openCV library for Renesas RZ/A
Dependents: RZ_A2M_Mbed_samples
include/opencv2/core/mat.inl.hpp
- Committer:
- RyoheiHagimoto
- Date:
- 2021-01-29
- Revision:
- 0:0e0631af0305
File content as of revision 0:0e0631af0305:
/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef OPENCV_CORE_MATRIX_OPERATIONS_HPP #define OPENCV_CORE_MATRIX_OPERATIONS_HPP #ifndef __cplusplus # error mat.inl.hpp header must be compiled as C++ #endif namespace cv { //! @cond IGNORED //////////////////////// Input/Output Arrays //////////////////////// inline void _InputArray::init(int _flags, const void* _obj) { flags = _flags; obj = (void*)_obj; } inline void _InputArray::init(int _flags, const void* _obj, Size _sz) { flags = _flags; obj = (void*)_obj; sz = _sz; } inline void* _InputArray::getObj() const { return obj; } inline int _InputArray::getFlags() const { return flags; } inline Size _InputArray::getSz() const { return sz; } inline _InputArray::_InputArray() { init(NONE, 0); } inline _InputArray::_InputArray(int _flags, void* _obj) { init(_flags, _obj); } inline _InputArray::_InputArray(const Mat& m) { init(MAT+ACCESS_READ, &m); } inline _InputArray::_InputArray(const std::vector<Mat>& vec) { init(STD_VECTOR_MAT+ACCESS_READ, &vec); } inline _InputArray::_InputArray(const UMat& m) { init(UMAT+ACCESS_READ, &m); } inline _InputArray::_InputArray(const std::vector<UMat>& vec) { init(STD_VECTOR_UMAT+ACCESS_READ, &vec); } template<typename _Tp> inline _InputArray::_InputArray(const std::vector<_Tp>& vec) { init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); } inline _InputArray::_InputArray(const std::vector<bool>& vec) { init(FIXED_TYPE + STD_BOOL_VECTOR + DataType<bool>::type + ACCESS_READ, &vec); } template<typename _Tp> inline _InputArray::_InputArray(const std::vector<std::vector<_Tp> >& vec) { init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); } template<typename _Tp> inline _InputArray::_InputArray(const std::vector<Mat_<_Tp> >& vec) { init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_READ, &vec); } template<typename _Tp, int m, int n> inline _InputArray::_InputArray(const Matx<_Tp, m, n>& mtx) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_READ, &mtx, Size(n, m)); } template<typename _Tp> inline _InputArray::_InputArray(const _Tp* vec, int n) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_READ, vec, Size(n, 1)); } template<typename _Tp> inline _InputArray::_InputArray(const Mat_<_Tp>& m) { init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_READ, &m); } inline _InputArray::_InputArray(const double& val) { init(FIXED_TYPE + FIXED_SIZE + MATX + CV_64F + ACCESS_READ, &val, Size(1,1)); } inline _InputArray::_InputArray(const MatExpr& expr) { init(FIXED_TYPE + FIXED_SIZE + EXPR + ACCESS_READ, &expr); } inline _InputArray::_InputArray(const cuda::GpuMat& d_mat) { init(CUDA_GPU_MAT + ACCESS_READ, &d_mat); } inline _InputArray::_InputArray(const std::vector<cuda::GpuMat>& d_mat) { init(STD_VECTOR_CUDA_GPU_MAT + ACCESS_READ, &d_mat);} inline _InputArray::_InputArray(const ogl::Buffer& buf) { init(OPENGL_BUFFER + ACCESS_READ, &buf); } inline _InputArray::_InputArray(const cuda::HostMem& cuda_mem) { init(CUDA_HOST_MEM + ACCESS_READ, &cuda_mem); } inline _InputArray::~_InputArray() {} inline Mat _InputArray::getMat(int i) const { if( kind() == MAT && i < 0 ) return *(const Mat*)obj; return getMat_(i); } inline bool _InputArray::isMat() const { return kind() == _InputArray::MAT; } inline bool _InputArray::isUMat() const { return kind() == _InputArray::UMAT; } inline bool _InputArray::isMatVector() const { return kind() == _InputArray::STD_VECTOR_MAT; } inline bool _InputArray::isUMatVector() const { return kind() == _InputArray::STD_VECTOR_UMAT; } inline bool _InputArray::isMatx() const { return kind() == _InputArray::MATX; } inline bool _InputArray::isVector() const { return kind() == _InputArray::STD_VECTOR || kind() == _InputArray::STD_BOOL_VECTOR; } inline bool _InputArray::isGpuMatVector() const { return kind() == _InputArray::STD_VECTOR_CUDA_GPU_MAT; } //////////////////////////////////////////////////////////////////////////////////////// inline _OutputArray::_OutputArray() { init(ACCESS_WRITE, 0); } inline _OutputArray::_OutputArray(int _flags, void* _obj) { init(_flags|ACCESS_WRITE, _obj); } inline _OutputArray::_OutputArray(Mat& m) { init(MAT+ACCESS_WRITE, &m); } inline _OutputArray::_OutputArray(std::vector<Mat>& vec) { init(STD_VECTOR_MAT+ACCESS_WRITE, &vec); } inline _OutputArray::_OutputArray(UMat& m) { init(UMAT+ACCESS_WRITE, &m); } inline _OutputArray::_OutputArray(std::vector<UMat>& vec) { init(STD_VECTOR_UMAT+ACCESS_WRITE, &vec); } template<typename _Tp> inline _OutputArray::_OutputArray(std::vector<_Tp>& vec) { init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } inline _OutputArray::_OutputArray(std::vector<bool>&) { CV_Error(Error::StsUnsupportedFormat, "std::vector<bool> cannot be an output array\n"); } template<typename _Tp> inline _OutputArray::_OutputArray(std::vector<std::vector<_Tp> >& vec) { init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } template<typename _Tp> inline _OutputArray::_OutputArray(std::vector<Mat_<_Tp> >& vec) { init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_WRITE, &vec); } template<typename _Tp> inline _OutputArray::_OutputArray(Mat_<_Tp>& m) { init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_WRITE, &m); } template<typename _Tp, int m, int n> inline _OutputArray::_OutputArray(Matx<_Tp, m, n>& mtx) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, &mtx, Size(n, m)); } template<typename _Tp> inline _OutputArray::_OutputArray(_Tp* vec, int n) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, vec, Size(n, 1)); } template<typename _Tp> inline _OutputArray::_OutputArray(const std::vector<_Tp>& vec) { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } template<typename _Tp> inline _OutputArray::_OutputArray(const std::vector<std::vector<_Tp> >& vec) { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } template<typename _Tp> inline _OutputArray::_OutputArray(const std::vector<Mat_<_Tp> >& vec) { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_WRITE, &vec); } template<typename _Tp> inline _OutputArray::_OutputArray(const Mat_<_Tp>& m) { init(FIXED_TYPE + FIXED_SIZE + MAT + DataType<_Tp>::type + ACCESS_WRITE, &m); } template<typename _Tp, int m, int n> inline _OutputArray::_OutputArray(const Matx<_Tp, m, n>& mtx) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, &mtx, Size(n, m)); } template<typename _Tp> inline _OutputArray::_OutputArray(const _Tp* vec, int n) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, vec, Size(n, 1)); } inline _OutputArray::_OutputArray(cuda::GpuMat& d_mat) { init(CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); } inline _OutputArray::_OutputArray(std::vector<cuda::GpuMat>& d_mat) { init(STD_VECTOR_CUDA_GPU_MAT + ACCESS_WRITE, &d_mat);} inline _OutputArray::_OutputArray(ogl::Buffer& buf) { init(OPENGL_BUFFER + ACCESS_WRITE, &buf); } inline _OutputArray::_OutputArray(cuda::HostMem& cuda_mem) { init(CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); } inline _OutputArray::_OutputArray(const Mat& m) { init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_WRITE, &m); } inline _OutputArray::_OutputArray(const std::vector<Mat>& vec) { init(FIXED_SIZE + STD_VECTOR_MAT + ACCESS_WRITE, &vec); } inline _OutputArray::_OutputArray(const UMat& m) { init(FIXED_TYPE + FIXED_SIZE + UMAT + ACCESS_WRITE, &m); } inline _OutputArray::_OutputArray(const std::vector<UMat>& vec) { init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_WRITE, &vec); } inline _OutputArray::_OutputArray(const cuda::GpuMat& d_mat) { init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); } inline _OutputArray::_OutputArray(const ogl::Buffer& buf) { init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_WRITE, &buf); } inline _OutputArray::_OutputArray(const cuda::HostMem& cuda_mem) { init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); } /////////////////////////////////////////////////////////////////////////////////////////// inline _InputOutputArray::_InputOutputArray() { init(ACCESS_RW, 0); } inline _InputOutputArray::_InputOutputArray(int _flags, void* _obj) { init(_flags|ACCESS_RW, _obj); } inline _InputOutputArray::_InputOutputArray(Mat& m) { init(MAT+ACCESS_RW, &m); } inline _InputOutputArray::_InputOutputArray(std::vector<Mat>& vec) { init(STD_VECTOR_MAT+ACCESS_RW, &vec); } inline _InputOutputArray::_InputOutputArray(UMat& m) { init(UMAT+ACCESS_RW, &m); } inline _InputOutputArray::_InputOutputArray(std::vector<UMat>& vec) { init(STD_VECTOR_UMAT+ACCESS_RW, &vec); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(std::vector<_Tp>& vec) { init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } inline _InputOutputArray::_InputOutputArray(std::vector<bool>&) { CV_Error(Error::StsUnsupportedFormat, "std::vector<bool> cannot be an input/output array\n"); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(std::vector<std::vector<_Tp> >& vec) { init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(std::vector<Mat_<_Tp> >& vec) { init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_RW, &vec); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(Mat_<_Tp>& m) { init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_RW, &m); } template<typename _Tp, int m, int n> inline _InputOutputArray::_InputOutputArray(Matx<_Tp, m, n>& mtx) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, &mtx, Size(n, m)); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(_Tp* vec, int n) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, vec, Size(n, 1)); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(const std::vector<_Tp>& vec) { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(const std::vector<std::vector<_Tp> >& vec) { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(const std::vector<Mat_<_Tp> >& vec) { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_RW, &vec); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(const Mat_<_Tp>& m) { init(FIXED_TYPE + FIXED_SIZE + MAT + DataType<_Tp>::type + ACCESS_RW, &m); } template<typename _Tp, int m, int n> inline _InputOutputArray::_InputOutputArray(const Matx<_Tp, m, n>& mtx) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, &mtx, Size(n, m)); } template<typename _Tp> inline _InputOutputArray::_InputOutputArray(const _Tp* vec, int n) { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, vec, Size(n, 1)); } inline _InputOutputArray::_InputOutputArray(cuda::GpuMat& d_mat) { init(CUDA_GPU_MAT + ACCESS_RW, &d_mat); } inline _InputOutputArray::_InputOutputArray(ogl::Buffer& buf) { init(OPENGL_BUFFER + ACCESS_RW, &buf); } inline _InputOutputArray::_InputOutputArray(cuda::HostMem& cuda_mem) { init(CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); } inline _InputOutputArray::_InputOutputArray(const Mat& m) { init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_RW, &m); } inline _InputOutputArray::_InputOutputArray(const std::vector<Mat>& vec) { init(FIXED_SIZE + STD_VECTOR_MAT + ACCESS_RW, &vec); } inline _InputOutputArray::_InputOutputArray(const UMat& m) { init(FIXED_TYPE + FIXED_SIZE + UMAT + ACCESS_RW, &m); } inline _InputOutputArray::_InputOutputArray(const std::vector<UMat>& vec) { init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_RW, &vec); } inline _InputOutputArray::_InputOutputArray(const cuda::GpuMat& d_mat) { init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_RW, &d_mat); } inline _InputOutputArray::_InputOutputArray(const std::vector<cuda::GpuMat>& d_mat) { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_CUDA_GPU_MAT + ACCESS_RW, &d_mat);} template<> inline _InputOutputArray::_InputOutputArray(std::vector<cuda::GpuMat>& d_mat) { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_CUDA_GPU_MAT + ACCESS_RW, &d_mat);} inline _InputOutputArray::_InputOutputArray(const ogl::Buffer& buf) { init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_RW, &buf); } inline _InputOutputArray::_InputOutputArray(const cuda::HostMem& cuda_mem) { init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); } //////////////////////////////////////////// Mat ////////////////////////////////////////// inline Mat::Mat() : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) {} inline Mat::Mat(int _rows, int _cols, int _type) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { create(_rows, _cols, _type); } inline Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { create(_rows, _cols, _type); *this = _s; } inline Mat::Mat(Size _sz, int _type) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { create( _sz.height, _sz.width, _type ); } inline Mat::Mat(Size _sz, int _type, const Scalar& _s) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { create(_sz.height, _sz.width, _type); *this = _s; } inline Mat::Mat(int _dims, const int* _sz, int _type) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { create(_dims, _sz, _type); } inline Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { create(_dims, _sz, _type); *this = _s; } inline Mat::Mat(const std::vector<int>& _sz, int _type) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { create(_sz, _type); } inline Mat::Mat(const std::vector<int>& _sz, int _type, const Scalar& _s) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { create(_sz, _type); *this = _s; } inline Mat::Mat(const Mat& m) : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data), datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator), u(m.u), size(&rows) { if( u ) CV_XADD(&u->refcount, 1); if( m.dims <= 2 ) { step[0] = m.step[0]; step[1] = m.step[1]; } else { dims = 0; copySize(m); } } inline Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step) : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols), data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { CV_Assert(total() == 0 || data != NULL); size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type); size_t minstep = cols * esz; if( _step == AUTO_STEP ) { _step = minstep; flags |= CONTINUOUS_FLAG; } else { if( rows == 1 ) _step = minstep; CV_DbgAssert( _step >= minstep ); if (_step % esz1 != 0) { CV_Error(Error::BadStep, "Step must be a multiple of esz1"); } flags |= _step == minstep ? CONTINUOUS_FLAG : 0; } step[0] = _step; step[1] = esz; datalimit = datastart + _step * rows; dataend = datalimit - _step + minstep; } inline Mat::Mat(Size _sz, int _type, void* _data, size_t _step) : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width), data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) { CV_Assert(total() == 0 || data != NULL); size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type); size_t minstep = cols*esz; if( _step == AUTO_STEP ) { _step = minstep; flags |= CONTINUOUS_FLAG; } else { if( rows == 1 ) _step = minstep; CV_DbgAssert( _step >= minstep ); if (_step % esz1 != 0) { CV_Error(Error::BadStep, "Step must be a multiple of esz1"); } flags |= _step == minstep ? CONTINUOUS_FLAG : 0; } step[0] = _step; step[1] = esz; datalimit = datastart + _step*rows; dataend = datalimit - _step + minstep; } template<typename _Tp> inline Mat::Mat(const std::vector<_Tp>& vec, bool copyData) : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), cols(1), data(0), datastart(0), dataend(0), allocator(0), u(0), size(&rows) { if(vec.empty()) return; if( !copyData ) { step[0] = step[1] = sizeof(_Tp); datastart = data = (uchar*)&vec[0]; datalimit = dataend = datastart + rows * step[0]; } else Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this); } template<typename _Tp, int n> inline Mat::Mat(const Vec<_Tp, n>& vec, bool copyData) : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(n), cols(1), data(0), datastart(0), dataend(0), allocator(0), u(0), size(&rows) { if( !copyData ) { step[0] = step[1] = sizeof(_Tp); datastart = data = (uchar*)vec.val; datalimit = dataend = datastart + rows * step[0]; } else Mat(n, 1, DataType<_Tp>::type, (void*)vec.val).copyTo(*this); } template<typename _Tp, int m, int n> inline Mat::Mat(const Matx<_Tp,m,n>& M, bool copyData) : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(m), cols(n), data(0), datastart(0), dataend(0), allocator(0), u(0), size(&rows) { if( !copyData ) { step[0] = cols * sizeof(_Tp); step[1] = sizeof(_Tp); datastart = data = (uchar*)M.val; datalimit = dataend = datastart + rows * step[0]; } else Mat(m, n, DataType<_Tp>::type, (uchar*)M.val).copyTo(*this); } template<typename _Tp> inline Mat::Mat(const Point_<_Tp>& pt, bool copyData) : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(2), cols(1), data(0), datastart(0), dataend(0), allocator(0), u(0), size(&rows) { if( !copyData ) { step[0] = step[1] = sizeof(_Tp); datastart = data = (uchar*)&pt.x; datalimit = dataend = datastart + rows * step[0]; } else { create(2, 1, DataType<_Tp>::type); ((_Tp*)data)[0] = pt.x; ((_Tp*)data)[1] = pt.y; } } template<typename _Tp> inline Mat::Mat(const Point3_<_Tp>& pt, bool copyData) : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(3), cols(1), data(0), datastart(0), dataend(0), allocator(0), u(0), size(&rows) { if( !copyData ) { step[0] = step[1] = sizeof(_Tp); datastart = data = (uchar*)&pt.x; datalimit = dataend = datastart + rows * step[0]; } else { create(3, 1, DataType<_Tp>::type); ((_Tp*)data)[0] = pt.x; ((_Tp*)data)[1] = pt.y; ((_Tp*)data)[2] = pt.z; } } template<typename _Tp> inline Mat::Mat(const MatCommaInitializer_<_Tp>& commaInitializer) : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), allocator(0), u(0), size(&rows) { *this = commaInitializer.operator Mat_<_Tp>(); } inline Mat::~Mat() { release(); if( step.p != step.buf ) fastFree(step.p); } inline Mat& Mat::operator = (const Mat& m) { if( this != &m ) { if( m.u ) CV_XADD(&m.u->refcount, 1); release(); flags = m.flags; if( dims <= 2 && m.dims <= 2 ) { dims = m.dims; rows = m.rows; cols = m.cols; step[0] = m.step[0]; step[1] = m.step[1]; } else copySize(m); data = m.data; datastart = m.datastart; dataend = m.dataend; datalimit = m.datalimit; allocator = m.allocator; u = m.u; } return *this; } inline Mat Mat::row(int y) const { return Mat(*this, Range(y, y + 1), Range::all()); } inline Mat Mat::col(int x) const { return Mat(*this, Range::all(), Range(x, x + 1)); } inline Mat Mat::rowRange(int startrow, int endrow) const { return Mat(*this, Range(startrow, endrow), Range::all()); } inline Mat Mat::rowRange(const Range& r) const { return Mat(*this, r, Range::all()); } inline Mat Mat::colRange(int startcol, int endcol) const { return Mat(*this, Range::all(), Range(startcol, endcol)); } inline Mat Mat::colRange(const Range& r) const { return Mat(*this, Range::all(), r); } inline Mat Mat::clone() const { Mat m; copyTo(m); return m; } inline void Mat::assignTo( Mat& m, int _type ) const { if( _type < 0 ) m = *this; else convertTo(m, _type); } inline void Mat::create(int _rows, int _cols, int _type) { _type &= TYPE_MASK; if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && data ) return; int sz[] = {_rows, _cols}; create(2, sz, _type); } inline void Mat::create(Size _sz, int _type) { create(_sz.height, _sz.width, _type); } inline void Mat::addref() { if( u ) CV_XADD(&u->refcount, 1); } inline void Mat::release() { if( u && CV_XADD(&u->refcount, -1) == 1 ) deallocate(); u = NULL; datastart = dataend = datalimit = data = 0; for(int i = 0; i < dims; i++) size.p[i] = 0; #ifdef _DEBUG flags = MAGIC_VAL; dims = rows = cols = 0; if(step.p != step.buf) { fastFree(step.p); step.p = step.buf; size.p = &rows; } #endif } inline Mat Mat::operator()( Range _rowRange, Range _colRange ) const { return Mat(*this, _rowRange, _colRange); } inline Mat Mat::operator()( const Rect& roi ) const { return Mat(*this, roi); } inline Mat Mat::operator()(const Range* ranges) const { return Mat(*this, ranges); } inline Mat Mat::operator()(const std::vector<Range>& ranges) const { return Mat(*this, ranges); } inline bool Mat::isContinuous() const { return (flags & CONTINUOUS_FLAG) != 0; } inline bool Mat::isSubmatrix() const { return (flags & SUBMATRIX_FLAG) != 0; } inline size_t Mat::elemSize() const { return dims > 0 ? step.p[dims - 1] : 0; } inline size_t Mat::elemSize1() const { return CV_ELEM_SIZE1(flags); } inline int Mat::type() const { return CV_MAT_TYPE(flags); } inline int Mat::depth() const { return CV_MAT_DEPTH(flags); } inline int Mat::channels() const { return CV_MAT_CN(flags); } inline size_t Mat::step1(int i) const { return step.p[i] / elemSize1(); } inline bool Mat::empty() const { return data == 0 || total() == 0; } inline size_t Mat::total() const { if( dims <= 2 ) return (size_t)rows * cols; size_t p = 1; for( int i = 0; i < dims; i++ ) p *= size[i]; return p; } inline uchar* Mat::ptr(int y) { CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); return data + step.p[0] * y; } inline const uchar* Mat::ptr(int y) const { CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); return data + step.p[0] * y; } template<typename _Tp> inline _Tp* Mat::ptr(int y) { CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); return (_Tp*)(data + step.p[0] * y); } template<typename _Tp> inline const _Tp* Mat::ptr(int y) const { CV_DbgAssert( y == 0 || (data && dims >= 1 && data && (unsigned)y < (unsigned)size.p[0]) ); return (const _Tp*)(data + step.p[0] * y); } inline uchar* Mat::ptr(int i0, int i1) { CV_DbgAssert(dims >= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); return data + i0 * step.p[0] + i1 * step.p[1]; } inline const uchar* Mat::ptr(int i0, int i1) const { CV_DbgAssert(dims >= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); return data + i0 * step.p[0] + i1 * step.p[1]; } template<typename _Tp> inline _Tp* Mat::ptr(int i0, int i1) { CV_DbgAssert(dims >= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); return (_Tp*)(data + i0 * step.p[0] + i1 * step.p[1]); } template<typename _Tp> inline const _Tp* Mat::ptr(int i0, int i1) const { CV_DbgAssert(dims >= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); return (const _Tp*)(data + i0 * step.p[0] + i1 * step.p[1]); } inline uchar* Mat::ptr(int i0, int i1, int i2) { CV_DbgAssert(dims >= 3); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); return data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]; } inline const uchar* Mat::ptr(int i0, int i1, int i2) const { CV_DbgAssert(dims >= 3); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); return data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]; } template<typename _Tp> inline _Tp* Mat::ptr(int i0, int i1, int i2) { CV_DbgAssert(dims >= 3); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); return (_Tp*)(data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]); } template<typename _Tp> inline const _Tp* Mat::ptr(int i0, int i1, int i2) const { CV_DbgAssert(dims >= 3); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); return (const _Tp*)(data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]); } inline uchar* Mat::ptr(const int* idx) { int i, d = dims; uchar* p = data; CV_DbgAssert( d >= 1 && p ); for( i = 0; i < d; i++ ) { CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] ); p += idx[i] * step.p[i]; } return p; } inline const uchar* Mat::ptr(const int* idx) const { int i, d = dims; uchar* p = data; CV_DbgAssert( d >= 1 && p ); for( i = 0; i < d; i++ ) { CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] ); p += idx[i] * step.p[i]; } return p; } template<typename _Tp> inline _Tp& Mat::at(int i0, int i1) { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); return ((_Tp*)(data + step.p[0] * i0))[i1]; } template<typename _Tp> inline const _Tp& Mat::at(int i0, int i1) const { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); return ((const _Tp*)(data + step.p[0] * i0))[i1]; } template<typename _Tp> inline _Tp& Mat::at(Point pt) { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); CV_DbgAssert((unsigned)(pt.x * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); return ((_Tp*)(data + step.p[0] * pt.y))[pt.x]; } template<typename _Tp> inline const _Tp& Mat::at(Point pt) const { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); CV_DbgAssert((unsigned)(pt.x * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); return ((const _Tp*)(data + step.p[0] * pt.y))[pt.x]; } template<typename _Tp> inline _Tp& Mat::at(int i0) { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)(size.p[0] * size.p[1])); CV_DbgAssert(elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type)); if( isContinuous() || size.p[0] == 1 ) return ((_Tp*)data)[i0]; if( size.p[1] == 1 ) return *(_Tp*)(data + step.p[0] * i0); int i = i0 / cols, j = i0 - i * cols; return ((_Tp*)(data + step.p[0] * i))[j]; } template<typename _Tp> inline const _Tp& Mat::at(int i0) const { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)(size.p[0] * size.p[1])); CV_DbgAssert(elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type)); if( isContinuous() || size.p[0] == 1 ) return ((const _Tp*)data)[i0]; if( size.p[1] == 1 ) return *(const _Tp*)(data + step.p[0] * i0); int i = i0 / cols, j = i0 - i * cols; return ((const _Tp*)(data + step.p[0] * i))[j]; } template<typename _Tp> inline _Tp& Mat::at(int i0, int i1, int i2) { CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); return *(_Tp*)ptr(i0, i1, i2); } template<typename _Tp> inline const _Tp& Mat::at(int i0, int i1, int i2) const { CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); return *(const _Tp*)ptr(i0, i1, i2); } template<typename _Tp> inline _Tp& Mat::at(const int* idx) { CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); return *(_Tp*)ptr(idx); } template<typename _Tp> inline const _Tp& Mat::at(const int* idx) const { CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); return *(const _Tp*)ptr(idx); } template<typename _Tp, int n> inline _Tp& Mat::at(const Vec<int, n>& idx) { CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); return *(_Tp*)ptr(idx.val); } template<typename _Tp, int n> inline const _Tp& Mat::at(const Vec<int, n>& idx) const { CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); return *(const _Tp*)ptr(idx.val); } template<typename _Tp> inline MatConstIterator_<_Tp> Mat::begin() const { CV_DbgAssert( elemSize() == sizeof(_Tp) ); return MatConstIterator_<_Tp>((const Mat_<_Tp>*)this); } template<typename _Tp> inline MatConstIterator_<_Tp> Mat::end() const { CV_DbgAssert( elemSize() == sizeof(_Tp) ); MatConstIterator_<_Tp> it((const Mat_<_Tp>*)this); it += total(); return it; } template<typename _Tp> inline MatIterator_<_Tp> Mat::begin() { CV_DbgAssert( elemSize() == sizeof(_Tp) ); return MatIterator_<_Tp>((Mat_<_Tp>*)this); } template<typename _Tp> inline MatIterator_<_Tp> Mat::end() { CV_DbgAssert( elemSize() == sizeof(_Tp) ); MatIterator_<_Tp> it((Mat_<_Tp>*)this); it += total(); return it; } template<typename _Tp, typename Functor> inline void Mat::forEach(const Functor& operation) { this->forEach_impl<_Tp>(operation); } template<typename _Tp, typename Functor> inline void Mat::forEach(const Functor& operation) const { // call as not const (const_cast<Mat*>(this))->forEach<const _Tp>(operation); } template<typename _Tp> inline Mat::operator std::vector<_Tp>() const { std::vector<_Tp> v; copyTo(v); return v; } template<typename _Tp, int n> inline Mat::operator Vec<_Tp, n>() const { CV_Assert( data && dims <= 2 && (rows == 1 || cols == 1) && rows + cols - 1 == n && channels() == 1 ); if( isContinuous() && type() == DataType<_Tp>::type ) return Vec<_Tp, n>((_Tp*)data); Vec<_Tp, n> v; Mat tmp(rows, cols, DataType<_Tp>::type, v.val); convertTo(tmp, tmp.type()); return v; } template<typename _Tp, int m, int n> inline Mat::operator Matx<_Tp, m, n>() const { CV_Assert( data && dims <= 2 && rows == m && cols == n && channels() == 1 ); if( isContinuous() && type() == DataType<_Tp>::type ) return Matx<_Tp, m, n>((_Tp*)data); Matx<_Tp, m, n> mtx; Mat tmp(rows, cols, DataType<_Tp>::type, mtx.val); convertTo(tmp, tmp.type()); return mtx; } template<typename _Tp> inline void Mat::push_back(const _Tp& elem) { if( !data ) { *this = Mat(1, 1, DataType<_Tp>::type, (void*)&elem).clone(); return; } CV_Assert(DataType<_Tp>::type == type() && cols == 1 /* && dims == 2 (cols == 1 implies dims == 2) */); const uchar* tmp = dataend + step[0]; if( !isSubmatrix() && isContinuous() && tmp <= datalimit ) { *(_Tp*)(data + (size.p[0]++) * step.p[0]) = elem; dataend = tmp; } else push_back_(&elem); } template<typename _Tp> inline void Mat::push_back(const Mat_<_Tp>& m) { push_back((const Mat&)m); } template<> inline void Mat::push_back(const MatExpr& expr) { push_back(static_cast<Mat>(expr)); } #ifdef CV_CXX_MOVE_SEMANTICS inline Mat::Mat(Mat&& m) : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data), datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator), u(m.u), size(&rows) { if (m.dims <= 2) // move new step/size info { step[0] = m.step[0]; step[1] = m.step[1]; } else { CV_DbgAssert(m.step.p != m.step.buf); step.p = m.step.p; size.p = m.size.p; m.step.p = m.step.buf; m.size.p = &m.rows; } m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL; m.allocator = NULL; m.u = NULL; } inline Mat& Mat::operator = (Mat&& m) { if (this == &m) return *this; release(); flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols; data = m.data; datastart = m.datastart; dataend = m.dataend; datalimit = m.datalimit; allocator = m.allocator; u = m.u; if (step.p != step.buf) // release self step/size { fastFree(step.p); step.p = step.buf; size.p = &rows; } if (m.dims <= 2) // move new step/size info { step[0] = m.step[0]; step[1] = m.step[1]; } else { CV_DbgAssert(m.step.p != m.step.buf); step.p = m.step.p; size.p = m.size.p; m.step.p = m.step.buf; m.size.p = &m.rows; } m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL; m.allocator = NULL; m.u = NULL; return *this; } #endif ///////////////////////////// MatSize //////////////////////////// inline MatSize::MatSize(int* _p) : p(_p) {} inline Size MatSize::operator()() const { CV_DbgAssert(p[-1] <= 2); return Size(p[1], p[0]); } inline const int& MatSize::operator[](int i) const { return p[i]; } inline int& MatSize::operator[](int i) { return p[i]; } inline MatSize::operator const int*() const { return p; } inline bool MatSize::operator == (const MatSize& sz) const { int d = p[-1]; int dsz = sz.p[-1]; if( d != dsz ) return false; if( d == 2 ) return p[0] == sz.p[0] && p[1] == sz.p[1]; for( int i = 0; i < d; i++ ) if( p[i] != sz.p[i] ) return false; return true; } inline bool MatSize::operator != (const MatSize& sz) const { return !(*this == sz); } ///////////////////////////// MatStep //////////////////////////// inline MatStep::MatStep() { p = buf; p[0] = p[1] = 0; } inline MatStep::MatStep(size_t s) { p = buf; p[0] = s; p[1] = 0; } inline const size_t& MatStep::operator[](int i) const { return p[i]; } inline size_t& MatStep::operator[](int i) { return p[i]; } inline MatStep::operator size_t() const { CV_DbgAssert( p == buf ); return buf[0]; } inline MatStep& MatStep::operator = (size_t s) { CV_DbgAssert( p == buf ); buf[0] = s; return *this; } ////////////////////////////// Mat_<_Tp> //////////////////////////// template<typename _Tp> inline Mat_<_Tp>::Mat_() : Mat() { flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; } template<typename _Tp> inline Mat_<_Tp>::Mat_(int _rows, int _cols) : Mat(_rows, _cols, DataType<_Tp>::type) { } template<typename _Tp> inline Mat_<_Tp>::Mat_(int _rows, int _cols, const _Tp& value) : Mat(_rows, _cols, DataType<_Tp>::type) { *this = value; } template<typename _Tp> inline Mat_<_Tp>::Mat_(Size _sz) : Mat(_sz.height, _sz.width, DataType<_Tp>::type) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(Size _sz, const _Tp& value) : Mat(_sz.height, _sz.width, DataType<_Tp>::type) { *this = value; } template<typename _Tp> inline Mat_<_Tp>::Mat_(int _dims, const int* _sz) : Mat(_dims, _sz, DataType<_Tp>::type) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(int _dims, const int* _sz, const _Tp& _s) : Mat(_dims, _sz, DataType<_Tp>::type, Scalar(_s)) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(int _dims, const int* _sz, _Tp* _data, const size_t* _steps) : Mat(_dims, _sz, DataType<_Tp>::type, _data, _steps) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const Range* ranges) : Mat(m, ranges) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const std::vector<Range>& ranges) : Mat(m, ranges) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat& m) : Mat() { flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; *this = m; } template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_& m) : Mat(m) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(int _rows, int _cols, _Tp* _data, size_t steps) : Mat(_rows, _cols, DataType<_Tp>::type, _data, steps) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_& m, const Range& _rowRange, const Range& _colRange) : Mat(m, _rowRange, _colRange) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_& m, const Rect& roi) : Mat(m, roi) {} template<typename _Tp> template<int n> inline Mat_<_Tp>::Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData) : Mat(n / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&vec) { CV_Assert(n%DataType<_Tp>::channels == 0); if( copyData ) *this = clone(); } template<typename _Tp> template<int m, int n> inline Mat_<_Tp>::Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& M, bool copyData) : Mat(m, n / DataType<_Tp>::channels, DataType<_Tp>::type, (void*)&M) { CV_Assert(n % DataType<_Tp>::channels == 0); if( copyData ) *this = clone(); } template<typename _Tp> inline Mat_<_Tp>::Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData) : Mat(2 / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt) { CV_Assert(2 % DataType<_Tp>::channels == 0); if( copyData ) *this = clone(); } template<typename _Tp> inline Mat_<_Tp>::Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData) : Mat(3 / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt) { CV_Assert(3 % DataType<_Tp>::channels == 0); if( copyData ) *this = clone(); } template<typename _Tp> inline Mat_<_Tp>::Mat_(const MatCommaInitializer_<_Tp>& commaInitializer) : Mat(commaInitializer) {} template<typename _Tp> inline Mat_<_Tp>::Mat_(const std::vector<_Tp>& vec, bool copyData) : Mat(vec, copyData) {} template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat& m) { if( DataType<_Tp>::type == m.type() ) { Mat::operator = (m); return *this; } if( DataType<_Tp>::depth == m.depth() ) { return (*this = m.reshape(DataType<_Tp>::channels, m.dims, 0)); } CV_DbgAssert(DataType<_Tp>::channels == m.channels()); m.convertTo(*this, type()); return *this; } template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat_& m) { Mat::operator=(m); return *this; } template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const _Tp& s) { typedef typename DataType<_Tp>::vec_type VT; Mat::operator=(Scalar((const VT&)s)); return *this; } template<typename _Tp> inline void Mat_<_Tp>::create(int _rows, int _cols) { Mat::create(_rows, _cols, DataType<_Tp>::type); } template<typename _Tp> inline void Mat_<_Tp>::create(Size _sz) { Mat::create(_sz, DataType<_Tp>::type); } template<typename _Tp> inline void Mat_<_Tp>::create(int _dims, const int* _sz) { Mat::create(_dims, _sz, DataType<_Tp>::type); } template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::cross(const Mat_& m) const { return Mat_<_Tp>(Mat::cross(m)); } template<typename _Tp> template<typename T2> inline Mat_<_Tp>::operator Mat_<T2>() const { return Mat_<T2>(*this); } template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::row(int y) const { return Mat_(*this, Range(y, y+1), Range::all()); } template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::col(int x) const { return Mat_(*this, Range::all(), Range(x, x+1)); } template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::diag(int d) const { return Mat_(Mat::diag(d)); } template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::clone() const { return Mat_(Mat::clone()); } template<typename _Tp> inline size_t Mat_<_Tp>::elemSize() const { CV_DbgAssert( Mat::elemSize() == sizeof(_Tp) ); return sizeof(_Tp); } template<typename _Tp> inline size_t Mat_<_Tp>::elemSize1() const { CV_DbgAssert( Mat::elemSize1() == sizeof(_Tp) / DataType<_Tp>::channels ); return sizeof(_Tp) / DataType<_Tp>::channels; } template<typename _Tp> inline int Mat_<_Tp>::type() const { CV_DbgAssert( Mat::type() == DataType<_Tp>::type ); return DataType<_Tp>::type; } template<typename _Tp> inline int Mat_<_Tp>::depth() const { CV_DbgAssert( Mat::depth() == DataType<_Tp>::depth ); return DataType<_Tp>::depth; } template<typename _Tp> inline int Mat_<_Tp>::channels() const { CV_DbgAssert( Mat::channels() == DataType<_Tp>::channels ); return DataType<_Tp>::channels; } template<typename _Tp> inline size_t Mat_<_Tp>::stepT(int i) const { return step.p[i] / elemSize(); } template<typename _Tp> inline size_t Mat_<_Tp>::step1(int i) const { return step.p[i] / elemSize1(); } template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::adjustROI( int dtop, int dbottom, int dleft, int dright ) { return (Mat_<_Tp>&)(Mat::adjustROI(dtop, dbottom, dleft, dright)); } template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()( const Range& _rowRange, const Range& _colRange ) const { return Mat_<_Tp>(*this, _rowRange, _colRange); } template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()( const Rect& roi ) const { return Mat_<_Tp>(*this, roi); } template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const { return Mat_<_Tp>(*this, ranges); } template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()(const std::vector<Range>& ranges) const { return Mat_<_Tp>(*this, ranges); } template<typename _Tp> inline _Tp* Mat_<_Tp>::operator [](int y) { CV_DbgAssert( 0 <= y && y < rows ); return (_Tp*)(data + y*step.p[0]); } template<typename _Tp> inline const _Tp* Mat_<_Tp>::operator [](int y) const { CV_DbgAssert( 0 <= y && y < rows ); return (const _Tp*)(data + y*step.p[0]); } template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(int i0, int i1) { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); CV_DbgAssert(type() == DataType<_Tp>::type); return ((_Tp*)(data + step.p[0] * i0))[i1]; } template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(int i0, int i1) const { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); CV_DbgAssert(type() == DataType<_Tp>::type); return ((const _Tp*)(data + step.p[0] * i0))[i1]; } template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(Point pt) { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); CV_DbgAssert((unsigned)pt.x < (unsigned)size.p[1]); CV_DbgAssert(type() == DataType<_Tp>::type); return ((_Tp*)(data + step.p[0] * pt.y))[pt.x]; } template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(Point pt) const { CV_DbgAssert(dims <= 2); CV_DbgAssert(data); CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); CV_DbgAssert((unsigned)pt.x < (unsigned)size.p[1]); CV_DbgAssert(type() == DataType<_Tp>::type); return ((const _Tp*)(data + step.p[0] * pt.y))[pt.x]; } template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(const int* idx) { return Mat::at<_Tp>(idx); } template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(const int* idx) const { return Mat::at<_Tp>(idx); } template<typename _Tp> template<int n> inline _Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx) { return Mat::at<_Tp>(idx); } template<typename _Tp> template<int n> inline const _Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx) const { return Mat::at<_Tp>(idx); } template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(int i0) { return this->at<_Tp>(i0); } template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(int i0) const { return this->at<_Tp>(i0); } template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) { return this->at<_Tp>(i0, i1, i2); } template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) const { return this->at<_Tp>(i0, i1, i2); } template<typename _Tp> inline Mat_<_Tp>::operator std::vector<_Tp>() const { std::vector<_Tp> v; copyTo(v); return v; } template<typename _Tp> template<int n> inline Mat_<_Tp>::operator Vec<typename DataType<_Tp>::channel_type, n>() const { CV_Assert(n % DataType<_Tp>::channels == 0); #if defined _MSC_VER const Mat* pMat = (const Mat*)this; // workaround for MSVS <= 2012 compiler bugs (but GCC 4.6 dislikes this workaround) return pMat->operator Vec<typename DataType<_Tp>::channel_type, n>(); #else return this->Mat::operator Vec<typename DataType<_Tp>::channel_type, n>(); #endif } template<typename _Tp> template<int m, int n> inline Mat_<_Tp>::operator Matx<typename DataType<_Tp>::channel_type, m, n>() const { CV_Assert(n % DataType<_Tp>::channels == 0); #if defined _MSC_VER const Mat* pMat = (const Mat*)this; // workaround for MSVS <= 2012 compiler bugs (but GCC 4.6 dislikes this workaround) Matx<typename DataType<_Tp>::channel_type, m, n> res = pMat->operator Matx<typename DataType<_Tp>::channel_type, m, n>(); return res; #else Matx<typename DataType<_Tp>::channel_type, m, n> res = this->Mat::operator Matx<typename DataType<_Tp>::channel_type, m, n>(); return res; #endif } template<typename _Tp> inline MatConstIterator_<_Tp> Mat_<_Tp>::begin() const { return Mat::begin<_Tp>(); } template<typename _Tp> inline MatConstIterator_<_Tp> Mat_<_Tp>::end() const { return Mat::end<_Tp>(); } template<typename _Tp> inline MatIterator_<_Tp> Mat_<_Tp>::begin() { return Mat::begin<_Tp>(); } template<typename _Tp> inline MatIterator_<_Tp> Mat_<_Tp>::end() { return Mat::end<_Tp>(); } template<typename _Tp> template<typename Functor> inline void Mat_<_Tp>::forEach(const Functor& operation) { Mat::forEach<_Tp, Functor>(operation); } template<typename _Tp> template<typename Functor> inline void Mat_<_Tp>::forEach(const Functor& operation) const { Mat::forEach<_Tp, Functor>(operation); } #ifdef CV_CXX_MOVE_SEMANTICS template<typename _Tp> inline Mat_<_Tp>::Mat_(Mat_&& m) : Mat(m) { } template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (Mat_&& m) { Mat::operator = (m); return *this; } template<typename _Tp> inline Mat_<_Tp>::Mat_(Mat&& m) : Mat() { flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; *this = m; } template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (Mat&& m) { if( DataType<_Tp>::type == m.type() ) { Mat::operator = ((Mat&&)m); return *this; } if( DataType<_Tp>::depth == m.depth() ) { Mat::operator = ((Mat&&)m.reshape(DataType<_Tp>::channels, m.dims, 0)); return *this; } CV_DbgAssert(DataType<_Tp>::channels == m.channels()); m.convertTo(*this, type()); return *this; } template<typename _Tp> inline Mat_<_Tp>::Mat_(MatExpr&& e) : Mat() { flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; *this = Mat(e); } #endif ///////////////////////////// SparseMat ///////////////////////////// inline SparseMat::SparseMat() : flags(MAGIC_VAL), hdr(0) {} inline SparseMat::SparseMat(int _dims, const int* _sizes, int _type) : flags(MAGIC_VAL), hdr(0) { create(_dims, _sizes, _type); } inline SparseMat::SparseMat(const SparseMat& m) : flags(m.flags), hdr(m.hdr) { addref(); } inline SparseMat::~SparseMat() { release(); } inline SparseMat& SparseMat::operator = (const SparseMat& m) { if( this != &m ) { if( m.hdr ) CV_XADD(&m.hdr->refcount, 1); release(); flags = m.flags; hdr = m.hdr; } return *this; } inline SparseMat& SparseMat::operator = (const Mat& m) { return (*this = SparseMat(m)); } inline SparseMat SparseMat::clone() const { SparseMat temp; this->copyTo(temp); return temp; } inline void SparseMat::assignTo( SparseMat& m, int _type ) const { if( _type < 0 ) m = *this; else convertTo(m, _type); } inline void SparseMat::addref() { if( hdr ) CV_XADD(&hdr->refcount, 1); } inline void SparseMat::release() { if( hdr && CV_XADD(&hdr->refcount, -1) == 1 ) delete hdr; hdr = 0; } inline size_t SparseMat::elemSize() const { return CV_ELEM_SIZE(flags); } inline size_t SparseMat::elemSize1() const { return CV_ELEM_SIZE1(flags); } inline int SparseMat::type() const { return CV_MAT_TYPE(flags); } inline int SparseMat::depth() const { return CV_MAT_DEPTH(flags); } inline int SparseMat::channels() const { return CV_MAT_CN(flags); } inline const int* SparseMat::size() const { return hdr ? hdr->size : 0; } inline int SparseMat::size(int i) const { if( hdr ) { CV_DbgAssert((unsigned)i < (unsigned)hdr->dims); return hdr->size[i]; } return 0; } inline int SparseMat::dims() const { return hdr ? hdr->dims : 0; } inline size_t SparseMat::nzcount() const { return hdr ? hdr->nodeCount : 0; } inline size_t SparseMat::hash(int i0) const { return (size_t)i0; } inline size_t SparseMat::hash(int i0, int i1) const { return (size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1; } inline size_t SparseMat::hash(int i0, int i1, int i2) const { return ((size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1) * HASH_SCALE + (unsigned)i2; } inline size_t SparseMat::hash(const int* idx) const { size_t h = (unsigned)idx[0]; if( !hdr ) return 0; int d = hdr->dims; for(int i = 1; i < d; i++ ) h = h * HASH_SCALE + (unsigned)idx[i]; return h; } template<typename _Tp> inline _Tp& SparseMat::ref(int i0, size_t* hashval) { return *(_Tp*)((SparseMat*)this)->ptr(i0, true, hashval); } template<typename _Tp> inline _Tp& SparseMat::ref(int i0, int i1, size_t* hashval) { return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, true, hashval); } template<typename _Tp> inline _Tp& SparseMat::ref(int i0, int i1, int i2, size_t* hashval) { return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, i2, true, hashval); } template<typename _Tp> inline _Tp& SparseMat::ref(const int* idx, size_t* hashval) { return *(_Tp*)((SparseMat*)this)->ptr(idx, true, hashval); } template<typename _Tp> inline _Tp SparseMat::value(int i0, size_t* hashval) const { const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); return p ? *p : _Tp(); } template<typename _Tp> inline _Tp SparseMat::value(int i0, int i1, size_t* hashval) const { const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); return p ? *p : _Tp(); } template<typename _Tp> inline _Tp SparseMat::value(int i0, int i1, int i2, size_t* hashval) const { const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); return p ? *p : _Tp(); } template<typename _Tp> inline _Tp SparseMat::value(const int* idx, size_t* hashval) const { const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); return p ? *p : _Tp(); } template<typename _Tp> inline const _Tp* SparseMat::find(int i0, size_t* hashval) const { return (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); } template<typename _Tp> inline const _Tp* SparseMat::find(int i0, int i1, size_t* hashval) const { return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); } template<typename _Tp> inline const _Tp* SparseMat::find(int i0, int i1, int i2, size_t* hashval) const { return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); } template<typename _Tp> inline const _Tp* SparseMat::find(const int* idx, size_t* hashval) const { return (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); } template<typename _Tp> inline _Tp& SparseMat::value(Node* n) { return *(_Tp*)((uchar*)n + hdr->valueOffset); } template<typename _Tp> inline const _Tp& SparseMat::value(const Node* n) const { return *(const _Tp*)((const uchar*)n + hdr->valueOffset); } inline SparseMat::Node* SparseMat::node(size_t nidx) { return (Node*)(void*)&hdr->pool[nidx]; } inline const SparseMat::Node* SparseMat::node(size_t nidx) const { return (const Node*)(const void*)&hdr->pool[nidx]; } inline SparseMatIterator SparseMat::begin() { return SparseMatIterator(this); } inline SparseMatConstIterator SparseMat::begin() const { return SparseMatConstIterator(this); } inline SparseMatIterator SparseMat::end() { SparseMatIterator it(this); it.seekEnd(); return it; } inline SparseMatConstIterator SparseMat::end() const { SparseMatConstIterator it(this); it.seekEnd(); return it; } template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat::begin() { return SparseMatIterator_<_Tp>(this); } template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat::begin() const { return SparseMatConstIterator_<_Tp>(this); } template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat::end() { SparseMatIterator_<_Tp> it(this); it.seekEnd(); return it; } template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat::end() const { SparseMatConstIterator_<_Tp> it(this); it.seekEnd(); return it; } ///////////////////////////// SparseMat_ //////////////////////////// template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_() { flags = MAGIC_VAL | DataType<_Tp>::type; } template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(int _dims, const int* _sizes) : SparseMat(_dims, _sizes, DataType<_Tp>::type) {} template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const SparseMat& m) { if( m.type() == DataType<_Tp>::type ) *this = (const SparseMat_<_Tp>&)m; else m.convertTo(*this, DataType<_Tp>::type); } template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const SparseMat_<_Tp>& m) { this->flags = m.flags; this->hdr = m.hdr; if( this->hdr ) CV_XADD(&this->hdr->refcount, 1); } template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const Mat& m) { SparseMat sm(m); *this = sm; } template<typename _Tp> inline SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const SparseMat_<_Tp>& m) { if( this != &m ) { if( m.hdr ) CV_XADD(&m.hdr->refcount, 1); release(); flags = m.flags; hdr = m.hdr; } return *this; } template<typename _Tp> inline SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const SparseMat& m) { if( m.type() == DataType<_Tp>::type ) return (*this = (const SparseMat_<_Tp>&)m); m.convertTo(*this, DataType<_Tp>::type); return *this; } template<typename _Tp> inline SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const Mat& m) { return (*this = SparseMat(m)); } template<typename _Tp> inline SparseMat_<_Tp> SparseMat_<_Tp>::clone() const { SparseMat_<_Tp> m; this->copyTo(m); return m; } template<typename _Tp> inline void SparseMat_<_Tp>::create(int _dims, const int* _sizes) { SparseMat::create(_dims, _sizes, DataType<_Tp>::type); } template<typename _Tp> inline int SparseMat_<_Tp>::type() const { return DataType<_Tp>::type; } template<typename _Tp> inline int SparseMat_<_Tp>::depth() const { return DataType<_Tp>::depth; } template<typename _Tp> inline int SparseMat_<_Tp>::channels() const { return DataType<_Tp>::channels; } template<typename _Tp> inline _Tp& SparseMat_<_Tp>::ref(int i0, size_t* hashval) { return SparseMat::ref<_Tp>(i0, hashval); } template<typename _Tp> inline _Tp SparseMat_<_Tp>::operator()(int i0, size_t* hashval) const { return SparseMat::value<_Tp>(i0, hashval); } template<typename _Tp> inline _Tp& SparseMat_<_Tp>::ref(int i0, int i1, size_t* hashval) { return SparseMat::ref<_Tp>(i0, i1, hashval); } template<typename _Tp> inline _Tp SparseMat_<_Tp>::operator()(int i0, int i1, size_t* hashval) const { return SparseMat::value<_Tp>(i0, i1, hashval); } template<typename _Tp> inline _Tp& SparseMat_<_Tp>::ref(int i0, int i1, int i2, size_t* hashval) { return SparseMat::ref<_Tp>(i0, i1, i2, hashval); } template<typename _Tp> inline _Tp SparseMat_<_Tp>::operator()(int i0, int i1, int i2, size_t* hashval) const { return SparseMat::value<_Tp>(i0, i1, i2, hashval); } template<typename _Tp> inline _Tp& SparseMat_<_Tp>::ref(const int* idx, size_t* hashval) { return SparseMat::ref<_Tp>(idx, hashval); } template<typename _Tp> inline _Tp SparseMat_<_Tp>::operator()(const int* idx, size_t* hashval) const { return SparseMat::value<_Tp>(idx, hashval); } template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat_<_Tp>::begin() { return SparseMatIterator_<_Tp>(this); } template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::begin() const { return SparseMatConstIterator_<_Tp>(this); } template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat_<_Tp>::end() { SparseMatIterator_<_Tp> it(this); it.seekEnd(); return it; } template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::end() const { SparseMatConstIterator_<_Tp> it(this); it.seekEnd(); return it; } ////////////////////////// MatConstIterator ///////////////////////// inline MatConstIterator::MatConstIterator() : m(0), elemSize(0), ptr(0), sliceStart(0), sliceEnd(0) {} inline MatConstIterator::MatConstIterator(const Mat* _m) : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) { if( m && m->isContinuous() ) { sliceStart = m->ptr(); sliceEnd = sliceStart + m->total()*elemSize; } seek((const int*)0); } inline MatConstIterator::MatConstIterator(const Mat* _m, int _row, int _col) : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) { CV_Assert(m && m->dims <= 2); if( m->isContinuous() ) { sliceStart = m->ptr(); sliceEnd = sliceStart + m->total()*elemSize; } int idx[] = {_row, _col}; seek(idx); } inline MatConstIterator::MatConstIterator(const Mat* _m, Point _pt) : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) { CV_Assert(m && m->dims <= 2); if( m->isContinuous() ) { sliceStart = m->ptr(); sliceEnd = sliceStart + m->total()*elemSize; } int idx[] = {_pt.y, _pt.x}; seek(idx); } inline MatConstIterator::MatConstIterator(const MatConstIterator& it) : m(it.m), elemSize(it.elemSize), ptr(it.ptr), sliceStart(it.sliceStart), sliceEnd(it.sliceEnd) {} inline MatConstIterator& MatConstIterator::operator = (const MatConstIterator& it ) { m = it.m; elemSize = it.elemSize; ptr = it.ptr; sliceStart = it.sliceStart; sliceEnd = it.sliceEnd; return *this; } inline const uchar* MatConstIterator::operator *() const { return ptr; } inline MatConstIterator& MatConstIterator::operator += (ptrdiff_t ofs) { if( !m || ofs == 0 ) return *this; ptrdiff_t ofsb = ofs*elemSize; ptr += ofsb; if( ptr < sliceStart || sliceEnd <= ptr ) { ptr -= ofsb; seek(ofs, true); } return *this; } inline MatConstIterator& MatConstIterator::operator -= (ptrdiff_t ofs) { return (*this += -ofs); } inline MatConstIterator& MatConstIterator::operator --() { if( m && (ptr -= elemSize) < sliceStart ) { ptr += elemSize; seek(-1, true); } return *this; } inline MatConstIterator MatConstIterator::operator --(int) { MatConstIterator b = *this; *this += -1; return b; } inline MatConstIterator& MatConstIterator::operator ++() { if( m && (ptr += elemSize) >= sliceEnd ) { ptr -= elemSize; seek(1, true); } return *this; } inline MatConstIterator MatConstIterator::operator ++(int) { MatConstIterator b = *this; *this += 1; return b; } static inline bool operator == (const MatConstIterator& a, const MatConstIterator& b) { return a.m == b.m && a.ptr == b.ptr; } static inline bool operator != (const MatConstIterator& a, const MatConstIterator& b) { return !(a == b); } static inline bool operator < (const MatConstIterator& a, const MatConstIterator& b) { return a.ptr < b.ptr; } static inline bool operator > (const MatConstIterator& a, const MatConstIterator& b) { return a.ptr > b.ptr; } static inline bool operator <= (const MatConstIterator& a, const MatConstIterator& b) { return a.ptr <= b.ptr; } static inline bool operator >= (const MatConstIterator& a, const MatConstIterator& b) { return a.ptr >= b.ptr; } static inline ptrdiff_t operator - (const MatConstIterator& b, const MatConstIterator& a) { if( a.m != b.m ) return ((size_t)(-1) >> 1); if( a.sliceEnd == b.sliceEnd ) return (b.ptr - a.ptr)/static_cast<ptrdiff_t>(b.elemSize); return b.lpos() - a.lpos(); } static inline MatConstIterator operator + (const MatConstIterator& a, ptrdiff_t ofs) { MatConstIterator b = a; return b += ofs; } static inline MatConstIterator operator + (ptrdiff_t ofs, const MatConstIterator& a) { MatConstIterator b = a; return b += ofs; } static inline MatConstIterator operator - (const MatConstIterator& a, ptrdiff_t ofs) { MatConstIterator b = a; return b += -ofs; } inline const uchar* MatConstIterator::operator [](ptrdiff_t i) const { return *(*this + i); } ///////////////////////// MatConstIterator_ ///////////////////////// template<typename _Tp> inline MatConstIterator_<_Tp>::MatConstIterator_() {} template<typename _Tp> inline MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m) : MatConstIterator(_m) {} template<typename _Tp> inline MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col) : MatConstIterator(_m, _row, _col) {} template<typename _Tp> inline MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m, Point _pt) : MatConstIterator(_m, _pt) {} template<typename _Tp> inline MatConstIterator_<_Tp>::MatConstIterator_(const MatConstIterator_& it) : MatConstIterator(it) {} template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator = (const MatConstIterator_& it ) { MatConstIterator::operator = (it); return *this; } template<typename _Tp> inline const _Tp& MatConstIterator_<_Tp>::operator *() const { return *(_Tp*)(this->ptr); } template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator += (ptrdiff_t ofs) { MatConstIterator::operator += (ofs); return *this; } template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator -= (ptrdiff_t ofs) { return (*this += -ofs); } template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator --() { MatConstIterator::operator --(); return *this; } template<typename _Tp> inline MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator --(int) { MatConstIterator_ b = *this; MatConstIterator::operator --(); return b; } template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator ++() { MatConstIterator::operator ++(); return *this; } template<typename _Tp> inline MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator ++(int) { MatConstIterator_ b = *this; MatConstIterator::operator ++(); return b; } template<typename _Tp> inline Point MatConstIterator_<_Tp>::pos() const { if( !m ) return Point(); CV_DbgAssert( m->dims <= 2 ); if( m->isContinuous() ) { ptrdiff_t ofs = (const _Tp*)ptr - (const _Tp*)m->data; int y = (int)(ofs / m->cols); int x = (int)(ofs - (ptrdiff_t)y * m->cols); return Point(x, y); } else { ptrdiff_t ofs = (uchar*)ptr - m->data; int y = (int)(ofs / m->step); int x = (int)((ofs - y * m->step)/sizeof(_Tp)); return Point(x, y); } } template<typename _Tp> static inline bool operator == (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b) { return a.m == b.m && a.ptr == b.ptr; } template<typename _Tp> static inline bool operator != (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b) { return a.m != b.m || a.ptr != b.ptr; } template<typename _Tp> static inline MatConstIterator_<_Tp> operator + (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs) { MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatConstIterator_<_Tp>&)t; } template<typename _Tp> static inline MatConstIterator_<_Tp> operator + (ptrdiff_t ofs, const MatConstIterator_<_Tp>& a) { MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatConstIterator_<_Tp>&)t; } template<typename _Tp> static inline MatConstIterator_<_Tp> operator - (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs) { MatConstIterator t = (const MatConstIterator&)a - ofs; return (MatConstIterator_<_Tp>&)t; } template<typename _Tp> inline const _Tp& MatConstIterator_<_Tp>::operator [](ptrdiff_t i) const { return *(_Tp*)MatConstIterator::operator [](i); } //////////////////////////// MatIterator_ /////////////////////////// template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_() : MatConstIterator_<_Tp>() {} template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m) : MatConstIterator_<_Tp>(_m) {} template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, int _row, int _col) : MatConstIterator_<_Tp>(_m, _row, _col) {} template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, Point _pt) : MatConstIterator_<_Tp>(_m, _pt) {} template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, const int* _idx) : MatConstIterator_<_Tp>(_m, _idx) {} template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(const MatIterator_& it) : MatConstIterator_<_Tp>(it) {} template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator = (const MatIterator_<_Tp>& it ) { MatConstIterator::operator = (it); return *this; } template<typename _Tp> inline _Tp& MatIterator_<_Tp>::operator *() const { return *(_Tp*)(this->ptr); } template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator += (ptrdiff_t ofs) { MatConstIterator::operator += (ofs); return *this; } template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator -= (ptrdiff_t ofs) { MatConstIterator::operator += (-ofs); return *this; } template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator --() { MatConstIterator::operator --(); return *this; } template<typename _Tp> inline MatIterator_<_Tp> MatIterator_<_Tp>::operator --(int) { MatIterator_ b = *this; MatConstIterator::operator --(); return b; } template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator ++() { MatConstIterator::operator ++(); return *this; } template<typename _Tp> inline MatIterator_<_Tp> MatIterator_<_Tp>::operator ++(int) { MatIterator_ b = *this; MatConstIterator::operator ++(); return b; } template<typename _Tp> inline _Tp& MatIterator_<_Tp>::operator [](ptrdiff_t i) const { return *(*this + i); } template<typename _Tp> static inline bool operator == (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b) { return a.m == b.m && a.ptr == b.ptr; } template<typename _Tp> static inline bool operator != (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b) { return a.m != b.m || a.ptr != b.ptr; } template<typename _Tp> static inline MatIterator_<_Tp> operator + (const MatIterator_<_Tp>& a, ptrdiff_t ofs) { MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatIterator_<_Tp>&)t; } template<typename _Tp> static inline MatIterator_<_Tp> operator + (ptrdiff_t ofs, const MatIterator_<_Tp>& a) { MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatIterator_<_Tp>&)t; } template<typename _Tp> static inline MatIterator_<_Tp> operator - (const MatIterator_<_Tp>& a, ptrdiff_t ofs) { MatConstIterator t = (const MatConstIterator&)a - ofs; return (MatIterator_<_Tp>&)t; } /////////////////////// SparseMatConstIterator ////////////////////// inline SparseMatConstIterator::SparseMatConstIterator() : m(0), hashidx(0), ptr(0) {} inline SparseMatConstIterator::SparseMatConstIterator(const SparseMatConstIterator& it) : m(it.m), hashidx(it.hashidx), ptr(it.ptr) {} inline SparseMatConstIterator& SparseMatConstIterator::operator = (const SparseMatConstIterator& it) { if( this != &it ) { m = it.m; hashidx = it.hashidx; ptr = it.ptr; } return *this; } template<typename _Tp> inline const _Tp& SparseMatConstIterator::value() const { return *(const _Tp*)ptr; } inline const SparseMat::Node* SparseMatConstIterator::node() const { return (ptr && m && m->hdr) ? (const SparseMat::Node*)(const void*)(ptr - m->hdr->valueOffset) : 0; } inline SparseMatConstIterator SparseMatConstIterator::operator ++(int) { SparseMatConstIterator it = *this; ++*this; return it; } inline void SparseMatConstIterator::seekEnd() { if( m && m->hdr ) { hashidx = m->hdr->hashtab.size(); ptr = 0; } } static inline bool operator == (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2) { return it1.m == it2.m && it1.ptr == it2.ptr; } static inline bool operator != (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2) { return !(it1 == it2); } ///////////////////////// SparseMatIterator ///////////////////////// inline SparseMatIterator::SparseMatIterator() {} inline SparseMatIterator::SparseMatIterator(SparseMat* _m) : SparseMatConstIterator(_m) {} inline SparseMatIterator::SparseMatIterator(const SparseMatIterator& it) : SparseMatConstIterator(it) {} inline SparseMatIterator& SparseMatIterator::operator = (const SparseMatIterator& it) { (SparseMatConstIterator&)*this = it; return *this; } template<typename _Tp> inline _Tp& SparseMatIterator::value() const { return *(_Tp*)ptr; } inline SparseMat::Node* SparseMatIterator::node() const { return (SparseMat::Node*)SparseMatConstIterator::node(); } inline SparseMatIterator& SparseMatIterator::operator ++() { SparseMatConstIterator::operator ++(); return *this; } inline SparseMatIterator SparseMatIterator::operator ++(int) { SparseMatIterator it = *this; ++*this; return it; } ////////////////////// SparseMatConstIterator_ ////////////////////// template<typename _Tp> inline SparseMatConstIterator_<_Tp>::SparseMatConstIterator_() {} template<typename _Tp> inline SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat_<_Tp>* _m) : SparseMatConstIterator(_m) {} template<typename _Tp> inline SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat* _m) : SparseMatConstIterator(_m) { CV_Assert( _m->type() == DataType<_Tp>::type ); } template<typename _Tp> inline SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMatConstIterator_<_Tp>& it) : SparseMatConstIterator(it) {} template<typename _Tp> inline SparseMatConstIterator_<_Tp>& SparseMatConstIterator_<_Tp>::operator = (const SparseMatConstIterator_<_Tp>& it) { return reinterpret_cast<SparseMatConstIterator_<_Tp>&> (*reinterpret_cast<SparseMatConstIterator*>(this) = reinterpret_cast<const SparseMatConstIterator&>(it)); } template<typename _Tp> inline const _Tp& SparseMatConstIterator_<_Tp>::operator *() const { return *(const _Tp*)this->ptr; } template<typename _Tp> inline SparseMatConstIterator_<_Tp>& SparseMatConstIterator_<_Tp>::operator ++() { SparseMatConstIterator::operator ++(); return *this; } template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMatConstIterator_<_Tp>::operator ++(int) { SparseMatConstIterator_<_Tp> it = *this; SparseMatConstIterator::operator ++(); return it; } ///////////////////////// SparseMatIterator_ //////////////////////// template<typename _Tp> inline SparseMatIterator_<_Tp>::SparseMatIterator_() {} template<typename _Tp> inline SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat_<_Tp>* _m) : SparseMatConstIterator_<_Tp>(_m) {} template<typename _Tp> inline SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat* _m) : SparseMatConstIterator_<_Tp>(_m) {} template<typename _Tp> inline SparseMatIterator_<_Tp>::SparseMatIterator_(const SparseMatIterator_<_Tp>& it) : SparseMatConstIterator_<_Tp>(it) {} template<typename _Tp> inline SparseMatIterator_<_Tp>& SparseMatIterator_<_Tp>::operator = (const SparseMatIterator_<_Tp>& it) { return reinterpret_cast<SparseMatIterator_<_Tp>&> (*reinterpret_cast<SparseMatConstIterator*>(this) = reinterpret_cast<const SparseMatConstIterator&>(it)); } template<typename _Tp> inline _Tp& SparseMatIterator_<_Tp>::operator *() const { return *(_Tp*)this->ptr; } template<typename _Tp> inline SparseMatIterator_<_Tp>& SparseMatIterator_<_Tp>::operator ++() { SparseMatConstIterator::operator ++(); return *this; } template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMatIterator_<_Tp>::operator ++(int) { SparseMatIterator_<_Tp> it = *this; SparseMatConstIterator::operator ++(); return it; } //////////////////////// MatCommaInitializer_ /////////////////////// template<typename _Tp> inline MatCommaInitializer_<_Tp>::MatCommaInitializer_(Mat_<_Tp>* _m) : it(_m) {} template<typename _Tp> template<typename T2> inline MatCommaInitializer_<_Tp>& MatCommaInitializer_<_Tp>::operator , (T2 v) { CV_DbgAssert( this->it < ((const Mat_<_Tp>*)this->it.m)->end() ); *this->it = _Tp(v); ++this->it; return *this; } template<typename _Tp> inline MatCommaInitializer_<_Tp>::operator Mat_<_Tp>() const { CV_DbgAssert( this->it == ((const Mat_<_Tp>*)this->it.m)->end() ); return Mat_<_Tp>(*this->it.m); } template<typename _Tp, typename T2> static inline MatCommaInitializer_<_Tp> operator << (const Mat_<_Tp>& m, T2 val) { MatCommaInitializer_<_Tp> commaInitializer((Mat_<_Tp>*)&m); return (commaInitializer, val); } ///////////////////////// Matrix Expressions //////////////////////// inline Mat& Mat::operator = (const MatExpr& e) { e.op->assign(e, *this); return *this; } template<typename _Tp> inline Mat_<_Tp>::Mat_(const MatExpr& e) { e.op->assign(e, *this, DataType<_Tp>::type); } template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const MatExpr& e) { e.op->assign(e, *this, DataType<_Tp>::type); return *this; } template<typename _Tp> inline MatExpr Mat_<_Tp>::zeros(int rows, int cols) { return Mat::zeros(rows, cols, DataType<_Tp>::type); } template<typename _Tp> inline MatExpr Mat_<_Tp>::zeros(Size sz) { return Mat::zeros(sz, DataType<_Tp>::type); } template<typename _Tp> inline MatExpr Mat_<_Tp>::ones(int rows, int cols) { return Mat::ones(rows, cols, DataType<_Tp>::type); } template<typename _Tp> inline MatExpr Mat_<_Tp>::ones(Size sz) { return Mat::ones(sz, DataType<_Tp>::type); } template<typename _Tp> inline MatExpr Mat_<_Tp>::eye(int rows, int cols) { return Mat::eye(rows, cols, DataType<_Tp>::type); } template<typename _Tp> inline MatExpr Mat_<_Tp>::eye(Size sz) { return Mat::eye(sz, DataType<_Tp>::type); } inline MatExpr::MatExpr() : op(0), flags(0), a(Mat()), b(Mat()), c(Mat()), alpha(0), beta(0), s() {} inline MatExpr::MatExpr(const MatOp* _op, int _flags, const Mat& _a, const Mat& _b, const Mat& _c, double _alpha, double _beta, const Scalar& _s) : op(_op), flags(_flags), a(_a), b(_b), c(_c), alpha(_alpha), beta(_beta), s(_s) {} inline MatExpr::operator Mat() const { Mat m; op->assign(*this, m); return m; } template<typename _Tp> inline MatExpr::operator Mat_<_Tp>() const { Mat_<_Tp> m; op->assign(*this, m, DataType<_Tp>::type); return m; } template<typename _Tp> static inline MatExpr min(const Mat_<_Tp>& a, const Mat_<_Tp>& b) { return cv::min((const Mat&)a, (const Mat&)b); } template<typename _Tp> static inline MatExpr min(const Mat_<_Tp>& a, double s) { return cv::min((const Mat&)a, s); } template<typename _Tp> static inline MatExpr min(double s, const Mat_<_Tp>& a) { return cv::min((const Mat&)a, s); } template<typename _Tp> static inline MatExpr max(const Mat_<_Tp>& a, const Mat_<_Tp>& b) { return cv::max((const Mat&)a, (const Mat&)b); } template<typename _Tp> static inline MatExpr max(const Mat_<_Tp>& a, double s) { return cv::max((const Mat&)a, s); } template<typename _Tp> static inline MatExpr max(double s, const Mat_<_Tp>& a) { return cv::max((const Mat&)a, s); } template<typename _Tp> static inline MatExpr abs(const Mat_<_Tp>& m) { return cv::abs((const Mat&)m); } static inline Mat& operator += (Mat& a, const MatExpr& b) { b.op->augAssignAdd(b, a); return a; } static inline const Mat& operator += (const Mat& a, const MatExpr& b) { b.op->augAssignAdd(b, (Mat&)a); return a; } template<typename _Tp> static inline Mat_<_Tp>& operator += (Mat_<_Tp>& a, const MatExpr& b) { b.op->augAssignAdd(b, a); return a; } template<typename _Tp> static inline const Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const MatExpr& b) { b.op->augAssignAdd(b, (Mat&)a); return a; } static inline Mat& operator -= (Mat& a, const MatExpr& b) { b.op->augAssignSubtract(b, a); return a; } static inline const Mat& operator -= (const Mat& a, const MatExpr& b) { b.op->augAssignSubtract(b, (Mat&)a); return a; } template<typename _Tp> static inline Mat_<_Tp>& operator -= (Mat_<_Tp>& a, const MatExpr& b) { b.op->augAssignSubtract(b, a); return a; } template<typename _Tp> static inline const Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const MatExpr& b) { b.op->augAssignSubtract(b, (Mat&)a); return a; } static inline Mat& operator *= (Mat& a, const MatExpr& b) { b.op->augAssignMultiply(b, a); return a; } static inline const Mat& operator *= (const Mat& a, const MatExpr& b) { b.op->augAssignMultiply(b, (Mat&)a); return a; } template<typename _Tp> static inline Mat_<_Tp>& operator *= (Mat_<_Tp>& a, const MatExpr& b) { b.op->augAssignMultiply(b, a); return a; } template<typename _Tp> static inline const Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, const MatExpr& b) { b.op->augAssignMultiply(b, (Mat&)a); return a; } static inline Mat& operator /= (Mat& a, const MatExpr& b) { b.op->augAssignDivide(b, a); return a; } static inline const Mat& operator /= (const Mat& a, const MatExpr& b) { b.op->augAssignDivide(b, (Mat&)a); return a; } template<typename _Tp> static inline Mat_<_Tp>& operator /= (Mat_<_Tp>& a, const MatExpr& b) { b.op->augAssignDivide(b, a); return a; } template<typename _Tp> static inline const Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, const MatExpr& b) { b.op->augAssignDivide(b, (Mat&)a); return a; } //////////////////////////////// UMat //////////////////////////////// inline UMat::UMat(UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) {} inline UMat::UMat(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_rows, _cols, _type); } inline UMat::UMat(int _rows, int _cols, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_rows, _cols, _type); *this = _s; } inline UMat::UMat(Size _sz, int _type, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create( _sz.height, _sz.width, _type ); } inline UMat::UMat(Size _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_sz.height, _sz.width, _type); *this = _s; } inline UMat::UMat(int _dims, const int* _sz, int _type, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_dims, _sz, _type); } inline UMat::UMat(int _dims, const int* _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_dims, _sz, _type); *this = _s; } inline UMat::UMat(const UMat& m) : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator), usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows) { addref(); if( m.dims <= 2 ) { step[0] = m.step[0]; step[1] = m.step[1]; } else { dims = 0; copySize(m); } } template<typename _Tp> inline UMat::UMat(const std::vector<_Tp>& vec, bool copyData) : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), cols(1), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows) { if(vec.empty()) return; if( !copyData ) { // !!!TODO!!! CV_Error(Error::StsNotImplemented, ""); } else Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this); } inline UMat& UMat::operator = (const UMat& m) { if( this != &m ) { const_cast<UMat&>(m).addref(); release(); flags = m.flags; if( dims <= 2 && m.dims <= 2 ) { dims = m.dims; rows = m.rows; cols = m.cols; step[0] = m.step[0]; step[1] = m.step[1]; } else copySize(m); allocator = m.allocator; if (usageFlags == USAGE_DEFAULT) usageFlags = m.usageFlags; u = m.u; offset = m.offset; } return *this; } inline UMat UMat::row(int y) const { return UMat(*this, Range(y, y + 1), Range::all()); } inline UMat UMat::col(int x) const { return UMat(*this, Range::all(), Range(x, x + 1)); } inline UMat UMat::rowRange(int startrow, int endrow) const { return UMat(*this, Range(startrow, endrow), Range::all()); } inline UMat UMat::rowRange(const Range& r) const { return UMat(*this, r, Range::all()); } inline UMat UMat::colRange(int startcol, int endcol) const { return UMat(*this, Range::all(), Range(startcol, endcol)); } inline UMat UMat::colRange(const Range& r) const { return UMat(*this, Range::all(), r); } inline UMat UMat::clone() const { UMat m; copyTo(m); return m; } inline void UMat::assignTo( UMat& m, int _type ) const { if( _type < 0 ) m = *this; else convertTo(m, _type); } inline void UMat::create(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) { _type &= TYPE_MASK; if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && u ) return; int sz[] = {_rows, _cols}; create(2, sz, _type, _usageFlags); } inline void UMat::create(Size _sz, int _type, UMatUsageFlags _usageFlags) { create(_sz.height, _sz.width, _type, _usageFlags); } inline void UMat::addref() { if( u ) CV_XADD(&(u->urefcount), 1); } inline void UMat::release() { if( u && CV_XADD(&(u->urefcount), -1) == 1 ) deallocate(); for(int i = 0; i < dims; i++) size.p[i] = 0; u = 0; } inline UMat UMat::operator()( Range _rowRange, Range _colRange ) const { return UMat(*this, _rowRange, _colRange); } inline UMat UMat::operator()( const Rect& roi ) const { return UMat(*this, roi); } inline UMat UMat::operator()(const Range* ranges) const { return UMat(*this, ranges); } inline UMat UMat::operator()(const std::vector<Range>& ranges) const { return UMat(*this, ranges); } inline bool UMat::isContinuous() const { return (flags & CONTINUOUS_FLAG) != 0; } inline bool UMat::isSubmatrix() const { return (flags & SUBMATRIX_FLAG) != 0; } inline size_t UMat::elemSize() const { return dims > 0 ? step.p[dims - 1] : 0; } inline size_t UMat::elemSize1() const { return CV_ELEM_SIZE1(flags); } inline int UMat::type() const { return CV_MAT_TYPE(flags); } inline int UMat::depth() const { return CV_MAT_DEPTH(flags); } inline int UMat::channels() const { return CV_MAT_CN(flags); } inline size_t UMat::step1(int i) const { return step.p[i] / elemSize1(); } inline bool UMat::empty() const { return u == 0 || total() == 0; } inline size_t UMat::total() const { if( dims <= 2 ) return (size_t)rows * cols; size_t p = 1; for( int i = 0; i < dims; i++ ) p *= size[i]; return p; } #ifdef CV_CXX_MOVE_SEMANTICS inline UMat::UMat(UMat&& m) : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator), usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows) { if (m.dims <= 2) // move new step/size info { step[0] = m.step[0]; step[1] = m.step[1]; } else { CV_DbgAssert(m.step.p != m.step.buf); step.p = m.step.p; size.p = m.size.p; m.step.p = m.step.buf; m.size.p = &m.rows; } m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; m.allocator = NULL; m.u = NULL; m.offset = 0; } inline UMat& UMat::operator = (UMat&& m) { if (this == &m) return *this; release(); flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols; allocator = m.allocator; usageFlags = m.usageFlags; u = m.u; offset = m.offset; if (step.p != step.buf) // release self step/size { fastFree(step.p); step.p = step.buf; size.p = &rows; } if (m.dims <= 2) // move new step/size info { step[0] = m.step[0]; step[1] = m.step[1]; } else { CV_DbgAssert(m.step.p != m.step.buf); step.p = m.step.p; size.p = m.size.p; m.step.p = m.step.buf; m.size.p = &m.rows; } m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; m.allocator = NULL; m.u = NULL; m.offset = 0; return *this; } #endif inline bool UMatData::hostCopyObsolete() const { return (flags & HOST_COPY_OBSOLETE) != 0; } inline bool UMatData::deviceCopyObsolete() const { return (flags & DEVICE_COPY_OBSOLETE) != 0; } inline bool UMatData::deviceMemMapped() const { return (flags & DEVICE_MEM_MAPPED) != 0; } inline bool UMatData::copyOnMap() const { return (flags & COPY_ON_MAP) != 0; } inline bool UMatData::tempUMat() const { return (flags & TEMP_UMAT) != 0; } inline bool UMatData::tempCopiedUMat() const { return (flags & TEMP_COPIED_UMAT) == TEMP_COPIED_UMAT; } inline void UMatData::markDeviceMemMapped(bool flag) { if(flag) flags |= DEVICE_MEM_MAPPED; else flags &= ~DEVICE_MEM_MAPPED; } inline void UMatData::markHostCopyObsolete(bool flag) { if(flag) flags |= HOST_COPY_OBSOLETE; else flags &= ~HOST_COPY_OBSOLETE; } inline void UMatData::markDeviceCopyObsolete(bool flag) { if(flag) flags |= DEVICE_COPY_OBSOLETE; else flags &= ~DEVICE_COPY_OBSOLETE; } inline UMatDataAutoLock::UMatDataAutoLock(UMatData* _u) : u(_u) { u->lock(); } inline UMatDataAutoLock::~UMatDataAutoLock() { u->unlock(); } //! @endcond } //cv #endif