openCV library for Renesas RZ/A
Dependents: RZ_A2M_Mbed_samples
Diff: include/opencv2/flann/nn_index.h
- Revision:
- 0:0e0631af0305
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/opencv2/flann/nn_index.h Fri Jan 29 04:53:38 2021 +0000 @@ -0,0 +1,177 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_NNINDEX_H +#define OPENCV_FLANN_NNINDEX_H + +#include "general.h" +#include "matrix.h" +#include "result_set.h" +#include "params.h" + +namespace cvflann +{ + +/** + * Nearest-neighbour index base class + */ +template <typename Distance> +class NNIndex +{ + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + +public: + + virtual ~NNIndex() {} + + /** + * \brief Builds the index + */ + virtual void buildIndex() = 0; + + /** + * \brief Perform k-nearest neighbor search + * \param[in] queries The query points for which to find the nearest neighbors + * \param[out] indices The indices of the nearest neighbors found + * \param[out] dists Distances to the nearest neighbors found + * \param[in] knn Number of nearest neighbors to return + * \param[in] params Search parameters + */ + virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) + { + assert(queries.cols == veclen()); + assert(indices.rows >= queries.rows); + assert(dists.rows >= queries.rows); + assert(int(indices.cols) >= knn); + assert(int(dists.cols) >= knn); + +#if 0 + KNNResultSet<DistanceType> resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.init(indices[i], dists[i]); + findNeighbors(resultSet, queries[i], params); + } +#else + KNNUniqueResultSet<DistanceType> resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.clear(); + findNeighbors(resultSet, queries[i], params); + if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); + else resultSet.copy(indices[i], dists[i], knn); + } +#endif + } + + /** + * \brief Perform radius search + * \param[in] query The query point + * \param[out] indices The indinces of the neighbors found within the given radius + * \param[out] dists The distances to the nearest neighbors found + * \param[in] radius The radius used for search + * \param[in] params Search parameters + * \returns Number of neighbors found + */ + virtual int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params) + { + if (query.rows != 1) { + fprintf(stderr, "I can only search one feature at a time for range search\n"); + return -1; + } + assert(query.cols == veclen()); + assert(indices.cols == dists.cols); + + int n = 0; + int* indices_ptr = NULL; + DistanceType* dists_ptr = NULL; + if (indices.cols > 0) { + n = (int)indices.cols; + indices_ptr = indices[0]; + dists_ptr = dists[0]; + } + + RadiusUniqueResultSet<DistanceType> resultSet((DistanceType)radius); + resultSet.clear(); + findNeighbors(resultSet, query[0], params); + if (n>0) { + if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices_ptr, dists_ptr, n); + else resultSet.copy(indices_ptr, dists_ptr, n); + } + + return (int)resultSet.size(); + } + + /** + * \brief Saves the index to a stream + * \param stream The stream to save the index to + */ + virtual void saveIndex(FILE* stream) = 0; + + /** + * \brief Loads the index from a stream + * \param stream The stream from which the index is loaded + */ + virtual void loadIndex(FILE* stream) = 0; + + /** + * \returns number of features in this index. + */ + virtual size_t size() const = 0; + + /** + * \returns The dimensionality of the features in this index. + */ + virtual size_t veclen() const = 0; + + /** + * \returns The amount of memory (in bytes) used by the index. + */ + virtual int usedMemory() const = 0; + + /** + * \returns The index type (kdtree, kmeans,...) + */ + virtual flann_algorithm_t getType() const = 0; + + /** + * \returns The index parameters + */ + virtual IndexParams getParameters() const = 0; + + + /** + * \brief Method that searches for nearest-neighbours + */ + virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) = 0; +}; + +} + +#endif //OPENCV_FLANN_NNINDEX_H