openCV library for Renesas RZ/A

Dependents:   RZ_A2M_Mbed_samples

Revision:
0:0e0631af0305
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/include/opencv2/flann.hpp	Fri Jan 29 04:53:38 2021 +0000
@@ -0,0 +1,531 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_FLANN_HPP
+#define OPENCV_FLANN_HPP
+
+#include "opencv2/core.hpp"
+#include "opencv2/flann/miniflann.hpp"
+#include "opencv2/flann/flann_base.hpp"
+
+/**
+@defgroup flann Clustering and Search in Multi-Dimensional Spaces
+
+This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate
+Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest
+neighbor search in large datasets and for high dimensional features. More information about FLANN
+can be found in @cite Muja2009 .
+*/
+
+namespace cvflann
+{
+    CV_EXPORTS flann_distance_t flann_distance_type();
+    FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
+}
+
+
+namespace cv
+{
+namespace flann
+{
+
+
+//! @addtogroup flann
+//! @{
+
+template <typename T> struct CvType {};
+template <> struct CvType<unsigned char> { static int type() { return CV_8U; } };
+template <> struct CvType<char> { static int type() { return CV_8S; } };
+template <> struct CvType<unsigned short> { static int type() { return CV_16U; } };
+template <> struct CvType<short> { static int type() { return CV_16S; } };
+template <> struct CvType<int> { static int type() { return CV_32S; } };
+template <> struct CvType<float> { static int type() { return CV_32F; } };
+template <> struct CvType<double> { static int type() { return CV_64F; } };
+
+
+// bring the flann parameters into this namespace
+using ::cvflann::get_param;
+using ::cvflann::print_params;
+
+// bring the flann distances into this namespace
+using ::cvflann::L2_Simple;
+using ::cvflann::L2;
+using ::cvflann::L1;
+using ::cvflann::MinkowskiDistance;
+using ::cvflann::MaxDistance;
+using ::cvflann::HammingLUT;
+using ::cvflann::Hamming;
+using ::cvflann::Hamming2;
+using ::cvflann::HistIntersectionDistance;
+using ::cvflann::HellingerDistance;
+using ::cvflann::ChiSquareDistance;
+using ::cvflann::KL_Divergence;
+
+
+/** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which
+the index is built.
+ */
+template <typename Distance>
+class GenericIndex
+{
+public:
+        typedef typename Distance::ElementType ElementType;
+        typedef typename Distance::ResultType DistanceType;
+
+        /** @brief Constructs a nearest neighbor search index for a given dataset.
+
+        @param features Matrix of containing the features(points) to index. The size of the matrix is
+        num_features x feature_dimensionality and the data type of the elements in the matrix must
+        coincide with the type of the index.
+        @param params Structure containing the index parameters. The type of index that will be
+        constructed depends on the type of this parameter. See the description.
+        @param distance
+
+        The method constructs a fast search structure from a set of features using the specified algorithm
+        with specified parameters, as defined by params. params is a reference to one of the following class
+        IndexParams descendants:
+
+        - **LinearIndexParams** When passing an object of this type, the index will perform a linear,
+        brute-force search. :
+        @code
+        struct LinearIndexParams : public IndexParams
+        {
+        };
+        @endcode
+        - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of
+        a set of randomized kd-trees which will be searched in parallel. :
+        @code
+        struct KDTreeIndexParams : public IndexParams
+        {
+            KDTreeIndexParams( int trees = 4 );
+        };
+        @endcode
+        - **KMeansIndexParams** When passing an object of this type the index constructed will be a
+        hierarchical k-means tree. :
+        @code
+        struct KMeansIndexParams : public IndexParams
+        {
+            KMeansIndexParams(
+                int branching = 32,
+                int iterations = 11,
+                flann_centers_init_t centers_init = CENTERS_RANDOM,
+                float cb_index = 0.2 );
+        };
+        @endcode
+        - **CompositeIndexParams** When using a parameters object of this type the index created
+        combines the randomized kd-trees and the hierarchical k-means tree. :
+        @code
+        struct CompositeIndexParams : public IndexParams
+        {
+            CompositeIndexParams(
+                int trees = 4,
+                int branching = 32,
+                int iterations = 11,
+                flann_centers_init_t centers_init = CENTERS_RANDOM,
+                float cb_index = 0.2 );
+        };
+        @endcode
+        - **LshIndexParams** When using a parameters object of this type the index created uses
+        multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
+        by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd
+        International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007) :
+        @code
+        struct LshIndexParams : public IndexParams
+        {
+            LshIndexParams(
+                unsigned int table_number,
+                unsigned int key_size,
+                unsigned int multi_probe_level );
+        };
+        @endcode
+        - **AutotunedIndexParams** When passing an object of this type the index created is
+        automatically tuned to offer the best performance, by choosing the optimal index type
+        (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. :
+        @code
+        struct AutotunedIndexParams : public IndexParams
+        {
+            AutotunedIndexParams(
+                float target_precision = 0.9,
+                float build_weight = 0.01,
+                float memory_weight = 0,
+                float sample_fraction = 0.1 );
+        };
+        @endcode
+        - **SavedIndexParams** This object type is used for loading a previously saved index from the
+        disk. :
+        @code
+        struct SavedIndexParams : public IndexParams
+        {
+            SavedIndexParams( String filename );
+        };
+        @endcode
+         */
+        GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
+
+        ~GenericIndex();
+
+        /** @brief Performs a K-nearest neighbor search for a given query point using the index.
+
+        @param query The query point
+        @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have
+        at least knn size.
+        @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have
+        at least knn size.
+        @param knn Number of nearest neighbors to search for.
+        @param params SearchParams
+         */
+        void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
+                       std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
+        void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
+
+        int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
+                         std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
+        int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
+                         DistanceType radius, const ::cvflann::SearchParams& params);
+
+        void save(String filename) { nnIndex->save(filename); }
+
+        int veclen() const { return nnIndex->veclen(); }
+
+        int size() const { return nnIndex->size(); }
+
+        ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
+
+        FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
+
+private:
+        ::cvflann::Index<Distance>* nnIndex;
+};
+
+//! @cond IGNORED
+
+#define FLANN_DISTANCE_CHECK \
+    if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
+        printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
+        "the distance using cvflann::set_distance_type. This is no longer working as expected "\
+        "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
+        "for example for L1 distance use: GenericIndex< L1<float> > \n"); \
+    }
+
+
+template <typename Distance>
+GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
+{
+    CV_Assert(dataset.type() == CvType<ElementType>::type());
+    CV_Assert(dataset.isContinuous());
+    ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
+
+    nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
+
+    FLANN_DISTANCE_CHECK
+
+    nnIndex->buildIndex();
+}
+
+template <typename Distance>
+GenericIndex<Distance>::~GenericIndex()
+{
+    delete nnIndex;
+}
+
+template <typename Distance>
+void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
+{
+    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
+    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
+    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
+
+    FLANN_DISTANCE_CHECK
+
+    nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
+}
+
+
+template <typename Distance>
+void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
+{
+    CV_Assert(queries.type() == CvType<ElementType>::type());
+    CV_Assert(queries.isContinuous());
+    ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
+
+    CV_Assert(indices.type() == CV_32S);
+    CV_Assert(indices.isContinuous());
+    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
+
+    CV_Assert(dists.type() == CvType<DistanceType>::type());
+    CV_Assert(dists.isContinuous());
+    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
+
+    FLANN_DISTANCE_CHECK
+
+    nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
+}
+
+template <typename Distance>
+int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
+{
+    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
+    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
+    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
+
+    FLANN_DISTANCE_CHECK
+
+    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
+}
+
+template <typename Distance>
+int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
+{
+    CV_Assert(query.type() == CvType<ElementType>::type());
+    CV_Assert(query.isContinuous());
+    ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
+
+    CV_Assert(indices.type() == CV_32S);
+    CV_Assert(indices.isContinuous());
+    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
+
+    CV_Assert(dists.type() == CvType<DistanceType>::type());
+    CV_Assert(dists.isContinuous());
+    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
+
+    FLANN_DISTANCE_CHECK
+
+    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
+}
+
+//! @endcond
+
+/**
+ * @deprecated Use GenericIndex class instead
+ */
+template <typename T>
+class Index_
+{
+public:
+    typedef typename L2<T>::ElementType ElementType;
+    typedef typename L2<T>::ResultType DistanceType;
+
+    FLANN_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
+    {
+        printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
+
+        CV_Assert(dataset.type() == CvType<ElementType>::type());
+        CV_Assert(dataset.isContinuous());
+        ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
+
+        if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
+            nnIndex_L1 = NULL;
+            nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
+        }
+        else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
+            nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
+            nnIndex_L2 = NULL;
+        }
+        else {
+            printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
+                   "For other distance types you must use cv::flann::GenericIndex<Distance>\n");
+            CV_Assert(0);
+        }
+        if (nnIndex_L1) nnIndex_L1->buildIndex();
+        if (nnIndex_L2) nnIndex_L2->buildIndex();
+    }
+    FLANN_DEPRECATED ~Index_()
+    {
+        if (nnIndex_L1) delete nnIndex_L1;
+        if (nnIndex_L2) delete nnIndex_L2;
+    }
+
+    FLANN_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
+    {
+        ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
+        ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
+        ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
+
+        if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
+        if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
+    }
+    FLANN_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
+    {
+        CV_Assert(queries.type() == CvType<ElementType>::type());
+        CV_Assert(queries.isContinuous());
+        ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
+
+        CV_Assert(indices.type() == CV_32S);
+        CV_Assert(indices.isContinuous());
+        ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
+
+        CV_Assert(dists.type() == CvType<DistanceType>::type());
+        CV_Assert(dists.isContinuous());
+        ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
+
+        if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
+        if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
+    }
+
+    FLANN_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
+    {
+        ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
+        ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
+        ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
+
+        if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
+        if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
+    }
+
+    FLANN_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
+    {
+        CV_Assert(query.type() == CvType<ElementType>::type());
+        CV_Assert(query.isContinuous());
+        ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
+
+        CV_Assert(indices.type() == CV_32S);
+        CV_Assert(indices.isContinuous());
+        ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
+
+        CV_Assert(dists.type() == CvType<DistanceType>::type());
+        CV_Assert(dists.isContinuous());
+        ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
+
+        if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
+        if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
+    }
+
+    FLANN_DEPRECATED void save(String filename)
+    {
+        if (nnIndex_L1) nnIndex_L1->save(filename);
+        if (nnIndex_L2) nnIndex_L2->save(filename);
+    }
+
+    FLANN_DEPRECATED int veclen() const
+    {
+        if (nnIndex_L1) return nnIndex_L1->veclen();
+        if (nnIndex_L2) return nnIndex_L2->veclen();
+    }
+
+    FLANN_DEPRECATED int size() const
+    {
+        if (nnIndex_L1) return nnIndex_L1->size();
+        if (nnIndex_L2) return nnIndex_L2->size();
+    }
+
+    FLANN_DEPRECATED ::cvflann::IndexParams getParameters()
+    {
+        if (nnIndex_L1) return nnIndex_L1->getParameters();
+        if (nnIndex_L2) return nnIndex_L2->getParameters();
+
+    }
+
+    FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
+    {
+        if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
+        if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
+    }
+
+private:
+    // providing backwards compatibility for L2 and L1 distances (most common)
+    ::cvflann::Index< L2<ElementType> >* nnIndex_L2;
+    ::cvflann::Index< L1<ElementType> >* nnIndex_L1;
+};
+
+
+/** @brief Clusters features using hierarchical k-means algorithm.
+
+@param features The points to be clustered. The matrix must have elements of type
+Distance::ElementType.
+@param centers The centers of the clusters obtained. The matrix must have type
+Distance::ResultType. The number of rows in this matrix represents the number of clusters desired,
+however, because of the way the cut in the hierarchical tree is chosen, the number of clusters
+computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of
+clusters desired, where branching is the tree's branching factor (see description of the
+KMeansIndexParams).
+@param params Parameters used in the construction of the hierarchical k-means tree.
+@param d Distance to be used for clustering.
+
+The method clusters the given feature vectors by constructing a hierarchical k-means tree and
+choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters
+found.
+ */
+template <typename Distance>
+int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
+                           Distance d = Distance())
+{
+    typedef typename Distance::ElementType ElementType;
+    typedef typename Distance::ResultType DistanceType;
+
+    CV_Assert(features.type() == CvType<ElementType>::type());
+    CV_Assert(features.isContinuous());
+    ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
+
+    CV_Assert(centers.type() == CvType<DistanceType>::type());
+    CV_Assert(centers.isContinuous());
+    ::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols);
+
+    return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
+}
+
+/** @deprecated
+*/
+template <typename ELEM_TYPE, typename DIST_TYPE>
+FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
+{
+    printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
+        "cv::flann::hierarchicalClustering<Distance> instead\n");
+
+    if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
+        return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
+    }
+    else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
+        return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
+    }
+    else {
+        printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
+        "compatibility for the L1 and L2 distances. "
+        "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
+        CV_Assert(0);
+    }
+}
+
+//! @} flann
+
+} } // namespace cv::flann
+
+#endif