalar()); + +/** @brief Converts image transformation maps from one representation to another. + +The function converts a pair of maps for remap from one representation to another. The following +options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are +supported: + +- \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the +most frequently used conversion operation, in which the original floating-point maps (see remap ) +are converted to a more compact and much faster fixed-point representation. The first output array +contains the rounded coordinates and the second array (created only when nninterpolation=false ) +contains indices in the interpolation tables. + +- \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but +the original maps are stored in one 2-channel matrix. + +- Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same +as the originals. + +@param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 . +@param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix), +respectively. +@param dstmap1 The first output map that has the type dstmap1type and the same size as src . +@param dstmap2 The second output map. +@param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or +CV_32FC2 . +@param nninterpolation Flag indicating whether the fixed-point maps are used for the +nearest-neighbor or for a more complex interpolation. + +@sa remap, undistort, initUndistortRectifyMap + */ +CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2, + OutputArray dstmap1, OutputArray dstmap2, + int dstmap1type, bool nninterpolation = false ); + +/** @brief Calculates an affine matrix of 2D rotation. + +The function calculates the following matrix: + +\f[\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\f] + +where + +\f[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f] + +The transformation maps the rotation center to itself. If this is not the target, adjust the shift. + +@param center Center of the rotation in the source image. +@param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the +coordinate origin is assumed to be the top-left corner). +@param scale Isotropic scale factor. + +@sa getAffineTransform, warpAffine, transform + */ +CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale ); + +//! returns 3x3 perspective transformation for the corresponding 4 point pairs. +CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] ); + +/** @brief Calculates an affine transform from three pairs of the corresponding points. + +The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that: + +\f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] + +where + +\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f] + +@param src Coordinates of triangle vertices in the source image. +@param dst Coordinates of the corresponding triangle vertices in the destination image. + +@sa warpAffine, transform + */ +CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] ); + +/** @brief Inverts an affine transformation. + +The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M: + +\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f] + +The result is also a \f$2 \times 3\f$ matrix of the same type as M. + +@param M Original affine transformation. +@param iM Output reverse affine transformation. + */ +CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM ); + +/** @brief Calculates a perspective transform from four pairs of the corresponding points. + +The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that: + +\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] + +where + +\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f] + +@param src Coordinates of quadrangle vertices in the source image. +@param dst Coordinates of the corresponding quadrangle vertices in the destination image. + +@sa findHomography, warpPerspective, perspectiveTransform + */ +CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst ); + +CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst ); + +/** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy. + +The function getRectSubPix extracts pixels from src: + +\f[dst(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f] + +where the values of the pixels at non-integer coordinates are retrieved using bilinear +interpolation. Every channel of multi-channel images is processed independently. While the center of +the rectangle must be inside the image, parts of the rectangle may be outside. In this case, the +replication border mode (see cv::BorderTypes) is used to extrapolate the pixel values outside of +the image. + +@param image Source image. +@param patchSize Size of the extracted patch. +@param center Floating point coordinates of the center of the extracted rectangle within the +source image. The center must be inside the image. +@param patch Extracted patch that has the size patchSize and the same number of channels as src . +@param patchType Depth of the extracted pixels. By default, they have the same depth as src . + +@sa warpAffine, warpPerspective + */ +CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize, + Point2f center, OutputArray patch, int patchType = -1 ); + +/** @example polar_transforms.cpp +An example using the cv::linearPolar and cv::logPolar operations +*/ + +/** @brief Remaps an image to semilog-polar coordinates space. + +Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image"): +\f[\begin{array}{l} + dst( \rho , \phi ) = src(x,y) \\ + dst.size() \leftarrow src.size() +\end{array}\f] + +where +\f[\begin{array}{l} + I = (dx,dy) = (x - center.x,y - center.y) \\ + \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\ + \phi = Ky \cdot \texttt{angle} (I)_{0..360 deg} \\ +\end{array}\f] + +and +\f[\begin{array}{l} + M = src.cols / log_e(maxRadius) \\ + Ky = src.rows / 360 \\ +\end{array}\f] + +The function emulates the human "foveal" vision and can be used for fast scale and +rotation-invariant template matching, for object tracking and so forth. +@param src Source image +@param dst Destination image. It will have same size and type as src. +@param center The transformation center; where the output precision is maximal +@param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too. +@param flags A combination of interpolation methods, see cv::InterpolationFlags + +@note +- The function can not operate in-place. +- To calculate magnitude and angle in degrees @ref cv::cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. +*/ +CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst, + Point2f center, double M, int flags ); + +/** @brief Remaps an image to polar coordinates space. + +@anchor polar_remaps_reference_image +![Polar remaps reference](pics/polar_remap_doc.png) + +Transform the source image using the following transformation: +\f[\begin{array}{l} + dst( \rho , \phi ) = src(x,y) \\ + dst.size() \leftarrow src.size() +\end{array}\f] + +where +\f[\begin{array}{l} + I = (dx,dy) = (x - center.x,y - center.y) \\ + \rho = Kx \cdot \texttt{magnitude} (I) ,\\ + \phi = Ky \cdot \texttt{angle} (I)_{0..360 deg} +\end{array}\f] + +and +\f[\begin{array}{l} + Kx = src.cols / maxRadius \\ + Ky = src.rows / 360 +\end{array}\f] + + +@param src Source image +@param dst Destination image. It will have same size and type as src. +@param center The transformation center; +@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. +@param flags A combination of interpolation methods, see cv::InterpolationFlags + +@note +- The function can not operate in-place. +- To calculate magnitude and angle in degrees @ref cv::cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. + +*/ +CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst, + Point2f center, double maxRadius, int flags ); + +//! @} imgproc_transform + +//! @addtogroup imgproc_misc +//! @{ + +/** @overload */ +CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 ); + +/** @overload */ +CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum, + OutputArray sqsum, int sdepth = -1, int sqdepth = -1 ); + +/** @brief Calculates the integral of an image. + +The function calculates one or more integral images for the source image as follows: + +\f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f] + +\f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f] + +\f[\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\f] + +Using these integral images, you can calculate sum, mean, and standard deviation over a specific +up-right or rotated rectangular region of the image in a constant time, for example: + +\f[\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f] + +It makes possible to do a fast blurring or fast block correlation with a variable window size, for +example. In case of multi-channel images, sums for each channel are accumulated independently. + +As a practical example, the next figure shows the calculation of the integral of a straight +rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the +original image are shown, as well as the relative pixels in the integral images sum and tilted . + +![integral calculation example](pics/integral.png) + +@param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f). +@param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f). +@param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision +floating-point (64f) array. +@param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with +the same data type as sum. +@param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or +CV_64F. +@param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F. + */ +CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum, + OutputArray sqsum, OutputArray tilted, + int sdepth = -1, int sqdepth = -1 ); + +//! @} imgproc_misc + +//! @addtogroup imgproc_motion +//! @{ + +/** @brief Adds an image to the accumulator. + +The function adds src or some of its elements to dst : + +\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] + +The function supports multi-channel images. Each channel is processed independently. + +The functions accumulate\* can be used, for example, to collect statistics of a scene background +viewed by a still camera and for the further foreground-background segmentation. + +@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. +@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit +floating-point. +@param mask Optional operation mask. + +@sa accumulateSquare, accumulateProduct, accumulateWeighted + */ +CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst, + InputArray mask = noArray() ); + +/** @brief Adds the square of a source image to the accumulator. + +The function adds the input image src or its selected region, raised to a power of 2, to the +accumulator dst : + +\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] + +The function supports multi-channel images. Each channel is processed independently. + +@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. +@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit +floating-point. +@param mask Optional operation mask. + +@sa accumulateSquare, accumulateProduct, accumulateWeighted + */ +CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst, + InputArray mask = noArray() ); + +/** @brief Adds the per-element product of two input images to the accumulator. + +The function adds the product of two images or their selected regions to the accumulator dst : + +\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] + +The function supports multi-channel images. Each channel is processed independently. + +@param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point. +@param src2 Second input image of the same type and the same size as src1 . +@param dst %Accumulator with the same number of channels as input images, 32-bit or 64-bit +floating-point. +@param mask Optional operation mask. + +@sa accumulate, accumulateSquare, accumulateWeighted + */ +CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2, + InputOutputArray dst, InputArray mask=noArray() ); + +/** @brief Updates a running average. + +The function calculates the weighted sum of the input image src and the accumulator dst so that dst +becomes a running average of a frame sequence: + +\f[\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] + +That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images). +The function supports multi-channel images. Each channel is processed independently. + +@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. +@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit +floating-point. +@param alpha Weight of the input image. +@param mask Optional operation mask. + +@sa accumulate, accumulateSquare, accumulateProduct + */ +CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst, + double alpha, InputArray mask = noArray() ); + +/** @brief The function is used to detect translational shifts that occur between two images. + +The operation takes advantage of the Fourier shift theorem for detecting the translational shift in +the frequency domain. It can be used for fast image registration as well as motion estimation. For +more information please see <http://en.wikipedia.org/wiki/Phase_correlation> + +Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed +with getOptimalDFTSize. + +The function performs the following equations: +- First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each +image to remove possible edge effects. This window is cached until the array size changes to speed +up processing time. +- Next it computes the forward DFTs of each source array: +\f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f] +where \f$\mathcal{F}\f$ is the forward DFT. +- It then computes the cross-power spectrum of each frequency domain array: +\f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f] +- Next the cross-correlation is converted back into the time domain via the inverse DFT: +\f[r = \mathcal{F}^{-1}\{R\}\f] +- Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to +achieve sub-pixel accuracy. +\f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f] +- If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5 +centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single +peak) and will be smaller when there are multiple peaks. + +@param src1 Source floating point array (CV_32FC1 or CV_64FC1) +@param src2 Source floating point array (CV_32FC1 or CV_64FC1) +@param window Floating point array with windowing coefficients to reduce edge effects (optional). +@param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional). +@returns detected phase shift (sub-pixel) between the two arrays. + +@sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow + */ +CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2, + InputArray window = noArray(), CV_OUT double* response = 0); + +/** @brief This function computes a Hanning window coefficients in two dimensions. + +See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function) +for more information. + +An example is shown below: +@code + // create hanning window of size 100x100 and type CV_32F + Mat hann; + createHanningWindow(hann, Size(100, 100), CV_32F); +@endcode +@param dst Destination array to place Hann coefficients in +@param winSize The window size specifications +@param type Created array type + */ +CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type); + +//! @} imgproc_motion + +//! @addtogroup imgproc_misc +//! @{ + +/** @brief Applies a fixed-level threshold to each array element. + +The function applies fixed-level thresholding to a single-channel array. The function is typically +used to get a bi-level (binary) image out of a grayscale image ( cv::compare could be also used for +this purpose) or for removing a noise, that is, filtering out pixels with too small or too large +values. There are several types of thresholding supported by the function. They are determined by +type parameter. + +Also, the special values cv::THRESH_OTSU or cv::THRESH_TRIANGLE may be combined with one of the +above values. In these cases, the function determines the optimal threshold value using the Otsu's +or Triangle algorithm and uses it instead of the specified thresh . The function returns the +computed threshold value. Currently, the Otsu's and Triangle methods are implemented only for 8-bit +images. + +@param src input array (single-channel, 8-bit or 32-bit floating point). +@param dst output array of the same size and type as src. +@param thresh threshold value. +@param maxval maximum value to use with the THRESH_BINARY and THRESH_BINARY_INV thresholding +types. +@param type thresholding type (see the cv::ThresholdTypes). + +@sa adaptiveThreshold, findContours, compare, min, max + */ +CV_EXPORTS_W double threshold( InputArray src, OutputArray dst, + double thresh, double maxval, int type ); + + +/** @brief Applies an adaptive threshold to an array. + +The function transforms a grayscale image to a binary image according to the formulae: +- **THRESH_BINARY** + \f[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f] +- **THRESH_BINARY_INV** + \f[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f] +where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter). + +The function can process the image in-place. + +@param src Source 8-bit single-channel image. +@param dst Destination image of the same size and the same type as src. +@param maxValue Non-zero value assigned to the pixels for which the condition is satisfied +@param adaptiveMethod Adaptive thresholding algorithm to use, see cv::AdaptiveThresholdTypes +@param thresholdType Thresholding type that must be either THRESH_BINARY or THRESH_BINARY_INV, +see cv::ThresholdTypes. +@param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the +pixel: 3, 5, 7, and so on. +@param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it +is positive but may be zero or negative as well. + +@sa threshold, blur, GaussianBlur + */ +CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst, + double maxValue, int adaptiveMethod, + int thresholdType, int blockSize, double C ); + +//! @} imgproc_misc + +//! @addtogroup imgproc_filter +//! @{ + +/** @brief Blurs an image and downsamples it. + +By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in +any case, the following conditions should be satisfied: + +\f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f] + +The function performs the downsampling step of the Gaussian pyramid construction. First, it +convolves the source image with the kernel: + +\f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f] + +Then, it downsamples the image by rejecting even rows and columns. + +@param src input image. +@param dst output image; it has the specified size and the same type as src. +@param dstsize size of the output image. +@param borderType Pixel extrapolation method, see cv::BorderTypes (BORDER_CONSTANT isn't supported) + */ +CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst, + const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); + +/** @brief Upsamples an image and then blurs it. + +By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any +case, the following conditions should be satisfied: + +\f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\f] + +The function performs the upsampling step of the Gaussian pyramid construction, though it can +actually be used to construct the Laplacian pyramid. First, it upsamples the source image by +injecting even zero rows and columns and then convolves the result with the same kernel as in +pyrDown multiplied by 4. + +@param src input image. +@param dst output image. It has the specified size and the same type as src . +@param dstsize size of the output image. +@param borderType Pixel extrapolation method, see cv::BorderTypes (only BORDER_DEFAULT is supported) + */ +CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst, + const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); + +/** @brief Constructs the Gaussian pyramid for an image. + +The function constructs a vector of images and builds the Gaussian pyramid by recursively applying +pyrDown to the previously built pyramid layers, starting from `dst[0]==src`. + +@param src Source image. Check pyrDown for the list of supported types. +@param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the +same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on. +@param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative. +@param borderType Pixel extrapolation method, see cv::BorderTypes (BORDER_CONSTANT isn't supported) + */ +CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst, + int maxlevel, int borderType = BORDER_DEFAULT ); + +//! @} imgproc_filter + +//! @addtogroup imgproc_transform +//! @{ + +/** @brief Transforms an image to compensate for lens distortion. + +The function transforms an image to compensate radial and tangential lens distortion. + +The function is simply a combination of cv::initUndistortRectifyMap (with unity R ) and cv::remap +(with bilinear interpolation). See the former function for details of the transformation being +performed. + +Those pixels in the destination image, for which there is no correspondent pixels in the source +image, are filled with zeros (black color). + +A particular subset of the source image that will be visible in the corrected image can be regulated +by newCameraMatrix. You can use cv::getOptimalNewCameraMatrix to compute the appropriate +newCameraMatrix depending on your requirements. + +The camera matrix and the distortion parameters can be determined using cv::calibrateCamera. If +the resolution of images is different from the resolution used at the calibration stage, \f$f_x, +f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain +the same. + +@param src Input (distorted) image. +@param dst Output (corrected) image that has the same size and type as src . +@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ +of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. +@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as +cameraMatrix but you may additionally scale and shift the result by using a different matrix. + */ +CV_EXPORTS_W void undistort( InputArray src, OutputArray dst, + InputArray cameraMatrix, + InputArray distCoeffs, + InputArray newCameraMatrix = noArray() ); + +/** @brief Computes the undistortion and rectification transformation map. + +The function computes the joint undistortion and rectification transformation and represents the +result in the form of maps for remap. The undistorted image looks like original, as if it is +captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a +monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by +cv::getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera, +newCameraMatrix is normally set to P1 or P2 computed by cv::stereoRectify . + +Also, this new camera is oriented differently in the coordinate space, according to R. That, for +example, helps to align two heads of a stereo camera so that the epipolar lines on both images +become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera). + +The function actually builds the maps for the inverse mapping algorithm that is used by remap. That +is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function +computes the corresponding coordinates in the source image (that is, in the original image from +camera). The following process is applied: +\f[ +\begin{array}{l} +x \leftarrow (u - {c'}_x)/{f'}_x \\ +y \leftarrow (v - {c'}_y)/{f'}_y \\ +{[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\ +x' \leftarrow X/W \\ +y' \leftarrow Y/W \\ +r^2 \leftarrow x'^2 + y'^2 \\ +x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} ++ 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\ +y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} ++ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ +s\vecthree{x'''}{y'''}{1} = +\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)} +{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} +{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ +map_x(u,v) \leftarrow x''' f_x + c_x \\ +map_y(u,v) \leftarrow y''' f_y + c_y +\end{array} +\f] +where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ +are the distortion coefficients. + +In case of a stereo camera, this function is called twice: once for each camera head, after +stereoRectify, which in its turn is called after cv::stereoCalibrate. But if the stereo camera +was not calibrated, it is still possible to compute the rectification transformations directly from +the fundamental matrix using cv::stereoRectifyUncalibrated. For each camera, the function computes +homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D +space. R can be computed from H as +\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f] +where cameraMatrix can be chosen arbitrarily. + +@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ +of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. +@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 , +computed by stereoRectify can be passed here. If the matrix is empty, the identity transformation +is assumed. In cvInitUndistortMap R assumed to be an identity matrix. +@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$. +@param size Undistorted image size. +@param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2, see cv::convertMaps +@param map1 The first output map. +@param map2 The second output map. + */ +CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs, + InputArray R, InputArray newCameraMatrix, + Size size, int m1type, OutputArray map1, OutputArray map2 ); + +//! initializes maps for cv::remap() for wide-angle +CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs, + Size imageSize, int destImageWidth, + int m1type, OutputArray map1, OutputArray map2, + int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0); + +/** @brief Returns the default new camera matrix. + +The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when +centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true). + +In the latter case, the new camera matrix will be: + +\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f] + +where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively. + +By default, the undistortion functions in OpenCV (see initUndistortRectifyMap, undistort) do not +move the principal point. However, when you work with stereo, it is important to move the principal +points in both views to the same y-coordinate (which is required by most of stereo correspondence +algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for +each view where the principal points are located at the center. + +@param cameraMatrix Input camera matrix. +@param imgsize Camera view image size in pixels. +@param centerPrincipalPoint Location of the principal point in the new camera matrix. The +parameter indicates whether this location should be at the image center or not. + */ +CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize = Size(), + bool centerPrincipalPoint = false ); + +/** @brief Computes the ideal point coordinates from the observed point coordinates. + +The function is similar to cv::undistort and cv::initUndistortRectifyMap but it operates on a +sparse set of points instead of a raster image. Also the function performs a reverse transformation +to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a +planar object, it does, up to a translation vector, if the proper R is specified. + +For each observed point coordinate \f$(u, v)\f$ the function computes: +\f[ +\begin{array}{l} +x^{"} \leftarrow (u - c_x)/f_x \\ +y^{"} \leftarrow (v - c_y)/f_y \\ +(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\ +{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\ +x \leftarrow X/W \\ +y \leftarrow Y/W \\ +\text{only performed if P is specified:} \\ +u' \leftarrow x {f'}_x + {c'}_x \\ +v' \leftarrow y {f'}_y + {c'}_y +\end{array} +\f] + +where *undistort* is an approximate iterative algorithm that estimates the normalized original +point coordinates out of the normalized distorted point coordinates ("normalized" means that the +coordinates do not depend on the camera matrix). + +The function can be used for both a stereo camera head or a monocular camera (when R is empty). + +@param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2). +@param dst Output ideal point coordinates after undistortion and reverse perspective +transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates. +@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ +of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. +@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by +cv::stereoRectify can be passed here. If the matrix is empty, the identity transformation is used. +@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by +cv::stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used. + */ +CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst, + InputArray cameraMatrix, InputArray distCoeffs, + InputArray R = noArray(), InputArray P = noArray()); + +//! @} imgproc_transform + +//! @addtogroup imgproc_hist +//! @{ + +/** @example demhist.cpp +An example for creating histograms of an image +*/ + +/** @brief Calculates a histogram of a set of arrays. + +The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used +to increment a histogram bin are taken from the corresponding input arrays at the same location. The +sample below shows how to compute a 2D Hue-Saturation histogram for a color image. : +@code + #include <opencv2/imgproc.hpp> + #include <opencv2/highgui.hpp> + + using namespace cv; + + int main( int argc, char** argv ) + { + Mat src, hsv; + if( argc != 2 || !(src=imread(argv[1], 1)).data ) + return -1; + + cvtColor(src, hsv, COLOR_BGR2HSV); + + // Quantize the hue to 30 levels + // and the saturation to 32 levels + int hbins = 30, sbins = 32; + int histSize[] = {hbins, sbins}; + // hue varies from 0 to 179, see cvtColor + float hranges[] = { 0, 180 }; + // saturation varies from 0 (black-gray-white) to + // 255 (pure spectrum color) + float sranges[] = { 0, 256 }; + const float* ranges[] = { hranges, sranges }; + MatND hist; + // we compute the histogram from the 0-th and 1-st channels + int channels[] = {0, 1}; + + calcHist( &hsv, 1, channels, Mat(), // do not use mask + hist, 2, histSize, ranges, + true, // the histogram is uniform + false ); + double maxVal=0; + minMaxLoc(hist, 0, &maxVal, 0, 0); + + int scale = 10; + Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3); + + for( int h = 0; h < hbins; h++ ) + for( int s = 0; s < sbins; s++ ) + { + float binVal = hist.at<float>(h, s); + int intensity = cvRound(binVal*255/maxVal); + rectangle( histImg, Point(h*scale, s*scale), + Point( (h+1)*scale - 1, (s+1)*scale - 1), + Scalar::all(intensity), + CV_FILLED ); + } + + namedWindow( "Source", 1 ); + imshow( "Source", src ); + + namedWindow( "H-S Histogram", 1 ); + imshow( "H-S Histogram", histImg ); + waitKey(); + } +@endcode + +@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same +size. Each of them can have an arbitrary number of channels. +@param nimages Number of source images. +@param channels List of the dims channels used to compute the histogram. The first array channels +are numerated from 0 to images[0].channels()-1 , the second array channels are counted from +images[0].channels() to images[0].channels() + images[1].channels()-1, and so on. +@param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size +as images[i] . The non-zero mask elements mark the array elements counted in the histogram. +@param hist Output histogram, which is a dense or sparse dims -dimensional array. +@param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS +(equal to 32 in the current OpenCV version). +@param histSize Array of histogram sizes in each dimension. +@param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the +histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower +(inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary +\f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a +uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform ( +uniform=false ), then each of ranges[i] contains histSize[i]+1 elements: +\f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$ +. The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not +counted in the histogram. +@param uniform Flag indicating whether the histogram is uniform or not (see above). +@param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning +when it is allocated. This feature enables you to compute a single histogram from several sets of +arrays, or to update the histogram in time. +*/ +CV_EXPORTS void calcHist( const Mat* images, int nimages, + const int* channels, InputArray mask, + OutputArray hist, int dims, const int* histSize, + const float** ranges, bool uniform = true, bool accumulate = false ); + +/** @overload + +this variant uses cv::SparseMat for output +*/ +CV_EXPORTS void calcHist( const Mat* images, int nimages, + const int* channels, InputArray mask, + SparseMat& hist, int dims, + const int* histSize, const float** ranges, + bool uniform = true, bool accumulate = false ); + +/** @overload */ +CV_EXPORTS_W void calcHist( InputArrayOfArrays images, + const std::vector<int>& channels, + InputArray mask, OutputArray hist, + const std::vector<int>& histSize, + const std::vector<float>& ranges, + bool accumulate = false ); + +/** @brief Calculates the back projection of a histogram. + +The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to +cv::calcHist , at each location (x, y) the function collects the values from the selected channels +in the input images and finds the corresponding histogram bin. But instead of incrementing it, the +function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of +statistics, the function computes probability of each element value in respect with the empirical +probability distribution represented by the histogram. See how, for example, you can find and track +a bright-colored object in a scene: + +- Before tracking, show the object to the camera so that it covers almost the whole frame. +Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant +colors in the object. + +- When tracking, calculate a back projection of a hue plane of each input video frame using that +pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make +sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels. + +- Find connected components in the resulting picture and choose, for example, the largest +component. + +This is an approximate algorithm of the CamShift color object tracker. + +@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same +size. Each of them can have an arbitrary number of channels. +@param nimages Number of source images. +@param channels The list of channels used to compute the back projection. The number of channels +must match the histogram dimensionality. The first array channels are numerated from 0 to +images[0].channels()-1 , the second array channels are counted from images[0].channels() to +images[0].channels() + images[1].channels()-1, and so on. +@param hist Input histogram that can be dense or sparse. +@param backProject Destination back projection array that is a single-channel array of the same +size and depth as images[0] . +@param ranges Array of arrays of the histogram bin boundaries in each dimension. See cv::calcHist . +@param scale Optional scale factor for the output back projection. +@param uniform Flag indicating whether the histogram is uniform or not (see above). + +@sa cv::calcHist, cv::compareHist + */ +CV_EXPORTS void calcBackProject( const Mat* images, int nimages, + const int* channels, InputArray hist, + OutputArray backProject, const float** ranges, + double scale = 1, bool uniform = true ); + +/** @overload */ +CV_EXPORTS void calcBackProject( const Mat* images, int nimages, + const int* channels, const SparseMat& hist, + OutputArray backProject, const float** ranges, + double scale = 1, bool uniform = true ); + +/** @overload */ +CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels, + InputArray hist, OutputArray dst, + const std::vector<float>& ranges, + double scale ); + +/** @brief Compares two histograms. + +The function cv::compareHist compares two dense or two sparse histograms using the specified method. + +The function returns \f$d(H_1, H_2)\f$ . + +While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable +for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling +problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms +or more general sparse configurations of weighted points, consider using the cv::EMD function. + +@param H1 First compared histogram. +@param H2 Second compared histogram of the same size as H1 . +@param method Comparison method, see cv::HistCompMethods + */ +CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method ); + +/** @overload */ +CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method ); + +/** @brief Equalizes the histogram of a grayscale image. + +The function equalizes the histogram of the input image using the following algorithm: + +- Calculate the histogram \f$H\f$ for src . +- Normalize the histogram so that the sum of histogram bins is 255. +- Compute the integral of the histogram: +\f[H'_i = \sum _{0 \le j < i} H(j)\f] +- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$ + +The algorithm normalizes the brightness and increases the contrast of the image. + +@param src Source 8-bit single channel image. +@param dst Destination image of the same size and type as src . + */ +CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst ); + +/** @brief Computes the "minimal work" distance between two weighted point configurations. + +The function computes the earth mover distance and/or a lower boundary of the distance between the +two weighted point configurations. One of the applications described in @cite RubnerSept98, +@cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation +problem that is solved using some modification of a simplex algorithm, thus the complexity is +exponential in the worst case, though, on average it is much faster. In the case of a real metric +the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used +to determine roughly whether the two signatures are far enough so that they cannot relate to the +same object. + +@param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix. +Each row stores the point weight followed by the point coordinates. The matrix is allowed to have +a single column (weights only) if the user-defined cost matrix is used. The weights must be +non-negative and have at least one non-zero value. +@param signature2 Second signature of the same format as signature1 , though the number of rows +may be different. The total weights may be different. In this case an extra "dummy" point is added +to either signature1 or signature2. The weights must be non-negative and have at least one non-zero +value. +@param distType Used metric. See cv::DistanceTypes. +@param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix +is used, lower boundary lowerBound cannot be calculated because it needs a metric function. +@param lowerBound Optional input/output parameter: lower boundary of a distance between the two +signatures that is a distance between mass centers. The lower boundary may not be calculated if +the user-defined cost matrix is used, the total weights of point configurations are not equal, or +if the signatures consist of weights only (the signature matrices have a single column). You +**must** initialize \*lowerBound . If the calculated distance between mass centers is greater or +equal to \*lowerBound (it means that the signatures are far enough), the function does not +calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on +return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound +should be set to 0. +@param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is +a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 . + */ +CV_EXPORTS float EMD( InputArray signature1, InputArray signature2, + int distType, InputArray cost=noArray(), + float* lowerBound = 0, OutputArray flow = noArray() ); + +//! @} imgproc_hist + +/** @example watershed.cpp +An example using the watershed algorithm + */ + +/** @brief Performs a marker-based image segmentation using the watershed algorithm. + +The function implements one of the variants of watershed, non-parametric marker-based segmentation +algorithm, described in @cite Meyer92 . + +Before passing the image to the function, you have to roughly outline the desired regions in the +image markers with positive (\>0) indices. So, every region is represented as one or more connected +components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary +mask using findContours and drawContours (see the watershed.cpp demo). The markers are "seeds" of +the future image regions. All the other pixels in markers , whose relation to the outlined regions +is not known and should be defined by the algorithm, should be set to 0's. In the function output, +each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the +regions. + +@note Any two neighbor connected components are not necessarily separated by a watershed boundary +(-1's pixels); for example, they can touch each other in the initial marker image passed to the +function. + +@param image Input 8-bit 3-channel image. +@param markers Input/output 32-bit single-channel image (map) of markers. It should have the same +size as image . + +@sa findContours + +@ingroup imgproc_misc + */ +CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers ); + +//! @addtogroup imgproc_filter +//! @{ + +/** @brief Performs initial step of meanshift segmentation of an image. + +The function implements the filtering stage of meanshift segmentation, that is, the output of the +function is the filtered "posterized" image with color gradients and fine-grain texture flattened. +At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes +meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is +considered: + +\f[(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\f] + +where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively +(though, the algorithm does not depend on the color space used, so any 3-component color space can +be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector +(R',G',B') are found and they act as the neighborhood center on the next iteration: + +\f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f] + +After the iterations over, the color components of the initial pixel (that is, the pixel from where +the iterations started) are set to the final value (average color at the last iteration): + +\f[I(X,Y) <- (R*,G*,B*)\f] + +When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is +run on the smallest layer first. After that, the results are propagated to the larger layer and the +iterations are run again only on those pixels where the layer colors differ by more than sr from the +lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the +results will be actually different from the ones obtained by running the meanshift procedure on the +whole original image (i.e. when maxLevel==0). + +@param src The source 8-bit, 3-channel image. +@param dst The destination image of the same format and the same size as the source. +@param sp The spatial window radius. +@param sr The color window radius. +@param maxLevel Maximum level of the pyramid for the segmentation. +@param termcrit Termination criteria: when to stop meanshift iterations. + */ +CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst, + double sp, double sr, int maxLevel = 1, + TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) ); + +//! @} + +//! @addtogroup imgproc_misc +//! @{ + +/** @example grabcut.cpp +An example using the GrabCut algorithm + */ + +/** @brief Runs the GrabCut algorithm. + +The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut). + +@param img Input 8-bit 3-channel image. +@param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when +mode is set to GC_INIT_WITH_RECT. Its elements may have one of the cv::GrabCutClasses. +@param rect ROI containing a segmented object. The pixels outside of the ROI are marked as +"obvious background". The parameter is only used when mode==GC_INIT_WITH_RECT . +@param bgdModel Temporary array for the background model. Do not modify it while you are +processing the same image. +@param fgdModel Temporary arrays for the foreground model. Do not modify it while you are +processing the same image. +@param iterCount Number of iterations the algorithm should make before returning the result. Note +that the result can be refined with further calls with mode==GC_INIT_WITH_MASK or +mode==GC_EVAL . +@param mode Operation mode that could be one of the cv::GrabCutModes + */ +CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect, + InputOutputArray bgdModel, InputOutputArray fgdModel, + int iterCount, int mode = GC_EVAL ); + +/** @example distrans.cpp +An example on using the distance transform\ +*/ + + +/** @brief Calculates the distance to the closest zero pixel for each pixel of the source image. + +The function cv::distanceTransform calculates the approximate or precise distance from every binary +image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero. + +When maskSize == DIST_MASK_PRECISE and distanceType == DIST_L2 , the function runs the +algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library. + +In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function +finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical, +diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall +distance is calculated as a sum of these basic distances. Since the distance function should be +symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all +the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the +same cost (denoted as `c`). For the cv::DIST_C and cv::DIST_L1 types, the distance is calculated +precisely, whereas for cv::DIST_L2 (Euclidean distance) the distance can be calculated only with a +relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV +uses the values suggested in the original paper: +- DIST_L1: `a = 1, b = 2` +- DIST_L2: + - `3 x 3`: `a=0.955, b=1.3693` + - `5 x 5`: `a=1, b=1.4, c=2.1969` +- DIST_C: `a = 1, b = 1` + +Typically, for a fast, coarse distance estimation DIST_L2, a \f$3\times 3\f$ mask is used. For a +more accurate distance estimation DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used. +Note that both the precise and the approximate algorithms are linear on the number of pixels. + +This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$ +but also identifies the nearest connected component consisting of zero pixels +(labelType==DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==DIST_LABEL_PIXEL). Index of the +component/pixel is stored in `labels(x, y)`. When labelType==DIST_LABEL_CCOMP, the function +automatically finds connected components of zero pixels in the input image and marks them with +distinct labels. When labelType==DIST_LABEL_CCOMP, the function scans through the input image and +marks all the zero pixels with distinct labels. + +In this mode, the complexity is still linear. That is, the function provides a very fast way to +compute the Voronoi diagram for a binary image. Currently, the second variant can use only the +approximate distance transform algorithm, i.e. maskSize=DIST_MASK_PRECISE is not supported +yet. + +@param src 8-bit, single-channel (binary) source image. +@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, +single-channel image of the same size as src. +@param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type +CV_32SC1 and the same size as src. +@param distanceType Type of distance, see cv::DistanceTypes +@param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks. +DIST_MASK_PRECISE is not supported by this variant. In case of the DIST_L1 or DIST_C distance type, +the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times +5\f$ or any larger aperture. +@param labelType Type of the label array to build, see cv::DistanceTransformLabelTypes. + */ +CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst, + OutputArray labels, int distanceType, int maskSize, + int labelType = DIST_LABEL_CCOMP ); + +/** @overload +@param src 8-bit, single-channel (binary) source image. +@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, +single-channel image of the same size as src . +@param distanceType Type of distance, see cv::DistanceTypes +@param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks. In case of the +DIST_L1 or DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives +the same result as \f$5\times 5\f$ or any larger aperture. +@param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for +the first variant of the function and distanceType == DIST_L1. +*/ +CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst, + int distanceType, int maskSize, int dstType=CV_32F); + +/** @example ffilldemo.cpp + An example using the FloodFill technique +*/ + +/** @overload + +variant without `mask` parameter +*/ +CV_EXPORTS int floodFill( InputOutputArray image, + Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0, + Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), + int flags = 4 ); + +/** @brief Fills a connected component with the given color. + +The function cv::floodFill fills a connected component starting from the seed point with the specified +color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The +pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if: + +- in case of a grayscale image and floating range +\f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\f] + + +- in case of a grayscale image and fixed range +\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f] + + +- in case of a color image and floating range +\f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f] +\f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f] +and +\f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f] + + +- in case of a color image and fixed range +\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f] +\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f] +and +\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f] + + +where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the +component. That is, to be added to the connected component, a color/brightness of the pixel should +be close enough to: +- Color/brightness of one of its neighbors that already belong to the connected component in case +of a floating range. +- Color/brightness of the seed point in case of a fixed range. + +Use these functions to either mark a connected component with the specified color in-place, or build +a mask and then extract the contour, or copy the region to another image, and so on. + +@param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the +function unless the FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See +the details below. +@param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels +taller than image. Since this is both an input and output parameter, you must take responsibility +of initializing it. Flood-filling cannot go across non-zero pixels in the input mask. For example, +an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the +mask corresponding to filled pixels in the image are set to 1 or to the a value specified in flags +as described below. It is therefore possible to use the same mask in multiple calls to the function +to make sure the filled areas do not overlap. +@param seedPoint Starting point. +@param newVal New value of the repainted domain pixels. +@param loDiff Maximal lower brightness/color difference between the currently observed pixel and +one of its neighbors belonging to the component, or a seed pixel being added to the component. +@param upDiff Maximal upper brightness/color difference between the currently observed pixel and +one of its neighbors belonging to the component, or a seed pixel being added to the component. +@param rect Optional output parameter set by the function to the minimum bounding rectangle of the +repainted domain. +@param flags Operation flags. The first 8 bits contain a connectivity value. The default value of +4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A +connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) +will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill +the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest +neighbours and fill the mask with a value of 255. The following additional options occupy higher +bits and therefore may be further combined with the connectivity and mask fill values using +bit-wise or (|), see cv::FloodFillFlags. + +@note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the +pixel \f$(x+1, y+1)\f$ in the mask . + +@sa findContours + */ +CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask, + Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, + Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), + int flags = 4 ); + +/** @brief Converts an image from one color space to another. + +The function converts an input image from one color space to another. In case of a transformation +to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note +that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the +bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue +component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and +sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on. + +The conventional ranges for R, G, and B channel values are: +- 0 to 255 for CV_8U images +- 0 to 65535 for CV_16U images +- 0 to 1 for CV_32F images + +In case of linear transformations, the range does not matter. But in case of a non-linear +transformation, an input RGB image should be normalized to the proper value range to get the correct +results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a +32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will +have the 0..255 value range instead of 0..1 assumed by the function. So, before calling cvtColor , +you need first to scale the image down: +@code + img *= 1./255; + cvtColor(img, img, COLOR_BGR2Luv); +@endcode +If you use cvtColor with 8-bit images, the conversion will have some information lost. For many +applications, this will not be noticeable but it is recommended to use 32-bit images in applications +that need the full range of colors or that convert an image before an operation and then convert +back. + +If conversion adds the alpha channel, its value will set to the maximum of corresponding channel +range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F. + +@param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision +floating-point. +@param dst output image of the same size and depth as src. +@param code color space conversion code (see cv::ColorConversionCodes). +@param dstCn number of channels in the destination image; if the parameter is 0, the number of the +channels is derived automatically from src and code. + +@see @ref imgproc_color_conversions + */ +CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 ); + +//! @} imgproc_misc + +// main function for all demosaicing procceses +CV_EXPORTS_W void demosaicing(InputArray _src, OutputArray _dst, int code, int dcn = 0); + +//! @addtogroup imgproc_shape +//! @{ + +/** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape. + +The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The +results are returned in the structure cv::Moments. + +@param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array ( +\f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ). +@param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is +used for images only. +@returns moments. + +@note Only applicable to contour moments calculations from Python bindings: Note that the numpy +type for the input array should be either np.int32 or np.float32. + +@sa contourArea, arcLength + */ +CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false ); + +/** @brief Calculates seven Hu invariants. + +The function calculates seven Hu invariants (introduced in @cite Hu62; see also +<http://en.wikipedia.org/wiki/Image_moment>) defined as: + +\f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f] + +where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ . + +These values are proved to be invariants to the image scale, rotation, and reflection except the +seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of +infinite image resolution. In case of raster images, the computed Hu invariants for the original and +transformed images are a bit different. + +@param moments Input moments computed with moments . +@param hu Output Hu invariants. + +@sa matchShapes + */ +CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] ); + +/** @overload */ +CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu ); + +//! @} imgproc_shape + +//! @addtogroup imgproc_object +//! @{ + +//! type of the template matching operation +enum TemplateMatchModes { + TM_SQDIFF = 0, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f] + TM_SQDIFF_NORMED = 1, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] + TM_CCORR = 2, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f] + TM_CCORR_NORMED = 3, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] + TM_CCOEFF = 4, //!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f] + //!< where + //!< \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f] + TM_CCOEFF_NORMED = 5 //!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} }\f] +}; + +/** @brief Compares a template against overlapped image regions. + +The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against +templ using the specified method and stores the comparison results in result . Here are the formulae +for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$ template, \f$R\f$ result ). The summation +is done over template and/or the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$ + +After the function finishes the comparison, the best matches can be found as global minimums (when +TM_SQDIFF was used) or maximums (when TM_CCORR or TM_CCOEFF was used) using the +minMaxLoc function. In case of a color image, template summation in the numerator and each sum in +the denominator is done over all of the channels and separate mean values are used for each channel. +That is, the function can take a color template and a color image. The result will still be a +single-channel image, which is easier to analyze. + +@param image Image where the search is running. It must be 8-bit or 32-bit floating-point. +@param templ Searched template. It must be not greater than the source image and have the same +data type. +@param result Map of comparison results. It must be single-channel 32-bit floating-point. If image +is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ . +@param method Parameter specifying the comparison method, see cv::TemplateMatchModes +@param mask Mask of searched template. It must have the same datatype and size with templ. It is +not set by default. + */ +CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, + OutputArray result, int method, InputArray mask = noArray() ); + +//! @} + +//! @addtogroup imgproc_shape +//! @{ + +/** @brief computes the connected components labeled image of boolean image + +image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 +represents the background label. ltype specifies the output label image type, an important +consideration based on the total number of labels or alternatively the total number of pixels in +the source image. ccltype specifies the connected components labeling algorithm to use, currently +Grana's (BBDT) and Wu's (SAUF) algorithms are supported, see the cv::ConnectedComponentsAlgorithmsTypes +for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not. + +@param image the 8-bit single-channel image to be labeled +@param labels destination labeled image +@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively +@param ltype output image label type. Currently CV_32S and CV_16U are supported. +@param ccltype connected components algorithm type (see the cv::ConnectedComponentsAlgorithmsTypes). +*/ +CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels, + int connectivity, int ltype, int ccltype); + + +/** @overload + +@param image the 8-bit single-channel image to be labeled +@param labels destination labeled image +@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively +@param ltype output image label type. Currently CV_32S and CV_16U are supported. +*/ +CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels, + int connectivity = 8, int ltype = CV_32S); + + +/** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label + +image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 +represents the background label. ltype specifies the output label image type, an important +consideration based on the total number of labels or alternatively the total number of pixels in +the source image. ccltype specifies the connected components labeling algorithm to use, currently +Grana's (BBDT) and Wu's (SAUF) algorithms are supported, see the cv::ConnectedComponentsAlgorithmsTypes +for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not. + + +@param image the 8-bit single-channel image to be labeled +@param labels destination labeled image +@param stats statistics output for each label, including the background label, see below for +available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of +cv::ConnectedComponentsTypes. The data type is CV_32S. +@param centroids centroid output for each label, including the background label. Centroids are +accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. +@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively +@param ltype output image label type. Currently CV_32S and CV_16U are supported. +@param ccltype connected components algorithm type (see the cv::ConnectedComponentsAlgorithmsTypes). +*/ +CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels, + OutputArray stats, OutputArray centroids, + int connectivity, int ltype, int ccltype); + +/** @overload +@param image the 8-bit single-channel image to be labeled +@param labels destination labeled image +@param stats statistics output for each label, including the background label, see below for +available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of +cv::ConnectedComponentsTypes. The data type is CV_32S. +@param centroids centroid output for each label, including the background label. Centroids are +accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. +@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively +@param ltype output image label type. Currently CV_32S and CV_16U are supported. +*/ +CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels, + OutputArray stats, OutputArray centroids, + int connectivity = 8, int ltype = CV_32S); + + +/** @brief Finds contours in a binary image. + +The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours +are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the +OpenCV sample directory. + +@param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero +pixels remain 0's, so the image is treated as binary . You can use cv::compare, cv::inRange, cv::threshold , +cv::adaptiveThreshold, cv::Canny, and others to create a binary image out of a grayscale or color one. +If mode equals to cv::RETR_CCOMP or cv::RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1). +@param contours Detected contours. Each contour is stored as a vector of points (e.g. +std::vector<std::vector<cv::Point> >). +@param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has +as many elements as the number of contours. For each i-th contour contours[i], the elements +hierarchy[i][0] , hiearchy[i][1] , hiearchy[i][2] , and hiearchy[i][3] are set to 0-based indices +in contours of the next and previous contours at the same hierarchical level, the first child +contour and the parent contour, respectively. If for the contour i there are no next, previous, +parent, or nested contours, the corresponding elements of hierarchy[i] will be negative. +@param mode Contour retrieval mode, see cv::RetrievalModes +@param method Contour approximation method, see cv::ContourApproximationModes +@param offset Optional offset by which every contour point is shifted. This is useful if the +contours are extracted from the image ROI and then they should be analyzed in the whole image +context. + */ +CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours, + OutputArray hierarchy, int mode, + int method, Point offset = Point()); + +/** @overload */ +CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours, + int mode, int method, Point offset = Point()); + +/** @brief Approximates a polygonal curve(s) with the specified precision. + +The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less +vertices so that the distance between them is less or equal to the specified precision. It uses the +Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm> + +@param curve Input vector of a 2D point stored in std::vector or Mat +@param approxCurve Result of the approximation. The type should match the type of the input curve. +@param epsilon Parameter specifying the approximation accuracy. This is the maximum distance +between the original curve and its approximation. +@param closed If true, the approximated curve is closed (its first and last vertices are +connected). Otherwise, it is not closed. + */ +CV_EXPORTS_W void approxPolyDP( InputArray curve, + OutputArray approxCurve, + double epsilon, bool closed ); + +/** @brief Calculates a contour perimeter or a curve length. + +The function computes a curve length or a closed contour perimeter. + +@param curve Input vector of 2D points, stored in std::vector or Mat. +@param closed Flag indicating whether the curve is closed or not. + */ +CV_EXPORTS_W double arcLength( InputArray curve, bool closed ); + +/** @brief Calculates the up-right bounding rectangle of a point set. + +The function calculates and returns the minimal up-right bounding rectangle for the specified point set. + +@param points Input 2D point set, stored in std::vector or Mat. + */ +CV_EXPORTS_W Rect boundingRect( InputArray points ); + +/** @brief Calculates a contour area. + +The function computes a contour area. Similarly to moments , the area is computed using the Green +formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using +drawContours or fillPoly , can be different. Also, the function will most certainly give a wrong +results for contours with self-intersections. + +Example: +@code + vector<Point> contour; + contour.push_back(Point2f(0, 0)); + contour.push_back(Point2f(10, 0)); + contour.push_back(Point2f(10, 10)); + contour.push_back(Point2f(5, 4)); + + double area0 = contourArea(contour); + vector<Point> approx; + approxPolyDP(contour, approx, 5, true); + double area1 = contourArea(approx); + + cout << "area0 =" << area0 << endl << + "area1 =" << area1 << endl << + "approx poly vertices" << approx.size() << endl; +@endcode +@param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat. +@param oriented Oriented area flag. If it is true, the function returns a signed area value, +depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can +determine orientation of a contour by taking the sign of an area. By default, the parameter is +false, which means that the absolute value is returned. + */ +CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false ); + +/** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set. + +The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a +specified point set. See the OpenCV sample minarea.cpp . Developer should keep in mind that the +returned rotatedRect can contain negative indices when data is close to the containing Mat element +boundary. + +@param points Input vector of 2D points, stored in std::vector\<\> or Mat + */ +CV_EXPORTS_W RotatedRect minAreaRect( InputArray points ); + +/** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle. + +The function finds the four vertices of a rotated rectangle. This function is useful to draw the +rectangle. In C++, instead of using this function, you can directly use box.points() method. Please +visit the [tutorial on bounding +rectangle](http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html#bounding-rects-circles) +for more information. + +@param box The input rotated rectangle. It may be the output of +@param points The output array of four vertices of rectangles. + */ +CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points); + +/** @brief Finds a circle of the minimum area enclosing a 2D point set. + +The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. See +the OpenCV sample minarea.cpp . + +@param points Input vector of 2D points, stored in std::vector\<\> or Mat +@param center Output center of the circle. +@param radius Output radius of the circle. + */ +CV_EXPORTS_W void minEnclosingCircle( InputArray points, + CV_OUT Point2f& center, CV_OUT float& radius ); + +/** @example minarea.cpp + */ + +/** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area. + +The function finds a triangle of minimum area enclosing the given set of 2D points and returns its +area. The output for a given 2D point set is shown in the image below. 2D points are depicted in +*red* and the enclosing triangle in *yellow*. + +![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png) + +The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's +@cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal +enclosing triangle of a 2D convex polygon with n vertices. Since the minEnclosingTriangle function +takes a 2D point set as input an additional preprocessing step of computing the convex hull of the +2D point set is required. The complexity of the convexHull function is \f$O(n log(n))\f$ which is higher +than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$. + +@param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat +@param triangle Output vector of three 2D points defining the vertices of the triangle. The depth +of the OutputArray must be CV_32F. + */ +CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle ); + +/** @brief Compares two shapes. + +The function compares two shapes. All three implemented methods use the Hu invariants (see cv::HuMoments) + +@param contour1 First contour or grayscale image. +@param contour2 Second contour or grayscale image. +@param method Comparison method, see ::ShapeMatchModes +@param parameter Method-specific parameter (not supported now). + */ +CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2, + int method, double parameter ); + +/** @example convexhull.cpp +An example using the convexHull functionality +*/ + +/** @brief Finds the convex hull of a point set. + +The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82 +that has *O(N logN)* complexity in the current implementation. See the OpenCV sample convexhull.cpp +that demonstrates the usage of different function variants. + +@param points Input 2D point set, stored in std::vector or Mat. +@param hull Output convex hull. It is either an integer vector of indices or vector of points. In +the first case, the hull elements are 0-based indices of the convex hull points in the original +array (since the set of convex hull points is a subset of the original point set). In the second +case, hull elements are the convex hull points themselves. +@param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise. +Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing +to the right, and its Y axis pointing upwards. +@param returnPoints Operation flag. In case of a matrix, when the flag is true, the function +returns convex hull points. Otherwise, it returns indices of the convex hull points. When the +output array is std::vector, the flag is ignored, and the output depends on the type of the +vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies +returnPoints=true. + */ +CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull, + bool clockwise = false, bool returnPoints = true ); + +/** @brief Finds the convexity defects of a contour. + +The figure below displays convexity defects of a hand contour: + +![image](pics/defects.png) + +@param contour Input contour. +@param convexhull Convex hull obtained using convexHull that should contain indices of the contour +points that make the hull. +@param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java +interface each convexity defect is represented as 4-element integer vector (a.k.a. cv::Vec4i): +(start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices +in the original contour of the convexity defect beginning, end and the farthest point, and +fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the +farthest contour point and the hull. That is, to get the floating-point value of the depth will be +fixpt_depth/256.0. + */ +CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects ); + +/** @brief Tests a contour convexity. + +The function tests whether the input contour is convex or not. The contour must be simple, that is, +without self-intersections. Otherwise, the function output is undefined. + +@param contour Input vector of 2D points, stored in std::vector\<\> or Mat + */ +CV_EXPORTS_W bool isContourConvex( InputArray contour ); + +//! finds intersection of two convex polygons +CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2, + OutputArray _p12, bool handleNested = true ); + +/** @example fitellipse.cpp + An example using the fitEllipse technique +*/ + +/** @brief Fits an ellipse around a set of 2D points. + +The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of +all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95 +is used. Developer should keep in mind that it is possible that the returned +ellipse/rotatedRect data contains negative indices, due to the data points being close to the +border of the containing Mat element. + +@param points Input 2D point set, stored in std::vector\<\> or Mat + */ +CV_EXPORTS_W RotatedRect fitEllipse( InputArray points ); + +/** @brief Fits a line to a 2D or 3D point set. + +The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where +\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one +of the following: +- DIST_L2 +\f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f] +- DIST_L1 +\f[\rho (r) = r\f] +- DIST_L12 +\f[\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f] +- DIST_FAIR +\f[\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\f] +- DIST_WELSCH +\f[\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\f] +- DIST_HUBER +\f[\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f] + +The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique +that iteratively fits the line using the weighted least-squares algorithm. After each iteration the +weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ . + +@param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat. +@param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements +(like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and +(x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like +Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line +and (x0, y0, z0) is a point on the line. +@param distType Distance used by the M-estimator, see cv::DistanceTypes +@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value +is chosen. +@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line). +@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps. + */ +CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType, + double param, double reps, double aeps ); + +/** @brief Performs a point-in-contour test. + +The function determines whether the point is inside a contour, outside, or lies on an edge (or +coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge) +value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively. +Otherwise, the return value is a signed distance between the point and the nearest contour edge. + +See below a sample output of the function where each image pixel is tested against the contour: + +![sample output](pics/pointpolygon.png) + +@param contour Input contour. +@param pt Point tested against the contour. +@param measureDist If true, the function estimates the signed distance from the point to the +nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not. + */ +CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist ); + +/** @brief Finds out if there is any intersection between two rotated rectangles. + +If there is then the vertices of the interesecting region are returned as well. + +Below are some examples of intersection configurations. The hatched pattern indicates the +intersecting region and the red vertices are returned by the function. + +![intersection examples](pics/intersection.png) + +@param rect1 First rectangle +@param rect2 Second rectangle +@param intersectingRegion The output array of the verticies of the intersecting region. It returns +at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2. +@returns One of cv::RectanglesIntersectTypes + */ +CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion ); + +//! @} imgproc_shape + +CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); + +//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. +//! Detects position only without traslation and rotation +CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard(); + +//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. +//! Detects position, traslation and rotation +CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil(); + +//! Performs linear blending of two images +CV_EXPORTS void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst); + +//! @addtogroup imgproc_colormap +//! @{ + +//! GNU Octave/MATLAB equivalent colormaps +enum ColormapTypes +{ + COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg) + COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg) + COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg) + COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg) + COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg) + COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg) + COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg) + COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg) + COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg) + COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg) + COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg) + COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg) + COLORMAP_PARULA = 12 //!< ![parula](pics/colormaps/colorscale_parula.jpg) +}; + +/** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image. + +@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. +@param dst The result is the colormapped source image. Note: Mat::create is called on dst. +@param colormap The colormap to apply, see cv::ColormapTypes + */ +CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap); + +//! @} imgproc_colormap + +//! @addtogroup imgproc_draw +//! @{ + +/** @brief Draws a line segment connecting two points. + +The function line draws the line segment between pt1 and pt2 points in the image. The line is +clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected +or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased +lines are drawn using Gaussian filtering. + +@param img Image. +@param pt1 First point of the line segment. +@param pt2 Second point of the line segment. +@param color Line color. +@param thickness Line thickness. +@param lineType Type of the line, see cv::LineTypes. +@param shift Number of fractional bits in the point coordinates. + */ +CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, + int thickness = 1, int lineType = LINE_8, int shift = 0); + +/** @brief Draws a arrow segment pointing from the first point to the second one. + +The function arrowedLine draws an arrow between pt1 and pt2 points in the image. See also cv::line. + +@param img Image. +@param pt1 The point the arrow starts from. +@param pt2 The point the arrow points to. +@param color Line color. +@param thickness Line thickness. +@param line_type Type of the line, see cv::LineTypes +@param shift Number of fractional bits in the point coordinates. +@param tipLength The length of the arrow tip in relation to the arrow length + */ +CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, + int thickness=1, int line_type=8, int shift=0, double tipLength=0.1); + +/** @brief Draws a simple, thick, or filled up-right rectangle. + +The function rectangle draws a rectangle outline or a filled rectangle whose two opposite corners +are pt1 and pt2. + +@param img Image. +@param pt1 Vertex of the rectangle. +@param pt2 Vertex of the rectangle opposite to pt1 . +@param color Rectangle color or brightness (grayscale image). +@param thickness Thickness of lines that make up the rectangle. Negative values, like CV_FILLED , +mean that the function has to draw a filled rectangle. +@param lineType Type of the line. See the line description. +@param shift Number of fractional bits in the point coordinates. + */ +CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2, + const Scalar& color, int thickness = 1, + int lineType = LINE_8, int shift = 0); + +/** @overload + +use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and +r.br()-Point(1,1)` are opposite corners +*/ +CV_EXPORTS void rectangle(CV_IN_OUT Mat& img, Rect rec, + const Scalar& color, int thickness = 1, + int lineType = LINE_8, int shift = 0); + +/** @brief Draws a circle. + +The function circle draws a simple or filled circle with a given center and radius. +@param img Image where the circle is drawn. +@param center Center of the circle. +@param radius Radius of the circle. +@param color Circle color. +@param thickness Thickness of the circle outline, if positive. Negative thickness means that a +filled circle is to be drawn. +@param lineType Type of the circle boundary. See the line description. +@param shift Number of fractional bits in the coordinates of the center and in the radius value. + */ +CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius, + const Scalar& color, int thickness = 1, + int lineType = LINE_8, int shift = 0); + +/** @brief Draws a simple or thick elliptic arc or fills an ellipse sector. + +The function cv::ellipse with less parameters draws an ellipse outline, a filled ellipse, an elliptic +arc, or a filled ellipse sector. A piecewise-linear curve is used to approximate the elliptic arc +boundary. If you need more control of the ellipse rendering, you can retrieve the curve using +ellipse2Poly and then render it with polylines or fill it with fillPoly . If you use the first +variant of the function and want to draw the whole ellipse, not an arc, pass startAngle=0 and +endAngle=360 . The figure below explains the meaning of the parameters. + +![Parameters of Elliptic Arc](pics/ellipse.png) + +@param img Image. +@param center Center of the ellipse. +@param axes Half of the size of the ellipse main axes. +@param angle Ellipse rotation angle in degrees. +@param startAngle Starting angle of the elliptic arc in degrees. +@param endAngle Ending angle of the elliptic arc in degrees. +@param color Ellipse color. +@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that +a filled ellipse sector is to be drawn. +@param lineType Type of the ellipse boundary. See the line description. +@param shift Number of fractional bits in the coordinates of the center and values of axes. + */ +CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes, + double angle, double startAngle, double endAngle, + const Scalar& color, int thickness = 1, + int lineType = LINE_8, int shift = 0); + +/** @overload +@param img Image. +@param box Alternative ellipse representation via RotatedRect. This means that the function draws +an ellipse inscribed in the rotated rectangle. +@param color Ellipse color. +@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that +a filled ellipse sector is to be drawn. +@param lineType Type of the ellipse boundary. See the line description. +*/ +CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color, + int thickness = 1, int lineType = LINE_8); + +/* ----------------------------------------------------------------------------------------- */ +/* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */ +/* ----------------------------------------------------------------------------------------- */ + +//! Possible set of marker types used for the cv::drawMarker function +enum MarkerTypes +{ + MARKER_CROSS = 0, //!< A crosshair marker shape + MARKER_TILTED_CROSS = 1, //!< A 45 degree tilted crosshair marker shape + MARKER_STAR = 2, //!< A star marker shape, combination of cross and tilted cross + MARKER_DIAMOND = 3, //!< A diamond marker shape + MARKER_SQUARE = 4, //!< A square marker shape + MARKER_TRIANGLE_UP = 5, //!< An upwards pointing triangle marker shape + MARKER_TRIANGLE_DOWN = 6 //!< A downwards pointing triangle marker shape +}; + +/** @brief Draws a marker on a predefined position in an image. + +The function drawMarker draws a marker on a given position in the image. For the moment several +marker types are supported, see cv::MarkerTypes for more information. + +@param img Image. +@param position The point where the crosshair is positioned. +@param color Line color. +@param markerType The specific type of marker you want to use, see cv::MarkerTypes +@param thickness Line thickness. +@param line_type Type of the line, see cv::LineTypes +@param markerSize The length of the marker axis [default = 20 pixels] + */ +CV_EXPORTS_W void drawMarker(CV_IN_OUT Mat& img, Point position, const Scalar& color, + int markerType = MARKER_CROSS, int markerSize=20, int thickness=1, + int line_type=8); + +/* ----------------------------------------------------------------------------------------- */ +/* END OF MARKER SECTION */ +/* ----------------------------------------------------------------------------------------- */ + +/** @overload */ +CV_EXPORTS void fillConvexPoly(Mat& img, const Point* pts, int npts, + const Scalar& color, int lineType = LINE_8, + int shift = 0); + +/** @brief Fills a convex polygon. + +The function fillConvexPoly draws a filled convex polygon. This function is much faster than the +function cv::fillPoly . It can fill not only convex polygons but any monotonic polygon without +self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line) +twice at the most (though, its top-most and/or the bottom edge could be horizontal). + +@param img Image. +@param points Polygon vertices. +@param color Polygon color. +@param lineType Type of the polygon boundaries. See the line description. +@param shift Number of fractional bits in the vertex coordinates. + */ +CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points, + const Scalar& color, int lineType = LINE_8, + int shift = 0); + +/** @overload */ +CV_EXPORTS void fillPoly(Mat& img, const Point** pts, + const int* npts, int ncontours, + const Scalar& color, int lineType = LINE_8, int shift = 0, + Point offset = Point() ); + +/** @brief Fills the area bounded by one or more polygons. + +The function fillPoly fills an area bounded by several polygonal contours. The function can fill +complex areas, for example, areas with holes, contours with self-intersections (some of their +parts), and so forth. + +@param img Image. +@param pts Array of polygons where each polygon is represented as an array of points. +@param color Polygon color. +@param lineType Type of the polygon boundaries. See the line description. +@param shift Number of fractional bits in the vertex coordinates. +@param offset Optional offset of all points of the contours. + */ +CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts, + const Scalar& color, int lineType = LINE_8, int shift = 0, + Point offset = Point() ); + +/** @overload */ +CV_EXPORTS void polylines(Mat& img, const Point* const* pts, const int* npts, + int ncontours, bool isClosed, const Scalar& color, + int thickness = 1, int lineType = LINE_8, int shift = 0 ); + +/** @brief Draws several polygonal curves. + +@param img Image. +@param pts Array of polygonal curves. +@param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed, +the function draws a line from the last vertex of each curve to its first vertex. +@param color Polyline color. +@param thickness Thickness of the polyline edges. +@param lineType Type of the line segments. See the line description. +@param shift Number of fractional bits in the vertex coordinates. + +The function polylines draws one or more polygonal curves. + */ +CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts, + bool isClosed, const Scalar& color, + int thickness = 1, int lineType = LINE_8, int shift = 0 ); + +/** @example contours2.cpp + An example using the drawContour functionality +*/ + +/** @example segment_objects.cpp +An example using drawContours to clean up a background segmentation result + */ + +/** @brief Draws contours outlines or filled contours. + +The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area +bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve +connected components from the binary image and label them: : +@code + #include "opencv2/imgproc.hpp" + #include "opencv2/highgui.hpp" + + using namespace cv; + using namespace std; + + int main( int argc, char** argv ) + { + Mat src; + // the first command-line parameter must be a filename of the binary + // (black-n-white) image + if( argc != 2 || !(src=imread(argv[1], 0)).data) + return -1; + + Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3); + + src = src > 1; + namedWindow( "Source", 1 ); + imshow( "Source", src ); + + vector<vector<Point> > contours; + vector<Vec4i> hierarchy; + + findContours( src, contours, hierarchy, + RETR_CCOMP, CHAIN_APPROX_SIMPLE ); + + // iterate through all the top-level contours, + // draw each connected component with its own random color + int idx = 0; + for( ; idx >= 0; idx = hierarchy[idx][0] ) + { + Scalar color( rand()&255, rand()&255, rand()&255 ); + drawContours( dst, contours, idx, color, FILLED, 8, hierarchy ); + } + + namedWindow( "Components", 1 ); + imshow( "Components", dst ); + waitKey(0); + } +@endcode + +@param image Destination image. +@param contours All the input contours. Each contour is stored as a point vector. +@param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. +@param color Color of the contours. +@param thickness Thickness of lines the contours are drawn with. If it is negative (for example, +thickness=CV_FILLED ), the contour interiors are drawn. +@param lineType Line connectivity. See cv::LineTypes. +@param hierarchy Optional information about hierarchy. It is only needed if you want to draw only +some of the contours (see maxLevel ). +@param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn. +If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function +draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This +parameter is only taken into account when there is hierarchy available. +@param offset Optional contour shift parameter. Shift all the drawn contours by the specified +\f$\texttt{offset}=(dx,dy)\f$ . + */ +CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours, + int contourIdx, const Scalar& color, + int thickness = 1, int lineType = LINE_8, + InputArray hierarchy = noArray(), + int maxLevel = INT_MAX, Point offset = Point() ); + +/** @brief Clips the line against the image rectangle. + +The function cv::clipLine calculates a part of the line segment that is entirely within the specified +rectangle. it returns false if the line segment is completely outside the rectangle. Otherwise, +it returns true . +@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . +@param pt1 First line point. +@param pt2 Second line point. + */ +CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2); + +/** @overload +@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . +@param pt1 First line point. +@param pt2 Second line point. +*/ +CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2); + +/** @overload +@param imgRect Image rectangle. +@param pt1 First line point. +@param pt2 Second line point. +*/ +CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2); + +/** @brief Approximates an elliptic arc with a polyline. + +The function ellipse2Poly computes the vertices of a polyline that approximates the specified +elliptic arc. It is used by cv::ellipse. + +@param center Center of the arc. +@param axes Half of the size of the ellipse main axes. See the ellipse for details. +@param angle Rotation angle of the ellipse in degrees. See the ellipse for details. +@param arcStart Starting angle of the elliptic arc in degrees. +@param arcEnd Ending angle of the elliptic arc in degrees. +@param delta Angle between the subsequent polyline vertices. It defines the approximation +accuracy. +@param pts Output vector of polyline vertices. + */ +CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle, + int arcStart, int arcEnd, int delta, + CV_OUT std::vector<Point>& pts ); + +/** @overload +@param center Center of the arc. +@param axes Half of the size of the ellipse main axes. See the ellipse for details. +@param angle Rotation angle of the ellipse in degrees. See the ellipse for details. +@param arcStart Starting angle of the elliptic arc in degrees. +@param arcEnd Ending angle of the elliptic arc in degrees. +@param delta Angle between the subsequent polyline vertices. It defines the approximation +accuracy. +@param pts Output vector of polyline vertices. +*/ +CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle, + int arcStart, int arcEnd, int delta, + CV_OUT std::vector<Point2d>& pts); + +/** @brief Draws a text string. + +The function putText renders the specified text string in the image. Symbols that cannot be rendered +using the specified font are replaced by question marks. See getTextSize for a text rendering code +example. + +@param img Image. +@param text Text string to be drawn. +@param org Bottom-left corner of the text string in the image. +@param fontFace Font type, see cv::HersheyFonts. +@param fontScale Font scale factor that is multiplied by the font-specific base size. +@param color Text color. +@param thickness Thickness of the lines used to draw a text. +@param lineType Line type. See the line for details. +@param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise, +it is at the top-left corner. + */ +CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org, + int fontFace, double fontScale, Scalar color, + int thickness = 1, int lineType = LINE_8, + bool bottomLeftOrigin = false ); + +/** @brief Calculates the width and height of a text string. + +The function getTextSize calculates and returns the size of a box that contains the specified text. +That is, the following code renders some text, the tight box surrounding it, and the baseline: : +@code + String text = "Funny text inside the box"; + int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX; + double fontScale = 2; + int thickness = 3; + + Mat img(600, 800, CV_8UC3, Scalar::all(0)); + + int baseline=0; + Size textSize = getTextSize(text, fontFace, + fontScale, thickness, &baseline); + baseline += thickness; + + // center the text + Point textOrg((img.cols - textSize.width)/2, + (img.rows + textSize.height)/2); + + // draw the box + rectangle(img, textOrg + Point(0, baseline), + textOrg + Point(textSize.width, -textSize.height), + Scalar(0,0,255)); + // ... and the baseline first + line(img, textOrg + Point(0, thickness), + textOrg + Point(textSize.width, thickness), + Scalar(0, 0, 255)); + + // then put the text itself + putText(img, text, textOrg, fontFace, fontScale, + Scalar::all(255), thickness, 8); +@endcode + +@param text Input text string. +@param fontFace Font to use, see cv::HersheyFonts. +@param fontScale Font scale factor that is multiplied by the font-specific base size. +@param thickness Thickness of lines used to render the text. See putText for details. +@param[out] baseLine y-coordinate of the baseline relative to the bottom-most text +point. +@return The size of a box that contains the specified text. + +@see cv::putText + */ +CV_EXPORTS_W Size getTextSize(const String& text, int fontFace, + double fontScale, int thickness, + CV_OUT int* baseLine); + +/** @brief Line iterator + +The class is used to iterate over all the pixels on the raster line +segment connecting two specified points. + +The class LineIterator is used to get each pixel of a raster line. It +can be treated as versatile implementation of the Bresenham algorithm +where you can stop at each pixel and do some extra processing, for +example, grab pixel values along the line or draw a line with an effect +(for example, with XOR operation). + +The number of pixels along the line is stored in LineIterator::count. +The method LineIterator::pos returns the current position in the image: + +@code{.cpp} +// grabs pixels along the line (pt1, pt2) +// from 8-bit 3-channel image to the buffer +LineIterator it(img, pt1, pt2, 8); +LineIterator it2 = it; +vector<Vec3b> buf(it.count); + +for(int i = 0; i < it.count; i++, ++it) + buf[i] = *(const Vec3b)*it; + +// alternative way of iterating through the line +for(int i = 0; i < it2.count; i++, ++it2) +{ + Vec3b val = img.at<Vec3b>(it2.pos()); + CV_Assert(buf[i] == val); +} +@endcode +*/ +class CV_EXPORTS LineIterator +{ +public: + /** @brief intializes the iterator + + creates iterators for the line connecting pt1 and pt2 + the line will be clipped on the image boundaries + the line is 8-connected or 4-connected + If leftToRight=true, then the iteration is always done + from the left-most point to the right most, + not to depend on the ordering of pt1 and pt2 parameters + */ + LineIterator( const Mat& img, Point pt1, Point pt2, + int connectivity = 8, bool leftToRight = false ); + /** @brief returns pointer to the current pixel + */ + uchar* operator *(); + /** @brief prefix increment operator (++it). shifts iterator to the next pixel + */ + LineIterator& operator ++(); + /** @brief postfix increment operator (it++). shifts iterator to the next pixel + */ + LineIterator operator ++(int); + /** @brief returns coordinates of the current pixel + */ + Point pos() const; + + uchar* ptr; + const uchar* ptr0; + int step, elemSize; + int err, count; + int minusDelta, plusDelta; + int minusStep, plusStep; +}; + +//! @cond IGNORED + +// === LineIterator implementation === + +inline +uchar* LineIterator::operator *() +{ + return ptr; +} + +inline +LineIterator& LineIterator::operator ++() +{ + int mask = err < 0 ? -1 : 0; + err += minusDelta + (plusDelta & mask); + ptr += minusStep + (plusStep & mask); + return *this; +} + +inline +LineIterator LineIterator::operator ++(int) +{ + LineIterator it = *this; + ++(*this); + return it; +} + +inline +Point LineIterator::pos() const +{ + Point p; + p.y = (int)((ptr - ptr0)/step); + p.x = (int)(((ptr - ptr0) - p.y*step)/elemSize); + return p; +} + +//! @endcond + +//! @} imgproc_draw + +//! @} imgproc + +} // cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/imgproc/imgproc_c.h" +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgproc/detail/distortion_model.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,123 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGPROC_DETAIL_DISTORTION_MODEL_HPP +#define OPENCV_IMGPROC_DETAIL_DISTORTION_MODEL_HPP + +//! @cond IGNORED + +namespace cv { namespace detail { +/** +Computes the matrix for the projection onto a tilted image sensor +\param tauX angular parameter rotation around x-axis +\param tauY angular parameter rotation around y-axis +\param matTilt if not NULL returns the matrix +\f[ +\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)} +{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} +{0}{0}{1} R(\tau_x, \tau_y) +\f] +where +\f[ +R(\tau_x, \tau_y) = +\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)} +\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} = +\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)} +{0}{\cos(\tau_x)}{\sin(\tau_x)} +{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}. +\f] +\param dMatTiltdTauX if not NULL it returns the derivative of matTilt with +respect to \f$\tau_x\f$. +\param dMatTiltdTauY if not NULL it returns the derivative of matTilt with +respect to \f$\tau_y\f$. +\param invMatTilt if not NULL it returns the inverse of matTilt +**/ +template <typename FLOAT> +void computeTiltProjectionMatrix(FLOAT tauX, + FLOAT tauY, + Matx<FLOAT, 3, 3>* matTilt = 0, + Matx<FLOAT, 3, 3>* dMatTiltdTauX = 0, + Matx<FLOAT, 3, 3>* dMatTiltdTauY = 0, + Matx<FLOAT, 3, 3>* invMatTilt = 0) +{ + FLOAT cTauX = cos(tauX); + FLOAT sTauX = sin(tauX); + FLOAT cTauY = cos(tauY); + FLOAT sTauY = sin(tauY); + Matx<FLOAT, 3, 3> matRotX = Matx<FLOAT, 3, 3>(1,0,0,0,cTauX,sTauX,0,-sTauX,cTauX); + Matx<FLOAT, 3, 3> matRotY = Matx<FLOAT, 3, 3>(cTauY,0,-sTauY,0,1,0,sTauY,0,cTauY); + Matx<FLOAT, 3, 3> matRotXY = matRotY * matRotX; + Matx<FLOAT, 3, 3> matProjZ = Matx<FLOAT, 3, 3>(matRotXY(2,2),0,-matRotXY(0,2),0,matRotXY(2,2),-matRotXY(1,2),0,0,1); + if (matTilt) + { + // Matrix for trapezoidal distortion of tilted image sensor + *matTilt = matProjZ * matRotXY; + } + if (dMatTiltdTauX) + { + // Derivative with respect to tauX + Matx<FLOAT, 3, 3> dMatRotXYdTauX = matRotY * Matx<FLOAT, 3, 3>(0,0,0,0,-sTauX,cTauX,0,-cTauX,-sTauX); + Matx<FLOAT, 3, 3> dMatProjZdTauX = Matx<FLOAT, 3, 3>(dMatRotXYdTauX(2,2),0,-dMatRotXYdTauX(0,2), + 0,dMatRotXYdTauX(2,2),-dMatRotXYdTauX(1,2),0,0,0); + *dMatTiltdTauX = (matProjZ * dMatRotXYdTauX) + (dMatProjZdTauX * matRotXY); + } + if (dMatTiltdTauY) + { + // Derivative with respect to tauY + Matx<FLOAT, 3, 3> dMatRotXYdTauY = Matx<FLOAT, 3, 3>(-sTauY,0,-cTauY,0,0,0,cTauY,0,-sTauY) * matRotX; + Matx<FLOAT, 3, 3> dMatProjZdTauY = Matx<FLOAT, 3, 3>(dMatRotXYdTauY(2,2),0,-dMatRotXYdTauY(0,2), + 0,dMatRotXYdTauY(2,2),-dMatRotXYdTauY(1,2),0,0,0); + *dMatTiltdTauY = (matProjZ * dMatRotXYdTauY) + (dMatProjZdTauY * matRotXY); + } + if (invMatTilt) + { + FLOAT inv = 1./matRotXY(2,2); + Matx<FLOAT, 3, 3> invMatProjZ = Matx<FLOAT, 3, 3>(inv,0,inv*matRotXY(0,2),0,inv,inv*matRotXY(1,2),0,0,1); + *invMatTilt = matRotXY.t()*invMatProjZ; + } +} +}} // namespace detail, cv + + +//! @endcond + +#endif // OPENCV_IMGPROC_DETAIL_DISTORTION_MODEL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgproc/hal/hal.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,189 @@ +#ifndef CV_IMGPROC_HAL_HPP +#define CV_IMGPROC_HAL_HPP + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/cvstd.hpp" +#include "opencv2/core/hal/interface.h" + +namespace cv { namespace hal { + +//! @addtogroup imgproc_hal_functions +//! @{ + +struct CV_EXPORTS Filter2D +{ + static Ptr<hal::Filter2D> create(uchar * kernel_data, size_t kernel_step, int kernel_type, + int kernel_width, int kernel_height, + int max_width, int max_height, + int stype, int dtype, + int borderType, double delta, + int anchor_x, int anchor_y, + bool isSubmatrix, bool isInplace); + virtual void apply(uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int full_width, int full_height, + int offset_x, int offset_y) = 0; + virtual ~Filter2D() {} +}; + +struct CV_EXPORTS SepFilter2D +{ + static Ptr<hal::SepFilter2D> create(int stype, int dtype, int ktype, + uchar * kernelx_data, int kernelx_len, + uchar * kernely_data, int kernely_len, + int anchor_x, int anchor_y, + double delta, int borderType); + virtual void apply(uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int full_width, int full_height, + int offset_x, int offset_y) = 0; + virtual ~SepFilter2D() {} +}; + + +struct CV_EXPORTS Morph +{ + static Ptr<Morph> create(int op, int src_type, int dst_type, int max_width, int max_height, + int kernel_type, uchar * kernel_data, size_t kernel_step, + int kernel_width, int kernel_height, + int anchor_x, int anchor_y, + int borderType, const double borderValue[4], + int iterations, bool isSubmatrix, bool allowInplace); + virtual void apply(uchar * src_data, size_t src_step, uchar * dst_data, size_t dst_step, int width, int height, + int roi_width, int roi_height, int roi_x, int roi_y, + int roi_width2, int roi_height2, int roi_x2, int roi_y2) = 0; + virtual ~Morph() {} +}; + + +CV_EXPORTS void resize(int src_type, + const uchar * src_data, size_t src_step, int src_width, int src_height, + uchar * dst_data, size_t dst_step, int dst_width, int dst_height, + double inv_scale_x, double inv_scale_y, int interpolation); + +CV_EXPORTS void warpAffine(int src_type, + const uchar * src_data, size_t src_step, int src_width, int src_height, + uchar * dst_data, size_t dst_step, int dst_width, int dst_height, + const double M[6], int interpolation, int borderType, const double borderValue[4]); + +CV_EXPORTS void warpPerspectve(int src_type, + const uchar * src_data, size_t src_step, int src_width, int src_height, + uchar * dst_data, size_t dst_step, int dst_width, int dst_height, + const double M[9], int interpolation, int borderType, const double borderValue[4]); + +CV_EXPORTS void cvtBGRtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, int dcn, bool swapBlue); + +CV_EXPORTS void cvtBGRtoBGR5x5(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int scn, bool swapBlue, int greenBits); + +CV_EXPORTS void cvtBGR5x5toBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int dcn, bool swapBlue, int greenBits); + +CV_EXPORTS void cvtBGRtoGray(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue); + +CV_EXPORTS void cvtGraytoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn); + +CV_EXPORTS void cvtBGR5x5toGray(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int greenBits); + +CV_EXPORTS void cvtGraytoBGR5x5(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int greenBits); +CV_EXPORTS void cvtBGRtoYUV(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue, bool isCbCr); + +CV_EXPORTS void cvtYUVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn, bool swapBlue, bool isCbCr); + +CV_EXPORTS void cvtBGRtoXYZ(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue); + +CV_EXPORTS void cvtXYZtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn, bool swapBlue); + +CV_EXPORTS void cvtBGRtoHSV(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue, bool isFullRange, bool isHSV); + +CV_EXPORTS void cvtHSVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn, bool swapBlue, bool isFullRange, bool isHSV); + +CV_EXPORTS void cvtBGRtoLab(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue, bool isLab, bool srgb); + +CV_EXPORTS void cvtLabtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn, bool swapBlue, bool isLab, bool srgb); + +CV_EXPORTS void cvtTwoPlaneYUVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int dst_width, int dst_height, + int dcn, bool swapBlue, int uIdx); + +CV_EXPORTS void cvtThreePlaneYUVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int dst_width, int dst_height, + int dcn, bool swapBlue, int uIdx); + +CV_EXPORTS void cvtBGRtoThreePlaneYUV(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int scn, bool swapBlue, int uIdx); + +CV_EXPORTS void cvtOnePlaneYUVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int dcn, bool swapBlue, int uIdx, int ycn); + +CV_EXPORTS void cvtRGBAtoMultipliedRGBA(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height); + +CV_EXPORTS void cvtMultipliedRGBAtoRGBA(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height); + +CV_EXPORTS void integral(int depth, int sdepth, int sqdepth, + const uchar* src, size_t srcstep, + uchar* sum, size_t sumstep, + uchar* sqsum, size_t sqsumstep, + uchar* tilted, size_t tstep, + int width, int height, int cn); + +//! @} + +}} + +#endif // CV_IMGPROC_HAL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgproc/hal/interface.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,26 @@ +#ifndef OPENCV_IMGPROC_HAL_INTERFACE_H +#define OPENCV_IMGPROC_HAL_INTERFACE_H + +//! @addtogroup imgproc_hal_interface +//! @{ + +//! @name Interpolation modes +//! @sa cv::InterpolationFlags +//! @{ +#define CV_HAL_INTER_NEAREST 0 +#define CV_HAL_INTER_LINEAR 1 +#define CV_HAL_INTER_CUBIC 2 +#define CV_HAL_INTER_AREA 3 +#define CV_HAL_INTER_LANCZOS4 4 +//! @} + +//! @name Morphology operations +//! @sa cv::MorphTypes +//! @{ +#define MORPH_ERODE 0 +#define MORPH_DILATE 1 +//! @} + +//! @} + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgproc/imgproc.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/imgproc.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgproc/imgproc_c.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1210 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGPROC_IMGPROC_C_H +#define OPENCV_IMGPROC_IMGPROC_C_H + +#include "opencv2/imgproc/types_c.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup imgproc_c +@{ +*/ + +/*********************** Background statistics accumulation *****************************/ + +/** @brief Adds image to accumulator +@see cv::accumulate +*/ +CVAPI(void) cvAcc( const CvArr* image, CvArr* sum, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Adds squared image to accumulator +@see cv::accumulateSquare +*/ +CVAPI(void) cvSquareAcc( const CvArr* image, CvArr* sqsum, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Adds a product of two images to accumulator +@see cv::accumulateProduct +*/ +CVAPI(void) cvMultiplyAcc( const CvArr* image1, const CvArr* image2, CvArr* acc, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Adds image to accumulator with weights: acc = acc*(1-alpha) + image*alpha +@see cv::accumulateWeighted +*/ +CVAPI(void) cvRunningAvg( const CvArr* image, CvArr* acc, double alpha, + const CvArr* mask CV_DEFAULT(NULL) ); + +/****************************************************************************************\ +* Image Processing * +\****************************************************************************************/ + +/** Copies source 2D array inside of the larger destination array and + makes a border of the specified type (IPL_BORDER_*) around the copied area. */ +CVAPI(void) cvCopyMakeBorder( const CvArr* src, CvArr* dst, CvPoint offset, + int bordertype, CvScalar value CV_DEFAULT(cvScalarAll(0))); + +/** @brief Smooths the image in one of several ways. + +@param src The source image +@param dst The destination image +@param smoothtype Type of the smoothing, see SmoothMethod_c +@param size1 The first parameter of the smoothing operation, the aperture width. Must be a +positive odd number (1, 3, 5, ...) +@param size2 The second parameter of the smoothing operation, the aperture height. Ignored by +CV_MEDIAN and CV_BILATERAL methods. In the case of simple scaled/non-scaled and Gaussian blur if +size2 is zero, it is set to size1. Otherwise it must be a positive odd number. +@param sigma1 In the case of a Gaussian parameter this parameter may specify Gaussian \f$\sigma\f$ +(standard deviation). If it is zero, it is calculated from the kernel size: +\f[\sigma = 0.3 (n/2 - 1) + 0.8 \quad \text{where} \quad n= \begin{array}{l l} \mbox{\texttt{size1} for horizontal kernel} \\ \mbox{\texttt{size2} for vertical kernel} \end{array}\f] +Using standard sigma for small kernels ( \f$3\times 3\f$ to \f$7\times 7\f$ ) gives better speed. If +sigma1 is not zero, while size1 and size2 are zeros, the kernel size is calculated from the +sigma (to provide accurate enough operation). +@param sigma2 additional parameter for bilateral filtering + +@see cv::GaussianBlur, cv::blur, cv::medianBlur, cv::bilateralFilter. + */ +CVAPI(void) cvSmooth( const CvArr* src, CvArr* dst, + int smoothtype CV_DEFAULT(CV_GAUSSIAN), + int size1 CV_DEFAULT(3), + int size2 CV_DEFAULT(0), + double sigma1 CV_DEFAULT(0), + double sigma2 CV_DEFAULT(0)); + +/** @brief Convolves an image with the kernel. + +@param src input image. +@param dst output image of the same size and the same number of channels as src. +@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point +matrix; if you want to apply different kernels to different channels, split the image into +separate color planes using split and process them individually. +@param anchor anchor of the kernel that indicates the relative position of a filtered point within +the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor +is at the kernel center. + +@see cv::filter2D + */ +CVAPI(void) cvFilter2D( const CvArr* src, CvArr* dst, const CvMat* kernel, + CvPoint anchor CV_DEFAULT(cvPoint(-1,-1))); + +/** @brief Finds integral image: SUM(X,Y) = sum(x<X,y<Y)I(x,y) +@see cv::integral +*/ +CVAPI(void) cvIntegral( const CvArr* image, CvArr* sum, + CvArr* sqsum CV_DEFAULT(NULL), + CvArr* tilted_sum CV_DEFAULT(NULL)); + +/** @brief Smoothes the input image with gaussian kernel and then down-samples it. + + dst_width = floor(src_width/2)[+1], + dst_height = floor(src_height/2)[+1] + @see cv::pyrDown +*/ +CVAPI(void) cvPyrDown( const CvArr* src, CvArr* dst, + int filter CV_DEFAULT(CV_GAUSSIAN_5x5) ); + +/** @brief Up-samples image and smoothes the result with gaussian kernel. + + dst_width = src_width*2, + dst_height = src_height*2 + @see cv::pyrUp +*/ +CVAPI(void) cvPyrUp( const CvArr* src, CvArr* dst, + int filter CV_DEFAULT(CV_GAUSSIAN_5x5) ); + +/** @brief Builds pyramid for an image +@see buildPyramid +*/ +CVAPI(CvMat**) cvCreatePyramid( const CvArr* img, int extra_layers, double rate, + const CvSize* layer_sizes CV_DEFAULT(0), + CvArr* bufarr CV_DEFAULT(0), + int calc CV_DEFAULT(1), + int filter CV_DEFAULT(CV_GAUSSIAN_5x5) ); + +/** @brief Releases pyramid */ +CVAPI(void) cvReleasePyramid( CvMat*** pyramid, int extra_layers ); + + +/** @brief Filters image using meanshift algorithm +@see cv::pyrMeanShiftFiltering +*/ +CVAPI(void) cvPyrMeanShiftFiltering( const CvArr* src, CvArr* dst, + double sp, double sr, int max_level CV_DEFAULT(1), + CvTermCriteria termcrit CV_DEFAULT(cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,5,1))); + +/** @brief Segments image using seed "markers" +@see cv::watershed +*/ +CVAPI(void) cvWatershed( const CvArr* image, CvArr* markers ); + +/** @brief Calculates an image derivative using generalized Sobel + + (aperture_size = 1,3,5,7) or Scharr (aperture_size = -1) operator. + Scharr can be used only for the first dx or dy derivative +@see cv::Sobel +*/ +CVAPI(void) cvSobel( const CvArr* src, CvArr* dst, + int xorder, int yorder, + int aperture_size CV_DEFAULT(3)); + +/** @brief Calculates the image Laplacian: (d2/dx + d2/dy)I +@see cv::Laplacian +*/ +CVAPI(void) cvLaplace( const CvArr* src, CvArr* dst, + int aperture_size CV_DEFAULT(3) ); + +/** @brief Converts input array pixels from one color space to another +@see cv::cvtColor +*/ +CVAPI(void) cvCvtColor( const CvArr* src, CvArr* dst, int code ); + + +/** @brief Resizes image (input array is resized to fit the destination array) +@see cv::resize +*/ +CVAPI(void) cvResize( const CvArr* src, CvArr* dst, + int interpolation CV_DEFAULT( CV_INTER_LINEAR )); + +/** @brief Warps image with affine transform +@note ::cvGetQuadrangleSubPix is similar to ::cvWarpAffine, but the outliers are extrapolated using +replication border mode. +@see cv::warpAffine +*/ +CVAPI(void) cvWarpAffine( const CvArr* src, CvArr* dst, const CvMat* map_matrix, + int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS), + CvScalar fillval CV_DEFAULT(cvScalarAll(0)) ); + +/** @brief Computes affine transform matrix for mapping src[i] to dst[i] (i=0,1,2) +@see cv::getAffineTransform +*/ +CVAPI(CvMat*) cvGetAffineTransform( const CvPoint2D32f * src, + const CvPoint2D32f * dst, + CvMat * map_matrix ); + +/** @brief Computes rotation_matrix matrix +@see cv::getRotationMatrix2D +*/ +CVAPI(CvMat*) cv2DRotationMatrix( CvPoint2D32f center, double angle, + double scale, CvMat* map_matrix ); + +/** @brief Warps image with perspective (projective) transform +@see cv::warpPerspective +*/ +CVAPI(void) cvWarpPerspective( const CvArr* src, CvArr* dst, const CvMat* map_matrix, + int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS), + CvScalar fillval CV_DEFAULT(cvScalarAll(0)) ); + +/** @brief Computes perspective transform matrix for mapping src[i] to dst[i] (i=0,1,2,3) +@see cv::getPerspectiveTransform +*/ +CVAPI(CvMat*) cvGetPerspectiveTransform( const CvPoint2D32f* src, + const CvPoint2D32f* dst, + CvMat* map_matrix ); + +/** @brief Performs generic geometric transformation using the specified coordinate maps +@see cv::remap +*/ +CVAPI(void) cvRemap( const CvArr* src, CvArr* dst, + const CvArr* mapx, const CvArr* mapy, + int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS), + CvScalar fillval CV_DEFAULT(cvScalarAll(0)) ); + +/** @brief Converts mapx & mapy from floating-point to integer formats for cvRemap +@see cv::convertMaps +*/ +CVAPI(void) cvConvertMaps( const CvArr* mapx, const CvArr* mapy, + CvArr* mapxy, CvArr* mapalpha ); + +/** @brief Performs forward or inverse log-polar image transform +@see cv::logPolar +*/ +CVAPI(void) cvLogPolar( const CvArr* src, CvArr* dst, + CvPoint2D32f center, double M, + int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS)); + +/** Performs forward or inverse linear-polar image transform +@see cv::linearPolar +*/ +CVAPI(void) cvLinearPolar( const CvArr* src, CvArr* dst, + CvPoint2D32f center, double maxRadius, + int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS)); + +/** @brief Transforms the input image to compensate lens distortion +@see cv::undistort +*/ +CVAPI(void) cvUndistort2( const CvArr* src, CvArr* dst, + const CvMat* camera_matrix, + const CvMat* distortion_coeffs, + const CvMat* new_camera_matrix CV_DEFAULT(0) ); + +/** @brief Computes transformation map from intrinsic camera parameters + that can used by cvRemap +*/ +CVAPI(void) cvInitUndistortMap( const CvMat* camera_matrix, + const CvMat* distortion_coeffs, + CvArr* mapx, CvArr* mapy ); + +/** @brief Computes undistortion+rectification map for a head of stereo camera +@see cv::initUndistortRectifyMap +*/ +CVAPI(void) cvInitUndistortRectifyMap( const CvMat* camera_matrix, + const CvMat* dist_coeffs, + const CvMat *R, const CvMat* new_camera_matrix, + CvArr* mapx, CvArr* mapy ); + +/** @brief Computes the original (undistorted) feature coordinates + from the observed (distorted) coordinates +@see cv::undistortPoints +*/ +CVAPI(void) cvUndistortPoints( const CvMat* src, CvMat* dst, + const CvMat* camera_matrix, + const CvMat* dist_coeffs, + const CvMat* R CV_DEFAULT(0), + const CvMat* P CV_DEFAULT(0)); + +/** @brief Returns a structuring element of the specified size and shape for morphological operations. + +@note the created structuring element IplConvKernel\* element must be released in the end using +`cvReleaseStructuringElement(&element)`. + +@param cols Width of the structuring element +@param rows Height of the structuring element +@param anchor_x x-coordinate of the anchor +@param anchor_y y-coordinate of the anchor +@param shape element shape that could be one of the cv::MorphShapes_c +@param values integer array of cols*rows elements that specifies the custom shape of the +structuring element, when shape=CV_SHAPE_CUSTOM. + +@see cv::getStructuringElement + */ + CVAPI(IplConvKernel*) cvCreateStructuringElementEx( + int cols, int rows, int anchor_x, int anchor_y, + int shape, int* values CV_DEFAULT(NULL) ); + +/** @brief releases structuring element +@see cvCreateStructuringElementEx +*/ +CVAPI(void) cvReleaseStructuringElement( IplConvKernel** element ); + +/** @brief erodes input image (applies minimum filter) one or more times. + If element pointer is NULL, 3x3 rectangular element is used +@see cv::erode +*/ +CVAPI(void) cvErode( const CvArr* src, CvArr* dst, + IplConvKernel* element CV_DEFAULT(NULL), + int iterations CV_DEFAULT(1) ); + +/** @brief dilates input image (applies maximum filter) one or more times. + + If element pointer is NULL, 3x3 rectangular element is used +@see cv::dilate +*/ +CVAPI(void) cvDilate( const CvArr* src, CvArr* dst, + IplConvKernel* element CV_DEFAULT(NULL), + int iterations CV_DEFAULT(1) ); + +/** @brief Performs complex morphological transformation +@see cv::morphologyEx +*/ +CVAPI(void) cvMorphologyEx( const CvArr* src, CvArr* dst, + CvArr* temp, IplConvKernel* element, + int operation, int iterations CV_DEFAULT(1) ); + +/** @brief Calculates all spatial and central moments up to the 3rd order +@see cv::moments +*/ +CVAPI(void) cvMoments( const CvArr* arr, CvMoments* moments, int binary CV_DEFAULT(0)); + +/** @brief Retrieve spatial moments */ +CVAPI(double) cvGetSpatialMoment( CvMoments* moments, int x_order, int y_order ); +/** @brief Retrieve central moments */ +CVAPI(double) cvGetCentralMoment( CvMoments* moments, int x_order, int y_order ); +/** @brief Retrieve normalized central moments */ +CVAPI(double) cvGetNormalizedCentralMoment( CvMoments* moments, + int x_order, int y_order ); + +/** @brief Calculates 7 Hu's invariants from precalculated spatial and central moments +@see cv::HuMoments +*/ +CVAPI(void) cvGetHuMoments( CvMoments* moments, CvHuMoments* hu_moments ); + +/*********************************** data sampling **************************************/ + +/** @brief Fetches pixels that belong to the specified line segment and stores them to the buffer. + + Returns the number of retrieved points. +@see cv::LineSegmentDetector +*/ +CVAPI(int) cvSampleLine( const CvArr* image, CvPoint pt1, CvPoint pt2, void* buffer, + int connectivity CV_DEFAULT(8)); + +/** @brief Retrieves the rectangular image region with specified center from the input array. + + dst(x,y) <- src(x + center.x - dst_width/2, y + center.y - dst_height/2). + Values of pixels with fractional coordinates are retrieved using bilinear interpolation +@see cv::getRectSubPix +*/ +CVAPI(void) cvGetRectSubPix( const CvArr* src, CvArr* dst, CvPoint2D32f center ); + + +/** @brief Retrieves quadrangle from the input array. + + matrixarr = ( a11 a12 | b1 ) dst(x,y) <- src(A[x y]' + b) + ( a21 a22 | b2 ) (bilinear interpolation is used to retrieve pixels + with fractional coordinates) +@see cvWarpAffine +*/ +CVAPI(void) cvGetQuadrangleSubPix( const CvArr* src, CvArr* dst, + const CvMat* map_matrix ); + +/** @brief Measures similarity between template and overlapped windows in the source image + and fills the resultant image with the measurements +@see cv::matchTemplate +*/ +CVAPI(void) cvMatchTemplate( const CvArr* image, const CvArr* templ, + CvArr* result, int method ); + +/** @brief Computes earth mover distance between + two weighted point sets (called signatures) +@see cv::EMD +*/ +CVAPI(float) cvCalcEMD2( const CvArr* signature1, + const CvArr* signature2, + int distance_type, + CvDistanceFunction distance_func CV_DEFAULT(NULL), + const CvArr* cost_matrix CV_DEFAULT(NULL), + CvArr* flow CV_DEFAULT(NULL), + float* lower_bound CV_DEFAULT(NULL), + void* userdata CV_DEFAULT(NULL)); + +/****************************************************************************************\ +* Contours retrieving * +\****************************************************************************************/ + +/** @brief Retrieves outer and optionally inner boundaries of white (non-zero) connected + components in the black (zero) background +@see cv::findContours, cvStartFindContours, cvFindNextContour, cvSubstituteContour, cvEndFindContours +*/ +CVAPI(int) cvFindContours( CvArr* image, CvMemStorage* storage, CvSeq** first_contour, + int header_size CV_DEFAULT(sizeof(CvContour)), + int mode CV_DEFAULT(CV_RETR_LIST), + int method CV_DEFAULT(CV_CHAIN_APPROX_SIMPLE), + CvPoint offset CV_DEFAULT(cvPoint(0,0))); + +/** @brief Initializes contour retrieving process. + + Calls cvStartFindContours. + Calls cvFindNextContour until null pointer is returned + or some other condition becomes true. + Calls cvEndFindContours at the end. +@see cvFindContours +*/ +CVAPI(CvContourScanner) cvStartFindContours( CvArr* image, CvMemStorage* storage, + int header_size CV_DEFAULT(sizeof(CvContour)), + int mode CV_DEFAULT(CV_RETR_LIST), + int method CV_DEFAULT(CV_CHAIN_APPROX_SIMPLE), + CvPoint offset CV_DEFAULT(cvPoint(0,0))); + +/** @brief Retrieves next contour +@see cvFindContours +*/ +CVAPI(CvSeq*) cvFindNextContour( CvContourScanner scanner ); + + +/** @brief Substitutes the last retrieved contour with the new one + + (if the substitutor is null, the last retrieved contour is removed from the tree) +@see cvFindContours +*/ +CVAPI(void) cvSubstituteContour( CvContourScanner scanner, CvSeq* new_contour ); + + +/** @brief Releases contour scanner and returns pointer to the first outer contour +@see cvFindContours +*/ +CVAPI(CvSeq*) cvEndFindContours( CvContourScanner* scanner ); + +/** @brief Approximates Freeman chain(s) with a polygonal curve. + +This is a standalone contour approximation routine, not represented in the new interface. When +cvFindContours retrieves contours as Freeman chains, it calls the function to get approximated +contours, represented as polygons. + +@param src_seq Pointer to the approximated Freeman chain that can refer to other chains. +@param storage Storage location for the resulting polylines. +@param method Approximation method (see the description of the function :ocvFindContours ). +@param parameter Method parameter (not used now). +@param minimal_perimeter Approximates only those contours whose perimeters are not less than +minimal_perimeter . Other chains are removed from the resulting structure. +@param recursive Recursion flag. If it is non-zero, the function approximates all chains that can +be obtained from chain by using the h_next or v_next links. Otherwise, the single input chain is +approximated. +@see cvStartReadChainPoints, cvReadChainPoint + */ +CVAPI(CvSeq*) cvApproxChains( CvSeq* src_seq, CvMemStorage* storage, + int method CV_DEFAULT(CV_CHAIN_APPROX_SIMPLE), + double parameter CV_DEFAULT(0), + int minimal_perimeter CV_DEFAULT(0), + int recursive CV_DEFAULT(0)); + +/** @brief Initializes Freeman chain reader. + + The reader is used to iteratively get coordinates of all the chain points. + If the Freeman codes should be read as is, a simple sequence reader should be used +@see cvApproxChains +*/ +CVAPI(void) cvStartReadChainPoints( CvChain* chain, CvChainPtReader* reader ); + +/** @brief Retrieves the next chain point +@see cvApproxChains +*/ +CVAPI(CvPoint) cvReadChainPoint( CvChainPtReader* reader ); + + +/****************************************************************************************\ +* Contour Processing and Shape Analysis * +\****************************************************************************************/ + +/** @brief Approximates a single polygonal curve (contour) or + a tree of polygonal curves (contours) +@see cv::approxPolyDP +*/ +CVAPI(CvSeq*) cvApproxPoly( const void* src_seq, + int header_size, CvMemStorage* storage, + int method, double eps, + int recursive CV_DEFAULT(0)); + +/** @brief Calculates perimeter of a contour or length of a part of contour +@see cv::arcLength +*/ +CVAPI(double) cvArcLength( const void* curve, + CvSlice slice CV_DEFAULT(CV_WHOLE_SEQ), + int is_closed CV_DEFAULT(-1)); + +/** same as cvArcLength for closed contour +*/ +CV_INLINE double cvContourPerimeter( const void* contour ) +{ + return cvArcLength( contour, CV_WHOLE_SEQ, 1 ); +} + + +/** @brief Calculates contour bounding rectangle (update=1) or + just retrieves pre-calculated rectangle (update=0) +@see cv::boundingRect +*/ +CVAPI(CvRect) cvBoundingRect( CvArr* points, int update CV_DEFAULT(0) ); + +/** @brief Calculates area of a contour or contour segment +@see cv::contourArea +*/ +CVAPI(double) cvContourArea( const CvArr* contour, + CvSlice slice CV_DEFAULT(CV_WHOLE_SEQ), + int oriented CV_DEFAULT(0)); + +/** @brief Finds minimum area rotated rectangle bounding a set of points +@see cv::minAreaRect +*/ +CVAPI(CvBox2D) cvMinAreaRect2( const CvArr* points, + CvMemStorage* storage CV_DEFAULT(NULL)); + +/** @brief Finds minimum enclosing circle for a set of points +@see cv::minEnclosingCircle +*/ +CVAPI(int) cvMinEnclosingCircle( const CvArr* points, + CvPoint2D32f* center, float* radius ); + +/** @brief Compares two contours by matching their moments +@see cv::matchShapes +*/ +CVAPI(double) cvMatchShapes( const void* object1, const void* object2, + int method, double parameter CV_DEFAULT(0)); + +/** @brief Calculates exact convex hull of 2d point set +@see cv::convexHull +*/ +CVAPI(CvSeq*) cvConvexHull2( const CvArr* input, + void* hull_storage CV_DEFAULT(NULL), + int orientation CV_DEFAULT(CV_CLOCKWISE), + int return_points CV_DEFAULT(0)); + +/** @brief Checks whether the contour is convex or not (returns 1 if convex, 0 if not) +@see cv::isContourConvex +*/ +CVAPI(int) cvCheckContourConvexity( const CvArr* contour ); + + +/** @brief Finds convexity defects for the contour +@see cv::convexityDefects +*/ +CVAPI(CvSeq*) cvConvexityDefects( const CvArr* contour, const CvArr* convexhull, + CvMemStorage* storage CV_DEFAULT(NULL)); + +/** @brief Fits ellipse into a set of 2d points +@see cv::fitEllipse +*/ +CVAPI(CvBox2D) cvFitEllipse2( const CvArr* points ); + +/** @brief Finds minimum rectangle containing two given rectangles */ +CVAPI(CvRect) cvMaxRect( const CvRect* rect1, const CvRect* rect2 ); + +/** @brief Finds coordinates of the box vertices */ +CVAPI(void) cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] ); + +/** @brief Initializes sequence header for a matrix (column or row vector) of points + + a wrapper for cvMakeSeqHeaderForArray (it does not initialize bounding rectangle!!!) */ +CVAPI(CvSeq*) cvPointSeqFromMat( int seq_kind, const CvArr* mat, + CvContour* contour_header, + CvSeqBlock* block ); + +/** @brief Checks whether the point is inside polygon, outside, on an edge (at a vertex). + + Returns positive, negative or zero value, correspondingly. + Optionally, measures a signed distance between + the point and the nearest polygon edge (measure_dist=1) +@see cv::pointPolygonTest +*/ +CVAPI(double) cvPointPolygonTest( const CvArr* contour, + CvPoint2D32f pt, int measure_dist ); + +/****************************************************************************************\ +* Histogram functions * +\****************************************************************************************/ + +/** @brief Creates a histogram. + +The function creates a histogram of the specified size and returns a pointer to the created +histogram. If the array ranges is 0, the histogram bin ranges must be specified later via the +function cvSetHistBinRanges. Though cvCalcHist and cvCalcBackProject may process 8-bit images +without setting bin ranges, they assume they are equally spaced in 0 to 255 bins. + +@param dims Number of histogram dimensions. +@param sizes Array of the histogram dimension sizes. +@param type Histogram representation format. CV_HIST_ARRAY means that the histogram data is +represented as a multi-dimensional dense array CvMatND. CV_HIST_SPARSE means that histogram data +is represented as a multi-dimensional sparse array CvSparseMat. +@param ranges Array of ranges for the histogram bins. Its meaning depends on the uniform parameter +value. The ranges are used when the histogram is calculated or backprojected to determine which +histogram bin corresponds to which value/tuple of values from the input image(s). +@param uniform Uniformity flag. If not zero, the histogram has evenly spaced bins and for every +\f$0<=i<cDims\f$ ranges[i] is an array of two numbers: lower and upper boundaries for the i-th +histogram dimension. The whole range [lower,upper] is then split into dims[i] equal parts to +determine the i-th input tuple value ranges for every histogram bin. And if uniform=0 , then the +i-th element of the ranges array contains dims[i]+1 elements: \f$\texttt{lower}_0, +\texttt{upper}_0, \texttt{lower}_1, \texttt{upper}_1 = \texttt{lower}_2, +... +\texttt{upper}_{dims[i]-1}\f$ where \f$\texttt{lower}_j\f$ and \f$\texttt{upper}_j\f$ are lower +and upper boundaries of the i-th input tuple value for the j-th bin, respectively. In either +case, the input values that are beyond the specified range for a histogram bin are not counted +by cvCalcHist and filled with 0 by cvCalcBackProject. + */ +CVAPI(CvHistogram*) cvCreateHist( int dims, int* sizes, int type, + float** ranges CV_DEFAULT(NULL), + int uniform CV_DEFAULT(1)); + +/** @brief Sets the bounds of the histogram bins. + +This is a standalone function for setting bin ranges in the histogram. For a more detailed +description of the parameters ranges and uniform, see the :ocvCalcHist function that can initialize +the ranges as well. Ranges for the histogram bins must be set before the histogram is calculated or +the backproject of the histogram is calculated. + +@param hist Histogram. +@param ranges Array of bin ranges arrays. See :ocvCreateHist for details. +@param uniform Uniformity flag. See :ocvCreateHist for details. + */ +CVAPI(void) cvSetHistBinRanges( CvHistogram* hist, float** ranges, + int uniform CV_DEFAULT(1)); + +/** @brief Makes a histogram out of an array. + +The function initializes the histogram, whose header and bins are allocated by the user. +cvReleaseHist does not need to be called afterwards. Only dense histograms can be initialized this +way. The function returns hist. + +@param dims Number of the histogram dimensions. +@param sizes Array of the histogram dimension sizes. +@param hist Histogram header initialized by the function. +@param data Array used to store histogram bins. +@param ranges Histogram bin ranges. See cvCreateHist for details. +@param uniform Uniformity flag. See cvCreateHist for details. + */ +CVAPI(CvHistogram*) cvMakeHistHeaderForArray( + int dims, int* sizes, CvHistogram* hist, + float* data, float** ranges CV_DEFAULT(NULL), + int uniform CV_DEFAULT(1)); + +/** @brief Releases the histogram. + +The function releases the histogram (header and the data). The pointer to the histogram is cleared +by the function. If \*hist pointer is already NULL, the function does nothing. + +@param hist Double pointer to the released histogram. + */ +CVAPI(void) cvReleaseHist( CvHistogram** hist ); + +/** @brief Clears the histogram. + +The function sets all of the histogram bins to 0 in case of a dense histogram and removes all +histogram bins in case of a sparse array. + +@param hist Histogram. + */ +CVAPI(void) cvClearHist( CvHistogram* hist ); + +/** @brief Finds the minimum and maximum histogram bins. + +The function finds the minimum and maximum histogram bins and their positions. All of output +arguments are optional. Among several extremas with the same value the ones with the minimum index +(in the lexicographical order) are returned. In case of several maximums or minimums, the earliest +in the lexicographical order (extrema locations) is returned. + +@param hist Histogram. +@param min_value Pointer to the minimum value of the histogram. +@param max_value Pointer to the maximum value of the histogram. +@param min_idx Pointer to the array of coordinates for the minimum. +@param max_idx Pointer to the array of coordinates for the maximum. + */ +CVAPI(void) cvGetMinMaxHistValue( const CvHistogram* hist, + float* min_value, float* max_value, + int* min_idx CV_DEFAULT(NULL), + int* max_idx CV_DEFAULT(NULL)); + + +/** @brief Normalizes the histogram. + +The function normalizes the histogram bins by scaling them so that the sum of the bins becomes equal +to factor. + +@param hist Pointer to the histogram. +@param factor Normalization factor. + */ +CVAPI(void) cvNormalizeHist( CvHistogram* hist, double factor ); + + +/** @brief Thresholds the histogram. + +The function clears histogram bins that are below the specified threshold. + +@param hist Pointer to the histogram. +@param threshold Threshold level. + */ +CVAPI(void) cvThreshHist( CvHistogram* hist, double threshold ); + + +/** Compares two histogram */ +CVAPI(double) cvCompareHist( const CvHistogram* hist1, + const CvHistogram* hist2, + int method); + +/** @brief Copies a histogram. + +The function makes a copy of the histogram. If the second histogram pointer \*dst is NULL, a new +histogram of the same size as src is created. Otherwise, both histograms must have equal types and +sizes. Then the function copies the bin values of the source histogram to the destination histogram +and sets the same bin value ranges as in src. + +@param src Source histogram. +@param dst Pointer to the destination histogram. + */ +CVAPI(void) cvCopyHist( const CvHistogram* src, CvHistogram** dst ); + + +/** @brief Calculates bayesian probabilistic histograms + (each or src and dst is an array of _number_ histograms */ +CVAPI(void) cvCalcBayesianProb( CvHistogram** src, int number, + CvHistogram** dst); + +/** @brief Calculates array histogram +@see cv::calcHist +*/ +CVAPI(void) cvCalcArrHist( CvArr** arr, CvHistogram* hist, + int accumulate CV_DEFAULT(0), + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @overload */ +CV_INLINE void cvCalcHist( IplImage** image, CvHistogram* hist, + int accumulate CV_DEFAULT(0), + const CvArr* mask CV_DEFAULT(NULL) ) +{ + cvCalcArrHist( (CvArr**)image, hist, accumulate, mask ); +} + +/** @brief Calculates back project +@see cvCalcBackProject, cv::calcBackProject +*/ +CVAPI(void) cvCalcArrBackProject( CvArr** image, CvArr* dst, + const CvHistogram* hist ); + +#define cvCalcBackProject(image, dst, hist) cvCalcArrBackProject((CvArr**)image, dst, hist) + + +/** @brief Locates a template within an image by using a histogram comparison. + +The function calculates the back projection by comparing histograms of the source image patches with +the given histogram. The function is similar to matchTemplate, but instead of comparing the raster +patch with all its possible positions within the search window, the function CalcBackProjectPatch +compares histograms. See the algorithm diagram below: + +![image](pics/backprojectpatch.png) + +@param image Source images (though, you may pass CvMat\*\* as well). +@param dst Destination image. +@param range +@param hist Histogram. +@param method Comparison method passed to cvCompareHist (see the function description). +@param factor Normalization factor for histograms that affects the normalization scale of the +destination image. Pass 1 if not sure. + +@see cvCalcBackProjectPatch + */ +CVAPI(void) cvCalcArrBackProjectPatch( CvArr** image, CvArr* dst, CvSize range, + CvHistogram* hist, int method, + double factor ); + +#define cvCalcBackProjectPatch( image, dst, range, hist, method, factor ) \ + cvCalcArrBackProjectPatch( (CvArr**)image, dst, range, hist, method, factor ) + + +/** @brief Divides one histogram by another. + +The function calculates the object probability density from two histograms as: + +\f[\texttt{disthist} (I)= \forkthree{0}{if \(\texttt{hist1}(I)=0\)}{\texttt{scale}}{if \(\texttt{hist1}(I) \ne 0\) and \(\texttt{hist2}(I) > \texttt{hist1}(I)\)}{\frac{\texttt{hist2}(I) \cdot \texttt{scale}}{\texttt{hist1}(I)}}{if \(\texttt{hist1}(I) \ne 0\) and \(\texttt{hist2}(I) \le \texttt{hist1}(I)\)}\f] + +@param hist1 First histogram (the divisor). +@param hist2 Second histogram. +@param dst_hist Destination histogram. +@param scale Scale factor for the destination histogram. + */ +CVAPI(void) cvCalcProbDensity( const CvHistogram* hist1, const CvHistogram* hist2, + CvHistogram* dst_hist, double scale CV_DEFAULT(255) ); + +/** @brief equalizes histogram of 8-bit single-channel image +@see cv::equalizeHist +*/ +CVAPI(void) cvEqualizeHist( const CvArr* src, CvArr* dst ); + + +/** @brief Applies distance transform to binary image +@see cv::distanceTransform +*/ +CVAPI(void) cvDistTransform( const CvArr* src, CvArr* dst, + int distance_type CV_DEFAULT(CV_DIST_L2), + int mask_size CV_DEFAULT(3), + const float* mask CV_DEFAULT(NULL), + CvArr* labels CV_DEFAULT(NULL), + int labelType CV_DEFAULT(CV_DIST_LABEL_CCOMP)); + + +/** @brief Applies fixed-level threshold to grayscale image. + + This is a basic operation applied before retrieving contours +@see cv::threshold +*/ +CVAPI(double) cvThreshold( const CvArr* src, CvArr* dst, + double threshold, double max_value, + int threshold_type ); + +/** @brief Applies adaptive threshold to grayscale image. + + The two parameters for methods CV_ADAPTIVE_THRESH_MEAN_C and + CV_ADAPTIVE_THRESH_GAUSSIAN_C are: + neighborhood size (3, 5, 7 etc.), + and a constant subtracted from mean (...,-3,-2,-1,0,1,2,3,...) +@see cv::adaptiveThreshold +*/ +CVAPI(void) cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double max_value, + int adaptive_method CV_DEFAULT(CV_ADAPTIVE_THRESH_MEAN_C), + int threshold_type CV_DEFAULT(CV_THRESH_BINARY), + int block_size CV_DEFAULT(3), + double param1 CV_DEFAULT(5)); + +/** @brief Fills the connected component until the color difference gets large enough +@see cv::floodFill +*/ +CVAPI(void) cvFloodFill( CvArr* image, CvPoint seed_point, + CvScalar new_val, CvScalar lo_diff CV_DEFAULT(cvScalarAll(0)), + CvScalar up_diff CV_DEFAULT(cvScalarAll(0)), + CvConnectedComp* comp CV_DEFAULT(NULL), + int flags CV_DEFAULT(4), + CvArr* mask CV_DEFAULT(NULL)); + +/****************************************************************************************\ +* Feature detection * +\****************************************************************************************/ + +/** @brief Runs canny edge detector +@see cv::Canny +*/ +CVAPI(void) cvCanny( const CvArr* image, CvArr* edges, double threshold1, + double threshold2, int aperture_size CV_DEFAULT(3) ); + +/** @brief Calculates constraint image for corner detection + + Dx^2 * Dyy + Dxx * Dy^2 - 2 * Dx * Dy * Dxy. + Applying threshold to the result gives coordinates of corners +@see cv::preCornerDetect +*/ +CVAPI(void) cvPreCornerDetect( const CvArr* image, CvArr* corners, + int aperture_size CV_DEFAULT(3) ); + +/** @brief Calculates eigen values and vectors of 2x2 + gradient covariation matrix at every image pixel +@see cv::cornerEigenValsAndVecs +*/ +CVAPI(void) cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv, + int block_size, int aperture_size CV_DEFAULT(3) ); + +/** @brief Calculates minimal eigenvalue for 2x2 gradient covariation matrix at + every image pixel +@see cv::cornerMinEigenVal +*/ +CVAPI(void) cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval, + int block_size, int aperture_size CV_DEFAULT(3) ); + +/** @brief Harris corner detector: + + Calculates det(M) - k*(trace(M)^2), where M is 2x2 gradient covariation matrix for each pixel +@see cv::cornerHarris +*/ +CVAPI(void) cvCornerHarris( const CvArr* image, CvArr* harris_response, + int block_size, int aperture_size CV_DEFAULT(3), + double k CV_DEFAULT(0.04) ); + +/** @brief Adjust corner position using some sort of gradient search +@see cv::cornerSubPix +*/ +CVAPI(void) cvFindCornerSubPix( const CvArr* image, CvPoint2D32f* corners, + int count, CvSize win, CvSize zero_zone, + CvTermCriteria criteria ); + +/** @brief Finds a sparse set of points within the selected region + that seem to be easy to track +@see cv::goodFeaturesToTrack +*/ +CVAPI(void) cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image, + CvArr* temp_image, CvPoint2D32f* corners, + int* corner_count, double quality_level, + double min_distance, + const CvArr* mask CV_DEFAULT(NULL), + int block_size CV_DEFAULT(3), + int use_harris CV_DEFAULT(0), + double k CV_DEFAULT(0.04) ); + +/** @brief Finds lines on binary image using one of several methods. + + line_storage is either memory storage or 1 x _max number of lines_ CvMat, its + number of columns is changed by the function. + method is one of CV_HOUGH_*; + rho, theta and threshold are used for each of those methods; + param1 ~ line length, param2 ~ line gap - for probabilistic, + param1 ~ srn, param2 ~ stn - for multi-scale +@see cv::HoughLines +*/ +CVAPI(CvSeq*) cvHoughLines2( CvArr* image, void* line_storage, int method, + double rho, double theta, int threshold, + double param1 CV_DEFAULT(0), double param2 CV_DEFAULT(0), + double min_theta CV_DEFAULT(0), double max_theta CV_DEFAULT(CV_PI)); + +/** @brief Finds circles in the image +@see cv::HoughCircles +*/ +CVAPI(CvSeq*) cvHoughCircles( CvArr* image, void* circle_storage, + int method, double dp, double min_dist, + double param1 CV_DEFAULT(100), + double param2 CV_DEFAULT(100), + int min_radius CV_DEFAULT(0), + int max_radius CV_DEFAULT(0)); + +/** @brief Fits a line into set of 2d or 3d points in a robust way (M-estimator technique) +@see cv::fitLine +*/ +CVAPI(void) cvFitLine( const CvArr* points, int dist_type, double param, + double reps, double aeps, float* line ); + +/****************************************************************************************\ +* Drawing * +\****************************************************************************************/ + +/****************************************************************************************\ +* Drawing functions work with images/matrices of arbitrary type. * +* For color images the channel order is BGR[A] * +* Antialiasing is supported only for 8-bit image now. * +* All the functions include parameter color that means rgb value (that may be * +* constructed with CV_RGB macro) for color images and brightness * +* for grayscale images. * +* If a drawn figure is partially or completely outside of the image, it is clipped.* +\****************************************************************************************/ + +#define CV_RGB( r, g, b ) cvScalar( (b), (g), (r), 0 ) +#define CV_FILLED -1 + +#define CV_AA 16 + +/** @brief Draws 4-connected, 8-connected or antialiased line segment connecting two points +@see cv::line +*/ +CVAPI(void) cvLine( CvArr* img, CvPoint pt1, CvPoint pt2, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) ); + +/** @brief Draws a rectangle given two opposite corners of the rectangle (pt1 & pt2) + + if thickness<0 (e.g. thickness == CV_FILLED), the filled box is drawn +@see cv::rectangle +*/ +CVAPI(void) cvRectangle( CvArr* img, CvPoint pt1, CvPoint pt2, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), + int shift CV_DEFAULT(0)); + +/** @brief Draws a rectangle specified by a CvRect structure +@see cv::rectangle +*/ +CVAPI(void) cvRectangleR( CvArr* img, CvRect r, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), + int shift CV_DEFAULT(0)); + + +/** @brief Draws a circle with specified center and radius. + + Thickness works in the same way as with cvRectangle +@see cv::circle +*/ +CVAPI(void) cvCircle( CvArr* img, CvPoint center, int radius, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0)); + +/** @brief Draws ellipse outline, filled ellipse, elliptic arc or filled elliptic sector + + depending on _thickness_, _start_angle_ and _end_angle_ parameters. The resultant figure + is rotated by _angle_. All the angles are in degrees +@see cv::ellipse +*/ +CVAPI(void) cvEllipse( CvArr* img, CvPoint center, CvSize axes, + double angle, double start_angle, double end_angle, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0)); + +CV_INLINE void cvEllipseBox( CvArr* img, CvBox2D box, CvScalar color, + int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) ) +{ + CvSize axes; + axes.width = cvRound(box.size.width*0.5); + axes.height = cvRound(box.size.height*0.5); + + cvEllipse( img, cvPointFrom32f( box.center ), axes, box.angle, + 0, 360, color, thickness, line_type, shift ); +} + +/** @brief Fills convex or monotonous polygon. +@see cv::fillConvexPoly +*/ +CVAPI(void) cvFillConvexPoly( CvArr* img, const CvPoint* pts, int npts, CvScalar color, + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0)); + +/** @brief Fills an area bounded by one or more arbitrary polygons +@see cv::fillPoly +*/ +CVAPI(void) cvFillPoly( CvArr* img, CvPoint** pts, const int* npts, + int contours, CvScalar color, + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) ); + +/** @brief Draws one or more polygonal curves +@see cv::polylines +*/ +CVAPI(void) cvPolyLine( CvArr* img, CvPoint** pts, const int* npts, int contours, + int is_closed, CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) ); + +#define cvDrawRect cvRectangle +#define cvDrawLine cvLine +#define cvDrawCircle cvCircle +#define cvDrawEllipse cvEllipse +#define cvDrawPolyLine cvPolyLine + +/** @brief Clips the line segment connecting *pt1 and *pt2 + by the rectangular window + + (0<=x<img_size.width, 0<=y<img_size.height). +@see cv::clipLine +*/ +CVAPI(int) cvClipLine( CvSize img_size, CvPoint* pt1, CvPoint* pt2 ); + +/** @brief Initializes line iterator. + +Initially, line_iterator->ptr will point to pt1 (or pt2, see left_to_right description) location in +the image. Returns the number of pixels on the line between the ending points. +@see cv::LineIterator +*/ +CVAPI(int) cvInitLineIterator( const CvArr* image, CvPoint pt1, CvPoint pt2, + CvLineIterator* line_iterator, + int connectivity CV_DEFAULT(8), + int left_to_right CV_DEFAULT(0)); + +#define CV_NEXT_LINE_POINT( line_iterator ) \ +{ \ + int _line_iterator_mask = (line_iterator).err < 0 ? -1 : 0; \ + (line_iterator).err += (line_iterator).minus_delta + \ + ((line_iterator).plus_delta & _line_iterator_mask); \ + (line_iterator).ptr += (line_iterator).minus_step + \ + ((line_iterator).plus_step & _line_iterator_mask); \ +} + + +#define CV_FONT_HERSHEY_SIMPLEX 0 +#define CV_FONT_HERSHEY_PLAIN 1 +#define CV_FONT_HERSHEY_DUPLEX 2 +#define CV_FONT_HERSHEY_COMPLEX 3 +#define CV_FONT_HERSHEY_TRIPLEX 4 +#define CV_FONT_HERSHEY_COMPLEX_SMALL 5 +#define CV_FONT_HERSHEY_SCRIPT_SIMPLEX 6 +#define CV_FONT_HERSHEY_SCRIPT_COMPLEX 7 + +#define CV_FONT_ITALIC 16 + +#define CV_FONT_VECTOR0 CV_FONT_HERSHEY_SIMPLEX + + +/** Font structure */ +typedef struct CvFont +{ + const char* nameFont; //Qt:nameFont + CvScalar color; //Qt:ColorFont -> cvScalar(blue_component, green_component, red_component[, alpha_component]) + int font_face; //Qt: bool italic /** =CV_FONT_* */ + const int* ascii; //!< font data and metrics + const int* greek; + const int* cyrillic; + float hscale, vscale; + float shear; //!< slope coefficient: 0 - normal, >0 - italic + int thickness; //!< Qt: weight /** letters thickness */ + float dx; //!< horizontal interval between letters + int line_type; //!< Qt: PointSize +} +CvFont; + +/** @brief Initializes font structure (OpenCV 1.x API). + +The function initializes the font structure that can be passed to text rendering functions. + +@param font Pointer to the font structure initialized by the function +@param font_face Font name identifier. See cv::HersheyFonts and corresponding old CV_* identifiers. +@param hscale Horizontal scale. If equal to 1.0f , the characters have the original width +depending on the font type. If equal to 0.5f , the characters are of half the original width. +@param vscale Vertical scale. If equal to 1.0f , the characters have the original height depending +on the font type. If equal to 0.5f , the characters are of half the original height. +@param shear Approximate tangent of the character slope relative to the vertical line. A zero +value means a non-italic font, 1.0f means about a 45 degree slope, etc. +@param thickness Thickness of the text strokes +@param line_type Type of the strokes, see line description + +@sa cvPutText + */ +CVAPI(void) cvInitFont( CvFont* font, int font_face, + double hscale, double vscale, + double shear CV_DEFAULT(0), + int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8)); + +CV_INLINE CvFont cvFont( double scale, int thickness CV_DEFAULT(1) ) +{ + CvFont font; + cvInitFont( &font, CV_FONT_HERSHEY_PLAIN, scale, scale, 0, thickness, CV_AA ); + return font; +} + +/** @brief Renders text stroke with specified font and color at specified location. + CvFont should be initialized with cvInitFont +@see cvInitFont, cvGetTextSize, cvFont, cv::putText +*/ +CVAPI(void) cvPutText( CvArr* img, const char* text, CvPoint org, + const CvFont* font, CvScalar color ); + +/** @brief Calculates bounding box of text stroke (useful for alignment) +@see cv::getTextSize +*/ +CVAPI(void) cvGetTextSize( const char* text_string, const CvFont* font, + CvSize* text_size, int* baseline ); + +/** @brief Unpacks color value + +if arrtype is CV_8UC?, _color_ is treated as packed color value, otherwise the first channels +(depending on arrtype) of destination scalar are set to the same value = _color_ +*/ +CVAPI(CvScalar) cvColorToScalar( double packed_color, int arrtype ); + +/** @brief Returns the polygon points which make up the given ellipse. + +The ellipse is define by the box of size 'axes' rotated 'angle' around the 'center'. A partial +sweep of the ellipse arc can be done by spcifying arc_start and arc_end to be something other than +0 and 360, respectively. The input array 'pts' must be large enough to hold the result. The total +number of points stored into 'pts' is returned by this function. +@see cv::ellipse2Poly +*/ +CVAPI(int) cvEllipse2Poly( CvPoint center, CvSize axes, + int angle, int arc_start, int arc_end, CvPoint * pts, int delta ); + +/** @brief Draws contour outlines or filled interiors on the image +@see cv::drawContours +*/ +CVAPI(void) cvDrawContours( CvArr *img, CvSeq* contour, + CvScalar external_color, CvScalar hole_color, + int max_level, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), + CvPoint offset CV_DEFAULT(cvPoint(0,0))); + +/** @} */ + +#ifdef __cplusplus +} +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/imgproc/types_c.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,626 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGPROC_TYPES_C_H +#define OPENCV_IMGPROC_TYPES_C_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup imgproc_c + @{ +*/ + +/** Connected component structure */ +typedef struct CvConnectedComp +{ + double area; /**<area of the connected component */ + CvScalar value; /**<average color of the connected component */ + CvRect rect; /**<ROI of the component */ + CvSeq* contour; /**<optional component boundary + (the contour might have child contours corresponding to the holes)*/ +} +CvConnectedComp; + +/** Image smooth methods */ +enum SmoothMethod_c +{ + /** linear convolution with \f$\texttt{size1}\times\texttt{size2}\f$ box kernel (all 1's). If + you want to smooth different pixels with different-size box kernels, you can use the integral + image that is computed using integral */ + CV_BLUR_NO_SCALE =0, + /** linear convolution with \f$\texttt{size1}\times\texttt{size2}\f$ box kernel (all + 1's) with subsequent scaling by \f$1/(\texttt{size1}\cdot\texttt{size2})\f$ */ + CV_BLUR =1, + /** linear convolution with a \f$\texttt{size1}\times\texttt{size2}\f$ Gaussian kernel */ + CV_GAUSSIAN =2, + /** median filter with a \f$\texttt{size1}\times\texttt{size1}\f$ square aperture */ + CV_MEDIAN =3, + /** bilateral filter with a \f$\texttt{size1}\times\texttt{size1}\f$ square aperture, color + sigma= sigma1 and spatial sigma= sigma2. If size1=0, the aperture square side is set to + cvRound(sigma2\*1.5)\*2+1. See cv::bilateralFilter */ + CV_BILATERAL =4 +}; + +/** Filters used in pyramid decomposition */ +enum +{ + CV_GAUSSIAN_5x5 = 7 +}; + +/** Special filters */ +enum +{ + CV_SCHARR =-1, + CV_MAX_SOBEL_KSIZE =7 +}; + +/** Constants for color conversion */ +enum +{ + CV_BGR2BGRA =0, + CV_RGB2RGBA =CV_BGR2BGRA, + + CV_BGRA2BGR =1, + CV_RGBA2RGB =CV_BGRA2BGR, + + CV_BGR2RGBA =2, + CV_RGB2BGRA =CV_BGR2RGBA, + + CV_RGBA2BGR =3, + CV_BGRA2RGB =CV_RGBA2BGR, + + CV_BGR2RGB =4, + CV_RGB2BGR =CV_BGR2RGB, + + CV_BGRA2RGBA =5, + CV_RGBA2BGRA =CV_BGRA2RGBA, + + CV_BGR2GRAY =6, + CV_RGB2GRAY =7, + CV_GRAY2BGR =8, + CV_GRAY2RGB =CV_GRAY2BGR, + CV_GRAY2BGRA =9, + CV_GRAY2RGBA =CV_GRAY2BGRA, + CV_BGRA2GRAY =10, + CV_RGBA2GRAY =11, + + CV_BGR2BGR565 =12, + CV_RGB2BGR565 =13, + CV_BGR5652BGR =14, + CV_BGR5652RGB =15, + CV_BGRA2BGR565 =16, + CV_RGBA2BGR565 =17, + CV_BGR5652BGRA =18, + CV_BGR5652RGBA =19, + + CV_GRAY2BGR565 =20, + CV_BGR5652GRAY =21, + + CV_BGR2BGR555 =22, + CV_RGB2BGR555 =23, + CV_BGR5552BGR =24, + CV_BGR5552RGB =25, + CV_BGRA2BGR555 =26, + CV_RGBA2BGR555 =27, + CV_BGR5552BGRA =28, + CV_BGR5552RGBA =29, + + CV_GRAY2BGR555 =30, + CV_BGR5552GRAY =31, + + CV_BGR2XYZ =32, + CV_RGB2XYZ =33, + CV_XYZ2BGR =34, + CV_XYZ2RGB =35, + + CV_BGR2YCrCb =36, + CV_RGB2YCrCb =37, + CV_YCrCb2BGR =38, + CV_YCrCb2RGB =39, + + CV_BGR2HSV =40, + CV_RGB2HSV =41, + + CV_BGR2Lab =44, + CV_RGB2Lab =45, + + CV_BayerBG2BGR =46, + CV_BayerGB2BGR =47, + CV_BayerRG2BGR =48, + CV_BayerGR2BGR =49, + + CV_BayerBG2RGB =CV_BayerRG2BGR, + CV_BayerGB2RGB =CV_BayerGR2BGR, + CV_BayerRG2RGB =CV_BayerBG2BGR, + CV_BayerGR2RGB =CV_BayerGB2BGR, + + CV_BGR2Luv =50, + CV_RGB2Luv =51, + CV_BGR2HLS =52, + CV_RGB2HLS =53, + + CV_HSV2BGR =54, + CV_HSV2RGB =55, + + CV_Lab2BGR =56, + CV_Lab2RGB =57, + CV_Luv2BGR =58, + CV_Luv2RGB =59, + CV_HLS2BGR =60, + CV_HLS2RGB =61, + + CV_BayerBG2BGR_VNG =62, + CV_BayerGB2BGR_VNG =63, + CV_BayerRG2BGR_VNG =64, + CV_BayerGR2BGR_VNG =65, + + CV_BayerBG2RGB_VNG =CV_BayerRG2BGR_VNG, + CV_BayerGB2RGB_VNG =CV_BayerGR2BGR_VNG, + CV_BayerRG2RGB_VNG =CV_BayerBG2BGR_VNG, + CV_BayerGR2RGB_VNG =CV_BayerGB2BGR_VNG, + + CV_BGR2HSV_FULL = 66, + CV_RGB2HSV_FULL = 67, + CV_BGR2HLS_FULL = 68, + CV_RGB2HLS_FULL = 69, + + CV_HSV2BGR_FULL = 70, + CV_HSV2RGB_FULL = 71, + CV_HLS2BGR_FULL = 72, + CV_HLS2RGB_FULL = 73, + + CV_LBGR2Lab = 74, + CV_LRGB2Lab = 75, + CV_LBGR2Luv = 76, + CV_LRGB2Luv = 77, + + CV_Lab2LBGR = 78, + CV_Lab2LRGB = 79, + CV_Luv2LBGR = 80, + CV_Luv2LRGB = 81, + + CV_BGR2YUV = 82, + CV_RGB2YUV = 83, + CV_YUV2BGR = 84, + CV_YUV2RGB = 85, + + CV_BayerBG2GRAY = 86, + CV_BayerGB2GRAY = 87, + CV_BayerRG2GRAY = 88, + CV_BayerGR2GRAY = 89, + + //YUV 4:2:0 formats family + CV_YUV2RGB_NV12 = 90, + CV_YUV2BGR_NV12 = 91, + CV_YUV2RGB_NV21 = 92, + CV_YUV2BGR_NV21 = 93, + CV_YUV420sp2RGB = CV_YUV2RGB_NV21, + CV_YUV420sp2BGR = CV_YUV2BGR_NV21, + + CV_YUV2RGBA_NV12 = 94, + CV_YUV2BGRA_NV12 = 95, + CV_YUV2RGBA_NV21 = 96, + CV_YUV2BGRA_NV21 = 97, + CV_YUV420sp2RGBA = CV_YUV2RGBA_NV21, + CV_YUV420sp2BGRA = CV_YUV2BGRA_NV21, + + CV_YUV2RGB_YV12 = 98, + CV_YUV2BGR_YV12 = 99, + CV_YUV2RGB_IYUV = 100, + CV_YUV2BGR_IYUV = 101, + CV_YUV2RGB_I420 = CV_YUV2RGB_IYUV, + CV_YUV2BGR_I420 = CV_YUV2BGR_IYUV, + CV_YUV420p2RGB = CV_YUV2RGB_YV12, + CV_YUV420p2BGR = CV_YUV2BGR_YV12, + + CV_YUV2RGBA_YV12 = 102, + CV_YUV2BGRA_YV12 = 103, + CV_YUV2RGBA_IYUV = 104, + CV_YUV2BGRA_IYUV = 105, + CV_YUV2RGBA_I420 = CV_YUV2RGBA_IYUV, + CV_YUV2BGRA_I420 = CV_YUV2BGRA_IYUV, + CV_YUV420p2RGBA = CV_YUV2RGBA_YV12, + CV_YUV420p2BGRA = CV_YUV2BGRA_YV12, + + CV_YUV2GRAY_420 = 106, + CV_YUV2GRAY_NV21 = CV_YUV2GRAY_420, + CV_YUV2GRAY_NV12 = CV_YUV2GRAY_420, + CV_YUV2GRAY_YV12 = CV_YUV2GRAY_420, + CV_YUV2GRAY_IYUV = CV_YUV2GRAY_420, + CV_YUV2GRAY_I420 = CV_YUV2GRAY_420, + CV_YUV420sp2GRAY = CV_YUV2GRAY_420, + CV_YUV420p2GRAY = CV_YUV2GRAY_420, + + //YUV 4:2:2 formats family + CV_YUV2RGB_UYVY = 107, + CV_YUV2BGR_UYVY = 108, + //CV_YUV2RGB_VYUY = 109, + //CV_YUV2BGR_VYUY = 110, + CV_YUV2RGB_Y422 = CV_YUV2RGB_UYVY, + CV_YUV2BGR_Y422 = CV_YUV2BGR_UYVY, + CV_YUV2RGB_UYNV = CV_YUV2RGB_UYVY, + CV_YUV2BGR_UYNV = CV_YUV2BGR_UYVY, + + CV_YUV2RGBA_UYVY = 111, + CV_YUV2BGRA_UYVY = 112, + //CV_YUV2RGBA_VYUY = 113, + //CV_YUV2BGRA_VYUY = 114, + CV_YUV2RGBA_Y422 = CV_YUV2RGBA_UYVY, + CV_YUV2BGRA_Y422 = CV_YUV2BGRA_UYVY, + CV_YUV2RGBA_UYNV = CV_YUV2RGBA_UYVY, + CV_YUV2BGRA_UYNV = CV_YUV2BGRA_UYVY, + + CV_YUV2RGB_YUY2 = 115, + CV_YUV2BGR_YUY2 = 116, + CV_YUV2RGB_YVYU = 117, + CV_YUV2BGR_YVYU = 118, + CV_YUV2RGB_YUYV = CV_YUV2RGB_YUY2, + CV_YUV2BGR_YUYV = CV_YUV2BGR_YUY2, + CV_YUV2RGB_YUNV = CV_YUV2RGB_YUY2, + CV_YUV2BGR_YUNV = CV_YUV2BGR_YUY2, + + CV_YUV2RGBA_YUY2 = 119, + CV_YUV2BGRA_YUY2 = 120, + CV_YUV2RGBA_YVYU = 121, + CV_YUV2BGRA_YVYU = 122, + CV_YUV2RGBA_YUYV = CV_YUV2RGBA_YUY2, + CV_YUV2BGRA_YUYV = CV_YUV2BGRA_YUY2, + CV_YUV2RGBA_YUNV = CV_YUV2RGBA_YUY2, + CV_YUV2BGRA_YUNV = CV_YUV2BGRA_YUY2, + + CV_YUV2GRAY_UYVY = 123, + CV_YUV2GRAY_YUY2 = 124, + //CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY, + CV_YUV2GRAY_Y422 = CV_YUV2GRAY_UYVY, + CV_YUV2GRAY_UYNV = CV_YUV2GRAY_UYVY, + CV_YUV2GRAY_YVYU = CV_YUV2GRAY_YUY2, + CV_YUV2GRAY_YUYV = CV_YUV2GRAY_YUY2, + CV_YUV2GRAY_YUNV = CV_YUV2GRAY_YUY2, + + // alpha premultiplication + CV_RGBA2mRGBA = 125, + CV_mRGBA2RGBA = 126, + + CV_RGB2YUV_I420 = 127, + CV_BGR2YUV_I420 = 128, + CV_RGB2YUV_IYUV = CV_RGB2YUV_I420, + CV_BGR2YUV_IYUV = CV_BGR2YUV_I420, + + CV_RGBA2YUV_I420 = 129, + CV_BGRA2YUV_I420 = 130, + CV_RGBA2YUV_IYUV = CV_RGBA2YUV_I420, + CV_BGRA2YUV_IYUV = CV_BGRA2YUV_I420, + CV_RGB2YUV_YV12 = 131, + CV_BGR2YUV_YV12 = 132, + CV_RGBA2YUV_YV12 = 133, + CV_BGRA2YUV_YV12 = 134, + + // Edge-Aware Demosaicing + CV_BayerBG2BGR_EA = 135, + CV_BayerGB2BGR_EA = 136, + CV_BayerRG2BGR_EA = 137, + CV_BayerGR2BGR_EA = 138, + + CV_BayerBG2RGB_EA = CV_BayerRG2BGR_EA, + CV_BayerGB2RGB_EA = CV_BayerGR2BGR_EA, + CV_BayerRG2RGB_EA = CV_BayerBG2BGR_EA, + CV_BayerGR2RGB_EA = CV_BayerGB2BGR_EA, + + CV_COLORCVT_MAX = 139 +}; + + +/** Sub-pixel interpolation methods */ +enum +{ + CV_INTER_NN =0, + CV_INTER_LINEAR =1, + CV_INTER_CUBIC =2, + CV_INTER_AREA =3, + CV_INTER_LANCZOS4 =4 +}; + +/** ... and other image warping flags */ +enum +{ + CV_WARP_FILL_OUTLIERS =8, + CV_WARP_INVERSE_MAP =16 +}; + +/** Shapes of a structuring element for morphological operations +@see cv::MorphShapes, cv::getStructuringElement +*/ +enum MorphShapes_c +{ + CV_SHAPE_RECT =0, + CV_SHAPE_CROSS =1, + CV_SHAPE_ELLIPSE =2, + CV_SHAPE_CUSTOM =100 //!< custom structuring element +}; + +/** Morphological operations */ +enum +{ + CV_MOP_ERODE =0, + CV_MOP_DILATE =1, + CV_MOP_OPEN =2, + CV_MOP_CLOSE =3, + CV_MOP_GRADIENT =4, + CV_MOP_TOPHAT =5, + CV_MOP_BLACKHAT =6 +}; + +/** Spatial and central moments */ +typedef struct CvMoments +{ + double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; /**< spatial moments */ + double mu20, mu11, mu02, mu30, mu21, mu12, mu03; /**< central moments */ + double inv_sqrt_m00; /**< m00 != 0 ? 1/sqrt(m00) : 0 */ + +#ifdef __cplusplus + CvMoments(){} + CvMoments(const cv::Moments& m) + { + m00 = m.m00; m10 = m.m10; m01 = m.m01; + m20 = m.m20; m11 = m.m11; m02 = m.m02; + m30 = m.m30; m21 = m.m21; m12 = m.m12; m03 = m.m03; + mu20 = m.mu20; mu11 = m.mu11; mu02 = m.mu02; + mu30 = m.mu30; mu21 = m.mu21; mu12 = m.mu12; mu03 = m.mu03; + double am00 = std::abs(m.m00); + inv_sqrt_m00 = am00 > DBL_EPSILON ? 1./std::sqrt(am00) : 0; + } + operator cv::Moments() const + { + return cv::Moments(m00, m10, m01, m20, m11, m02, m30, m21, m12, m03); + } +#endif +} +CvMoments; + +/** Hu invariants */ +typedef struct CvHuMoments +{ + double hu1, hu2, hu3, hu4, hu5, hu6, hu7; /**< Hu invariants */ +} +CvHuMoments; + +/** Template matching methods */ +enum +{ + CV_TM_SQDIFF =0, + CV_TM_SQDIFF_NORMED =1, + CV_TM_CCORR =2, + CV_TM_CCORR_NORMED =3, + CV_TM_CCOEFF =4, + CV_TM_CCOEFF_NORMED =5 +}; + +typedef float (CV_CDECL * CvDistanceFunction)( const float* a, const float* b, void* user_param ); + +/** Contour retrieval modes */ +enum +{ + CV_RETR_EXTERNAL=0, + CV_RETR_LIST=1, + CV_RETR_CCOMP=2, + CV_RETR_TREE=3, + CV_RETR_FLOODFILL=4 +}; + +/** Contour approximation methods */ +enum +{ + CV_CHAIN_CODE=0, + CV_CHAIN_APPROX_NONE=1, + CV_CHAIN_APPROX_SIMPLE=2, + CV_CHAIN_APPROX_TC89_L1=3, + CV_CHAIN_APPROX_TC89_KCOS=4, + CV_LINK_RUNS=5 +}; + +/* +Internal structure that is used for sequential retrieving contours from the image. +It supports both hierarchical and plane variants of Suzuki algorithm. +*/ +typedef struct _CvContourScanner* CvContourScanner; + +/** Freeman chain reader state */ +typedef struct CvChainPtReader +{ + CV_SEQ_READER_FIELDS() + char code; + CvPoint pt; + schar deltas[8][2]; +} +CvChainPtReader; + +/** initializes 8-element array for fast access to 3x3 neighborhood of a pixel */ +#define CV_INIT_3X3_DELTAS( deltas, step, nch ) \ + ((deltas)[0] = (nch), (deltas)[1] = -(step) + (nch), \ + (deltas)[2] = -(step), (deltas)[3] = -(step) - (nch), \ + (deltas)[4] = -(nch), (deltas)[5] = (step) - (nch), \ + (deltas)[6] = (step), (deltas)[7] = (step) + (nch)) + + +/** Contour approximation algorithms */ +enum +{ + CV_POLY_APPROX_DP = 0 +}; + +/** @brief Shape matching methods + +\f$A\f$ denotes object1,\f$B\f$ denotes object2 + +\f$\begin{array}{l} m^A_i = \mathrm{sign} (h^A_i) \cdot \log{h^A_i} \\ m^B_i = \mathrm{sign} (h^B_i) \cdot \log{h^B_i} \end{array}\f$ + +and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively. +*/ +enum ShapeMatchModes +{ + CV_CONTOURS_MATCH_I1 =1, //!< \f[I_1(A,B) = \sum _{i=1...7} \left | \frac{1}{m^A_i} - \frac{1}{m^B_i} \right |\f] + CV_CONTOURS_MATCH_I2 =2, //!< \f[I_2(A,B) = \sum _{i=1...7} \left | m^A_i - m^B_i \right |\f] + CV_CONTOURS_MATCH_I3 =3 //!< \f[I_3(A,B) = \max _{i=1...7} \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f] +}; + +/** Shape orientation */ +enum +{ + CV_CLOCKWISE =1, + CV_COUNTER_CLOCKWISE =2 +}; + + +/** Convexity defect */ +typedef struct CvConvexityDefect +{ + CvPoint* start; /**< point of the contour where the defect begins */ + CvPoint* end; /**< point of the contour where the defect ends */ + CvPoint* depth_point; /**< the farthest from the convex hull point within the defect */ + float depth; /**< distance between the farthest point and the convex hull */ +} CvConvexityDefect; + + +/** Histogram comparison methods */ +enum +{ + CV_COMP_CORREL =0, + CV_COMP_CHISQR =1, + CV_COMP_INTERSECT =2, + CV_COMP_BHATTACHARYYA =3, + CV_COMP_HELLINGER =CV_COMP_BHATTACHARYYA, + CV_COMP_CHISQR_ALT =4, + CV_COMP_KL_DIV =5 +}; + +/** Mask size for distance transform */ +enum +{ + CV_DIST_MASK_3 =3, + CV_DIST_MASK_5 =5, + CV_DIST_MASK_PRECISE =0 +}; + +/** Content of output label array: connected components or pixels */ +enum +{ + CV_DIST_LABEL_CCOMP = 0, + CV_DIST_LABEL_PIXEL = 1 +}; + +/** Distance types for Distance Transform and M-estimators */ +enum +{ + CV_DIST_USER =-1, /**< User defined distance */ + CV_DIST_L1 =1, /**< distance = |x1-x2| + |y1-y2| */ + CV_DIST_L2 =2, /**< the simple euclidean distance */ + CV_DIST_C =3, /**< distance = max(|x1-x2|,|y1-y2|) */ + CV_DIST_L12 =4, /**< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) */ + CV_DIST_FAIR =5, /**< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 */ + CV_DIST_WELSCH =6, /**< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 */ + CV_DIST_HUBER =7 /**< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345 */ +}; + + +/** Threshold types */ +enum +{ + CV_THRESH_BINARY =0, /**< value = value > threshold ? max_value : 0 */ + CV_THRESH_BINARY_INV =1, /**< value = value > threshold ? 0 : max_value */ + CV_THRESH_TRUNC =2, /**< value = value > threshold ? threshold : value */ + CV_THRESH_TOZERO =3, /**< value = value > threshold ? value : 0 */ + CV_THRESH_TOZERO_INV =4, /**< value = value > threshold ? 0 : value */ + CV_THRESH_MASK =7, + CV_THRESH_OTSU =8, /**< use Otsu algorithm to choose the optimal threshold value; + combine the flag with one of the above CV_THRESH_* values */ + CV_THRESH_TRIANGLE =16 /**< use Triangle algorithm to choose the optimal threshold value; + combine the flag with one of the above CV_THRESH_* values, but not + with CV_THRESH_OTSU */ +}; + +/** Adaptive threshold methods */ +enum +{ + CV_ADAPTIVE_THRESH_MEAN_C =0, + CV_ADAPTIVE_THRESH_GAUSSIAN_C =1 +}; + +/** FloodFill flags */ +enum +{ + CV_FLOODFILL_FIXED_RANGE =(1 << 16), + CV_FLOODFILL_MASK_ONLY =(1 << 17) +}; + + +/** Canny edge detector flags */ +enum +{ + CV_CANNY_L2_GRADIENT =(1 << 31) +}; + +/** Variants of a Hough transform */ +enum +{ + CV_HOUGH_STANDARD =0, + CV_HOUGH_PROBABILISTIC =1, + CV_HOUGH_MULTI_SCALE =2, + CV_HOUGH_GRADIENT =3 +}; + + +/* Fast search data structures */ +struct CvFeatureTree; +struct CvLSH; +struct CvLSHOperations; + +/** @} */ + +#ifdef __cplusplus +} +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/ml.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,1690 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_ML_HPP +#define OPENCV_ML_HPP + +#ifdef __cplusplus +# include "opencv2/core.hpp" +#endif + +#ifdef __cplusplus + +#include <float.h> +#include <map> +#include <iostream> + +/** + @defgroup ml Machine Learning + + The Machine Learning Library (MLL) is a set of classes and functions for statistical + classification, regression, and clustering of data. + + Most of the classification and regression algorithms are implemented as C++ classes. As the + algorithms have different sets of features (like an ability to handle missing measurements or + categorical input variables), there is a little common ground between the classes. This common + ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from. + + See detailed overview here: @ref ml_intro. + */ + +namespace cv +{ + +namespace ml +{ + +//! @addtogroup ml +//! @{ + +/** @brief Variable types */ +enum VariableTypes +{ + VAR_NUMERICAL =0, //!< same as VAR_ORDERED + VAR_ORDERED =0, //!< ordered variables + VAR_CATEGORICAL =1 //!< categorical variables +}; + +/** @brief %Error types */ +enum ErrorTypes +{ + TEST_ERROR = 0, + TRAIN_ERROR = 1 +}; + +/** @brief Sample types */ +enum SampleTypes +{ + ROW_SAMPLE = 0, //!< each training sample is a row of samples + COL_SAMPLE = 1 //!< each training sample occupies a column of samples +}; + +/** @brief The structure represents the logarithmic grid range of statmodel parameters. + +It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate +being computed by cross-validation. + */ +class CV_EXPORTS ParamGrid +{ +public: + /** @brief Default constructor */ + ParamGrid(); + /** @brief Constructor with parameters */ + ParamGrid(double _minVal, double _maxVal, double _logStep); + + double minVal; //!< Minimum value of the statmodel parameter. Default value is 0. + double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0. + /** @brief Logarithmic step for iterating the statmodel parameter. + + The grid determines the following iteration sequence of the statmodel parameter values: + \f[(minVal, minVal*step, minVal*{step}^2, \dots, minVal*{logStep}^n),\f] + where \f$n\f$ is the maximal index satisfying + \f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f] + The grid is logarithmic, so logStep must always be greater then 1. Default value is 1. + */ + double logStep; +}; + +/** @brief Class encapsulating training data. + +Please note that the class only specifies the interface of training data, but not implementation. +All the statistical model classes in _ml_ module accepts Ptr\<TrainData\> as parameter. In other +words, you can create your own class derived from TrainData and pass smart pointer to the instance +of this class into StatModel::train. + +@sa @ref ml_intro_data + */ +class CV_EXPORTS_W TrainData +{ +public: + static inline float missingValue() { return FLT_MAX; } + virtual ~TrainData(); + + CV_WRAP virtual int getLayout() const = 0; + CV_WRAP virtual int getNTrainSamples() const = 0; + CV_WRAP virtual int getNTestSamples() const = 0; + CV_WRAP virtual int getNSamples() const = 0; + CV_WRAP virtual int getNVars() const = 0; + CV_WRAP virtual int getNAllVars() const = 0; + + CV_WRAP virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0; + CV_WRAP virtual Mat getSamples() const = 0; + CV_WRAP virtual Mat getMissing() const = 0; + + /** @brief Returns matrix of train samples + + @param layout The requested layout. If it's different from the initial one, the matrix is + transposed. See ml::SampleTypes. + @param compressSamples if true, the function returns only the training samples (specified by + sampleIdx) + @param compressVars if true, the function returns the shorter training samples, containing only + the active variables. + + In current implementation the function tries to avoid physical data copying and returns the + matrix stored inside TrainData (unless the transposition or compression is needed). + */ + CV_WRAP virtual Mat getTrainSamples(int layout=ROW_SAMPLE, + bool compressSamples=true, + bool compressVars=true) const = 0; + + /** @brief Returns the vector of responses + + The function returns ordered or the original categorical responses. Usually it's used in + regression algorithms. + */ + CV_WRAP virtual Mat getTrainResponses() const = 0; + + /** @brief Returns the vector of normalized categorical responses + + The function returns vector of responses. Each response is integer from `0` to `<number of + classes>-1`. The actual label value can be retrieved then from the class label vector, see + TrainData::getClassLabels. + */ + CV_WRAP virtual Mat getTrainNormCatResponses() const = 0; + CV_WRAP virtual Mat getTestResponses() const = 0; + CV_WRAP virtual Mat getTestNormCatResponses() const = 0; + CV_WRAP virtual Mat getResponses() const = 0; + CV_WRAP virtual Mat getNormCatResponses() const = 0; + CV_WRAP virtual Mat getSampleWeights() const = 0; + CV_WRAP virtual Mat getTrainSampleWeights() const = 0; + CV_WRAP virtual Mat getTestSampleWeights() const = 0; + CV_WRAP virtual Mat getVarIdx() const = 0; + CV_WRAP virtual Mat getVarType() const = 0; + CV_WRAP Mat getVarSymbolFlags() const; + CV_WRAP virtual int getResponseType() const = 0; + CV_WRAP virtual Mat getTrainSampleIdx() const = 0; + CV_WRAP virtual Mat getTestSampleIdx() const = 0; + CV_WRAP virtual void getValues(int vi, InputArray sidx, float* values) const = 0; + virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0; + CV_WRAP virtual Mat getDefaultSubstValues() const = 0; + + CV_WRAP virtual int getCatCount(int vi) const = 0; + + /** @brief Returns the vector of class labels + + The function returns vector of unique labels occurred in the responses. + */ + CV_WRAP virtual Mat getClassLabels() const = 0; + + CV_WRAP virtual Mat getCatOfs() const = 0; + CV_WRAP virtual Mat getCatMap() const = 0; + + /** @brief Splits the training data into the training and test parts + @sa TrainData::setTrainTestSplitRatio + */ + CV_WRAP virtual void setTrainTestSplit(int count, bool shuffle=true) = 0; + + /** @brief Splits the training data into the training and test parts + + The function selects a subset of specified relative size and then returns it as the training + set. If the function is not called, all the data is used for training. Please, note that for + each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test + subset can be retrieved and processed as well. + @sa TrainData::setTrainTestSplit + */ + CV_WRAP virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0; + CV_WRAP virtual void shuffleTrainTest() = 0; + + /** @brief Returns matrix of test samples */ + CV_WRAP Mat getTestSamples() const; + + /** @brief Returns vector of symbolic names captured in loadFromCSV() */ + CV_WRAP void getNames(std::vector<String>& names) const; + + CV_WRAP static Mat getSubVector(const Mat& vec, const Mat& idx); + + /** @brief Reads the dataset from a .csv file and returns the ready-to-use training data. + + @param filename The input file name + @param headerLineCount The number of lines in the beginning to skip; besides the header, the + function also skips empty lines and lines staring with `#` + @param responseStartIdx Index of the first output variable. If -1, the function considers the + last variable as the response + @param responseEndIdx Index of the last output variable + 1. If -1, then there is single + response variable at responseStartIdx. + @param varTypeSpec The optional text string that specifies the variables' types. It has the + format `ord[n1-n2,n3,n4-n5,...]cat[n6,n7-n8,...]`. That is, variables from `n1 to n2` + (inclusive range), `n3`, `n4 to n5` ... are considered ordered and `n6`, `n7 to n8` ... are + considered as categorical. The range `[n1..n2] + [n3] + [n4..n5] + ... + [n6] + [n7..n8]` + should cover all the variables. If varTypeSpec is not specified, then algorithm uses the + following rules: + - all input variables are considered ordered by default. If some column contains has non- + numerical values, e.g. 'apple', 'pear', 'apple', 'apple', 'mango', the corresponding + variable is considered categorical. + - if there are several output variables, they are all considered as ordered. Error is + reported when non-numerical values are used. + - if there is a single output variable, then if its values are non-numerical or are all + integers, then it's considered categorical. Otherwise, it's considered ordered. + @param delimiter The character used to separate values in each line. + @param missch The character used to specify missing measurements. It should not be a digit. + Although it's a non-numerical value, it surely does not affect the decision of whether the + variable ordered or categorical. + @note If the dataset only contains input variables and no responses, use responseStartIdx = -2 + and responseEndIdx = 0. The output variables vector will just contain zeros. + */ + static Ptr<TrainData> loadFromCSV(const String& filename, + int headerLineCount, + int responseStartIdx=-1, + int responseEndIdx=-1, + const String& varTypeSpec=String(), + char delimiter=',', + char missch='?'); + + /** @brief Creates training data from in-memory arrays. + + @param samples matrix of samples. It should have CV_32F type. + @param layout see ml::SampleTypes. + @param responses matrix of responses. If the responses are scalar, they should be stored as a + single row or as a single column. The matrix should have type CV_32F or CV_32S (in the + former case the responses are considered as ordered by default; in the latter case - as + categorical) + @param varIdx vector specifying which variables to use for training. It can be an integer vector + (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of + active variables. + @param sampleIdx vector specifying which samples to use for training. It can be an integer + vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask + of training samples. + @param sampleWeights optional vector with weights for each sample. It should have CV_32F type. + @param varType optional vector of type CV_8U and size `<number_of_variables_in_samples> + + <number_of_variables_in_responses>`, containing types of each input and output variable. See + ml::VariableTypes. + */ + CV_WRAP static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses, + InputArray varIdx=noArray(), InputArray sampleIdx=noArray(), + InputArray sampleWeights=noArray(), InputArray varType=noArray()); +}; + +/** @brief Base class for statistical models in OpenCV ML. + */ +class CV_EXPORTS_W StatModel : public Algorithm +{ +public: + /** Predict options */ + enum Flags { + UPDATE_MODEL = 1, + RAW_OUTPUT=1, //!< makes the method return the raw results (the sum), not the class label + COMPRESSED_INPUT=2, + PREPROCESSED_INPUT=4 + }; + + /** @brief Returns the number of variables in training samples */ + CV_WRAP virtual int getVarCount() const = 0; + + CV_WRAP virtual bool empty() const; + + /** @brief Returns true if the model is trained */ + CV_WRAP virtual bool isTrained() const = 0; + /** @brief Returns true if the model is classifier */ + CV_WRAP virtual bool isClassifier() const = 0; + + /** @brief Trains the statistical model + + @param trainData training data that can be loaded from file using TrainData::loadFromCSV or + created with TrainData::create. + @param flags optional flags, depending on the model. Some of the models can be updated with the + new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). + */ + CV_WRAP virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ); + + /** @brief Trains the statistical model + + @param samples training samples + @param layout See ml::SampleTypes. + @param responses vector of responses associated with the training samples. + */ + CV_WRAP virtual bool train( InputArray samples, int layout, InputArray responses ); + + /** @brief Computes error on the training or test dataset + + @param data the training data + @param test if true, the error is computed over the test subset of the data, otherwise it's + computed over the training subset of the data. Please note that if you loaded a completely + different dataset to evaluate already trained classifier, you will probably want not to set + the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so + that the error is computed for the whole new set. Yes, this sounds a bit confusing. + @param resp the optional output responses. + + The method uses StatModel::predict to compute the error. For regression models the error is + computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%). + */ + CV_WRAP virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const; + + /** @brief Predicts response(s) for the provided sample(s) + + @param samples The input samples, floating-point matrix + @param results The optional output matrix of results. + @param flags The optional flags, model-dependent. See cv::ml::StatModel::Flags. + */ + CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0; + + /** @brief Create and train model with default parameters + + The class must implement static `create()` method with no parameters or with all default parameter values + */ + template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, int flags=0) + { + Ptr<_Tp> model = _Tp::create(); + return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>(); + } +}; + +/****************************************************************************************\ +* Normal Bayes Classifier * +\****************************************************************************************/ + +/** @brief Bayes classifier for normally distributed data. + +@sa @ref ml_intro_bayes + */ +class CV_EXPORTS_W NormalBayesClassifier : public StatModel +{ +public: + /** @brief Predicts the response for sample(s). + + The method estimates the most probable classes for input vectors. Input vectors (one or more) + are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one + output vector outputs. The predicted class for a single input vector is returned by the method. + The vector outputProbs contains the output probabilities corresponding to each element of + result. + */ + CV_WRAP virtual float predictProb( InputArray inputs, OutputArray outputs, + OutputArray outputProbs, int flags=0 ) const = 0; + + /** Creates empty model + Use StatModel::train to train the model after creation. */ + CV_WRAP static Ptr<NormalBayesClassifier> create(); +}; + +/****************************************************************************************\ +* K-Nearest Neighbour Classifier * +\****************************************************************************************/ + +/** @brief The class implements K-Nearest Neighbors model + +@sa @ref ml_intro_knn + */ +class CV_EXPORTS_W KNearest : public StatModel +{ +public: + + /** Default number of neighbors to use in predict method. */ + /** @see setDefaultK */ + CV_WRAP virtual int getDefaultK() const = 0; + /** @copybrief getDefaultK @see getDefaultK */ + CV_WRAP virtual void setDefaultK(int val) = 0; + + /** Whether classification or regression model should be trained. */ + /** @see setIsClassifier */ + CV_WRAP virtual bool getIsClassifier() const = 0; + /** @copybrief getIsClassifier @see getIsClassifier */ + CV_WRAP virtual void setIsClassifier(bool val) = 0; + + /** Parameter for KDTree implementation. */ + /** @see setEmax */ + CV_WRAP virtual int getEmax() const = 0; + /** @copybrief getEmax @see getEmax */ + CV_WRAP virtual void setEmax(int val) = 0; + + /** %Algorithm type, one of KNearest::Types. */ + /** @see setAlgorithmType */ + CV_WRAP virtual int getAlgorithmType() const = 0; + /** @copybrief getAlgorithmType @see getAlgorithmType */ + CV_WRAP virtual void setAlgorithmType(int val) = 0; + + /** @brief Finds the neighbors and predicts responses for input vectors. + + @param samples Input samples stored by rows. It is a single-precision floating-point matrix of + `<number_of_samples> * k` size. + @param k Number of used nearest neighbors. Should be greater than 1. + @param results Vector with results of prediction (regression or classification) for each input + sample. It is a single-precision floating-point vector with `<number_of_samples>` elements. + @param neighborResponses Optional output values for corresponding neighbors. It is a single- + precision floating-point matrix of `<number_of_samples> * k` size. + @param dist Optional output distances from the input vectors to the corresponding neighbors. It + is a single-precision floating-point matrix of `<number_of_samples> * k` size. + + For each input vector (a row of the matrix samples), the method finds the k nearest neighbors. + In case of regression, the predicted result is a mean value of the particular vector's neighbor + responses. In case of classification, the class is determined by voting. + + For each input vector, the neighbors are sorted by their distances to the vector. + + In case of C++ interface you can use output pointers to empty matrices and the function will + allocate memory itself. + + If only a single input vector is passed, all output matrices are optional and the predicted + value is returned by the method. + + The function is parallelized with the TBB library. + */ + CV_WRAP virtual float findNearest( InputArray samples, int k, + OutputArray results, + OutputArray neighborResponses=noArray(), + OutputArray dist=noArray() ) const = 0; + + /** @brief Implementations of KNearest algorithm + */ + enum Types + { + BRUTE_FORCE=1, + KDTREE=2 + }; + + /** @brief Creates the empty model + + The static method creates empty %KNearest classifier. It should be then trained using StatModel::train method. + */ + CV_WRAP static Ptr<KNearest> create(); +}; + +/****************************************************************************************\ +* Support Vector Machines * +\****************************************************************************************/ + +/** @brief Support Vector Machines. + +@sa @ref ml_intro_svm + */ +class CV_EXPORTS_W SVM : public StatModel +{ +public: + + class CV_EXPORTS Kernel : public Algorithm + { + public: + virtual int getType() const = 0; + virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0; + }; + + /** Type of a %SVM formulation. + See SVM::Types. Default value is SVM::C_SVC. */ + /** @see setType */ + CV_WRAP virtual int getType() const = 0; + /** @copybrief getType @see getType */ + CV_WRAP virtual void setType(int val) = 0; + + /** Parameter \f$\gamma\f$ of a kernel function. + For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. */ + /** @see setGamma */ + CV_WRAP virtual double getGamma() const = 0; + /** @copybrief getGamma @see getGamma */ + CV_WRAP virtual void setGamma(double val) = 0; + + /** Parameter _coef0_ of a kernel function. + For SVM::POLY or SVM::SIGMOID. Default value is 0.*/ + /** @see setCoef0 */ + CV_WRAP virtual double getCoef0() const = 0; + /** @copybrief getCoef0 @see getCoef0 */ + CV_WRAP virtual void setCoef0(double val) = 0; + + /** Parameter _degree_ of a kernel function. + For SVM::POLY. Default value is 0. */ + /** @see setDegree */ + CV_WRAP virtual double getDegree() const = 0; + /** @copybrief getDegree @see getDegree */ + CV_WRAP virtual void setDegree(double val) = 0; + + /** Parameter _C_ of a %SVM optimization problem. + For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. */ + /** @see setC */ + CV_WRAP virtual double getC() const = 0; + /** @copybrief getC @see getC */ + CV_WRAP virtual void setC(double val) = 0; + + /** Parameter \f$\nu\f$ of a %SVM optimization problem. + For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. */ + /** @see setNu */ + CV_WRAP virtual double getNu() const = 0; + /** @copybrief getNu @see getNu */ + CV_WRAP virtual void setNu(double val) = 0; + + /** Parameter \f$\epsilon\f$ of a %SVM optimization problem. + For SVM::EPS_SVR. Default value is 0. */ + /** @see setP */ + CV_WRAP virtual double getP() const = 0; + /** @copybrief getP @see getP */ + CV_WRAP virtual void setP(double val) = 0; + + /** Optional weights in the SVM::C_SVC problem, assigned to particular classes. + They are multiplied by _C_ so the parameter _C_ of class _i_ becomes `classWeights(i) * C`. Thus + these weights affect the misclassification penalty for different classes. The larger weight, + the larger penalty on misclassification of data from the corresponding class. Default value is + empty Mat. */ + /** @see setClassWeights */ + CV_WRAP virtual cv::Mat getClassWeights() const = 0; + /** @copybrief getClassWeights @see getClassWeights */ + CV_WRAP virtual void setClassWeights(const cv::Mat &val) = 0; + + /** Termination criteria of the iterative %SVM training procedure which solves a partial + case of constrained quadratic optimization problem. + You can specify tolerance and/or the maximum number of iterations. Default value is + `TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )`; */ + /** @see setTermCriteria */ + CV_WRAP virtual cv::TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0; + + /** Type of a %SVM kernel. + See SVM::KernelTypes. Default value is SVM::RBF. */ + CV_WRAP virtual int getKernelType() const = 0; + + /** Initialize with one of predefined kernels. + See SVM::KernelTypes. */ + CV_WRAP virtual void setKernel(int kernelType) = 0; + + /** Initialize with custom kernel. + See SVM::Kernel class for implementation details */ + virtual void setCustomKernel(const Ptr<Kernel> &_kernel) = 0; + + //! %SVM type + enum Types { + /** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows + imperfect separation of classes with penalty multiplier C for outliers. */ + C_SVC=100, + /** \f$\nu\f$-Support Vector Classification. n-class classification with possible + imperfect separation. Parameter \f$\nu\f$ (in the range 0..1, the larger the value, the smoother + the decision boundary) is used instead of C. */ + NU_SVC=101, + /** Distribution Estimation (One-class %SVM). All the training data are from + the same class, %SVM builds a boundary that separates the class from the rest of the feature + space. */ + ONE_CLASS=102, + /** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors + from the training set and the fitting hyper-plane must be less than p. For outliers the + penalty multiplier C is used. */ + EPS_SVR=103, + /** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p. + See @cite LibSVM for details. */ + NU_SVR=104 + }; + + /** @brief %SVM kernel type + + A comparison of different kernels on the following 2D test case with four classes. Four + SVM::C_SVC SVMs have been trained (one against rest) with auto_train. Evaluation on three + different kernels (SVM::CHI2, SVM::INTER, SVM::RBF). The color depicts the class with max score. + Bright means max-score \> 0, dark means max-score \< 0. + ![image](pics/SVM_Comparison.png) + */ + enum KernelTypes { + /** Returned by SVM::getKernelType in case when custom kernel has been set */ + CUSTOM=-1, + /** Linear kernel. No mapping is done, linear discrimination (or regression) is + done in the original feature space. It is the fastest option. \f$K(x_i, x_j) = x_i^T x_j\f$. */ + LINEAR=0, + /** Polynomial kernel: + \f$K(x_i, x_j) = (\gamma x_i^T x_j + coef0)^{degree}, \gamma > 0\f$. */ + POLY=1, + /** Radial basis function (RBF), a good choice in most cases. + \f$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \gamma > 0\f$. */ + RBF=2, + /** Sigmoid kernel: \f$K(x_i, x_j) = \tanh(\gamma x_i^T x_j + coef0)\f$. */ + SIGMOID=3, + /** Exponential Chi2 kernel, similar to the RBF kernel: + \f$K(x_i, x_j) = e^{-\gamma \chi^2(x_i,x_j)}, \chi^2(x_i,x_j) = (x_i-x_j)^2/(x_i+x_j), \gamma > 0\f$. */ + CHI2=4, + /** Histogram intersection kernel. A fast kernel. \f$K(x_i, x_j) = min(x_i,x_j)\f$. */ + INTER=5 + }; + + //! %SVM params type + enum ParamTypes { + C=0, + GAMMA=1, + P=2, + NU=3, + COEF=4, + DEGREE=5 + }; + + /** @brief Trains an %SVM with optimal parameters. + + @param data the training data that can be constructed using TrainData::create or + TrainData::loadFromCSV. + @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One + subset is used to test the model, the others form the train set. So, the %SVM algorithm is + executed kFold times. + @param Cgrid grid for C + @param gammaGrid grid for gamma + @param pGrid grid for p + @param nuGrid grid for nu + @param coeffGrid grid for coeff + @param degreeGrid grid for degree + @param balanced If true and the problem is 2-class classification then the method creates more + balanced cross-validation subsets that is proportions between classes in subsets are close + to such proportion in the whole train dataset. + + The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, + nu, coef0, degree. Parameters are considered optimal when the cross-validation + estimate of the test set error is minimal. + + If there is no need to optimize a parameter, the corresponding grid step should be set to any + value less than or equal to 1. For example, to avoid optimization in gamma, set `gammaGrid.step + = 0`, `gammaGrid.minVal`, `gamma_grid.maxVal` as arbitrary numbers. In this case, the value + `Gamma` is taken for gamma. + + And, finally, if the optimization in a parameter is required but the corresponding grid is + unknown, you may call the function SVM::getDefaultGrid. To generate a grid, for example, for + gamma, call `SVM::getDefaultGrid(SVM::GAMMA)`. + + This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the + regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and + the usual %SVM with parameters specified in params is executed. + */ + virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10, + ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C), + ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA), + ParamGrid pGrid = SVM::getDefaultGrid(SVM::P), + ParamGrid nuGrid = SVM::getDefaultGrid(SVM::NU), + ParamGrid coeffGrid = SVM::getDefaultGrid(SVM::COEF), + ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE), + bool balanced=false) = 0; + + /** @brief Retrieves all the support vectors + + The method returns all the support vectors as a floating-point matrix, where support vectors are + stored as matrix rows. + */ + CV_WRAP virtual Mat getSupportVectors() const = 0; + + /** @brief Retrieves all the uncompressed support vectors of a linear %SVM + + The method returns all the uncompressed support vectors of a linear %SVM that the compressed + support vector, used for prediction, was derived from. They are returned in a floating-point + matrix, where the support vectors are stored as matrix rows. + */ + CV_WRAP Mat getUncompressedSupportVectors() const; + + /** @brief Retrieves the decision function + + @param i the index of the decision function. If the problem solved is regression, 1-class or + 2-class classification, then there will be just one decision function and the index should + always be 0. Otherwise, in the case of N-class classification, there will be \f$N(N-1)/2\f$ + decision functions. + @param alpha the optional output vector for weights, corresponding to different support vectors. + In the case of linear %SVM all the alpha's will be 1's. + @param svidx the optional output vector of indices of support vectors within the matrix of + support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear + %SVM each decision function consists of a single "compressed" support vector. + + The method returns rho parameter of the decision function, a scalar subtracted from the weighted + sum of kernel responses. + */ + CV_WRAP virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0; + + /** @brief Generates a grid for %SVM parameters. + + @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is + generated for the parameter with this ID. + + The function generates a grid for the specified parameter of the %SVM algorithm. The grid may be + passed to the function SVM::trainAuto. + */ + static ParamGrid getDefaultGrid( int param_id ); + + /** Creates empty model. + Use StatModel::train to train the model. Since %SVM has several parameters, you may want to + find the best parameters for your problem, it can be done with SVM::trainAuto. */ + CV_WRAP static Ptr<SVM> create(); + + /** @brief Loads and creates a serialized svm from a file + * + * Use SVM::save to serialize and store an SVM to disk. + * Load the SVM from this file again, by calling this function with the path to the file. + * + * @param filepath path to serialized svm + */ + CV_WRAP static Ptr<SVM> load(const String& filepath); +}; + +/****************************************************************************************\ +* Expectation - Maximization * +\****************************************************************************************/ + +/** @brief The class implements the Expectation Maximization algorithm. + +@sa @ref ml_intro_em + */ +class CV_EXPORTS_W EM : public StatModel +{ +public: + //! Type of covariation matrices + enum Types { + /** A scaled identity matrix \f$\mu_k * I\f$. There is the only + parameter \f$\mu_k\f$ to be estimated for each matrix. The option may be used in special cases, + when the constraint is relevant, or as a first step in the optimization (for example in case + when the data is preprocessed with PCA). The results of such preliminary estimation may be + passed again to the optimization procedure, this time with + covMatType=EM::COV_MAT_DIAGONAL. */ + COV_MAT_SPHERICAL=0, + /** A diagonal matrix with positive diagonal elements. The number of + free parameters is d for each matrix. This is most commonly used option yielding good + estimation results. */ + COV_MAT_DIAGONAL=1, + /** A symmetric positively defined matrix. The number of free + parameters in each matrix is about \f$d^2/2\f$. It is not recommended to use this option, unless + there is pretty accurate initial estimation of the parameters and/or a huge number of + training samples. */ + COV_MAT_GENERIC=2, + COV_MAT_DEFAULT=COV_MAT_DIAGONAL + }; + + //! Default parameters + enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100}; + + //! The initial step + enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0}; + + /** The number of mixture components in the Gaussian mixture model. + Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could + determine the optimal number of mixtures within a specified value range, but that is not the + case in ML yet. */ + /** @see setClustersNumber */ + CV_WRAP virtual int getClustersNumber() const = 0; + /** @copybrief getClustersNumber @see getClustersNumber */ + CV_WRAP virtual void setClustersNumber(int val) = 0; + + /** Constraint on covariance matrices which defines type of matrices. + See EM::Types. */ + /** @see setCovarianceMatrixType */ + CV_WRAP virtual int getCovarianceMatrixType() const = 0; + /** @copybrief getCovarianceMatrixType @see getCovarianceMatrixType */ + CV_WRAP virtual void setCovarianceMatrixType(int val) = 0; + + /** The termination criteria of the %EM algorithm. + The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of + M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default + maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. */ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0; + + /** @brief Returns weights of the mixtures + + Returns vector with the number of elements equal to the number of mixtures. + */ + CV_WRAP virtual Mat getWeights() const = 0; + /** @brief Returns the cluster centers (means of the Gaussian mixture) + + Returns matrix with the number of rows equal to the number of mixtures and number of columns + equal to the space dimensionality. + */ + CV_WRAP virtual Mat getMeans() const = 0; + /** @brief Returns covariation matrices + + Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures, + each matrix is a square floating-point matrix NxN, where N is the space dimensionality. + */ + CV_WRAP virtual void getCovs(CV_OUT std::vector<Mat>& covs) const = 0; + + /** @brief Returns a likelihood logarithm value and an index of the most probable mixture component + for the given sample. + + @param sample A sample for classification. It should be a one-channel matrix of + \f$1 \times dims\f$ or \f$dims \times 1\f$ size. + @param probs Optional output matrix that contains posterior probabilities of each component + given the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type. + + The method returns a two-element double vector. Zero element is a likelihood logarithm value for + the sample. First element is an index of the most probable mixture component for the given + sample. + */ + CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0; + + /** @brief Estimate the Gaussian mixture parameters from a samples set. + + This variation starts with Expectation step. Initial values of the model parameters will be + estimated by the k-means algorithm. + + Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take + responses (class labels or function values) as input. Instead, it computes the *Maximum + Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the + parameters inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in + covs[k], \f$\pi_k\f$ in weights , and optionally computes the output "class label" for each + sample: \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most + probable mixture component for each sample). + + The trained model can be used further for prediction, just like any other classifier. The + trained model is similar to the NormalBayesClassifier. + + @param samples Samples from which the Gaussian mixture model will be estimated. It should be a + one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type + it will be converted to the inner matrix of such type for the further computing. + @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for + each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. + @param labels The optional output "class label" for each sample: + \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable + mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. + @param probs The optional output matrix that contains posterior probabilities of each Gaussian + mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and + CV_64FC1 type. + */ + CV_WRAP virtual bool trainEM(InputArray samples, + OutputArray logLikelihoods=noArray(), + OutputArray labels=noArray(), + OutputArray probs=noArray()) = 0; + + /** @brief Estimate the Gaussian mixture parameters from a samples set. + + This variation starts with Expectation step. You need to provide initial means \f$a_k\f$ of + mixture components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices + \f$S_k\f$ of mixture components. + + @param samples Samples from which the Gaussian mixture model will be estimated. It should be a + one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type + it will be converted to the inner matrix of such type for the further computing. + @param means0 Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of + \f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be + converted to the inner matrix of such type for the further computing. + @param covs0 The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of + covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices + do not have CV_64F type they will be converted to the inner matrices of such type for the + further computing. + @param weights0 Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel + floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size. + @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for + each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. + @param labels The optional output "class label" for each sample: + \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable + mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. + @param probs The optional output matrix that contains posterior probabilities of each Gaussian + mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and + CV_64FC1 type. + */ + CV_WRAP virtual bool trainE(InputArray samples, InputArray means0, + InputArray covs0=noArray(), + InputArray weights0=noArray(), + OutputArray logLikelihoods=noArray(), + OutputArray labels=noArray(), + OutputArray probs=noArray()) = 0; + + /** @brief Estimate the Gaussian mixture parameters from a samples set. + + This variation starts with Maximization step. You need to provide initial probabilities + \f$p_{i,k}\f$ to use this option. + + @param samples Samples from which the Gaussian mixture model will be estimated. It should be a + one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type + it will be converted to the inner matrix of such type for the further computing. + @param probs0 + @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for + each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. + @param labels The optional output "class label" for each sample: + \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable + mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. + @param probs The optional output matrix that contains posterior probabilities of each Gaussian + mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and + CV_64FC1 type. + */ + CV_WRAP virtual bool trainM(InputArray samples, InputArray probs0, + OutputArray logLikelihoods=noArray(), + OutputArray labels=noArray(), + OutputArray probs=noArray()) = 0; + + /** Creates empty %EM model. + The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you + can use one of the EM::train\* methods or load it from file using Algorithm::load\<EM\>(filename). + */ + CV_WRAP static Ptr<EM> create(); +}; + +/****************************************************************************************\ +* Decision Tree * +\****************************************************************************************/ + +/** @brief The class represents a single decision tree or a collection of decision trees. + +The current public interface of the class allows user to train only a single decision tree, however +the class is capable of storing multiple decision trees and using them for prediction (by summing +responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost) +use this capability to implement decision tree ensembles. + +@sa @ref ml_intro_trees +*/ +class CV_EXPORTS_W DTrees : public StatModel +{ +public: + /** Predict options */ + enum Flags { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) }; + + /** Cluster possible values of a categorical variable into K\<=maxCategories clusters to + find a suboptimal split. + If a discrete variable, on which the training procedure tries to make a split, takes more than + maxCategories values, the precise best subset estimation may take a very long time because the + algorithm is exponential. Instead, many decision trees engines (including our implementation) + try to find sub-optimal split in this case by clustering all the samples into maxCategories + clusters that is some categories are merged together. The clustering is applied only in n \> + 2-class classification problems for categorical variables with N \> max_categories possible + values. In case of regression and 2-class classification the optimal split can be found + efficiently without employing clustering, thus the parameter is not used in these cases. + Default value is 10.*/ + /** @see setMaxCategories */ + CV_WRAP virtual int getMaxCategories() const = 0; + /** @copybrief getMaxCategories @see getMaxCategories */ + CV_WRAP virtual void setMaxCategories(int val) = 0; + + /** The maximum possible depth of the tree. + That is the training algorithms attempts to split a node while its depth is less than maxDepth. + The root node has zero depth. The actual depth may be smaller if the other termination criteria + are met (see the outline of the training procedure @ref ml_intro_trees "here"), and/or if the + tree is pruned. Default value is INT_MAX.*/ + /** @see setMaxDepth */ + CV_WRAP virtual int getMaxDepth() const = 0; + /** @copybrief getMaxDepth @see getMaxDepth */ + CV_WRAP virtual void setMaxDepth(int val) = 0; + + /** If the number of samples in a node is less than this parameter then the node will not be split. + + Default value is 10.*/ + /** @see setMinSampleCount */ + CV_WRAP virtual int getMinSampleCount() const = 0; + /** @copybrief getMinSampleCount @see getMinSampleCount */ + CV_WRAP virtual void setMinSampleCount(int val) = 0; + + /** If CVFolds \> 1 then algorithms prunes the built decision tree using K-fold + cross-validation procedure where K is equal to CVFolds. + Default value is 10.*/ + /** @see setCVFolds */ + CV_WRAP virtual int getCVFolds() const = 0; + /** @copybrief getCVFolds @see getCVFolds */ + CV_WRAP virtual void setCVFolds(int val) = 0; + + /** If true then surrogate splits will be built. + These splits allow to work with missing data and compute variable importance correctly. + Default value is false. + @note currently it's not implemented.*/ + /** @see setUseSurrogates */ + CV_WRAP virtual bool getUseSurrogates() const = 0; + /** @copybrief getUseSurrogates @see getUseSurrogates */ + CV_WRAP virtual void setUseSurrogates(bool val) = 0; + + /** If true then a pruning will be harsher. + This will make a tree more compact and more resistant to the training data noise but a bit less + accurate. Default value is true.*/ + /** @see setUse1SERule */ + CV_WRAP virtual bool getUse1SERule() const = 0; + /** @copybrief getUse1SERule @see getUse1SERule */ + CV_WRAP virtual void setUse1SERule(bool val) = 0; + + /** If true then pruned branches are physically removed from the tree. + Otherwise they are retained and it is possible to get results from the original unpruned (or + pruned less aggressively) tree. Default value is true.*/ + /** @see setTruncatePrunedTree */ + CV_WRAP virtual bool getTruncatePrunedTree() const = 0; + /** @copybrief getTruncatePrunedTree @see getTruncatePrunedTree */ + CV_WRAP virtual void setTruncatePrunedTree(bool val) = 0; + + /** Termination criteria for regression trees. + If all absolute differences between an estimated value in a node and values of train samples + in this node are less than this parameter then the node will not be split further. Default + value is 0.01f*/ + /** @see setRegressionAccuracy */ + CV_WRAP virtual float getRegressionAccuracy() const = 0; + /** @copybrief getRegressionAccuracy @see getRegressionAccuracy */ + CV_WRAP virtual void setRegressionAccuracy(float val) = 0; + + /** @brief The array of a priori class probabilities, sorted by the class label value. + + The parameter can be used to tune the decision tree preferences toward a certain class. For + example, if you want to detect some rare anomaly occurrence, the training base will likely + contain much more normal cases than anomalies, so a very good classification performance + will be achieved just by considering every case as normal. To avoid this, the priors can be + specified, where the anomaly probability is artificially increased (up to 0.5 or even + greater), so the weight of the misclassified anomalies becomes much bigger, and the tree is + adjusted properly. + + You can also think about this parameter as weights of prediction categories which determine + relative weights that you give to misclassification. That is, if the weight of the first + category is 1 and the weight of the second category is 10, then each mistake in predicting + the second category is equivalent to making 10 mistakes in predicting the first category. + Default value is empty Mat.*/ + /** @see setPriors */ + CV_WRAP virtual cv::Mat getPriors() const = 0; + /** @copybrief getPriors @see getPriors */ + CV_WRAP virtual void setPriors(const cv::Mat &val) = 0; + + /** @brief The class represents a decision tree node. + */ + class CV_EXPORTS Node + { + public: + Node(); + double value; //!< Value at the node: a class label in case of classification or estimated + //!< function value in case of regression. + int classIdx; //!< Class index normalized to 0..class_count-1 range and assigned to the + //!< node. It is used internally in classification trees and tree ensembles. + int parent; //!< Index of the parent node + int left; //!< Index of the left child node + int right; //!< Index of right child node + int defaultDir; //!< Default direction where to go (-1: left or +1: right). It helps in the + //!< case of missing values. + int split; //!< Index of the first split + }; + + /** @brief The class represents split in a decision tree. + */ + class CV_EXPORTS Split + { + public: + Split(); + int varIdx; //!< Index of variable on which the split is created. + bool inversed; //!< If true, then the inverse split rule is used (i.e. left and right + //!< branches are exchanged in the rule expressions below). + float quality; //!< The split quality, a positive number. It is used to choose the best split. + int next; //!< Index of the next split in the list of splits for the node + float c; /**< The threshold value in case of split on an ordered variable. + The rule is: + @code{.none} + if var_value < c + then next_node <- left + else next_node <- right + @endcode */ + int subsetOfs; /**< Offset of the bitset used by the split on a categorical variable. + The rule is: + @code{.none} + if bitset[var_value] == 1 + then next_node <- left + else next_node <- right + @endcode */ + }; + + /** @brief Returns indices of root nodes + */ + virtual const std::vector<int>& getRoots() const = 0; + /** @brief Returns all the nodes + + all the node indices are indices in the returned vector + */ + virtual const std::vector<Node>& getNodes() const = 0; + /** @brief Returns all the splits + + all the split indices are indices in the returned vector + */ + virtual const std::vector<Split>& getSplits() const = 0; + /** @brief Returns all the bitsets for categorical splits + + Split::subsetOfs is an offset in the returned vector + */ + virtual const std::vector<int>& getSubsets() const = 0; + + /** @brief Creates the empty model + + The static method creates empty decision tree with the specified parameters. It should be then + trained using train method (see StatModel::train). Alternatively, you can load the model from + file using Algorithm::load\<DTrees\>(filename). + */ + CV_WRAP static Ptr<DTrees> create(); +}; + +/****************************************************************************************\ +* Random Trees Classifier * +\****************************************************************************************/ + +/** @brief The class implements the random forest predictor. + +@sa @ref ml_intro_rtrees + */ +class CV_EXPORTS_W RTrees : public DTrees +{ +public: + + /** If true then variable importance will be calculated and then it can be retrieved by RTrees::getVarImportance. + Default value is false.*/ + /** @see setCalculateVarImportance */ + CV_WRAP virtual bool getCalculateVarImportance() const = 0; + /** @copybrief getCalculateVarImportance @see getCalculateVarImportance */ + CV_WRAP virtual void setCalculateVarImportance(bool val) = 0; + + /** The size of the randomly selected subset of features at each tree node and that are used + to find the best split(s). + If you set it to 0 then the size will be set to the square root of the total number of + features. Default value is 0.*/ + /** @see setActiveVarCount */ + CV_WRAP virtual int getActiveVarCount() const = 0; + /** @copybrief getActiveVarCount @see getActiveVarCount */ + CV_WRAP virtual void setActiveVarCount(int val) = 0; + + /** The termination criteria that specifies when the training algorithm stops. + Either when the specified number of trees is trained and added to the ensemble or when + sufficient accuracy (measured as OOB error) is achieved. Typically the more trees you have the + better the accuracy. However, the improvement in accuracy generally diminishes and asymptotes + pass a certain number of trees. Also to keep in mind, the number of tree increases the + prediction time linearly. Default value is TermCriteria(TermCriteria::MAX_ITERS + + TermCriteria::EPS, 50, 0.1)*/ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0; + + /** Returns the variable importance array. + The method returns the variable importance vector, computed at the training stage when + CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is + returned. + */ + CV_WRAP virtual Mat getVarImportance() const = 0; + + /** Creates the empty model. + Use StatModel::train to train the model, StatModel::train to create and train the model, + Algorithm::load to load the pre-trained model. + */ + CV_WRAP static Ptr<RTrees> create(); +}; + +/****************************************************************************************\ +* Boosted tree classifier * +\****************************************************************************************/ + +/** @brief Boosted tree classifier derived from DTrees + +@sa @ref ml_intro_boost + */ +class CV_EXPORTS_W Boost : public DTrees +{ +public: + /** Type of the boosting algorithm. + See Boost::Types. Default value is Boost::REAL. */ + /** @see setBoostType */ + CV_WRAP virtual int getBoostType() const = 0; + /** @copybrief getBoostType @see getBoostType */ + CV_WRAP virtual void setBoostType(int val) = 0; + + /** The number of weak classifiers. + Default value is 100. */ + /** @see setWeakCount */ + CV_WRAP virtual int getWeakCount() const = 0; + /** @copybrief getWeakCount @see getWeakCount */ + CV_WRAP virtual void setWeakCount(int val) = 0; + + /** A threshold between 0 and 1 used to save computational time. + Samples with summary weight \f$\leq 1 - weight_trim_rate\f$ do not participate in the *next* + iteration of training. Set this parameter to 0 to turn off this functionality. Default value is 0.95.*/ + /** @see setWeightTrimRate */ + CV_WRAP virtual double getWeightTrimRate() const = 0; + /** @copybrief getWeightTrimRate @see getWeightTrimRate */ + CV_WRAP virtual void setWeightTrimRate(double val) = 0; + + /** Boosting type. + Gentle AdaBoost and Real AdaBoost are often the preferable choices. */ + enum Types { + DISCRETE=0, //!< Discrete AdaBoost. + REAL=1, //!< Real AdaBoost. It is a technique that utilizes confidence-rated predictions + //!< and works well with categorical data. + LOGIT=2, //!< LogitBoost. It can produce good regression fits. + GENTLE=3 //!< Gentle AdaBoost. It puts less weight on outlier data points and for that + //!<reason is often good with regression data. + }; + + /** Creates the empty model. + Use StatModel::train to train the model, Algorithm::load\<Boost\>(filename) to load the pre-trained model. */ + CV_WRAP static Ptr<Boost> create(); +}; + +/****************************************************************************************\ +* Gradient Boosted Trees * +\****************************************************************************************/ + +/*class CV_EXPORTS_W GBTrees : public DTrees +{ +public: + struct CV_EXPORTS_W_MAP Params : public DTrees::Params + { + CV_PROP_RW int weakCount; + CV_PROP_RW int lossFunctionType; + CV_PROP_RW float subsamplePortion; + CV_PROP_RW float shrinkage; + + Params(); + Params( int lossFunctionType, int weakCount, float shrinkage, + float subsamplePortion, int maxDepth, bool useSurrogates ); + }; + + enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS}; + + virtual void setK(int k) = 0; + + virtual float predictSerial( InputArray samples, + OutputArray weakResponses, int flags) const = 0; + + static Ptr<GBTrees> create(const Params& p); +};*/ + +/****************************************************************************************\ +* Artificial Neural Networks (ANN) * +\****************************************************************************************/ + +/////////////////////////////////// Multi-Layer Perceptrons ////////////////////////////// + +/** @brief Artificial Neural Networks - Multi-Layer Perceptrons. + +Unlike many other models in ML that are constructed and trained at once, in the MLP model these +steps are separated. First, a network with the specified topology is created using the non-default +constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is +trained using a set of input and output vectors. The training procedure can be repeated more than +once, that is, the weights can be adjusted based on the new training data. + +Additional flags for StatModel::train are available: ANN_MLP::TrainFlags. + +@sa @ref ml_intro_ann + */ +class CV_EXPORTS_W ANN_MLP : public StatModel +{ +public: + /** Available training methods */ + enum TrainingMethods { + BACKPROP=0, //!< The back-propagation algorithm. + RPROP=1 //!< The RPROP algorithm. See @cite RPROP93 for details. + }; + + /** Sets training method and common parameters. + @param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods. + @param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP + @param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP. + */ + CV_WRAP virtual void setTrainMethod(int method, double param1 = 0, double param2 = 0) = 0; + + /** Returns current training method */ + CV_WRAP virtual int getTrainMethod() const = 0; + + /** Initialize the activation function for each neuron. + Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM. + @param type The type of activation function. See ANN_MLP::ActivationFunctions. + @param param1 The first parameter of the activation function, \f$\alpha\f$. Default value is 0. + @param param2 The second parameter of the activation function, \f$\beta\f$. Default value is 0. + */ + CV_WRAP virtual void setActivationFunction(int type, double param1 = 0, double param2 = 0) = 0; + + /** Integer vector specifying the number of neurons in each layer including the input and output layers. + The very first element specifies the number of elements in the input layer. + The last element - number of elements in the output layer. Default value is empty Mat. + @sa getLayerSizes */ + CV_WRAP virtual void setLayerSizes(InputArray _layer_sizes) = 0; + + /** Integer vector specifying the number of neurons in each layer including the input and output layers. + The very first element specifies the number of elements in the input layer. + The last element - number of elements in the output layer. + @sa setLayerSizes */ + CV_WRAP virtual cv::Mat getLayerSizes() const = 0; + + /** Termination criteria of the training algorithm. + You can specify the maximum number of iterations (maxCount) and/or how much the error could + change between the iterations to make the algorithm continue (epsilon). Default value is + TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01).*/ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0; + + /** BPROP: Strength of the weight gradient term. + The recommended value is about 0.1. Default value is 0.1.*/ + /** @see setBackpropWeightScale */ + CV_WRAP virtual double getBackpropWeightScale() const = 0; + /** @copybrief getBackpropWeightScale @see getBackpropWeightScale */ + CV_WRAP virtual void setBackpropWeightScale(double val) = 0; + + /** BPROP: Strength of the momentum term (the difference between weights on the 2 previous iterations). + This parameter provides some inertia to smooth the random fluctuations of the weights. It can + vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough. + Default value is 0.1.*/ + /** @see setBackpropMomentumScale */ + CV_WRAP virtual double getBackpropMomentumScale() const = 0; + /** @copybrief getBackpropMomentumScale @see getBackpropMomentumScale */ + CV_WRAP virtual void setBackpropMomentumScale(double val) = 0; + + /** RPROP: Initial value \f$\Delta_0\f$ of update-values \f$\Delta_{ij}\f$. + Default value is 0.1.*/ + /** @see setRpropDW0 */ + CV_WRAP virtual double getRpropDW0() const = 0; + /** @copybrief getRpropDW0 @see getRpropDW0 */ + CV_WRAP virtual void setRpropDW0(double val) = 0; + + /** RPROP: Increase factor \f$\eta^+\f$. + It must be \>1. Default value is 1.2.*/ + /** @see setRpropDWPlus */ + CV_WRAP virtual double getRpropDWPlus() const = 0; + /** @copybrief getRpropDWPlus @see getRpropDWPlus */ + CV_WRAP virtual void setRpropDWPlus(double val) = 0; + + /** RPROP: Decrease factor \f$\eta^-\f$. + It must be \<1. Default value is 0.5.*/ + /** @see setRpropDWMinus */ + CV_WRAP virtual double getRpropDWMinus() const = 0; + /** @copybrief getRpropDWMinus @see getRpropDWMinus */ + CV_WRAP virtual void setRpropDWMinus(double val) = 0; + + /** RPROP: Update-values lower limit \f$\Delta_{min}\f$. + It must be positive. Default value is FLT_EPSILON.*/ + /** @see setRpropDWMin */ + CV_WRAP virtual double getRpropDWMin() const = 0; + /** @copybrief getRpropDWMin @see getRpropDWMin */ + CV_WRAP virtual void setRpropDWMin(double val) = 0; + + /** RPROP: Update-values upper limit \f$\Delta_{max}\f$. + It must be \>1. Default value is 50.*/ + /** @see setRpropDWMax */ + CV_WRAP virtual double getRpropDWMax() const = 0; + /** @copybrief getRpropDWMax @see getRpropDWMax */ + CV_WRAP virtual void setRpropDWMax(double val) = 0; + + /** possible activation functions */ + enum ActivationFunctions { + /** Identity function: \f$f(x)=x\f$ */ + IDENTITY = 0, + /** Symmetrical sigmoid: \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x}\f$ + @note + If you are using the default sigmoid activation function with the default parameter values + fparam1=0 and fparam2=0 then the function used is y = 1.7159\*tanh(2/3 \* x), so the output + will range from [-1.7159, 1.7159], instead of [0,1].*/ + SIGMOID_SYM = 1, + /** Gaussian function: \f$f(x)=\beta e^{-\alpha x*x}\f$ */ + GAUSSIAN = 2 + }; + + /** Train options */ + enum TrainFlags { + /** Update the network weights, rather than compute them from scratch. In the latter case + the weights are initialized using the Nguyen-Widrow algorithm. */ + UPDATE_WEIGHTS = 1, + /** Do not normalize the input vectors. If this flag is not set, the training algorithm + normalizes each input feature independently, shifting its mean value to 0 and making the + standard deviation equal to 1. If the network is assumed to be updated frequently, the new + training data could be much different from original one. In this case, you should take care + of proper normalization. */ + NO_INPUT_SCALE = 2, + /** Do not normalize the output vectors. If the flag is not set, the training algorithm + normalizes each output feature independently, by transforming it to the certain range + depending on the used activation function. */ + NO_OUTPUT_SCALE = 4 + }; + + CV_WRAP virtual Mat getWeights(int layerIdx) const = 0; + + /** @brief Creates empty model + + Use StatModel::train to train the model, Algorithm::load\<ANN_MLP\>(filename) to load the pre-trained model. + Note that the train method has optional flags: ANN_MLP::TrainFlags. + */ + CV_WRAP static Ptr<ANN_MLP> create(); + + /** @brief Loads and creates a serialized ANN from a file + * + * Use ANN::save to serialize and store an ANN to disk. + * Load the ANN from this file again, by calling this function with the path to the file. + * + * @param filepath path to serialized ANN + */ + CV_WRAP static Ptr<ANN_MLP> load(const String& filepath); + +}; + +/****************************************************************************************\ +* Logistic Regression * +\****************************************************************************************/ + +/** @brief Implements Logistic Regression classifier. + +@sa @ref ml_intro_lr + */ +class CV_EXPORTS_W LogisticRegression : public StatModel +{ +public: + + /** Learning rate. */ + /** @see setLearningRate */ + CV_WRAP virtual double getLearningRate() const = 0; + /** @copybrief getLearningRate @see getLearningRate */ + CV_WRAP virtual void setLearningRate(double val) = 0; + + /** Number of iterations. */ + /** @see setIterations */ + CV_WRAP virtual int getIterations() const = 0; + /** @copybrief getIterations @see getIterations */ + CV_WRAP virtual void setIterations(int val) = 0; + + /** Kind of regularization to be applied. See LogisticRegression::RegKinds. */ + /** @see setRegularization */ + CV_WRAP virtual int getRegularization() const = 0; + /** @copybrief getRegularization @see getRegularization */ + CV_WRAP virtual void setRegularization(int val) = 0; + + /** Kind of training method used. See LogisticRegression::Methods. */ + /** @see setTrainMethod */ + CV_WRAP virtual int getTrainMethod() const = 0; + /** @copybrief getTrainMethod @see getTrainMethod */ + CV_WRAP virtual void setTrainMethod(int val) = 0; + + /** Specifies the number of training samples taken in each step of Mini-Batch Gradient + Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It + has to take values less than the total number of training samples. */ + /** @see setMiniBatchSize */ + CV_WRAP virtual int getMiniBatchSize() const = 0; + /** @copybrief getMiniBatchSize @see getMiniBatchSize */ + CV_WRAP virtual void setMiniBatchSize(int val) = 0; + + /** Termination criteria of the algorithm. */ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0; + + //! Regularization kinds + enum RegKinds { + REG_DISABLE = -1, //!< Regularization disabled + REG_L1 = 0, //!< %L1 norm + REG_L2 = 1 //!< %L2 norm + }; + + //! Training methods + enum Methods { + BATCH = 0, + MINI_BATCH = 1 //!< Set MiniBatchSize to a positive integer when using this method. + }; + + /** @brief Predicts responses for input samples and returns a float type. + + @param samples The input data for the prediction algorithm. Matrix [m x n], where each row + contains variables (features) of one object being classified. Should have data type CV_32F. + @param results Predicted labels as a column matrix of type CV_32S. + @param flags Not used. + */ + CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0; + + /** @brief This function returns the trained paramters arranged across rows. + + For a two class classifcation problem, it returns a row matrix. It returns learnt paramters of + the Logistic Regression as a matrix of type CV_32F. + */ + CV_WRAP virtual Mat get_learnt_thetas() const = 0; + + /** @brief Creates empty model. + + Creates Logistic Regression model with parameters given. + */ + CV_WRAP static Ptr<LogisticRegression> create(); +}; + + +/****************************************************************************************\ +* Stochastic Gradient Descent SVM Classifier * +\****************************************************************************************/ + +/*! +@brief Stochastic Gradient Descent SVM classifier + +SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach, +as presented in @cite bottou2010large. + +The classifier has following parameters: +- model type, +- margin type, +- margin regularization (\f$\lambda\f$), +- initial step size (\f$\gamma_0\f$), +- step decreasing power (\f$c\f$), +- and termination criteria. + +The model type may have one of the following values: \ref SGD and \ref ASGD. + +- \ref SGD is the classic version of SVMSGD classifier: every next step is calculated by the formula + \f[w_{t+1} = w_t - \gamma(t) \frac{dQ_i}{dw} |_{w = w_t}\f] + where + - \f$w_t\f$ is the weights vector for decision function at step \f$t\f$, + - \f$\gamma(t)\f$ is the step size of model parameters at the iteration \f$t\f$, it is decreased on each step by the formula + \f$\gamma(t) = \gamma_0 (1 + \lambda \gamma_0 t) ^ {-c}\f$ + - \f$Q_i\f$ is the target functional from SVM task for sample with number \f$i\f$, this sample is chosen stochastically on each step of the algorithm. + +- \ref ASGD is Average Stochastic Gradient Descent SVM Classifier. ASGD classifier averages weights vector on each step of algorithm by the formula +\f$\widehat{w}_{t+1} = \frac{t}{1+t}\widehat{w}_{t} + \frac{1}{1+t}w_{t+1}\f$ + +The recommended model type is ASGD (following @cite bottou2010large). + +The margin type may have one of the following values: \ref SOFT_MARGIN or \ref HARD_MARGIN. + +- You should use \ref HARD_MARGIN type, if you have linearly separable sets. +- You should use \ref SOFT_MARGIN type, if you have non-linearly separable sets or sets with outliers. +- In the general case (if you know nothing about linear separability of your sets), use SOFT_MARGIN. + +The other parameters may be described as follows: +- Margin regularization parameter is responsible for weights decreasing at each step and for the strength of restrictions on outliers + (the less the parameter, the less probability that an outlier will be ignored). + Recommended value for SGD model is 0.0001, for ASGD model is 0.00001. + +- Initial step size parameter is the initial value for the step size \f$\gamma(t)\f$. + You will have to find the best initial step for your problem. + +- Step decreasing power is the power parameter for \f$\gamma(t)\f$ decreasing by the formula, mentioned above. + Recommended value for SGD model is 1, for ASGD model is 0.75. + +- Termination criteria can be TermCriteria::COUNT, TermCriteria::EPS or TermCriteria::COUNT + TermCriteria::EPS. + You will have to find the best termination criteria for your problem. + +Note that the parameters margin regularization, initial step size, and step decreasing power should be positive. + +To use SVMSGD algorithm do as follows: + +- first, create the SVMSGD object. The algoorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(), + setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower(). + +- then the SVM model can be trained using the train features and the correspondent labels by the method train(). + +- after that, the label of a new feature vector can be predicted using the method predict(). + +@code +// Create empty object +cv::Ptr<SVMSGD> svmsgd = SVMSGD::create(); + +// Train the Stochastic Gradient Descent SVM +svmsgd->train(trainData); + +// Predict labels for the new samples +svmsgd->predict(samples, responses); +@endcode + +*/ + +class CV_EXPORTS_W SVMSGD : public cv::ml::StatModel +{ +public: + + /** SVMSGD type. + ASGD is often the preferable choice. */ + enum SvmsgdType + { + SGD, //!< Stochastic Gradient Descent + ASGD //!< Average Stochastic Gradient Descent + }; + + /** Margin type.*/ + enum MarginType + { + SOFT_MARGIN, //!< General case, suits to the case of non-linearly separable sets, allows outliers. + HARD_MARGIN //!< More accurate for the case of linearly separable sets. + }; + + /** + * @return the weights of the trained model (decision function f(x) = weights * x + shift). + */ + CV_WRAP virtual Mat getWeights() = 0; + + /** + * @return the shift of the trained model (decision function f(x) = weights * x + shift). + */ + CV_WRAP virtual float getShift() = 0; + + /** @brief Creates empty model. + * Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to + * find the best parameters for your problem or use setOptimalParameters() to set some default parameters. + */ + CV_WRAP static Ptr<SVMSGD> create(); + + /** @brief Function sets optimal parameters values for chosen SVM SGD model. + * @param svmsgdType is the type of SVMSGD classifier. + * @param marginType is the type of margin constraint. + */ + CV_WRAP virtual void setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) = 0; + + /** @brief %Algorithm type, one of SVMSGD::SvmsgdType. */ + /** @see setSvmsgdType */ + CV_WRAP virtual int getSvmsgdType() const = 0; + /** @copybrief getSvmsgdType @see getSvmsgdType */ + CV_WRAP virtual void setSvmsgdType(int svmsgdType) = 0; + + /** @brief %Margin type, one of SVMSGD::MarginType. */ + /** @see setMarginType */ + CV_WRAP virtual int getMarginType() const = 0; + /** @copybrief getMarginType @see getMarginType */ + CV_WRAP virtual void setMarginType(int marginType) = 0; + + /** @brief Parameter marginRegularization of a %SVMSGD optimization problem. */ + /** @see setMarginRegularization */ + CV_WRAP virtual float getMarginRegularization() const = 0; + /** @copybrief getMarginRegularization @see getMarginRegularization */ + CV_WRAP virtual void setMarginRegularization(float marginRegularization) = 0; + + /** @brief Parameter initialStepSize of a %SVMSGD optimization problem. */ + /** @see setInitialStepSize */ + CV_WRAP virtual float getInitialStepSize() const = 0; + /** @copybrief getInitialStepSize @see getInitialStepSize */ + CV_WRAP virtual void setInitialStepSize(float InitialStepSize) = 0; + + /** @brief Parameter stepDecreasingPower of a %SVMSGD optimization problem. */ + /** @see setStepDecreasingPower */ + CV_WRAP virtual float getStepDecreasingPower() const = 0; + /** @copybrief getStepDecreasingPower @see getStepDecreasingPower */ + CV_WRAP virtual void setStepDecreasingPower(float stepDecreasingPower) = 0; + + /** @brief Termination criteria of the training algorithm. + You can specify the maximum number of iterations (maxCount) and/or how much the error could + change between the iterations to make the algorithm continue (epsilon).*/ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0; +}; + + +/****************************************************************************************\ +* Auxilary functions declarations * +\****************************************************************************************/ + +/** @brief Generates _sample_ from multivariate normal distribution + +@param mean an average row vector +@param cov symmetric covariation matrix +@param nsamples returned samples count +@param samples returned samples array +*/ +CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples); + +/** @brief Creates test set */ +CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses, + OutputArray samples, OutputArray responses); + +//! @} ml + +} +} + +#endif // __cplusplus +#endif // OPENCV_ML_HPP + +/* End of file. */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/ml/ml.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/ml.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/objdetect.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,466 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OBJDETECT_HPP +#define OPENCV_OBJDETECT_HPP + +#include "opencv2/core.hpp" + +/** +@defgroup objdetect Object Detection + +Haar Feature-based Cascade Classifier for Object Detection +---------------------------------------------------------- + +The object detector described below has been initially proposed by Paul Viola @cite Viola01 and +improved by Rainer Lienhart @cite Lienhart02 . + +First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is +trained with a few hundred sample views of a particular object (i.e., a face or a car), called +positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary +images of the same size. + +After a classifier is trained, it can be applied to a region of interest (of the same size as used +during the training) in an input image. The classifier outputs a "1" if the region is likely to show +the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can +move the search window across the image and check every location using the classifier. The +classifier is designed so that it can be easily "resized" in order to be able to find the objects of +interest at different sizes, which is more efficient than resizing the image itself. So, to find an +object of an unknown size in the image the scan procedure should be done several times at different +scales. + +The word "cascade" in the classifier name means that the resultant classifier consists of several +simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some +stage the candidate is rejected or all the stages are passed. The word "boosted" means that the +classifiers at every stage of the cascade are complex themselves and they are built out of basic +classifiers using one of four different boosting techniques (weighted voting). Currently Discrete +Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are +decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic +classifiers, and are calculated as described below. The current algorithm uses the following +Haar-like features: + +![image](pics/haarfeatures.png) + +The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within +the region of interest and the scale (this scale is not the same as the scale used at the detection +stage, though these two scales are multiplied). For example, in the case of the third line feature +(2c) the response is calculated as the difference between the sum of image pixels under the +rectangle covering the whole feature (including the two white stripes and the black stripe in the +middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to +compensate for the differences in the size of areas. The sums of pixel values over a rectangular +regions are calculated rapidly using integral images (see below and the integral description). + +To see the object detector at work, have a look at the facedetect demo: +<https://github.com/opencv/opencv/tree/master/samples/cpp/dbt_face_detection.cpp> + +The following reference is for the detection part only. There is a separate application called +opencv_traincascade that can train a cascade of boosted classifiers from a set of samples. + +@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in +addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection +using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at +<http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf> + +@{ + @defgroup objdetect_c C API +@} + */ + +typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; + +namespace cv +{ + +//! @addtogroup objdetect +//! @{ + +///////////////////////////// Object Detection //////////////////////////// + +//! class for grouping object candidates, detected by Cascade Classifier, HOG etc. +//! instance of the class is to be passed to cv::partition (see cxoperations.hpp) +class CV_EXPORTS SimilarRects +{ +public: + SimilarRects(double _eps) : eps(_eps) {} + inline bool operator()(const Rect& r1, const Rect& r2) const + { + double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5; + return std::abs(r1.x - r2.x) <= delta && + std::abs(r1.y - r2.y) <= delta && + std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && + std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; + } + double eps; +}; + +/** @brief Groups the object candidate rectangles. + +@param rectList Input/output vector of rectangles. Output vector includes retained and grouped +rectangles. (The Python list is not modified in place.) +@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a +group of rectangles to retain it. +@param eps Relative difference between sides of the rectangles to merge them into a group. + +The function is a wrapper for the generic function partition . It clusters all the input rectangles +using the rectangle equivalence criteria that combines rectangles with similar sizes and similar +locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If +\f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small +clusters containing less than or equal to groupThreshold rectangles are rejected. In each other +cluster, the average rectangle is computed and put into the output rectangle list. + */ +CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2); +/** @overload */ +CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, + int groupThreshold, double eps = 0.2); +/** @overload */ +CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, + double eps, std::vector<int>* weights, std::vector<double>* levelWeights ); +/** @overload */ +CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, + std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2); +/** @overload */ +CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, + std::vector<double>& foundScales, + double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); + +template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const; + +enum { CASCADE_DO_CANNY_PRUNING = 1, + CASCADE_SCALE_IMAGE = 2, + CASCADE_FIND_BIGGEST_OBJECT = 4, + CASCADE_DO_ROUGH_SEARCH = 8 + }; + +class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm +{ +public: + virtual ~BaseCascadeClassifier(); + virtual bool empty() const = 0; + virtual bool load( const String& filename ) = 0; + virtual void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + double scaleFactor, + int minNeighbors, int flags, + Size minSize, Size maxSize ) = 0; + + virtual void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + CV_OUT std::vector<int>& numDetections, + double scaleFactor, + int minNeighbors, int flags, + Size minSize, Size maxSize ) = 0; + + virtual void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + CV_OUT std::vector<int>& rejectLevels, + CV_OUT std::vector<double>& levelWeights, + double scaleFactor, + int minNeighbors, int flags, + Size minSize, Size maxSize, + bool outputRejectLevels ) = 0; + + virtual bool isOldFormatCascade() const = 0; + virtual Size getOriginalWindowSize() const = 0; + virtual int getFeatureType() const = 0; + virtual void* getOldCascade() = 0; + + class CV_EXPORTS MaskGenerator + { + public: + virtual ~MaskGenerator() {} + virtual Mat generateMask(const Mat& src)=0; + virtual void initializeMask(const Mat& /*src*/) { } + }; + virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0; + virtual Ptr<MaskGenerator> getMaskGenerator() = 0; +}; + +/** @brief Cascade classifier class for object detection. + */ +class CV_EXPORTS_W CascadeClassifier +{ +public: + CV_WRAP CascadeClassifier(); + /** @brief Loads a classifier from a file. + + @param filename Name of the file from which the classifier is loaded. + */ + CV_WRAP CascadeClassifier(const String& filename); + ~CascadeClassifier(); + /** @brief Checks whether the classifier has been loaded. + */ + CV_WRAP bool empty() const; + /** @brief Loads a classifier from a file. + + @param filename Name of the file from which the classifier is loaded. The file may contain an old + HAAR classifier trained by the haartraining application or a new cascade classifier trained by the + traincascade application. + */ + CV_WRAP bool load( const String& filename ); + /** @brief Reads a classifier from a FileStorage node. + + @note The file may contain a new cascade classifier (trained traincascade application) only. + */ + CV_WRAP bool read( const FileNode& node ); + + /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list + of rectangles. + + @param image Matrix of the type CV_8U containing an image where objects are detected. + @param objects Vector of rectangles where each rectangle contains the detected object, the + rectangles may be partially outside the original image. + @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. + @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have + to retain it. + @param flags Parameter with the same meaning for an old cascade as in the function + cvHaarDetectObjects. It is not used for a new cascade. + @param minSize Minimum possible object size. Objects smaller than that are ignored. + @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. + + The function is parallelized with the TBB library. + + @note + - (Python) A face detection example using cascade classifiers can be found at + opencv_source_code/samples/python/facedetect.py + */ + CV_WRAP void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + double scaleFactor = 1.1, + int minNeighbors = 3, int flags = 0, + Size minSize = Size(), + Size maxSize = Size() ); + + /** @overload + @param image Matrix of the type CV_8U containing an image where objects are detected. + @param objects Vector of rectangles where each rectangle contains the detected object, the + rectangles may be partially outside the original image. + @param numDetections Vector of detection numbers for the corresponding objects. An object's number + of detections is the number of neighboring positively classified rectangles that were joined + together to form the object. + @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. + @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have + to retain it. + @param flags Parameter with the same meaning for an old cascade as in the function + cvHaarDetectObjects. It is not used for a new cascade. + @param minSize Minimum possible object size. Objects smaller than that are ignored. + @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. + */ + CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + CV_OUT std::vector<int>& numDetections, + double scaleFactor=1.1, + int minNeighbors=3, int flags=0, + Size minSize=Size(), + Size maxSize=Size() ); + + /** @overload + if `outputRejectLevels` is `true` returns `rejectLevels` and `levelWeights` + */ + CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + CV_OUT std::vector<int>& rejectLevels, + CV_OUT std::vector<double>& levelWeights, + double scaleFactor = 1.1, + int minNeighbors = 3, int flags = 0, + Size minSize = Size(), + Size maxSize = Size(), + bool outputRejectLevels = false ); + + CV_WRAP bool isOldFormatCascade() const; + CV_WRAP Size getOriginalWindowSize() const; + CV_WRAP int getFeatureType() const; + void* getOldCascade(); + + CV_WRAP static bool convert(const String& oldcascade, const String& newcascade); + + void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator); + Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator(); + + Ptr<BaseCascadeClassifier> cc; +}; + +CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator(); + +//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// + +//! struct for detection region of interest (ROI) +struct DetectionROI +{ + //! scale(size) of the bounding box + double scale; + //! set of requrested locations to be evaluated + std::vector<cv::Point> locations; + //! vector that will contain confidence values for each location + std::vector<double> confidences; +}; + +struct CV_EXPORTS_W HOGDescriptor +{ +public: + enum { L2Hys = 0 + }; + enum { DEFAULT_NLEVELS = 64 + }; + + CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), + cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), + histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), + free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false) + {} + + CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, + Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, + int _histogramNormType=HOGDescriptor::L2Hys, + double _L2HysThreshold=0.2, bool _gammaCorrection=false, + int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false) + : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), + nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), + histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), + gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient) + {} + + CV_WRAP HOGDescriptor(const String& filename) + { + load(filename); + } + + HOGDescriptor(const HOGDescriptor& d) + { + d.copyTo(*this); + } + + virtual ~HOGDescriptor() {} + + CV_WRAP size_t getDescriptorSize() const; + CV_WRAP bool checkDetectorSize() const; + CV_WRAP double getWinSigma() const; + + CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); + + virtual bool read(FileNode& fn); + virtual void write(FileStorage& fs, const String& objname) const; + + CV_WRAP virtual bool load(const String& filename, const String& objname = String()); + CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; + virtual void copyTo(HOGDescriptor& c) const; + + CV_WRAP virtual void compute(InputArray img, + CV_OUT std::vector<float>& descriptors, + Size winStride = Size(), Size padding = Size(), + const std::vector<Point>& locations = std::vector<Point>()) const; + + //! with found weights output + CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, + CV_OUT std::vector<double>& weights, + double hitThreshold = 0, Size winStride = Size(), + Size padding = Size(), + const std::vector<Point>& searchLocations = std::vector<Point>()) const; + //! without found weights output + virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, + double hitThreshold = 0, Size winStride = Size(), + Size padding = Size(), + const std::vector<Point>& searchLocations=std::vector<Point>()) const; + + //! with result weights output + CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, + CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, + Size winStride = Size(), Size padding = Size(), double scale = 1.05, + double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const; + //! without found weights output + virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, + double hitThreshold = 0, Size winStride = Size(), + Size padding = Size(), double scale = 1.05, + double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const; + + CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, + Size paddingTL = Size(), Size paddingBR = Size()) const; + + CV_WRAP static std::vector<float> getDefaultPeopleDetector(); + CV_WRAP static std::vector<float> getDaimlerPeopleDetector(); + + CV_PROP Size winSize; + CV_PROP Size blockSize; + CV_PROP Size blockStride; + CV_PROP Size cellSize; + CV_PROP int nbins; + CV_PROP int derivAperture; + CV_PROP double winSigma; + CV_PROP int histogramNormType; + CV_PROP double L2HysThreshold; + CV_PROP bool gammaCorrection; + CV_PROP std::vector<float> svmDetector; + UMat oclSvmDetector; + float free_coef; + CV_PROP int nlevels; + CV_PROP bool signedGradient; + + + //! evaluate specified ROI and return confidence value for each location + virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations, + CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, + double hitThreshold = 0, cv::Size winStride = Size(), + cv::Size padding = Size()) const; + + //! evaluate specified ROI and return confidence value for each location in multiple scales + virtual void detectMultiScaleROI(const cv::Mat& img, + CV_OUT std::vector<cv::Rect>& foundLocations, + std::vector<DetectionROI>& locations, + double hitThreshold = 0, + int groupThreshold = 0) const; + + //! read/parse Dalal's alt model file + void readALTModel(String modelfile); + void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const; +}; + +//! @} objdetect + +} + +#include "opencv2/objdetect/detection_based_tracker.hpp" + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/objdetect/objdetect_c.h" +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/objdetect/detection_based_tracker.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,225 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OBJDETECT_DBT_HPP +#define OPENCV_OBJDETECT_DBT_HPP + +// After this condition removal update blacklist for bindings: modules/python/common.cmake +#if defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(__ANDROID__) || \ + (defined(__cplusplus) && __cplusplus > 199711L) || (defined(_MSC_VER) && _MSC_VER >= 1700) + +#include <vector> + +namespace cv +{ + +//! @addtogroup objdetect +//! @{ + +class CV_EXPORTS DetectionBasedTracker +{ + public: + struct CV_EXPORTS Parameters + { + int maxTrackLifetime; + int minDetectionPeriod; //the minimal time between run of the big object detector (on the whole frame) in ms (1000 mean 1 sec), default=0 + + Parameters(); + }; + + class IDetector + { + public: + IDetector(): + minObjSize(96, 96), + maxObjSize(INT_MAX, INT_MAX), + minNeighbours(2), + scaleFactor(1.1f) + {} + + virtual void detect(const cv::Mat& image, std::vector<cv::Rect>& objects) = 0; + + void setMinObjectSize(const cv::Size& min) + { + minObjSize = min; + } + void setMaxObjectSize(const cv::Size& max) + { + maxObjSize = max; + } + cv::Size getMinObjectSize() const + { + return minObjSize; + } + cv::Size getMaxObjectSize() const + { + return maxObjSize; + } + float getScaleFactor() + { + return scaleFactor; + } + void setScaleFactor(float value) + { + scaleFactor = value; + } + int getMinNeighbours() + { + return minNeighbours; + } + void setMinNeighbours(int value) + { + minNeighbours = value; + } + virtual ~IDetector() {} + + protected: + cv::Size minObjSize; + cv::Size maxObjSize; + int minNeighbours; + float scaleFactor; + }; + + DetectionBasedTracker(cv::Ptr<IDetector> mainDetector, cv::Ptr<IDetector> trackingDetector, const Parameters& params); + virtual ~DetectionBasedTracker(); + + virtual bool run(); + virtual void stop(); + virtual void resetTracking(); + + virtual void process(const cv::Mat& imageGray); + + bool setParameters(const Parameters& params); + const Parameters& getParameters() const; + + + typedef std::pair<cv::Rect, int> Object; + virtual void getObjects(std::vector<cv::Rect>& result) const; + virtual void getObjects(std::vector<Object>& result) const; + + enum ObjectStatus + { + DETECTED_NOT_SHOWN_YET, + DETECTED, + DETECTED_TEMPORARY_LOST, + WRONG_OBJECT + }; + struct ExtObject + { + int id; + cv::Rect location; + ObjectStatus status; + ExtObject(int _id, cv::Rect _location, ObjectStatus _status) + :id(_id), location(_location), status(_status) + { + } + }; + virtual void getObjects(std::vector<ExtObject>& result) const; + + + virtual int addObject(const cv::Rect& location); //returns id of the new object + + protected: + class SeparateDetectionWork; + cv::Ptr<SeparateDetectionWork> separateDetectionWork; + friend void* workcycleObjectDetectorFunction(void* p); + + struct InnerParameters + { + int numLastPositionsToTrack; + int numStepsToWaitBeforeFirstShow; + int numStepsToTrackWithoutDetectingIfObjectHasNotBeenShown; + int numStepsToShowWithoutDetecting; + + float coeffTrackingWindowSize; + float coeffObjectSizeToTrack; + float coeffObjectSpeedUsingInPrediction; + + InnerParameters(); + }; + Parameters parameters; + InnerParameters innerParameters; + + struct TrackedObject + { + typedef std::vector<cv::Rect> PositionsVector; + + PositionsVector lastPositions; + + int numDetectedFrames; + int numFramesNotDetected; + int id; + + TrackedObject(const cv::Rect& rect):numDetectedFrames(1), numFramesNotDetected(0) + { + lastPositions.push_back(rect); + id=getNextId(); + }; + + static int getNextId() + { + static int _id=0; + return _id++; + } + }; + + int numTrackedSteps; + std::vector<TrackedObject> trackedObjects; + + std::vector<float> weightsPositionsSmoothing; + std::vector<float> weightsSizesSmoothing; + + cv::Ptr<IDetector> cascadeForTracking; + + void updateTrackedObjects(const std::vector<cv::Rect>& detectedObjects); + cv::Rect calcTrackedObjectPositionToShow(int i) const; + cv::Rect calcTrackedObjectPositionToShow(int i, ObjectStatus& status) const; + void detectInRegion(const cv::Mat& img, const cv::Rect& r, std::vector<cv::Rect>& detectedObjectsInRegions); +}; + +//! @} objdetect + +} //end of cv namespace +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/objdetect/objdetect.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/objdetect.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/objdetect/objdetect_c.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,165 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OBJDETECT_C_H +#define OPENCV_OBJDETECT_C_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +#include <deque> +#include <vector> + +extern "C" { +#endif + +/** @addtogroup objdetect_c + @{ + */ + +/****************************************************************************************\ +* Haar-like Object Detection functions * +\****************************************************************************************/ + +#define CV_HAAR_MAGIC_VAL 0x42500000 +#define CV_TYPE_NAME_HAAR "opencv-haar-classifier" + +#define CV_IS_HAAR_CLASSIFIER( haar ) \ + ((haar) != NULL && \ + (((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL) + +#define CV_HAAR_FEATURE_MAX 3 + +typedef struct CvHaarFeature +{ + int tilted; + struct + { + CvRect r; + float weight; + } rect[CV_HAAR_FEATURE_MAX]; +} CvHaarFeature; + +typedef struct CvHaarClassifier +{ + int count; + CvHaarFeature* haar_feature; + float* threshold; + int* left; + int* right; + float* alpha; +} CvHaarClassifier; + +typedef struct CvHaarStageClassifier +{ + int count; + float threshold; + CvHaarClassifier* classifier; + + int next; + int child; + int parent; +} CvHaarStageClassifier; + +typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade; + +typedef struct CvHaarClassifierCascade +{ + int flags; + int count; + CvSize orig_window_size; + CvSize real_window_size; + double scale; + CvHaarStageClassifier* stage_classifier; + CvHidHaarClassifierCascade* hid_cascade; +} CvHaarClassifierCascade; + +typedef struct CvAvgComp +{ + CvRect rect; + int neighbors; +} CvAvgComp; + +/* Loads haar classifier cascade from a directory. + It is obsolete: convert your cascade to xml and use cvLoad instead */ +CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade( + const char* directory, CvSize orig_window_size); + +CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade ); + +#define CV_HAAR_DO_CANNY_PRUNING 1 +#define CV_HAAR_SCALE_IMAGE 2 +#define CV_HAAR_FIND_BIGGEST_OBJECT 4 +#define CV_HAAR_DO_ROUGH_SEARCH 8 + +CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image, + CvHaarClassifierCascade* cascade, CvMemStorage* storage, + double scale_factor CV_DEFAULT(1.1), + int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), + CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0))); + +/* sets images for haar classifier cascade */ +CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade, + const CvArr* sum, const CvArr* sqsum, + const CvArr* tilted_sum, double scale ); + +/* runs the cascade on the specified window */ +CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade, + CvPoint pt, int start_stage CV_DEFAULT(0)); + +/** @} objdetect_c */ + +#ifdef __cplusplus +} + +CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image, + CvHaarClassifierCascade* cascade, CvMemStorage* storage, + std::vector<int>& rejectLevels, std::vector<double>& levelWeightds, + double scale_factor = 1.1, + int min_neighbors = 3, int flags = 0, + CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0), + bool outputRejectLevels = false ); + +#endif + +#endif /* OPENCV_OBJDETECT_C_H */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/opencv.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,136 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_ALL_HPP +#define OPENCV_ALL_HPP + +// File that defines what modules where included during the build of OpenCV +// These are purely the defines of the correct HAVE_OPENCV_modulename values +#include "opencv2/opencv_modules.hpp" + +// Then the list of defines is checked to include the correct headers +// Core library is always included --> without no OpenCV functionality available +#include "opencv2/core.hpp" + +// Then the optional modules are checked +#ifdef HAVE_OPENCV_CALIB3D +#include "opencv2/calib3d.hpp" +#endif +#ifdef HAVE_OPENCV_FEATURES2D +#include "opencv2/features2d.hpp" +#endif +#ifdef HAVE_OPENCV_FLANN +#include "opencv2/flann.hpp" +#endif +#ifdef HAVE_OPENCV_HIGHGUI +#include "opencv2/highgui.hpp" +#endif +#ifdef HAVE_OPENCV_IMGCODECS +#include "opencv2/imgcodecs.hpp" +#endif +#ifdef HAVE_OPENCV_IMGPROC +#include "opencv2/imgproc.hpp" +#endif +#ifdef HAVE_OPENCV_ML +#include "opencv2/ml.hpp" +#endif +#ifdef HAVE_OPENCV_OBJDETECT +#include "opencv2/objdetect.hpp" +#endif +#ifdef HAVE_OPENCV_PHOTO +#include "opencv2/photo.hpp" +#endif +#ifdef HAVE_OPENCV_SHAPE +#include "opencv2/shape.hpp" +#endif +#ifdef HAVE_OPENCV_STITCHING +#include "opencv2/stitching.hpp" +#endif +#ifdef HAVE_OPENCV_SUPERRES +#include "opencv2/superres.hpp" +#endif +#ifdef HAVE_OPENCV_VIDEO +#include "opencv2/video.hpp" +#endif +#ifdef HAVE_OPENCV_VIDEOIO +#include "opencv2/videoio.hpp" +#endif +#ifdef HAVE_OPENCV_VIDEOSTAB +#include "opencv2/videostab.hpp" +#endif +#ifdef HAVE_OPENCV_VIZ +#include "opencv2/viz.hpp" +#endif + +// Finally CUDA specific entries are checked and added +#ifdef HAVE_OPENCV_CUDAARITHM +#include "opencv2/cudaarithm.hpp" +#endif +#ifdef HAVE_OPENCV_CUDABGSEGM +#include "opencv2/cudabgsegm.hpp" +#endif +#ifdef HAVE_OPENCV_CUDACODEC +#include "opencv2/cudacodec.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAFEATURES2D +#include "opencv2/cudafeatures2d.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAFILTERS +#include "opencv2/cudafilters.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAIMGPROC +#include "opencv2/cudaimgproc.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAOBJDETECT +#include "opencv2/cudaobjdetect.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAOPTFLOW +#include "opencv2/cudaoptflow.hpp" +#endif +#ifdef HAVE_OPENCV_CUDASTEREO +#include "opencv2/cudastereo.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAWARPING +#include "opencv2/cudawarping.hpp" +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/opencv_modules.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,23 @@ +/* + * + * This file defines the list of modules available in current build configuration + * +*/ + + +#define HAVE_OPENCV_CALIB3D +#define HAVE_OPENCV_CORE +#define HAVE_OPENCV_FEATURES2D +//#define HAVE_OPENCV_FLANN +#define HAVE_OPENCV_IMGCODECS +#define HAVE_OPENCV_IMGPROC +#define HAVE_OPENCV_ML +#define HAVE_OPENCV_OBJDETECT +#define HAVE_OPENCV_PHOTO +#define HAVE_OPENCV_SHAPE +#define HAVE_OPENCV_STITCHING +#define HAVE_OPENCV_SUPERRES +#define HAVE_OPENCV_VIDEO +#define HAVE_OPENCV_VIDEOSTAB + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/photo.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,870 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_PHOTO_HPP +#define OPENCV_PHOTO_HPP + +#include "opencv2/core.hpp" +#include "opencv2/imgproc.hpp" + +/** +@defgroup photo Computational Photography +@{ + @defgroup photo_denoise Denoising + @defgroup photo_hdr HDR imaging + +This section describes high dynamic range imaging algorithms namely tonemapping, exposure alignment, +camera calibration with multiple exposures and exposure fusion. + + @defgroup photo_clone Seamless Cloning + @defgroup photo_render Non-Photorealistic Rendering + @defgroup photo_c C API +@} + */ + +namespace cv +{ + +//! @addtogroup photo +//! @{ + +//! the inpainting algorithm +enum +{ + INPAINT_NS = 0, // Navier-Stokes algorithm + INPAINT_TELEA = 1 // A. Telea algorithm +}; + +enum +{ + NORMAL_CLONE = 1, + MIXED_CLONE = 2, + MONOCHROME_TRANSFER = 3 +}; + +enum +{ + RECURS_FILTER = 1, + NORMCONV_FILTER = 2 +}; + +/** @brief Restores the selected region in an image using the region neighborhood. + +@param src Input 8-bit 1-channel or 3-channel image. +@param inpaintMask Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that +needs to be inpainted. +@param dst Output image with the same size and type as src . +@param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered +by the algorithm. +@param flags Inpainting method that could be one of the following: +- **INPAINT_NS** Navier-Stokes based method [Navier01] +- **INPAINT_TELEA** Method by Alexandru Telea @cite Telea04 . + +The function reconstructs the selected image area from the pixel near the area boundary. The +function may be used to remove dust and scratches from a scanned photo, or to remove undesirable +objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details. + +@note + - An example using the inpainting technique can be found at + opencv_source_code/samples/cpp/inpaint.cpp + - (Python) An example using the inpainting technique can be found at + opencv_source_code/samples/python/inpaint.py + */ +CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask, + OutputArray dst, double inpaintRadius, int flags ); + +//! @addtogroup photo_denoise +//! @{ + +/** @brief Perform image denoising using Non-local Means Denoising algorithm +<http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational +optimizations. Noise expected to be a gaussian white noise + +@param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image. +@param dst Output image with the same size and type as src . +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Parameter regulating filter strength. Big h value perfectly removes noise but also +removes image details, smaller h value preserves details but also preserves some noise + +This function expected to be applied to grayscale images. For colored images look at +fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored +image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting +image to CIELAB colorspace and then separately denoise L and AB components with different h +parameter. + */ +CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h = 3, + int templateWindowSize = 7, int searchWindowSize = 21); + +/** @brief Perform image denoising using Non-local Means Denoising algorithm +<http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational +optimizations. Noise expected to be a gaussian white noise + +@param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel, +2-channel, 3-channel or 4-channel image. +@param dst Output image with the same size and type as src . +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Array of parameters regulating filter strength, either one +parameter applied to all channels or one per channel in dst. Big h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise +@param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1 + +This function expected to be applied to grayscale images. For colored images look at +fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored +image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting +image to CIELAB colorspace and then separately denoise L and AB components with different h +parameter. + */ +CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, + const std::vector<float>& h, + int templateWindowSize = 7, int searchWindowSize = 21, + int normType = NORM_L2); + +/** @brief Modification of fastNlMeansDenoising function for colored images + +@param src Input 8-bit 3-channel image. +@param dst Output image with the same size and type as src . +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly +removes noise but also removes image details, smaller h value preserves details but also preserves +some noise +@param hColor The same as h but for color components. For most images value equals 10 +will be enough to remove colored noise and do not distort colors + +The function converts image to CIELAB colorspace and then separately denoise L and AB components +with given h parameters using fastNlMeansDenoising function. + */ +CV_EXPORTS_W void fastNlMeansDenoisingColored( InputArray src, OutputArray dst, + float h = 3, float hColor = 3, + int templateWindowSize = 7, int searchWindowSize = 21); + +/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been +captured in small period of time. For example video. This version of the function is for grayscale +images or for manual manipulation with colorspaces. For more details see +<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> + +@param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or +4-channel images sequence. All images should have the same type and +size. +@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence +@param temporalWindowSize Number of surrounding images to use for target image denoising. Should +be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to +imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise +srcImgs[imgToDenoiseIndex] image. +@param dst Output image with the same size and type as srcImgs images. +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Parameter regulating filter strength. Bigger h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise + */ +CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst, + int imgToDenoiseIndex, int temporalWindowSize, + float h = 3, int templateWindowSize = 7, int searchWindowSize = 21); + +/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been +captured in small period of time. For example video. This version of the function is for grayscale +images or for manual manipulation with colorspaces. For more details see +<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> + +@param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel, +2-channel, 3-channel or 4-channel images sequence. All images should +have the same type and size. +@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence +@param temporalWindowSize Number of surrounding images to use for target image denoising. Should +be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to +imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise +srcImgs[imgToDenoiseIndex] image. +@param dst Output image with the same size and type as srcImgs images. +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Array of parameters regulating filter strength, either one +parameter applied to all channels or one per channel in dst. Big h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise +@param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1 + */ +CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst, + int imgToDenoiseIndex, int temporalWindowSize, + const std::vector<float>& h, + int templateWindowSize = 7, int searchWindowSize = 21, + int normType = NORM_L2); + +/** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences + +@param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and +size. +@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence +@param temporalWindowSize Number of surrounding images to use for target image denoising. Should +be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to +imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise +srcImgs[imgToDenoiseIndex] image. +@param dst Output image with the same size and type as srcImgs images. +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly +removes noise but also removes image details, smaller h value preserves details but also preserves +some noise. +@param hColor The same as h but for color components. + +The function converts images to CIELAB colorspace and then separately denoise L and AB components +with given h parameters using fastNlMeansDenoisingMulti function. + */ +CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs, OutputArray dst, + int imgToDenoiseIndex, int temporalWindowSize, + float h = 3, float hColor = 3, + int templateWindowSize = 7, int searchWindowSize = 21); + +/** @brief Primal-dual algorithm is an algorithm for solving special types of variational problems (that is, +finding a function to minimize some functional). As the image denoising, in particular, may be seen +as the variational problem, primal-dual algorithm then can be used to perform denoising and this is +exactly what is implemented. + +It should be noted, that this implementation was taken from the July 2013 blog entry +@cite MA13 , which also contained (slightly more general) ready-to-use source code on Python. +Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end +of July 2013 and finally it was slightly adapted by later authors. + +Although the thorough discussion and justification of the algorithm involved may be found in +@cite ChambolleEtAl, it might make sense to skim over it here, following @cite MA13 . To begin +with, we consider the 1-byte gray-level images as the functions from the rectangular domain of +pixels (it may be seen as set +\f$\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\f$ for some +\f$m,\;n\in\mathbb{N}\f$) into \f$\{0,1,\dots,255\}\f$. We shall denote the noised images as \f$f_i\f$ and with +this view, given some image \f$x\f$ of the same size, we may measure how bad it is by the formula + +\f[\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\f] + +\f$\|\|\cdot\|\|\f$ here denotes \f$L_2\f$-norm and as you see, the first addend states that we want our +image to be smooth (ideally, having zero gradient, thus being constant) and the second states that +we want our result to be close to the observations we've got. If we treat \f$x\f$ as a function, this is +exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play. + +@param observations This array should contain one or more noised versions of the image that is to +be restored. +@param result Here the denoised image will be stored. There is no need to do pre-allocation of +storage space, as it will be automatically allocated, if necessary. +@param lambda Corresponds to \f$\lambda\f$ in the formulas above. As it is enlarged, the smooth +(blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly +speaking, as it becomes smaller, the result will be more blur but more sever outliers will be +removed. +@param niters Number of iterations that the algorithm will run. Of course, as more iterations as +better, but it is hard to quantitatively refine this statement, so just use the default and +increase it if the results are poor. + */ +CV_EXPORTS_W void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda=1.0, int niters=30); + +//! @} photo_denoise + +//! @addtogroup photo_hdr +//! @{ + +enum { LDR_SIZE = 256 }; + +/** @brief Base class for tonemapping algorithms - tools that are used to map HDR image to 8-bit range. + */ +class CV_EXPORTS_W Tonemap : public Algorithm +{ +public: + /** @brief Tonemaps image + + @param src source image - 32-bit 3-channel Mat + @param dst destination image - 32-bit 3-channel Mat with values in [0, 1] range + */ + CV_WRAP virtual void process(InputArray src, OutputArray dst) = 0; + + CV_WRAP virtual float getGamma() const = 0; + CV_WRAP virtual void setGamma(float gamma) = 0; +}; + +/** @brief Creates simple linear mapper with gamma correction + +@param gamma positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma +equal to 2.2f is suitable for most displays. +Generally gamma \> 1 brightens the image and gamma \< 1 darkens it. + */ +CV_EXPORTS_W Ptr<Tonemap> createTonemap(float gamma = 1.0f); + +/** @brief Adaptive logarithmic mapping is a fast global tonemapping algorithm that scales the image in +logarithmic domain. + +Since it's a global operator the same function is applied to all the pixels, it is controlled by the +bias parameter. + +Optional saturation enhancement is possible as described in @cite FL02 . + +For more information see @cite DM03 . + */ +class CV_EXPORTS_W TonemapDrago : public Tonemap +{ +public: + + CV_WRAP virtual float getSaturation() const = 0; + CV_WRAP virtual void setSaturation(float saturation) = 0; + + CV_WRAP virtual float getBias() const = 0; + CV_WRAP virtual void setBias(float bias) = 0; +}; + +/** @brief Creates TonemapDrago object + +@param gamma gamma value for gamma correction. See createTonemap +@param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater +than 1 increase saturation and values less than 1 decrease it. +@param bias value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best +results, default value is 0.85. + */ +CV_EXPORTS_W Ptr<TonemapDrago> createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f); + +/** @brief This algorithm decomposes image into two layers: base layer and detail layer using bilateral filter +and compresses contrast of the base layer thus preserving all the details. + +This implementation uses regular bilateral filter from opencv. + +Saturation enhancement is possible as in ocvTonemapDrago. + +For more information see @cite DD02 . + */ +class CV_EXPORTS_W TonemapDurand : public Tonemap +{ +public: + + CV_WRAP virtual float getSaturation() const = 0; + CV_WRAP virtual void setSaturation(float saturation) = 0; + + CV_WRAP virtual float getContrast() const = 0; + CV_WRAP virtual void setContrast(float contrast) = 0; + + CV_WRAP virtual float getSigmaSpace() const = 0; + CV_WRAP virtual void setSigmaSpace(float sigma_space) = 0; + + CV_WRAP virtual float getSigmaColor() const = 0; + CV_WRAP virtual void setSigmaColor(float sigma_color) = 0; +}; + +/** @brief Creates TonemapDurand object + +@param gamma gamma value for gamma correction. See createTonemap +@param contrast resulting contrast on logarithmic scale, i. e. log(max / min), where max and min +are maximum and minimum luminance values of the resulting image. +@param saturation saturation enhancement value. See createTonemapDrago +@param sigma_space bilateral filter sigma in color space +@param sigma_color bilateral filter sigma in coordinate space + */ +CV_EXPORTS_W Ptr<TonemapDurand> +createTonemapDurand(float gamma = 1.0f, float contrast = 4.0f, float saturation = 1.0f, float sigma_space = 2.0f, float sigma_color = 2.0f); + +/** @brief This is a global tonemapping operator that models human visual system. + +Mapping function is controlled by adaptation parameter, that is computed using light adaptation and +color adaptation. + +For more information see @cite RD05 . + */ +class CV_EXPORTS_W TonemapReinhard : public Tonemap +{ +public: + CV_WRAP virtual float getIntensity() const = 0; + CV_WRAP virtual void setIntensity(float intensity) = 0; + + CV_WRAP virtual float getLightAdaptation() const = 0; + CV_WRAP virtual void setLightAdaptation(float light_adapt) = 0; + + CV_WRAP virtual float getColorAdaptation() const = 0; + CV_WRAP virtual void setColorAdaptation(float color_adapt) = 0; +}; + +/** @brief Creates TonemapReinhard object + +@param gamma gamma value for gamma correction. See createTonemap +@param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results. +@param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel +value, if 0 it's global, otherwise it's a weighted mean of this two cases. +@param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently, +if 0 adaptation level is the same for each channel. + */ +CV_EXPORTS_W Ptr<TonemapReinhard> +createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f); + +/** @brief This algorithm transforms image to contrast using gradients on all levels of gaussian pyramid, +transforms contrast values to HVS response and scales the response. After this the image is +reconstructed from new contrast values. + +For more information see @cite MM06 . + */ +class CV_EXPORTS_W TonemapMantiuk : public Tonemap +{ +public: + CV_WRAP virtual float getScale() const = 0; + CV_WRAP virtual void setScale(float scale) = 0; + + CV_WRAP virtual float getSaturation() const = 0; + CV_WRAP virtual void setSaturation(float saturation) = 0; +}; + +/** @brief Creates TonemapMantiuk object + +@param gamma gamma value for gamma correction. See createTonemap +@param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing +dynamic range. Values from 0.6 to 0.9 produce best results. +@param saturation saturation enhancement value. See createTonemapDrago + */ +CV_EXPORTS_W Ptr<TonemapMantiuk> +createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f); + +/** @brief The base class for algorithms that align images of the same scene with different exposures + */ +class CV_EXPORTS_W AlignExposures : public Algorithm +{ +public: + /** @brief Aligns images + + @param src vector of input images + @param dst vector of aligned images + @param times vector of exposure time values for each image + @param response 256x1 matrix with inverse camera response function for each pixel value, it should + have the same number of channels as images. + */ + CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst, + InputArray times, InputArray response) = 0; +}; + +/** @brief This algorithm converts images to median threshold bitmaps (1 for pixels brighter than median +luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations. + +It is invariant to exposure, so exposure values and camera response are not necessary. + +In this implementation new image regions are filled with zeros. + +For more information see @cite GW03 . + */ +class CV_EXPORTS_W AlignMTB : public AlignExposures +{ +public: + CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst, + InputArray times, InputArray response) = 0; + + /** @brief Short version of process, that doesn't take extra arguments. + + @param src vector of input images + @param dst vector of aligned images + */ + CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst) = 0; + + /** @brief Calculates shift between two images, i. e. how to shift the second image to correspond it with the + first. + + @param img0 first image + @param img1 second image + */ + CV_WRAP virtual Point calculateShift(InputArray img0, InputArray img1) = 0; + /** @brief Helper function, that shift Mat filling new regions with zeros. + + @param src input image + @param dst result image + @param shift shift value + */ + CV_WRAP virtual void shiftMat(InputArray src, OutputArray dst, const Point shift) = 0; + /** @brief Computes median threshold and exclude bitmaps of given image. + + @param img input image + @param tb median threshold bitmap + @param eb exclude bitmap + */ + CV_WRAP virtual void computeBitmaps(InputArray img, OutputArray tb, OutputArray eb) = 0; + + CV_WRAP virtual int getMaxBits() const = 0; + CV_WRAP virtual void setMaxBits(int max_bits) = 0; + + CV_WRAP virtual int getExcludeRange() const = 0; + CV_WRAP virtual void setExcludeRange(int exclude_range) = 0; + + CV_WRAP virtual bool getCut() const = 0; + CV_WRAP virtual void setCut(bool value) = 0; +}; + +/** @brief Creates AlignMTB object + +@param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are +usually good enough (31 and 63 pixels shift respectively). +@param exclude_range range for exclusion bitmap that is constructed to suppress noise around the +median value. +@param cut if true cuts images, otherwise fills the new regions with zeros. + */ +CV_EXPORTS_W Ptr<AlignMTB> createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true); + +/** @brief The base class for camera response calibration algorithms. + */ +class CV_EXPORTS_W CalibrateCRF : public Algorithm +{ +public: + /** @brief Recovers inverse camera response. + + @param src vector of input images + @param dst 256x1 matrix with inverse camera response function + @param times vector of exposure time values for each image + */ + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0; +}; + +/** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective +function as linear system. Objective function is constructed using pixel values on the same position +in all images, extra term is added to make the result smoother. + +For more information see @cite DM97 . + */ +class CV_EXPORTS_W CalibrateDebevec : public CalibrateCRF +{ +public: + CV_WRAP virtual float getLambda() const = 0; + CV_WRAP virtual void setLambda(float lambda) = 0; + + CV_WRAP virtual int getSamples() const = 0; + CV_WRAP virtual void setSamples(int samples) = 0; + + CV_WRAP virtual bool getRandom() const = 0; + CV_WRAP virtual void setRandom(bool random) = 0; +}; + +/** @brief Creates CalibrateDebevec object + +@param samples number of pixel locations to use +@param lambda smoothness term weight. Greater values produce smoother results, but can alter the +response. +@param random if true sample pixel locations are chosen at random, otherwise the form a +rectangular grid. + */ +CV_EXPORTS_W Ptr<CalibrateDebevec> createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false); + +/** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective +function as linear system. This algorithm uses all image pixels. + +For more information see @cite RB99 . + */ +class CV_EXPORTS_W CalibrateRobertson : public CalibrateCRF +{ +public: + CV_WRAP virtual int getMaxIter() const = 0; + CV_WRAP virtual void setMaxIter(int max_iter) = 0; + + CV_WRAP virtual float getThreshold() const = 0; + CV_WRAP virtual void setThreshold(float threshold) = 0; + + CV_WRAP virtual Mat getRadiance() const = 0; +}; + +/** @brief Creates CalibrateRobertson object + +@param max_iter maximal number of Gauss-Seidel solver iterations. +@param threshold target difference between results of two successive steps of the minimization. + */ +CV_EXPORTS_W Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f); + +/** @brief The base class algorithms that can merge exposure sequence to a single image. + */ +class CV_EXPORTS_W MergeExposures : public Algorithm +{ +public: + /** @brief Merges images. + + @param src vector of input images + @param dst result image + @param times vector of exposure time values for each image + @param response 256x1 matrix with inverse camera response function for each pixel value, it should + have the same number of channels as images. + */ + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, + InputArray times, InputArray response) = 0; +}; + +/** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure +values and camera response. + +For more information see @cite DM97 . + */ +class CV_EXPORTS_W MergeDebevec : public MergeExposures +{ +public: + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, + InputArray times, InputArray response) = 0; + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0; +}; + +/** @brief Creates MergeDebevec object + */ +CV_EXPORTS_W Ptr<MergeDebevec> createMergeDebevec(); + +/** @brief Pixels are weighted using contrast, saturation and well-exposedness measures, than images are +combined using laplacian pyramids. + +The resulting image weight is constructed as weighted average of contrast, saturation and +well-exposedness measures. + +The resulting image doesn't require tonemapping and can be converted to 8-bit image by multiplying +by 255, but it's recommended to apply gamma correction and/or linear tonemapping. + +For more information see @cite MK07 . + */ +class CV_EXPORTS_W MergeMertens : public MergeExposures +{ +public: + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, + InputArray times, InputArray response) = 0; + /** @brief Short version of process, that doesn't take extra arguments. + + @param src vector of input images + @param dst result image + */ + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst) = 0; + + CV_WRAP virtual float getContrastWeight() const = 0; + CV_WRAP virtual void setContrastWeight(float contrast_weiht) = 0; + + CV_WRAP virtual float getSaturationWeight() const = 0; + CV_WRAP virtual void setSaturationWeight(float saturation_weight) = 0; + + CV_WRAP virtual float getExposureWeight() const = 0; + CV_WRAP virtual void setExposureWeight(float exposure_weight) = 0; +}; + +/** @brief Creates MergeMertens object + +@param contrast_weight contrast measure weight. See MergeMertens. +@param saturation_weight saturation measure weight +@param exposure_weight well-exposedness measure weight + */ +CV_EXPORTS_W Ptr<MergeMertens> +createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f); + +/** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure +values and camera response. + +For more information see @cite RB99 . + */ +class CV_EXPORTS_W MergeRobertson : public MergeExposures +{ +public: + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, + InputArray times, InputArray response) = 0; + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0; +}; + +/** @brief Creates MergeRobertson object + */ +CV_EXPORTS_W Ptr<MergeRobertson> createMergeRobertson(); + +//! @} photo_hdr + +/** @brief Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized +black-and-white photograph rendering, and in many single channel image processing applications +@cite CL12 . + +@param src Input 8-bit 3-channel image. +@param grayscale Output 8-bit 1-channel image. +@param color_boost Output 8-bit 3-channel image. + +This function is to be applied on color images. + */ +CV_EXPORTS_W void decolor( InputArray src, OutputArray grayscale, OutputArray color_boost); + +//! @addtogroup photo_clone +//! @{ + +/** @brief Image editing tasks concern either global changes (color/intensity corrections, filters, +deformations) or local changes concerned to a selection. Here we are interested in achieving local +changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless +manner. The extent of the changes ranges from slight distortions to complete replacement by novel +content @cite PM03 . + +@param src Input 8-bit 3-channel image. +@param dst Input 8-bit 3-channel image. +@param mask Input 8-bit 1 or 3-channel image. +@param p Point in dst image where object is placed. +@param blend Output image with the same size and type as dst. +@param flags Cloning method that could be one of the following: +- **NORMAL_CLONE** The power of the method is fully expressed when inserting objects with +complex outlines into a new background +- **MIXED_CLONE** The classic method, color-based selection and alpha masking might be time +consuming and often leaves an undesirable halo. Seamless cloning, even averaged with the +original image, is not effective. Mixed seamless cloning based on a loose selection proves +effective. +- **FEATURE_EXCHANGE** Feature exchange allows the user to easily replace certain features of +one object by alternative features. + */ +CV_EXPORTS_W void seamlessClone( InputArray src, InputArray dst, InputArray mask, Point p, + OutputArray blend, int flags); + +/** @brief Given an original color image, two differently colored versions of this image can be mixed +seamlessly. + +@param src Input 8-bit 3-channel image. +@param mask Input 8-bit 1 or 3-channel image. +@param dst Output image with the same size and type as src . +@param red_mul R-channel multiply factor. +@param green_mul G-channel multiply factor. +@param blue_mul B-channel multiply factor. + +Multiplication factor is between .5 to 2.5. + */ +CV_EXPORTS_W void colorChange(InputArray src, InputArray mask, OutputArray dst, float red_mul = 1.0f, + float green_mul = 1.0f, float blue_mul = 1.0f); + +/** @brief Applying an appropriate non-linear transformation to the gradient field inside the selection and +then integrating back with a Poisson solver, modifies locally the apparent illumination of an image. + +@param src Input 8-bit 3-channel image. +@param mask Input 8-bit 1 or 3-channel image. +@param dst Output image with the same size and type as src. +@param alpha Value ranges between 0-2. +@param beta Value ranges between 0-2. + +This is useful to highlight under-exposed foreground objects or to reduce specular reflections. + */ +CV_EXPORTS_W void illuminationChange(InputArray src, InputArray mask, OutputArray dst, + float alpha = 0.2f, float beta = 0.4f); + +/** @brief By retaining only the gradients at edge locations, before integrating with the Poisson solver, one +washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge +Detector is used. + +@param src Input 8-bit 3-channel image. +@param mask Input 8-bit 1 or 3-channel image. +@param dst Output image with the same size and type as src. +@param low_threshold Range from 0 to 100. +@param high_threshold Value \> 100. +@param kernel_size The size of the Sobel kernel to be used. + +**NOTE:** + +The algorithm assumes that the color of the source image is close to that of the destination. This +assumption means that when the colors don't match, the source image color gets tinted toward the +color of the destination image. + */ +CV_EXPORTS_W void textureFlattening(InputArray src, InputArray mask, OutputArray dst, + float low_threshold = 30, float high_threshold = 45, + int kernel_size = 3); + +//! @} photo_clone + +//! @addtogroup photo_render +//! @{ + +/** @brief Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing +filters are used in many different applications @cite EM11 . + +@param src Input 8-bit 3-channel image. +@param dst Output 8-bit 3-channel image. +@param flags Edge preserving filters: +- **RECURS_FILTER** = 1 +- **NORMCONV_FILTER** = 2 +@param sigma_s Range between 0 to 200. +@param sigma_r Range between 0 to 1. + */ +CV_EXPORTS_W void edgePreservingFilter(InputArray src, OutputArray dst, int flags = 1, + float sigma_s = 60, float sigma_r = 0.4f); + +/** @brief This filter enhances the details of a particular image. + +@param src Input 8-bit 3-channel image. +@param dst Output image with the same size and type as src. +@param sigma_s Range between 0 to 200. +@param sigma_r Range between 0 to 1. + */ +CV_EXPORTS_W void detailEnhance(InputArray src, OutputArray dst, float sigma_s = 10, + float sigma_r = 0.15f); + +/** @brief Pencil-like non-photorealistic line drawing + +@param src Input 8-bit 3-channel image. +@param dst1 Output 8-bit 1-channel image. +@param dst2 Output image with the same size and type as src. +@param sigma_s Range between 0 to 200. +@param sigma_r Range between 0 to 1. +@param shade_factor Range between 0 to 0.1. + */ +CV_EXPORTS_W void pencilSketch(InputArray src, OutputArray dst1, OutputArray dst2, + float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f); + +/** @brief Stylization aims to produce digital imagery with a wide variety of effects not focused on +photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low +contrast while preserving, or enhancing, high-contrast features. + +@param src Input 8-bit 3-channel image. +@param dst Output image with the same size and type as src. +@param sigma_s Range between 0 to 200. +@param sigma_r Range between 0 to 1. + */ +CV_EXPORTS_W void stylization(InputArray src, OutputArray dst, float sigma_s = 60, + float sigma_r = 0.45f); + +//! @} photo_render + +//! @} photo + +} // cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/photo/photo_c.h" +#endif + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/photo/cuda.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,132 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_PHOTO_CUDA_HPP +#define OPENCV_PHOTO_CUDA_HPP + +#include "opencv2/core/cuda.hpp" + +namespace cv { namespace cuda { + +//! @addtogroup photo_denoise +//! @{ + +/** @brief Performs pure non local means denoising without any simplification, and thus it is not fast. + +@param src Source image. Supports only CV_8UC1, CV_8UC2 and CV_8UC3. +@param dst Destination image. +@param h Filter sigma regulating filter strength for color. +@param search_window Size of search window. +@param block_size Size of block used for computing weights. +@param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 , +BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now. +@param stream Stream for the asynchronous version. + +@sa + fastNlMeansDenoising + */ +CV_EXPORTS void nonLocalMeans(InputArray src, OutputArray dst, + float h, + int search_window = 21, + int block_size = 7, + int borderMode = BORDER_DEFAULT, + Stream& stream = Stream::Null()); + +/** @brief Perform image denoising using Non-local Means Denoising algorithm +<http://www.ipol.im/pub/algo/bcm_non_local_means_denoising> with several computational +optimizations. Noise expected to be a gaussian white noise + +@param src Input 8-bit 1-channel, 2-channel or 3-channel image. +@param dst Output image with the same size and type as src . +@param h Parameter regulating filter strength. Big h value perfectly removes noise but also +removes image details, smaller h value preserves details but also preserves some noise +@param search_window Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater search_window - greater +denoising time. Recommended value 21 pixels +@param block_size Size in pixels of the template patch that is used to compute weights. Should be +odd. Recommended value 7 pixels +@param stream Stream for the asynchronous invocations. + +This function expected to be applied to grayscale images. For colored images look at +FastNonLocalMeansDenoising::labMethod. + +@sa + fastNlMeansDenoising + */ +CV_EXPORTS void fastNlMeansDenoising(InputArray src, OutputArray dst, + float h, + int search_window = 21, + int block_size = 7, + Stream& stream = Stream::Null()); + +/** @brief Modification of fastNlMeansDenoising function for colored images + +@param src Input 8-bit 3-channel image. +@param dst Output image with the same size and type as src . +@param h_luminance Parameter regulating filter strength. Big h value perfectly removes noise but +also removes image details, smaller h value preserves details but also preserves some noise +@param photo_render float The same as h but for color components. For most images value equals 10 will be +enough to remove colored noise and do not distort colors +@param search_window Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater search_window - greater +denoising time. Recommended value 21 pixels +@param block_size Size in pixels of the template patch that is used to compute weights. Should be +odd. Recommended value 7 pixels +@param stream Stream for the asynchronous invocations. + +The function converts image to CIELAB colorspace and then separately denoise L and AB components +with given h parameters using FastNonLocalMeansDenoising::simpleMethod function. + +@sa + fastNlMeansDenoisingColored + */ +CV_EXPORTS void fastNlMeansDenoisingColored(InputArray src, OutputArray dst, + float h_luminance, float photo_render, + int search_window = 21, + int block_size = 7, + Stream& stream = Stream::Null()); + +//! @} photo + +}} // namespace cv { namespace cuda { + +#endif /* OPENCV_PHOTO_CUDA_HPP */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/photo/photo.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/photo.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/photo/photo_c.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,74 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_PHOTO_C_H +#define OPENCV_PHOTO_C_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup photo_c + @{ + */ + +/* Inpainting algorithms */ +enum InpaintingModes +{ + CV_INPAINT_NS =0, + CV_INPAINT_TELEA =1 +}; + + +/* Inpaints the selected region in the image */ +CVAPI(void) cvInpaint( const CvArr* src, const CvArr* inpaint_mask, + CvArr* dst, double inpaintRange, int flags ); + +/** @} */ + +#ifdef __cplusplus +} //extern "C" +#endif + +#endif //OPENCV_PHOTO_C_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/shape.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,57 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_SHAPE_HPP +#define OPENCV_SHAPE_HPP + +#include "opencv2/shape/emdL1.hpp" +#include "opencv2/shape/shape_transformer.hpp" +#include "opencv2/shape/hist_cost.hpp" +#include "opencv2/shape/shape_distance.hpp" + +/** + @defgroup shape Shape Distance and Matching + */ + +#endif + +/* End of file. */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/shape/emdL1.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,72 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_EMD_L1_HPP +#define OPENCV_EMD_L1_HPP + +#include "opencv2/core.hpp" + +namespace cv +{ +/****************************************************************************************\ +* EMDL1 Function * +\****************************************************************************************/ + +//! @addtogroup shape +//! @{ + +/** @brief Computes the "minimal work" distance between two weighted point configurations base on the papers +"EMD-L1: An efficient and Robust Algorithm for comparing histogram-based descriptors", by Haibin +Ling and Kazunori Okuda; and "The Earth Mover's Distance is the Mallows Distance: Some Insights from +Statistics", by Elizaveta Levina and Peter Bickel. + +@param signature1 First signature, a single column floating-point matrix. Each row is the value of +the histogram in each bin. +@param signature2 Second signature of the same format and size as signature1. + */ +CV_EXPORTS float EMDL1(InputArray signature1, InputArray signature2); + +//! @} + +}//namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/shape/hist_cost.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,111 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HIST_COST_HPP +#define OPENCV_HIST_COST_HPP + +#include "opencv2/imgproc.hpp" + +namespace cv +{ + +//! @addtogroup shape +//! @{ + +/** @brief Abstract base class for histogram cost algorithms. + */ +class CV_EXPORTS_W HistogramCostExtractor : public Algorithm +{ +public: + CV_WRAP virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) = 0; + + CV_WRAP virtual void setNDummies(int nDummies) = 0; + CV_WRAP virtual int getNDummies() const = 0; + + CV_WRAP virtual void setDefaultCost(float defaultCost) = 0; + CV_WRAP virtual float getDefaultCost() const = 0; +}; + +/** @brief A norm based cost extraction. : + */ +class CV_EXPORTS_W NormHistogramCostExtractor : public HistogramCostExtractor +{ +public: + CV_WRAP virtual void setNormFlag(int flag) = 0; + CV_WRAP virtual int getNormFlag() const = 0; +}; + +CV_EXPORTS_W Ptr<HistogramCostExtractor> + createNormHistogramCostExtractor(int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f); + +/** @brief An EMD based cost extraction. : + */ +class CV_EXPORTS_W EMDHistogramCostExtractor : public HistogramCostExtractor +{ +public: + CV_WRAP virtual void setNormFlag(int flag) = 0; + CV_WRAP virtual int getNormFlag() const = 0; +}; + +CV_EXPORTS_W Ptr<HistogramCostExtractor> + createEMDHistogramCostExtractor(int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f); + +/** @brief An Chi based cost extraction. : + */ +class CV_EXPORTS_W ChiHistogramCostExtractor : public HistogramCostExtractor +{}; + +CV_EXPORTS_W Ptr<HistogramCostExtractor> createChiHistogramCostExtractor(int nDummies=25, float defaultCost=0.2f); + +/** @brief An EMD-L1 based cost extraction. : + */ +class CV_EXPORTS_W EMDL1HistogramCostExtractor : public HistogramCostExtractor +{}; + +CV_EXPORTS_W Ptr<HistogramCostExtractor> + createEMDL1HistogramCostExtractor(int nDummies=25, float defaultCost=0.2f); + +//! @} + +} // cv +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/shape/shape.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/shape.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/shape/shape_distance.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,224 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_SHAPE_SHAPE_DISTANCE_HPP +#define OPENCV_SHAPE_SHAPE_DISTANCE_HPP +#include "opencv2/core.hpp" +#include "opencv2/shape/hist_cost.hpp" +#include "opencv2/shape/shape_transformer.hpp" + +namespace cv +{ + +//! @addtogroup shape +//! @{ + +/** @brief Abstract base class for shape distance algorithms. + */ +class CV_EXPORTS_W ShapeDistanceExtractor : public Algorithm +{ +public: + /** @brief Compute the shape distance between two shapes defined by its contours. + + @param contour1 Contour defining first shape. + @param contour2 Contour defining second shape. + */ + CV_WRAP virtual float computeDistance(InputArray contour1, InputArray contour2) = 0; +}; + +/***********************************************************************************/ +/***********************************************************************************/ +/***********************************************************************************/ +/** @brief Implementation of the Shape Context descriptor and matching algorithm + +proposed by Belongie et al. in "Shape Matching and Object Recognition Using Shape Contexts" (PAMI +2002). This implementation is packaged in a generic scheme, in order to allow you the +implementation of the common variations of the original pipeline. +*/ +class CV_EXPORTS_W ShapeContextDistanceExtractor : public ShapeDistanceExtractor +{ +public: + /** @brief Establish the number of angular bins for the Shape Context Descriptor used in the shape matching + pipeline. + + @param nAngularBins The number of angular bins in the shape context descriptor. + */ + CV_WRAP virtual void setAngularBins(int nAngularBins) = 0; + CV_WRAP virtual int getAngularBins() const = 0; + + /** @brief Establish the number of radial bins for the Shape Context Descriptor used in the shape matching + pipeline. + + @param nRadialBins The number of radial bins in the shape context descriptor. + */ + CV_WRAP virtual void setRadialBins(int nRadialBins) = 0; + CV_WRAP virtual int getRadialBins() const = 0; + + /** @brief Set the inner radius of the shape context descriptor. + + @param innerRadius The value of the inner radius. + */ + CV_WRAP virtual void setInnerRadius(float innerRadius) = 0; + CV_WRAP virtual float getInnerRadius() const = 0; + + /** @brief Set the outer radius of the shape context descriptor. + + @param outerRadius The value of the outer radius. + */ + CV_WRAP virtual void setOuterRadius(float outerRadius) = 0; + CV_WRAP virtual float getOuterRadius() const = 0; + + CV_WRAP virtual void setRotationInvariant(bool rotationInvariant) = 0; + CV_WRAP virtual bool getRotationInvariant() const = 0; + + /** @brief Set the weight of the shape context distance in the final value of the shape distance. The shape + context distance between two shapes is defined as the symmetric sum of shape context matching costs + over best matching points. The final value of the shape distance is a user-defined linear + combination of the shape context distance, an image appearance distance, and a bending energy. + + @param shapeContextWeight The weight of the shape context distance in the final distance value. + */ + CV_WRAP virtual void setShapeContextWeight(float shapeContextWeight) = 0; + CV_WRAP virtual float getShapeContextWeight() const = 0; + + /** @brief Set the weight of the Image Appearance cost in the final value of the shape distance. The image + appearance cost is defined as the sum of squared brightness differences in Gaussian windows around + corresponding image points. The final value of the shape distance is a user-defined linear + combination of the shape context distance, an image appearance distance, and a bending energy. If + this value is set to a number different from 0, is mandatory to set the images that correspond to + each shape. + + @param imageAppearanceWeight The weight of the appearance cost in the final distance value. + */ + CV_WRAP virtual void setImageAppearanceWeight(float imageAppearanceWeight) = 0; + CV_WRAP virtual float getImageAppearanceWeight() const = 0; + + /** @brief Set the weight of the Bending Energy in the final value of the shape distance. The bending energy + definition depends on what transformation is being used to align the shapes. The final value of the + shape distance is a user-defined linear combination of the shape context distance, an image + appearance distance, and a bending energy. + + @param bendingEnergyWeight The weight of the Bending Energy in the final distance value. + */ + CV_WRAP virtual void setBendingEnergyWeight(float bendingEnergyWeight) = 0; + CV_WRAP virtual float getBendingEnergyWeight() const = 0; + + /** @brief Set the images that correspond to each shape. This images are used in the calculation of the Image + Appearance cost. + + @param image1 Image corresponding to the shape defined by contours1. + @param image2 Image corresponding to the shape defined by contours2. + */ + CV_WRAP virtual void setImages(InputArray image1, InputArray image2) = 0; + CV_WRAP virtual void getImages(OutputArray image1, OutputArray image2) const = 0; + + CV_WRAP virtual void setIterations(int iterations) = 0; + CV_WRAP virtual int getIterations() const = 0; + + /** @brief Set the algorithm used for building the shape context descriptor cost matrix. + + @param comparer Smart pointer to a HistogramCostExtractor, an algorithm that defines the cost + matrix between descriptors. + */ + CV_WRAP virtual void setCostExtractor(Ptr<HistogramCostExtractor> comparer) = 0; + CV_WRAP virtual Ptr<HistogramCostExtractor> getCostExtractor() const = 0; + + /** @brief Set the value of the standard deviation for the Gaussian window for the image appearance cost. + + @param sigma Standard Deviation. + */ + CV_WRAP virtual void setStdDev(float sigma) = 0; + CV_WRAP virtual float getStdDev() const = 0; + + /** @brief Set the algorithm used for aligning the shapes. + + @param transformer Smart pointer to a ShapeTransformer, an algorithm that defines the aligning + transformation. + */ + CV_WRAP virtual void setTransformAlgorithm(Ptr<ShapeTransformer> transformer) = 0; + CV_WRAP virtual Ptr<ShapeTransformer> getTransformAlgorithm() const = 0; +}; + +/* Complete constructor */ +CV_EXPORTS_W Ptr<ShapeContextDistanceExtractor> + createShapeContextDistanceExtractor(int nAngularBins=12, int nRadialBins=4, + float innerRadius=0.2f, float outerRadius=2, int iterations=3, + const Ptr<HistogramCostExtractor> &comparer = createChiHistogramCostExtractor(), + const Ptr<ShapeTransformer> &transformer = createThinPlateSplineShapeTransformer()); + +/***********************************************************************************/ +/***********************************************************************************/ +/***********************************************************************************/ +/** @brief A simple Hausdorff distance measure between shapes defined by contours + +according to the paper "Comparing Images using the Hausdorff distance." by D.P. Huttenlocher, G.A. +Klanderman, and W.J. Rucklidge. (PAMI 1993). : + */ +class CV_EXPORTS_W HausdorffDistanceExtractor : public ShapeDistanceExtractor +{ +public: + /** @brief Set the norm used to compute the Hausdorff value between two shapes. It can be L1 or L2 norm. + + @param distanceFlag Flag indicating which norm is used to compute the Hausdorff distance + (NORM_L1, NORM_L2). + */ + CV_WRAP virtual void setDistanceFlag(int distanceFlag) = 0; + CV_WRAP virtual int getDistanceFlag() const = 0; + + /** @brief This method sets the rank proportion (or fractional value) that establish the Kth ranked value of + the partial Hausdorff distance. Experimentally had been shown that 0.6 is a good value to compare + shapes. + + @param rankProportion fractional value (between 0 and 1). + */ + CV_WRAP virtual void setRankProportion(float rankProportion) = 0; + CV_WRAP virtual float getRankProportion() const = 0; +}; + +/* Constructor */ +CV_EXPORTS_W Ptr<HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag=cv::NORM_L2, float rankProp=0.6f); + +//! @} + +} // cv +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/shape/shape_transformer.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,132 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_SHAPE_SHAPE_TRANSFORM_HPP +#define OPENCV_SHAPE_SHAPE_TRANSFORM_HPP +#include <vector> +#include "opencv2/core.hpp" +#include "opencv2/imgproc.hpp" + +namespace cv +{ + +//! @addtogroup shape +//! @{ + +/** @brief Abstract base class for shape transformation algorithms. + */ +class CV_EXPORTS_W ShapeTransformer : public Algorithm +{ +public: + /** @brief Estimate the transformation parameters of the current transformer algorithm, based on point matches. + + @param transformingShape Contour defining first shape. + @param targetShape Contour defining second shape (Target). + @param matches Standard vector of Matches between points. + */ + CV_WRAP virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, + std::vector<DMatch>& matches) = 0; + + /** @brief Apply a transformation, given a pre-estimated transformation parameters. + + @param input Contour (set of points) to apply the transformation. + @param output Output contour. + */ + CV_WRAP virtual float applyTransformation(InputArray input, OutputArray output=noArray()) = 0; + + /** @brief Apply a transformation, given a pre-estimated transformation parameters, to an Image. + + @param transformingImage Input image. + @param output Output image. + @param flags Image interpolation method. + @param borderMode border style. + @param borderValue border value. + */ + CV_WRAP virtual void warpImage(InputArray transformingImage, OutputArray output, + int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, + const Scalar& borderValue=Scalar()) const = 0; +}; + +/***********************************************************************************/ +/***********************************************************************************/ + +/** @brief Definition of the transformation + +ocupied in the paper "Principal Warps: Thin-Plate Splines and Decomposition of Deformations", by +F.L. Bookstein (PAMI 1989). : + */ +class CV_EXPORTS_W ThinPlateSplineShapeTransformer : public ShapeTransformer +{ +public: + /** @brief Set the regularization parameter for relaxing the exact interpolation requirements of the TPS + algorithm. + + @param beta value of the regularization parameter. + */ + CV_WRAP virtual void setRegularizationParameter(double beta) = 0; + CV_WRAP virtual double getRegularizationParameter() const = 0; +}; + +/** Complete constructor */ +CV_EXPORTS_W Ptr<ThinPlateSplineShapeTransformer> + createThinPlateSplineShapeTransformer(double regularizationParameter=0); + +/***********************************************************************************/ +/***********************************************************************************/ + +/** @brief Wrapper class for the OpenCV Affine Transformation algorithm. : + */ +class CV_EXPORTS_W AffineTransformer : public ShapeTransformer +{ +public: + CV_WRAP virtual void setFullAffine(bool fullAffine) = 0; + CV_WRAP virtual bool getFullAffine() const = 0; +}; + +/** Complete constructor */ +CV_EXPORTS_W Ptr<AffineTransformer> createAffineTransformer(bool fullAffine); + +//! @} + +} // cv +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,320 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_STITCHER_HPP +#define OPENCV_STITCHING_STITCHER_HPP + +#include "opencv2/core.hpp" +#include "opencv2/features2d.hpp" +#include "opencv2/stitching/warpers.hpp" +#include "opencv2/stitching/detail/matchers.hpp" +#include "opencv2/stitching/detail/motion_estimators.hpp" +#include "opencv2/stitching/detail/exposure_compensate.hpp" +#include "opencv2/stitching/detail/seam_finders.hpp" +#include "opencv2/stitching/detail/blenders.hpp" +#include "opencv2/stitching/detail/camera.hpp" + + +#if defined(Status) +# warning Detected X11 'Status' macro definition, it can cause build conflicts. Please, include this header before any X11 headers. +#endif + + +/** +@defgroup stitching Images stitching + +This figure illustrates the stitching module pipeline implemented in the Stitcher class. Using that +class it's possible to configure/remove some steps, i.e. adjust the stitching pipeline according to +the particular needs. All building blocks from the pipeline are available in the detail namespace, +one can combine and use them separately. + +The implemented stitching pipeline is very similar to the one proposed in @cite BL07 . + +![stitching pipeline](StitchingPipeline.jpg) + +Camera models +------------- + +There are currently 2 camera models implemented in stitching pipeline. + +- _Homography model_ expecting perspective transformations between images + implemented in @ref cv::detail::BestOf2NearestMatcher cv::detail::HomographyBasedEstimator + cv::detail::BundleAdjusterReproj cv::detail::BundleAdjusterRay +- _Affine model_ expecting affine transformation with 6 DOF or 4 DOF implemented in + @ref cv::detail::AffineBestOf2NearestMatcher cv::detail::AffineBasedEstimator + cv::detail::BundleAdjusterAffine cv::detail::BundleAdjusterAffinePartial cv::AffineWarper + +Homography model is useful for creating photo panoramas captured by camera, +while affine-based model can be used to stitch scans and object captured by +specialized devices. Use @ref cv::Stitcher::create to get preconfigured pipeline for one +of those models. + +@note +Certain detailed settings of @ref cv::Stitcher might not make sense. Especially +you should not mix classes implementing affine model and classes implementing +Homography model, as they work with different transformations. + +@{ + @defgroup stitching_match Features Finding and Images Matching + @defgroup stitching_rotation Rotation Estimation + @defgroup stitching_autocalib Autocalibration + @defgroup stitching_warp Images Warping + @defgroup stitching_seam Seam Estimation + @defgroup stitching_exposure Exposure Compensation + @defgroup stitching_blend Image Blenders +@} + */ + +namespace cv { + +//! @addtogroup stitching +//! @{ + +/** @brief High level image stitcher. + +It's possible to use this class without being aware of the entire stitching pipeline. However, to +be able to achieve higher stitching stability and quality of the final images at least being +familiar with the theory is recommended. + +@note + - A basic example on image stitching can be found at + opencv_source_code/samples/cpp/stitching.cpp + - A detailed example on image stitching can be found at + opencv_source_code/samples/cpp/stitching_detailed.cpp + */ +class CV_EXPORTS_W Stitcher +{ +public: + enum { ORIG_RESOL = -1 }; + enum Status + { + OK = 0, + ERR_NEED_MORE_IMGS = 1, + ERR_HOMOGRAPHY_EST_FAIL = 2, + ERR_CAMERA_PARAMS_ADJUST_FAIL = 3 + }; + enum Mode + { + /** Mode for creating photo panoramas. Expects images under perspective + transformation and projects resulting pano to sphere. + + @sa detail::BestOf2NearestMatcher SphericalWarper + */ + PANORAMA = 0, + /** Mode for composing scans. Expects images under affine transformation does + not compensate exposure by default. + + @sa detail::AffineBestOf2NearestMatcher AffineWarper + */ + SCANS = 1, + + }; + + // Stitcher() {} + /** @brief Creates a stitcher with the default parameters. + + @param try_use_gpu Flag indicating whether GPU should be used whenever it's possible. + @return Stitcher class instance. + */ + static Stitcher createDefault(bool try_use_gpu = false); + /** @brief Creates a Stitcher configured in one of the stitching modes. + + @param mode Scenario for stitcher operation. This is usually determined by source of images + to stitch and their transformation. Default parameters will be chosen for operation in given + scenario. + @param try_use_gpu Flag indicating whether GPU should be used whenever it's possible. + @return Stitcher class instance. + */ + static Ptr<Stitcher> create(Mode mode = PANORAMA, bool try_use_gpu = false); + + CV_WRAP double registrationResol() const { return registr_resol_; } + CV_WRAP void setRegistrationResol(double resol_mpx) { registr_resol_ = resol_mpx; } + + CV_WRAP double seamEstimationResol() const { return seam_est_resol_; } + CV_WRAP void setSeamEstimationResol(double resol_mpx) { seam_est_resol_ = resol_mpx; } + + CV_WRAP double compositingResol() const { return compose_resol_; } + CV_WRAP void setCompositingResol(double resol_mpx) { compose_resol_ = resol_mpx; } + + CV_WRAP double panoConfidenceThresh() const { return conf_thresh_; } + CV_WRAP void setPanoConfidenceThresh(double conf_thresh) { conf_thresh_ = conf_thresh; } + + CV_WRAP bool waveCorrection() const { return do_wave_correct_; } + CV_WRAP void setWaveCorrection(bool flag) { do_wave_correct_ = flag; } + + detail::WaveCorrectKind waveCorrectKind() const { return wave_correct_kind_; } + void setWaveCorrectKind(detail::WaveCorrectKind kind) { wave_correct_kind_ = kind; } + + Ptr<detail::FeaturesFinder> featuresFinder() { return features_finder_; } + const Ptr<detail::FeaturesFinder> featuresFinder() const { return features_finder_; } + void setFeaturesFinder(Ptr<detail::FeaturesFinder> features_finder) + { features_finder_ = features_finder; } + + Ptr<detail::FeaturesMatcher> featuresMatcher() { return features_matcher_; } + const Ptr<detail::FeaturesMatcher> featuresMatcher() const { return features_matcher_; } + void setFeaturesMatcher(Ptr<detail::FeaturesMatcher> features_matcher) + { features_matcher_ = features_matcher; } + + const cv::UMat& matchingMask() const { return matching_mask_; } + void setMatchingMask(const cv::UMat &mask) + { + CV_Assert(mask.type() == CV_8U && mask.cols == mask.rows); + matching_mask_ = mask.clone(); + } + + Ptr<detail::BundleAdjusterBase> bundleAdjuster() { return bundle_adjuster_; } + const Ptr<detail::BundleAdjusterBase> bundleAdjuster() const { return bundle_adjuster_; } + void setBundleAdjuster(Ptr<detail::BundleAdjusterBase> bundle_adjuster) + { bundle_adjuster_ = bundle_adjuster; } + + /* TODO OpenCV ABI 4.x + Ptr<detail::Estimator> estimator() { return estimator_; } + const Ptr<detail::Estimator> estimator() const { return estimator_; } + void setEstimator(Ptr<detail::Estimator> estimator) + { estimator_ = estimator; } + */ + + Ptr<WarperCreator> warper() { return warper_; } + const Ptr<WarperCreator> warper() const { return warper_; } + void setWarper(Ptr<WarperCreator> creator) { warper_ = creator; } + + Ptr<detail::ExposureCompensator> exposureCompensator() { return exposure_comp_; } + const Ptr<detail::ExposureCompensator> exposureCompensator() const { return exposure_comp_; } + void setExposureCompensator(Ptr<detail::ExposureCompensator> exposure_comp) + { exposure_comp_ = exposure_comp; } + + Ptr<detail::SeamFinder> seamFinder() { return seam_finder_; } + const Ptr<detail::SeamFinder> seamFinder() const { return seam_finder_; } + void setSeamFinder(Ptr<detail::SeamFinder> seam_finder) { seam_finder_ = seam_finder; } + + Ptr<detail::Blender> blender() { return blender_; } + const Ptr<detail::Blender> blender() const { return blender_; } + void setBlender(Ptr<detail::Blender> b) { blender_ = b; } + + /** @overload */ + CV_WRAP Status estimateTransform(InputArrayOfArrays images); + /** @brief These functions try to match the given images and to estimate rotations of each camera. + + @note Use the functions only if you're aware of the stitching pipeline, otherwise use + Stitcher::stitch. + + @param images Input images. + @param rois Region of interest rectangles. + @return Status code. + */ + Status estimateTransform(InputArrayOfArrays images, const std::vector<std::vector<Rect> > &rois); + + /** @overload */ + CV_WRAP Status composePanorama(OutputArray pano); + /** @brief These functions try to compose the given images (or images stored internally from the other function + calls) into the final pano under the assumption that the image transformations were estimated + before. + + @note Use the functions only if you're aware of the stitching pipeline, otherwise use + Stitcher::stitch. + + @param images Input images. + @param pano Final pano. + @return Status code. + */ + Status composePanorama(InputArrayOfArrays images, OutputArray pano); + + /** @overload */ + CV_WRAP Status stitch(InputArrayOfArrays images, OutputArray pano); + /** @brief These functions try to stitch the given images. + + @param images Input images. + @param rois Region of interest rectangles. + @param pano Final pano. + @return Status code. + */ + Status stitch(InputArrayOfArrays images, const std::vector<std::vector<Rect> > &rois, OutputArray pano); + + std::vector<int> component() const { return indices_; } + std::vector<detail::CameraParams> cameras() const { return cameras_; } + CV_WRAP double workScale() const { return work_scale_; } + +private: + //Stitcher() {} + + Status matchImages(); + Status estimateCameraParams(); + + double registr_resol_; + double seam_est_resol_; + double compose_resol_; + double conf_thresh_; + Ptr<detail::FeaturesFinder> features_finder_; + Ptr<detail::FeaturesMatcher> features_matcher_; + cv::UMat matching_mask_; + Ptr<detail::BundleAdjusterBase> bundle_adjuster_; + /* TODO OpenCV ABI 4.x + Ptr<detail::Estimator> estimator_; + */ + bool do_wave_correct_; + detail::WaveCorrectKind wave_correct_kind_; + Ptr<WarperCreator> warper_; + Ptr<detail::ExposureCompensator> exposure_comp_; + Ptr<detail::SeamFinder> seam_finder_; + Ptr<detail::Blender> blender_; + + std::vector<cv::UMat> imgs_; + std::vector<std::vector<cv::Rect> > rois_; + std::vector<cv::Size> full_img_sizes_; + std::vector<detail::ImageFeatures> features_; + std::vector<detail::MatchesInfo> pairwise_matches_; + std::vector<cv::UMat> seam_est_imgs_; + std::vector<int> indices_; + std::vector<detail::CameraParams> cameras_; + double work_scale_; + double seam_scale_; + double seam_work_aspect_; + double warped_image_scale_; +}; + +CV_EXPORTS_W Ptr<Stitcher> createStitcher(bool try_use_gpu = false); + +//! @} stitching + +} // namespace cv + +#endif // OPENCV_STITCHING_STITCHER_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/autocalib.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,86 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_AUTOCALIB_HPP +#define OPENCV_STITCHING_AUTOCALIB_HPP + +#include "opencv2/core.hpp" +#include "matchers.hpp" + +namespace cv { +namespace detail { + +//! @addtogroup stitching_autocalib +//! @{ + +/** @brief Tries to estimate focal lengths from the given homography under the assumption that the camera +undergoes rotations around its centre only. + +@param H Homography. +@param f0 Estimated focal length along X axis. +@param f1 Estimated focal length along Y axis. +@param f0_ok True, if f0 was estimated successfully, false otherwise. +@param f1_ok True, if f1 was estimated successfully, false otherwise. + +See "Construction of Panoramic Image Mosaics with Global and Local Alignment" +by Heung-Yeung Shum and Richard Szeliski. + */ +void CV_EXPORTS focalsFromHomography(const Mat &H, double &f0, double &f1, bool &f0_ok, bool &f1_ok); + +/** @brief Estimates focal lengths for each given camera. + +@param features Features of images. +@param pairwise_matches Matches between all image pairs. +@param focals Estimated focal lengths for each camera. + */ +void CV_EXPORTS estimateFocal(const std::vector<ImageFeatures> &features, + const std::vector<MatchesInfo> &pairwise_matches, + std::vector<double> &focals); + +bool CV_EXPORTS calibrateRotatingCamera(const std::vector<Mat> &Hs, Mat &K); + +//! @} stitching_autocalib + +} // namespace detail +} // namespace cv + +#endif // OPENCV_STITCHING_AUTOCALIB_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/blenders.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,167 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_BLENDERS_HPP +#define OPENCV_STITCHING_BLENDERS_HPP + +#if defined(NO) +# warning Detected Apple 'NO' macro definition, it can cause build conflicts. Please, include this header before any Apple headers. +#endif + +#include "opencv2/core.hpp" + +namespace cv { +namespace detail { + +//! @addtogroup stitching_blend +//! @{ + +/** @brief Base class for all blenders. + +Simple blender which puts one image over another +*/ +class CV_EXPORTS Blender +{ +public: + virtual ~Blender() {} + + enum { NO, FEATHER, MULTI_BAND }; + static Ptr<Blender> createDefault(int type, bool try_gpu = false); + + /** @brief Prepares the blender for blending. + + @param corners Source images top-left corners + @param sizes Source image sizes + */ + void prepare(const std::vector<Point> &corners, const std::vector<Size> &sizes); + /** @overload */ + virtual void prepare(Rect dst_roi); + /** @brief Processes the image. + + @param img Source image + @param mask Source image mask + @param tl Source image top-left corners + */ + virtual void feed(InputArray img, InputArray mask, Point tl); + /** @brief Blends and returns the final pano. + + @param dst Final pano + @param dst_mask Final pano mask + */ + virtual void blend(InputOutputArray dst, InputOutputArray dst_mask); + +protected: + UMat dst_, dst_mask_; + Rect dst_roi_; +}; + +/** @brief Simple blender which mixes images at its borders. + */ +class CV_EXPORTS FeatherBlender : public Blender +{ +public: + FeatherBlender(float sharpness = 0.02f); + + float sharpness() const { return sharpness_; } + void setSharpness(float val) { sharpness_ = val; } + + void prepare(Rect dst_roi); + void feed(InputArray img, InputArray mask, Point tl); + void blend(InputOutputArray dst, InputOutputArray dst_mask); + + //! Creates weight maps for fixed set of source images by their masks and top-left corners. + //! Final image can be obtained by simple weighting of the source images. + Rect createWeightMaps(const std::vector<UMat> &masks, const std::vector<Point> &corners, + std::vector<UMat> &weight_maps); + +private: + float sharpness_; + UMat weight_map_; + UMat dst_weight_map_; +}; + +inline FeatherBlender::FeatherBlender(float _sharpness) { setSharpness(_sharpness); } + +/** @brief Blender which uses multi-band blending algorithm (see @cite BA83). + */ +class CV_EXPORTS MultiBandBlender : public Blender +{ +public: + MultiBandBlender(int try_gpu = false, int num_bands = 5, int weight_type = CV_32F); + + int numBands() const { return actual_num_bands_; } + void setNumBands(int val) { actual_num_bands_ = val; } + + void prepare(Rect dst_roi); + void feed(InputArray img, InputArray mask, Point tl); + void blend(InputOutputArray dst, InputOutputArray dst_mask); + +private: + int actual_num_bands_, num_bands_; + std::vector<UMat> dst_pyr_laplace_; + std::vector<UMat> dst_band_weights_; + Rect dst_roi_final_; + bool can_use_gpu_; + int weight_type_; //CV_32F or CV_16S +}; + + +////////////////////////////////////////////////////////////////////////////// +// Auxiliary functions + +void CV_EXPORTS normalizeUsingWeightMap(InputArray weight, InputOutputArray src); + +void CV_EXPORTS createWeightMap(InputArray mask, float sharpness, InputOutputArray weight); + +void CV_EXPORTS createLaplacePyr(InputArray img, int num_levels, std::vector<UMat>& pyr); +void CV_EXPORTS createLaplacePyrGpu(InputArray img, int num_levels, std::vector<UMat>& pyr); + +// Restores source image +void CV_EXPORTS restoreImageFromLaplacePyr(std::vector<UMat>& pyr); +void CV_EXPORTS restoreImageFromLaplacePyrGpu(std::vector<UMat>& pyr); + +//! @} + +} // namespace detail +} // namespace cv + +#endif // OPENCV_STITCHING_BLENDERS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/camera.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,78 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_CAMERA_HPP +#define OPENCV_STITCHING_CAMERA_HPP + +#include "opencv2/core.hpp" + +namespace cv { +namespace detail { + +//! @addtogroup stitching +//! @{ + +/** @brief Describes camera parameters. + +@note Translation is assumed to be zero during the whole stitching pipeline. : + */ +struct CV_EXPORTS CameraParams +{ + CameraParams(); + CameraParams(const CameraParams& other); + const CameraParams& operator =(const CameraParams& other); + Mat K() const; + + double focal; // Focal length + double aspect; // Aspect ratio + double ppx; // Principal point X + double ppy; // Principal point Y + Mat R; // Rotation + Mat t; // Translation +}; + +//! @} + +} // namespace detail +} // namespace cv + +#endif // #ifndef OPENCV_STITCHING_CAMERA_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/exposure_compensate.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,136 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_EXPOSURE_COMPENSATE_HPP +#define OPENCV_STITCHING_EXPOSURE_COMPENSATE_HPP + +#if defined(NO) +# warning Detected Apple 'NO' macro definition, it can cause build conflicts. Please, include this header before any Apple headers. +#endif + +#include "opencv2/core.hpp" + +namespace cv { +namespace detail { + +//! @addtogroup stitching_exposure +//! @{ + +/** @brief Base class for all exposure compensators. + */ +class CV_EXPORTS ExposureCompensator +{ +public: + virtual ~ExposureCompensator() {} + + enum { NO, GAIN, GAIN_BLOCKS }; + static Ptr<ExposureCompensator> createDefault(int type); + + /** + @param corners Source image top-left corners + @param images Source images + @param masks Image masks to update (second value in pair specifies the value which should be used + to detect where image is) + */ + void feed(const std::vector<Point> &corners, const std::vector<UMat> &images, + const std::vector<UMat> &masks); + /** @overload */ + virtual void feed(const std::vector<Point> &corners, const std::vector<UMat> &images, + const std::vector<std::pair<UMat,uchar> > &masks) = 0; + /** @brief Compensate exposure in the specified image. + + @param index Image index + @param corner Image top-left corner + @param image Image to process + @param mask Image mask + */ + virtual void apply(int index, Point corner, InputOutputArray image, InputArray mask) = 0; +}; + +/** @brief Stub exposure compensator which does nothing. + */ +class CV_EXPORTS NoExposureCompensator : public ExposureCompensator +{ +public: + void feed(const std::vector<Point> &/*corners*/, const std::vector<UMat> &/*images*/, + const std::vector<std::pair<UMat,uchar> > &/*masks*/) { } + void apply(int /*index*/, Point /*corner*/, InputOutputArray /*image*/, InputArray /*mask*/) { } +}; + +/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image +intensities, see @cite BL07 and @cite WJ10 for details. + */ +class CV_EXPORTS GainCompensator : public ExposureCompensator +{ +public: + void feed(const std::vector<Point> &corners, const std::vector<UMat> &images, + const std::vector<std::pair<UMat,uchar> > &masks); + void apply(int index, Point corner, InputOutputArray image, InputArray mask); + std::vector<double> gains() const; + +private: + Mat_<double> gains_; +}; + +/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image block +intensities, see @cite UES01 for details. + */ +class CV_EXPORTS BlocksGainCompensator : public ExposureCompensator +{ +public: + BlocksGainCompensator(int bl_width = 32, int bl_height = 32) + : bl_width_(bl_width), bl_height_(bl_height) {} + void feed(const std::vector<Point> &corners, const std::vector<UMat> &images, + const std::vector<std::pair<UMat,uchar> > &masks); + void apply(int index, Point corner, InputOutputArray image, InputArray mask); + +private: + int bl_width_, bl_height_; + std::vector<UMat> gain_maps_; +}; + +//! @} + +} // namespace detail +} // namespace cv + +#endif // OPENCV_STITCHING_EXPOSURE_COMPENSATE_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/matchers.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,355 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_MATCHERS_HPP +#define OPENCV_STITCHING_MATCHERS_HPP + +#include "opencv2/core.hpp" +#include "opencv2/features2d.hpp" + +#include "opencv2/opencv_modules.hpp" + +#ifdef HAVE_OPENCV_XFEATURES2D +# include "opencv2/xfeatures2d/cuda.hpp" +#endif + +namespace cv { +namespace detail { + +//! @addtogroup stitching_match +//! @{ + +/** @brief Structure containing image keypoints and descriptors. */ +struct CV_EXPORTS ImageFeatures +{ + int img_idx; + Size img_size; + std::vector<KeyPoint> keypoints; + UMat descriptors; +}; + +/** @brief Feature finders base class */ +class CV_EXPORTS FeaturesFinder +{ +public: + virtual ~FeaturesFinder() {} + /** @overload */ + void operator ()(InputArray image, ImageFeatures &features); + /** @brief Finds features in the given image. + + @param image Source image + @param features Found features + @param rois Regions of interest + + @sa detail::ImageFeatures, Rect_ + */ + void operator ()(InputArray image, ImageFeatures &features, const std::vector<cv::Rect> &rois); + /** @brief Finds features in the given images in parallel. + + @param images Source images + @param features Found features for each image + @param rois Regions of interest for each image + + @sa detail::ImageFeatures, Rect_ + */ + void operator ()(InputArrayOfArrays images, std::vector<ImageFeatures> &features, + const std::vector<std::vector<cv::Rect> > &rois); + /** @overload */ + void operator ()(InputArrayOfArrays images, std::vector<ImageFeatures> &features); + /** @brief Frees unused memory allocated before if there is any. */ + virtual void collectGarbage() {} + + /* TODO OpenCV ABI 4.x + reimplement this as public method similar to FeaturesMatcher and remove private function hack + @return True, if it's possible to use the same finder instance in parallel, false otherwise + bool isThreadSafe() const { return is_thread_safe_; } + */ + +protected: + /** @brief This method must implement features finding logic in order to make the wrappers + detail::FeaturesFinder::operator()_ work. + + @param image Source image + @param features Found features + + @sa detail::ImageFeatures */ + virtual void find(InputArray image, ImageFeatures &features) = 0; + /** @brief uses dynamic_cast to determine thread-safety + @return True, if it's possible to use the same finder instance in parallel, false otherwise + */ + bool isThreadSafe() const; +}; + +/** @brief SURF features finder. + +@sa detail::FeaturesFinder, SURF +*/ +class CV_EXPORTS SurfFeaturesFinder : public FeaturesFinder +{ +public: + SurfFeaturesFinder(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4, + int num_octaves_descr = /*4*/3, int num_layers_descr = /*2*/4); + +private: + void find(InputArray image, ImageFeatures &features); + + Ptr<FeatureDetector> detector_; + Ptr<DescriptorExtractor> extractor_; + Ptr<Feature2D> surf; +}; + +/** @brief ORB features finder. : + +@sa detail::FeaturesFinder, ORB +*/ +class CV_EXPORTS OrbFeaturesFinder : public FeaturesFinder +{ +public: + OrbFeaturesFinder(Size _grid_size = Size(3,1), int nfeatures=1500, float scaleFactor=1.3f, int nlevels=5); + +private: + void find(InputArray image, ImageFeatures &features); + + Ptr<ORB> orb; + Size grid_size; +}; + +/** @brief AKAZE features finder. : + +@sa detail::FeaturesFinder, AKAZE +*/ +class CV_EXPORTS AKAZEFeaturesFinder : public detail::FeaturesFinder +{ +public: + AKAZEFeaturesFinder(int descriptor_type = AKAZE::DESCRIPTOR_MLDB, + int descriptor_size = 0, + int descriptor_channels = 3, + float threshold = 0.001f, + int nOctaves = 4, + int nOctaveLayers = 4, + int diffusivity = KAZE::DIFF_PM_G2); + +private: + void find(InputArray image, detail::ImageFeatures &features); + + Ptr<AKAZE> akaze; +}; + +#ifdef HAVE_OPENCV_XFEATURES2D +class CV_EXPORTS SurfFeaturesFinderGpu : public FeaturesFinder +{ +public: + SurfFeaturesFinderGpu(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4, + int num_octaves_descr = 4, int num_layers_descr = 2); + + void collectGarbage(); + +private: + void find(InputArray image, ImageFeatures &features); + + cuda::GpuMat image_; + cuda::GpuMat gray_image_; + cuda::SURF_CUDA surf_; + cuda::GpuMat keypoints_; + cuda::GpuMat descriptors_; + int num_octaves_, num_layers_; + int num_octaves_descr_, num_layers_descr_; +}; +#endif + +/** @brief Structure containing information about matches between two images. + +It's assumed that there is a transformation between those images. Transformation may be +homography or affine transformation based on selected matcher. + +@sa detail::FeaturesMatcher +*/ +struct CV_EXPORTS MatchesInfo +{ + MatchesInfo(); + MatchesInfo(const MatchesInfo &other); + const MatchesInfo& operator =(const MatchesInfo &other); + + int src_img_idx, dst_img_idx; //!< Images indices (optional) + std::vector<DMatch> matches; + std::vector<uchar> inliers_mask; //!< Geometrically consistent matches mask + int num_inliers; //!< Number of geometrically consistent matches + Mat H; //!< Estimated transformation + double confidence; //!< Confidence two images are from the same panorama +}; + +/** @brief Feature matchers base class. */ +class CV_EXPORTS FeaturesMatcher +{ +public: + virtual ~FeaturesMatcher() {} + + /** @overload + @param features1 First image features + @param features2 Second image features + @param matches_info Found matches + */ + void operator ()(const ImageFeatures &features1, const ImageFeatures &features2, + MatchesInfo& matches_info) { match(features1, features2, matches_info); } + + /** @brief Performs images matching. + + @param features Features of the source images + @param pairwise_matches Found pairwise matches + @param mask Mask indicating which image pairs must be matched + + The function is parallelized with the TBB library. + + @sa detail::MatchesInfo + */ + void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches, + const cv::UMat &mask = cv::UMat()); + + /** @return True, if it's possible to use the same matcher instance in parallel, false otherwise + */ + bool isThreadSafe() const { return is_thread_safe_; } + + /** @brief Frees unused memory allocated before if there is any. + */ + virtual void collectGarbage() {} + +protected: + FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {} + + /** @brief This method must implement matching logic in order to make the wrappers + detail::FeaturesMatcher::operator()_ work. + + @param features1 first image features + @param features2 second image features + @param matches_info found matches + */ + virtual void match(const ImageFeatures &features1, const ImageFeatures &features2, + MatchesInfo& matches_info) = 0; + + bool is_thread_safe_; +}; + +/** @brief Features matcher which finds two best matches for each feature and leaves the best one only if the +ratio between descriptor distances is greater than the threshold match_conf + +@sa detail::FeaturesMatcher + */ +class CV_EXPORTS BestOf2NearestMatcher : public FeaturesMatcher +{ +public: + /** @brief Constructs a "best of 2 nearest" matcher. + + @param try_use_gpu Should try to use GPU or not + @param match_conf Match distances ration threshold + @param num_matches_thresh1 Minimum number of matches required for the 2D projective transform + estimation used in the inliers classification step + @param num_matches_thresh2 Minimum number of matches required for the 2D projective transform + re-estimation on inliers + */ + BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6, + int num_matches_thresh2 = 6); + + void collectGarbage(); + +protected: + void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info); + + int num_matches_thresh1_; + int num_matches_thresh2_; + Ptr<FeaturesMatcher> impl_; +}; + +class CV_EXPORTS BestOf2NearestRangeMatcher : public BestOf2NearestMatcher +{ +public: + BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f, + int num_matches_thresh1 = 6, int num_matches_thresh2 = 6); + + void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches, + const cv::UMat &mask = cv::UMat()); + + +protected: + int range_width_; +}; + +/** @brief Features matcher similar to cv::detail::BestOf2NearestMatcher which +finds two best matches for each feature and leaves the best one only if the +ratio between descriptor distances is greater than the threshold match_conf. + +Unlike cv::detail::BestOf2NearestMatcher this matcher uses affine +transformation (affine trasformation estimate will be placed in matches_info). + +@sa cv::detail::FeaturesMatcher cv::detail::BestOf2NearestMatcher + */ +class CV_EXPORTS AffineBestOf2NearestMatcher : public BestOf2NearestMatcher +{ +public: + /** @brief Constructs a "best of 2 nearest" matcher that expects affine trasformation + between images + + @param full_affine whether to use full affine transformation with 6 degress of freedom or reduced + transformation with 4 degrees of freedom using only rotation, translation and uniform scaling + @param try_use_gpu Should try to use GPU or not + @param match_conf Match distances ration threshold + @param num_matches_thresh1 Minimum number of matches required for the 2D affine transform + estimation used in the inliers classification step + + @sa cv::estimateAffine2D cv::estimateAffinePartial2D + */ + AffineBestOf2NearestMatcher(bool full_affine = false, bool try_use_gpu = false, + float match_conf = 0.3f, int num_matches_thresh1 = 6) : + BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh1), + full_affine_(full_affine) {} + +protected: + void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info); + + bool full_affine_; +}; + +//! @} stitching_match + +} // namespace detail +} // namespace cv + +#endif // OPENCV_STITCHING_MATCHERS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/motion_estimators.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,357 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_MOTION_ESTIMATORS_HPP +#define OPENCV_STITCHING_MOTION_ESTIMATORS_HPP + +#include "opencv2/core.hpp" +#include "matchers.hpp" +#include "util.hpp" +#include "camera.hpp" + +namespace cv { +namespace detail { + +//! @addtogroup stitching_rotation +//! @{ + +/** @brief Rotation estimator base class. + +It takes features of all images, pairwise matches between all images and estimates rotations of all +cameras. + +@note The coordinate system origin is implementation-dependent, but you can always normalize the +rotations in respect to the first camera, for instance. : + */ +class CV_EXPORTS Estimator +{ +public: + virtual ~Estimator() {} + + /** @brief Estimates camera parameters. + + @param features Features of images + @param pairwise_matches Pairwise matches of images + @param cameras Estimated camera parameters + @return True in case of success, false otherwise + */ + bool operator ()(const std::vector<ImageFeatures> &features, + const std::vector<MatchesInfo> &pairwise_matches, + std::vector<CameraParams> &cameras) + { return estimate(features, pairwise_matches, cameras); } + +protected: + /** @brief This method must implement camera parameters estimation logic in order to make the wrapper + detail::Estimator::operator()_ work. + + @param features Features of images + @param pairwise_matches Pairwise matches of images + @param cameras Estimated camera parameters + @return True in case of success, false otherwise + */ + virtual bool estimate(const std::vector<ImageFeatures> &features, + const std::vector<MatchesInfo> &pairwise_matches, + std::vector<CameraParams> &cameras) = 0; +}; + +/** @brief Homography based rotation estimator. + */ +class CV_EXPORTS HomographyBasedEstimator : public Estimator +{ +public: + HomographyBasedEstimator(bool is_focals_estimated = false) + : is_focals_estimated_(is_focals_estimated) {} + +private: + virtual bool estimate(const std::vector<ImageFeatures> &features, + const std::vector<MatchesInfo> &pairwise_matches, + std::vector<CameraParams> &cameras); + + bool is_focals_estimated_; +}; + +/** @brief Affine transformation based estimator. + +This estimator uses pairwise tranformations estimated by matcher to estimate +final transformation for each camera. + +@sa cv::detail::HomographyBasedEstimator + */ +class CV_EXPORTS AffineBasedEstimator : public Estimator +{ +private: + virtual bool estimate(const std::vector<ImageFeatures> &features, + const std::vector<MatchesInfo> &pairwise_matches, + std::vector<CameraParams> &cameras); +}; + +/** @brief Base class for all camera parameters refinement methods. + */ +class CV_EXPORTS BundleAdjusterBase : public Estimator +{ +public: + const Mat refinementMask() const { return refinement_mask_.clone(); } + void setRefinementMask(const Mat &mask) + { + CV_Assert(mask.type() == CV_8U && mask.size() == Size(3, 3)); + refinement_mask_ = mask.clone(); + } + + double confThresh() const { return conf_thresh_; } + void setConfThresh(double conf_thresh) { conf_thresh_ = conf_thresh; } + + TermCriteria termCriteria() { return term_criteria_; } + void setTermCriteria(const TermCriteria& term_criteria) { term_criteria_ = term_criteria; } + +protected: + /** @brief Construct a bundle adjuster base instance. + + @param num_params_per_cam Number of parameters per camera + @param num_errs_per_measurement Number of error terms (components) per match + */ + BundleAdjusterBase(int num_params_per_cam, int num_errs_per_measurement) + : num_params_per_cam_(num_params_per_cam), + num_errs_per_measurement_(num_errs_per_measurement) + { + setRefinementMask(Mat::ones(3, 3, CV_8U)); + setConfThresh(1.); + setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 1000, DBL_EPSILON)); + } + + // Runs bundle adjustment + virtual bool estimate(const std::vector<ImageFeatures> &features, + const std::vector<MatchesInfo> &pairwise_matches, + std::vector<CameraParams> &cameras); + + /** @brief Sets initial camera parameter to refine. + + @param cameras Camera parameters + */ + virtual void setUpInitialCameraParams(const std::vector<CameraParams> &cameras) = 0; + /** @brief Gets the refined camera parameters. + + @param cameras Refined camera parameters + */ + virtual void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const = 0; + /** @brief Calculates error vector. + + @param err Error column-vector of length total_num_matches \* num_errs_per_measurement + */ + virtual void calcError(Mat &err) = 0; + /** @brief Calculates the cost function jacobian. + + @param jac Jacobian matrix of dimensions + (total_num_matches \* num_errs_per_measurement) x (num_images \* num_params_per_cam) + */ + virtual void calcJacobian(Mat &jac) = 0; + + // 3x3 8U mask, where 0 means don't refine respective parameter, != 0 means refine + Mat refinement_mask_; + + int num_images_; + int total_num_matches_; + + int num_params_per_cam_; + int num_errs_per_measurement_; + + const ImageFeatures *features_; + const MatchesInfo *pairwise_matches_; + + // Threshold to filter out poorly matched image pairs + double conf_thresh_; + + //Levenberg–Marquardt algorithm termination criteria + TermCriteria term_criteria_; + + // Camera parameters matrix (CV_64F) + Mat cam_params_; + + // Connected images pairs + std::vector<std::pair<int,int> > edges_; +}; + + +/** @brief Stub bundle adjuster that does nothing. + */ +class CV_EXPORTS NoBundleAdjuster : public BundleAdjusterBase +{ +public: + NoBundleAdjuster() : BundleAdjusterBase(0, 0) {} + +private: + bool estimate(const std::vector<ImageFeatures> &, const std::vector<MatchesInfo> &, + std::vector<CameraParams> &) + { + return true; + } + void setUpInitialCameraParams(const std::vector<CameraParams> &) {} + void obtainRefinedCameraParams(std::vector<CameraParams> &) const {} + void calcError(Mat &) {} + void calcJacobian(Mat &) {} +}; + + +/** @brief Implementation of the camera parameters refinement algorithm which minimizes sum of the reprojection +error squares + +It can estimate focal length, aspect ratio, principal point. +You can affect only on them via the refinement mask. + */ +class CV_EXPORTS BundleAdjusterReproj : public BundleAdjusterBase +{ +public: + BundleAdjusterReproj() : BundleAdjusterBase(7, 2) {} + +private: + void setUpInitialCameraParams(const std::vector<CameraParams> &cameras); + void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const; + void calcError(Mat &err); + void calcJacobian(Mat &jac); + + Mat err1_, err2_; +}; + + +/** @brief Implementation of the camera parameters refinement algorithm which minimizes sum of the distances +between the rays passing through the camera center and a feature. : + +It can estimate focal length. It ignores the refinement mask for now. + */ +class CV_EXPORTS BundleAdjusterRay : public BundleAdjusterBase +{ +public: + BundleAdjusterRay() : BundleAdjusterBase(4, 3) {} + +private: + void setUpInitialCameraParams(const std::vector<CameraParams> &cameras); + void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const; + void calcError(Mat &err); + void calcJacobian(Mat &jac); + + Mat err1_, err2_; +}; + + +/** @brief Bundle adjuster that expects affine transformation +represented in homogeneous coordinates in R for each camera param. Implements +camera parameters refinement algorithm which minimizes sum of the reprojection +error squares + +It estimates all transformation parameters. Refinement mask is ignored. + +@sa AffineBasedEstimator AffineBestOf2NearestMatcher BundleAdjusterAffinePartial + */ +class CV_EXPORTS BundleAdjusterAffine : public BundleAdjusterBase +{ +public: + BundleAdjusterAffine() : BundleAdjusterBase(6, 2) {} + +private: + void setUpInitialCameraParams(const std::vector<CameraParams> &cameras); + void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const; + void calcError(Mat &err); + void calcJacobian(Mat &jac); + + Mat err1_, err2_; +}; + + +/** @brief Bundle adjuster that expects affine transformation with 4 DOF +represented in homogeneous coordinates in R for each camera param. Implements +camera parameters refinement algorithm which minimizes sum of the reprojection +error squares + +It estimates all transformation parameters. Refinement mask is ignored. + +@sa AffineBasedEstimator AffineBestOf2NearestMatcher BundleAdjusterAffine + */ +class CV_EXPORTS BundleAdjusterAffinePartial : public BundleAdjusterBase +{ +public: + BundleAdjusterAffinePartial() : BundleAdjusterBase(4, 2) {} + +private: + void setUpInitialCameraParams(const std::vector<CameraParams> &cameras); + void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const; + void calcError(Mat &err); + void calcJacobian(Mat &jac); + + Mat err1_, err2_; +}; + + +enum WaveCorrectKind +{ + WAVE_CORRECT_HORIZ, + WAVE_CORRECT_VERT +}; + +/** @brief Tries to make panorama more horizontal (or vertical). + +@param rmats Camera rotation matrices. +@param kind Correction kind, see detail::WaveCorrectKind. + */ +void CV_EXPORTS waveCorrect(std::vector<Mat> &rmats, WaveCorrectKind kind); + + +////////////////////////////////////////////////////////////////////////////// +// Auxiliary functions + +// Returns matches graph representation in DOT language +String CV_EXPORTS matchesGraphAsString(std::vector<String> &pathes, std::vector<MatchesInfo> &pairwise_matches, + float conf_threshold); + +std::vector<int> CV_EXPORTS leaveBiggestComponent( + std::vector<ImageFeatures> &features, + std::vector<MatchesInfo> &pairwise_matches, + float conf_threshold); + +void CV_EXPORTS findMaxSpanningTree( + int num_images, const std::vector<MatchesInfo> &pairwise_matches, + Graph &span_tree, std::vector<int> ¢ers); + +//! @} stitching_rotation + +} // namespace detail +} // namespace cv + +#endif // OPENCV_STITCHING_MOTION_ESTIMATORS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/seam_finders.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,285 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_SEAM_FINDERS_HPP +#define OPENCV_STITCHING_SEAM_FINDERS_HPP + +#include <set> +#include "opencv2/core.hpp" +#include "opencv2/opencv_modules.hpp" + +namespace cv { +namespace detail { + +//! @addtogroup stitching_seam +//! @{ + +/** @brief Base class for a seam estimator. + */ +class CV_EXPORTS SeamFinder +{ +public: + virtual ~SeamFinder() {} + /** @brief Estimates seams. + + @param src Source images + @param corners Source image top-left corners + @param masks Source image masks to update + */ + virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners, + std::vector<UMat> &masks) = 0; +}; + +/** @brief Stub seam estimator which does nothing. + */ +class CV_EXPORTS NoSeamFinder : public SeamFinder +{ +public: + void find(const std::vector<UMat>&, const std::vector<Point>&, std::vector<UMat>&) {} +}; + +/** @brief Base class for all pairwise seam estimators. + */ +class CV_EXPORTS PairwiseSeamFinder : public SeamFinder +{ +public: + virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners, + std::vector<UMat> &masks); + +protected: + void run(); + /** @brief Resolves masks intersection of two specified images in the given ROI. + + @param first First image index + @param second Second image index + @param roi Region of interest + */ + virtual void findInPair(size_t first, size_t second, Rect roi) = 0; + + std::vector<UMat> images_; + std::vector<Size> sizes_; + std::vector<Point> corners_; + std::vector<UMat> masks_; +}; + +/** @brief Voronoi diagram-based seam estimator. + */ +class CV_EXPORTS VoronoiSeamFinder : public PairwiseSeamFinder +{ +public: + virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners, + std::vector<UMat> &masks); + virtual void find(const std::vector<Size> &size, const std::vector<Point> &corners, + std::vector<UMat> &masks); +private: + void findInPair(size_t first, size_t second, Rect roi); +}; + + +class CV_EXPORTS DpSeamFinder : public SeamFinder +{ +public: + enum CostFunction { COLOR, COLOR_GRAD }; + + DpSeamFinder(CostFunction costFunc = COLOR); + + CostFunction costFunction() const { return costFunc_; } + void setCostFunction(CostFunction val) { costFunc_ = val; } + + virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners, + std::vector<UMat> &masks); + +private: + enum ComponentState + { + FIRST = 1, SECOND = 2, INTERS = 4, + INTERS_FIRST = INTERS | FIRST, + INTERS_SECOND = INTERS | SECOND + }; + + class ImagePairLess + { + public: + ImagePairLess(const std::vector<Mat> &images, const std::vector<Point> &corners) + : src_(&images[0]), corners_(&corners[0]) {} + + bool operator() (const std::pair<size_t, size_t> &l, const std::pair<size_t, size_t> &r) const + { + Point c1 = corners_[l.first] + Point(src_[l.first].cols / 2, src_[l.first].rows / 2); + Point c2 = corners_[l.second] + Point(src_[l.second].cols / 2, src_[l.second].rows / 2); + int d1 = (c1 - c2).dot(c1 - c2); + + c1 = corners_[r.first] + Point(src_[r.first].cols / 2, src_[r.first].rows / 2); + c2 = corners_[r.second] + Point(src_[r.second].cols / 2, src_[r.second].rows / 2); + int d2 = (c1 - c2).dot(c1 - c2); + + return d1 < d2; + } + + private: + const Mat *src_; + const Point *corners_; + }; + + class ClosePoints + { + public: + ClosePoints(int minDist) : minDist_(minDist) {} + + bool operator() (const Point &p1, const Point &p2) const + { + int dist2 = (p1.x-p2.x) * (p1.x-p2.x) + (p1.y-p2.y) * (p1.y-p2.y); + return dist2 < minDist_ * minDist_; + } + + private: + int minDist_; + }; + + void process( + const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2); + + void findComponents(); + + void findEdges(); + + void resolveConflicts( + const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2); + + void computeGradients(const Mat &image1, const Mat &image2); + + bool hasOnlyOneNeighbor(int comp); + + bool closeToContour(int y, int x, const Mat_<uchar> &contourMask); + + bool getSeamTips(int comp1, int comp2, Point &p1, Point &p2); + + void computeCosts( + const Mat &image1, const Mat &image2, Point tl1, Point tl2, + int comp, Mat_<float> &costV, Mat_<float> &costH); + + bool estimateSeam( + const Mat &image1, const Mat &image2, Point tl1, Point tl2, int comp, + Point p1, Point p2, std::vector<Point> &seam, bool &isHorizontal); + + void updateLabelsUsingSeam( + int comp1, int comp2, const std::vector<Point> &seam, bool isHorizontalSeam); + + CostFunction costFunc_; + + // processing images pair data + Point unionTl_, unionBr_; + Size unionSize_; + Mat_<uchar> mask1_, mask2_; + Mat_<uchar> contour1mask_, contour2mask_; + Mat_<float> gradx1_, grady1_; + Mat_<float> gradx2_, grady2_; + + // components data + int ncomps_; + Mat_<int> labels_; + std::vector<ComponentState> states_; + std::vector<Point> tls_, brs_; + std::vector<std::vector<Point> > contours_; + std::set<std::pair<int, int> > edges_; +}; + +/** @brief Base class for all minimum graph-cut-based seam estimators. + */ +class CV_EXPORTS GraphCutSeamFinderBase +{ +public: + enum CostType { COST_COLOR, COST_COLOR_GRAD }; +}; + +/** @brief Minimum graph cut-based seam estimator. See details in @cite V03 . + */ +class CV_EXPORTS GraphCutSeamFinder : public GraphCutSeamFinderBase, public SeamFinder +{ +public: + GraphCutSeamFinder(int cost_type = COST_COLOR_GRAD, float terminal_cost = 10000.f, + float bad_region_penalty = 1000.f); + + ~GraphCutSeamFinder(); + + void find(const std::vector<UMat> &src, const std::vector<Point> &corners, + std::vector<UMat> &masks); + +private: + // To avoid GCGraph dependency + class Impl; + Ptr<PairwiseSeamFinder> impl_; +}; + + +#ifdef HAVE_OPENCV_CUDALEGACY +class CV_EXPORTS GraphCutSeamFinderGpu : public GraphCutSeamFinderBase, public PairwiseSeamFinder +{ +public: + GraphCutSeamFinderGpu(int cost_type = COST_COLOR_GRAD, float terminal_cost = 10000.f, + float bad_region_penalty = 1000.f) + : cost_type_(cost_type), terminal_cost_(terminal_cost), + bad_region_penalty_(bad_region_penalty) {} + + void find(const std::vector<cv::UMat> &src, const std::vector<cv::Point> &corners, + std::vector<cv::UMat> &masks); + void findInPair(size_t first, size_t second, Rect roi); + +private: + void setGraphWeightsColor(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &mask1, const cv::Mat &mask2, + cv::Mat &terminals, cv::Mat &leftT, cv::Mat &rightT, cv::Mat &top, cv::Mat &bottom); + void setGraphWeightsColorGrad(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &dx1, const cv::Mat &dx2, + const cv::Mat &dy1, const cv::Mat &dy2, const cv::Mat &mask1, const cv::Mat &mask2, + cv::Mat &terminals, cv::Mat &leftT, cv::Mat &rightT, cv::Mat &top, cv::Mat &bottom); + std::vector<Mat> dx_, dy_; + int cost_type_; + float terminal_cost_; + float bad_region_penalty_; +}; +#endif + +//! @} + +} // namespace detail +} // namespace cv + +#endif // OPENCV_STITCHING_SEAM_FINDERS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/timelapsers.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,91 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + + +#ifndef OPENCV_STITCHING_TIMELAPSERS_HPP +#define OPENCV_STITCHING_TIMELAPSERS_HPP + +#include "opencv2/core.hpp" + +namespace cv { +namespace detail { + +//! @addtogroup stitching +//! @{ + +// Base Timelapser class, takes a sequence of images, applies appropriate shift, stores result in dst_. + +class CV_EXPORTS Timelapser +{ +public: + + enum {AS_IS, CROP}; + + virtual ~Timelapser() {} + + static Ptr<Timelapser> createDefault(int type); + + virtual void initialize(const std::vector<Point> &corners, const std::vector<Size> &sizes); + virtual void process(InputArray img, InputArray mask, Point tl); + virtual const UMat& getDst() {return dst_;} + +protected: + + virtual bool test_point(Point pt); + + UMat dst_; + Rect dst_roi_; +}; + + +class CV_EXPORTS TimelapserCrop : public Timelapser +{ +public: + virtual void initialize(const std::vector<Point> &corners, const std::vector<Size> &sizes); +}; + +//! @} + +} // namespace detail +} // namespace cv + +#endif // OPENCV_STITCHING_TIMELAPSERS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/util.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,121 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_UTIL_HPP +#define OPENCV_STITCHING_UTIL_HPP + +#include <list> +#include "opencv2/core.hpp" + +namespace cv { +namespace detail { + +//! @addtogroup stitching +//! @{ + +class CV_EXPORTS DisjointSets +{ +public: + DisjointSets(int elem_count = 0) { createOneElemSets(elem_count); } + + void createOneElemSets(int elem_count); + int findSetByElem(int elem); + int mergeSets(int set1, int set2); + + std::vector<int> parent; + std::vector<int> size; + +private: + std::vector<int> rank_; +}; + + +struct CV_EXPORTS GraphEdge +{ + GraphEdge(int from, int to, float weight); + bool operator <(const GraphEdge& other) const { return weight < other.weight; } + bool operator >(const GraphEdge& other) const { return weight > other.weight; } + + int from, to; + float weight; +}; + +inline GraphEdge::GraphEdge(int _from, int _to, float _weight) : from(_from), to(_to), weight(_weight) {} + + +class CV_EXPORTS Graph +{ +public: + Graph(int num_vertices = 0) { create(num_vertices); } + void create(int num_vertices) { edges_.assign(num_vertices, std::list<GraphEdge>()); } + int numVertices() const { return static_cast<int>(edges_.size()); } + void addEdge(int from, int to, float weight); + template <typename B> B forEach(B body) const; + template <typename B> B walkBreadthFirst(int from, B body) const; + +private: + std::vector< std::list<GraphEdge> > edges_; +}; + + +////////////////////////////////////////////////////////////////////////////// +// Auxiliary functions + +CV_EXPORTS bool overlapRoi(Point tl1, Point tl2, Size sz1, Size sz2, Rect &roi); +CV_EXPORTS Rect resultRoi(const std::vector<Point> &corners, const std::vector<UMat> &images); +CV_EXPORTS Rect resultRoi(const std::vector<Point> &corners, const std::vector<Size> &sizes); +CV_EXPORTS Rect resultRoiIntersection(const std::vector<Point> &corners, const std::vector<Size> &sizes); +CV_EXPORTS Point resultTl(const std::vector<Point> &corners); + +// Returns random 'count' element subset of the {0,1,...,size-1} set +CV_EXPORTS void selectRandomSubset(int count, int size, std::vector<int> &subset); + +CV_EXPORTS int& stitchingLogLevel(); + +//! @} + +} // namespace detail +} // namespace cv + +#include "util_inl.hpp" + +#endif // OPENCV_STITCHING_UTIL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/util_inl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,131 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_UTIL_INL_HPP +#define OPENCV_STITCHING_UTIL_INL_HPP + +#include <queue> +#include "opencv2/core.hpp" +#include "util.hpp" // Make your IDE see declarations + +//! @cond IGNORED + +namespace cv { +namespace detail { + +template <typename B> +B Graph::forEach(B body) const +{ + for (int i = 0; i < numVertices(); ++i) + { + std::list<GraphEdge>::const_iterator edge = edges_[i].begin(); + for (; edge != edges_[i].end(); ++edge) + body(*edge); + } + return body; +} + + +template <typename B> +B Graph::walkBreadthFirst(int from, B body) const +{ + std::vector<bool> was(numVertices(), false); + std::queue<int> vertices; + + was[from] = true; + vertices.push(from); + + while (!vertices.empty()) + { + int vertex = vertices.front(); + vertices.pop(); + + std::list<GraphEdge>::const_iterator edge = edges_[vertex].begin(); + for (; edge != edges_[vertex].end(); ++edge) + { + if (!was[edge->to]) + { + body(*edge); + was[edge->to] = true; + vertices.push(edge->to); + } + } + } + + return body; +} + + +////////////////////////////////////////////////////////////////////////////// +// Some auxiliary math functions + +static inline +float normL2(const Point3f& a) +{ + return a.x * a.x + a.y * a.y + a.z * a.z; +} + + +static inline +float normL2(const Point3f& a, const Point3f& b) +{ + return normL2(a - b); +} + + +static inline +double normL2sq(const Mat &r) +{ + return r.dot(r); +} + + +static inline int sqr(int x) { return x * x; } +static inline float sqr(float x) { return x * x; } +static inline double sqr(double x) { return x * x; } + +} // namespace detail +} // namespace cv + +//! @endcond + +#endif // OPENCV_STITCHING_UTIL_INL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/warpers.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,616 @@ + /*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_WARPERS_HPP +#define OPENCV_STITCHING_WARPERS_HPP + +#include "opencv2/core.hpp" +#include "opencv2/core/cuda.hpp" +#include "opencv2/imgproc.hpp" +#include "opencv2/opencv_modules.hpp" + +namespace cv { +namespace detail { + +//! @addtogroup stitching_warp +//! @{ + +/** @brief Rotation-only model image warper interface. + */ +class CV_EXPORTS RotationWarper +{ +public: + virtual ~RotationWarper() {} + + /** @brief Projects the image point. + + @param pt Source point + @param K Camera intrinsic parameters + @param R Camera rotation matrix + @return Projected point + */ + virtual Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R) = 0; + + /** @brief Builds the projection maps according to the given camera data. + + @param src_size Source image size + @param K Camera intrinsic parameters + @param R Camera rotation matrix + @param xmap Projection map for the x axis + @param ymap Projection map for the y axis + @return Projected image minimum bounding box + */ + virtual Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) = 0; + + /** @brief Projects the image. + + @param src Source image + @param K Camera intrinsic parameters + @param R Camera rotation matrix + @param interp_mode Interpolation mode + @param border_mode Border extrapolation mode + @param dst Projected image + @return Project image top-left corner + */ + virtual Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, + OutputArray dst) = 0; + + /** @brief Projects the image backward. + + @param src Projected image + @param K Camera intrinsic parameters + @param R Camera rotation matrix + @param interp_mode Interpolation mode + @param border_mode Border extrapolation mode + @param dst_size Backward-projected image size + @param dst Backward-projected image + */ + virtual void warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, + Size dst_size, OutputArray dst) = 0; + + /** + @param src_size Source image bounding box + @param K Camera intrinsic parameters + @param R Camera rotation matrix + @return Projected image minimum bounding box + */ + virtual Rect warpRoi(Size src_size, InputArray K, InputArray R) = 0; + + virtual float getScale() const { return 1.f; } + virtual void setScale(float) {} +}; + +/** @brief Base class for warping logic implementation. + */ +struct CV_EXPORTS ProjectorBase +{ + void setCameraParams(InputArray K = Mat::eye(3, 3, CV_32F), + InputArray R = Mat::eye(3, 3, CV_32F), + InputArray T = Mat::zeros(3, 1, CV_32F)); + + float scale; + float k[9]; + float rinv[9]; + float r_kinv[9]; + float k_rinv[9]; + float t[3]; +}; + +/** @brief Base class for rotation-based warper using a detail::ProjectorBase_ derived class. + */ +template <class P> +class CV_EXPORTS RotationWarperBase : public RotationWarper +{ +public: + Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R); + + Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap); + + Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, + OutputArray dst); + + void warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, + Size dst_size, OutputArray dst); + + Rect warpRoi(Size src_size, InputArray K, InputArray R); + + float getScale() const { return projector_.scale; } + void setScale(float val) { projector_.scale = val; } + +protected: + + // Detects ROI of the destination image. It's correct for any projection. + virtual void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br); + + // Detects ROI of the destination image by walking over image border. + // Correctness for any projection isn't guaranteed. + void detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br); + + P projector_; +}; + + +struct CV_EXPORTS PlaneProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + +/** @brief Warper that maps an image onto the z = 1 plane. + */ +class CV_EXPORTS PlaneWarper : public RotationWarperBase<PlaneProjector> +{ +public: + /** @brief Construct an instance of the plane warper class. + + @param scale Projected image scale multiplier + */ + PlaneWarper(float scale = 1.f) { projector_.scale = scale; } + + Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R); + Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R, InputArray T); + + virtual Rect buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray xmap, OutputArray ymap); + Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap); + + Point warp(InputArray src, InputArray K, InputArray R, + int interp_mode, int border_mode, OutputArray dst); + virtual Point warp(InputArray src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode, + OutputArray dst); + + Rect warpRoi(Size src_size, InputArray K, InputArray R); + Rect warpRoi(Size src_size, InputArray K, InputArray R, InputArray T); + +protected: + void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br); +}; + + +/** @brief Affine warper that uses rotations and translations + + Uses affine transformation in homogeneous coordinates to represent both rotation and + translation in camera rotation matrix. + */ +class CV_EXPORTS AffineWarper : public PlaneWarper +{ +public: + /** @brief Construct an instance of the affine warper class. + + @param scale Projected image scale multiplier + */ + AffineWarper(float scale = 1.f) : PlaneWarper(scale) {} + + Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R); + Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap); + Point warp(InputArray src, InputArray K, InputArray R, + int interp_mode, int border_mode, OutputArray dst); + Rect warpRoi(Size src_size, InputArray K, InputArray R); + +protected: + /** @brief Extracts rotation and translation matrices from matrix H representing + affine transformation in homogeneous coordinates + */ + void getRTfromHomogeneous(InputArray H, Mat &R, Mat &T); +}; + + +struct CV_EXPORTS SphericalProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +/** @brief Warper that maps an image onto the unit sphere located at the origin. + + Projects image onto unit sphere with origin at (0, 0, 0) and radius scale, measured in pixels. + A 360° panorama would therefore have a resulting width of 2 * scale * PI pixels. + Poles are located at (0, -1, 0) and (0, 1, 0) points. +*/ +class CV_EXPORTS SphericalWarper : public RotationWarperBase<SphericalProjector> +{ +public: + /** @brief Construct an instance of the spherical warper class. + + @param scale Radius of the projected sphere, in pixels. An image spanning the + whole sphere will have a width of 2 * scale * PI pixels. + */ + SphericalWarper(float scale) { projector_.scale = scale; } + + Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap); + Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst); +protected: + void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br); +}; + + +struct CV_EXPORTS CylindricalProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +/** @brief Warper that maps an image onto the x\*x + z\*z = 1 cylinder. + */ +class CV_EXPORTS CylindricalWarper : public RotationWarperBase<CylindricalProjector> +{ +public: + /** @brief Construct an instance of the cylindrical warper class. + + @param scale Projected image scale multiplier + */ + CylindricalWarper(float scale) { projector_.scale = scale; } + + Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap); + Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst); +protected: + void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) + { + RotationWarperBase<CylindricalProjector>::detectResultRoiByBorder(src_size, dst_tl, dst_br); + } +}; + + +struct CV_EXPORTS FisheyeProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS FisheyeWarper : public RotationWarperBase<FisheyeProjector> +{ +public: + FisheyeWarper(float scale) { projector_.scale = scale; } +}; + + +struct CV_EXPORTS StereographicProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS StereographicWarper : public RotationWarperBase<StereographicProjector> +{ +public: + StereographicWarper(float scale) { projector_.scale = scale; } +}; + + +struct CV_EXPORTS CompressedRectilinearProjector : ProjectorBase +{ + float a, b; + + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS CompressedRectilinearWarper : public RotationWarperBase<CompressedRectilinearProjector> +{ +public: + CompressedRectilinearWarper(float scale, float A = 1, float B = 1) + { + projector_.a = A; + projector_.b = B; + projector_.scale = scale; + } +}; + + +struct CV_EXPORTS CompressedRectilinearPortraitProjector : ProjectorBase +{ + float a, b; + + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS CompressedRectilinearPortraitWarper : public RotationWarperBase<CompressedRectilinearPortraitProjector> +{ +public: + CompressedRectilinearPortraitWarper(float scale, float A = 1, float B = 1) + { + projector_.a = A; + projector_.b = B; + projector_.scale = scale; + } +}; + + +struct CV_EXPORTS PaniniProjector : ProjectorBase +{ + float a, b; + + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS PaniniWarper : public RotationWarperBase<PaniniProjector> +{ +public: + PaniniWarper(float scale, float A = 1, float B = 1) + { + projector_.a = A; + projector_.b = B; + projector_.scale = scale; + } +}; + + +struct CV_EXPORTS PaniniPortraitProjector : ProjectorBase +{ + float a, b; + + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS PaniniPortraitWarper : public RotationWarperBase<PaniniPortraitProjector> +{ +public: + PaniniPortraitWarper(float scale, float A = 1, float B = 1) + { + projector_.a = A; + projector_.b = B; + projector_.scale = scale; + } + +}; + + +struct CV_EXPORTS MercatorProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS MercatorWarper : public RotationWarperBase<MercatorProjector> +{ +public: + MercatorWarper(float scale) { projector_.scale = scale; } +}; + + +struct CV_EXPORTS TransverseMercatorProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS TransverseMercatorWarper : public RotationWarperBase<TransverseMercatorProjector> +{ +public: + TransverseMercatorWarper(float scale) { projector_.scale = scale; } +}; + + +class CV_EXPORTS PlaneWarperGpu : public PlaneWarper +{ +public: + PlaneWarperGpu(float scale = 1.f) : PlaneWarper(scale) {} + + Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) + { + Rect result = buildMaps(src_size, K, R, d_xmap_, d_ymap_); + d_xmap_.download(xmap); + d_ymap_.download(ymap); + return result; + } + + Rect buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray xmap, OutputArray ymap) + { + Rect result = buildMaps(src_size, K, R, T, d_xmap_, d_ymap_); + d_xmap_.download(xmap); + d_ymap_.download(ymap); + return result; + } + + Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, + OutputArray dst) + { + d_src_.upload(src); + Point result = warp(d_src_, K, R, interp_mode, border_mode, d_dst_); + d_dst_.download(dst); + return result; + } + + Point warp(InputArray src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode, + OutputArray dst) + { + d_src_.upload(src); + Point result = warp(d_src_, K, R, T, interp_mode, border_mode, d_dst_); + d_dst_.download(dst); + return result; + } + + Rect buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap); + + Rect buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, cuda::GpuMat & xmap, cuda::GpuMat & ymap); + + Point warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode, + cuda::GpuMat & dst); + + Point warp(const cuda::GpuMat & src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode, + cuda::GpuMat & dst); + +private: + cuda::GpuMat d_xmap_, d_ymap_, d_src_, d_dst_; +}; + + +class CV_EXPORTS SphericalWarperGpu : public SphericalWarper +{ +public: + SphericalWarperGpu(float scale) : SphericalWarper(scale) {} + + Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) + { + Rect result = buildMaps(src_size, K, R, d_xmap_, d_ymap_); + d_xmap_.download(xmap); + d_ymap_.download(ymap); + return result; + } + + Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, + OutputArray dst) + { + d_src_.upload(src); + Point result = warp(d_src_, K, R, interp_mode, border_mode, d_dst_); + d_dst_.download(dst); + return result; + } + + Rect buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap); + + Point warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode, + cuda::GpuMat & dst); + +private: + cuda::GpuMat d_xmap_, d_ymap_, d_src_, d_dst_; +}; + + +class CV_EXPORTS CylindricalWarperGpu : public CylindricalWarper +{ +public: + CylindricalWarperGpu(float scale) : CylindricalWarper(scale) {} + + Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) + { + Rect result = buildMaps(src_size, K, R, d_xmap_, d_ymap_); + d_xmap_.download(xmap); + d_ymap_.download(ymap); + return result; + } + + Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, + OutputArray dst) + { + d_src_.upload(src); + Point result = warp(d_src_, K, R, interp_mode, border_mode, d_dst_); + d_dst_.download(dst); + return result; + } + + Rect buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap); + + Point warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode, + cuda::GpuMat & dst); + +private: + cuda::GpuMat d_xmap_, d_ymap_, d_src_, d_dst_; +}; + + +struct SphericalPortraitProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +// Projects image onto unit sphere with origin at (0, 0, 0). +// Poles are located NOT at (0, -1, 0) and (0, 1, 0) points, BUT at (1, 0, 0) and (-1, 0, 0) points. +class CV_EXPORTS SphericalPortraitWarper : public RotationWarperBase<SphericalPortraitProjector> +{ +public: + SphericalPortraitWarper(float scale) { projector_.scale = scale; } + +protected: + void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br); +}; + +struct CylindricalPortraitProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS CylindricalPortraitWarper : public RotationWarperBase<CylindricalPortraitProjector> +{ +public: + CylindricalPortraitWarper(float scale) { projector_.scale = scale; } + +protected: + void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) + { + RotationWarperBase<CylindricalPortraitProjector>::detectResultRoiByBorder(src_size, dst_tl, dst_br); + } +}; + +struct PlanePortraitProjector : ProjectorBase +{ + void mapForward(float x, float y, float &u, float &v); + void mapBackward(float u, float v, float &x, float &y); +}; + + +class CV_EXPORTS PlanePortraitWarper : public RotationWarperBase<PlanePortraitProjector> +{ +public: + PlanePortraitWarper(float scale) { projector_.scale = scale; } + +protected: + void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) + { + RotationWarperBase<PlanePortraitProjector>::detectResultRoiByBorder(src_size, dst_tl, dst_br); + } +}; + +//! @} stitching_warp + +} // namespace detail +} // namespace cv + +#include "warpers_inl.hpp" + +#endif // OPENCV_STITCHING_WARPERS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/detail/warpers_inl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,774 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_WARPERS_INL_HPP +#define OPENCV_STITCHING_WARPERS_INL_HPP + +#include "opencv2/core.hpp" +#include "warpers.hpp" // Make your IDE see declarations +#include <limits> + +//! @cond IGNORED + +namespace cv { +namespace detail { + +template <class P> +Point2f RotationWarperBase<P>::warpPoint(const Point2f &pt, InputArray K, InputArray R) +{ + projector_.setCameraParams(K, R); + Point2f uv; + projector_.mapForward(pt.x, pt.y, uv.x, uv.y); + return uv; +} + + +template <class P> +Rect RotationWarperBase<P>::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray _xmap, OutputArray _ymap) +{ + projector_.setCameraParams(K, R); + + Point dst_tl, dst_br; + detectResultRoi(src_size, dst_tl, dst_br); + + _xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); + _ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); + + Mat xmap = _xmap.getMat(), ymap = _ymap.getMat(); + + float x, y; + for (int v = dst_tl.y; v <= dst_br.y; ++v) + { + for (int u = dst_tl.x; u <= dst_br.x; ++u) + { + projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y); + xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x; + ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y; + } + } + + return Rect(dst_tl, dst_br); +} + + +template <class P> +Point RotationWarperBase<P>::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, + OutputArray dst) +{ + UMat xmap, ymap; + Rect dst_roi = buildMaps(src.size(), K, R, xmap, ymap); + + dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); + remap(src, dst, xmap, ymap, interp_mode, border_mode); + + return dst_roi.tl(); +} + + +template <class P> +void RotationWarperBase<P>::warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, + Size dst_size, OutputArray dst) +{ + projector_.setCameraParams(K, R); + + Point src_tl, src_br; + detectResultRoi(dst_size, src_tl, src_br); + + Size size = src.size(); + CV_Assert(src_br.x - src_tl.x + 1 == size.width && src_br.y - src_tl.y + 1 == size.height); + + Mat xmap(dst_size, CV_32F); + Mat ymap(dst_size, CV_32F); + + float u, v; + for (int y = 0; y < dst_size.height; ++y) + { + for (int x = 0; x < dst_size.width; ++x) + { + projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v); + xmap.at<float>(y, x) = u - src_tl.x; + ymap.at<float>(y, x) = v - src_tl.y; + } + } + + dst.create(dst_size, src.type()); + remap(src, dst, xmap, ymap, interp_mode, border_mode); +} + + +template <class P> +Rect RotationWarperBase<P>::warpRoi(Size src_size, InputArray K, InputArray R) +{ + projector_.setCameraParams(K, R); + + Point dst_tl, dst_br; + detectResultRoi(src_size, dst_tl, dst_br); + + return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)); +} + + +template <class P> +void RotationWarperBase<P>::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) +{ + float tl_uf = (std::numeric_limits<float>::max)(); + float tl_vf = (std::numeric_limits<float>::max)(); + float br_uf = -(std::numeric_limits<float>::max)(); + float br_vf = -(std::numeric_limits<float>::max)(); + + float u, v; + for (int y = 0; y < src_size.height; ++y) + { + for (int x = 0; x < src_size.width; ++x) + { + projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v); + tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v); + br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v); + } + } + + dst_tl.x = static_cast<int>(tl_uf); + dst_tl.y = static_cast<int>(tl_vf); + dst_br.x = static_cast<int>(br_uf); + dst_br.y = static_cast<int>(br_vf); +} + + +template <class P> +void RotationWarperBase<P>::detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br) +{ + float tl_uf = (std::numeric_limits<float>::max)(); + float tl_vf = (std::numeric_limits<float>::max)(); + float br_uf = -(std::numeric_limits<float>::max)(); + float br_vf = -(std::numeric_limits<float>::max)(); + + float u, v; + for (float x = 0; x < src_size.width; ++x) + { + projector_.mapForward(static_cast<float>(x), 0, u, v); + tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v); + br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v); + + projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size.height - 1), u, v); + tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v); + br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v); + } + for (int y = 0; y < src_size.height; ++y) + { + projector_.mapForward(0, static_cast<float>(y), u, v); + tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v); + br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v); + + projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(y), u, v); + tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v); + br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v); + } + + dst_tl.x = static_cast<int>(tl_uf); + dst_tl.y = static_cast<int>(tl_vf); + dst_br.x = static_cast<int>(br_uf); + dst_br.y = static_cast<int>(br_vf); +} + + +inline +void PlaneProjector::mapForward(float x, float y, float &u, float &v) +{ + float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + x_ = t[0] + x_ / z_ * (1 - t[2]); + y_ = t[1] + y_ / z_ * (1 - t[2]); + + u = scale * x_; + v = scale * y_; +} + + +inline +void PlaneProjector::mapBackward(float u, float v, float &x, float &y) +{ + u = u / scale - t[0]; + v = v / scale - t[1]; + + float z; + x = k_rinv[0] * u + k_rinv[1] * v + k_rinv[2] * (1 - t[2]); + y = k_rinv[3] * u + k_rinv[4] * v + k_rinv[5] * (1 - t[2]); + z = k_rinv[6] * u + k_rinv[7] * v + k_rinv[8] * (1 - t[2]); + + x /= z; + y /= z; +} + + +inline +void SphericalProjector::mapForward(float x, float y, float &u, float &v) +{ + float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + u = scale * atan2f(x_, z_); + float w = y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_); + v = scale * (static_cast<float>(CV_PI) - acosf(w == w ? w : 0)); +} + + +inline +void SphericalProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= scale; + v /= scale; + + float sinv = sinf(static_cast<float>(CV_PI) - v); + float x_ = sinv * sinf(u); + float y_ = cosf(static_cast<float>(CV_PI) - v); + float z_ = sinv * cosf(u); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + + +inline +void CylindricalProjector::mapForward(float x, float y, float &u, float &v) +{ + float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + u = scale * atan2f(x_, z_); + v = scale * y_ / sqrtf(x_ * x_ + z_ * z_); +} + + +inline +void CylindricalProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= scale; + v /= scale; + + float x_ = sinf(u); + float y_ = v; + float z_ = cosf(u); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void FisheyeProjector::mapForward(float x, float y, float &u, float &v) +{ + float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float u_ = atan2f(x_, z_); + float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); + + u = scale * v_ * cosf(u_); + v = scale * v_ * sinf(u_); +} + +inline +void FisheyeProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= scale; + v /= scale; + + float u_ = atan2f(v, u); + float v_ = sqrtf(u*u + v*v); + + float sinv = sinf((float)CV_PI - v_); + float x_ = sinv * sinf(u_); + float y_ = cosf((float)CV_PI - v_); + float z_ = sinv * cosf(u_); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void StereographicProjector::mapForward(float x, float y, float &u, float &v) +{ + float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float u_ = atan2f(x_, z_); + float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); + + float r = sinf(v_) / (1 - cosf(v_)); + + u = scale * r * cos(u_); + v = scale * r * sin(u_); +} + +inline +void StereographicProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= scale; + v /= scale; + + float u_ = atan2f(v, u); + float r = sqrtf(u*u + v*v); + float v_ = 2 * atanf(1.f / r); + + float sinv = sinf((float)CV_PI - v_); + float x_ = sinv * sinf(u_); + float y_ = cosf((float)CV_PI - v_); + float z_ = sinv * cosf(u_); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void CompressedRectilinearProjector::mapForward(float x, float y, float &u, float &v) +{ + float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float u_ = atan2f(x_, z_); + float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); + + u = scale * a * tanf(u_ / a); + v = scale * b * tanf(v_) / cosf(u_); +} + +inline +void CompressedRectilinearProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= scale; + v /= scale; + + float aatg = a * atanf(u / a); + float u_ = aatg; + float v_ = atanf(v * cosf(aatg) / b); + + float cosv = cosf(v_); + float x_ = cosv * sinf(u_); + float y_ = sinf(v_); + float z_ = cosv * cosf(u_); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void CompressedRectilinearPortraitProjector::mapForward(float x, float y, float &u, float &v) +{ + float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float u_ = atan2f(x_, z_); + float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); + + u = - scale * a * tanf(u_ / a); + v = scale * b * tanf(v_) / cosf(u_); +} + +inline +void CompressedRectilinearPortraitProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= - scale; + v /= scale; + + float aatg = a * atanf(u / a); + float u_ = aatg; + float v_ = atanf(v * cosf( aatg ) / b); + + float cosv = cosf(v_); + float y_ = cosv * sinf(u_); + float x_ = sinf(v_); + float z_ = cosv * cosf(u_); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void PaniniProjector::mapForward(float x, float y, float &u, float &v) +{ + float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float u_ = atan2f(x_, z_); + float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); + + float tg = a * tanf(u_ / a); + u = scale * tg; + + float sinu = sinf(u_); + if ( fabs(sinu) < 1E-7 ) + v = scale * b * tanf(v_); + else + v = scale * b * tg * tanf(v_) / sinu; +} + +inline +void PaniniProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= scale; + v /= scale; + + float lamda = a * atanf(u / a); + float u_ = lamda; + + float v_; + if ( fabs(lamda) > 1E-7) + v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda / a))); + else + v_ = atanf(v / b); + + float cosv = cosf(v_); + float x_ = cosv * sinf(u_); + float y_ = sinf(v_); + float z_ = cosv * cosf(u_); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void PaniniPortraitProjector::mapForward(float x, float y, float &u, float &v) +{ + float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float u_ = atan2f(x_, z_); + float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); + + float tg = a * tanf(u_ / a); + u = - scale * tg; + + float sinu = sinf( u_ ); + if ( fabs(sinu) < 1E-7 ) + v = scale * b * tanf(v_); + else + v = scale * b * tg * tanf(v_) / sinu; +} + +inline +void PaniniPortraitProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= - scale; + v /= scale; + + float lamda = a * atanf(u / a); + float u_ = lamda; + + float v_; + if ( fabs(lamda) > 1E-7) + v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda/a))); + else + v_ = atanf(v / b); + + float cosv = cosf(v_); + float y_ = cosv * sinf(u_); + float x_ = sinf(v_); + float z_ = cosv * cosf(u_); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void MercatorProjector::mapForward(float x, float y, float &u, float &v) +{ + float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float u_ = atan2f(x_, z_); + float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); + + u = scale * u_; + v = scale * logf( tanf( (float)(CV_PI/4) + v_/2 ) ); +} + +inline +void MercatorProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= scale; + v /= scale; + + float v_ = atanf( sinhf(v) ); + float u_ = u; + + float cosv = cosf(v_); + float x_ = cosv * sinf(u_); + float y_ = sinf(v_); + float z_ = cosv * cosf(u_); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void TransverseMercatorProjector::mapForward(float x, float y, float &u, float &v) +{ + float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float u_ = atan2f(x_, z_); + float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); + + float B = cosf(v_) * sinf(u_); + + u = scale / 2 * logf( (1+B) / (1-B) ); + v = scale * atan2f(tanf(v_), cosf(u_)); +} + +inline +void TransverseMercatorProjector::mapBackward(float u, float v, float &x, float &y) +{ + u /= scale; + v /= scale; + + float v_ = asinf( sinf(v) / coshf(u) ); + float u_ = atan2f( sinhf(u), cos(v) ); + + float cosv = cosf(v_); + float x_ = cosv * sinf(u_); + float y_ = sinf(v_); + float z_ = cosv * cosf(u_); + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void SphericalPortraitProjector::mapForward(float x, float y, float &u0, float &v0) +{ + float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float x_ = y0_; + float y_ = x0_; + float u, v; + + u = scale * atan2f(x_, z_); + v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_))); + + u0 = -u;//v; + v0 = v;//u; +} + + +inline +void SphericalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y) +{ + float u, v; + u = -u0;//v0; + v = v0;//u0; + + u /= scale; + v /= scale; + + float sinv = sinf(static_cast<float>(CV_PI) - v); + float x0_ = sinv * sinf(u); + float y0_ = cosf(static_cast<float>(CV_PI) - v); + float z_ = sinv * cosf(u); + + float x_ = y0_; + float y_ = x0_; + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void CylindricalPortraitProjector::mapForward(float x, float y, float &u0, float &v0) +{ + float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float x_ = y0_; + float y_ = x0_; + float u, v; + + u = scale * atan2f(x_, z_); + v = scale * y_ / sqrtf(x_ * x_ + z_ * z_); + + u0 = -u;//v; + v0 = v;//u; +} + + +inline +void CylindricalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y) +{ + float u, v; + u = -u0;//v0; + v = v0;//u0; + + u /= scale; + v /= scale; + + float x0_ = sinf(u); + float y0_ = v; + float z_ = cosf(u); + + float x_ = y0_; + float y_ = x0_; + + float z; + x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; + y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; + z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; + + if (z > 0) { x /= z; y /= z; } + else x = y = -1; +} + +inline +void PlanePortraitProjector::mapForward(float x, float y, float &u0, float &v0) +{ + float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; + float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; + float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; + + float x_ = y0_; + float y_ = x0_; + + x_ = t[0] + x_ / z_ * (1 - t[2]); + y_ = t[1] + y_ / z_ * (1 - t[2]); + + float u,v; + u = scale * x_; + v = scale * y_; + + u0 = -u; + v0 = v; +} + + +inline +void PlanePortraitProjector::mapBackward(float u0, float v0, float &x, float &y) +{ + float u, v; + u = -u0; + v = v0; + + u = u / scale - t[0]; + v = v / scale - t[1]; + + float z; + x = k_rinv[0] * v + k_rinv[1] * u + k_rinv[2] * (1 - t[2]); + y = k_rinv[3] * v + k_rinv[4] * u + k_rinv[5] * (1 - t[2]); + z = k_rinv[6] * v + k_rinv[7] * u + k_rinv[8] * (1 - t[2]); + + x /= z; + y /= z; +} + + +} // namespace detail +} // namespace cv + +//! @endcond + +#endif // OPENCV_STITCHING_WARPERS_INL_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/stitching/warpers.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,192 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_STITCHING_WARPER_CREATORS_HPP +#define OPENCV_STITCHING_WARPER_CREATORS_HPP + +#include "opencv2/stitching/detail/warpers.hpp" + +namespace cv { + +//! @addtogroup stitching_warp +//! @{ + +/** @brief Image warper factories base class. + */ +class WarperCreator +{ +public: + virtual ~WarperCreator() {} + virtual Ptr<detail::RotationWarper> create(float scale) const = 0; +}; + +/** @brief Plane warper factory class. + @sa detail::PlaneWarper + */ +class PlaneWarper : public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::PlaneWarper>(scale); } +}; + +/** @brief Affine warper factory class. + @sa detail::AffineWarper + */ +class AffineWarper : public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::AffineWarper>(scale); } +}; + +/** @brief Cylindrical warper factory class. +@sa detail::CylindricalWarper +*/ +class CylindricalWarper: public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::CylindricalWarper>(scale); } +}; + +/** @brief Spherical warper factory class */ +class SphericalWarper: public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::SphericalWarper>(scale); } +}; + +class FisheyeWarper : public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::FisheyeWarper>(scale); } +}; + +class StereographicWarper: public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::StereographicWarper>(scale); } +}; + +class CompressedRectilinearWarper: public WarperCreator +{ + float a, b; +public: + CompressedRectilinearWarper(float A = 1, float B = 1) + { + a = A; b = B; + } + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::CompressedRectilinearWarper>(scale, a, b); } +}; + +class CompressedRectilinearPortraitWarper: public WarperCreator +{ + float a, b; +public: + CompressedRectilinearPortraitWarper(float A = 1, float B = 1) + { + a = A; b = B; + } + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::CompressedRectilinearPortraitWarper>(scale, a, b); } +}; + +class PaniniWarper: public WarperCreator +{ + float a, b; +public: + PaniniWarper(float A = 1, float B = 1) + { + a = A; b = B; + } + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::PaniniWarper>(scale, a, b); } +}; + +class PaniniPortraitWarper: public WarperCreator +{ + float a, b; +public: + PaniniPortraitWarper(float A = 1, float B = 1) + { + a = A; b = B; + } + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::PaniniPortraitWarper>(scale, a, b); } +}; + +class MercatorWarper: public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::MercatorWarper>(scale); } +}; + +class TransverseMercatorWarper: public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::TransverseMercatorWarper>(scale); } +}; + + + +#ifdef HAVE_OPENCV_CUDAWARPING +class PlaneWarperGpu: public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::PlaneWarperGpu>(scale); } +}; + + +class CylindricalWarperGpu: public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::CylindricalWarperGpu>(scale); } +}; + + +class SphericalWarperGpu: public WarperCreator +{ +public: + Ptr<detail::RotationWarper> create(float scale) const { return makePtr<detail::SphericalWarperGpu>(scale); } +}; +#endif + +//! @} stitching_warp + +} // namespace cv + +#endif // OPENCV_STITCHING_WARPER_CREATORS_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/superres.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,207 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_SUPERRES_HPP +#define OPENCV_SUPERRES_HPP + +#include "opencv2/core.hpp" +#include "opencv2/superres/optical_flow.hpp" + +/** + @defgroup superres Super Resolution + +The Super Resolution module contains a set of functions and classes that can be used to solve the +problem of resolution enhancement. There are a few methods implemented, most of them are descibed in +the papers @cite Farsiu03 and @cite Mitzel09 . + + */ + +namespace cv +{ + namespace superres + { + +//! @addtogroup superres +//! @{ + + class CV_EXPORTS FrameSource + { + public: + virtual ~FrameSource(); + + virtual void nextFrame(OutputArray frame) = 0; + virtual void reset() = 0; + }; + + CV_EXPORTS Ptr<FrameSource> createFrameSource_Empty(); + + CV_EXPORTS Ptr<FrameSource> createFrameSource_Video(const String& fileName); + CV_EXPORTS Ptr<FrameSource> createFrameSource_Video_CUDA(const String& fileName); + + CV_EXPORTS Ptr<FrameSource> createFrameSource_Camera(int deviceId = 0); + + /** @brief Base class for Super Resolution algorithms. + + The class is only used to define the common interface for the whole family of Super Resolution + algorithms. + */ + class CV_EXPORTS SuperResolution : public cv::Algorithm, public FrameSource + { + public: + /** @brief Set input frame source for Super Resolution algorithm. + + @param frameSource Input frame source + */ + void setInput(const Ptr<FrameSource>& frameSource); + + /** @brief Process next frame from input and return output result. + + @param frame Output result + */ + void nextFrame(OutputArray frame); + void reset(); + + /** @brief Clear all inner buffers. + */ + virtual void collectGarbage(); + + //! @brief Scale factor + /** @see setScale */ + virtual int getScale() const = 0; + /** @copybrief getScale @see getScale */ + virtual void setScale(int val) = 0; + + //! @brief Iterations count + /** @see setIterations */ + virtual int getIterations() const = 0; + /** @copybrief getIterations @see getIterations */ + virtual void setIterations(int val) = 0; + + //! @brief Asymptotic value of steepest descent method + /** @see setTau */ + virtual double getTau() const = 0; + /** @copybrief getTau @see getTau */ + virtual void setTau(double val) = 0; + + //! @brief Weight parameter to balance data term and smoothness term + /** @see setLabmda */ + virtual double getLabmda() const = 0; + /** @copybrief getLabmda @see getLabmda */ + virtual void setLabmda(double val) = 0; + + //! @brief Parameter of spacial distribution in Bilateral-TV + /** @see setAlpha */ + virtual double getAlpha() const = 0; + /** @copybrief getAlpha @see getAlpha */ + virtual void setAlpha(double val) = 0; + + //! @brief Kernel size of Bilateral-TV filter + /** @see setKernelSize */ + virtual int getKernelSize() const = 0; + /** @copybrief getKernelSize @see getKernelSize */ + virtual void setKernelSize(int val) = 0; + + //! @brief Gaussian blur kernel size + /** @see setBlurKernelSize */ + virtual int getBlurKernelSize() const = 0; + /** @copybrief getBlurKernelSize @see getBlurKernelSize */ + virtual void setBlurKernelSize(int val) = 0; + + //! @brief Gaussian blur sigma + /** @see setBlurSigma */ + virtual double getBlurSigma() const = 0; + /** @copybrief getBlurSigma @see getBlurSigma */ + virtual void setBlurSigma(double val) = 0; + + //! @brief Radius of the temporal search area + /** @see setTemporalAreaRadius */ + virtual int getTemporalAreaRadius() const = 0; + /** @copybrief getTemporalAreaRadius @see getTemporalAreaRadius */ + virtual void setTemporalAreaRadius(int val) = 0; + + //! @brief Dense optical flow algorithm + /** @see setOpticalFlow */ + virtual Ptr<cv::superres::DenseOpticalFlowExt> getOpticalFlow() const = 0; + /** @copybrief getOpticalFlow @see getOpticalFlow */ + virtual void setOpticalFlow(const Ptr<cv::superres::DenseOpticalFlowExt> &val) = 0; + + protected: + SuperResolution(); + + virtual void initImpl(Ptr<FrameSource>& frameSource) = 0; + virtual void processImpl(Ptr<FrameSource>& frameSource, OutputArray output) = 0; + + bool isUmat_; + + private: + Ptr<FrameSource> frameSource_; + bool firstCall_; + }; + + /** @brief Create Bilateral TV-L1 Super Resolution. + + This class implements Super Resolution algorithm described in the papers @cite Farsiu03 and + @cite Mitzel09 . + + Here are important members of the class that control the algorithm, which you can set after + constructing the class instance: + + - **int scale** Scale factor. + - **int iterations** Iteration count. + - **double tau** Asymptotic value of steepest descent method. + - **double lambda** Weight parameter to balance data term and smoothness term. + - **double alpha** Parameter of spacial distribution in Bilateral-TV. + - **int btvKernelSize** Kernel size of Bilateral-TV filter. + - **int blurKernelSize** Gaussian blur kernel size. + - **double blurSigma** Gaussian blur sigma. + - **int temporalAreaRadius** Radius of the temporal search area. + - **Ptr\<DenseOpticalFlowExt\> opticalFlow** Dense optical flow algorithm. + */ + CV_EXPORTS Ptr<SuperResolution> createSuperResolution_BTVL1(); + CV_EXPORTS Ptr<SuperResolution> createSuperResolution_BTVL1_CUDA(); + +//! @} superres + + } +} + +#endif // OPENCV_SUPERRES_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/superres/optical_flow.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,203 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_SUPERRES_OPTICAL_FLOW_HPP +#define OPENCV_SUPERRES_OPTICAL_FLOW_HPP + +#include "opencv2/core.hpp" + +namespace cv +{ + namespace superres + { + +//! @addtogroup superres +//! @{ + + class CV_EXPORTS DenseOpticalFlowExt : public cv::Algorithm + { + public: + virtual void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2 = noArray()) = 0; + virtual void collectGarbage() = 0; + }; + + + class CV_EXPORTS FarnebackOpticalFlow : public virtual DenseOpticalFlowExt + { + public: + /** @see setPyrScale */ + virtual double getPyrScale() const = 0; + /** @copybrief getPyrScale @see getPyrScale */ + virtual void setPyrScale(double val) = 0; + /** @see setLevelsNumber */ + virtual int getLevelsNumber() const = 0; + /** @copybrief getLevelsNumber @see getLevelsNumber */ + virtual void setLevelsNumber(int val) = 0; + /** @see setWindowSize */ + virtual int getWindowSize() const = 0; + /** @copybrief getWindowSize @see getWindowSize */ + virtual void setWindowSize(int val) = 0; + /** @see setIterations */ + virtual int getIterations() const = 0; + /** @copybrief getIterations @see getIterations */ + virtual void setIterations(int val) = 0; + /** @see setPolyN */ + virtual int getPolyN() const = 0; + /** @copybrief getPolyN @see getPolyN */ + virtual void setPolyN(int val) = 0; + /** @see setPolySigma */ + virtual double getPolySigma() const = 0; + /** @copybrief getPolySigma @see getPolySigma */ + virtual void setPolySigma(double val) = 0; + /** @see setFlags */ + virtual int getFlags() const = 0; + /** @copybrief getFlags @see getFlags */ + virtual void setFlags(int val) = 0; + }; + CV_EXPORTS Ptr<FarnebackOpticalFlow> createOptFlow_Farneback(); + CV_EXPORTS Ptr<FarnebackOpticalFlow> createOptFlow_Farneback_CUDA(); + + +// CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_Simple(); + + + class CV_EXPORTS DualTVL1OpticalFlow : public virtual DenseOpticalFlowExt + { + public: + /** @see setTau */ + virtual double getTau() const = 0; + /** @copybrief getTau @see getTau */ + virtual void setTau(double val) = 0; + /** @see setLambda */ + virtual double getLambda() const = 0; + /** @copybrief getLambda @see getLambda */ + virtual void setLambda(double val) = 0; + /** @see setTheta */ + virtual double getTheta() const = 0; + /** @copybrief getTheta @see getTheta */ + virtual void setTheta(double val) = 0; + /** @see setScalesNumber */ + virtual int getScalesNumber() const = 0; + /** @copybrief getScalesNumber @see getScalesNumber */ + virtual void setScalesNumber(int val) = 0; + /** @see setWarpingsNumber */ + virtual int getWarpingsNumber() const = 0; + /** @copybrief getWarpingsNumber @see getWarpingsNumber */ + virtual void setWarpingsNumber(int val) = 0; + /** @see setEpsilon */ + virtual double getEpsilon() const = 0; + /** @copybrief getEpsilon @see getEpsilon */ + virtual void setEpsilon(double val) = 0; + /** @see setIterations */ + virtual int getIterations() const = 0; + /** @copybrief getIterations @see getIterations */ + virtual void setIterations(int val) = 0; + /** @see setUseInitialFlow */ + virtual bool getUseInitialFlow() const = 0; + /** @copybrief getUseInitialFlow @see getUseInitialFlow */ + virtual void setUseInitialFlow(bool val) = 0; + }; + CV_EXPORTS Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1(); + CV_EXPORTS Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1_CUDA(); + + + class CV_EXPORTS BroxOpticalFlow : public virtual DenseOpticalFlowExt + { + public: + //! @brief Flow smoothness + /** @see setAlpha */ + virtual double getAlpha() const = 0; + /** @copybrief getAlpha @see getAlpha */ + virtual void setAlpha(double val) = 0; + //! @brief Gradient constancy importance + /** @see setGamma */ + virtual double getGamma() const = 0; + /** @copybrief getGamma @see getGamma */ + virtual void setGamma(double val) = 0; + //! @brief Pyramid scale factor + /** @see setScaleFactor */ + virtual double getScaleFactor() const = 0; + /** @copybrief getScaleFactor @see getScaleFactor */ + virtual void setScaleFactor(double val) = 0; + //! @brief Number of lagged non-linearity iterations (inner loop) + /** @see setInnerIterations */ + virtual int getInnerIterations() const = 0; + /** @copybrief getInnerIterations @see getInnerIterations */ + virtual void setInnerIterations(int val) = 0; + //! @brief Number of warping iterations (number of pyramid levels) + /** @see setOuterIterations */ + virtual int getOuterIterations() const = 0; + /** @copybrief getOuterIterations @see getOuterIterations */ + virtual void setOuterIterations(int val) = 0; + //! @brief Number of linear system solver iterations + /** @see setSolverIterations */ + virtual int getSolverIterations() const = 0; + /** @copybrief getSolverIterations @see getSolverIterations */ + virtual void setSolverIterations(int val) = 0; + }; + CV_EXPORTS Ptr<BroxOpticalFlow> createOptFlow_Brox_CUDA(); + + + class PyrLKOpticalFlow : public virtual DenseOpticalFlowExt + { + public: + /** @see setWindowSize */ + virtual int getWindowSize() const = 0; + /** @copybrief getWindowSize @see getWindowSize */ + virtual void setWindowSize(int val) = 0; + /** @see setMaxLevel */ + virtual int getMaxLevel() const = 0; + /** @copybrief getMaxLevel @see getMaxLevel */ + virtual void setMaxLevel(int val) = 0; + /** @see setIterations */ + virtual int getIterations() const = 0; + /** @copybrief getIterations @see getIterations */ + virtual void setIterations(int val) = 0; + }; + CV_EXPORTS Ptr<PyrLKOpticalFlow> createOptFlow_PyrLK_CUDA(); + +//! @} + + } +} + +#endif // OPENCV_SUPERRES_OPTICAL_FLOW_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/video.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,63 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEO_HPP +#define OPENCV_VIDEO_HPP + +/** + @defgroup video Video Analysis + @{ + @defgroup video_motion Motion Analysis + @defgroup video_track Object Tracking + @defgroup video_c C API + @} +*/ + +#include "opencv2/video/tracking.hpp" +#include "opencv2/video/background_segm.hpp" + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/video/tracking_c.h" +#endif + +#endif //OPENCV_VIDEO_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/video/background_segm.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,306 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_BACKGROUND_SEGM_HPP +#define OPENCV_BACKGROUND_SEGM_HPP + +#include "opencv2/core.hpp" + +namespace cv +{ + +//! @addtogroup video_motion +//! @{ + +/** @brief Base class for background/foreground segmentation. : + +The class is only used to define the common interface for the whole family of background/foreground +segmentation algorithms. + */ +class CV_EXPORTS_W BackgroundSubtractor : public Algorithm +{ +public: + /** @brief Computes a foreground mask. + + @param image Next video frame. + @param fgmask The output foreground mask as an 8-bit binary image. + @param learningRate The value between 0 and 1 that indicates how fast the background model is + learnt. Negative parameter value makes the algorithm to use some automatically chosen learning + rate. 0 means that the background model is not updated at all, 1 means that the background model + is completely reinitialized from the last frame. + */ + CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0; + + /** @brief Computes a background image. + + @param backgroundImage The output background image. + + @note Sometimes the background image can be very blurry, as it contain the average background + statistics. + */ + CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0; +}; + + +/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm. + +The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004 +and @cite Zivkovic2006 . + */ +class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor +{ +public: + /** @brief Returns the number of last frames that affect the background model + */ + CV_WRAP virtual int getHistory() const = 0; + /** @brief Sets the number of last frames that affect the background model + */ + CV_WRAP virtual void setHistory(int history) = 0; + + /** @brief Returns the number of gaussian components in the background model + */ + CV_WRAP virtual int getNMixtures() const = 0; + /** @brief Sets the number of gaussian components in the background model. + + The model needs to be reinitalized to reserve memory. + */ + CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization! + + /** @brief Returns the "background ratio" parameter of the algorithm + + If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's + considered background and added to the model as a center of a new component. It corresponds to TB + parameter in the paper. + */ + CV_WRAP virtual double getBackgroundRatio() const = 0; + /** @brief Sets the "background ratio" parameter of the algorithm + */ + CV_WRAP virtual void setBackgroundRatio(double ratio) = 0; + + /** @brief Returns the variance threshold for the pixel-model match + + The main threshold on the squared Mahalanobis distance to decide if the sample is well described by + the background model or not. Related to Cthr from the paper. + */ + CV_WRAP virtual double getVarThreshold() const = 0; + /** @brief Sets the variance threshold for the pixel-model match + */ + CV_WRAP virtual void setVarThreshold(double varThreshold) = 0; + + /** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation + + Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the + existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it + is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg + value generates more components. A higher Tg value may result in a small number of components but + they can grow too large. + */ + CV_WRAP virtual double getVarThresholdGen() const = 0; + /** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation + */ + CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0; + + /** @brief Returns the initial variance of each gaussian component + */ + CV_WRAP virtual double getVarInit() const = 0; + /** @brief Sets the initial variance of each gaussian component + */ + CV_WRAP virtual void setVarInit(double varInit) = 0; + + CV_WRAP virtual double getVarMin() const = 0; + CV_WRAP virtual void setVarMin(double varMin) = 0; + + CV_WRAP virtual double getVarMax() const = 0; + CV_WRAP virtual void setVarMax(double varMax) = 0; + + /** @brief Returns the complexity reduction threshold + + This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05 + is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the + standard Stauffer&Grimson algorithm. + */ + CV_WRAP virtual double getComplexityReductionThreshold() const = 0; + /** @brief Sets the complexity reduction threshold + */ + CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0; + + /** @brief Returns the shadow detection flag + + If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for + details. + */ + CV_WRAP virtual bool getDetectShadows() const = 0; + /** @brief Enables or disables shadow detection + */ + CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0; + + /** @brief Returns the shadow value + + Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 + in the mask always means background, 255 means foreground. + */ + CV_WRAP virtual int getShadowValue() const = 0; + /** @brief Sets the shadow value + */ + CV_WRAP virtual void setShadowValue(int value) = 0; + + /** @brief Returns the shadow threshold + + A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in + the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel + is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra, + *Detecting Moving Shadows...*, IEEE PAMI,2003. + */ + CV_WRAP virtual double getShadowThreshold() const = 0; + /** @brief Sets the shadow threshold + */ + CV_WRAP virtual void setShadowThreshold(double threshold) = 0; +}; + +/** @brief Creates MOG2 Background Subtractor + +@param history Length of the history. +@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model +to decide whether a pixel is well described by the background model. This parameter does not +affect the background update. +@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the +speed a bit, so if you do not need this feature, set the parameter to false. + */ +CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2> + createBackgroundSubtractorMOG2(int history=500, double varThreshold=16, + bool detectShadows=true); + +/** @brief K-nearest neigbours - based Background/Foreground Segmentation Algorithm. + +The class implements the K-nearest neigbours background subtraction described in @cite Zivkovic2006 . +Very efficient if number of foreground pixels is low. + */ +class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor +{ +public: + /** @brief Returns the number of last frames that affect the background model + */ + CV_WRAP virtual int getHistory() const = 0; + /** @brief Sets the number of last frames that affect the background model + */ + CV_WRAP virtual void setHistory(int history) = 0; + + /** @brief Returns the number of data samples in the background model + */ + CV_WRAP virtual int getNSamples() const = 0; + /** @brief Sets the number of data samples in the background model. + + The model needs to be reinitalized to reserve memory. + */ + CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization! + + /** @brief Returns the threshold on the squared distance between the pixel and the sample + + The threshold on the squared distance between the pixel and the sample to decide whether a pixel is + close to a data sample. + */ + CV_WRAP virtual double getDist2Threshold() const = 0; + /** @brief Sets the threshold on the squared distance + */ + CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0; + + /** @brief Returns the number of neighbours, the k in the kNN. + + K is the number of samples that need to be within dist2Threshold in order to decide that that + pixel is matching the kNN background model. + */ + CV_WRAP virtual int getkNNSamples() const = 0; + /** @brief Sets the k in the kNN. How many nearest neigbours need to match. + */ + CV_WRAP virtual void setkNNSamples(int _nkNN) = 0; + + /** @brief Returns the shadow detection flag + + If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for + details. + */ + CV_WRAP virtual bool getDetectShadows() const = 0; + /** @brief Enables or disables shadow detection + */ + CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0; + + /** @brief Returns the shadow value + + Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 + in the mask always means background, 255 means foreground. + */ + CV_WRAP virtual int getShadowValue() const = 0; + /** @brief Sets the shadow value + */ + CV_WRAP virtual void setShadowValue(int value) = 0; + + /** @brief Returns the shadow threshold + + A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in + the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel + is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra, + *Detecting Moving Shadows...*, IEEE PAMI,2003. + */ + CV_WRAP virtual double getShadowThreshold() const = 0; + /** @brief Sets the shadow threshold + */ + CV_WRAP virtual void setShadowThreshold(double threshold) = 0; +}; + +/** @brief Creates KNN Background Subtractor + +@param history Length of the history. +@param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide +whether a pixel is close to that sample. This parameter does not affect the background update. +@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the +speed a bit, so if you do not need this feature, set the parameter to false. + */ +CV_EXPORTS_W Ptr<BackgroundSubtractorKNN> + createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0, + bool detectShadows=true); + +//! @} video_motion + +} // cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/video/tracking.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,626 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_TRACKING_HPP +#define OPENCV_TRACKING_HPP + +#include "opencv2/core.hpp" +#include "opencv2/imgproc.hpp" + +namespace cv +{ + +//! @addtogroup video_track +//! @{ + +enum { OPTFLOW_USE_INITIAL_FLOW = 4, + OPTFLOW_LK_GET_MIN_EIGENVALS = 8, + OPTFLOW_FARNEBACK_GAUSSIAN = 256 + }; + +/** @brief Finds an object center, size, and orientation. + +@param probImage Back projection of the object histogram. See calcBackProject. +@param window Initial search window. +@param criteria Stop criteria for the underlying meanShift. +returns +(in old interfaces) Number of iterations CAMSHIFT took to converge +The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an +object center using meanShift and then adjusts the window size and finds the optimal rotation. The +function returns the rotated rectangle structure that includes the object position, size, and +orientation. The next position of the search window can be obtained with RotatedRect::boundingRect() + +See the OpenCV sample camshiftdemo.c that tracks colored objects. + +@note +- (Python) A sample explaining the camshift tracking algorithm can be found at + opencv_source_code/samples/python/camshift.py + */ +CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window, + TermCriteria criteria ); + +/** @brief Finds an object on a back projection image. + +@param probImage Back projection of the object histogram. See calcBackProject for details. +@param window Initial search window. +@param criteria Stop criteria for the iterative search algorithm. +returns +: Number of iterations CAMSHIFT took to converge. +The function implements the iterative object search algorithm. It takes the input back projection of +an object and the initial position. The mass center in window of the back projection image is +computed and the search window center shifts to the mass center. The procedure is repeated until the +specified number of iterations criteria.maxCount is done or until the window center shifts by less +than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search +window size or orientation do not change during the search. You can simply pass the output of +calcBackProject to this function. But better results can be obtained if you pre-filter the back +projection and remove the noise. For example, you can do this by retrieving connected components +with findContours , throwing away contours with small area ( contourArea ), and rendering the +remaining contours with drawContours. + +@note +- A mean-shift tracking sample can be found at opencv_source_code/samples/cpp/camshiftdemo.cpp + */ +CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria ); + +/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. + +@param img 8-bit input image. +@param pyramid output pyramid. +@param winSize window size of optical flow algorithm. Must be not less than winSize argument of +calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. +@param maxLevel 0-based maximal pyramid level number. +@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is +constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. +@param pyrBorder the border mode for pyramid layers. +@param derivBorder the border mode for gradients. +@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false +to force data copying. +@return number of levels in constructed pyramid. Can be less than maxLevel. + */ +CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid, + Size winSize, int maxLevel, bool withDerivatives = true, + int pyrBorder = BORDER_REFLECT_101, + int derivBorder = BORDER_CONSTANT, + bool tryReuseInputImage = true ); + +/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with +pyramids. + +@param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. +@param nextImg second input image or pyramid of the same size and the same type as prevImg. +@param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be +single-precision floating-point numbers. +@param nextPts output vector of 2D points (with single-precision floating-point coordinates) +containing the calculated new positions of input features in the second image; when +OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. +@param status output status vector (of unsigned chars); each element of the vector is set to 1 if +the flow for the corresponding features has been found, otherwise, it is set to 0. +@param err output vector of errors; each element of the vector is set to an error for the +corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't +found then the error is not defined (use the status parameter to find such cases). +@param winSize size of the search window at each pyramid level. +@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single +level), if set to 1, two levels are used, and so on; if pyramids are passed to input then +algorithm will use as many levels as pyramids have but no more than maxLevel. +@param criteria parameter, specifying the termination criteria of the iterative search algorithm +(after the specified maximum number of iterations criteria.maxCount or when the search window +moves by less than criteria.epsilon. +@param flags operation flags: + - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is + not set, then prevPts is copied to nextPts and is considered the initial estimate. + - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see + minEigThreshold description); if the flag is not set, then L1 distance between patches + around the original and a moved point, divided by number of pixels in a window, is used as a + error measure. +@param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of +optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided +by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding +feature is filtered out and its flow is not processed, so it allows to remove bad points and get a +performance boost. + +The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See +@cite Bouguet00 . The function is parallelized with the TBB library. + +@note + +- An example using the Lucas-Kanade optical flow algorithm can be found at + opencv_source_code/samples/cpp/lkdemo.cpp +- (Python) An example using the Lucas-Kanade optical flow algorithm can be found at + opencv_source_code/samples/python/lk_track.py +- (Python) An example using the Lucas-Kanade tracker for homography matching can be found at + opencv_source_code/samples/python/lk_homography.py + */ +CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg, + InputArray prevPts, InputOutputArray nextPts, + OutputArray status, OutputArray err, + Size winSize = Size(21,21), int maxLevel = 3, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), + int flags = 0, double minEigThreshold = 1e-4 ); + +/** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm. + +@param prev first 8-bit single-channel input image. +@param next second input image of the same size and the same type as prev. +@param flow computed flow image that has the same size as prev and type CV_32FC2. +@param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image; +pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous +one. +@param levels number of pyramid layers including the initial image; levels=1 means that no extra +layers are created and only the original images are used. +@param winsize averaging window size; larger values increase the algorithm robustness to image +noise and give more chances for fast motion detection, but yield more blurred motion field. +@param iterations number of iterations the algorithm does at each pyramid level. +@param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel; +larger values mean that the image will be approximated with smoother surfaces, yielding more +robust algorithm and more blurred motion field, typically poly_n =5 or 7. +@param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a +basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a +good value would be poly_sigma=1.5. +@param flags operation flags that can be a combination of the following: + - **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation. + - **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$ + filter instead of a box filter of the same size for optical flow estimation; usually, this + option gives z more accurate flow than with a box filter, at the cost of lower speed; + normally, winsize for a Gaussian window should be set to a larger value to achieve the same + level of robustness. + +The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that + +\f[\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\f] + +@note + +- An example using the optical flow algorithm described by Gunnar Farneback can be found at + opencv_source_code/samples/cpp/fback.cpp +- (Python) An example using the optical flow algorithm described by Gunnar Farneback can be + found at opencv_source_code/samples/python/opt_flow.py + */ +CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow, + double pyr_scale, int levels, int winsize, + int iterations, int poly_n, double poly_sigma, + int flags ); + +/** @brief Computes an optimal affine transformation between two 2D point sets. + +@param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat. +@param dst Second input 2D point set of the same size and the same type as A, or another image. +@param fullAffine If true, the function finds an optimal affine transformation with no additional +restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is +limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom). + +The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that +approximates best the affine transformation between: + +* Two point sets +* Two raster images. In this case, the function first finds some features in the src image and + finds the corresponding features in dst image. After that, the problem is reduced to the first + case. +In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and +2x1 vector *b* so that: + +\f[[A^*|b^*] = arg \min _{[A|b]} \sum _i \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b \| ^2\f] +where src[i] and dst[i] are the i-th points in src and dst, respectively +\f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of +\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ -a_{12} & a_{11} & b_2 \end{bmatrix}\f] +when fullAffine=false. + +@sa +estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography + */ +CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine ); + + +enum +{ + MOTION_TRANSLATION = 0, + MOTION_EUCLIDEAN = 1, + MOTION_AFFINE = 2, + MOTION_HOMOGRAPHY = 3 +}; + +/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 . + +@param templateImage single-channel template image; CV_8U or CV_32F array. +@param inputImage single-channel input image which should be warped with the final warpMatrix in +order to provide an image similar to templateImage, same type as temlateImage. +@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp). +@param motionType parameter, specifying the type of motion: + - **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with + the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being + estimated. + - **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three + parameters are estimated; warpMatrix is \f$2\times 3\f$. + - **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated; + warpMatrix is \f$2\times 3\f$. + - **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are + estimated;\`warpMatrix\` is \f$3\times 3\f$. +@param criteria parameter, specifying the termination criteria of the ECC algorithm; +criteria.epsilon defines the threshold of the increment in the correlation coefficient between two +iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion). +Default values are shown in the declaration above. +@param inputMask An optional mask to indicate valid values of inputImage. + +The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion +(@cite EP08), that is + +\f[\texttt{warpMatrix} = \texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f] + +where + +\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f] + +(the equation holds with homogeneous coordinates for homography). It returns the final enhanced +correlation coefficient, that is the correlation coefficient between the template image and the +final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third +row is ignored. + +Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an +area-based alignment that builds on intensity similarities. In essence, the function updates the +initial transformation that roughly aligns the images. If this information is missing, the identity +warp (unity matrix) should be given as input. Note that if images undergo strong +displacements/rotations, an initial transformation that roughly aligns the images is necessary +(e.g., a simple euclidean/similarity transform that allows for the images showing the same image +content approximately). Use inverse warping in the second image to take an image close to the first +one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV +sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws +an exception if algorithm does not converges. + +@sa +estimateAffine2D, estimateAffinePartial2D, findHomography + */ +CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage, + InputOutputArray warpMatrix, int motionType = MOTION_AFFINE, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), + InputArray inputMask = noArray()); + +/** @brief Kalman filter class. + +The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>, +@cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get +an extended Kalman filter functionality. See the OpenCV sample kalman.cpp. + +@note + +- An example using the standard Kalman filter can be found at + opencv_source_code/samples/cpp/kalman.cpp + */ +class CV_EXPORTS_W KalmanFilter +{ +public: + /** @brief The constructors. + + @note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released + with cvReleaseKalman(&kalmanFilter) + */ + CV_WRAP KalmanFilter(); + /** @overload + @param dynamParams Dimensionality of the state. + @param measureParams Dimensionality of the measurement. + @param controlParams Dimensionality of the control vector. + @param type Type of the created matrices that should be CV_32F or CV_64F. + */ + CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F ); + + /** @brief Re-initializes Kalman filter. The previous content is destroyed. + + @param dynamParams Dimensionality of the state. + @param measureParams Dimensionality of the measurement. + @param controlParams Dimensionality of the control vector. + @param type Type of the created matrices that should be CV_32F or CV_64F. + */ + void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F ); + + /** @brief Computes a predicted state. + + @param control The optional input control + */ + CV_WRAP const Mat& predict( const Mat& control = Mat() ); + + /** @brief Updates the predicted state from the measurement. + + @param measurement The measured system parameters + */ + CV_WRAP const Mat& correct( const Mat& measurement ); + + CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k) + CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) + CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A) + CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control) + CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H) + CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q) + CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R) + CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/ + CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R) + CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k) + + // temporary matrices + Mat temp1; + Mat temp2; + Mat temp3; + Mat temp4; + Mat temp5; +}; + + +class CV_EXPORTS_W DenseOpticalFlow : public Algorithm +{ +public: + /** @brief Calculates an optical flow. + + @param I0 first 8-bit single-channel input image. + @param I1 second input image of the same size and the same type as prev. + @param flow computed flow image that has the same size as prev and type CV_32FC2. + */ + CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0; + /** @brief Releases all inner buffers. + */ + CV_WRAP virtual void collectGarbage() = 0; +}; + +/** @brief Base interface for sparse optical flow algorithms. + */ +class CV_EXPORTS_W SparseOpticalFlow : public Algorithm +{ +public: + /** @brief Calculates a sparse optical flow. + + @param prevImg First input image. + @param nextImg Second input image of the same size and the same type as prevImg. + @param prevPts Vector of 2D points for which the flow needs to be found. + @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image. + @param status Output status vector. Each element of the vector is set to 1 if the + flow for the corresponding features has been found. Otherwise, it is set to 0. + @param err Optional output vector that contains error response for each point (inverse confidence). + */ + CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg, + InputArray prevPts, InputOutputArray nextPts, + OutputArray status, + OutputArray err = cv::noArray()) = 0; +}; + +/** @brief "Dual TV L1" Optical Flow Algorithm. + +The class implements the "Dual TV L1" optical flow algorithm described in @cite Zach2007 and +@cite Javier2012 . +Here are important members of the class that control the algorithm, which you can set after +constructing the class instance: + +- member double tau + Time step of the numerical scheme. + +- member double lambda + Weight parameter for the data term, attachment parameter. This is the most relevant + parameter, which determines the smoothness of the output. The smaller this parameter is, + the smoother the solutions we obtain. It depends on the range of motions of the images, so + its value should be adapted to each image sequence. + +- member double theta + Weight parameter for (u - v)\^2, tightness parameter. It serves as a link between the + attachment and the regularization terms. In theory, it should have a small value in order + to maintain both parts in correspondence. The method is stable for a large range of values + of this parameter. + +- member int nscales + Number of scales used to create the pyramid of images. + +- member int warps + Number of warpings per scale. Represents the number of times that I1(x+u0) and grad( + I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the + method. It also affects the running time, so it is a compromise between speed and + accuracy. + +- member double epsilon + Stopping criterion threshold used in the numerical scheme, which is a trade-off between + precision and running time. A small value will yield more accurate solutions at the + expense of a slower convergence. + +- member int iterations + Stopping criterion iterations number used in the numerical scheme. + +C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow". +Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation". +*/ +class CV_EXPORTS_W DualTVL1OpticalFlow : public DenseOpticalFlow +{ +public: + //! @brief Time step of the numerical scheme + /** @see setTau */ + CV_WRAP virtual double getTau() const = 0; + /** @copybrief getTau @see getTau */ + CV_WRAP virtual void setTau(double val) = 0; + //! @brief Weight parameter for the data term, attachment parameter + /** @see setLambda */ + CV_WRAP virtual double getLambda() const = 0; + /** @copybrief getLambda @see getLambda */ + CV_WRAP virtual void setLambda(double val) = 0; + //! @brief Weight parameter for (u - v)^2, tightness parameter + /** @see setTheta */ + CV_WRAP virtual double getTheta() const = 0; + /** @copybrief getTheta @see getTheta */ + CV_WRAP virtual void setTheta(double val) = 0; + //! @brief coefficient for additional illumination variation term + /** @see setGamma */ + CV_WRAP virtual double getGamma() const = 0; + /** @copybrief getGamma @see getGamma */ + CV_WRAP virtual void setGamma(double val) = 0; + //! @brief Number of scales used to create the pyramid of images + /** @see setScalesNumber */ + CV_WRAP virtual int getScalesNumber() const = 0; + /** @copybrief getScalesNumber @see getScalesNumber */ + CV_WRAP virtual void setScalesNumber(int val) = 0; + //! @brief Number of warpings per scale + /** @see setWarpingsNumber */ + CV_WRAP virtual int getWarpingsNumber() const = 0; + /** @copybrief getWarpingsNumber @see getWarpingsNumber */ + CV_WRAP virtual void setWarpingsNumber(int val) = 0; + //! @brief Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time + /** @see setEpsilon */ + CV_WRAP virtual double getEpsilon() const = 0; + /** @copybrief getEpsilon @see getEpsilon */ + CV_WRAP virtual void setEpsilon(double val) = 0; + //! @brief Inner iterations (between outlier filtering) used in the numerical scheme + /** @see setInnerIterations */ + CV_WRAP virtual int getInnerIterations() const = 0; + /** @copybrief getInnerIterations @see getInnerIterations */ + CV_WRAP virtual void setInnerIterations(int val) = 0; + //! @brief Outer iterations (number of inner loops) used in the numerical scheme + /** @see setOuterIterations */ + CV_WRAP virtual int getOuterIterations() const = 0; + /** @copybrief getOuterIterations @see getOuterIterations */ + CV_WRAP virtual void setOuterIterations(int val) = 0; + //! @brief Use initial flow + /** @see setUseInitialFlow */ + CV_WRAP virtual bool getUseInitialFlow() const = 0; + /** @copybrief getUseInitialFlow @see getUseInitialFlow */ + CV_WRAP virtual void setUseInitialFlow(bool val) = 0; + //! @brief Step between scales (<1) + /** @see setScaleStep */ + CV_WRAP virtual double getScaleStep() const = 0; + /** @copybrief getScaleStep @see getScaleStep */ + CV_WRAP virtual void setScaleStep(double val) = 0; + //! @brief Median filter kernel size (1 = no filter) (3 or 5) + /** @see setMedianFiltering */ + CV_WRAP virtual int getMedianFiltering() const = 0; + /** @copybrief getMedianFiltering @see getMedianFiltering */ + CV_WRAP virtual void setMedianFiltering(int val) = 0; + + /** @brief Creates instance of cv::DualTVL1OpticalFlow*/ + CV_WRAP static Ptr<DualTVL1OpticalFlow> create( + double tau = 0.25, + double lambda = 0.15, + double theta = 0.3, + int nscales = 5, + int warps = 5, + double epsilon = 0.01, + int innnerIterations = 30, + int outerIterations = 10, + double scaleStep = 0.8, + double gamma = 0.0, + int medianFiltering = 5, + bool useInitialFlow = false); +}; + +/** @brief Creates instance of cv::DenseOpticalFlow +*/ +CV_EXPORTS_W Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1(); + +/** @brief Class computing a dense optical flow using the Gunnar Farneback’s algorithm. + */ +class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow +{ +public: + CV_WRAP virtual int getNumLevels() const = 0; + CV_WRAP virtual void setNumLevels(int numLevels) = 0; + + CV_WRAP virtual double getPyrScale() const = 0; + CV_WRAP virtual void setPyrScale(double pyrScale) = 0; + + CV_WRAP virtual bool getFastPyramids() const = 0; + CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0; + + CV_WRAP virtual int getWinSize() const = 0; + CV_WRAP virtual void setWinSize(int winSize) = 0; + + CV_WRAP virtual int getNumIters() const = 0; + CV_WRAP virtual void setNumIters(int numIters) = 0; + + CV_WRAP virtual int getPolyN() const = 0; + CV_WRAP virtual void setPolyN(int polyN) = 0; + + CV_WRAP virtual double getPolySigma() const = 0; + CV_WRAP virtual void setPolySigma(double polySigma) = 0; + + CV_WRAP virtual int getFlags() const = 0; + CV_WRAP virtual void setFlags(int flags) = 0; + + CV_WRAP static Ptr<FarnebackOpticalFlow> create( + int numLevels = 5, + double pyrScale = 0.5, + bool fastPyramids = false, + int winSize = 13, + int numIters = 10, + int polyN = 5, + double polySigma = 1.1, + int flags = 0); +}; + + +/** @brief Class used for calculating a sparse optical flow. + +The class can calculate an optical flow for a sparse feature set using the +iterative Lucas-Kanade method with pyramids. + +@sa calcOpticalFlowPyrLK + +*/ +class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow +{ +public: + CV_WRAP virtual Size getWinSize() const = 0; + CV_WRAP virtual void setWinSize(Size winSize) = 0; + + CV_WRAP virtual int getMaxLevel() const = 0; + CV_WRAP virtual void setMaxLevel(int maxLevel) = 0; + + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0; + + CV_WRAP virtual int getFlags() const = 0; + CV_WRAP virtual void setFlags(int flags) = 0; + + CV_WRAP virtual double getMinEigThreshold() const = 0; + CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0; + + CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create( + Size winSize = Size(21, 21), + int maxLevel = 3, TermCriteria crit = + TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), + int flags = 0, + double minEigThreshold = 1e-4); +}; + +//! @} video_track + +} // cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/video/tracking_c.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,232 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_TRACKING_C_H +#define OPENCV_TRACKING_C_H + +#include "opencv2/imgproc/types_c.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup video_c + @{ +*/ + +/****************************************************************************************\ +* Motion Analysis * +\****************************************************************************************/ + +/************************************ optical flow ***************************************/ + +#define CV_LKFLOW_PYR_A_READY 1 +#define CV_LKFLOW_PYR_B_READY 2 +#define CV_LKFLOW_INITIAL_GUESSES 4 +#define CV_LKFLOW_GET_MIN_EIGENVALS 8 + +/* It is Lucas & Kanade method, modified to use pyramids. + Also it does several iterations to get optical flow for + every point at every pyramid level. + Calculates optical flow between two images for certain set of points (i.e. + it is a "sparse" optical flow, which is opposite to the previous 3 methods) */ +CVAPI(void) cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr, + CvArr* prev_pyr, CvArr* curr_pyr, + const CvPoint2D32f* prev_features, + CvPoint2D32f* curr_features, + int count, + CvSize win_size, + int level, + char* status, + float* track_error, + CvTermCriteria criteria, + int flags ); + + +/* Modification of a previous sparse optical flow algorithm to calculate + affine flow */ +CVAPI(void) cvCalcAffineFlowPyrLK( const CvArr* prev, const CvArr* curr, + CvArr* prev_pyr, CvArr* curr_pyr, + const CvPoint2D32f* prev_features, + CvPoint2D32f* curr_features, + float* matrices, int count, + CvSize win_size, int level, + char* status, float* track_error, + CvTermCriteria criteria, int flags ); + +/* Estimate rigid transformation between 2 images or 2 point sets */ +CVAPI(int) cvEstimateRigidTransform( const CvArr* A, const CvArr* B, + CvMat* M, int full_affine ); + +/* Estimate optical flow for each pixel using the two-frame G. Farneback algorithm */ +CVAPI(void) cvCalcOpticalFlowFarneback( const CvArr* prev, const CvArr* next, + CvArr* flow, double pyr_scale, int levels, + int winsize, int iterations, int poly_n, + double poly_sigma, int flags ); + +/********************************* motion templates *************************************/ + +/****************************************************************************************\ +* All the motion template functions work only with single channel images. * +* Silhouette image must have depth IPL_DEPTH_8U or IPL_DEPTH_8S * +* Motion history image must have depth IPL_DEPTH_32F, * +* Gradient mask - IPL_DEPTH_8U or IPL_DEPTH_8S, * +* Motion orientation image - IPL_DEPTH_32F * +* Segmentation mask - IPL_DEPTH_32F * +* All the angles are in degrees, all the times are in milliseconds * +\****************************************************************************************/ + +/* Updates motion history image given motion silhouette */ +CVAPI(void) cvUpdateMotionHistory( const CvArr* silhouette, CvArr* mhi, + double timestamp, double duration ); + +/* Calculates gradient of the motion history image and fills + a mask indicating where the gradient is valid */ +CVAPI(void) cvCalcMotionGradient( const CvArr* mhi, CvArr* mask, CvArr* orientation, + double delta1, double delta2, + int aperture_size CV_DEFAULT(3)); + +/* Calculates average motion direction within a selected motion region + (region can be selected by setting ROIs and/or by composing a valid gradient mask + with the region mask) */ +CVAPI(double) cvCalcGlobalOrientation( const CvArr* orientation, const CvArr* mask, + const CvArr* mhi, double timestamp, + double duration ); + +/* Splits a motion history image into a few parts corresponding to separate independent motions + (e.g. left hand, right hand) */ +CVAPI(CvSeq*) cvSegmentMotion( const CvArr* mhi, CvArr* seg_mask, + CvMemStorage* storage, + double timestamp, double seg_thresh ); + +/****************************************************************************************\ +* Tracking * +\****************************************************************************************/ + +/* Implements CAMSHIFT algorithm - determines object position, size and orientation + from the object histogram back project (extension of meanshift) */ +CVAPI(int) cvCamShift( const CvArr* prob_image, CvRect window, + CvTermCriteria criteria, CvConnectedComp* comp, + CvBox2D* box CV_DEFAULT(NULL) ); + +/* Implements MeanShift algorithm - determines object position + from the object histogram back project */ +CVAPI(int) cvMeanShift( const CvArr* prob_image, CvRect window, + CvTermCriteria criteria, CvConnectedComp* comp ); + +/* +standard Kalman filter (in G. Welch' and G. Bishop's notation): + + x(k)=A*x(k-1)+B*u(k)+w(k) p(w)~N(0,Q) + z(k)=H*x(k)+v(k), p(v)~N(0,R) +*/ +typedef struct CvKalman +{ + int MP; /* number of measurement vector dimensions */ + int DP; /* number of state vector dimensions */ + int CP; /* number of control vector dimensions */ + + /* backward compatibility fields */ +#if 1 + float* PosterState; /* =state_pre->data.fl */ + float* PriorState; /* =state_post->data.fl */ + float* DynamMatr; /* =transition_matrix->data.fl */ + float* MeasurementMatr; /* =measurement_matrix->data.fl */ + float* MNCovariance; /* =measurement_noise_cov->data.fl */ + float* PNCovariance; /* =process_noise_cov->data.fl */ + float* KalmGainMatr; /* =gain->data.fl */ + float* PriorErrorCovariance;/* =error_cov_pre->data.fl */ + float* PosterErrorCovariance;/* =error_cov_post->data.fl */ + float* Temp1; /* temp1->data.fl */ + float* Temp2; /* temp2->data.fl */ +#endif + + CvMat* state_pre; /* predicted state (x'(k)): + x(k)=A*x(k-1)+B*u(k) */ + CvMat* state_post; /* corrected state (x(k)): + x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */ + CvMat* transition_matrix; /* state transition matrix (A) */ + CvMat* control_matrix; /* control matrix (B) + (it is not used if there is no control)*/ + CvMat* measurement_matrix; /* measurement matrix (H) */ + CvMat* process_noise_cov; /* process noise covariance matrix (Q) */ + CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */ + CvMat* error_cov_pre; /* priori error estimate covariance matrix (P'(k)): + P'(k)=A*P(k-1)*At + Q)*/ + CvMat* gain; /* Kalman gain matrix (K(k)): + K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/ + CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)): + P(k)=(I-K(k)*H)*P'(k) */ + CvMat* temp1; /* temporary matrices */ + CvMat* temp2; + CvMat* temp3; + CvMat* temp4; + CvMat* temp5; +} CvKalman; + +/* Creates Kalman filter and sets A, B, Q, R and state to some initial values */ +CVAPI(CvKalman*) cvCreateKalman( int dynam_params, int measure_params, + int control_params CV_DEFAULT(0)); + +/* Releases Kalman filter state */ +CVAPI(void) cvReleaseKalman( CvKalman** kalman); + +/* Updates Kalman filter by time (predicts future state of the system) */ +CVAPI(const CvMat*) cvKalmanPredict( CvKalman* kalman, + const CvMat* control CV_DEFAULT(NULL)); + +/* Updates Kalman filter by measurement + (corrects state of the system and internal matrices) */ +CVAPI(const CvMat*) cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement ); + +#define cvKalmanUpdateByTime cvKalmanPredict +#define cvKalmanUpdateByMeasurement cvKalmanCorrect + +/** @} video_c */ + +#ifdef __cplusplus +} // extern "C" +#endif + + +#endif // OPENCV_TRACKING_C_H
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/video/video.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/video.hpp"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,81 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_HPP +#define OPENCV_VIDEOSTAB_HPP + +/** + @defgroup videostab Video Stabilization + +The video stabilization module contains a set of functions and classes that can be used to solve the +problem of video stabilization. There are a few methods implemented, most of them are described in +the papers @cite OF06 and @cite G11 . However, there are some extensions and deviations from the original +paper methods. + +### References + + 1. "Full-Frame Video Stabilization with Motion Inpainting" + Yasuyuki Matsushita, Eyal Ofek, Weina Ge, Xiaoou Tang, Senior Member, and Heung-Yeung Shum + 2. "Auto-Directed Video Stabilization with Robust L1 Optimal Camera Paths" + Matthias Grundmann, Vivek Kwatra, Irfan Essa + + @{ + @defgroup videostab_motion Global Motion Estimation + +The video stabilization module contains a set of functions and classes for global motion estimation +between point clouds or between images. In the last case features are extracted and matched +internally. For the sake of convenience the motion estimation functions are wrapped into classes. +Both the functions and the classes are available. + + @defgroup videostab_marching Fast Marching Method + +The Fast Marching Method @cite Telea04 is used in of the video stabilization routines to do motion and +color inpainting. The method is implemented is a flexible way and it's made public for other users. + + @} + +*/ + +#include "opencv2/videostab/stabilizer.hpp" +#include "opencv2/videostab/ring_buffer.hpp" + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/deblurring.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,116 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_DEBLURRING_HPP +#define OPENCV_VIDEOSTAB_DEBLURRING_HPP + +#include <vector> +#include "opencv2/core.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab +//! @{ + +CV_EXPORTS float calcBlurriness(const Mat &frame); + +class CV_EXPORTS DeblurerBase +{ +public: + DeblurerBase() : radius_(0), frames_(0), motions_(0), blurrinessRates_(0) {} + + virtual ~DeblurerBase() {} + + virtual void setRadius(int val) { radius_ = val; } + virtual int radius() const { return radius_; } + + virtual void deblur(int idx, Mat &frame) = 0; + + + // data from stabilizer + + virtual void setFrames(const std::vector<Mat> &val) { frames_ = &val; } + virtual const std::vector<Mat>& frames() const { return *frames_; } + + virtual void setMotions(const std::vector<Mat> &val) { motions_ = &val; } + virtual const std::vector<Mat>& motions() const { return *motions_; } + + virtual void setBlurrinessRates(const std::vector<float> &val) { blurrinessRates_ = &val; } + virtual const std::vector<float>& blurrinessRates() const { return *blurrinessRates_; } + +protected: + int radius_; + const std::vector<Mat> *frames_; + const std::vector<Mat> *motions_; + const std::vector<float> *blurrinessRates_; +}; + +class CV_EXPORTS NullDeblurer : public DeblurerBase +{ +public: + virtual void deblur(int /*idx*/, Mat &/*frame*/) {} +}; + +class CV_EXPORTS WeightingDeblurer : public DeblurerBase +{ +public: + WeightingDeblurer(); + + void setSensitivity(float val) { sensitivity_ = val; } + float sensitivity() const { return sensitivity_; } + + virtual void deblur(int idx, Mat &frame); + +private: + float sensitivity_; + Mat_<float> bSum_, gSum_, rSum_, wSum_; +}; + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/fast_marching.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,121 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_FAST_MARCHING_HPP +#define OPENCV_VIDEOSTAB_FAST_MARCHING_HPP + +#include <cmath> +#include <queue> +#include <algorithm> +#include "opencv2/core.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab_marching +//! @{ + +/** @brief Describes the Fast Marching Method implementation. + + See http://iwi.eldoc.ub.rug.nl/FILES/root/2004/JGraphToolsTelea/2004JGraphToolsTelea.pdf + */ +class CV_EXPORTS FastMarchingMethod +{ +public: + FastMarchingMethod() : inf_(1e6f) {} + + /** @brief Template method that runs the Fast Marching Method. + + @param mask Image mask. 0 value indicates that the pixel value must be inpainted, 255 indicates + that the pixel value is known, other values aren't acceptable. + @param inpaint Inpainting functor that overloads void operator ()(int x, int y). + @return Inpainting functor. + */ + template <typename Inpaint> + Inpaint run(const Mat &mask, Inpaint inpaint); + + /** + @return Distance map that's created during working of the method. + */ + Mat distanceMap() const { return dist_; } + +private: + enum { INSIDE = 0, BAND = 1, KNOWN = 255 }; + + struct DXY + { + float dist; + int x, y; + + DXY() : dist(0), x(0), y(0) {} + DXY(float _dist, int _x, int _y) : dist(_dist), x(_x), y(_y) {} + bool operator <(const DXY &dxy) const { return dist < dxy.dist; } + }; + + float solve(int x1, int y1, int x2, int y2) const; + int& indexOf(const DXY &dxy) { return index_(dxy.y, dxy.x); } + + void heapUp(int idx); + void heapDown(int idx); + void heapAdd(const DXY &dxy); + void heapRemoveMin(); + + float inf_; + + cv::Mat_<uchar> flag_; // flag map + cv::Mat_<float> dist_; // distance map + + cv::Mat_<int> index_; // index of point in the narrow band + std::vector<DXY> narrowBand_; // narrow band heap + int size_; // narrow band size +}; + +//! @} + +} // namespace videostab +} // namespace cv + +#include "fast_marching_inl.hpp" + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/fast_marching_inl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,165 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_FAST_MARCHING_INL_HPP +#define OPENCV_VIDEOSTAB_FAST_MARCHING_INL_HPP + +#include "opencv2/videostab/fast_marching.hpp" + +namespace cv +{ +namespace videostab +{ + +template <typename Inpaint> +Inpaint FastMarchingMethod::run(const cv::Mat &mask, Inpaint inpaint) +{ + using namespace cv; + + CV_Assert(mask.type() == CV_8U); + + static const int lut[4][2] = {{-1,0}, {0,-1}, {1,0}, {0,1}}; + + mask.copyTo(flag_); + flag_.create(mask.size()); + dist_.create(mask.size()); + index_.create(mask.size()); + narrowBand_.clear(); + size_ = 0; + + // init + for (int y = 0; y < flag_.rows; ++y) + { + for (int x = 0; x < flag_.cols; ++x) + { + if (flag_(y,x) == KNOWN) + dist_(y,x) = 0.f; + else + { + int n = 0; + int nunknown = 0; + + for (int i = 0; i < 4; ++i) + { + int xn = x + lut[i][0]; + int yn = y + lut[i][1]; + + if (xn >= 0 && xn < flag_.cols && yn >= 0 && yn < flag_.rows) + { + n++; + if (flag_(yn,xn) != KNOWN) + nunknown++; + } + } + + if (n>0 && nunknown == n) + { + dist_(y,x) = inf_; + flag_(y,x) = INSIDE; + } + else + { + dist_(y,x) = 0.f; + flag_(y,x) = BAND; + inpaint(x, y); + + narrowBand_.push_back(DXY(0.f,x,y)); + index_(y,x) = size_++; + } + } + } + } + + // make heap + for (int i = size_/2-1; i >= 0; --i) + heapDown(i); + + // main cycle + while (size_ > 0) + { + int x = narrowBand_[0].x; + int y = narrowBand_[0].y; + heapRemoveMin(); + + flag_(y,x) = KNOWN; + for (int n = 0; n < 4; ++n) + { + int xn = x + lut[n][0]; + int yn = y + lut[n][1]; + + if (xn >= 0 && xn < flag_.cols && yn >= 0 && yn < flag_.rows && flag_(yn,xn) != KNOWN) + { + dist_(yn,xn) = std::min(std::min(solve(xn-1, yn, xn, yn-1), solve(xn+1, yn, xn, yn-1)), + std::min(solve(xn-1, yn, xn, yn+1), solve(xn+1, yn, xn, yn+1))); + + if (flag_(yn,xn) == INSIDE) + { + flag_(yn,xn) = BAND; + inpaint(xn, yn); + heapAdd(DXY(dist_(yn,xn),xn,yn)); + } + else + { + int i = index_(yn,xn); + if (dist_(yn,xn) < narrowBand_[i].dist) + { + narrowBand_[i].dist = dist_(yn,xn); + heapUp(i); + } + // works better if it's commented out + /*else if (dist(yn,xn) > narrowBand[i].dist) + { + narrowBand[i].dist = dist(yn,xn); + heapDown(i); + }*/ + } + } + } + } + + return inpaint; +} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/frame_source.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,94 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_FRAME_SOURCE_HPP +#define OPENCV_VIDEOSTAB_FRAME_SOURCE_HPP + +#include <vector> +#include "opencv2/core.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab +//! @{ + +class CV_EXPORTS IFrameSource +{ +public: + virtual ~IFrameSource() {} + virtual void reset() = 0; + virtual Mat nextFrame() = 0; +}; + +class CV_EXPORTS NullFrameSource : public IFrameSource +{ +public: + virtual void reset() {} + virtual Mat nextFrame() { return Mat(); } +}; + +class CV_EXPORTS VideoFileSource : public IFrameSource +{ +public: + VideoFileSource(const String &path, bool volatileFrame = false); + + virtual void reset(); + virtual Mat nextFrame(); + + int width(); + int height(); + int count(); + double fps(); + +private: + Ptr<IFrameSource> impl; +}; + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/global_motion.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,299 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_GLOBAL_MOTION_HPP +#define OPENCV_VIDEOSTAB_GLOBAL_MOTION_HPP + +#include <vector> +#include <fstream> +#include "opencv2/core.hpp" +#include "opencv2/features2d.hpp" +#include "opencv2/opencv_modules.hpp" +#include "opencv2/videostab/optical_flow.hpp" +#include "opencv2/videostab/motion_core.hpp" +#include "opencv2/videostab/outlier_rejection.hpp" + +#ifdef HAVE_OPENCV_CUDAIMGPROC +# include "opencv2/cudaimgproc.hpp" +#endif + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab_motion +//! @{ + +/** @brief Estimates best global motion between two 2D point clouds in the least-squares sense. + +@note Works in-place and changes input point arrays. + +@param points0 Source set of 2D points (32F). +@param points1 Destination set of 2D points (32F). +@param model Motion model (up to MM_AFFINE). +@param rmse Final root-mean-square error. +@return 3x3 2D transformation matrix (32F). + */ +CV_EXPORTS Mat estimateGlobalMotionLeastSquares( + InputOutputArray points0, InputOutputArray points1, int model = MM_AFFINE, + float *rmse = 0); + +/** @brief Estimates best global motion between two 2D point clouds robustly (using RANSAC method). + +@param points0 Source set of 2D points (32F). +@param points1 Destination set of 2D points (32F). +@param model Motion model. See cv::videostab::MotionModel. +@param params RANSAC method parameters. See videostab::RansacParams. +@param rmse Final root-mean-square error. +@param ninliers Final number of inliers. + */ +CV_EXPORTS Mat estimateGlobalMotionRansac( + InputArray points0, InputArray points1, int model = MM_AFFINE, + const RansacParams ¶ms = RansacParams::default2dMotion(MM_AFFINE), + float *rmse = 0, int *ninliers = 0); + +/** @brief Base class for all global motion estimation methods. + */ +class CV_EXPORTS MotionEstimatorBase +{ +public: + virtual ~MotionEstimatorBase() {} + + /** @brief Sets motion model. + + @param val Motion model. See cv::videostab::MotionModel. + */ + virtual void setMotionModel(MotionModel val) { motionModel_ = val; } + + /** + @return Motion model. See cv::videostab::MotionModel. + */ + virtual MotionModel motionModel() const { return motionModel_; } + + /** @brief Estimates global motion between two 2D point clouds. + + @param points0 Source set of 2D points (32F). + @param points1 Destination set of 2D points (32F). + @param ok Indicates whether motion was estimated successfully. + @return 3x3 2D transformation matrix (32F). + */ + virtual Mat estimate(InputArray points0, InputArray points1, bool *ok = 0) = 0; + +protected: + MotionEstimatorBase(MotionModel model) { setMotionModel(model); } + +private: + MotionModel motionModel_; +}; + +/** @brief Describes a robust RANSAC-based global 2D motion estimation method which minimizes L2 error. + */ +class CV_EXPORTS MotionEstimatorRansacL2 : public MotionEstimatorBase +{ +public: + MotionEstimatorRansacL2(MotionModel model = MM_AFFINE); + + void setRansacParams(const RansacParams &val) { ransacParams_ = val; } + RansacParams ransacParams() const { return ransacParams_; } + + void setMinInlierRatio(float val) { minInlierRatio_ = val; } + float minInlierRatio() const { return minInlierRatio_; } + + virtual Mat estimate(InputArray points0, InputArray points1, bool *ok = 0); + +private: + RansacParams ransacParams_; + float minInlierRatio_; +}; + +/** @brief Describes a global 2D motion estimation method which minimizes L1 error. + +@note To be able to use this method you must build OpenCV with CLP library support. : + */ +class CV_EXPORTS MotionEstimatorL1 : public MotionEstimatorBase +{ +public: + MotionEstimatorL1(MotionModel model = MM_AFFINE); + + virtual Mat estimate(InputArray points0, InputArray points1, bool *ok = 0); + +private: + std::vector<double> obj_, collb_, colub_; + std::vector<double> elems_, rowlb_, rowub_; + std::vector<int> rows_, cols_; + + void set(int row, int col, double coef) + { + rows_.push_back(row); + cols_.push_back(col); + elems_.push_back(coef); + } +}; + +/** @brief Base class for global 2D motion estimation methods which take frames as input. + */ +class CV_EXPORTS ImageMotionEstimatorBase +{ +public: + virtual ~ImageMotionEstimatorBase() {} + + virtual void setMotionModel(MotionModel val) { motionModel_ = val; } + virtual MotionModel motionModel() const { return motionModel_; } + + virtual Mat estimate(const Mat &frame0, const Mat &frame1, bool *ok = 0) = 0; + +protected: + ImageMotionEstimatorBase(MotionModel model) { setMotionModel(model); } + +private: + MotionModel motionModel_; +}; + +class CV_EXPORTS FromFileMotionReader : public ImageMotionEstimatorBase +{ +public: + FromFileMotionReader(const String &path); + + virtual Mat estimate(const Mat &frame0, const Mat &frame1, bool *ok = 0); + +private: + std::ifstream file_; +}; + +class CV_EXPORTS ToFileMotionWriter : public ImageMotionEstimatorBase +{ +public: + ToFileMotionWriter(const String &path, Ptr<ImageMotionEstimatorBase> estimator); + + virtual void setMotionModel(MotionModel val) { motionEstimator_->setMotionModel(val); } + virtual MotionModel motionModel() const { return motionEstimator_->motionModel(); } + + virtual Mat estimate(const Mat &frame0, const Mat &frame1, bool *ok = 0); + +private: + std::ofstream file_; + Ptr<ImageMotionEstimatorBase> motionEstimator_; +}; + +/** @brief Describes a global 2D motion estimation method which uses keypoints detection and optical flow for +matching. + */ +class CV_EXPORTS KeypointBasedMotionEstimator : public ImageMotionEstimatorBase +{ +public: + KeypointBasedMotionEstimator(Ptr<MotionEstimatorBase> estimator); + + virtual void setMotionModel(MotionModel val) { motionEstimator_->setMotionModel(val); } + virtual MotionModel motionModel() const { return motionEstimator_->motionModel(); } + + void setDetector(Ptr<FeatureDetector> val) { detector_ = val; } + Ptr<FeatureDetector> detector() const { return detector_; } + + void setOpticalFlowEstimator(Ptr<ISparseOptFlowEstimator> val) { optFlowEstimator_ = val; } + Ptr<ISparseOptFlowEstimator> opticalFlowEstimator() const { return optFlowEstimator_; } + + void setOutlierRejector(Ptr<IOutlierRejector> val) { outlierRejector_ = val; } + Ptr<IOutlierRejector> outlierRejector() const { return outlierRejector_; } + + virtual Mat estimate(const Mat &frame0, const Mat &frame1, bool *ok = 0); + +private: + Ptr<MotionEstimatorBase> motionEstimator_; + Ptr<FeatureDetector> detector_; + Ptr<ISparseOptFlowEstimator> optFlowEstimator_; + Ptr<IOutlierRejector> outlierRejector_; + + std::vector<uchar> status_; + std::vector<KeyPoint> keypointsPrev_; + std::vector<Point2f> pointsPrev_, points_; + std::vector<Point2f> pointsPrevGood_, pointsGood_; +}; + +#if defined(HAVE_OPENCV_CUDAIMGPROC) && defined(HAVE_OPENCV_CUDAOPTFLOW) + +class CV_EXPORTS KeypointBasedMotionEstimatorGpu : public ImageMotionEstimatorBase +{ +public: + KeypointBasedMotionEstimatorGpu(Ptr<MotionEstimatorBase> estimator); + + virtual void setMotionModel(MotionModel val) { motionEstimator_->setMotionModel(val); } + virtual MotionModel motionModel() const { return motionEstimator_->motionModel(); } + + void setOutlierRejector(Ptr<IOutlierRejector> val) { outlierRejector_ = val; } + Ptr<IOutlierRejector> outlierRejector() const { return outlierRejector_; } + + virtual Mat estimate(const Mat &frame0, const Mat &frame1, bool *ok = 0); + Mat estimate(const cuda::GpuMat &frame0, const cuda::GpuMat &frame1, bool *ok = 0); + +private: + Ptr<MotionEstimatorBase> motionEstimator_; + Ptr<cuda::CornersDetector> detector_; + SparsePyrLkOptFlowEstimatorGpu optFlowEstimator_; + Ptr<IOutlierRejector> outlierRejector_; + + cuda::GpuMat frame0_, grayFrame0_, frame1_; + cuda::GpuMat pointsPrev_, points_; + cuda::GpuMat status_; + + Mat hostPointsPrev_, hostPoints_; + std::vector<Point2f> hostPointsPrevTmp_, hostPointsTmp_; + std::vector<uchar> rejectionStatus_; +}; + +#endif // defined(HAVE_OPENCV_CUDAIMGPROC) && defined(HAVE_OPENCV_CUDAOPTFLOW) + +/** @brief Computes motion between two frames assuming that all the intermediate motions are known. + +@param from Source frame index. +@param to Destination frame index. +@param motions Pair-wise motions. motions[i] denotes motion from the frame i to the frame i+1 +@return Motion from the frame from to the frame to. + */ +CV_EXPORTS Mat getMotion(int from, int to, const std::vector<Mat> &motions); + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/inpainting.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,212 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_INPAINTINT_HPP +#define OPENCV_VIDEOSTAB_INPAINTINT_HPP + +#include <vector> +#include "opencv2/core.hpp" +#include "opencv2/videostab/optical_flow.hpp" +#include "opencv2/videostab/fast_marching.hpp" +#include "opencv2/videostab/global_motion.hpp" +#include "opencv2/photo.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab +//! @{ + +class CV_EXPORTS InpainterBase +{ +public: + InpainterBase() + : radius_(0), motionModel_(MM_UNKNOWN), frames_(0), motions_(0), + stabilizedFrames_(0), stabilizationMotions_(0) {} + + virtual ~InpainterBase() {} + + virtual void setRadius(int val) { radius_ = val; } + virtual int radius() const { return radius_; } + + virtual void setMotionModel(MotionModel val) { motionModel_ = val; } + virtual MotionModel motionModel() const { return motionModel_; } + + virtual void inpaint(int idx, Mat &frame, Mat &mask) = 0; + + + // data from stabilizer + + virtual void setFrames(const std::vector<Mat> &val) { frames_ = &val; } + virtual const std::vector<Mat>& frames() const { return *frames_; } + + virtual void setMotions(const std::vector<Mat> &val) { motions_ = &val; } + virtual const std::vector<Mat>& motions() const { return *motions_; } + + virtual void setStabilizedFrames(const std::vector<Mat> &val) { stabilizedFrames_ = &val; } + virtual const std::vector<Mat>& stabilizedFrames() const { return *stabilizedFrames_; } + + virtual void setStabilizationMotions(const std::vector<Mat> &val) { stabilizationMotions_ = &val; } + virtual const std::vector<Mat>& stabilizationMotions() const { return *stabilizationMotions_; } + +protected: + int radius_; + MotionModel motionModel_; + const std::vector<Mat> *frames_; + const std::vector<Mat> *motions_; + const std::vector<Mat> *stabilizedFrames_; + const std::vector<Mat> *stabilizationMotions_; +}; + +class CV_EXPORTS NullInpainter : public InpainterBase +{ +public: + virtual void inpaint(int /*idx*/, Mat &/*frame*/, Mat &/*mask*/) {} +}; + +class CV_EXPORTS InpaintingPipeline : public InpainterBase +{ +public: + void pushBack(Ptr<InpainterBase> inpainter) { inpainters_.push_back(inpainter); } + bool empty() const { return inpainters_.empty(); } + + virtual void setRadius(int val); + virtual void setMotionModel(MotionModel val); + virtual void setFrames(const std::vector<Mat> &val); + virtual void setMotions(const std::vector<Mat> &val); + virtual void setStabilizedFrames(const std::vector<Mat> &val); + virtual void setStabilizationMotions(const std::vector<Mat> &val); + + virtual void inpaint(int idx, Mat &frame, Mat &mask); + +private: + std::vector<Ptr<InpainterBase> > inpainters_; +}; + +class CV_EXPORTS ConsistentMosaicInpainter : public InpainterBase +{ +public: + ConsistentMosaicInpainter(); + + void setStdevThresh(float val) { stdevThresh_ = val; } + float stdevThresh() const { return stdevThresh_; } + + virtual void inpaint(int idx, Mat &frame, Mat &mask); + +private: + float stdevThresh_; +}; + +class CV_EXPORTS MotionInpainter : public InpainterBase +{ +public: + MotionInpainter(); + + void setOptFlowEstimator(Ptr<IDenseOptFlowEstimator> val) { optFlowEstimator_ = val; } + Ptr<IDenseOptFlowEstimator> optFlowEstimator() const { return optFlowEstimator_; } + + void setFlowErrorThreshold(float val) { flowErrorThreshold_ = val; } + float flowErrorThreshold() const { return flowErrorThreshold_; } + + void setDistThreshold(float val) { distThresh_ = val; } + float distThresh() const { return distThresh_; } + + void setBorderMode(int val) { borderMode_ = val; } + int borderMode() const { return borderMode_; } + + virtual void inpaint(int idx, Mat &frame, Mat &mask); + +private: + FastMarchingMethod fmm_; + Ptr<IDenseOptFlowEstimator> optFlowEstimator_; + float flowErrorThreshold_; + float distThresh_; + int borderMode_; + + Mat frame1_, transformedFrame1_; + Mat_<uchar> grayFrame_, transformedGrayFrame1_; + Mat_<uchar> mask1_, transformedMask1_; + Mat_<float> flowX_, flowY_, flowErrors_; + Mat_<uchar> flowMask_; +}; + +class CV_EXPORTS ColorAverageInpainter : public InpainterBase +{ +public: + virtual void inpaint(int idx, Mat &frame, Mat &mask); + +private: + FastMarchingMethod fmm_; +}; + +class CV_EXPORTS ColorInpainter : public InpainterBase +{ +public: + ColorInpainter(int method = INPAINT_TELEA, double radius = 2.); + + virtual void inpaint(int idx, Mat &frame, Mat &mask); + +private: + int method_; + double radius_; + Mat invMask_; +}; + +inline ColorInpainter::ColorInpainter(int _method, double _radius) + : method_(_method), radius_(_radius) {} + +CV_EXPORTS void calcFlowMask( + const Mat &flowX, const Mat &flowY, const Mat &errors, float maxError, + const Mat &mask0, const Mat &mask1, Mat &flowMask); + +CV_EXPORTS void completeFrameAccordingToFlow( + const Mat &flowMask, const Mat &flowX, const Mat &flowY, const Mat &frame1, const Mat &mask1, + float distThresh, Mat& frame0, Mat &mask0); + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/log.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,80 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_LOG_HPP +#define OPENCV_VIDEOSTAB_LOG_HPP + +#include "opencv2/core.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab +//! @{ + +class CV_EXPORTS ILog +{ +public: + virtual ~ILog() {} + virtual void print(const char *format, ...) = 0; +}; + +class CV_EXPORTS NullLog : public ILog +{ +public: + virtual void print(const char * /*format*/, ...) {} +}; + +class CV_EXPORTS LogToStdout : public ILog +{ +public: + virtual void print(const char *format, ...); +}; + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/motion_core.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,129 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_MOTION_CORE_HPP +#define OPENCV_VIDEOSTAB_MOTION_CORE_HPP + +#include <cmath> +#include "opencv2/core.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab_motion +//! @{ + +/** @brief Describes motion model between two point clouds. + */ +enum MotionModel +{ + MM_TRANSLATION = 0, + MM_TRANSLATION_AND_SCALE = 1, + MM_ROTATION = 2, + MM_RIGID = 3, + MM_SIMILARITY = 4, + MM_AFFINE = 5, + MM_HOMOGRAPHY = 6, + MM_UNKNOWN = 7 +}; + +/** @brief Describes RANSAC method parameters. + */ +struct CV_EXPORTS RansacParams +{ + int size; //!< subset size + float thresh; //!< max error to classify as inlier + float eps; //!< max outliers ratio + float prob; //!< probability of success + + RansacParams() : size(0), thresh(0), eps(0), prob(0) {} + /** @brief Constructor + @param size Subset size. + @param thresh Maximum re-projection error value to classify as inlier. + @param eps Maximum ratio of incorrect correspondences. + @param prob Required success probability. + */ + RansacParams(int size, float thresh, float eps, float prob); + + /** + @return Number of iterations that'll be performed by RANSAC method. + */ + int niters() const + { + return static_cast<int>( + std::ceil(std::log(1 - prob) / std::log(1 - std::pow(1 - eps, size)))); + } + + /** + @param model Motion model. See cv::videostab::MotionModel. + @return Default RANSAC method parameters for the given motion model. + */ + static RansacParams default2dMotion(MotionModel model) + { + CV_Assert(model < MM_UNKNOWN); + if (model == MM_TRANSLATION) + return RansacParams(1, 0.5f, 0.5f, 0.99f); + if (model == MM_TRANSLATION_AND_SCALE) + return RansacParams(2, 0.5f, 0.5f, 0.99f); + if (model == MM_ROTATION) + return RansacParams(1, 0.5f, 0.5f, 0.99f); + if (model == MM_RIGID) + return RansacParams(2, 0.5f, 0.5f, 0.99f); + if (model == MM_SIMILARITY) + return RansacParams(2, 0.5f, 0.5f, 0.99f); + if (model == MM_AFFINE) + return RansacParams(3, 0.5f, 0.5f, 0.99f); + return RansacParams(4, 0.5f, 0.5f, 0.99f); + } +}; + +inline RansacParams::RansacParams(int _size, float _thresh, float _eps, float _prob) + : size(_size), thresh(_thresh), eps(_eps), prob(_prob) {} + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/motion_stabilizing.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,174 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_MOTION_STABILIZING_HPP +#define OPENCV_VIDEOSTAB_MOTION_STABILIZING_HPP + +#include <vector> +#include <utility> +#include "opencv2/core.hpp" +#include "opencv2/videostab/global_motion.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab_motion +//! @{ + +class CV_EXPORTS IMotionStabilizer +{ +public: + virtual ~IMotionStabilizer() {} + + //! assumes that [0, size-1) is in or equals to [range.first, range.second) + virtual void stabilize( + int size, const std::vector<Mat> &motions, std::pair<int,int> range, + Mat *stabilizationMotions) = 0; +}; + +class CV_EXPORTS MotionStabilizationPipeline : public IMotionStabilizer +{ +public: + void pushBack(Ptr<IMotionStabilizer> stabilizer) { stabilizers_.push_back(stabilizer); } + bool empty() const { return stabilizers_.empty(); } + + virtual void stabilize( + int size, const std::vector<Mat> &motions, std::pair<int,int> range, + Mat *stabilizationMotions); + +private: + std::vector<Ptr<IMotionStabilizer> > stabilizers_; +}; + +class CV_EXPORTS MotionFilterBase : public IMotionStabilizer +{ +public: + virtual ~MotionFilterBase() {} + + virtual Mat stabilize( + int idx, const std::vector<Mat> &motions, std::pair<int,int> range) = 0; + + virtual void stabilize( + int size, const std::vector<Mat> &motions, std::pair<int,int> range, + Mat *stabilizationMotions); +}; + +class CV_EXPORTS GaussianMotionFilter : public MotionFilterBase +{ +public: + GaussianMotionFilter(int radius = 15, float stdev = -1.f); + + void setParams(int radius, float stdev = -1.f); + int radius() const { return radius_; } + float stdev() const { return stdev_; } + + virtual Mat stabilize( + int idx, const std::vector<Mat> &motions, std::pair<int,int> range); + +private: + int radius_; + float stdev_; + std::vector<float> weight_; +}; + +inline GaussianMotionFilter::GaussianMotionFilter(int _radius, float _stdev) { setParams(_radius, _stdev); } + +class CV_EXPORTS LpMotionStabilizer : public IMotionStabilizer +{ +public: + LpMotionStabilizer(MotionModel model = MM_SIMILARITY); + + void setMotionModel(MotionModel val) { model_ = val; } + MotionModel motionModel() const { return model_; } + + void setFrameSize(Size val) { frameSize_ = val; } + Size frameSize() const { return frameSize_; } + + void setTrimRatio(float val) { trimRatio_ = val; } + float trimRatio() const { return trimRatio_; } + + void setWeight1(float val) { w1_ = val; } + float weight1() const { return w1_; } + + void setWeight2(float val) { w2_ = val; } + float weight2() const { return w2_; } + + void setWeight3(float val) { w3_ = val; } + float weight3() const { return w3_; } + + void setWeight4(float val) { w4_ = val; } + float weight4() const { return w4_; } + + virtual void stabilize( + int size, const std::vector<Mat> &motions, std::pair<int,int> range, + Mat *stabilizationMotions); + +private: + MotionModel model_; + Size frameSize_; + float trimRatio_; + float w1_, w2_, w3_, w4_; + + std::vector<double> obj_, collb_, colub_; + std::vector<int> rows_, cols_; + std::vector<double> elems_, rowlb_, rowub_; + + void set(int row, int col, double coef) + { + rows_.push_back(row); + cols_.push_back(col); + elems_.push_back(coef); + } +}; + +CV_EXPORTS Mat ensureInclusionConstraint(const Mat &M, Size size, float trimRatio); + +CV_EXPORTS float estimateOptimalTrimRatio(const Mat &M, Size size); + +//! @} + +} // namespace videostab +} // namespace + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/optical_flow.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,150 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_OPTICAL_FLOW_HPP +#define OPENCV_VIDEOSTAB_OPTICAL_FLOW_HPP + +#include "opencv2/core.hpp" +#include "opencv2/opencv_modules.hpp" + +#ifdef HAVE_OPENCV_CUDAOPTFLOW + #include "opencv2/cudaoptflow.hpp" +#endif + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab +//! @{ + +class CV_EXPORTS ISparseOptFlowEstimator +{ +public: + virtual ~ISparseOptFlowEstimator() {} + virtual void run( + InputArray frame0, InputArray frame1, InputArray points0, InputOutputArray points1, + OutputArray status, OutputArray errors) = 0; +}; + +class CV_EXPORTS IDenseOptFlowEstimator +{ +public: + virtual ~IDenseOptFlowEstimator() {} + virtual void run( + InputArray frame0, InputArray frame1, InputOutputArray flowX, InputOutputArray flowY, + OutputArray errors) = 0; +}; + +class CV_EXPORTS PyrLkOptFlowEstimatorBase +{ +public: + PyrLkOptFlowEstimatorBase() { setWinSize(Size(21, 21)); setMaxLevel(3); } + + virtual void setWinSize(Size val) { winSize_ = val; } + virtual Size winSize() const { return winSize_; } + + virtual void setMaxLevel(int val) { maxLevel_ = val; } + virtual int maxLevel() const { return maxLevel_; } + virtual ~PyrLkOptFlowEstimatorBase() {} + +protected: + Size winSize_; + int maxLevel_; +}; + +class CV_EXPORTS SparsePyrLkOptFlowEstimator + : public PyrLkOptFlowEstimatorBase, public ISparseOptFlowEstimator +{ +public: + virtual void run( + InputArray frame0, InputArray frame1, InputArray points0, InputOutputArray points1, + OutputArray status, OutputArray errors); +}; + +#ifdef HAVE_OPENCV_CUDAOPTFLOW + +class CV_EXPORTS SparsePyrLkOptFlowEstimatorGpu + : public PyrLkOptFlowEstimatorBase, public ISparseOptFlowEstimator +{ +public: + SparsePyrLkOptFlowEstimatorGpu(); + + virtual void run( + InputArray frame0, InputArray frame1, InputArray points0, InputOutputArray points1, + OutputArray status, OutputArray errors); + + void run(const cuda::GpuMat &frame0, const cuda::GpuMat &frame1, const cuda::GpuMat &points0, cuda::GpuMat &points1, + cuda::GpuMat &status, cuda::GpuMat &errors); + + void run(const cuda::GpuMat &frame0, const cuda::GpuMat &frame1, const cuda::GpuMat &points0, cuda::GpuMat &points1, + cuda::GpuMat &status); + +private: + Ptr<cuda::SparsePyrLKOpticalFlow> optFlowEstimator_; + cuda::GpuMat frame0_, frame1_, points0_, points1_, status_, errors_; +}; + +class CV_EXPORTS DensePyrLkOptFlowEstimatorGpu + : public PyrLkOptFlowEstimatorBase, public IDenseOptFlowEstimator +{ +public: + DensePyrLkOptFlowEstimatorGpu(); + + virtual void run( + InputArray frame0, InputArray frame1, InputOutputArray flowX, InputOutputArray flowY, + OutputArray errors); + +private: + Ptr<cuda::DensePyrLKOpticalFlow> optFlowEstimator_; + cuda::GpuMat frame0_, frame1_, flowX_, flowY_, errors_; +}; + +#endif + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/outlier_rejection.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,101 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_OUTLIER_REJECTION_HPP +#define OPENCV_VIDEOSTAB_OUTLIER_REJECTION_HPP + +#include <vector> +#include "opencv2/core.hpp" +#include "opencv2/videostab/motion_core.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab +//! @{ + +class CV_EXPORTS IOutlierRejector +{ +public: + virtual ~IOutlierRejector() {} + + virtual void process( + Size frameSize, InputArray points0, InputArray points1, OutputArray mask) = 0; +}; + +class CV_EXPORTS NullOutlierRejector : public IOutlierRejector +{ +public: + virtual void process( + Size frameSize, InputArray points0, InputArray points1, OutputArray mask); +}; + +class CV_EXPORTS TranslationBasedLocalOutlierRejector : public IOutlierRejector +{ +public: + TranslationBasedLocalOutlierRejector(); + + void setCellSize(Size val) { cellSize_ = val; } + Size cellSize() const { return cellSize_; } + + void setRansacParams(RansacParams val) { ransacParams_ = val; } + RansacParams ransacParams() const { return ransacParams_; } + + virtual void process( + Size frameSize, InputArray points0, InputArray points1, OutputArray mask); + +private: + Size cellSize_; + RansacParams ransacParams_; + + typedef std::vector<int> Cell; + std::vector<Cell> grid_; +}; + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/ring_buffer.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,72 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_RING_BUFFER_HPP +#define OPENCV_VIDEOSTAB_RING_BUFFER_HPP + +#include <vector> +#include "opencv2/imgproc.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab +//! @{ + +template <typename T> inline T& at(int idx, std::vector<T> &items) +{ + return items[cv::borderInterpolate(idx, static_cast<int>(items.size()), cv::BORDER_WRAP)]; +} + +template <typename T> inline const T& at(int idx, const std::vector<T> &items) +{ + return items[cv::borderInterpolate(idx, static_cast<int>(items.size()), cv::BORDER_WRAP)]; +} + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/stabilizer.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,200 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_STABILIZER_HPP +#define OPENCV_VIDEOSTAB_STABILIZER_HPP + +#include <vector> +#include <ctime> +#include "opencv2/core.hpp" +#include "opencv2/imgproc.hpp" +#include "opencv2/videostab/global_motion.hpp" +#include "opencv2/videostab/motion_stabilizing.hpp" +#include "opencv2/videostab/frame_source.hpp" +#include "opencv2/videostab/log.hpp" +#include "opencv2/videostab/inpainting.hpp" +#include "opencv2/videostab/deblurring.hpp" +#include "opencv2/videostab/wobble_suppression.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab +//! @{ + +class CV_EXPORTS StabilizerBase +{ +public: + virtual ~StabilizerBase() {} + + void setLog(Ptr<ILog> ilog) { log_ = ilog; } + Ptr<ILog> log() const { return log_; } + + void setRadius(int val) { radius_ = val; } + int radius() const { return radius_; } + + void setFrameSource(Ptr<IFrameSource> val) { frameSource_ = val; } + Ptr<IFrameSource> frameSource() const { return frameSource_; } + + void setMotionEstimator(Ptr<ImageMotionEstimatorBase> val) { motionEstimator_ = val; } + Ptr<ImageMotionEstimatorBase> motionEstimator() const { return motionEstimator_; } + + void setDeblurer(Ptr<DeblurerBase> val) { deblurer_ = val; } + Ptr<DeblurerBase> deblurrer() const { return deblurer_; } + + void setTrimRatio(float val) { trimRatio_ = val; } + float trimRatio() const { return trimRatio_; } + + void setCorrectionForInclusion(bool val) { doCorrectionForInclusion_ = val; } + bool doCorrectionForInclusion() const { return doCorrectionForInclusion_; } + + void setBorderMode(int val) { borderMode_ = val; } + int borderMode() const { return borderMode_; } + + void setInpainter(Ptr<InpainterBase> val) { inpainter_ = val; } + Ptr<InpainterBase> inpainter() const { return inpainter_; } + +protected: + StabilizerBase(); + + void reset(); + Mat nextStabilizedFrame(); + bool doOneIteration(); + virtual void setUp(const Mat &firstFrame); + virtual Mat estimateMotion() = 0; + virtual Mat estimateStabilizationMotion() = 0; + void stabilizeFrame(); + virtual Mat postProcessFrame(const Mat &frame); + void logProcessingTime(); + + Ptr<ILog> log_; + Ptr<IFrameSource> frameSource_; + Ptr<ImageMotionEstimatorBase> motionEstimator_; + Ptr<DeblurerBase> deblurer_; + Ptr<InpainterBase> inpainter_; + int radius_; + float trimRatio_; + bool doCorrectionForInclusion_; + int borderMode_; + + Size frameSize_; + Mat frameMask_; + int curPos_; + int curStabilizedPos_; + bool doDeblurring_; + Mat preProcessedFrame_; + bool doInpainting_; + Mat inpaintingMask_; + Mat finalFrame_; + std::vector<Mat> frames_; + std::vector<Mat> motions_; // motions_[i] is the motion from i-th to i+1-th frame + std::vector<float> blurrinessRates_; + std::vector<Mat> stabilizedFrames_; + std::vector<Mat> stabilizedMasks_; + std::vector<Mat> stabilizationMotions_; + clock_t processingStartTime_; +}; + +class CV_EXPORTS OnePassStabilizer : public StabilizerBase, public IFrameSource +{ +public: + OnePassStabilizer(); + + void setMotionFilter(Ptr<MotionFilterBase> val) { motionFilter_ = val; } + Ptr<MotionFilterBase> motionFilter() const { return motionFilter_; } + + virtual void reset(); + virtual Mat nextFrame() { return nextStabilizedFrame(); } + +protected: + virtual void setUp(const Mat &firstFrame); + virtual Mat estimateMotion(); + virtual Mat estimateStabilizationMotion(); + virtual Mat postProcessFrame(const Mat &frame); + + Ptr<MotionFilterBase> motionFilter_; +}; + +class CV_EXPORTS TwoPassStabilizer : public StabilizerBase, public IFrameSource +{ +public: + TwoPassStabilizer(); + + void setMotionStabilizer(Ptr<IMotionStabilizer> val) { motionStabilizer_ = val; } + Ptr<IMotionStabilizer> motionStabilizer() const { return motionStabilizer_; } + + void setWobbleSuppressor(Ptr<WobbleSuppressorBase> val) { wobbleSuppressor_ = val; } + Ptr<WobbleSuppressorBase> wobbleSuppressor() const { return wobbleSuppressor_; } + + void setEstimateTrimRatio(bool val) { mustEstTrimRatio_ = val; } + bool mustEstimateTrimaRatio() const { return mustEstTrimRatio_; } + + virtual void reset(); + virtual Mat nextFrame(); + +protected: + void runPrePassIfNecessary(); + + virtual void setUp(const Mat &firstFrame); + virtual Mat estimateMotion(); + virtual Mat estimateStabilizationMotion(); + virtual Mat postProcessFrame(const Mat &frame); + + Ptr<IMotionStabilizer> motionStabilizer_; + Ptr<WobbleSuppressorBase> wobbleSuppressor_; + bool mustEstTrimRatio_; + + int frameCount_; + bool isPrePassDone_; + bool doWobbleSuppression_; + std::vector<Mat> motions2_; + Mat suppressedFrame_; +}; + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/videostab/wobble_suppression.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,140 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_VIDEOSTAB_WOBBLE_SUPPRESSION_HPP +#define OPENCV_VIDEOSTAB_WOBBLE_SUPPRESSION_HPP + +#include <vector> +#include "opencv2/core.hpp" +#include "opencv2/core/cuda.hpp" +#include "opencv2/videostab/global_motion.hpp" +#include "opencv2/videostab/log.hpp" + +namespace cv +{ +namespace videostab +{ + +//! @addtogroup videostab +//! @{ + +class CV_EXPORTS WobbleSuppressorBase +{ +public: + WobbleSuppressorBase(); + + virtual ~WobbleSuppressorBase() {} + + void setMotionEstimator(Ptr<ImageMotionEstimatorBase> val) { motionEstimator_ = val; } + Ptr<ImageMotionEstimatorBase> motionEstimator() const { return motionEstimator_; } + + virtual void suppress(int idx, const Mat &frame, Mat &result) = 0; + + + // data from stabilizer + + virtual void setFrameCount(int val) { frameCount_ = val; } + virtual int frameCount() const { return frameCount_; } + + virtual void setMotions(const std::vector<Mat> &val) { motions_ = &val; } + virtual const std::vector<Mat>& motions() const { return *motions_; } + + virtual void setMotions2(const std::vector<Mat> &val) { motions2_ = &val; } + virtual const std::vector<Mat>& motions2() const { return *motions2_; } + + virtual void setStabilizationMotions(const std::vector<Mat> &val) { stabilizationMotions_ = &val; } + virtual const std::vector<Mat>& stabilizationMotions() const { return *stabilizationMotions_; } + +protected: + Ptr<ImageMotionEstimatorBase> motionEstimator_; + int frameCount_; + const std::vector<Mat> *motions_; + const std::vector<Mat> *motions2_; + const std::vector<Mat> *stabilizationMotions_; +}; + +class CV_EXPORTS NullWobbleSuppressor : public WobbleSuppressorBase +{ +public: + virtual void suppress(int idx, const Mat &frame, Mat &result); +}; + +class CV_EXPORTS MoreAccurateMotionWobbleSuppressorBase : public WobbleSuppressorBase +{ +public: + virtual void setPeriod(int val) { period_ = val; } + virtual int period() const { return period_; } + +protected: + MoreAccurateMotionWobbleSuppressorBase() { setPeriod(30); } + + int period_; +}; + +class CV_EXPORTS MoreAccurateMotionWobbleSuppressor : public MoreAccurateMotionWobbleSuppressorBase +{ +public: + virtual void suppress(int idx, const Mat &frame, Mat &result); + +private: + Mat_<float> mapx_, mapy_; +}; + +#if defined(HAVE_OPENCV_CUDAWARPING) +class CV_EXPORTS MoreAccurateMotionWobbleSuppressorGpu : public MoreAccurateMotionWobbleSuppressorBase +{ +public: + void suppress(int idx, const cuda::GpuMat &frame, cuda::GpuMat &result); + virtual void suppress(int idx, const Mat &frame, Mat &result); + +private: + cuda::GpuMat frameDevice_, resultDevice_; + cuda::GpuMat mapx_, mapy_; +}; +#endif + +//! @} + +} // namespace videostab +} // namespace cv + +#endif
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_calib3d320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_core320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_features2d320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_flann320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_imgcodecs320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_imgproc320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_ml320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_objdetect320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_photo320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_shape320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_stitching320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_superres320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_video320.a has changed
Binary file lib/TOOLCHAIN_GCC_ARM/libopencv_videostab320.a has changed