openCV library for Renesas RZ/A

Dependents:   RZ_A2M_Mbed_samples

Revision:
0:0e0631af0305
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/include/opencv2/video/tracking.hpp	Fri Jan 29 04:53:38 2021 +0000
@@ -0,0 +1,626 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_TRACKING_HPP
+#define OPENCV_TRACKING_HPP
+
+#include "opencv2/core.hpp"
+#include "opencv2/imgproc.hpp"
+
+namespace cv
+{
+
+//! @addtogroup video_track
+//! @{
+
+enum { OPTFLOW_USE_INITIAL_FLOW     = 4,
+       OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
+       OPTFLOW_FARNEBACK_GAUSSIAN   = 256
+     };
+
+/** @brief Finds an object center, size, and orientation.
+
+@param probImage Back projection of the object histogram. See calcBackProject.
+@param window Initial search window.
+@param criteria Stop criteria for the underlying meanShift.
+returns
+(in old interfaces) Number of iterations CAMSHIFT took to converge
+The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
+object center using meanShift and then adjusts the window size and finds the optimal rotation. The
+function returns the rotated rectangle structure that includes the object position, size, and
+orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
+
+See the OpenCV sample camshiftdemo.c that tracks colored objects.
+
+@note
+-   (Python) A sample explaining the camshift tracking algorithm can be found at
+    opencv_source_code/samples/python/camshift.py
+ */
+CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
+                                   TermCriteria criteria );
+
+/** @brief Finds an object on a back projection image.
+
+@param probImage Back projection of the object histogram. See calcBackProject for details.
+@param window Initial search window.
+@param criteria Stop criteria for the iterative search algorithm.
+returns
+:   Number of iterations CAMSHIFT took to converge.
+The function implements the iterative object search algorithm. It takes the input back projection of
+an object and the initial position. The mass center in window of the back projection image is
+computed and the search window center shifts to the mass center. The procedure is repeated until the
+specified number of iterations criteria.maxCount is done or until the window center shifts by less
+than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
+window size or orientation do not change during the search. You can simply pass the output of
+calcBackProject to this function. But better results can be obtained if you pre-filter the back
+projection and remove the noise. For example, you can do this by retrieving connected components
+with findContours , throwing away contours with small area ( contourArea ), and rendering the
+remaining contours with drawContours.
+
+@note
+-   A mean-shift tracking sample can be found at opencv_source_code/samples/cpp/camshiftdemo.cpp
+ */
+CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
+
+/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
+
+@param img 8-bit input image.
+@param pyramid output pyramid.
+@param winSize window size of optical flow algorithm. Must be not less than winSize argument of
+calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
+@param maxLevel 0-based maximal pyramid level number.
+@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
+constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
+@param pyrBorder the border mode for pyramid layers.
+@param derivBorder the border mode for gradients.
+@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
+to force data copying.
+@return number of levels in constructed pyramid. Can be less than maxLevel.
+ */
+CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
+                                          Size winSize, int maxLevel, bool withDerivatives = true,
+                                          int pyrBorder = BORDER_REFLECT_101,
+                                          int derivBorder = BORDER_CONSTANT,
+                                          bool tryReuseInputImage = true );
+
+/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
+pyramids.
+
+@param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
+@param nextImg second input image or pyramid of the same size and the same type as prevImg.
+@param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
+single-precision floating-point numbers.
+@param nextPts output vector of 2D points (with single-precision floating-point coordinates)
+containing the calculated new positions of input features in the second image; when
+OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
+@param status output status vector (of unsigned chars); each element of the vector is set to 1 if
+the flow for the corresponding features has been found, otherwise, it is set to 0.
+@param err output vector of errors; each element of the vector is set to an error for the
+corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
+found then the error is not defined (use the status parameter to find such cases).
+@param winSize size of the search window at each pyramid level.
+@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
+level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
+algorithm will use as many levels as pyramids have but no more than maxLevel.
+@param criteria parameter, specifying the termination criteria of the iterative search algorithm
+(after the specified maximum number of iterations criteria.maxCount or when the search window
+moves by less than criteria.epsilon.
+@param flags operation flags:
+ -   **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
+     not set, then prevPts is copied to nextPts and is considered the initial estimate.
+ -   **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
+     minEigThreshold description); if the flag is not set, then L1 distance between patches
+     around the original and a moved point, divided by number of pixels in a window, is used as a
+     error measure.
+@param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
+optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
+by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
+feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
+performance boost.
+
+The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
+@cite Bouguet00 . The function is parallelized with the TBB library.
+
+@note
+
+-   An example using the Lucas-Kanade optical flow algorithm can be found at
+    opencv_source_code/samples/cpp/lkdemo.cpp
+-   (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
+    opencv_source_code/samples/python/lk_track.py
+-   (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
+    opencv_source_code/samples/python/lk_homography.py
+ */
+CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
+                                        InputArray prevPts, InputOutputArray nextPts,
+                                        OutputArray status, OutputArray err,
+                                        Size winSize = Size(21,21), int maxLevel = 3,
+                                        TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
+                                        int flags = 0, double minEigThreshold = 1e-4 );
+
+/** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
+
+@param prev first 8-bit single-channel input image.
+@param next second input image of the same size and the same type as prev.
+@param flow computed flow image that has the same size as prev and type CV_32FC2.
+@param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
+pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
+one.
+@param levels number of pyramid layers including the initial image; levels=1 means that no extra
+layers are created and only the original images are used.
+@param winsize averaging window size; larger values increase the algorithm robustness to image
+noise and give more chances for fast motion detection, but yield more blurred motion field.
+@param iterations number of iterations the algorithm does at each pyramid level.
+@param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
+larger values mean that the image will be approximated with smoother surfaces, yielding more
+robust algorithm and more blurred motion field, typically poly_n =5 or 7.
+@param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
+basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
+good value would be poly_sigma=1.5.
+@param flags operation flags that can be a combination of the following:
+ -   **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
+ -   **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
+     filter instead of a box filter of the same size for optical flow estimation; usually, this
+     option gives z more accurate flow than with a box filter, at the cost of lower speed;
+     normally, winsize for a Gaussian window should be set to a larger value to achieve the same
+     level of robustness.
+
+The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
+
+\f[\texttt{prev} (y,x)  \sim \texttt{next} ( y + \texttt{flow} (y,x)[1],  x + \texttt{flow} (y,x)[0])\f]
+
+@note
+
+-   An example using the optical flow algorithm described by Gunnar Farneback can be found at
+    opencv_source_code/samples/cpp/fback.cpp
+-   (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
+    found at opencv_source_code/samples/python/opt_flow.py
+ */
+CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
+                                            double pyr_scale, int levels, int winsize,
+                                            int iterations, int poly_n, double poly_sigma,
+                                            int flags );
+
+/** @brief Computes an optimal affine transformation between two 2D point sets.
+
+@param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
+@param dst Second input 2D point set of the same size and the same type as A, or another image.
+@param fullAffine If true, the function finds an optimal affine transformation with no additional
+restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
+limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
+
+The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
+approximates best the affine transformation between:
+
+*   Two point sets
+*   Two raster images. In this case, the function first finds some features in the src image and
+    finds the corresponding features in dst image. After that, the problem is reduced to the first
+    case.
+In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
+2x1 vector *b* so that:
+
+\f[[A^*|b^*] = arg  \min _{[A|b]}  \sum _i  \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b  \| ^2\f]
+where src[i] and dst[i] are the i-th points in src and dst, respectively
+\f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
+\f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ -a_{12} & a_{11} & b_2  \end{bmatrix}\f]
+when fullAffine=false.
+
+@sa
+estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
+ */
+CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
+
+
+enum
+{
+    MOTION_TRANSLATION = 0,
+    MOTION_EUCLIDEAN   = 1,
+    MOTION_AFFINE      = 2,
+    MOTION_HOMOGRAPHY  = 3
+};
+
+/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
+
+@param templateImage single-channel template image; CV_8U or CV_32F array.
+@param inputImage single-channel input image which should be warped with the final warpMatrix in
+order to provide an image similar to templateImage, same type as temlateImage.
+@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
+@param motionType parameter, specifying the type of motion:
+ -   **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
+     the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
+     estimated.
+ -   **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
+     parameters are estimated; warpMatrix is \f$2\times 3\f$.
+ -   **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
+     warpMatrix is \f$2\times 3\f$.
+ -   **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
+     estimated;\`warpMatrix\` is \f$3\times 3\f$.
+@param criteria parameter, specifying the termination criteria of the ECC algorithm;
+criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
+iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
+Default values are shown in the declaration above.
+@param inputMask An optional mask to indicate valid values of inputImage.
+
+The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
+(@cite EP08), that is
+
+\f[\texttt{warpMatrix} = \texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
+
+where
+
+\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
+
+(the equation holds with homogeneous coordinates for homography). It returns the final enhanced
+correlation coefficient, that is the correlation coefficient between the template image and the
+final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
+row is ignored.
+
+Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
+area-based alignment that builds on intensity similarities. In essence, the function updates the
+initial transformation that roughly aligns the images. If this information is missing, the identity
+warp (unity matrix) should be given as input. Note that if images undergo strong
+displacements/rotations, an initial transformation that roughly aligns the images is necessary
+(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
+content approximately). Use inverse warping in the second image to take an image close to the first
+one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
+sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
+an exception if algorithm does not converges.
+
+@sa
+estimateAffine2D, estimateAffinePartial2D, findHomography
+ */
+CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
+                                      InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
+                                      TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001),
+                                      InputArray inputMask = noArray());
+
+/** @brief Kalman filter class.
+
+The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
+@cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
+an extended Kalman filter functionality. See the OpenCV sample kalman.cpp.
+
+@note
+
+-   An example using the standard Kalman filter can be found at
+    opencv_source_code/samples/cpp/kalman.cpp
+ */
+class CV_EXPORTS_W KalmanFilter
+{
+public:
+    /** @brief The constructors.
+
+    @note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
+    with cvReleaseKalman(&kalmanFilter)
+     */
+    CV_WRAP KalmanFilter();
+    /** @overload
+    @param dynamParams Dimensionality of the state.
+    @param measureParams Dimensionality of the measurement.
+    @param controlParams Dimensionality of the control vector.
+    @param type Type of the created matrices that should be CV_32F or CV_64F.
+    */
+    CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
+
+    /** @brief Re-initializes Kalman filter. The previous content is destroyed.
+
+    @param dynamParams Dimensionality of the state.
+    @param measureParams Dimensionality of the measurement.
+    @param controlParams Dimensionality of the control vector.
+    @param type Type of the created matrices that should be CV_32F or CV_64F.
+     */
+    void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
+
+    /** @brief Computes a predicted state.
+
+    @param control The optional input control
+     */
+    CV_WRAP const Mat& predict( const Mat& control = Mat() );
+
+    /** @brief Updates the predicted state from the measurement.
+
+    @param measurement The measured system parameters
+     */
+    CV_WRAP const Mat& correct( const Mat& measurement );
+
+    CV_PROP_RW Mat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
+    CV_PROP_RW Mat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
+    CV_PROP_RW Mat transitionMatrix;   //!< state transition matrix (A)
+    CV_PROP_RW Mat controlMatrix;      //!< control matrix (B) (not used if there is no control)
+    CV_PROP_RW Mat measurementMatrix;  //!< measurement matrix (H)
+    CV_PROP_RW Mat processNoiseCov;    //!< process noise covariance matrix (Q)
+    CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
+    CV_PROP_RW Mat errorCovPre;        //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
+    CV_PROP_RW Mat gain;               //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
+    CV_PROP_RW Mat errorCovPost;       //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
+
+    // temporary matrices
+    Mat temp1;
+    Mat temp2;
+    Mat temp3;
+    Mat temp4;
+    Mat temp5;
+};
+
+
+class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
+{
+public:
+    /** @brief Calculates an optical flow.
+
+    @param I0 first 8-bit single-channel input image.
+    @param I1 second input image of the same size and the same type as prev.
+    @param flow computed flow image that has the same size as prev and type CV_32FC2.
+     */
+    CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
+    /** @brief Releases all inner buffers.
+    */
+    CV_WRAP virtual void collectGarbage() = 0;
+};
+
+/** @brief Base interface for sparse optical flow algorithms.
+ */
+class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
+{
+public:
+    /** @brief Calculates a sparse optical flow.
+
+    @param prevImg First input image.
+    @param nextImg Second input image of the same size and the same type as prevImg.
+    @param prevPts Vector of 2D points for which the flow needs to be found.
+    @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
+    @param status Output status vector. Each element of the vector is set to 1 if the
+                  flow for the corresponding features has been found. Otherwise, it is set to 0.
+    @param err Optional output vector that contains error response for each point (inverse confidence).
+     */
+    CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
+                      InputArray prevPts, InputOutputArray nextPts,
+                      OutputArray status,
+                      OutputArray err = cv::noArray()) = 0;
+};
+
+/** @brief "Dual TV L1" Optical Flow Algorithm.
+
+The class implements the "Dual TV L1" optical flow algorithm described in @cite Zach2007 and
+@cite Javier2012 .
+Here are important members of the class that control the algorithm, which you can set after
+constructing the class instance:
+
+-   member double tau
+    Time step of the numerical scheme.
+
+-   member double lambda
+    Weight parameter for the data term, attachment parameter. This is the most relevant
+    parameter, which determines the smoothness of the output. The smaller this parameter is,
+    the smoother the solutions we obtain. It depends on the range of motions of the images, so
+    its value should be adapted to each image sequence.
+
+-   member double theta
+    Weight parameter for (u - v)\^2, tightness parameter. It serves as a link between the
+    attachment and the regularization terms. In theory, it should have a small value in order
+    to maintain both parts in correspondence. The method is stable for a large range of values
+    of this parameter.
+
+-   member int nscales
+    Number of scales used to create the pyramid of images.
+
+-   member int warps
+    Number of warpings per scale. Represents the number of times that I1(x+u0) and grad(
+    I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the
+    method. It also affects the running time, so it is a compromise between speed and
+    accuracy.
+
+-   member double epsilon
+    Stopping criterion threshold used in the numerical scheme, which is a trade-off between
+    precision and running time. A small value will yield more accurate solutions at the
+    expense of a slower convergence.
+
+-   member int iterations
+    Stopping criterion iterations number used in the numerical scheme.
+
+C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
+Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
+*/
+class CV_EXPORTS_W DualTVL1OpticalFlow : public DenseOpticalFlow
+{
+public:
+    //! @brief Time step of the numerical scheme
+    /** @see setTau */
+    CV_WRAP virtual double getTau() const = 0;
+    /** @copybrief getTau @see getTau */
+    CV_WRAP virtual void setTau(double val) = 0;
+    //! @brief Weight parameter for the data term, attachment parameter
+    /** @see setLambda */
+    CV_WRAP virtual double getLambda() const = 0;
+    /** @copybrief getLambda @see getLambda */
+    CV_WRAP virtual void setLambda(double val) = 0;
+    //! @brief Weight parameter for (u - v)^2, tightness parameter
+    /** @see setTheta */
+    CV_WRAP virtual double getTheta() const = 0;
+    /** @copybrief getTheta @see getTheta */
+    CV_WRAP virtual void setTheta(double val) = 0;
+    //! @brief coefficient for additional illumination variation term
+    /** @see setGamma */
+    CV_WRAP virtual double getGamma() const = 0;
+    /** @copybrief getGamma @see getGamma */
+    CV_WRAP virtual void setGamma(double val) = 0;
+    //! @brief Number of scales used to create the pyramid of images
+    /** @see setScalesNumber */
+    CV_WRAP virtual int getScalesNumber() const = 0;
+    /** @copybrief getScalesNumber @see getScalesNumber */
+    CV_WRAP virtual void setScalesNumber(int val) = 0;
+    //! @brief Number of warpings per scale
+    /** @see setWarpingsNumber */
+    CV_WRAP virtual int getWarpingsNumber() const = 0;
+    /** @copybrief getWarpingsNumber @see getWarpingsNumber */
+    CV_WRAP virtual void setWarpingsNumber(int val) = 0;
+    //! @brief Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time
+    /** @see setEpsilon */
+    CV_WRAP virtual double getEpsilon() const = 0;
+    /** @copybrief getEpsilon @see getEpsilon */
+    CV_WRAP virtual void setEpsilon(double val) = 0;
+    //! @brief Inner iterations (between outlier filtering) used in the numerical scheme
+    /** @see setInnerIterations */
+    CV_WRAP virtual int getInnerIterations() const = 0;
+    /** @copybrief getInnerIterations @see getInnerIterations */
+    CV_WRAP virtual void setInnerIterations(int val) = 0;
+    //! @brief Outer iterations (number of inner loops) used in the numerical scheme
+    /** @see setOuterIterations */
+    CV_WRAP virtual int getOuterIterations() const = 0;
+    /** @copybrief getOuterIterations @see getOuterIterations */
+    CV_WRAP virtual void setOuterIterations(int val) = 0;
+    //! @brief Use initial flow
+    /** @see setUseInitialFlow */
+    CV_WRAP virtual bool getUseInitialFlow() const = 0;
+    /** @copybrief getUseInitialFlow @see getUseInitialFlow */
+    CV_WRAP virtual void setUseInitialFlow(bool val) = 0;
+    //! @brief Step between scales (<1)
+    /** @see setScaleStep */
+    CV_WRAP virtual double getScaleStep() const = 0;
+    /** @copybrief getScaleStep @see getScaleStep */
+    CV_WRAP virtual void setScaleStep(double val) = 0;
+    //! @brief Median filter kernel size (1 = no filter) (3 or 5)
+    /** @see setMedianFiltering */
+    CV_WRAP virtual int getMedianFiltering() const = 0;
+    /** @copybrief getMedianFiltering @see getMedianFiltering */
+    CV_WRAP virtual void setMedianFiltering(int val) = 0;
+
+    /** @brief Creates instance of cv::DualTVL1OpticalFlow*/
+    CV_WRAP static Ptr<DualTVL1OpticalFlow> create(
+                                            double tau = 0.25,
+                                            double lambda = 0.15,
+                                            double theta = 0.3,
+                                            int nscales = 5,
+                                            int warps = 5,
+                                            double epsilon = 0.01,
+                                            int innnerIterations = 30,
+                                            int outerIterations = 10,
+                                            double scaleStep = 0.8,
+                                            double gamma = 0.0,
+                                            int medianFiltering = 5,
+                                            bool useInitialFlow = false);
+};
+
+/** @brief Creates instance of cv::DenseOpticalFlow
+*/
+CV_EXPORTS_W Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1();
+
+/** @brief Class computing a dense optical flow using the Gunnar Farneback’s algorithm.
+ */
+class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
+{
+public:
+    CV_WRAP virtual int getNumLevels() const = 0;
+    CV_WRAP virtual void setNumLevels(int numLevels) = 0;
+
+    CV_WRAP virtual double getPyrScale() const = 0;
+    CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
+
+    CV_WRAP virtual bool getFastPyramids() const = 0;
+    CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
+
+    CV_WRAP virtual int getWinSize() const = 0;
+    CV_WRAP virtual void setWinSize(int winSize) = 0;
+
+    CV_WRAP virtual int getNumIters() const = 0;
+    CV_WRAP virtual void setNumIters(int numIters) = 0;
+
+    CV_WRAP virtual int getPolyN() const = 0;
+    CV_WRAP virtual void setPolyN(int polyN) = 0;
+
+    CV_WRAP virtual double getPolySigma() const = 0;
+    CV_WRAP virtual void setPolySigma(double polySigma) = 0;
+
+    CV_WRAP virtual int getFlags() const = 0;
+    CV_WRAP virtual void setFlags(int flags) = 0;
+
+    CV_WRAP static Ptr<FarnebackOpticalFlow> create(
+            int numLevels = 5,
+            double pyrScale = 0.5,
+            bool fastPyramids = false,
+            int winSize = 13,
+            int numIters = 10,
+            int polyN = 5,
+            double polySigma = 1.1,
+            int flags = 0);
+};
+
+
+/** @brief Class used for calculating a sparse optical flow.
+
+The class can calculate an optical flow for a sparse feature set using the
+iterative Lucas-Kanade method with pyramids.
+
+@sa calcOpticalFlowPyrLK
+
+*/
+class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
+{
+public:
+    CV_WRAP virtual Size getWinSize() const = 0;
+    CV_WRAP virtual void setWinSize(Size winSize) = 0;
+
+    CV_WRAP virtual int getMaxLevel() const = 0;
+    CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
+
+    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
+    CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0;
+
+    CV_WRAP virtual int getFlags() const = 0;
+    CV_WRAP virtual void setFlags(int flags) = 0;
+
+    CV_WRAP virtual double getMinEigThreshold() const = 0;
+    CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0;
+
+    CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create(
+            Size winSize = Size(21, 21),
+            int maxLevel = 3, TermCriteria crit =
+            TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
+            int flags = 0,
+            double minEigThreshold = 1e-4);
+};
+
+//! @} video_track
+
+} // cv
+
+#endif