openCV library for Renesas RZ/A

Dependents:   RZ_A2M_Mbed_samples

Revision:
0:0e0631af0305
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/include/opencv2/flann/hierarchical_clustering_index.h	Fri Jan 29 04:53:38 2021 +0000
@@ -0,0 +1,848 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2011  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2011  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
+#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <limits>
+#include <cmath>
+
+#include "general.h"
+#include "nn_index.h"
+#include "dist.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+
+
+namespace cvflann
+{
+
+struct HierarchicalClusteringIndexParams : public IndexParams
+{
+    HierarchicalClusteringIndexParams(int branching = 32,
+                                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
+                                      int trees = 4, int leaf_size = 100)
+    {
+        (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
+        // The branching factor used in the hierarchical clustering
+        (*this)["branching"] = branching;
+        // Algorithm used for picking the initial cluster centers
+        (*this)["centers_init"] = centers_init;
+        // number of parallel trees to build
+        (*this)["trees"] = trees;
+        // maximum leaf size
+        (*this)["leaf_size"] = leaf_size;
+    }
+};
+
+
+/**
+ * Hierarchical index
+ *
+ * Contains a tree constructed through a hierarchical clustering
+ * and other information for indexing a set of points for nearest-neighbour matching.
+ */
+template <typename Distance>
+class HierarchicalClusteringIndex : public NNIndex<Distance>
+{
+public:
+    typedef typename Distance::ElementType ElementType;
+    typedef typename Distance::ResultType DistanceType;
+
+private:
+
+
+    typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
+
+    /**
+     * The function used for choosing the cluster centers.
+     */
+    centersAlgFunction chooseCenters;
+
+
+
+    /**
+     * Chooses the initial centers in the k-means clustering in a random manner.
+     *
+     * Params:
+     *     k = number of centers
+     *     vecs = the dataset of points
+     *     indices = indices in the dataset
+     *     indices_length = length of indices vector
+     *
+     */
+    void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+    {
+        UniqueRandom r(indices_length);
+
+        int index;
+        for (index=0; index<k; ++index) {
+            bool duplicate = true;
+            int rnd;
+            while (duplicate) {
+                duplicate = false;
+                rnd = r.next();
+                if (rnd<0) {
+                    centers_length = index;
+                    return;
+                }
+
+                centers[index] = dsindices[rnd];
+
+                for (int j=0; j<index; ++j) {
+                    DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
+                    if (sq<1e-16) {
+                        duplicate = true;
+                    }
+                }
+            }
+        }
+
+        centers_length = index;
+    }
+
+
+    /**
+     * Chooses the initial centers in the k-means using Gonzales' algorithm
+     * so that the centers are spaced apart from each other.
+     *
+     * Params:
+     *     k = number of centers
+     *     vecs = the dataset of points
+     *     indices = indices in the dataset
+     * Returns:
+     */
+    void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+    {
+        int n = indices_length;
+
+        int rnd = rand_int(n);
+        assert(rnd >=0 && rnd < n);
+
+        centers[0] = dsindices[rnd];
+
+        int index;
+        for (index=1; index<k; ++index) {
+
+            int best_index = -1;
+            DistanceType best_val = 0;
+            for (int j=0; j<n; ++j) {
+                DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
+                for (int i=1; i<index; ++i) {
+                    DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
+                    if (tmp_dist<dist) {
+                        dist = tmp_dist;
+                    }
+                }
+                if (dist>best_val) {
+                    best_val = dist;
+                    best_index = j;
+                }
+            }
+            if (best_index!=-1) {
+                centers[index] = dsindices[best_index];
+            }
+            else {
+                break;
+            }
+        }
+        centers_length = index;
+    }
+
+
+    /**
+     * Chooses the initial centers in the k-means using the algorithm
+     * proposed in the KMeans++ paper:
+     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
+     *
+     * Implementation of this function was converted from the one provided in Arthur's code.
+     *
+     * Params:
+     *     k = number of centers
+     *     vecs = the dataset of points
+     *     indices = indices in the dataset
+     * Returns:
+     */
+    void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+    {
+        int n = indices_length;
+
+        double currentPot = 0;
+        DistanceType* closestDistSq = new DistanceType[n];
+
+        // Choose one random center and set the closestDistSq values
+        int index = rand_int(n);
+        assert(index >=0 && index < n);
+        centers[0] = dsindices[index];
+
+        // Computing distance^2 will have the advantage of even higher probability further to pick new centers
+        // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
+        for (int i = 0; i < n; i++) {
+            closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+            closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
+            currentPot += closestDistSq[i];
+        }
+
+
+        const int numLocalTries = 1;
+
+        // Choose each center
+        int centerCount;
+        for (centerCount = 1; centerCount < k; centerCount++) {
+
+            // Repeat several trials
+            double bestNewPot = -1;
+            int bestNewIndex = 0;
+            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
+
+                // Choose our center - have to be slightly careful to return a valid answer even accounting
+                // for possible rounding errors
+                double randVal = rand_double(currentPot);
+                for (index = 0; index < n-1; index++) {
+                    if (randVal <= closestDistSq[index]) break;
+                    else randVal -= closestDistSq[index];
+                }
+
+                // Compute the new potential
+                double newPot = 0;
+                for (int i = 0; i < n; i++) {
+                    DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+                    newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+                }
+
+                // Store the best result
+                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
+                    bestNewPot = newPot;
+                    bestNewIndex = index;
+                }
+            }
+
+            // Add the appropriate center
+            centers[centerCount] = dsindices[bestNewIndex];
+            currentPot = bestNewPot;
+            for (int i = 0; i < n; i++) {
+                DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
+                closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+            }
+        }
+
+        centers_length = centerCount;
+
+        delete[] closestDistSq;
+    }
+
+
+    /**
+     * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
+     * select the first point of the list as a candidate, then parse the points list. If another
+     * point is further than current candidate from the other centers, test if it is a good center
+     * of a local aggregation. If it is, replace current candidate by this point. And so on...
+     *
+     * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
+     * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
+     * class that pick centers among existing points instead of computing the barycenters, there is a real
+     * improvement.
+     *
+     * Params:
+     *     k = number of centers
+     *     vecs = the dataset of points
+     *     indices = indices in the dataset
+     * Returns:
+     */
+    void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+    {
+        const float kSpeedUpFactor = 1.3f;
+
+        int n = indices_length;
+
+        DistanceType* closestDistSq = new DistanceType[n];
+
+        // Choose one random center and set the closestDistSq values
+        int index = rand_int(n);
+        assert(index >=0 && index < n);
+        centers[0] = dsindices[index];
+
+        for (int i = 0; i < n; i++) {
+            closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+        }
+
+
+        // Choose each center
+        int centerCount;
+        for (centerCount = 1; centerCount < k; centerCount++) {
+
+            // Repeat several trials
+            double bestNewPot = -1;
+            int bestNewIndex = 0;
+            DistanceType furthest = 0;
+            for (index = 0; index < n; index++) {
+
+                // We will test only the potential of the points further than current candidate
+                if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
+
+                    // Compute the new potential
+                    double newPot = 0;
+                    for (int i = 0; i < n; i++) {
+                        newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
+                                            , closestDistSq[i] );
+                    }
+
+                    // Store the best result
+                    if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
+                        bestNewPot = newPot;
+                        bestNewIndex = index;
+                        furthest = closestDistSq[index];
+                    }
+                }
+            }
+
+            // Add the appropriate center
+            centers[centerCount] = dsindices[bestNewIndex];
+            for (int i = 0; i < n; i++) {
+                closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
+                                             , closestDistSq[i] );
+            }
+        }
+
+        centers_length = centerCount;
+
+        delete[] closestDistSq;
+    }
+
+
+public:
+
+
+    /**
+     * Index constructor
+     *
+     * Params:
+     *          inputData = dataset with the input features
+     *          params = parameters passed to the hierarchical k-means algorithm
+     */
+    HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
+                                Distance d = Distance())
+        : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
+    {
+        memoryCounter = 0;
+
+        size_ = dataset.rows;
+        veclen_ = dataset.cols;
+
+        branching_ = get_param(params,"branching",32);
+        centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
+        trees_ = get_param(params,"trees",4);
+        leaf_size_ = get_param(params,"leaf_size",100);
+
+        if (centers_init_==FLANN_CENTERS_RANDOM) {
+            chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
+        }
+        else if (centers_init_==FLANN_CENTERS_GONZALES) {
+            chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
+        }
+        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
+            chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
+        }
+        else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
+            chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
+        }
+        else {
+            throw FLANNException("Unknown algorithm for choosing initial centers.");
+        }
+
+        trees_ = get_param(params,"trees",4);
+        root = new NodePtr[trees_];
+        indices = new int*[trees_];
+
+        for (int i=0; i<trees_; ++i) {
+            root[i] = NULL;
+            indices[i] = NULL;
+        }
+    }
+
+    HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
+    HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
+
+    /**
+     * Index destructor.
+     *
+     * Release the memory used by the index.
+     */
+    virtual ~HierarchicalClusteringIndex()
+    {
+        free_elements();
+
+        if (root!=NULL) {
+            delete[] root;
+        }
+
+        if (indices!=NULL) {
+            delete[] indices;
+        }
+    }
+
+
+    /**
+     * Release the inner elements of indices[]
+     */
+    void free_elements()
+    {
+        if (indices!=NULL) {
+            for(int i=0; i<trees_; ++i) {
+                if (indices[i]!=NULL) {
+                    delete[] indices[i];
+                    indices[i] = NULL;
+                }
+            }
+        }
+    }
+
+
+    /**
+     *  Returns size of index.
+     */
+    size_t size() const
+    {
+        return size_;
+    }
+
+    /**
+     * Returns the length of an index feature.
+     */
+    size_t veclen() const
+    {
+        return veclen_;
+    }
+
+
+    /**
+     * Computes the inde memory usage
+     * Returns: memory used by the index
+     */
+    int usedMemory() const
+    {
+        return pool.usedMemory+pool.wastedMemory+memoryCounter;
+    }
+
+    /**
+     * Builds the index
+     */
+    void buildIndex()
+    {
+        if (branching_<2) {
+            throw FLANNException("Branching factor must be at least 2");
+        }
+
+        free_elements();
+
+        for (int i=0; i<trees_; ++i) {
+            indices[i] = new int[size_];
+            for (size_t j=0; j<size_; ++j) {
+                indices[i][j] = (int)j;
+            }
+            root[i] = pool.allocate<Node>();
+            computeClustering(root[i], indices[i], (int)size_, branching_,0);
+        }
+    }
+
+
+    flann_algorithm_t getType() const
+    {
+        return FLANN_INDEX_HIERARCHICAL;
+    }
+
+
+    void saveIndex(FILE* stream)
+    {
+        save_value(stream, branching_);
+        save_value(stream, trees_);
+        save_value(stream, centers_init_);
+        save_value(stream, leaf_size_);
+        save_value(stream, memoryCounter);
+        for (int i=0; i<trees_; ++i) {
+            save_value(stream, *indices[i], size_);
+            save_tree(stream, root[i], i);
+        }
+
+    }
+
+
+    void loadIndex(FILE* stream)
+    {
+        free_elements();
+
+        if (root!=NULL) {
+            delete[] root;
+        }
+
+        if (indices!=NULL) {
+            delete[] indices;
+        }
+
+        load_value(stream, branching_);
+        load_value(stream, trees_);
+        load_value(stream, centers_init_);
+        load_value(stream, leaf_size_);
+        load_value(stream, memoryCounter);
+
+        indices = new int*[trees_];
+        root = new NodePtr[trees_];
+        for (int i=0; i<trees_; ++i) {
+            indices[i] = new int[size_];
+            load_value(stream, *indices[i], size_);
+            load_tree(stream, root[i], i);
+        }
+
+        params["algorithm"] = getType();
+        params["branching"] = branching_;
+        params["trees"] = trees_;
+        params["centers_init"] = centers_init_;
+        params["leaf_size"] = leaf_size_;
+    }
+
+
+    /**
+     * Find set of nearest neighbors to vec. Their indices are stored inside
+     * the result object.
+     *
+     * Params:
+     *     result = the result object in which the indices of the nearest-neighbors are stored
+     *     vec = the vector for which to search the nearest neighbors
+     *     searchParams = parameters that influence the search algorithm (checks)
+     */
+    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+    {
+
+        int maxChecks = get_param(searchParams,"checks",32);
+
+        // Priority queue storing intermediate branches in the best-bin-first search
+        Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
+
+        std::vector<bool> checked(size_,false);
+        int checks = 0;
+        for (int i=0; i<trees_; ++i) {
+            findNN(root[i], result, vec, checks, maxChecks, heap, checked);
+        }
+
+        BranchSt branch;
+        while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
+            NodePtr node = branch.node;
+            findNN(node, result, vec, checks, maxChecks, heap, checked);
+        }
+        assert(result.full());
+
+        delete heap;
+
+    }
+
+    IndexParams getParameters() const
+    {
+        return params;
+    }
+
+
+private:
+
+    /**
+     * Struture representing a node in the hierarchical k-means tree.
+     */
+    struct Node
+    {
+        /**
+         * The cluster center index
+         */
+        int pivot;
+        /**
+         * The cluster size (number of points in the cluster)
+         */
+        int size;
+        /**
+         * Child nodes (only for non-terminal nodes)
+         */
+        Node** childs;
+        /**
+         * Node points (only for terminal nodes)
+         */
+        int* indices;
+        /**
+         * Level
+         */
+        int level;
+    };
+    typedef Node* NodePtr;
+
+
+
+    /**
+     * Alias definition for a nicer syntax.
+     */
+    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
+
+
+
+    void save_tree(FILE* stream, NodePtr node, int num)
+    {
+        save_value(stream, *node);
+        if (node->childs==NULL) {
+            int indices_offset = (int)(node->indices - indices[num]);
+            save_value(stream, indices_offset);
+        }
+        else {
+            for(int i=0; i<branching_; ++i) {
+                save_tree(stream, node->childs[i], num);
+            }
+        }
+    }
+
+
+    void load_tree(FILE* stream, NodePtr& node, int num)
+    {
+        node = pool.allocate<Node>();
+        load_value(stream, *node);
+        if (node->childs==NULL) {
+            int indices_offset;
+            load_value(stream, indices_offset);
+            node->indices = indices[num] + indices_offset;
+        }
+        else {
+            node->childs = pool.allocate<NodePtr>(branching_);
+            for(int i=0; i<branching_; ++i) {
+                load_tree(stream, node->childs[i], num);
+            }
+        }
+    }
+
+
+
+
+    void computeLabels(int* dsindices, int indices_length,  int* centers, int centers_length, int* labels, DistanceType& cost)
+    {
+        cost = 0;
+        for (int i=0; i<indices_length; ++i) {
+            ElementType* point = dataset[dsindices[i]];
+            DistanceType dist = distance(point, dataset[centers[0]], veclen_);
+            labels[i] = 0;
+            for (int j=1; j<centers_length; ++j) {
+                DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
+                if (dist>new_dist) {
+                    labels[i] = j;
+                    dist = new_dist;
+                }
+            }
+            cost += dist;
+        }
+    }
+
+    /**
+     * The method responsible with actually doing the recursive hierarchical
+     * clustering
+     *
+     * Params:
+     *     node = the node to cluster
+     *     indices = indices of the points belonging to the current node
+     *     branching = the branching factor to use in the clustering
+     *
+     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
+     */
+    void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
+    {
+        node->size = indices_length;
+        node->level = level;
+
+        if (indices_length < leaf_size_) { // leaf node
+            node->indices = dsindices;
+            std::sort(node->indices,node->indices+indices_length);
+            node->childs = NULL;
+            return;
+        }
+
+        std::vector<int> centers(branching);
+        std::vector<int> labels(indices_length);
+
+        int centers_length;
+        (this->*chooseCenters)(branching, dsindices, indices_length, &centers[0], centers_length);
+
+        if (centers_length<branching) {
+            node->indices = dsindices;
+            std::sort(node->indices,node->indices+indices_length);
+            node->childs = NULL;
+            return;
+        }
+
+
+        //	assign points to clusters
+        DistanceType cost;
+        computeLabels(dsindices, indices_length, &centers[0], centers_length, &labels[0], cost);
+
+        node->childs = pool.allocate<NodePtr>(branching);
+        int start = 0;
+        int end = start;
+        for (int i=0; i<branching; ++i) {
+            for (int j=0; j<indices_length; ++j) {
+                if (labels[j]==i) {
+                    std::swap(dsindices[j],dsindices[end]);
+                    std::swap(labels[j],labels[end]);
+                    end++;
+                }
+            }
+
+            node->childs[i] = pool.allocate<Node>();
+            node->childs[i]->pivot = centers[i];
+            node->childs[i]->indices = NULL;
+            computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
+            start=end;
+        }
+    }
+
+
+
+    /**
+     * Performs one descent in the hierarchical k-means tree. The branches not
+     * visited are stored in a priority queue.
+     *
+     * Params:
+     *      node = node to explore
+     *      result = container for the k-nearest neighbors found
+     *      vec = query points
+     *      checks = how many points in the dataset have been checked so far
+     *      maxChecks = maximum dataset points to checks
+     */
+
+
+    void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
+                Heap<BranchSt>* heap, std::vector<bool>& checked)
+    {
+        if (node->childs==NULL) {
+            if (checks>=maxChecks) {
+                if (result.full()) return;
+            }
+            for (int i=0; i<node->size; ++i) {
+                int index = node->indices[i];
+                if (!checked[index]) {
+                    DistanceType dist = distance(dataset[index], vec, veclen_);
+                    result.addPoint(dist, index);
+                    checked[index] = true;
+                    ++checks;
+                }
+            }
+        }
+        else {
+            DistanceType* domain_distances = new DistanceType[branching_];
+            int best_index = 0;
+            domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
+            for (int i=1; i<branching_; ++i) {
+                domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
+                if (domain_distances[i]<domain_distances[best_index]) {
+                    best_index = i;
+                }
+            }
+            for (int i=0; i<branching_; ++i) {
+                if (i!=best_index) {
+                    heap->insert(BranchSt(node->childs[i],domain_distances[i]));
+                }
+            }
+            delete[] domain_distances;
+            findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
+        }
+    }
+
+private:
+
+
+    /**
+     * The dataset used by this index
+     */
+    const Matrix<ElementType> dataset;
+
+    /**
+     * Parameters used by this index
+     */
+    IndexParams params;
+
+
+    /**
+     * Number of features in the dataset.
+     */
+    size_t size_;
+
+    /**
+     * Length of each feature.
+     */
+    size_t veclen_;
+
+    /**
+     * The root node in the tree.
+     */
+    NodePtr* root;
+
+    /**
+     *  Array of indices to vectors in the dataset.
+     */
+    int** indices;
+
+
+    /**
+     * The distance
+     */
+    Distance distance;
+
+    /**
+     * Pooled memory allocator.
+     *
+     * Using a pooled memory allocator is more efficient
+     * than allocating memory directly when there is a large
+     * number small of memory allocations.
+     */
+    PooledAllocator pool;
+
+    /**
+     * Memory occupied by the index.
+     */
+    int memoryCounter;
+
+    /** index parameters */
+    int branching_;
+    int trees_;
+    flann_centers_init_t centers_init_;
+    int leaf_size_;
+
+
+};
+
+}
+
+#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */