openCV library for Renesas RZ/A
Dependents: RZ_A2M_Mbed_samples
include/opencv2/flann/simplex_downhill.h
- Committer:
- RyoheiHagimoto
- Date:
- 2021-01-29
- Revision:
- 0:0e0631af0305
File content as of revision 0:0e0631af0305:
/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_ #define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_ namespace cvflann { /** Adds val to array vals (and point to array points) and keeping the arrays sorted by vals. */ template <typename T> void addValue(int pos, float val, float* vals, T* point, T* points, int n) { vals[pos] = val; for (int i=0; i<n; ++i) { points[pos*n+i] = point[i]; } // bubble down int j=pos; while (j>0 && vals[j]<vals[j-1]) { swap(vals[j],vals[j-1]); for (int i=0; i<n; ++i) { swap(points[j*n+i],points[(j-1)*n+i]); } --j; } } /** Simplex downhill optimization function. Preconditions: points is a 2D mattrix of size (n+1) x n func is the cost function taking n an array of n params and returning float vals is the cost function in the n+1 simplex points, if NULL it will be computed Postcondition: returns optimum value and points[0..n] are the optimum parameters */ template <typename T, typename F> float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL ) { const int MAX_ITERATIONS = 10; assert(n>0); T* p_o = new T[n]; T* p_r = new T[n]; T* p_e = new T[n]; int alpha = 1; int iterations = 0; bool ownVals = false; if (vals == NULL) { ownVals = true; vals = new float[n+1]; for (int i=0; i<n+1; ++i) { float val = func(points+i*n); addValue(i, val, vals, points+i*n, points, n); } } int nn = n*n; while (true) { if (iterations++ > MAX_ITERATIONS) break; // compute average of simplex points (except the highest point) for (int j=0; j<n; ++j) { p_o[j] = 0; for (int i=0; i<n; ++i) { p_o[i] += points[j*n+i]; } } for (int i=0; i<n; ++i) { p_o[i] /= n; } bool converged = true; for (int i=0; i<n; ++i) { if (p_o[i] != points[nn+i]) { converged = false; } } if (converged) break; // trying a reflection for (int i=0; i<n; ++i) { p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]); } float val_r = func(p_r); if ((val_r>=vals[0])&&(val_r<vals[n])) { // reflection between second highest and lowest // add it to the simplex Logger::info("Choosing reflection\n"); addValue(n, val_r,vals, p_r, points, n); continue; } if (val_r<vals[0]) { // value is smaller than smalest in simplex // expand some more to see if it drops further for (int i=0; i<n; ++i) { p_e[i] = 2*p_r[i]-p_o[i]; } float val_e = func(p_e); if (val_e<val_r) { Logger::info("Choosing reflection and expansion\n"); addValue(n, val_e,vals,p_e,points,n); } else { Logger::info("Choosing reflection\n"); addValue(n, val_r,vals,p_r,points,n); } continue; } if (val_r>=vals[n]) { for (int i=0; i<n; ++i) { p_e[i] = (p_o[i]+points[nn+i])/2; } float val_e = func(p_e); if (val_e<vals[n]) { Logger::info("Choosing contraction\n"); addValue(n,val_e,vals,p_e,points,n); continue; } } { Logger::info("Full contraction\n"); for (int j=1; j<=n; ++j) { for (int i=0; i<n; ++i) { points[j*n+i] = (points[j*n+i]+points[i])/2; } float val = func(points+j*n); addValue(j,val,vals,points+j*n,points,n); } } } float bestVal = vals[0]; delete[] p_r; delete[] p_o; delete[] p_e; if (ownVals) delete[] vals; return bestVal; } } #endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_