openCV library for Renesas RZ/A
Dependents: RZ_A2M_Mbed_samples
include/opencv2/flann/index_testing.h
- Committer:
- RyoheiHagimoto
- Date:
- 2021-01-29
- Revision:
- 0:0e0631af0305
File content as of revision 0:0e0631af0305:
/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_INDEX_TESTING_H_ #define OPENCV_FLANN_INDEX_TESTING_H_ #include <cstring> #include <cassert> #include <cmath> #include "matrix.h" #include "nn_index.h" #include "result_set.h" #include "logger.h" #include "timer.h" namespace cvflann { inline int countCorrectMatches(int* neighbors, int* groundTruth, int n) { int count = 0; for (int i=0; i<n; ++i) { for (int k=0; k<n; ++k) { if (neighbors[i]==groundTruth[k]) { count++; break; } } } return count; } template <typename Distance> typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target, int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance) { typedef typename Distance::ResultType DistanceType; DistanceType ret = 0; for (int i=0; i<n; ++i) { DistanceType den = distance(inputData[groundTruth[i]], target, veclen); DistanceType num = distance(inputData[neighbors[i]], target, veclen); if ((den==0)&&(num==0)) { ret += 1; } else { ret += num/den; } } return ret; } template <typename Distance> float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks, float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches) { typedef typename Distance::ResultType DistanceType; if (matches.cols<size_t(nn)) { Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn); throw FLANNException("Ground truth is not computed for as many neighbors as requested"); } KNNResultSet<DistanceType> resultSet(nn+skipMatches); SearchParams searchParams(checks); std::vector<int> indices(nn+skipMatches); std::vector<DistanceType> dists(nn+skipMatches); int* neighbors = &indices[skipMatches]; int correct = 0; DistanceType distR = 0; StartStopTimer t; int repeats = 0; while (t.value<0.2) { repeats++; t.start(); correct = 0; distR = 0; for (size_t i = 0; i < testData.rows; i++) { resultSet.init(&indices[0], &dists[0]); index.findNeighbors(resultSet, testData[i], searchParams); correct += countCorrectMatches(neighbors,matches[i], nn); distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance); } t.stop(); } time = float(t.value/repeats); float precicion = (float)correct/(nn*testData.rows); dist = distR/(testData.rows*nn); Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n", checks, precicion, time, 1000.0 * time / testData.rows, dist); return precicion; } template <typename Distance> float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0) { typedef typename Distance::ResultType DistanceType; Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); Logger::info("---------------------------------------------------------\n"); float time = 0; DistanceType dist = 0; precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches); return time; } template <typename Distance> float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0) { typedef typename Distance::ResultType DistanceType; const float SEARCH_EPS = 0.001f; Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); Logger::info("---------------------------------------------------------\n"); int c2 = 1; float p2; int c1 = 1; //float p1; float time; DistanceType dist; p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); if (p2>precision) { Logger::info("Got as close as I can\n"); checks = c2; return time; } while (p2<precision) { c1 = c2; //p1 = p2; c2 *=2; p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); } int cx; float realPrecision; if (fabs(p2-precision)>SEARCH_EPS) { Logger::info("Start linear estimation\n"); // after we got to values in the vecinity of the desired precision // use linear approximation get a better estimation cx = (c1+c2)/2; realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); while (fabs(realPrecision-precision)>SEARCH_EPS) { if (realPrecision<precision) { c1 = cx; } else { c2 = cx; } cx = (c1+c2)/2; if (cx==c1) { Logger::info("Got as close as I can\n"); break; } realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); } c2 = cx; p2 = realPrecision; } else { Logger::info("No need for linear estimation\n"); cx = c2; realPrecision = p2; } checks = cx; return time; } template <typename Distance> void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0) { typedef typename Distance::ResultType DistanceType; const float SEARCH_EPS = 0.001; // make sure precisions array is sorted std::sort(precisions, precisions+precisions_length); int pindex = 0; float precision = precisions[pindex]; Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); Logger::info("---------------------------------------------------------\n"); int c2 = 1; float p2; int c1 = 1; float p1; float time; DistanceType dist; p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); // if precision for 1 run down the tree is already // better then some of the requested precisions, then // skip those while (precisions[pindex]<p2 && pindex<precisions_length) { pindex++; } if (pindex==precisions_length) { Logger::info("Got as close as I can\n"); return; } for (int i=pindex; i<precisions_length; ++i) { precision = precisions[i]; while (p2<precision) { c1 = c2; p1 = p2; c2 *=2; p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return; } int cx; float realPrecision; if (fabs(p2-precision)>SEARCH_EPS) { Logger::info("Start linear estimation\n"); // after we got to values in the vecinity of the desired precision // use linear approximation get a better estimation cx = (c1+c2)/2; realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); while (fabs(realPrecision-precision)>SEARCH_EPS) { if (realPrecision<precision) { c1 = cx; } else { c2 = cx; } cx = (c1+c2)/2; if (cx==c1) { Logger::info("Got as close as I can\n"); break; } realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); } c2 = cx; p2 = realPrecision; } else { Logger::info("No need for linear estimation\n"); cx = c2; realPrecision = p2; } } } } #endif //OPENCV_FLANN_INDEX_TESTING_H_