openCV library for Renesas RZ/A
Dependents: RZ_A2M_Mbed_samples
Diff: include/opencv2/core/cuda.inl.hpp
- Revision:
- 0:0e0631af0305
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/core/cuda.inl.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,631 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CUDAINL_HPP +#define OPENCV_CORE_CUDAINL_HPP + +#include "opencv2/core/cuda.hpp" + +//! @cond IGNORED + +namespace cv { namespace cuda { + +//=================================================================================== +// GpuMat +//=================================================================================== + +inline +GpuMat::GpuMat(Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{} + +inline +GpuMat::GpuMat(int rows_, int cols_, int type_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (rows_ > 0 && cols_ > 0) + create(rows_, cols_, type_); +} + +inline +GpuMat::GpuMat(Size size_, int type_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (size_.height > 0 && size_.width > 0) + create(size_.height, size_.width, type_); +} + +inline +GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (rows_ > 0 && cols_ > 0) + { + create(rows_, cols_, type_); + setTo(s_); + } +} + +inline +GpuMat::GpuMat(Size size_, int type_, Scalar s_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (size_.height > 0 && size_.width > 0) + { + create(size_.height, size_.width, type_); + setTo(s_); + } +} + +inline +GpuMat::GpuMat(const GpuMat& m) + : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), allocator(m.allocator) +{ + if (refcount) + CV_XADD(refcount, 1); +} + +inline +GpuMat::GpuMat(InputArray arr, Allocator* allocator_) : + flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + upload(arr); +} + +inline +GpuMat::~GpuMat() +{ + release(); +} + +inline +GpuMat& GpuMat::operator =(const GpuMat& m) +{ + if (this != &m) + { + GpuMat temp(m); + swap(temp); + } + + return *this; +} + +inline +void GpuMat::create(Size size_, int type_) +{ + create(size_.height, size_.width, type_); +} + +inline +void GpuMat::swap(GpuMat& b) +{ + std::swap(flags, b.flags); + std::swap(rows, b.rows); + std::swap(cols, b.cols); + std::swap(step, b.step); + std::swap(data, b.data); + std::swap(datastart, b.datastart); + std::swap(dataend, b.dataend); + std::swap(refcount, b.refcount); + std::swap(allocator, b.allocator); +} + +inline +GpuMat GpuMat::clone() const +{ + GpuMat m; + copyTo(m); + return m; +} + +inline +void GpuMat::copyTo(OutputArray dst, InputArray mask) const +{ + copyTo(dst, mask, Stream::Null()); +} + +inline +GpuMat& GpuMat::setTo(Scalar s) +{ + return setTo(s, Stream::Null()); +} + +inline +GpuMat& GpuMat::setTo(Scalar s, InputArray mask) +{ + return setTo(s, mask, Stream::Null()); +} + +inline +void GpuMat::convertTo(OutputArray dst, int rtype) const +{ + convertTo(dst, rtype, Stream::Null()); +} + +inline +void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, double beta) const +{ + convertTo(dst, rtype, alpha, beta, Stream::Null()); +} + +inline +void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const +{ + convertTo(dst, rtype, alpha, 0.0, stream); +} + +inline +void GpuMat::assignTo(GpuMat& m, int _type) const +{ + if (_type < 0) + m = *this; + else + convertTo(m, _type); +} + +inline +uchar* GpuMat::ptr(int y) +{ + CV_DbgAssert( (unsigned)y < (unsigned)rows ); + return data + step * y; +} + +inline +const uchar* GpuMat::ptr(int y) const +{ + CV_DbgAssert( (unsigned)y < (unsigned)rows ); + return data + step * y; +} + +template<typename _Tp> inline +_Tp* GpuMat::ptr(int y) +{ + return (_Tp*)ptr(y); +} + +template<typename _Tp> inline +const _Tp* GpuMat::ptr(int y) const +{ + return (const _Tp*)ptr(y); +} + +template <class T> inline +GpuMat::operator PtrStepSz<T>() const +{ + return PtrStepSz<T>(rows, cols, (T*)data, step); +} + +template <class T> inline +GpuMat::operator PtrStep<T>() const +{ + return PtrStep<T>((T*)data, step); +} + +inline +GpuMat GpuMat::row(int y) const +{ + return GpuMat(*this, Range(y, y+1), Range::all()); +} + +inline +GpuMat GpuMat::col(int x) const +{ + return GpuMat(*this, Range::all(), Range(x, x+1)); +} + +inline +GpuMat GpuMat::rowRange(int startrow, int endrow) const +{ + return GpuMat(*this, Range(startrow, endrow), Range::all()); +} + +inline +GpuMat GpuMat::rowRange(Range r) const +{ + return GpuMat(*this, r, Range::all()); +} + +inline +GpuMat GpuMat::colRange(int startcol, int endcol) const +{ + return GpuMat(*this, Range::all(), Range(startcol, endcol)); +} + +inline +GpuMat GpuMat::colRange(Range r) const +{ + return GpuMat(*this, Range::all(), r); +} + +inline +GpuMat GpuMat::operator ()(Range rowRange_, Range colRange_) const +{ + return GpuMat(*this, rowRange_, colRange_); +} + +inline +GpuMat GpuMat::operator ()(Rect roi) const +{ + return GpuMat(*this, roi); +} + +inline +bool GpuMat::isContinuous() const +{ + return (flags & Mat::CONTINUOUS_FLAG) != 0; +} + +inline +size_t GpuMat::elemSize() const +{ + return CV_ELEM_SIZE(flags); +} + +inline +size_t GpuMat::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int GpuMat::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int GpuMat::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int GpuMat::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t GpuMat::step1() const +{ + return step / elemSize1(); +} + +inline +Size GpuMat::size() const +{ + return Size(cols, rows); +} + +inline +bool GpuMat::empty() const +{ + return data == 0; +} + +static inline +GpuMat createContinuous(int rows, int cols, int type) +{ + GpuMat m; + createContinuous(rows, cols, type, m); + return m; +} + +static inline +void createContinuous(Size size, int type, OutputArray arr) +{ + createContinuous(size.height, size.width, type, arr); +} + +static inline +GpuMat createContinuous(Size size, int type) +{ + GpuMat m; + createContinuous(size, type, m); + return m; +} + +static inline +void ensureSizeIsEnough(Size size, int type, OutputArray arr) +{ + ensureSizeIsEnough(size.height, size.width, type, arr); +} + +static inline +void swap(GpuMat& a, GpuMat& b) +{ + a.swap(b); +} + +//=================================================================================== +// HostMem +//=================================================================================== + +inline +HostMem::HostMem(AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ +} + +inline +HostMem::HostMem(const HostMem& m) + : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type) +{ + if( refcount ) + CV_XADD(refcount, 1); +} + +inline +HostMem::HostMem(int rows_, int cols_, int type_, AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ + if (rows_ > 0 && cols_ > 0) + create(rows_, cols_, type_); +} + +inline +HostMem::HostMem(Size size_, int type_, AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ + if (size_.height > 0 && size_.width > 0) + create(size_.height, size_.width, type_); +} + +inline +HostMem::HostMem(InputArray arr, AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ + arr.getMat().copyTo(*this); +} + +inline +HostMem::~HostMem() +{ + release(); +} + +inline +HostMem& HostMem::operator =(const HostMem& m) +{ + if (this != &m) + { + HostMem temp(m); + swap(temp); + } + + return *this; +} + +inline +void HostMem::swap(HostMem& b) +{ + std::swap(flags, b.flags); + std::swap(rows, b.rows); + std::swap(cols, b.cols); + std::swap(step, b.step); + std::swap(data, b.data); + std::swap(datastart, b.datastart); + std::swap(dataend, b.dataend); + std::swap(refcount, b.refcount); + std::swap(alloc_type, b.alloc_type); +} + +inline +HostMem HostMem::clone() const +{ + HostMem m(size(), type(), alloc_type); + createMatHeader().copyTo(m); + return m; +} + +inline +void HostMem::create(Size size_, int type_) +{ + create(size_.height, size_.width, type_); +} + +inline +Mat HostMem::createMatHeader() const +{ + return Mat(size(), type(), data, step); +} + +inline +bool HostMem::isContinuous() const +{ + return (flags & Mat::CONTINUOUS_FLAG) != 0; +} + +inline +size_t HostMem::elemSize() const +{ + return CV_ELEM_SIZE(flags); +} + +inline +size_t HostMem::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int HostMem::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int HostMem::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int HostMem::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t HostMem::step1() const +{ + return step / elemSize1(); +} + +inline +Size HostMem::size() const +{ + return Size(cols, rows); +} + +inline +bool HostMem::empty() const +{ + return data == 0; +} + +static inline +void swap(HostMem& a, HostMem& b) +{ + a.swap(b); +} + +//=================================================================================== +// Stream +//=================================================================================== + +inline +Stream::Stream(const Ptr<Impl>& impl) + : impl_(impl) +{ +} + +//=================================================================================== +// Event +//=================================================================================== + +inline +Event::Event(const Ptr<Impl>& impl) + : impl_(impl) +{ +} + +//=================================================================================== +// Initialization & Info +//=================================================================================== + +inline +bool TargetArchs::has(int major, int minor) +{ + return hasPtx(major, minor) || hasBin(major, minor); +} + +inline +bool TargetArchs::hasEqualOrGreater(int major, int minor) +{ + return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor); +} + +inline +DeviceInfo::DeviceInfo() +{ + device_id_ = getDevice(); +} + +inline +DeviceInfo::DeviceInfo(int device_id) +{ + CV_Assert( device_id >= 0 && device_id < getCudaEnabledDeviceCount() ); + device_id_ = device_id; +} + +inline +int DeviceInfo::deviceID() const +{ + return device_id_; +} + +inline +size_t DeviceInfo::freeMemory() const +{ + size_t _totalMemory = 0, _freeMemory = 0; + queryMemory(_totalMemory, _freeMemory); + return _freeMemory; +} + +inline +size_t DeviceInfo::totalMemory() const +{ + size_t _totalMemory = 0, _freeMemory = 0; + queryMemory(_totalMemory, _freeMemory); + return _totalMemory; +} + +inline +bool DeviceInfo::supports(FeatureSet feature_set) const +{ + int version = majorVersion() * 10 + minorVersion(); + return version >= feature_set; +} + + +}} // namespace cv { namespace cuda { + +//=================================================================================== +// Mat +//=================================================================================== + +namespace cv { + +inline +Mat::Mat(const cuda::GpuMat& m) + : flags(0), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) +{ + m.download(*this); +} + +} + +//! @endcond + +#endif // OPENCV_CORE_CUDAINL_HPP