openCV library for Renesas RZ/A
Dependents: RZ_A2M_Mbed_samples
include/opencv2/flann/dist.h
- Committer:
- RyoheiHagimoto
- Date:
- 2021-01-29
- Revision:
- 0:0e0631af0305
File content as of revision 0:0e0631af0305:
/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_DIST_H_ #define OPENCV_FLANN_DIST_H_ #include <cmath> #include <cstdlib> #include <string.h> #ifdef _MSC_VER typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; #else #include <stdint.h> #endif #include "defines.h" #if (defined WIN32 || defined _WIN32) && defined(_M_ARM) # include <Intrin.h> #endif #ifdef __ARM_NEON__ # include "arm_neon.h" #endif namespace cvflann { template<typename T> inline T abs(T x) { return (x<0) ? -x : x; } template<> inline int abs<int>(int x) { return ::abs(x); } template<> inline float abs<float>(float x) { return fabsf(x); } template<> inline double abs<double>(double x) { return fabs(x); } template<typename T> struct Accumulator { typedef T Type; }; template<> struct Accumulator<unsigned char> { typedef float Type; }; template<> struct Accumulator<unsigned short> { typedef float Type; }; template<> struct Accumulator<unsigned int> { typedef float Type; }; template<> struct Accumulator<char> { typedef float Type; }; template<> struct Accumulator<short> { typedef float Type; }; template<> struct Accumulator<int> { typedef float Type; }; #undef True #undef False class True { }; class False { }; /** * Squared Euclidean distance functor. * * This is the simpler, unrolled version. This is preferable for * very low dimensionality data (eg 3D points) */ template<class T> struct L2_Simple { typedef True is_kdtree_distance; typedef True is_vector_space_distance; typedef T ElementType; typedef typename Accumulator<T>::Type ResultType; template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const { ResultType result = ResultType(); ResultType diff; for(size_t i = 0; i < size; ++i ) { diff = *a++ - *b++; result += diff*diff; } return result; } template <typename U, typename V> inline ResultType accum_dist(const U& a, const V& b, int) const { return (a-b)*(a-b); } }; /** * Squared Euclidean distance functor, optimized version */ template<class T> struct L2 { typedef True is_kdtree_distance; typedef True is_vector_space_distance; typedef T ElementType; typedef typename Accumulator<T>::Type ResultType; /** * Compute the squared Euclidean distance between two vectors. * * This is highly optimised, with loop unrolling, as it is one * of the most expensive inner loops. * * The computation of squared root at the end is omitted for * efficiency. */ template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = (ResultType)(a[0] - b[0]); diff1 = (ResultType)(a[1] - b[1]); diff2 = (ResultType)(a[2] - b[2]); diff3 = (ResultType)(a[3] - b[3]); result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; a += 4; b += 4; if ((worst_dist>0)&&(result>worst_dist)) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { diff0 = (ResultType)(*a++ - *b++); result += diff0 * diff0; } return result; } /** * Partial euclidean distance, using just one dimension. This is used by the * kd-tree when computing partial distances while traversing the tree. * * Squared root is omitted for efficiency. */ template <typename U, typename V> inline ResultType accum_dist(const U& a, const V& b, int) const { return (a-b)*(a-b); } }; /* * Manhattan distance functor, optimized version */ template<class T> struct L1 { typedef True is_kdtree_distance; typedef True is_vector_space_distance; typedef T ElementType; typedef typename Accumulator<T>::Type ResultType; /** * Compute the Manhattan (L_1) distance between two vectors. * * This is highly optimised, with loop unrolling, as it is one * of the most expensive inner loops. */ template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = (ResultType)abs(a[0] - b[0]); diff1 = (ResultType)abs(a[1] - b[1]); diff2 = (ResultType)abs(a[2] - b[2]); diff3 = (ResultType)abs(a[3] - b[3]); result += diff0 + diff1 + diff2 + diff3; a += 4; b += 4; if ((worst_dist>0)&&(result>worst_dist)) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { diff0 = (ResultType)abs(*a++ - *b++); result += diff0; } return result; } /** * Partial distance, used by the kd-tree. */ template <typename U, typename V> inline ResultType accum_dist(const U& a, const V& b, int) const { return abs(a-b); } }; template<class T> struct MinkowskiDistance { typedef True is_kdtree_distance; typedef True is_vector_space_distance; typedef T ElementType; typedef typename Accumulator<T>::Type ResultType; int order; MinkowskiDistance(int order_) : order(order_) {} /** * Compute the Minkowsky (L_p) distance between two vectors. * * This is highly optimised, with loop unrolling, as it is one * of the most expensive inner loops. * * The computation of squared root at the end is omitted for * efficiency. */ template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = (ResultType)abs(a[0] - b[0]); diff1 = (ResultType)abs(a[1] - b[1]); diff2 = (ResultType)abs(a[2] - b[2]); diff3 = (ResultType)abs(a[3] - b[3]); result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order); a += 4; b += 4; if ((worst_dist>0)&&(result>worst_dist)) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { diff0 = (ResultType)abs(*a++ - *b++); result += pow(diff0,order); } return result; } /** * Partial distance, used by the kd-tree. */ template <typename U, typename V> inline ResultType accum_dist(const U& a, const V& b, int) const { return pow(static_cast<ResultType>(abs(a-b)),order); } }; template<class T> struct MaxDistance { typedef False is_kdtree_distance; typedef True is_vector_space_distance; typedef T ElementType; typedef typename Accumulator<T>::Type ResultType; /** * Compute the max distance (L_infinity) between two vectors. * * This distance is not a valid kdtree distance, it's not dimensionwise additive. */ template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = abs(a[0] - b[0]); diff1 = abs(a[1] - b[1]); diff2 = abs(a[2] - b[2]); diff3 = abs(a[3] - b[3]); if (diff0>result) {result = diff0; } if (diff1>result) {result = diff1; } if (diff2>result) {result = diff2; } if (diff3>result) {result = diff3; } a += 4; b += 4; if ((worst_dist>0)&&(result>worst_dist)) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { diff0 = abs(*a++ - *b++); result = (diff0>result) ? diff0 : result; } return result; } /* This distance functor is not dimension-wise additive, which * makes it an invalid kd-tree distance, not implementing the accum_dist method */ }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor * bit count of A exclusive XOR'ed with B */ struct HammingLUT { typedef False is_kdtree_distance; typedef False is_vector_space_distance; typedef unsigned char ElementType; typedef int ResultType; /** this will count the bits in a ^ b */ ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const { static const uchar popCountTable[] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; ResultType result = 0; for (size_t i = 0; i < size; i++) { result += popCountTable[a[i] ^ b[i]]; } return result; } }; /** * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set) * That code was taken from brief.cpp in OpenCV */ template<class T> struct Hamming { typedef False is_kdtree_distance; typedef False is_vector_space_distance; typedef T ElementType; typedef int ResultType; template<typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const { ResultType result = 0; #ifdef __ARM_NEON__ { uint32x4_t bits = vmovq_n_u32(0); for (size_t i = 0; i < size; i += 16) { uint8x16_t A_vec = vld1q_u8 (a + i); uint8x16_t B_vec = vld1q_u8 (b + i); uint8x16_t AxorB = veorq_u8 (A_vec, B_vec); uint8x16_t bitsSet = vcntq_u8 (AxorB); uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet); uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8); bits = vaddq_u32(bits, bitSet4); } uint64x2_t bitSet2 = vpaddlq_u32 (bits); result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0); result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2); } #elif __GNUC__ { //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll) typedef unsigned long long pop_t; const size_t modulo = size % sizeof(pop_t); const pop_t* a2 = reinterpret_cast<const pop_t*> (a); const pop_t* b2 = reinterpret_cast<const pop_t*> (b); const pop_t* a2_end = a2 + (size / sizeof(pop_t)); for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2)); if (modulo) { //in the case where size is not dividable by sizeof(size_t) //need to mask off the bits at the end pop_t a_final = 0, b_final = 0; memcpy(&a_final, a2, modulo); memcpy(&b_final, b2, modulo); result += __builtin_popcountll(a_final ^ b_final); } } #else // NO NEON and NOT GNUC typedef unsigned long long pop_t; HammingLUT lut; result = lut(reinterpret_cast<const unsigned char*> (a), reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t)); #endif return result; } }; template<typename T> struct Hamming2 { typedef False is_kdtree_distance; typedef False is_vector_space_distance; typedef T ElementType; typedef int ResultType; /** This is popcount_3() from: * http://en.wikipedia.org/wiki/Hamming_weight */ unsigned int popcnt32(uint32_t n) const { n -= ((n >> 1) & 0x55555555); n = (n & 0x33333333) + ((n >> 2) & 0x33333333); return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24; } #ifdef FLANN_PLATFORM_64_BIT unsigned int popcnt64(uint64_t n) const { n -= ((n >> 1) & 0x5555555555555555); n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333); return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56; } #endif template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const { #ifdef FLANN_PLATFORM_64_BIT const uint64_t* pa = reinterpret_cast<const uint64_t*>(a); const uint64_t* pb = reinterpret_cast<const uint64_t*>(b); ResultType result = 0; size /= (sizeof(uint64_t)/sizeof(unsigned char)); for(size_t i = 0; i < size; ++i ) { result += popcnt64(*pa ^ *pb); ++pa; ++pb; } #else const uint32_t* pa = reinterpret_cast<const uint32_t*>(a); const uint32_t* pb = reinterpret_cast<const uint32_t*>(b); ResultType result = 0; size /= (sizeof(uint32_t)/sizeof(unsigned char)); for(size_t i = 0; i < size; ++i ) { result += popcnt32(*pa ^ *pb); ++pa; ++pb; } #endif return result; } }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template<class T> struct HistIntersectionDistance { typedef True is_kdtree_distance; typedef True is_vector_space_distance; typedef T ElementType; typedef typename Accumulator<T>::Type ResultType; /** * Compute the histogram intersection distance */ template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType min0, min1, min2, min3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]); min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]); min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]); min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]); result += min0 + min1 + min2 + min3; a += 4; b += 4; if ((worst_dist>0)&&(result>worst_dist)) { return result; } } /* Process last 0-3 pixels. Not needed for standard vector lengths. */ while (a < last) { min0 = (ResultType)(*a < *b ? *a : *b); result += min0; ++a; ++b; } return result; } /** * Partial distance, used by the kd-tree. */ template <typename U, typename V> inline ResultType accum_dist(const U& a, const V& b, int) const { return a<b ? a : b; } }; template<class T> struct HellingerDistance { typedef True is_kdtree_distance; typedef True is_vector_space_distance; typedef T ElementType; typedef typename Accumulator<T>::Type ResultType; /** * Compute the Hellinger distance */ template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const { ResultType result = ResultType(); ResultType diff0, diff1, diff2, diff3; Iterator1 last = a + size; Iterator1 lastgroup = last - 3; /* Process 4 items with each loop for efficiency. */ while (a < lastgroup) { diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0])); diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1])); diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2])); diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3])); result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; a += 4; b += 4; } while (a < last) { diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++)); result += diff0 * diff0; } return result; } /** * Partial distance, used by the kd-tree. */ template <typename U, typename V> inline ResultType accum_dist(const U& a, const V& b, int) const { ResultType diff = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b)); return diff * diff; } }; template<class T> struct ChiSquareDistance { typedef True is_kdtree_distance; typedef True is_vector_space_distance; typedef T ElementType; typedef typename Accumulator<T>::Type ResultType; /** * Compute the chi-square distance */ template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); ResultType sum, diff; Iterator1 last = a + size; while (a < last) { sum = (ResultType)(*a + *b); if (sum>0) { diff = (ResultType)(*a - *b); result += diff*diff/sum; } ++a; ++b; if ((worst_dist>0)&&(result>worst_dist)) { return result; } } return result; } /** * Partial distance, used by the kd-tree. */ template <typename U, typename V> inline ResultType accum_dist(const U& a, const V& b, int) const { ResultType result = ResultType(); ResultType sum, diff; sum = (ResultType)(a+b); if (sum>0) { diff = (ResultType)(a-b); result = diff*diff/sum; } return result; } }; template<class T> struct KL_Divergence { typedef True is_kdtree_distance; typedef True is_vector_space_distance; typedef T ElementType; typedef typename Accumulator<T>::Type ResultType; /** * Compute the Kullback–Leibler divergence */ template <typename Iterator1, typename Iterator2> ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const { ResultType result = ResultType(); Iterator1 last = a + size; while (a < last) { if (* b != 0) { ResultType ratio = (ResultType)(*a / *b); if (ratio>0) { result += *a * log(ratio); } } ++a; ++b; if ((worst_dist>0)&&(result>worst_dist)) { return result; } } return result; } /** * Partial distance, used by the kd-tree. */ template <typename U, typename V> inline ResultType accum_dist(const U& a, const V& b, int) const { ResultType result = ResultType(); if( *b != 0 ) { ResultType ratio = (ResultType)(a / b); if (ratio>0) { result = a * log(ratio); } } return result; } }; /* * This is a "zero iterator". It basically behaves like a zero filled * array to all algorithms that use arrays as iterators (STL style). * It's useful when there's a need to compute the distance between feature * and origin it and allows for better compiler optimisation than using a * zero-filled array. */ template <typename T> struct ZeroIterator { T operator*() { return 0; } T operator[](int) { return 0; } const ZeroIterator<T>& operator ++() { return *this; } ZeroIterator<T> operator ++(int) { return *this; } ZeroIterator<T>& operator+=(int) { return *this; } }; /* * Depending on processed distances, some of them are already squared (e.g. L2) * and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure * we are working on ^2 distances, thus following templates to ensure that. */ template <typename Distance, typename ElementType> struct squareDistance { typedef typename Distance::ResultType ResultType; ResultType operator()( ResultType dist ) { return dist*dist; } }; template <typename ElementType> struct squareDistance<L2_Simple<ElementType>, ElementType> { typedef typename L2_Simple<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return dist; } }; template <typename ElementType> struct squareDistance<L2<ElementType>, ElementType> { typedef typename L2<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return dist; } }; template <typename ElementType> struct squareDistance<MinkowskiDistance<ElementType>, ElementType> { typedef typename MinkowskiDistance<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return dist; } }; template <typename ElementType> struct squareDistance<HellingerDistance<ElementType>, ElementType> { typedef typename HellingerDistance<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return dist; } }; template <typename ElementType> struct squareDistance<ChiSquareDistance<ElementType>, ElementType> { typedef typename ChiSquareDistance<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return dist; } }; template <typename Distance> typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist ) { typedef typename Distance::ElementType ElementType; squareDistance<Distance, ElementType> dummy; return dummy( dist ); } /* * ...and a template to ensure the user that he will process the normal distance, * and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance) * that will result in doing actually sqrt(dist*dist) for L1 distance for instance. */ template <typename Distance, typename ElementType> struct simpleDistance { typedef typename Distance::ResultType ResultType; ResultType operator()( ResultType dist ) { return dist; } }; template <typename ElementType> struct simpleDistance<L2_Simple<ElementType>, ElementType> { typedef typename L2_Simple<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return sqrt(dist); } }; template <typename ElementType> struct simpleDistance<L2<ElementType>, ElementType> { typedef typename L2<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return sqrt(dist); } }; template <typename ElementType> struct simpleDistance<MinkowskiDistance<ElementType>, ElementType> { typedef typename MinkowskiDistance<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return sqrt(dist); } }; template <typename ElementType> struct simpleDistance<HellingerDistance<ElementType>, ElementType> { typedef typename HellingerDistance<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return sqrt(dist); } }; template <typename ElementType> struct simpleDistance<ChiSquareDistance<ElementType>, ElementType> { typedef typename ChiSquareDistance<ElementType>::ResultType ResultType; ResultType operator()( ResultType dist ) { return sqrt(dist); } }; template <typename Distance> typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist ) { typedef typename Distance::ElementType ElementType; simpleDistance<Distance, ElementType> dummy; return dummy( dist ); } } #endif //OPENCV_FLANN_DIST_H_