openCV library for Renesas RZ/A
Dependents: RZ_A2M_Mbed_samples
Diff: include/opencv2/calib3d.hpp
- Revision:
- 0:0e0631af0305
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/calib3d.hpp Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,2134 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CALIB3D_HPP +#define OPENCV_CALIB3D_HPP + +#include "opencv2/core.hpp" +#include "opencv2/features2d.hpp" +#include "opencv2/core/affine.hpp" + +/** + @defgroup calib3d Camera Calibration and 3D Reconstruction + +The functions in this section use a so-called pinhole camera model. In this model, a scene view is +formed by projecting 3D points into the image plane using a perspective transformation. + +\f[s \; m' = A [R|t] M'\f] + +or + +\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} +\begin{bmatrix} +r_{11} & r_{12} & r_{13} & t_1 \\ +r_{21} & r_{22} & r_{23} & t_2 \\ +r_{31} & r_{32} & r_{33} & t_3 +\end{bmatrix} +\begin{bmatrix} +X \\ +Y \\ +Z \\ +1 +\end{bmatrix}\f] + +where: + +- \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space +- \f$(u, v)\f$ are the coordinates of the projection point in pixels +- \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters +- \f$(cx, cy)\f$ is a principal point that is usually at the image center +- \f$fx, fy\f$ are the focal lengths expressed in pixel units. + +Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled +(multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not +depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is +fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of +extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa, +rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a +point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above +is equivalent to the following (when \f$z \ne 0\f$ ): + +\f[\begin{array}{l} +\vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ +x' = x/z \\ +y' = y/z \\ +u = f_x*x' + c_x \\ +v = f_y*y' + c_y +\end{array}\f] + +The following figure illustrates the pinhole camera model. + +![Pinhole camera model](pics/pinhole_camera_model.png) + +Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion. +So, the above model is extended as: + +\f[\begin{array}{l} +\vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ +x' = x/z \\ +y' = y/z \\ +x'' = x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\ +y'' = y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ +\text{where} \quad r^2 = x'^2 + y'^2 \\ +u = f_x*x'' + c_x \\ +v = f_y*y'' + c_y +\end{array}\f] + +\f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are +tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion +coefficients. Higher-order coefficients are not considered in OpenCV. + +The next figure shows two common types of radial distortion: barrel distortion (typically \f$ k_1 > 0 \f$ and pincushion distortion (typically \f$ k_1 < 0 \f$). + +![](pics/distortion_examples.png) + +In some cases the image sensor may be tilted in order to focus an oblique plane in front of the +camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or +triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and +\f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07. + +\f[\begin{array}{l} +s\vecthree{x'''}{y'''}{1} = +\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)} +{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} +{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ +u = f_x*x''' + c_x \\ +v = f_y*y''' + c_y +\end{array}\f] + +where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$ +and \f$\tau_y\f$, respectively, + +\f[ +R(\tau_x, \tau_y) = +\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)} +\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} = +\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)} +{0}{\cos(\tau_x)}{\sin(\tau_x)} +{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}. +\f] + +In the functions below the coefficients are passed or returned as + +\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f] + +vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion +coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera +parameters. And they remain the same regardless of the captured image resolution. If, for example, a +camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion +coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and +\f$c_y\f$ need to be scaled appropriately. + +The functions below use the above model to do the following: + +- Project 3D points to the image plane given intrinsic and extrinsic parameters. +- Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their +projections. +- Estimate intrinsic and extrinsic camera parameters from several views of a known calibration +pattern (every view is described by several 3D-2D point correspondences). +- Estimate the relative position and orientation of the stereo camera "heads" and compute the +*rectification* transformation that makes the camera optical axes parallel. + +@note + - A calibration sample for 3 cameras in horizontal position can be found at + opencv_source_code/samples/cpp/3calibration.cpp + - A calibration sample based on a sequence of images can be found at + opencv_source_code/samples/cpp/calibration.cpp + - A calibration sample in order to do 3D reconstruction can be found at + opencv_source_code/samples/cpp/build3dmodel.cpp + - A calibration sample of an artificially generated camera and chessboard patterns can be + found at opencv_source_code/samples/cpp/calibration_artificial.cpp + - A calibration example on stereo calibration can be found at + opencv_source_code/samples/cpp/stereo_calib.cpp + - A calibration example on stereo matching can be found at + opencv_source_code/samples/cpp/stereo_match.cpp + - (Python) A camera calibration sample can be found at + opencv_source_code/samples/python/calibrate.py + + @{ + @defgroup calib3d_fisheye Fisheye camera model + + Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the + matrix X) The coordinate vector of P in the camera reference frame is: + + \f[Xc = R X + T\f] + + where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y + and z the 3 coordinates of Xc: + + \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f] + + The pinhole projection coordinates of P is [a; b] where + + \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f] + + Fisheye distortion: + + \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f] + + The distorted point coordinates are [x'; y'] where + + \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f] + + Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where: + + \f[u = f_x (x' + \alpha y') + c_x \\ + v = f_y y' + c_y\f] + + @defgroup calib3d_c C API + + @} + */ + +namespace cv +{ + +//! @addtogroup calib3d +//! @{ + +//! type of the robust estimation algorithm +enum { LMEDS = 4, //!< least-median algorithm + RANSAC = 8, //!< RANSAC algorithm + RHO = 16 //!< RHO algorithm + }; + +enum { SOLVEPNP_ITERATIVE = 0, + SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp + SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete + SOLVEPNP_DLS = 3, //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct + SOLVEPNP_UPNP = 4 //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive + +}; + +enum { CALIB_CB_ADAPTIVE_THRESH = 1, + CALIB_CB_NORMALIZE_IMAGE = 2, + CALIB_CB_FILTER_QUADS = 4, + CALIB_CB_FAST_CHECK = 8 + }; + +enum { CALIB_CB_SYMMETRIC_GRID = 1, + CALIB_CB_ASYMMETRIC_GRID = 2, + CALIB_CB_CLUSTERING = 4 + }; + +enum { CALIB_USE_INTRINSIC_GUESS = 0x00001, + CALIB_FIX_ASPECT_RATIO = 0x00002, + CALIB_FIX_PRINCIPAL_POINT = 0x00004, + CALIB_ZERO_TANGENT_DIST = 0x00008, + CALIB_FIX_FOCAL_LENGTH = 0x00010, + CALIB_FIX_K1 = 0x00020, + CALIB_FIX_K2 = 0x00040, + CALIB_FIX_K3 = 0x00080, + CALIB_FIX_K4 = 0x00800, + CALIB_FIX_K5 = 0x01000, + CALIB_FIX_K6 = 0x02000, + CALIB_RATIONAL_MODEL = 0x04000, + CALIB_THIN_PRISM_MODEL = 0x08000, + CALIB_FIX_S1_S2_S3_S4 = 0x10000, + CALIB_TILTED_MODEL = 0x40000, + CALIB_FIX_TAUX_TAUY = 0x80000, + CALIB_USE_QR = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise + // only for stereo + CALIB_FIX_INTRINSIC = 0x00100, + CALIB_SAME_FOCAL_LENGTH = 0x00200, + // for stereo rectification + CALIB_ZERO_DISPARITY = 0x00400, + CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise + }; + +//! the algorithm for finding fundamental matrix +enum { FM_7POINT = 1, //!< 7-point algorithm + FM_8POINT = 2, //!< 8-point algorithm + FM_LMEDS = 4, //!< least-median algorithm + FM_RANSAC = 8 //!< RANSAC algorithm + }; + + + +/** @brief Converts a rotation matrix to a rotation vector or vice versa. + +@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3). +@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively. +@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial +derivatives of the output array components with respect to the input array components. + +\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos{\theta} I + (1- \cos{\theta} ) r r^T + \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f] + +Inverse transformation can be also done easily, since + +\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f] + +A rotation vector is a convenient and most compact representation of a rotation matrix (since any +rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry +optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP . + */ +CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() ); + +/** @brief Finds a perspective transformation between two planes. + +@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2 +or vector\<Point2f\> . +@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or +a vector\<Point2f\> . +@param method Method used to computed a homography matrix. The following methods are possible: +- **0** - a regular method using all the points +- **RANSAC** - RANSAC-based robust method +- **LMEDS** - Least-Median robust method +- **RHO** - PROSAC-based robust method +@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier +(used in the RANSAC and RHO methods only). That is, if +\f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \| > \texttt{ransacReprojThreshold}\f] +then the point \f$i\f$ is considered an outlier. If srcPoints and dstPoints are measured in pixels, +it usually makes sense to set this parameter somewhere in the range of 1 to 10. +@param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input +mask values are ignored. +@param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be. +@param confidence Confidence level, between 0 and 1. + +The function finds and returns the perspective transformation \f$H\f$ between the source and the +destination planes: + +\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] + +so that the back-projection error + +\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f] + +is minimized. If the parameter method is set to the default value 0, the function uses all the point +pairs to compute an initial homography estimate with a simple least-squares scheme. + +However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective +transformation (that is, there are some outliers), this initial estimate will be poor. In this case, +you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different +random subsets of the corresponding point pairs (of four pairs each), estimate the homography matrix +using this subset and a simple least-square algorithm, and then compute the quality/goodness of the +computed homography (which is the number of inliers for RANSAC or the median re-projection error for +LMeDs). The best subset is then used to produce the initial estimate of the homography matrix and +the mask of inliers/outliers. + +Regardless of the method, robust or not, the computed homography matrix is refined further (using +inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the +re-projection error even more. + +The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to +distinguish inliers from outliers. The method LMeDS does not need any threshold but it works +correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the +noise is rather small, use the default method (method=0). + +The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is +determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an H matrix +cannot be estimated, an empty one will be returned. + +@sa +getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective, +perspectiveTransform + + +@note + - A example on calculating a homography for image matching can be found at + opencv_source_code/samples/cpp/video_homography.cpp + + */ +CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints, + int method = 0, double ransacReprojThreshold = 3, + OutputArray mask=noArray(), const int maxIters = 2000, + const double confidence = 0.995); + +/** @overload */ +CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints, + OutputArray mask, int method = 0, double ransacReprojThreshold = 3 ); + +/** @brief Computes an RQ decomposition of 3x3 matrices. + +@param src 3x3 input matrix. +@param mtxR Output 3x3 upper-triangular matrix. +@param mtxQ Output 3x3 orthogonal matrix. +@param Qx Optional output 3x3 rotation matrix around x-axis. +@param Qy Optional output 3x3 rotation matrix around y-axis. +@param Qz Optional output 3x3 rotation matrix around z-axis. + +The function computes a RQ decomposition using the given rotations. This function is used in +decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera +and a rotation matrix. + +It optionally returns three rotation matrices, one for each axis, and the three Euler angles in +degrees (as the return value) that could be used in OpenGL. Note, there is always more than one +sequence of rotations about the three principal axes that results in the same orientation of an +object, eg. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angules +are only one of the possible solutions. + */ +CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ, + OutputArray Qx = noArray(), + OutputArray Qy = noArray(), + OutputArray Qz = noArray()); + +/** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix. + +@param projMatrix 3x4 input projection matrix P. +@param cameraMatrix Output 3x3 camera matrix K. +@param rotMatrix Output 3x3 external rotation matrix R. +@param transVect Output 4x1 translation vector T. +@param rotMatrixX Optional 3x3 rotation matrix around x-axis. +@param rotMatrixY Optional 3x3 rotation matrix around y-axis. +@param rotMatrixZ Optional 3x3 rotation matrix around z-axis. +@param eulerAngles Optional three-element vector containing three Euler angles of rotation in +degrees. + +The function computes a decomposition of a projection matrix into a calibration and a rotation +matrix and the position of a camera. + +It optionally returns three rotation matrices, one for each axis, and three Euler angles that could +be used in OpenGL. Note, there is always more than one sequence of rotations about the three +principal axes that results in the same orientation of an object, eg. see @cite Slabaugh . Returned +tree rotation matrices and corresponding three Euler angules are only one of the possible solutions. + +The function is based on RQDecomp3x3 . + */ +CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix, + OutputArray rotMatrix, OutputArray transVect, + OutputArray rotMatrixX = noArray(), + OutputArray rotMatrixY = noArray(), + OutputArray rotMatrixZ = noArray(), + OutputArray eulerAngles =noArray() ); + +/** @brief Computes partial derivatives of the matrix product for each multiplied matrix. + +@param A First multiplied matrix. +@param B Second multiplied matrix. +@param dABdA First output derivative matrix d(A\*B)/dA of size +\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ . +@param dABdB Second output derivative matrix d(A\*B)/dB of size +\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ . + +The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to +the elements of each of the two input matrices. The function is used to compute the Jacobian +matrices in stereoCalibrate but can also be used in any other similar optimization function. + */ +CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB ); + +/** @brief Combines two rotation-and-shift transformations. + +@param rvec1 First rotation vector. +@param tvec1 First translation vector. +@param rvec2 Second rotation vector. +@param tvec2 Second translation vector. +@param rvec3 Output rotation vector of the superposition. +@param tvec3 Output translation vector of the superposition. +@param dr3dr1 +@param dr3dt1 +@param dr3dr2 +@param dr3dt2 +@param dt3dr1 +@param dt3dt1 +@param dt3dr2 +@param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and +tvec2, respectively. + +The functions compute: + +\f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f] + +where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and +\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details. + +Also, the functions can compute the derivatives of the output vectors with regards to the input +vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in +your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a +function that contains a matrix multiplication. + */ +CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1, + InputArray rvec2, InputArray tvec2, + OutputArray rvec3, OutputArray tvec3, + OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(), + OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(), + OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(), + OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() ); + +/** @brief Projects 3D points to an image plane. + +@param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or +vector\<Point3f\> ), where N is the number of points in the view. +@param rvec Rotation vector. See Rodrigues for details. +@param tvec Translation vector. +@param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed. +@param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or +vector\<Point2f\> . +@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image +points with respect to components of the rotation vector, translation vector, focal lengths, +coordinates of the principal point and the distortion coefficients. In the old interface different +components of the jacobian are returned via different output parameters. +@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the +function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian +matrix. + +The function computes projections of 3D points to the image plane given intrinsic and extrinsic +camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of +image points coordinates (as functions of all the input parameters) with respect to the particular +parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in +calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a +re-projection error given the current intrinsic and extrinsic parameters. + +@note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by +passing zero distortion coefficients, you can get various useful partial cases of the function. This +means that you can compute the distorted coordinates for a sparse set of points or apply a +perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup. + */ +CV_EXPORTS_W void projectPoints( InputArray objectPoints, + InputArray rvec, InputArray tvec, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray imagePoints, + OutputArray jacobian = noArray(), + double aspectRatio = 0 ); + +/** @brief Finds an object pose from 3D-2D point correspondences. + +@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or +1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here. +@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, +where N is the number of points. vector\<Point2f\> can be also passed here. +@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are +assumed. +@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from +the model coordinate system to the camera coordinate system. +@param tvec Output translation vector. +@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses +the provided rvec and tvec values as initial approximations of the rotation and translation +vectors, respectively, and further optimizes them. +@param flags Method for solving a PnP problem: +- **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In +this case the function finds such a pose that minimizes reprojection error, that is the sum +of squared distances between the observed projections imagePoints and the projected (using +projectPoints ) objectPoints . +- **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang +"Complete Solution Classification for the Perspective-Three-Point Problem". In this case the +function requires exactly four object and image points. +- **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the +paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation". +- **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis. +"A Direct Least-Squares (DLS) Method for PnP". +- **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto, +F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length +Estimation". In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$ +assuming that both have the same value. Then the cameraMatrix is updated with the estimated +focal length. + +The function estimates the object pose given a set of object points, their corresponding image +projections, as well as the camera matrix and the distortion coefficients. + +@note + - An example of how to use solvePnP for planar augmented reality can be found at + opencv_source_code/samples/python/plane_ar.py + - If you are using Python: + - Numpy array slices won't work as input because solvePnP requires contiguous + arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of + modules/calib3d/src/solvepnp.cpp version 2.4.9) + - The P3P algorithm requires image points to be in an array of shape (N,1,2) due + to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9) + which requires 2-channel information. + - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of + it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = + np.ascontiguousarray(D[:,:2]).reshape((N,1,2)) + - The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are + unstable and sometimes give completly wrong results. If you pass one of these two flags, + **SOLVEPNP_EPNP** method will be used instead. + */ +CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, + bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE ); + +/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme. + +@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or +1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here. +@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, +where N is the number of points. vector\<Point2f\> can be also passed here. +@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are +assumed. +@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from +the model coordinate system to the camera coordinate system. +@param tvec Output translation vector. +@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses +the provided rvec and tvec values as initial approximations of the rotation and translation +vectors, respectively, and further optimizes them. +@param iterationsCount Number of iterations. +@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value +is the maximum allowed distance between the observed and computed point projections to consider it +an inlier. +@param confidence The probability that the algorithm produces a useful result. +@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints . +@param flags Method for solving a PnP problem (see solvePnP ). + +The function estimates an object pose given a set of object points, their corresponding image +projections, as well as the camera matrix and the distortion coefficients. This function finds such +a pose that minimizes reprojection error, that is, the sum of squared distances between the observed +projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC +makes the function resistant to outliers. + +@note + - An example of how to use solvePNPRansac for object detection can be found at + opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/ + */ +CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, + bool useExtrinsicGuess = false, int iterationsCount = 100, + float reprojectionError = 8.0, double confidence = 0.99, + OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE ); + +/** @brief Finds an initial camera matrix from 3D-2D point correspondences. + +@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern +coordinate space. In the old interface all the per-view vectors are concatenated. See +calibrateCamera for details. +@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the +old interface all the per-view vectors are concatenated. +@param imageSize Image size in pixels used to initialize the principal point. +@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently. +Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ . + +The function estimates and returns an initial camera matrix for the camera calibration process. +Currently, the function only supports planar calibration patterns, which are patterns where each +object point has z-coordinate =0. + */ +CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, + Size imageSize, double aspectRatio = 1.0 ); + +/** @brief Finds the positions of internal corners of the chessboard. + +@param image Source chessboard view. It must be an 8-bit grayscale or color image. +@param patternSize Number of inner corners per a chessboard row and column +( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ). +@param corners Output array of detected corners. +@param flags Various operation flags that can be zero or a combination of the following values: +- **CV_CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black +and white, rather than a fixed threshold level (computed from the average image brightness). +- **CV_CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before +applying fixed or adaptive thresholding. +- **CV_CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter, +square-like shape) to filter out false quads extracted at the contour retrieval stage. +- **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners, +and shortcut the call if none is found. This can drastically speed up the call in the +degenerate condition when no chessboard is observed. + +The function attempts to determine whether the input image is a view of the chessboard pattern and +locate the internal chessboard corners. The function returns a non-zero value if all of the corners +are found and they are placed in a certain order (row by row, left to right in every row). +Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example, +a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black +squares touch each other. The detected coordinates are approximate, and to determine their positions +more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with +different parameters if returned coordinates are not accurate enough. + +Sample usage of detecting and drawing chessboard corners: : +@code + Size patternsize(8,6); //interior number of corners + Mat gray = ....; //source image + vector<Point2f> corners; //this will be filled by the detected corners + + //CALIB_CB_FAST_CHECK saves a lot of time on images + //that do not contain any chessboard corners + bool patternfound = findChessboardCorners(gray, patternsize, corners, + CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + + CALIB_CB_FAST_CHECK); + + if(patternfound) + cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1), + TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1)); + + drawChessboardCorners(img, patternsize, Mat(corners), patternfound); +@endcode +@note The function requires white space (like a square-thick border, the wider the better) around +the board to make the detection more robust in various environments. Otherwise, if there is no +border and the background is dark, the outer black squares cannot be segmented properly and so the +square grouping and ordering algorithm fails. + */ +CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, + int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE ); + +//! finds subpixel-accurate positions of the chessboard corners +CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size ); + +/** @brief Renders the detected chessboard corners. + +@param image Destination image. It must be an 8-bit color image. +@param patternSize Number of inner corners per a chessboard row and column +(patternSize = cv::Size(points_per_row,points_per_column)). +@param corners Array of detected corners, the output of findChessboardCorners. +@param patternWasFound Parameter indicating whether the complete board was found or not. The +return value of findChessboardCorners should be passed here. + +The function draws individual chessboard corners detected either as red circles if the board was not +found, or as colored corners connected with lines if the board was found. + */ +CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize, + InputArray corners, bool patternWasFound ); + +/** @brief Finds centers in the grid of circles. + +@param image grid view of input circles; it must be an 8-bit grayscale or color image. +@param patternSize number of circles per row and column +( patternSize = Size(points_per_row, points_per_colum) ). +@param centers output array of detected centers. +@param flags various operation flags that can be one of the following values: +- **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles. +- **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles. +- **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to +perspective distortions but much more sensitive to background clutter. +@param blobDetector feature detector that finds blobs like dark circles on light background. + +The function attempts to determine whether the input image contains a grid of circles. If it is, the +function locates centers of the circles. The function returns a non-zero value if all of the centers +have been found and they have been placed in a certain order (row by row, left to right in every +row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0. + +Sample usage of detecting and drawing the centers of circles: : +@code + Size patternsize(7,7); //number of centers + Mat gray = ....; //source image + vector<Point2f> centers; //this will be filled by the detected centers + + bool patternfound = findCirclesGrid(gray, patternsize, centers); + + drawChessboardCorners(img, patternsize, Mat(centers), patternfound); +@endcode +@note The function requires white space (like a square-thick border, the wider the better) around +the board to make the detection more robust in various environments. + */ +CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize, + OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID, + const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create()); + +/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern. + +@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in +the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer +vector contains as many elements as the number of the pattern views. If the same calibration pattern +is shown in each view and it is fully visible, all the vectors will be the same. Although, it is +possible to use partially occluded patterns, or even different patterns in different views. Then, +the vectors will be different. The points are 3D, but since they are in a pattern coordinate system, +then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that +Z-coordinate of each input object point is 0. +In the old interface all the vectors of object points from different views are concatenated +together. +@param imagePoints In the new interface it is a vector of vectors of the projections of calibration +pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and +objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i. +In the old interface all the vectors of object points from different views are concatenated +together. +@param imageSize Size of the image used only to initialize the intrinsic camera matrix. +@param cameraMatrix Output 3x3 floating-point camera matrix +\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS +and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be +initialized before calling the function. +@param distCoeffs Output vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. +@param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view +(e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding +k-th translation vector (see the next output parameter description) brings the calibration pattern +from the model coordinate space (in which object points are specified) to the world coordinate +space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). +@param tvecs Output vector of translation vectors estimated for each pattern view. +@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. + Order of deviations values: +\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3, + s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero. +@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. + Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views, + \f$R_i, T_i\f$ are concatenated 1x3 vectors. + @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. +@param flags Different flags that may be zero or a combination of the following values: +- **CV_CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of +fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image +center ( imageSize is used), and focal distances are computed in a least-squares fashion. +Note, that if intrinsic parameters are known, there is no need to use this function just to +estimate extrinsic parameters. Use solvePnP instead. +- **CV_CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global +optimization. It stays at the center or at a different location specified when +CV_CALIB_USE_INTRINSIC_GUESS is set too. +- **CV_CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The +ratio fx/fy stays the same as in the input cameraMatrix . When +CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are +ignored, only their ratio is computed and used further. +- **CV_CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set +to zeros and stay zero. +- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** The corresponding radial distortion +coefficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is +set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CV_CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the rational model and return 8 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the thin prism model and return 12 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the tilted sensor model and return 14 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +@param criteria Termination criteria for the iterative optimization algorithm. + +@return the overall RMS re-projection error. + +The function estimates the intrinsic camera parameters and extrinsic parameters for each of the +views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object +points and their corresponding 2D projections in each view must be specified. That may be achieved +by using an object with a known geometry and easily detectable feature points. Such an object is +called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as +a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters +(when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration +patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also +be used as long as initial cameraMatrix is provided. + +The algorithm performs the following steps: + +- Compute the initial intrinsic parameters (the option only available for planar calibration + patterns) or read them from the input parameters. The distortion coefficients are all set to + zeros initially unless some of CV_CALIB_FIX_K? are specified. + +- Estimate the initial camera pose as if the intrinsic parameters have been already known. This is + done using solvePnP . + +- Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error, + that is, the total sum of squared distances between the observed feature points imagePoints and + the projected (using the current estimates for camera parameters and the poses) object points + objectPoints. See projectPoints for details. + +@note + If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and + calibrateCamera returns bad values (zero distortion coefficients, an image center very far from + (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)), + then you have probably used patternSize=cvSize(rows,cols) instead of using + patternSize=cvSize(cols,rows) in findChessboardCorners . + +@sa + findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort + */ +CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, Size imageSize, + InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + OutputArray stdDeviationsIntrinsics, + OutputArray stdDeviationsExtrinsics, + OutputArray perViewErrors, + int flags = 0, TermCriteria criteria = TermCriteria( + TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); + +/** @overload double calibrateCamera( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, Size imageSize, + InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + OutputArray stdDeviations, OutputArray perViewErrors, + int flags = 0, TermCriteria criteria = TermCriteria( + TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ) + */ +CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, Size imageSize, + InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + int flags = 0, TermCriteria criteria = TermCriteria( + TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); + +/** @brief Computes useful camera characteristics from the camera matrix. + +@param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or +stereoCalibrate . +@param imageSize Input image size in pixels. +@param apertureWidth Physical width in mm of the sensor. +@param apertureHeight Physical height in mm of the sensor. +@param fovx Output field of view in degrees along the horizontal sensor axis. +@param fovy Output field of view in degrees along the vertical sensor axis. +@param focalLength Focal length of the lens in mm. +@param principalPoint Principal point in mm. +@param aspectRatio \f$f_y/f_x\f$ + +The function computes various useful camera characteristics from the previously estimated camera +matrix. + +@note + Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for + the chessboard pitch (it can thus be any value). + */ +CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize, + double apertureWidth, double apertureHeight, + CV_OUT double& fovx, CV_OUT double& fovy, + CV_OUT double& focalLength, CV_OUT Point2d& principalPoint, + CV_OUT double& aspectRatio ); + +/** @brief Calibrates the stereo camera. + +@param objectPoints Vector of vectors of the calibration pattern points. +@param imagePoints1 Vector of vectors of the projections of the calibration pattern points, +observed by the first camera. +@param imagePoints2 Vector of vectors of the projections of the calibration pattern points, +observed by the second camera. +@param cameraMatrix1 Input/output first camera matrix: +\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If +any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO , +CV_CALIB_FIX_INTRINSIC , or CV_CALIB_FIX_FOCAL_LENGTH are specified, some or all of the +matrix components must be initialized. See the flags description for details. +@param distCoeffs1 Input/output vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. The output vector length depends on the flags. +@param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1 +@param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter +is similar to distCoeffs1 . +@param imageSize Size of the image used only to initialize intrinsic camera matrix. +@param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. +@param T Output translation vector between the coordinate systems of the cameras. +@param E Output essential matrix. +@param F Output fundamental matrix. +@param flags Different flags that may be zero or a combination of the following values: +- **CV_CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F +matrices are estimated. +- **CV_CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters +according to the specified flags. Initial values are provided by the user. +- **CV_CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization. +- **CV_CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ . +- **CV_CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$ +. +- **CV_CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ . +- **CV_CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to +zeros and fix there. +- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** Do not change the corresponding radial +distortion coefficient during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, +the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CV_CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward +compatibility, this extra flag should be explicitly specified to make the calibration +function use the rational model and return 8 coefficients. If the flag is not set, the +function computes and returns only 5 distortion coefficients. +- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the thin prism model and return 12 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the tilted sensor model and return 14 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +@param criteria Termination criteria for the iterative optimization algorithm. + +The function estimates transformation between two cameras making a stereo pair. If you have a stereo +camera where the relative position and orientation of two cameras is fixed, and if you computed +poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2), +respectively (this can be done with solvePnP ), then those poses definitely relate to each other. +This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only +need to know the position and orientation of the second camera relative to the first camera. This is +what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that: + +\f[R_2=R*R_1 +T_2=R*T_1 + T,\f] + +Optionally, it computes the essential matrix E: + +\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f] + +where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function +can also compute the fundamental matrix F: + +\f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f] + +Besides the stereo-related information, the function can also perform a full calibration of each of +two cameras. However, due to the high dimensionality of the parameter space and noise in the input +data, the function can diverge from the correct solution. If the intrinsic parameters can be +estimated with high accuracy for each of the cameras individually (for example, using +calibrateCamera ), you are recommended to do so and then pass CV_CALIB_FIX_INTRINSIC flag to the +function along with the computed intrinsic parameters. Otherwise, if all the parameters are +estimated at once, it makes sense to restrict some parameters, for example, pass +CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST flags, which is usually a +reasonable assumption. + +Similarly to calibrateCamera , the function minimizes the total re-projection error for all the +points in all the available views from both cameras. The function returns the final value of the +re-projection error. + */ +CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, + InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1, + InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2, + Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F, + int flags = CALIB_FIX_INTRINSIC, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) ); + + +/** @brief Computes rectification transforms for each head of a calibrated stereo camera. + +@param cameraMatrix1 First camera matrix. +@param distCoeffs1 First camera distortion parameters. +@param cameraMatrix2 Second camera matrix. +@param distCoeffs2 Second camera distortion parameters. +@param imageSize Size of the image used for stereo calibration. +@param R Rotation matrix between the coordinate systems of the first and the second cameras. +@param T Translation vector between coordinate systems of the cameras. +@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. +@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. +@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first +camera. +@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second +camera. +@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). +@param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set, +the function makes the principal points of each camera have the same pixel coordinates in the +rectified views. And if the flag is not set, the function may still shift the images in the +horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the +useful image area. +@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default +scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified +images are zoomed and shifted so that only valid pixels are visible (no black areas after +rectification). alpha=1 means that the rectified image is decimated and shifted so that all the +pixels from the original images from the cameras are retained in the rectified images (no source +image pixels are lost). Obviously, any intermediate value yields an intermediate result between +those two extreme cases. +@param newImageSize New image resolution after rectification. The same size should be passed to +initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) +is passed (default), it is set to the original imageSize . Setting it to larger value can help you +preserve details in the original image, especially when there is a big radial distortion. +@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels +are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller +(see the picture below). +@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels +are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller +(see the picture below). + +The function computes the rotation matrices for each camera that (virtually) make both camera image +planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies +the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate +as input. As output, it provides two rotation matrices and also two projection matrices in the new +coordinates. The function distinguishes the following two cases: + +- **Horizontal stereo**: the first and the second camera views are shifted relative to each other + mainly along the x axis (with possible small vertical shift). In the rectified images, the + corresponding epipolar lines in the left and right cameras are horizontal and have the same + y-coordinate. P1 and P2 look like: + + \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f] + + \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f] + + where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if + CV_CALIB_ZERO_DISPARITY is set. + +- **Vertical stereo**: the first and the second camera views are shifted relative to each other + mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar + lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like: + + \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f] + + \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f] + + where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is + set. + +As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera +matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to +initialize the rectification map for each camera. + +See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through +the corresponding image regions. This means that the images are well rectified, which is what most +stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that +their interiors are all valid pixels. + +![image](pics/stereo_undistort.jpg) + */ +CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1, + InputArray cameraMatrix2, InputArray distCoeffs2, + Size imageSize, InputArray R, InputArray T, + OutputArray R1, OutputArray R2, + OutputArray P1, OutputArray P2, + OutputArray Q, int flags = CALIB_ZERO_DISPARITY, + double alpha = -1, Size newImageSize = Size(), + CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 ); + +/** @brief Computes a rectification transform for an uncalibrated stereo camera. + +@param points1 Array of feature points in the first image. +@param points2 The corresponding points in the second image. The same formats as in +findFundamentalMat are supported. +@param F Input fundamental matrix. It can be computed from the same set of point pairs using +findFundamentalMat . +@param imgSize Size of the image. +@param H1 Output rectification homography matrix for the first image. +@param H2 Output rectification homography matrix for the second image. +@param threshold Optional threshold used to filter out the outliers. If the parameter is greater +than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points +for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are +rejected prior to computing the homographies. Otherwise,all the points are considered inliers. + +The function computes the rectification transformations without knowing intrinsic parameters of the +cameras and their relative position in the space, which explains the suffix "uncalibrated". Another +related difference from stereoRectify is that the function outputs not the rectification +transformations in the object (3D) space, but the planar perspective transformations encoded by the +homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 . + +@note + While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily + depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion, + it would be better to correct it before computing the fundamental matrix and calling this + function. For example, distortion coefficients can be estimated for each head of stereo camera + separately by using calibrateCamera . Then, the images can be corrected using undistort , or + just the point coordinates can be corrected with undistortPoints . + */ +CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2, + InputArray F, Size imgSize, + OutputArray H1, OutputArray H2, + double threshold = 5 ); + +//! computes the rectification transformations for 3-head camera, where all the heads are on the same line. +CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1, + InputArray cameraMatrix2, InputArray distCoeffs2, + InputArray cameraMatrix3, InputArray distCoeffs3, + InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3, + Size imageSize, InputArray R12, InputArray T12, + InputArray R13, InputArray T13, + OutputArray R1, OutputArray R2, OutputArray R3, + OutputArray P1, OutputArray P2, OutputArray P3, + OutputArray Q, double alpha, Size newImgSize, + CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags ); + +/** @brief Returns the new camera matrix based on the free scaling parameter. + +@param cameraMatrix Input camera matrix. +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are +assumed. +@param imageSize Original image size. +@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are +valid) and 1 (when all the source image pixels are retained in the undistorted image). See +stereoRectify for details. +@param newImgSize Image size after rectification. By default,it is set to imageSize . +@param validPixROI Optional output rectangle that outlines all-good-pixels region in the +undistorted image. See roi1, roi2 description in stereoRectify . +@param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the +principal point should be at the image center or not. By default, the principal point is chosen to +best fit a subset of the source image (determined by alpha) to the corrected image. +@return new_camera_matrix Output new camera matrix. + +The function computes and returns the optimal new camera matrix based on the free scaling parameter. +By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original +image pixels if there is valuable information in the corners alpha=1 , or get something in between. +When alpha\>0 , the undistortion result is likely to have some black pixels corresponding to +"virtual" pixels outside of the captured distorted image. The original camera matrix, distortion +coefficients, the computed new camera matrix, and newImageSize should be passed to +initUndistortRectifyMap to produce the maps for remap . + */ +CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs, + Size imageSize, double alpha, Size newImgSize = Size(), + CV_OUT Rect* validPixROI = 0, + bool centerPrincipalPoint = false); + +/** @brief Converts points from Euclidean to homogeneous space. + +@param src Input vector of N-dimensional points. +@param dst Output vector of N+1-dimensional points. + +The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of +point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1). + */ +CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst ); + +/** @brief Converts points from homogeneous to Euclidean space. + +@param src Input vector of N-dimensional points. +@param dst Output vector of N-1-dimensional points. + +The function converts points homogeneous to Euclidean space using perspective projection. That is, +each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the +output point coordinates will be (0,0,0,...). + */ +CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst ); + +/** @brief Converts points to/from homogeneous coordinates. + +@param src Input array or vector of 2D, 3D, or 4D points. +@param dst Output vector of 2D, 3D, or 4D points. + +The function converts 2D or 3D points from/to homogeneous coordinates by calling either +convertPointsToHomogeneous or convertPointsFromHomogeneous. + +@note The function is obsolete. Use one of the previous two functions instead. + */ +CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst ); + +/** @brief Calculates a fundamental matrix from the corresponding points in two images. + +@param points1 Array of N points from the first image. The point coordinates should be +floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param method Method for computing a fundamental matrix. +- **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$ +- **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$ +- **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$ +- **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$ +@param param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar +line in pixels, beyond which the point is considered an outlier and is not used for computing the +final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the +point localization, image resolution, and the image noise. +@param param2 Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level +of confidence (probability) that the estimated matrix is correct. +@param mask + +The epipolar geometry is described by the following equation: + +\f[[p_2; 1]^T F [p_1; 1] = 0\f] + +where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the +second images, respectively. + +The function calculates the fundamental matrix using one of four methods listed above and returns +the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point +algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3 +matrices sequentially). + +The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the +epipolar lines corresponding to the specified points. It can also be passed to +stereoRectifyUncalibrated to compute the rectification transformation. : +@code + // Example. Estimation of fundamental matrix using the RANSAC algorithm + int point_count = 100; + vector<Point2f> points1(point_count); + vector<Point2f> points2(point_count); + + // initialize the points here ... + for( int i = 0; i < point_count; i++ ) + { + points1[i] = ...; + points2[i] = ...; + } + + Mat fundamental_matrix = + findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99); +@endcode + */ +CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, + int method = FM_RANSAC, + double param1 = 3., double param2 = 0.99, + OutputArray mask = noArray() ); + +/** @overload */ +CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2, + OutputArray mask, int method = FM_RANSAC, + double param1 = 3., double param2 = 0.99 ); + +/** @brief Calculates an essential matrix from the corresponding points in two images. + +@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should +be floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +Note that this function assumes that points1 and points2 are feature points from cameras with the +same camera matrix. +@param method Method for computing a fundamental matrix. +- **RANSAC** for the RANSAC algorithm. +- **MEDS** for the LMedS algorithm. +@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of +confidence (probability) that the estimated matrix is correct. +@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar +line in pixels, beyond which the point is considered an outlier and is not used for computing the +final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the +point localization, image resolution, and the image noise. +@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 +for the other points. The array is computed only in the RANSAC and LMedS methods. + +This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 . +@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation: + +\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f] + +where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the +second images, respectively. The result of this function may be passed further to +decomposeEssentialMat or recoverPose to recover the relative pose between cameras. + */ +CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, + InputArray cameraMatrix, int method = RANSAC, + double prob = 0.999, double threshold = 1.0, + OutputArray mask = noArray() ); + +/** @overload +@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should +be floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param focal focal length of the camera. Note that this function assumes that points1 and points2 +are feature points from cameras with same focal length and principal point. +@param pp principal point of the camera. +@param method Method for computing a fundamental matrix. +- **RANSAC** for the RANSAC algorithm. +- **LMEDS** for the LMedS algorithm. +@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar +line in pixels, beyond which the point is considered an outlier and is not used for computing the +final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the +point localization, image resolution, and the image noise. +@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of +confidence (probability) that the estimated matrix is correct. +@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 +for the other points. The array is computed only in the RANSAC and LMedS methods. + +This function differs from the one above that it computes camera matrix from focal length and +principal point: + +\f[K = +\begin{bmatrix} +f & 0 & x_{pp} \\ +0 & f & y_{pp} \\ +0 & 0 & 1 +\end{bmatrix}\f] + */ +CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, + double focal = 1.0, Point2d pp = Point2d(0, 0), + int method = RANSAC, double prob = 0.999, + double threshold = 1.0, OutputArray mask = noArray() ); + +/** @brief Decompose an essential matrix to possible rotations and translation. + +@param E The input essential matrix. +@param R1 One possible rotation matrix. +@param R2 Another possible rotation matrix. +@param t One possible translation. + +This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4 +possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By +decomposing E, you can only get the direction of the translation, so the function returns unit t. + */ +CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t ); + +/** @brief Recover relative camera rotation and translation from an estimated essential matrix and the +corresponding points in two images, using cheirality check. Returns the number of inliers which pass +the check. + +@param E The input essential matrix. +@param points1 Array of N 2D points from the first image. The point coordinates should be +floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +Note that this function assumes that points1 and points2 are feature points from cameras with the +same camera matrix. +@param R Recovered relative rotation. +@param t Recoverd relative translation. +@param mask Input/output mask for inliers in points1 and points2. +: If it is not empty, then it marks inliers in points1 and points2 for then given essential +matrix E. Only these inliers will be used to recover pose. In the output mask only inliers +which pass the cheirality check. +This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible +pose hypotheses by doing cheirality check. The cheirality check basically means that the +triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 . + +This function can be used to process output E and mask from findEssentialMat. In this scenario, +points1 and points2 are the same input for findEssentialMat. : +@code + // Example. Estimation of fundamental matrix using the RANSAC algorithm + int point_count = 100; + vector<Point2f> points1(point_count); + vector<Point2f> points2(point_count); + + // initialize the points here ... + for( int i = 0; i < point_count; i++ ) + { + points1[i] = ...; + points2[i] = ...; + } + + // cametra matrix with both focal lengths = 1, and principal point = (0, 0) + Mat cameraMatrix = Mat::eye(3, 3, CV_64F); + + Mat E, R, t, mask; + + E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask); + recoverPose(E, points1, points2, cameraMatrix, R, t, mask); +@endcode + */ +CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, + InputArray cameraMatrix, OutputArray R, OutputArray t, + InputOutputArray mask = noArray() ); + +/** @overload +@param E The input essential matrix. +@param points1 Array of N 2D points from the first image. The point coordinates should be +floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param R Recovered relative rotation. +@param t Recoverd relative translation. +@param focal Focal length of the camera. Note that this function assumes that points1 and points2 +are feature points from cameras with same focal length and principal point. +@param pp principal point of the camera. +@param mask Input/output mask for inliers in points1 and points2. +: If it is not empty, then it marks inliers in points1 and points2 for then given essential +matrix E. Only these inliers will be used to recover pose. In the output mask only inliers +which pass the cheirality check. + +This function differs from the one above that it computes camera matrix from focal length and +principal point: + +\f[K = +\begin{bmatrix} +f & 0 & x_{pp} \\ +0 & f & y_{pp} \\ +0 & 0 & 1 +\end{bmatrix}\f] + */ +CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, + OutputArray R, OutputArray t, + double focal = 1.0, Point2d pp = Point2d(0, 0), + InputOutputArray mask = noArray() ); + +/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image. + +@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or +vector\<Point2f\> . +@param whichImage Index of the image (1 or 2) that contains the points . +@param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify . +@param lines Output vector of the epipolar lines corresponding to the points in the other image. +Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ . + +For every point in one of the two images of a stereo pair, the function finds the equation of the +corresponding epipolar line in the other image. + +From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second +image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as: + +\f[l^{(2)}_i = F p^{(1)}_i\f] + +And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as: + +\f[l^{(1)}_i = F^T p^{(2)}_i\f] + +Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ . + */ +CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage, + InputArray F, OutputArray lines ); + +/** @brief Reconstructs points by triangulation. + +@param projMatr1 3x4 projection matrix of the first camera. +@param projMatr2 3x4 projection matrix of the second camera. +@param projPoints1 2xN array of feature points in the first image. In case of c++ version it can +be also a vector of feature points or two-channel matrix of size 1xN or Nx1. +@param projPoints2 2xN array of corresponding points in the second image. In case of c++ version +it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. +@param points4D 4xN array of reconstructed points in homogeneous coordinates. + +The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their +observations with a stereo camera. Projections matrices can be obtained from stereoRectify. + +@note + Keep in mind that all input data should be of float type in order for this function to work. + +@sa + reprojectImageTo3D + */ +CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2, + InputArray projPoints1, InputArray projPoints2, + OutputArray points4D ); + +/** @brief Refines coordinates of corresponding points. + +@param F 3x3 fundamental matrix. +@param points1 1xN array containing the first set of points. +@param points2 1xN array containing the second set of points. +@param newPoints1 The optimized points1. +@param newPoints2 The optimized points2. + +The function implements the Optimal Triangulation Method (see Multiple View Geometry for details). +For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it +computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric +error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the +geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint +\f$newPoints2^T * F * newPoints1 = 0\f$ . + */ +CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2, + OutputArray newPoints1, OutputArray newPoints2 ); + +/** @brief Filters off small noise blobs (speckles) in the disparity map + +@param img The input 16-bit signed disparity image +@param newVal The disparity value used to paint-off the speckles +@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not +affected by the algorithm +@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same +blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point +disparity map, where disparity values are multiplied by 16, this scale factor should be taken into +account when specifying this parameter value. +@param buf The optional temporary buffer to avoid memory allocation within the function. + */ +CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal, + int maxSpeckleSize, double maxDiff, + InputOutputArray buf = noArray() ); + +//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify()) +CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2, + int minDisparity, int numberOfDisparities, + int SADWindowSize ); + +//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm +CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost, + int minDisparity, int numberOfDisparities, + int disp12MaxDisp = 1 ); + +/** @brief Reprojects a disparity image to 3D space. + +@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit +floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no +fractional bits. +@param _3dImage Output 3-channel floating-point image of the same size as disparity . Each +element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity +map. +@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify. +@param handleMissingValues Indicates, whether the function should handle missing values (i.e. +points where the disparity was not computed). If handleMissingValues=true, then pixels with the +minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed +to 3D points with a very large Z value (currently set to 10000). +@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F +depth. ddepth can also be set to CV_16S, CV_32S or CV_32F. + +The function transforms a single-channel disparity map to a 3-channel image representing a 3D +surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it +computes: + +\f[\begin{array}{l} [X \; Y \; Z \; W]^T = \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f] + +The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by +stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use +perspectiveTransform . + */ +CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity, + OutputArray _3dImage, InputArray Q, + bool handleMissingValues = false, + int ddepth = -1 ); + +/** @brief Calculates the Sampson Distance between two points. + +The function sampsonDistance calculates and returns the first order approximation of the geometric error as: +\f[sd( \texttt{pt1} , \texttt{pt2} )= \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}{(\texttt{F} \cdot \texttt{pt1})(0) + (\texttt{F} \cdot \texttt{pt1})(1) + (\texttt{F}^t \cdot \texttt{pt2})(0) + (\texttt{F}^t \cdot \texttt{pt2})(1)}\f] +The fundamental matrix may be calculated using the cv::findFundamentalMat function. See HZ 11.4.3 for details. +@param pt1 first homogeneous 2d point +@param pt2 second homogeneous 2d point +@param F fundamental matrix +*/ +CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F); + +/** @brief Computes an optimal affine transformation between two 3D point sets. + +@param src First input 3D point set. +@param dst Second input 3D point set. +@param out Output 3D affine transformation matrix \f$3 \times 4\f$ . +@param inliers Output vector indicating which points are inliers. +@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as +an inlier. +@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything +between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation +significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. + +The function estimates an optimal 3D affine transformation between two 3D point sets using the +RANSAC algorithm. + */ +CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst, + OutputArray out, OutputArray inliers, + double ransacThreshold = 3, double confidence = 0.99); + +/** @brief Computes an optimal affine transformation between two 2D point sets. + +@param from First input 2D point set. +@param to Second input 2D point set. +@param inliers Output vector indicating which points are inliers. +@param method Robust method used to compute tranformation. The following methods are possible: +- cv::RANSAC - RANSAC-based robust method +- cv::LMEDS - Least-Median robust method +RANSAC is the default method. +@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider +a point as an inlier. Applies only to RANSAC. +@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be. +@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything +between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation +significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. +@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). +Passing 0 will disable refining, so the output matrix will be output of robust method. + +@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation +could not be estimated. + +The function estimates an optimal 2D affine transformation between two 2D point sets using the +selected robust algorithm. + +The computed transformation is then refined further (using only inliers) with the +Levenberg-Marquardt method to reduce the re-projection error even more. + +@note +The RANSAC method can handle practically any ratio of outliers but need a threshold to +distinguish inliers from outliers. The method LMeDS does not need any threshold but it works +correctly only when there are more than 50% of inliers. + +@sa estimateAffinePartial2D, getAffineTransform +*/ +CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(), + int method = RANSAC, double ransacReprojThreshold = 3, + size_t maxIters = 2000, double confidence = 0.99, + size_t refineIters = 10); + +/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between +two 2D point sets. + +@param from First input 2D point set. +@param to Second input 2D point set. +@param inliers Output vector indicating which points are inliers. +@param method Robust method used to compute tranformation. The following methods are possible: +- cv::RANSAC - RANSAC-based robust method +- cv::LMEDS - Least-Median robust method +RANSAC is the default method. +@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider +a point as an inlier. Applies only to RANSAC. +@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be. +@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything +between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation +significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. +@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). +Passing 0 will disable refining, so the output matrix will be output of robust method. + +@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or +empty matrix if transformation could not be estimated. + +The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to +combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust +estimation. + +The computed transformation is then refined further (using only inliers) with the +Levenberg-Marquardt method to reduce the re-projection error even more. + +Estimated transformation matrix is: +\f[ \begin{bmatrix} \cos(\theta)s & -\sin(\theta)s & tx \\ + \sin(\theta)s & \cos(\theta)s & ty +\end{bmatrix} \f] +Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ tx, ty \f$ are +translations in \f$ x, y \f$ axes respectively. + +@note +The RANSAC method can handle practically any ratio of outliers but need a threshold to +distinguish inliers from outliers. The method LMeDS does not need any threshold but it works +correctly only when there are more than 50% of inliers. + +@sa estimateAffine2D, getAffineTransform +*/ +CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(), + int method = RANSAC, double ransacReprojThreshold = 3, + size_t maxIters = 2000, double confidence = 0.99, + size_t refineIters = 10); + +/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s). + +@param H The input homography matrix between two images. +@param K The input intrinsic camera calibration matrix. +@param rotations Array of rotation matrices. +@param translations Array of translation matrices. +@param normals Array of plane normal matrices. + +This function extracts relative camera motion between two views observing a planar object from the +homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function +may return up to four mathematical solution sets. At least two of the solutions may further be +invalidated if point correspondences are available by applying positive depth constraint (all points +must be in front of the camera). The decomposition method is described in detail in @cite Malis . + */ +CV_EXPORTS_W int decomposeHomographyMat(InputArray H, + InputArray K, + OutputArrayOfArrays rotations, + OutputArrayOfArrays translations, + OutputArrayOfArrays normals); + +/** @brief The base class for stereo correspondence algorithms. + */ +class CV_EXPORTS_W StereoMatcher : public Algorithm +{ +public: + enum { DISP_SHIFT = 4, + DISP_SCALE = (1 << DISP_SHIFT) + }; + + /** @brief Computes disparity map for the specified stereo pair + + @param left Left 8-bit single-channel image. + @param right Right image of the same size and the same type as the left one. + @param disparity Output disparity map. It has the same size as the input images. Some algorithms, + like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value + has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map. + */ + CV_WRAP virtual void compute( InputArray left, InputArray right, + OutputArray disparity ) = 0; + + CV_WRAP virtual int getMinDisparity() const = 0; + CV_WRAP virtual void setMinDisparity(int minDisparity) = 0; + + CV_WRAP virtual int getNumDisparities() const = 0; + CV_WRAP virtual void setNumDisparities(int numDisparities) = 0; + + CV_WRAP virtual int getBlockSize() const = 0; + CV_WRAP virtual void setBlockSize(int blockSize) = 0; + + CV_WRAP virtual int getSpeckleWindowSize() const = 0; + CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0; + + CV_WRAP virtual int getSpeckleRange() const = 0; + CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0; + + CV_WRAP virtual int getDisp12MaxDiff() const = 0; + CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0; +}; + + +/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and +contributed to OpenCV by K. Konolige. + */ +class CV_EXPORTS_W StereoBM : public StereoMatcher +{ +public: + enum { PREFILTER_NORMALIZED_RESPONSE = 0, + PREFILTER_XSOBEL = 1 + }; + + CV_WRAP virtual int getPreFilterType() const = 0; + CV_WRAP virtual void setPreFilterType(int preFilterType) = 0; + + CV_WRAP virtual int getPreFilterSize() const = 0; + CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0; + + CV_WRAP virtual int getPreFilterCap() const = 0; + CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; + + CV_WRAP virtual int getTextureThreshold() const = 0; + CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0; + + CV_WRAP virtual int getUniquenessRatio() const = 0; + CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; + + CV_WRAP virtual int getSmallerBlockSize() const = 0; + CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0; + + CV_WRAP virtual Rect getROI1() const = 0; + CV_WRAP virtual void setROI1(Rect roi1) = 0; + + CV_WRAP virtual Rect getROI2() const = 0; + CV_WRAP virtual void setROI2(Rect roi2) = 0; + + /** @brief Creates StereoBM object + + @param numDisparities the disparity search range. For each pixel algorithm will find the best + disparity from 0 (default minimum disparity) to numDisparities. The search range can then be + shifted by changing the minimum disparity. + @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd + (as the block is centered at the current pixel). Larger block size implies smoother, though less + accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher + chance for algorithm to find a wrong correspondence. + + The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for + a specific stereo pair. + */ + CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21); +}; + +/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original +one as follows: + +- By default, the algorithm is single-pass, which means that you consider only 5 directions +instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the +algorithm but beware that it may consume a lot of memory. +- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the +blocks to single pixels. +- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi +sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well. +- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for +example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness +check, quadratic interpolation and speckle filtering). + +@note + - (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found + at opencv_source_code/samples/python/stereo_match.py + */ +class CV_EXPORTS_W StereoSGBM : public StereoMatcher +{ +public: + enum + { + MODE_SGBM = 0, + MODE_HH = 1, + MODE_SGBM_3WAY = 2 + }; + + CV_WRAP virtual int getPreFilterCap() const = 0; + CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; + + CV_WRAP virtual int getUniquenessRatio() const = 0; + CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; + + CV_WRAP virtual int getP1() const = 0; + CV_WRAP virtual void setP1(int P1) = 0; + + CV_WRAP virtual int getP2() const = 0; + CV_WRAP virtual void setP2(int P2) = 0; + + CV_WRAP virtual int getMode() const = 0; + CV_WRAP virtual void setMode(int mode) = 0; + + /** @brief Creates StereoSGBM object + + @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes + rectification algorithms can shift images, so this parameter needs to be adjusted accordingly. + @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than + zero. In the current implementation, this parameter must be divisible by 16. + @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be + somewhere in the 3..11 range. + @param P1 The first parameter controlling the disparity smoothness. See below. + @param P2 The second parameter controlling the disparity smoothness. The larger the values are, + the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 + between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor + pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good + P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and + 32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively). + @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right + disparity check. Set it to a non-positive value to disable the check. + @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first + computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. + The result values are passed to the Birchfield-Tomasi pixel cost function. + @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function + value should "win" the second best value to consider the found match correct. Normally, a value + within the 5-15 range is good enough. + @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles + and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the + 50-200 range. + @param speckleRange Maximum disparity variation within each connected component. If you do speckle + filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. + Normally, 1 or 2 is good enough. + @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming + algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and + huge for HD-size pictures. By default, it is set to false . + + The first constructor initializes StereoSGBM with all the default parameters. So, you only have to + set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter + to a custom value. + */ + CV_WRAP static Ptr<StereoSGBM> create(int minDisparity, int numDisparities, int blockSize, + int P1 = 0, int P2 = 0, int disp12MaxDiff = 0, + int preFilterCap = 0, int uniquenessRatio = 0, + int speckleWindowSize = 0, int speckleRange = 0, + int mode = StereoSGBM::MODE_SGBM); +}; + +//! @} calib3d + +/** @brief The methods in this namespace use a so-called fisheye camera model. + @ingroup calib3d_fisheye +*/ +namespace fisheye +{ +//! @addtogroup calib3d_fisheye +//! @{ + + enum{ + CALIB_USE_INTRINSIC_GUESS = 1 << 0, + CALIB_RECOMPUTE_EXTRINSIC = 1 << 1, + CALIB_CHECK_COND = 1 << 2, + CALIB_FIX_SKEW = 1 << 3, + CALIB_FIX_K1 = 1 << 4, + CALIB_FIX_K2 = 1 << 5, + CALIB_FIX_K3 = 1 << 6, + CALIB_FIX_K4 = 1 << 7, + CALIB_FIX_INTRINSIC = 1 << 8, + CALIB_FIX_PRINCIPAL_POINT = 1 << 9 + }; + + /** @brief Projects points using fisheye model + + @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is + the number of points in the view. + @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or + vector\<Point2f\>. + @param affine + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param alpha The skew coefficient. + @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect + to components of the focal lengths, coordinates of the principal point, distortion coefficients, + rotation vector, translation vector, and the skew. In the old interface different components of + the jacobian are returned via different output parameters. + + The function computes projections of 3D points to the image plane given intrinsic and extrinsic + camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of + image points coordinates (as functions of all the input parameters) with respect to the particular + parameters, intrinsic and/or extrinsic. + */ + CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine, + InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); + + /** @overload */ + CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec, + InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); + + /** @brief Distorts 2D points using fisheye model. + + @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is + the number of points in the view. + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param alpha The skew coefficient. + @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . + + Note that the function assumes the camera matrix of the undistorted points to be indentity. + This means if you want to transform back points undistorted with undistortPoints() you have to + multiply them with \f$P^{-1}\f$. + */ + CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0); + + /** @brief Undistorts 2D points using fisheye model + + @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the + number of points in the view. + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . + */ + CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted, + InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray()); + + /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero + distortion is used, if R or P is empty identity matrixes are used. + + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param size Undistorted image size. + @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps() + for details. + @param map1 The first output map. + @param map2 The second output map. + */ + CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P, + const cv::Size& size, int m1type, OutputArray map1, OutputArray map2); + + /** @brief Transforms an image to compensate for fisheye lens distortion. + + @param distorted image with fisheye lens distortion. + @param undistorted Output image with compensated fisheye lens distortion. + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you + may additionally scale and shift the result by using a different matrix. + @param new_size + + The function transforms an image to compensate radial and tangential lens distortion. + + The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap + (with bilinear interpolation). See the former function for details of the transformation being + performed. + + See below the results of undistortImage. + - a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3, + k_4, k_5, k_6) of distortion were optimized under calibration) + - b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2, + k_3, k_4) of fisheye distortion were optimized under calibration) + - c\) original image was captured with fisheye lens + + Pictures a) and b) almost the same. But if we consider points of image located far from the center + of image, we can notice that on image a) these points are distorted. + + ![image](pics/fisheye_undistorted.jpg) + */ + CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted, + InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size()); + + /** @brief Estimates new camera matrix for undistortion or rectification. + + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param image_size + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param balance Sets the new focal length in range between the min focal length and the max focal + length. Balance is in range of [0, 1]. + @param new_size + @param fov_scale Divisor for new focal length. + */ + CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R, + OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0); + + /** @brief Performs camera calibaration + + @param objectPoints vector of vectors of calibration pattern points in the calibration pattern + coordinate space. + @param imagePoints vector of vectors of the projections of calibration pattern points. + imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to + objectPoints[i].size() for each i. + @param image_size Size of the image used only to initialize the intrinsic camera matrix. + @param K Output 3x3 floating-point camera matrix + \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If + fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be + initialized before calling the function. + @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view. + That is, each k-th rotation vector together with the corresponding k-th translation vector (see + the next output parameter description) brings the calibration pattern from the model coordinate + space (in which object points are specified) to the world coordinate space, that is, a real + position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). + @param tvecs Output vector of translation vectors estimated for each pattern view. + @param flags Different flags that may be zero or a combination of the following values: + - **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of + fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image + center ( imageSize is used), and focal distances are computed in a least-squares fashion. + - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration + of intrinsic optimization. + - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. + - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. + - **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients + are set to zeros and stay zero. + - **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global +optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too. + @param criteria Termination criteria for the iterative optimization algorithm. + */ + CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size, + InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); + + /** @brief Stereo rectification for fisheye camera model + + @param K1 First camera matrix. + @param D1 First camera distortion parameters. + @param K2 Second camera matrix. + @param D2 Second camera distortion parameters. + @param imageSize Size of the image used for stereo calibration. + @param R Rotation matrix between the coordinate systems of the first and the second + cameras. + @param tvec Translation vector between coordinate systems of the cameras. + @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. + @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. + @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first + camera. + @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second + camera. + @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). + @param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set, + the function makes the principal points of each camera have the same pixel coordinates in the + rectified views. And if the flag is not set, the function may still shift the images in the + horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the + useful image area. + @param newImageSize New image resolution after rectification. The same size should be passed to + initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) + is passed (default), it is set to the original imageSize . Setting it to larger value can help you + preserve details in the original image, especially when there is a big radial distortion. + @param balance Sets the new focal length in range between the min focal length and the max focal + length. Balance is in range of [0, 1]. + @param fov_scale Divisor for new focal length. + */ + CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec, + OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(), + double balance = 0.0, double fov_scale = 1.0); + + /** @brief Performs stereo calibration + + @param objectPoints Vector of vectors of the calibration pattern points. + @param imagePoints1 Vector of vectors of the projections of the calibration pattern points, + observed by the first camera. + @param imagePoints2 Vector of vectors of the projections of the calibration pattern points, + observed by the second camera. + @param K1 Input/output first camera matrix: + \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If + any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CV_CALIB_FIX_INTRINSIC are specified, + some or all of the matrix components must be initialized. + @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements. + @param K2 Input/output second camera matrix. The parameter is similar to K1 . + @param D2 Input/output lens distortion coefficients for the second camera. The parameter is + similar to D1 . + @param imageSize Size of the image used only to initialize intrinsic camera matrix. + @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. + @param T Output translation vector between the coordinate systems of the cameras. + @param flags Different flags that may be zero or a combination of the following values: + - **fisheye::CV_CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices + are estimated. + - **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of + fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image + center (imageSize is used), and focal distances are computed in a least-squares fashion. + - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration + of intrinsic optimization. + - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. + - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. + - **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay + zero. + @param criteria Termination criteria for the iterative optimization algorithm. + */ + CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, + InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize, + OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); + +//! @} calib3d_fisheye +} + +} // cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/calib3d/calib3d_c.h" +#endif + +#endif