openCV library for Renesas RZ/A

Dependents:   RZ_A2M_Mbed_samples

Revision:
0:0e0631af0305
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/include/opencv2/flann/dist.h	Fri Jan 29 04:53:38 2021 +0000
@@ -0,0 +1,905 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_DIST_H_
+#define OPENCV_FLANN_DIST_H_
+
+#include <cmath>
+#include <cstdlib>
+#include <string.h>
+#ifdef _MSC_VER
+typedef unsigned __int32 uint32_t;
+typedef unsigned __int64 uint64_t;
+#else
+#include <stdint.h>
+#endif
+
+#include "defines.h"
+
+#if (defined WIN32 || defined _WIN32) && defined(_M_ARM)
+# include <Intrin.h>
+#endif
+
+#ifdef __ARM_NEON__
+# include "arm_neon.h"
+#endif
+
+namespace cvflann
+{
+
+template<typename T>
+inline T abs(T x) { return (x<0) ? -x : x; }
+
+template<>
+inline int abs<int>(int x) { return ::abs(x); }
+
+template<>
+inline float abs<float>(float x) { return fabsf(x); }
+
+template<>
+inline double abs<double>(double x) { return fabs(x); }
+
+template<typename T>
+struct Accumulator { typedef T Type; };
+template<>
+struct Accumulator<unsigned char>  { typedef float Type; };
+template<>
+struct Accumulator<unsigned short> { typedef float Type; };
+template<>
+struct Accumulator<unsigned int> { typedef float Type; };
+template<>
+struct Accumulator<char>   { typedef float Type; };
+template<>
+struct Accumulator<short>  { typedef float Type; };
+template<>
+struct Accumulator<int> { typedef float Type; };
+
+#undef True
+#undef False
+
+class True
+{
+};
+
+class False
+{
+};
+
+
+/**
+ * Squared Euclidean distance functor.
+ *
+ * This is the simpler, unrolled version. This is preferable for
+ * very low dimensionality data (eg 3D points)
+ */
+template<class T>
+struct L2_Simple
+{
+    typedef True is_kdtree_distance;
+    typedef True is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef typename Accumulator<T>::Type ResultType;
+
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+    {
+        ResultType result = ResultType();
+        ResultType diff;
+        for(size_t i = 0; i < size; ++i ) {
+            diff = *a++ - *b++;
+            result += diff*diff;
+        }
+        return result;
+    }
+
+    template <typename U, typename V>
+    inline ResultType accum_dist(const U& a, const V& b, int) const
+    {
+        return (a-b)*(a-b);
+    }
+};
+
+
+
+/**
+ * Squared Euclidean distance functor, optimized version
+ */
+template<class T>
+struct L2
+{
+    typedef True is_kdtree_distance;
+    typedef True is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef typename Accumulator<T>::Type ResultType;
+
+    /**
+     *  Compute the squared Euclidean distance between two vectors.
+     *
+     *	This is highly optimised, with loop unrolling, as it is one
+     *	of the most expensive inner loops.
+     *
+     *	The computation of squared root at the end is omitted for
+     *	efficiency.
+     */
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+    {
+        ResultType result = ResultType();
+        ResultType diff0, diff1, diff2, diff3;
+        Iterator1 last = a + size;
+        Iterator1 lastgroup = last - 3;
+
+        /* Process 4 items with each loop for efficiency. */
+        while (a < lastgroup) {
+            diff0 = (ResultType)(a[0] - b[0]);
+            diff1 = (ResultType)(a[1] - b[1]);
+            diff2 = (ResultType)(a[2] - b[2]);
+            diff3 = (ResultType)(a[3] - b[3]);
+            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
+            a += 4;
+            b += 4;
+
+            if ((worst_dist>0)&&(result>worst_dist)) {
+                return result;
+            }
+        }
+        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+        while (a < last) {
+            diff0 = (ResultType)(*a++ - *b++);
+            result += diff0 * diff0;
+        }
+        return result;
+    }
+
+    /**
+     *	Partial euclidean distance, using just one dimension. This is used by the
+     *	kd-tree when computing partial distances while traversing the tree.
+     *
+     *	Squared root is omitted for efficiency.
+     */
+    template <typename U, typename V>
+    inline ResultType accum_dist(const U& a, const V& b, int) const
+    {
+        return (a-b)*(a-b);
+    }
+};
+
+
+/*
+ * Manhattan distance functor, optimized version
+ */
+template<class T>
+struct L1
+{
+    typedef True is_kdtree_distance;
+    typedef True is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef typename Accumulator<T>::Type ResultType;
+
+    /**
+     *  Compute the Manhattan (L_1) distance between two vectors.
+     *
+     *	This is highly optimised, with loop unrolling, as it is one
+     *	of the most expensive inner loops.
+     */
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+    {
+        ResultType result = ResultType();
+        ResultType diff0, diff1, diff2, diff3;
+        Iterator1 last = a + size;
+        Iterator1 lastgroup = last - 3;
+
+        /* Process 4 items with each loop for efficiency. */
+        while (a < lastgroup) {
+            diff0 = (ResultType)abs(a[0] - b[0]);
+            diff1 = (ResultType)abs(a[1] - b[1]);
+            diff2 = (ResultType)abs(a[2] - b[2]);
+            diff3 = (ResultType)abs(a[3] - b[3]);
+            result += diff0 + diff1 + diff2 + diff3;
+            a += 4;
+            b += 4;
+
+            if ((worst_dist>0)&&(result>worst_dist)) {
+                return result;
+            }
+        }
+        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+        while (a < last) {
+            diff0 = (ResultType)abs(*a++ - *b++);
+            result += diff0;
+        }
+        return result;
+    }
+
+    /**
+     * Partial distance, used by the kd-tree.
+     */
+    template <typename U, typename V>
+    inline ResultType accum_dist(const U& a, const V& b, int) const
+    {
+        return abs(a-b);
+    }
+};
+
+
+
+template<class T>
+struct MinkowskiDistance
+{
+    typedef True is_kdtree_distance;
+    typedef True is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef typename Accumulator<T>::Type ResultType;
+
+    int order;
+
+    MinkowskiDistance(int order_) : order(order_) {}
+
+    /**
+     *  Compute the Minkowsky (L_p) distance between two vectors.
+     *
+     *	This is highly optimised, with loop unrolling, as it is one
+     *	of the most expensive inner loops.
+     *
+     *	The computation of squared root at the end is omitted for
+     *	efficiency.
+     */
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+    {
+        ResultType result = ResultType();
+        ResultType diff0, diff1, diff2, diff3;
+        Iterator1 last = a + size;
+        Iterator1 lastgroup = last - 3;
+
+        /* Process 4 items with each loop for efficiency. */
+        while (a < lastgroup) {
+            diff0 = (ResultType)abs(a[0] - b[0]);
+            diff1 = (ResultType)abs(a[1] - b[1]);
+            diff2 = (ResultType)abs(a[2] - b[2]);
+            diff3 = (ResultType)abs(a[3] - b[3]);
+            result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
+            a += 4;
+            b += 4;
+
+            if ((worst_dist>0)&&(result>worst_dist)) {
+                return result;
+            }
+        }
+        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+        while (a < last) {
+            diff0 = (ResultType)abs(*a++ - *b++);
+            result += pow(diff0,order);
+        }
+        return result;
+    }
+
+    /**
+     * Partial distance, used by the kd-tree.
+     */
+    template <typename U, typename V>
+    inline ResultType accum_dist(const U& a, const V& b, int) const
+    {
+        return pow(static_cast<ResultType>(abs(a-b)),order);
+    }
+};
+
+
+
+template<class T>
+struct MaxDistance
+{
+    typedef False is_kdtree_distance;
+    typedef True is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef typename Accumulator<T>::Type ResultType;
+
+    /**
+     *  Compute the max distance (L_infinity) between two vectors.
+     *
+     *  This distance is not a valid kdtree distance, it's not dimensionwise additive.
+     */
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+    {
+        ResultType result = ResultType();
+        ResultType diff0, diff1, diff2, diff3;
+        Iterator1 last = a + size;
+        Iterator1 lastgroup = last - 3;
+
+        /* Process 4 items with each loop for efficiency. */
+        while (a < lastgroup) {
+            diff0 = abs(a[0] - b[0]);
+            diff1 = abs(a[1] - b[1]);
+            diff2 = abs(a[2] - b[2]);
+            diff3 = abs(a[3] - b[3]);
+            if (diff0>result) {result = diff0; }
+            if (diff1>result) {result = diff1; }
+            if (diff2>result) {result = diff2; }
+            if (diff3>result) {result = diff3; }
+            a += 4;
+            b += 4;
+
+            if ((worst_dist>0)&&(result>worst_dist)) {
+                return result;
+            }
+        }
+        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+        while (a < last) {
+            diff0 = abs(*a++ - *b++);
+            result = (diff0>result) ? diff0 : result;
+        }
+        return result;
+    }
+
+    /* This distance functor is not dimension-wise additive, which
+     * makes it an invalid kd-tree distance, not implementing the accum_dist method */
+
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/**
+ * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
+ * bit count of A exclusive XOR'ed with B
+ */
+struct HammingLUT
+{
+    typedef False is_kdtree_distance;
+    typedef False is_vector_space_distance;
+
+    typedef unsigned char ElementType;
+    typedef int ResultType;
+
+    /** this will count the bits in a ^ b
+     */
+    ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const
+    {
+        static const uchar popCountTable[] =
+        {
+            0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+            3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
+        };
+        ResultType result = 0;
+        for (size_t i = 0; i < size; i++) {
+            result += popCountTable[a[i] ^ b[i]];
+        }
+        return result;
+    }
+};
+
+/**
+ * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
+ * That code was taken from brief.cpp in OpenCV
+ */
+template<class T>
+struct Hamming
+{
+    typedef False is_kdtree_distance;
+    typedef False is_vector_space_distance;
+
+
+    typedef T ElementType;
+    typedef int ResultType;
+
+    template<typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+    {
+        ResultType result = 0;
+#ifdef __ARM_NEON__
+        {
+            uint32x4_t bits = vmovq_n_u32(0);
+            for (size_t i = 0; i < size; i += 16) {
+                uint8x16_t A_vec = vld1q_u8 (a + i);
+                uint8x16_t B_vec = vld1q_u8 (b + i);
+                uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
+                uint8x16_t bitsSet = vcntq_u8 (AxorB);
+                uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
+                uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
+                bits = vaddq_u32(bits, bitSet4);
+            }
+            uint64x2_t bitSet2 = vpaddlq_u32 (bits);
+            result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
+            result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
+        }
+#elif __GNUC__
+        {
+            //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
+            typedef unsigned long long pop_t;
+            const size_t modulo = size % sizeof(pop_t);
+            const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
+            const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
+            const pop_t* a2_end = a2 + (size / sizeof(pop_t));
+
+            for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));
+
+            if (modulo) {
+                //in the case where size is not dividable by sizeof(size_t)
+                //need to mask off the bits at the end
+                pop_t a_final = 0, b_final = 0;
+                memcpy(&a_final, a2, modulo);
+                memcpy(&b_final, b2, modulo);
+                result += __builtin_popcountll(a_final ^ b_final);
+            }
+        }
+#else // NO NEON and NOT GNUC
+        typedef unsigned long long pop_t;
+        HammingLUT lut;
+        result = lut(reinterpret_cast<const unsigned char*> (a),
+                     reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));
+#endif
+        return result;
+    }
+};
+
+template<typename T>
+struct Hamming2
+{
+    typedef False is_kdtree_distance;
+    typedef False is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef int ResultType;
+
+    /** This is popcount_3() from:
+     * http://en.wikipedia.org/wiki/Hamming_weight */
+    unsigned int popcnt32(uint32_t n) const
+    {
+        n -= ((n >> 1) & 0x55555555);
+        n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
+        return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
+    }
+
+#ifdef FLANN_PLATFORM_64_BIT
+    unsigned int popcnt64(uint64_t n) const
+    {
+        n -= ((n >> 1) & 0x5555555555555555);
+        n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333);
+        return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56;
+    }
+#endif
+
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+    {
+#ifdef FLANN_PLATFORM_64_BIT
+        const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
+        const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
+        ResultType result = 0;
+        size /= (sizeof(uint64_t)/sizeof(unsigned char));
+        for(size_t i = 0; i < size; ++i ) {
+            result += popcnt64(*pa ^ *pb);
+            ++pa;
+            ++pb;
+        }
+#else
+        const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
+        const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
+        ResultType result = 0;
+        size /= (sizeof(uint32_t)/sizeof(unsigned char));
+        for(size_t i = 0; i < size; ++i ) {
+            result += popcnt32(*pa ^ *pb);
+            ++pa;
+            ++pb;
+        }
+#endif
+        return result;
+    }
+};
+
+
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+template<class T>
+struct HistIntersectionDistance
+{
+    typedef True is_kdtree_distance;
+    typedef True is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef typename Accumulator<T>::Type ResultType;
+
+    /**
+     *  Compute the histogram intersection distance
+     */
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+    {
+        ResultType result = ResultType();
+        ResultType min0, min1, min2, min3;
+        Iterator1 last = a + size;
+        Iterator1 lastgroup = last - 3;
+
+        /* Process 4 items with each loop for efficiency. */
+        while (a < lastgroup) {
+            min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);
+            min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);
+            min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);
+            min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);
+            result += min0 + min1 + min2 + min3;
+            a += 4;
+            b += 4;
+            if ((worst_dist>0)&&(result>worst_dist)) {
+                return result;
+            }
+        }
+        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
+        while (a < last) {
+            min0 = (ResultType)(*a < *b ? *a : *b);
+            result += min0;
+            ++a;
+            ++b;
+        }
+        return result;
+    }
+
+    /**
+     * Partial distance, used by the kd-tree.
+     */
+    template <typename U, typename V>
+    inline ResultType accum_dist(const U& a, const V& b, int) const
+    {
+        return a<b ? a : b;
+    }
+};
+
+
+
+template<class T>
+struct HellingerDistance
+{
+    typedef True is_kdtree_distance;
+    typedef True is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef typename Accumulator<T>::Type ResultType;
+
+    /**
+     *  Compute the Hellinger distance
+     */
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+    {
+        ResultType result = ResultType();
+        ResultType diff0, diff1, diff2, diff3;
+        Iterator1 last = a + size;
+        Iterator1 lastgroup = last - 3;
+
+        /* Process 4 items with each loop for efficiency. */
+        while (a < lastgroup) {
+            diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
+            diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
+            diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
+            diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
+            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
+            a += 4;
+            b += 4;
+        }
+        while (a < last) {
+            diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
+            result += diff0 * diff0;
+        }
+        return result;
+    }
+
+    /**
+     * Partial distance, used by the kd-tree.
+     */
+    template <typename U, typename V>
+    inline ResultType accum_dist(const U& a, const V& b, int) const
+    {
+        ResultType diff = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
+        return diff * diff;
+    }
+};
+
+
+template<class T>
+struct ChiSquareDistance
+{
+    typedef True is_kdtree_distance;
+    typedef True is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef typename Accumulator<T>::Type ResultType;
+
+    /**
+     *  Compute the chi-square distance
+     */
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+    {
+        ResultType result = ResultType();
+        ResultType sum, diff;
+        Iterator1 last = a + size;
+
+        while (a < last) {
+            sum = (ResultType)(*a + *b);
+            if (sum>0) {
+                diff = (ResultType)(*a - *b);
+                result += diff*diff/sum;
+            }
+            ++a;
+            ++b;
+
+            if ((worst_dist>0)&&(result>worst_dist)) {
+                return result;
+            }
+        }
+        return result;
+    }
+
+    /**
+     * Partial distance, used by the kd-tree.
+     */
+    template <typename U, typename V>
+    inline ResultType accum_dist(const U& a, const V& b, int) const
+    {
+        ResultType result = ResultType();
+        ResultType sum, diff;
+
+        sum = (ResultType)(a+b);
+        if (sum>0) {
+            diff = (ResultType)(a-b);
+            result = diff*diff/sum;
+        }
+        return result;
+    }
+};
+
+
+template<class T>
+struct KL_Divergence
+{
+    typedef True is_kdtree_distance;
+    typedef True is_vector_space_distance;
+
+    typedef T ElementType;
+    typedef typename Accumulator<T>::Type ResultType;
+
+    /**
+     *  Compute the Kullback–Leibler divergence
+     */
+    template <typename Iterator1, typename Iterator2>
+    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+    {
+        ResultType result = ResultType();
+        Iterator1 last = a + size;
+
+        while (a < last) {
+            if (* b != 0) {
+                ResultType ratio = (ResultType)(*a / *b);
+                if (ratio>0) {
+                    result += *a * log(ratio);
+                }
+            }
+            ++a;
+            ++b;
+
+            if ((worst_dist>0)&&(result>worst_dist)) {
+                return result;
+            }
+        }
+        return result;
+    }
+
+    /**
+     * Partial distance, used by the kd-tree.
+     */
+    template <typename U, typename V>
+    inline ResultType accum_dist(const U& a, const V& b, int) const
+    {
+        ResultType result = ResultType();
+        if( *b != 0 ) {
+            ResultType ratio = (ResultType)(a / b);
+            if (ratio>0) {
+                result = a * log(ratio);
+            }
+        }
+        return result;
+    }
+};
+
+
+
+/*
+ * This is a "zero iterator". It basically behaves like a zero filled
+ * array to all algorithms that use arrays as iterators (STL style).
+ * It's useful when there's a need to compute the distance between feature
+ * and origin it and allows for better compiler optimisation than using a
+ * zero-filled array.
+ */
+template <typename T>
+struct ZeroIterator
+{
+
+    T operator*()
+    {
+        return 0;
+    }
+
+    T operator[](int)
+    {
+        return 0;
+    }
+
+    const ZeroIterator<T>& operator ++()
+    {
+        return *this;
+    }
+
+    ZeroIterator<T> operator ++(int)
+    {
+        return *this;
+    }
+
+    ZeroIterator<T>& operator+=(int)
+    {
+        return *this;
+    }
+
+};
+
+
+/*
+ * Depending on processed distances, some of them are already squared (e.g. L2)
+ * and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure
+ * we are working on ^2 distances, thus following templates to ensure that.
+ */
+template <typename Distance, typename ElementType>
+struct squareDistance
+{
+    typedef typename Distance::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return dist*dist; }
+};
+
+
+template <typename ElementType>
+struct squareDistance<L2_Simple<ElementType>, ElementType>
+{
+    typedef typename L2_Simple<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return dist; }
+};
+
+template <typename ElementType>
+struct squareDistance<L2<ElementType>, ElementType>
+{
+    typedef typename L2<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return dist; }
+};
+
+
+template <typename ElementType>
+struct squareDistance<MinkowskiDistance<ElementType>, ElementType>
+{
+    typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return dist; }
+};
+
+template <typename ElementType>
+struct squareDistance<HellingerDistance<ElementType>, ElementType>
+{
+    typedef typename HellingerDistance<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return dist; }
+};
+
+template <typename ElementType>
+struct squareDistance<ChiSquareDistance<ElementType>, ElementType>
+{
+    typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return dist; }
+};
+
+
+template <typename Distance>
+typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist )
+{
+    typedef typename Distance::ElementType ElementType;
+
+    squareDistance<Distance, ElementType> dummy;
+    return dummy( dist );
+}
+
+
+/*
+ * ...and a template to ensure the user that he will process the normal distance,
+ * and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance)
+ * that will result in doing actually sqrt(dist*dist) for L1 distance for instance.
+ */
+template <typename Distance, typename ElementType>
+struct simpleDistance
+{
+    typedef typename Distance::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return dist; }
+};
+
+
+template <typename ElementType>
+struct simpleDistance<L2_Simple<ElementType>, ElementType>
+{
+    typedef typename L2_Simple<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+template <typename ElementType>
+struct simpleDistance<L2<ElementType>, ElementType>
+{
+    typedef typename L2<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+
+template <typename ElementType>
+struct simpleDistance<MinkowskiDistance<ElementType>, ElementType>
+{
+    typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+template <typename ElementType>
+struct simpleDistance<HellingerDistance<ElementType>, ElementType>
+{
+    typedef typename HellingerDistance<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+template <typename ElementType>
+struct simpleDistance<ChiSquareDistance<ElementType>, ElementType>
+{
+    typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
+    ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+
+template <typename Distance>
+typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist )
+{
+    typedef typename Distance::ElementType ElementType;
+
+    simpleDistance<Distance, ElementType> dummy;
+    return dummy( dist );
+}
+
+}
+
+#endif //OPENCV_FLANN_DIST_H_