Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
arnoz
Date:
Fri Oct 01 08:19:46 2021 +0000
Revision:
116:7a67265d7c19
Parent:
114:c2410d2cfaf1
- Correct information regarding your last merge

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 111:42dc75fbe623 1 /* Copyright 2014, 2021 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 111:42dc75fbe623 69 // - TCD1103 optical linear imaging array. This is a CCD-based optical
mjr 111:42dc75fbe623 70 // imaging sensor, essentially an optical camera sensor, with a linear
mjr 111:42dc75fbe623 71 // (single-row) pixel file. This is similar to the venerable TSL1410R,
mjr 111:42dc75fbe623 72 // the original Pinscape plunger sensor. By arranging the sensor's
mjr 111:42dc75fbe623 73 // linear pixel array parallel to the plunger's axis of travel, we can
mjr 111:42dc75fbe623 74 // use the sensor to take pictures of the plunger, and then analyze the
mjr 111:42dc75fbe623 75 // images in software to determine the position by looking for the edge
mjr 111:42dc75fbe623 76 // between the tip of the plunger and the background. The TCD1103 is
mjr 111:42dc75fbe623 77 // produces low-noise images with 1500 pixels of resolution, and with
mjr 111:42dc75fbe623 78 // a small focusing lens, the software can reliably determine the
mjr 111:42dc75fbe623 79 // plunger position to a single pixel, which translates to about
mjr 111:42dc75fbe623 80 // 1/400" precision. The sensor can take these images (and we can
mjr 111:42dc75fbe623 81 // analyze them) at about 400 frames per second. Between the high
mjr 111:42dc75fbe623 82 // spatial resolution and fast update rate, this is the best sensor
mjr 111:42dc75fbe623 83 // I've found for this job.
mjr 111:42dc75fbe623 84 //
mjr 111:42dc75fbe623 85 // - VCNL4010 IR proximity sensor. This is an optical distance sensor that
mjr 111:42dc75fbe623 86 // estimates the distance to a target by measuring the intensity of a
mjr 111:42dc75fbe623 87 // reflected IR light signal that the sensor bounces off the target.
mjr 111:42dc75fbe623 88 // This is the sensor that's used in the commercial VirtuaPin "v3"
mjr 111:42dc75fbe623 89 // plunger kit. Since the VirtuaPin kit also uses a KL25Z as its
mjr 111:42dc75fbe623 90 // microcontroller, some users of that product have asked for support
mjr 111:42dc75fbe623 91 // for this sensor in the Pinscape code, so that they have the option
mjr 111:42dc75fbe623 92 // to use their hardware from that kit with the Pinscape software.
mjr 111:42dc75fbe623 93 // IR proximity sensors aren't very accurate or precise, so I don't
mjr 111:42dc75fbe623 94 // recommend it to people setting up a new system from scratch - it's
mjr 111:42dc75fbe623 95 // mostly for people who already have the VirtuaPin kit and don't want
mjr 111:42dc75fbe623 96 // to change their hardware to migrate to Pinscape. However, Adafruit
mjr 111:42dc75fbe623 97 // makes a breakout board for the sensor that you can use to set up a
mjr 111:42dc75fbe623 98 // new system if you want to try it - it only requires a few wires to
mjr 111:42dc75fbe623 99 // connect to the KL25Z. (In fact, it appears that VirtuaPin buys the
mjr 111:42dc75fbe623 100 // Adafruit breakout board and repackages it for their kit, so you'll
mjr 111:42dc75fbe623 101 // be using the same thing that VirtuaPin customers have.)
mjr 111:42dc75fbe623 102 //
mjr 87:8d35c74403af 103 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 104 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 105 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 106 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 107 // low precision.
mjr 6:cc35eb643e8f 108 //
mjr 87:8d35c74403af 109 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 110 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 111 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 112 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 113 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 114 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 115 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 116 // supported, and works very well, but unfortunately the sensor is difficult
mjr 111:42dc75fbe623 117 // to find now since it's been discontinued by the manufacturer. Happily,
mjr 111:42dc75fbe623 118 // a good alternative is available: the Toshiba TCD1103, which is another
mjr 111:42dc75fbe623 119 // linear imaging sensor that works on a similar principle, but produces
mjr 111:42dc75fbe623 120 // even better results.
mjr 87:8d35c74403af 121 //
mjr 87:8d35c74403af 122 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 123 // sensor options.
mjr 87:8d35c74403af 124 //
mjr 87:8d35c74403af 125 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 126 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 127 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 128 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 129 //
mjr 77:0b96f6867312 130 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 131 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 132 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 133 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 134 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 135 //
mjr 53:9b2611964afc 136 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 137 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 138 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 139 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 140 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 141 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 142 // attached devices without any modifications.
mjr 5:a70c0bce770d 143 //
mjr 53:9b2611964afc 144 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 145 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 146 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 147 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 148 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 149 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 150 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 151 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 152 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 153 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 154 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 155 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 156 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 157 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 158 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 159 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 160 //
mjr 87:8d35c74403af 161 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 162 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 163 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 164 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 165 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 166 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 167 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 168 // virtual pinball project.
mjr 53:9b2611964afc 169 //
mjr 53:9b2611964afc 170 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 171 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 172 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 173 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 174 // built in to the boards.
mjr 87:8d35c74403af 175 //
mjr 87:8d35c74403af 176 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 177 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 178 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 179 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 180 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 181 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 182 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 183 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 184 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 185 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 186 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 187 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 188 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 189 //
mjr 38:091e511ce8a0 190 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 191 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 192 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 193 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 194 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 195 //
mjr 38:091e511ce8a0 196 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 197 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 198 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 199 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 200 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 201 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 202 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 203 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 204 // remote control transmitter feature below.
mjr 77:0b96f6867312 205 //
mjr 77:0b96f6867312 206 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 207 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 208 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 209 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 210 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 211 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 212 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 213 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 214 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 215 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 216 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 217 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 218 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 219 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 220 //
mjr 35:e959ffba78fd 221 //
mjr 35:e959ffba78fd 222 //
mjr 33:d832bcab089e 223 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 224 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 225 //
mjr 48:058ace2aed1d 226 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 227 //
mjr 48:058ace2aed1d 228 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 229 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 230 // has been established)
mjr 48:058ace2aed1d 231 //
mjr 48:058ace2aed1d 232 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 233 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 234 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 235 //
mjr 38:091e511ce8a0 236 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 237 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 238 // transmissions are failing.
mjr 38:091e511ce8a0 239 //
mjr 73:4e8ce0b18915 240 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 241 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 242 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 243 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 244 // enabled.
mjr 73:4e8ce0b18915 245 //
mjr 6:cc35eb643e8f 246 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 247 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 248 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 249 // no plunger sensor configured.
mjr 6:cc35eb643e8f 250 //
mjr 38:091e511ce8a0 251 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 252 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 253 //
mjr 48:058ace2aed1d 254 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 255 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 256 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 257 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 258 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 259 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 260 //
mjr 48:058ace2aed1d 261 //
mjr 48:058ace2aed1d 262 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 263 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 264 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 265 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 266 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 267 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 268 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 269 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 270
mjr 33:d832bcab089e 271
mjr 0:5acbbe3f4cf4 272 #include "mbed.h"
mjr 6:cc35eb643e8f 273 #include "math.h"
mjr 74:822a92bc11d2 274 #include "diags.h"
mjr 48:058ace2aed1d 275 #include "pinscape.h"
mjr 79:682ae3171a08 276 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 277 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 278 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 279 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 280 #include "crc32.h"
mjr 26:cb71c4af2912 281 #include "TLC5940.h"
mjr 87:8d35c74403af 282 #include "TLC59116.h"
mjr 34:6b981a2afab7 283 #include "74HC595.h"
mjr 35:e959ffba78fd 284 #include "nvm.h"
mjr 48:058ace2aed1d 285 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 286 #include "IRReceiver.h"
mjr 77:0b96f6867312 287 #include "IRTransmitter.h"
mjr 77:0b96f6867312 288 #include "NewPwm.h"
mjr 74:822a92bc11d2 289
mjr 82:4f6209cb5c33 290 // plunger sensors
mjr 82:4f6209cb5c33 291 #include "plunger.h"
mjr 82:4f6209cb5c33 292 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 293 #include "potSensor.h"
mjr 82:4f6209cb5c33 294 #include "quadSensor.h"
mjr 82:4f6209cb5c33 295 #include "nullSensor.h"
mjr 82:4f6209cb5c33 296 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 297 #include "distanceSensor.h"
mjr 87:8d35c74403af 298 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 299 #include "rotarySensor.h"
mjr 100:1ff35c07217c 300 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 301
mjr 2:c174f9ee414a 302
mjr 21:5048e16cc9ef 303 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 304 #include "config.h"
mjr 17:ab3cec0c8bf4 305
mjr 53:9b2611964afc 306
mjr 53:9b2611964afc 307 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 308 //
mjr 112:8ed709f455c0 309 // placement new
mjr 112:8ed709f455c0 310 //
mjr 112:8ed709f455c0 311 void* operator new (size_t, void *p) { return p; }
mjr 112:8ed709f455c0 312
mjr 112:8ed709f455c0 313
mjr 112:8ed709f455c0 314 // --------------------------------------------------------------------------
mjr 112:8ed709f455c0 315 //
mjr 53:9b2611964afc 316 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 317 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 318 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 319 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 320 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 321 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 322 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 323 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 324 // interface.
mjr 53:9b2611964afc 325 //
mjr 53:9b2611964afc 326 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 327 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 328 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 329 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 330 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 331 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 332 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 333 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 334 //
mjr 53:9b2611964afc 335 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 336 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 337 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 338 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 339 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 340 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 341 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 342 //
mjr 53:9b2611964afc 343 const char *getOpenSDAID()
mjr 53:9b2611964afc 344 {
mjr 53:9b2611964afc 345 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 346 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 347 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 348
mjr 53:9b2611964afc 349 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 350 }
mjr 53:9b2611964afc 351
mjr 53:9b2611964afc 352 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 353 //
mjr 53:9b2611964afc 354 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 355 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 356 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 357 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 358 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 359 // want from this.
mjr 53:9b2611964afc 360 //
mjr 53:9b2611964afc 361 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 362 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 363 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 364 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 365 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 366 // macros.
mjr 53:9b2611964afc 367 //
mjr 53:9b2611964afc 368 const char *getBuildID()
mjr 53:9b2611964afc 369 {
mjr 53:9b2611964afc 370 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 371 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 372 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 373
mjr 53:9b2611964afc 374 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 375 }
mjr 53:9b2611964afc 376
mjr 74:822a92bc11d2 377 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 378 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 379 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 380 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 381 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 382 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 383 Timer mainLoopTimer;
mjr 76:7f5912b6340e 384 #endif
mjr 76:7f5912b6340e 385
mjr 53:9b2611964afc 386
mjr 5:a70c0bce770d 387 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 388 //
mjr 38:091e511ce8a0 389 // Forward declarations
mjr 38:091e511ce8a0 390 //
mjr 38:091e511ce8a0 391 void setNightMode(bool on);
mjr 38:091e511ce8a0 392 void toggleNightMode();
mjr 38:091e511ce8a0 393
mjr 38:091e511ce8a0 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 // utilities
mjr 17:ab3cec0c8bf4 396
mjr 77:0b96f6867312 397 // int/float point square of a number
mjr 77:0b96f6867312 398 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 399 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 400
mjr 26:cb71c4af2912 401 // floating point rounding
mjr 26:cb71c4af2912 402 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 403
mjr 17:ab3cec0c8bf4 404
mjr 33:d832bcab089e 405 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 406 //
mjr 40:cc0d9814522b 407 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 408 // the running state.
mjr 40:cc0d9814522b 409 //
mjr 77:0b96f6867312 410 class ExtTimer: public Timer
mjr 40:cc0d9814522b 411 {
mjr 40:cc0d9814522b 412 public:
mjr 77:0b96f6867312 413 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 414
mjr 40:cc0d9814522b 415 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 416 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 417
mjr 40:cc0d9814522b 418 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 419
mjr 40:cc0d9814522b 420 private:
mjr 40:cc0d9814522b 421 bool running;
mjr 40:cc0d9814522b 422 };
mjr 40:cc0d9814522b 423
mjr 53:9b2611964afc 424
mjr 53:9b2611964afc 425 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 426 //
mjr 33:d832bcab089e 427 // USB product version number
mjr 5:a70c0bce770d 428 //
mjr 47:df7a88cd249c 429 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 430
mjr 33:d832bcab089e 431 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 432 //
mjr 6:cc35eb643e8f 433 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 434 //
mjr 6:cc35eb643e8f 435 #define JOYMAX 4096
mjr 6:cc35eb643e8f 436
mjr 9:fd65b0a94720 437
mjr 17:ab3cec0c8bf4 438 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 439 //
mjr 40:cc0d9814522b 440 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 441 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 442 //
mjr 35:e959ffba78fd 443
mjr 35:e959ffba78fd 444 // unsigned 16-bit integer
mjr 35:e959ffba78fd 445 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 446 {
mjr 35:e959ffba78fd 447 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 448 }
mjr 40:cc0d9814522b 449 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 450 {
mjr 40:cc0d9814522b 451 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 452 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 453 }
mjr 35:e959ffba78fd 454
mjr 35:e959ffba78fd 455 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 456 {
mjr 35:e959ffba78fd 457 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 458 }
mjr 40:cc0d9814522b 459 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 460 {
mjr 40:cc0d9814522b 461 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 462 }
mjr 35:e959ffba78fd 463
mjr 35:e959ffba78fd 464 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 465 {
mjr 35:e959ffba78fd 466 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 467 }
mjr 40:cc0d9814522b 468 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 469 {
mjr 40:cc0d9814522b 470 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 471 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 472 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 473 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 474 }
mjr 35:e959ffba78fd 475
mjr 35:e959ffba78fd 476 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 477 {
mjr 35:e959ffba78fd 478 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 479 }
mjr 35:e959ffba78fd 480
mjr 53:9b2611964afc 481 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 482 //
mjr 53:9b2611964afc 483 // The internal mbed PinName format is
mjr 53:9b2611964afc 484 //
mjr 53:9b2611964afc 485 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 486 //
mjr 53:9b2611964afc 487 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 488 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 489 //
mjr 53:9b2611964afc 490 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 491 // pin name fits in 8 bits:
mjr 53:9b2611964afc 492 //
mjr 53:9b2611964afc 493 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 494 //
mjr 53:9b2611964afc 495 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 496 //
mjr 53:9b2611964afc 497 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 498 //
mjr 53:9b2611964afc 499 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 500 {
mjr 53:9b2611964afc 501 if (c == 0xFF)
mjr 53:9b2611964afc 502 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 503 else
mjr 53:9b2611964afc 504 return PinName(
mjr 53:9b2611964afc 505 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 506 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 507 }
mjr 40:cc0d9814522b 508 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 509 {
mjr 53:9b2611964afc 510 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 511 }
mjr 35:e959ffba78fd 512
mjr 35:e959ffba78fd 513
mjr 35:e959ffba78fd 514 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 515 //
mjr 38:091e511ce8a0 516 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 517 //
mjr 38:091e511ce8a0 518 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 519 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 520 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 521 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 522 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 523 // SPI capability.
mjr 38:091e511ce8a0 524 //
mjr 38:091e511ce8a0 525 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 526
mjr 73:4e8ce0b18915 527 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 528 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 529 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 530 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 531
mjr 38:091e511ce8a0 532 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 533 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 534 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 535 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 536 {
mjr 73:4e8ce0b18915 537 // remember the new state
mjr 73:4e8ce0b18915 538 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 539
mjr 73:4e8ce0b18915 540 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 541 // applying it to the blue LED
mjr 73:4e8ce0b18915 542 if (diagLEDState == 0)
mjr 77:0b96f6867312 543 {
mjr 77:0b96f6867312 544 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 545 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 546 }
mjr 73:4e8ce0b18915 547
mjr 73:4e8ce0b18915 548 // set the new state
mjr 38:091e511ce8a0 549 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 550 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 551 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 552 }
mjr 38:091e511ce8a0 553
mjr 73:4e8ce0b18915 554 // update the LEDs with the current state
mjr 73:4e8ce0b18915 555 void diagLED(void)
mjr 73:4e8ce0b18915 556 {
mjr 73:4e8ce0b18915 557 diagLED(
mjr 73:4e8ce0b18915 558 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 559 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 560 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 561 }
mjr 73:4e8ce0b18915 562
mjr 106:e9e3b46132c1 563 // check an output port or pin assignment to see if it conflicts with
mjr 38:091e511ce8a0 564 // an on-board LED segment
mjr 38:091e511ce8a0 565 struct LedSeg
mjr 38:091e511ce8a0 566 {
mjr 38:091e511ce8a0 567 bool r, g, b;
mjr 38:091e511ce8a0 568 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 569
mjr 106:e9e3b46132c1 570 // check an output port to see if it conflicts with one of the LED ports
mjr 38:091e511ce8a0 571 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 572 {
mjr 38:091e511ce8a0 573 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 574 // our on-board LED segments
mjr 38:091e511ce8a0 575 int t = pc.typ;
mjr 38:091e511ce8a0 576 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 106:e9e3b46132c1 577 check(pc.pin);
mjr 106:e9e3b46132c1 578 }
mjr 106:e9e3b46132c1 579
mjr 106:e9e3b46132c1 580 // check a pin to see if it conflicts with one of the diagnostic LED ports
mjr 106:e9e3b46132c1 581 void check(uint8_t pinId)
mjr 106:e9e3b46132c1 582 {
mjr 106:e9e3b46132c1 583 PinName pin = wirePinName(pinId);
mjr 106:e9e3b46132c1 584 if (pin == LED1)
mjr 106:e9e3b46132c1 585 r = true;
mjr 106:e9e3b46132c1 586 else if (pin == LED2)
mjr 106:e9e3b46132c1 587 g = true;
mjr 106:e9e3b46132c1 588 else if (pin == LED3)
mjr 106:e9e3b46132c1 589 b = true;
mjr 38:091e511ce8a0 590 }
mjr 38:091e511ce8a0 591 };
mjr 38:091e511ce8a0 592
mjr 38:091e511ce8a0 593 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 594 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 595 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 596 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 597 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 598 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 599 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 600 {
mjr 38:091e511ce8a0 601 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 602 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 603 LedSeg l;
mjr 38:091e511ce8a0 604 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 605 l.check(cfg.outPort[i]);
mjr 106:e9e3b46132c1 606
mjr 106:e9e3b46132c1 607 // check the button inputs
mjr 106:e9e3b46132c1 608 for (int i = 0 ; i < countof(cfg.button) ; ++i)
mjr 106:e9e3b46132c1 609 l.check(cfg.button[i].pin);
mjr 106:e9e3b46132c1 610
mjr 106:e9e3b46132c1 611 // check plunger inputs
mjr 106:e9e3b46132c1 612 if (cfg.plunger.enabled && cfg.plunger.sensorType != PlungerType_None)
mjr 106:e9e3b46132c1 613 {
mjr 106:e9e3b46132c1 614 for (int i = 0 ; i < countof(cfg.plunger.sensorPin) ; ++i)
mjr 106:e9e3b46132c1 615 l.check(cfg.plunger.sensorPin[i]);
mjr 107:8f3c7aeae7e0 616
mjr 107:8f3c7aeae7e0 617 l.check(cfg.plunger.cal.btn);
mjr 107:8f3c7aeae7e0 618 l.check(cfg.plunger.cal.led);
mjr 106:e9e3b46132c1 619 }
mjr 106:e9e3b46132c1 620
mjr 106:e9e3b46132c1 621 // check the TV ON pin assignments
mjr 106:e9e3b46132c1 622 l.check(cfg.TVON.statusPin);
mjr 106:e9e3b46132c1 623 l.check(cfg.TVON.latchPin);
mjr 106:e9e3b46132c1 624 l.check(cfg.TVON.relayPin);
mjr 106:e9e3b46132c1 625
mjr 106:e9e3b46132c1 626 // check the TLC5940 pins
mjr 106:e9e3b46132c1 627 if (cfg.tlc5940.nchips != 0)
mjr 106:e9e3b46132c1 628 {
mjr 106:e9e3b46132c1 629 l.check(cfg.tlc5940.sin);
mjr 106:e9e3b46132c1 630 l.check(cfg.tlc5940.sclk);
mjr 106:e9e3b46132c1 631 l.check(cfg.tlc5940.xlat);
mjr 106:e9e3b46132c1 632 l.check(cfg.tlc5940.blank);
mjr 106:e9e3b46132c1 633 l.check(cfg.tlc5940.gsclk);
mjr 106:e9e3b46132c1 634 }
mjr 106:e9e3b46132c1 635
mjr 106:e9e3b46132c1 636 // check 74HC595 pin assignments
mjr 106:e9e3b46132c1 637 if (cfg.hc595.nchips != 0)
mjr 106:e9e3b46132c1 638 {
mjr 106:e9e3b46132c1 639 l.check(cfg.hc595.sin);
mjr 106:e9e3b46132c1 640 l.check(cfg.hc595.sclk);
mjr 106:e9e3b46132c1 641 l.check(cfg.hc595.latch);
mjr 106:e9e3b46132c1 642 l.check(cfg.hc595.ena);
mjr 106:e9e3b46132c1 643 }
mjr 106:e9e3b46132c1 644
mjr 106:e9e3b46132c1 645 // check TLC59116 pin assignments
mjr 106:e9e3b46132c1 646 if (cfg.tlc59116.chipMask != 0)
mjr 106:e9e3b46132c1 647 {
mjr 106:e9e3b46132c1 648 l.check(cfg.tlc59116.sda);
mjr 106:e9e3b46132c1 649 l.check(cfg.tlc59116.scl);
mjr 106:e9e3b46132c1 650 l.check(cfg.tlc59116.reset);
mjr 106:e9e3b46132c1 651 }
mjr 106:e9e3b46132c1 652
mjr 106:e9e3b46132c1 653 // check the IR remove control hardware
mjr 106:e9e3b46132c1 654 l.check(cfg.IR.sensor);
mjr 106:e9e3b46132c1 655 l.check(cfg.IR.emitter);
mjr 106:e9e3b46132c1 656
mjr 106:e9e3b46132c1 657 // We now know which segments are taken for other uses and which
mjr 38:091e511ce8a0 658 // are free. Create diagnostic ports for the ones not claimed for
mjr 106:e9e3b46132c1 659 // other purposes.
mjr 38:091e511ce8a0 660 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 661 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 662 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 663 }
mjr 38:091e511ce8a0 664
mjr 38:091e511ce8a0 665
mjr 38:091e511ce8a0 666 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 667 //
mjr 76:7f5912b6340e 668 // LedWiz emulation
mjr 76:7f5912b6340e 669 //
mjr 76:7f5912b6340e 670
mjr 76:7f5912b6340e 671 // LedWiz output states.
mjr 76:7f5912b6340e 672 //
mjr 76:7f5912b6340e 673 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 674 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 675 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 676 // The two axes are independent.
mjr 76:7f5912b6340e 677 //
mjr 76:7f5912b6340e 678 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 679 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 680 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 681 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 682 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 683 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 684 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 685 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 686
mjr 76:7f5912b6340e 687 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 688 static uint8_t *wizOn;
mjr 76:7f5912b6340e 689
mjr 76:7f5912b6340e 690 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 691 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 692 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 693 //
mjr 76:7f5912b6340e 694 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 695 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 696 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 697 // 130 = flash on / off
mjr 76:7f5912b6340e 698 // 131 = on / ramp down
mjr 76:7f5912b6340e 699 // 132 = ramp up / on
mjr 5:a70c0bce770d 700 //
mjr 76:7f5912b6340e 701 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 702 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 703 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 704 static uint8_t *wizVal;
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 707 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 708 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 709 // by the extended protocol:
mjr 76:7f5912b6340e 710 //
mjr 76:7f5912b6340e 711 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 712 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 713 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 714 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 715 // if the brightness is non-zero.
mjr 76:7f5912b6340e 716 //
mjr 76:7f5912b6340e 717 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 718 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 719 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 720 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 721 // 0..255 range.
mjr 26:cb71c4af2912 722 //
mjr 76:7f5912b6340e 723 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 724 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 725 // level.
mjr 26:cb71c4af2912 726 //
mjr 76:7f5912b6340e 727 static uint8_t *outLevel;
mjr 76:7f5912b6340e 728
mjr 76:7f5912b6340e 729
mjr 76:7f5912b6340e 730 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 731 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 732 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 733 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 734 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 735 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 736 //
mjr 76:7f5912b6340e 737 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 738 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 739 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 740 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 741 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 742 // at the maximum size.
mjr 76:7f5912b6340e 743 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 744 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 745
mjr 26:cb71c4af2912 746 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 747 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 748 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 749 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 750 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 751
mjr 76:7f5912b6340e 752
mjr 76:7f5912b6340e 753 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 754 //
mjr 76:7f5912b6340e 755 // Output Ports
mjr 76:7f5912b6340e 756 //
mjr 76:7f5912b6340e 757 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 758 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 759 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 760 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 761 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 762 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 763 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 764 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 765 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 766 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 767 // you have to ration pins among features.
mjr 76:7f5912b6340e 768 //
mjr 87:8d35c74403af 769 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 770 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 771 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 772 //
mjr 87:8d35c74403af 773 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 774 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 775 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 776 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 777 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 778 //
mjr 87:8d35c74403af 779 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 780 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 781 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 782 //
mjr 87:8d35c74403af 783 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 784 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 785 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 786 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 787 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 788 // for the chime board outputs.
mjr 76:7f5912b6340e 789 //
mjr 76:7f5912b6340e 790 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 791 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 792 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 793 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 794 //
mjr 76:7f5912b6340e 795 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 796 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 797 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 798 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 799 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 800 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 801 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 802 // of physical devices they're connected to.
mjr 76:7f5912b6340e 803
mjr 76:7f5912b6340e 804
mjr 26:cb71c4af2912 805 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 806 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 807 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 808 class LwOut
mjr 6:cc35eb643e8f 809 {
mjr 6:cc35eb643e8f 810 public:
mjr 40:cc0d9814522b 811 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 812 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 814 };
mjr 26:cb71c4af2912 815
mjr 35:e959ffba78fd 816 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 817 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 818 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 819 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 820 // numbering.
mjr 35:e959ffba78fd 821 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 822 {
mjr 33:d832bcab089e 823 public:
mjr 35:e959ffba78fd 824 LwVirtualOut() { }
mjr 40:cc0d9814522b 825 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 826 };
mjr 26:cb71c4af2912 827
mjr 34:6b981a2afab7 828 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 829 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 830 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 831 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 832 {
mjr 34:6b981a2afab7 833 public:
mjr 34:6b981a2afab7 834 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 835 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 836
mjr 34:6b981a2afab7 837 private:
mjr 53:9b2611964afc 838 // underlying physical output
mjr 34:6b981a2afab7 839 LwOut *out;
mjr 34:6b981a2afab7 840 };
mjr 34:6b981a2afab7 841
mjr 53:9b2611964afc 842 // Global ZB Launch Ball state
mjr 53:9b2611964afc 843 bool zbLaunchOn = false;
mjr 53:9b2611964afc 844
mjr 53:9b2611964afc 845 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 846 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 847 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 848 {
mjr 53:9b2611964afc 849 public:
mjr 53:9b2611964afc 850 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 851 virtual void set(uint8_t val)
mjr 53:9b2611964afc 852 {
mjr 53:9b2611964afc 853 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 854 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 855
mjr 53:9b2611964afc 856 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 857 out->set(val);
mjr 53:9b2611964afc 858 }
mjr 53:9b2611964afc 859
mjr 53:9b2611964afc 860 private:
mjr 53:9b2611964afc 861 // underlying physical or virtual output
mjr 53:9b2611964afc 862 LwOut *out;
mjr 53:9b2611964afc 863 };
mjr 53:9b2611964afc 864
mjr 53:9b2611964afc 865
mjr 40:cc0d9814522b 866 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 867 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 868 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 869 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 870 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 871 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 872 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 873 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 874 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 875 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 876 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 877 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 878 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 879 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 880 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 881 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 882 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 883 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 884 };
mjr 40:cc0d9814522b 885
mjr 40:cc0d9814522b 886 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 887 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 888 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 889 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 890 {
mjr 40:cc0d9814522b 891 public:
mjr 40:cc0d9814522b 892 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 893 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 894
mjr 40:cc0d9814522b 895 private:
mjr 40:cc0d9814522b 896 LwOut *out;
mjr 40:cc0d9814522b 897 };
mjr 40:cc0d9814522b 898
mjr 77:0b96f6867312 899 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 900 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 901 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 902 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 903
mjr 40:cc0d9814522b 904 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 905 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 906 // mode is engaged.
mjr 40:cc0d9814522b 907 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 908 {
mjr 40:cc0d9814522b 909 public:
mjr 40:cc0d9814522b 910 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 911 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 912
mjr 53:9b2611964afc 913 private:
mjr 53:9b2611964afc 914 LwOut *out;
mjr 53:9b2611964afc 915 };
mjr 53:9b2611964afc 916
mjr 53:9b2611964afc 917 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 918 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 919 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 920 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 921 {
mjr 53:9b2611964afc 922 public:
mjr 53:9b2611964afc 923 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 924 virtual void set(uint8_t)
mjr 53:9b2611964afc 925 {
mjr 53:9b2611964afc 926 // ignore the host value and simply show the current
mjr 53:9b2611964afc 927 // night mode setting
mjr 53:9b2611964afc 928 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 929 }
mjr 40:cc0d9814522b 930
mjr 40:cc0d9814522b 931 private:
mjr 40:cc0d9814522b 932 LwOut *out;
mjr 40:cc0d9814522b 933 };
mjr 40:cc0d9814522b 934
mjr 26:cb71c4af2912 935
mjr 89:c43cd923401c 936 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 937 // top of a physical pin output.
mjr 89:c43cd923401c 938 //
mjr 89:c43cd923401c 939 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 940 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 941 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 942 // level is ON.
mjr 89:c43cd923401c 943 //
mjr 89:c43cd923401c 944 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 945 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 946 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 947 //
mjr 89:c43cd923401c 948 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 949 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 950 // power and start a timer.
mjr 89:c43cd923401c 951 //
mjr 89:c43cd923401c 952 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 953 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 954 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 955 //
mjr 89:c43cd923401c 956 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 957 {
mjr 89:c43cd923401c 958 public:
mjr 89:c43cd923401c 959 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 960 // the configuration.
mjr 89:c43cd923401c 961 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 962 : out(o), params(params)
mjr 89:c43cd923401c 963 {
mjr 89:c43cd923401c 964 // initially OFF
mjr 89:c43cd923401c 965 state = 0;
mjr 89:c43cd923401c 966 }
mjr 89:c43cd923401c 967
mjr 89:c43cd923401c 968 virtual void set(uint8_t level)
mjr 89:c43cd923401c 969 {
mjr 98:4df3c0f7e707 970 // remember the new nominal level set by the client
mjr 89:c43cd923401c 971 val = level;
mjr 89:c43cd923401c 972
mjr 89:c43cd923401c 973 // update the physical output according to our current timing state
mjr 89:c43cd923401c 974 switch (state)
mjr 89:c43cd923401c 975 {
mjr 89:c43cd923401c 976 case 0:
mjr 89:c43cd923401c 977 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 978 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 979 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 980 // off, so there's no change.
mjr 89:c43cd923401c 981 if (level != 0)
mjr 89:c43cd923401c 982 {
mjr 89:c43cd923401c 983 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 984 state = 1;
mjr 89:c43cd923401c 985
mjr 89:c43cd923401c 986 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 987 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 988 // requested
mjr 89:c43cd923401c 989 out->set(level);
mjr 89:c43cd923401c 990
mjr 89:c43cd923401c 991 // add myself to the pending timer list
mjr 89:c43cd923401c 992 pending[nPending++] = this;
mjr 89:c43cd923401c 993
mjr 89:c43cd923401c 994 // note the starting time
mjr 89:c43cd923401c 995 t0 = timer.read_us();
mjr 89:c43cd923401c 996 }
mjr 89:c43cd923401c 997 break;
mjr 89:c43cd923401c 998
mjr 89:c43cd923401c 999 case 1:
mjr 89:c43cd923401c 1000 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 1001 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 1002 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 1003 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 1004 out->set(level);
mjr 89:c43cd923401c 1005 if (level == 0)
mjr 89:c43cd923401c 1006 {
mjr 89:c43cd923401c 1007 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 1008 // so we need to remove it from the list.
mjr 89:c43cd923401c 1009 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 1010 {
mjr 89:c43cd923401c 1011 // is this us?
mjr 89:c43cd923401c 1012 if (pending[i] == this)
mjr 89:c43cd923401c 1013 {
mjr 89:c43cd923401c 1014 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 1015 // last list entry
mjr 89:c43cd923401c 1016 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1017
mjr 89:c43cd923401c 1018 // no need to look any further
mjr 89:c43cd923401c 1019 break;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021 }
mjr 89:c43cd923401c 1022
mjr 89:c43cd923401c 1023 // switch to state 0 (off)
mjr 89:c43cd923401c 1024 state = 0;
mjr 89:c43cd923401c 1025 }
mjr 89:c43cd923401c 1026 break;
mjr 89:c43cd923401c 1027
mjr 89:c43cd923401c 1028 case 2:
mjr 89:c43cd923401c 1029 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 1030 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 1031 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 1032 // as the upper bound.
mjr 89:c43cd923401c 1033 if (level == 0)
mjr 89:c43cd923401c 1034 {
mjr 89:c43cd923401c 1035 // switching off - turn off the physical output
mjr 89:c43cd923401c 1036 out->set(0);
mjr 89:c43cd923401c 1037
mjr 89:c43cd923401c 1038 // go to state 0 (off)
mjr 89:c43cd923401c 1039 state = 0;
mjr 89:c43cd923401c 1040 }
mjr 89:c43cd923401c 1041 else
mjr 89:c43cd923401c 1042 {
mjr 89:c43cd923401c 1043 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 1044 // lower of the requested power and the hold power
mjr 89:c43cd923401c 1045 uint8_t hold = holdPower();
mjr 89:c43cd923401c 1046 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 1047 }
mjr 89:c43cd923401c 1048 break;
mjr 89:c43cd923401c 1049 }
mjr 89:c43cd923401c 1050 }
mjr 89:c43cd923401c 1051
mjr 89:c43cd923401c 1052 // Class initialization
mjr 89:c43cd923401c 1053 static void classInit(Config &cfg)
mjr 89:c43cd923401c 1054 {
mjr 89:c43cd923401c 1055 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 1056 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 1057 // all of these outputs.
mjr 89:c43cd923401c 1058 int n = 0;
mjr 89:c43cd923401c 1059 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 1060 {
mjr 89:c43cd923401c 1061 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 1062 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 1063 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 1064 ++n;
mjr 89:c43cd923401c 1065 }
mjr 89:c43cd923401c 1066
mjr 89:c43cd923401c 1067 // allocate space for the pending timer list
mjr 89:c43cd923401c 1068 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 1069
mjr 89:c43cd923401c 1070 // there's nothing in the pending list yet
mjr 89:c43cd923401c 1071 nPending = 0;
mjr 89:c43cd923401c 1072
mjr 89:c43cd923401c 1073 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 1074 // use it to figure elapsed times.
mjr 89:c43cd923401c 1075 timer.start();
mjr 89:c43cd923401c 1076 }
mjr 89:c43cd923401c 1077
mjr 89:c43cd923401c 1078 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 1079 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 1080 static void poll()
mjr 89:c43cd923401c 1081 {
mjr 89:c43cd923401c 1082 // note the current time
mjr 89:c43cd923401c 1083 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 1084
mjr 89:c43cd923401c 1085 // go through the timer list
mjr 89:c43cd923401c 1086 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 1087 {
mjr 89:c43cd923401c 1088 // get the port
mjr 89:c43cd923401c 1089 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 1090
mjr 89:c43cd923401c 1091 // assume we'll keep it
mjr 89:c43cd923401c 1092 bool remove = false;
mjr 89:c43cd923401c 1093
mjr 89:c43cd923401c 1094 // check if the port is still on
mjr 89:c43cd923401c 1095 if (port->state != 0)
mjr 89:c43cd923401c 1096 {
mjr 89:c43cd923401c 1097 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1098 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1099 {
mjr 89:c43cd923401c 1100 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1101 port->state = 2;
mjr 89:c43cd923401c 1102
mjr 89:c43cd923401c 1103 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1104 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1105 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1106 uint8_t val = port->val;
mjr 89:c43cd923401c 1107 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1108
mjr 89:c43cd923401c 1109 // we're done with the timer
mjr 89:c43cd923401c 1110 remove = true;
mjr 89:c43cd923401c 1111 }
mjr 89:c43cd923401c 1112 }
mjr 89:c43cd923401c 1113 else
mjr 89:c43cd923401c 1114 {
mjr 89:c43cd923401c 1115 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1116 // it from the timer list
mjr 89:c43cd923401c 1117 remove = true;
mjr 89:c43cd923401c 1118 }
mjr 89:c43cd923401c 1119
mjr 89:c43cd923401c 1120 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1121 if (remove)
mjr 89:c43cd923401c 1122 {
mjr 89:c43cd923401c 1123 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1124 // the last entry in the list.
mjr 89:c43cd923401c 1125 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1126
mjr 89:c43cd923401c 1127 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1128 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1129 }
mjr 89:c43cd923401c 1130 else
mjr 89:c43cd923401c 1131 {
mjr 89:c43cd923401c 1132 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1133 ++i;
mjr 89:c43cd923401c 1134 }
mjr 89:c43cd923401c 1135 }
mjr 89:c43cd923401c 1136 }
mjr 89:c43cd923401c 1137
mjr 89:c43cd923401c 1138 protected:
mjr 89:c43cd923401c 1139 // underlying physical output
mjr 89:c43cd923401c 1140 LwOut *out;
mjr 89:c43cd923401c 1141
mjr 89:c43cd923401c 1142 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1143 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1144 uint32_t t0;
mjr 89:c43cd923401c 1145
mjr 89:c43cd923401c 1146 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1147 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1148 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1149 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1150 // if it's lower.
mjr 89:c43cd923401c 1151 uint8_t val;
mjr 89:c43cd923401c 1152
mjr 89:c43cd923401c 1153 // Current port state:
mjr 89:c43cd923401c 1154 //
mjr 89:c43cd923401c 1155 // 0 = off
mjr 89:c43cd923401c 1156 // 1 = on at initial full power
mjr 89:c43cd923401c 1157 // 2 = on at hold power
mjr 89:c43cd923401c 1158 uint8_t state;
mjr 89:c43cd923401c 1159
mjr 89:c43cd923401c 1160 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1161 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1162 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1163 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1164 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1165 uint8_t params;
mjr 89:c43cd923401c 1166
mjr 99:8139b0c274f4 1167 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1168 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1169 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1170
mjr 89:c43cd923401c 1171 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1172 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1173
mjr 89:c43cd923401c 1174 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1175 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1176 // (which runs continuously).
mjr 89:c43cd923401c 1177 static Timer timer;
mjr 89:c43cd923401c 1178
mjr 89:c43cd923401c 1179 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1180 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1181 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1182 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1183 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1184 static uint8_t nPending;
mjr 89:c43cd923401c 1185 };
mjr 89:c43cd923401c 1186
mjr 89:c43cd923401c 1187 // Flipper Logic statics
mjr 89:c43cd923401c 1188 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1189 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1190 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1191
mjr 99:8139b0c274f4 1192 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1193 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1194 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1195 {
mjr 98:4df3c0f7e707 1196 public:
mjr 99:8139b0c274f4 1197 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1198 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1199 : out(o), params(params)
mjr 98:4df3c0f7e707 1200 {
mjr 98:4df3c0f7e707 1201 // initially OFF
mjr 98:4df3c0f7e707 1202 state = 0;
mjr 98:4df3c0f7e707 1203 }
mjr 98:4df3c0f7e707 1204
mjr 98:4df3c0f7e707 1205 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1206 {
mjr 98:4df3c0f7e707 1207 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1208 switch (state)
mjr 98:4df3c0f7e707 1209 {
mjr 98:4df3c0f7e707 1210 case 0:
mjr 98:4df3c0f7e707 1211 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1212 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1213 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1214 // off, so there's no change.
mjr 98:4df3c0f7e707 1215 if (level != 0)
mjr 98:4df3c0f7e707 1216 {
mjr 98:4df3c0f7e707 1217 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1218 // logically on)
mjr 98:4df3c0f7e707 1219 state = 1;
mjr 98:4df3c0f7e707 1220
mjr 98:4df3c0f7e707 1221 // set the requested output level
mjr 98:4df3c0f7e707 1222 out->set(level);
mjr 98:4df3c0f7e707 1223
mjr 98:4df3c0f7e707 1224 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1225 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1226
mjr 98:4df3c0f7e707 1227 // note the starting time
mjr 98:4df3c0f7e707 1228 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1229 }
mjr 98:4df3c0f7e707 1230 break;
mjr 98:4df3c0f7e707 1231
mjr 98:4df3c0f7e707 1232 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1233 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1234 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1235 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1236 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1237 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1238 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1239 //
mjr 98:4df3c0f7e707 1240 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1241 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1242 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1243 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1244 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1245 if (level != 0)
mjr 98:4df3c0f7e707 1246 {
mjr 98:4df3c0f7e707 1247 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1248 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1249 out->set(level);
mjr 98:4df3c0f7e707 1250 state = 1;
mjr 98:4df3c0f7e707 1251 }
mjr 98:4df3c0f7e707 1252 else
mjr 98:4df3c0f7e707 1253 {
mjr 98:4df3c0f7e707 1254 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1255 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1256 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1257 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1258 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1259 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1260 // time requirement.
mjr 98:4df3c0f7e707 1261 state = 2;
mjr 98:4df3c0f7e707 1262 }
mjr 98:4df3c0f7e707 1263 break;
mjr 98:4df3c0f7e707 1264
mjr 98:4df3c0f7e707 1265 case 3:
mjr 99:8139b0c274f4 1266 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1267 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1268 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1269 out->set(level);
mjr 98:4df3c0f7e707 1270
mjr 98:4df3c0f7e707 1271 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1272 if (level == 0)
mjr 99:8139b0c274f4 1273 {
mjr 99:8139b0c274f4 1274 // return to the OFF state
mjr 99:8139b0c274f4 1275 state = 0;
mjr 99:8139b0c274f4 1276
mjr 99:8139b0c274f4 1277 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1278 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1279 // port.
mjr 99:8139b0c274f4 1280 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1281 {
mjr 99:8139b0c274f4 1282 // is this us?
mjr 99:8139b0c274f4 1283 if (pending[i] == this)
mjr 99:8139b0c274f4 1284 {
mjr 99:8139b0c274f4 1285 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1286 // last list entry
mjr 99:8139b0c274f4 1287 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1288
mjr 99:8139b0c274f4 1289 // no need to look any further
mjr 99:8139b0c274f4 1290 break;
mjr 99:8139b0c274f4 1291 }
mjr 99:8139b0c274f4 1292 }
mjr 99:8139b0c274f4 1293 }
mjr 99:8139b0c274f4 1294 break;
mjr 99:8139b0c274f4 1295
mjr 99:8139b0c274f4 1296 case 4:
mjr 99:8139b0c274f4 1297 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1298 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1299 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1300 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1301 if (level == 0)
mjr 98:4df3c0f7e707 1302 state = 0;
mjr 98:4df3c0f7e707 1303 break;
mjr 98:4df3c0f7e707 1304 }
mjr 98:4df3c0f7e707 1305 }
mjr 98:4df3c0f7e707 1306
mjr 98:4df3c0f7e707 1307 // Class initialization
mjr 98:4df3c0f7e707 1308 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1309 {
mjr 98:4df3c0f7e707 1310 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1311 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1312 // all of these outputs.
mjr 98:4df3c0f7e707 1313 int n = 0;
mjr 98:4df3c0f7e707 1314 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1315 {
mjr 98:4df3c0f7e707 1316 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1317 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1318 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1319 ++n;
mjr 98:4df3c0f7e707 1320 }
mjr 98:4df3c0f7e707 1321
mjr 98:4df3c0f7e707 1322 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1323 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1324
mjr 98:4df3c0f7e707 1325 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1326 nPending = 0;
mjr 98:4df3c0f7e707 1327
mjr 98:4df3c0f7e707 1328 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1329 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1330 timer.start();
mjr 98:4df3c0f7e707 1331 }
mjr 98:4df3c0f7e707 1332
mjr 98:4df3c0f7e707 1333 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1334 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1335 static void poll()
mjr 98:4df3c0f7e707 1336 {
mjr 98:4df3c0f7e707 1337 // note the current time
mjr 98:4df3c0f7e707 1338 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1339
mjr 98:4df3c0f7e707 1340 // go through the timer list
mjr 98:4df3c0f7e707 1341 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1342 {
mjr 98:4df3c0f7e707 1343 // get the port
mjr 99:8139b0c274f4 1344 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1345
mjr 98:4df3c0f7e707 1346 // assume we'll keep it
mjr 98:4df3c0f7e707 1347 bool remove = false;
mjr 98:4df3c0f7e707 1348
mjr 99:8139b0c274f4 1349 // check our state
mjr 99:8139b0c274f4 1350 switch (port->state)
mjr 98:4df3c0f7e707 1351 {
mjr 99:8139b0c274f4 1352 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1353 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1354 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1355 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1356 {
mjr 98:4df3c0f7e707 1357 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1358 // it advances to the next state.
mjr 98:4df3c0f7e707 1359 if (port->state == 1)
mjr 98:4df3c0f7e707 1360 {
mjr 99:8139b0c274f4 1361 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1362 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1363 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1364 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1365 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1366 port->state = 3;
mjr 99:8139b0c274f4 1367
mjr 99:8139b0c274f4 1368 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1369 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1370 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1371 // port off.
mjr 99:8139b0c274f4 1372 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1373 remove = true;
mjr 98:4df3c0f7e707 1374 }
mjr 98:4df3c0f7e707 1375 else
mjr 98:4df3c0f7e707 1376 {
mjr 98:4df3c0f7e707 1377 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1378 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1379 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1380 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1381 // the port off now.
mjr 98:4df3c0f7e707 1382 port->out->set(0);
mjr 98:4df3c0f7e707 1383
mjr 98:4df3c0f7e707 1384 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1385 port->state = 0;
mjr 99:8139b0c274f4 1386
mjr 99:8139b0c274f4 1387 // we're done with the timer
mjr 99:8139b0c274f4 1388 remove = true;
mjr 98:4df3c0f7e707 1389 }
mjr 99:8139b0c274f4 1390 }
mjr 99:8139b0c274f4 1391 break;
mjr 99:8139b0c274f4 1392
mjr 99:8139b0c274f4 1393 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1394 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1395 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1396 {
mjr 99:8139b0c274f4 1397 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1398 // port.
mjr 99:8139b0c274f4 1399 port->out->set(0);
mjr 98:4df3c0f7e707 1400
mjr 99:8139b0c274f4 1401 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1402 port->state = 4;
mjr 99:8139b0c274f4 1403
mjr 99:8139b0c274f4 1404 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1405 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1406 remove = true;
mjr 98:4df3c0f7e707 1407 }
mjr 99:8139b0c274f4 1408 break;
mjr 98:4df3c0f7e707 1409 }
mjr 98:4df3c0f7e707 1410
mjr 98:4df3c0f7e707 1411 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1412 if (remove)
mjr 98:4df3c0f7e707 1413 {
mjr 98:4df3c0f7e707 1414 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1415 // the last entry in the list.
mjr 98:4df3c0f7e707 1416 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1417
mjr 98:4df3c0f7e707 1418 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1419 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1420 }
mjr 98:4df3c0f7e707 1421 else
mjr 98:4df3c0f7e707 1422 {
mjr 98:4df3c0f7e707 1423 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1424 ++i;
mjr 98:4df3c0f7e707 1425 }
mjr 98:4df3c0f7e707 1426 }
mjr 98:4df3c0f7e707 1427 }
mjr 98:4df3c0f7e707 1428
mjr 98:4df3c0f7e707 1429 protected:
mjr 98:4df3c0f7e707 1430 // underlying physical output
mjr 98:4df3c0f7e707 1431 LwOut *out;
mjr 98:4df3c0f7e707 1432
mjr 98:4df3c0f7e707 1433 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1434 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1435 uint32_t t0;
mjr 98:4df3c0f7e707 1436
mjr 98:4df3c0f7e707 1437 // Current port state:
mjr 98:4df3c0f7e707 1438 //
mjr 98:4df3c0f7e707 1439 // 0 = off
mjr 99:8139b0c274f4 1440 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1441 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1442 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1443 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1444 //
mjr 99:8139b0c274f4 1445 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1446 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1447 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1448 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1449 //
mjr 99:8139b0c274f4 1450 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1451 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1452 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1453 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1454 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1455 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1456 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1457 //
mjr 99:8139b0c274f4 1458 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1459 // time limit expires:
mjr 99:8139b0c274f4 1460 //
mjr 99:8139b0c274f4 1461 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1462 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1463 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1464 //
mjr 98:4df3c0f7e707 1465 uint8_t state;
mjr 98:4df3c0f7e707 1466
mjr 99:8139b0c274f4 1467 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1468 // ON times.
mjr 99:8139b0c274f4 1469 uint8_t params;
mjr 98:4df3c0f7e707 1470
mjr 98:4df3c0f7e707 1471 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1472 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1473 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1474 static Timer timer;
mjr 98:4df3c0f7e707 1475
mjr 98:4df3c0f7e707 1476 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1477 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1478
mjr 99:8139b0c274f4 1479 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1480 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1481 // into our time table.
mjr 99:8139b0c274f4 1482 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1483
mjr 99:8139b0c274f4 1484 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1485 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1486 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1487 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1488
mjr 98:4df3c0f7e707 1489 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1490 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1491 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1492 // ON intervals.
mjr 99:8139b0c274f4 1493 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1494 static uint8_t nPending;
mjr 98:4df3c0f7e707 1495 };
mjr 98:4df3c0f7e707 1496
mjr 98:4df3c0f7e707 1497 // Min Time Out statics
mjr 99:8139b0c274f4 1498 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1499 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1500 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1501 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1502 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1503 1000,
mjr 98:4df3c0f7e707 1504 2000,
mjr 98:4df3c0f7e707 1505 5000,
mjr 98:4df3c0f7e707 1506 10000,
mjr 98:4df3c0f7e707 1507 20000,
mjr 98:4df3c0f7e707 1508 40000,
mjr 98:4df3c0f7e707 1509 80000,
mjr 98:4df3c0f7e707 1510 100000,
mjr 98:4df3c0f7e707 1511 200000,
mjr 98:4df3c0f7e707 1512 300000,
mjr 98:4df3c0f7e707 1513 400000,
mjr 98:4df3c0f7e707 1514 500000,
mjr 98:4df3c0f7e707 1515 600000,
mjr 98:4df3c0f7e707 1516 700000,
mjr 98:4df3c0f7e707 1517 800000
mjr 98:4df3c0f7e707 1518 };
mjr 89:c43cd923401c 1519
mjr 35:e959ffba78fd 1520 //
mjr 35:e959ffba78fd 1521 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1522 // assignments set in config.h.
mjr 33:d832bcab089e 1523 //
mjr 35:e959ffba78fd 1524 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1525 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1526 {
mjr 35:e959ffba78fd 1527 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1528 {
mjr 53:9b2611964afc 1529 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1530 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1531 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1532 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1533 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1534 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1535 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1536 }
mjr 35:e959ffba78fd 1537 }
mjr 26:cb71c4af2912 1538
mjr 40:cc0d9814522b 1539 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1540 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1541 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1542 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1543 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1544 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1545 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1546 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1547 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1548 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1549 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1550 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1551 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1552 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1553 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1554 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1555 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1556 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1557 };
mjr 40:cc0d9814522b 1558
mjr 40:cc0d9814522b 1559 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1560 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1561 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1562 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1563 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1564 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1565 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1566 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1567 // are always 8 bits.
mjr 40:cc0d9814522b 1568 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1569 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1570 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1571 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1572 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1573 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1574 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1575 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1576 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1577 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1578 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1579 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1580 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1581 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1582 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1583 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1584 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1585 };
mjr 40:cc0d9814522b 1586
mjr 26:cb71c4af2912 1587 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1588 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1589 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1590 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1591 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1592 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1593 {
mjr 26:cb71c4af2912 1594 public:
mjr 60:f38da020aa13 1595 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1596 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1597 {
mjr 26:cb71c4af2912 1598 if (val != prv)
mjr 40:cc0d9814522b 1599 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1600 }
mjr 60:f38da020aa13 1601 uint8_t idx;
mjr 40:cc0d9814522b 1602 uint8_t prv;
mjr 26:cb71c4af2912 1603 };
mjr 26:cb71c4af2912 1604
mjr 40:cc0d9814522b 1605 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1606 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1607 {
mjr 40:cc0d9814522b 1608 public:
mjr 60:f38da020aa13 1609 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1610 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1611 {
mjr 40:cc0d9814522b 1612 if (val != prv)
mjr 40:cc0d9814522b 1613 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1614 }
mjr 60:f38da020aa13 1615 uint8_t idx;
mjr 40:cc0d9814522b 1616 uint8_t prv;
mjr 40:cc0d9814522b 1617 };
mjr 40:cc0d9814522b 1618
mjr 87:8d35c74403af 1619 //
mjr 87:8d35c74403af 1620 // TLC59116 interface object
mjr 87:8d35c74403af 1621 //
mjr 87:8d35c74403af 1622 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1623 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1624 {
mjr 87:8d35c74403af 1625 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1626 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1627 {
mjr 87:8d35c74403af 1628 // set up the interface
mjr 87:8d35c74403af 1629 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1630 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1631 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1632 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1633
mjr 87:8d35c74403af 1634 // initialize the chips
mjr 87:8d35c74403af 1635 tlc59116->init();
mjr 87:8d35c74403af 1636 }
mjr 87:8d35c74403af 1637 }
mjr 87:8d35c74403af 1638
mjr 87:8d35c74403af 1639 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1640 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1641 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1642 // (0-15).
mjr 87:8d35c74403af 1643 //
mjr 87:8d35c74403af 1644 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1645 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1646 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1647 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1648 {
mjr 87:8d35c74403af 1649 public:
mjr 87:8d35c74403af 1650 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1651 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1652 {
mjr 87:8d35c74403af 1653 if (val != prv)
mjr 87:8d35c74403af 1654 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1655 }
mjr 87:8d35c74403af 1656
mjr 87:8d35c74403af 1657 protected:
mjr 87:8d35c74403af 1658 uint8_t addr;
mjr 87:8d35c74403af 1659 uint8_t port;
mjr 87:8d35c74403af 1660 uint8_t prv;
mjr 87:8d35c74403af 1661 };
mjr 87:8d35c74403af 1662
mjr 87:8d35c74403af 1663
mjr 87:8d35c74403af 1664 //
mjr 34:6b981a2afab7 1665 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1666 // config.h.
mjr 87:8d35c74403af 1667 //
mjr 35:e959ffba78fd 1668 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1669
mjr 35:e959ffba78fd 1670 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1671 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1672 {
mjr 35:e959ffba78fd 1673 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1674 {
mjr 53:9b2611964afc 1675 hc595 = new HC595(
mjr 53:9b2611964afc 1676 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1677 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1678 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1679 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1680 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1681 hc595->init();
mjr 35:e959ffba78fd 1682 hc595->update();
mjr 35:e959ffba78fd 1683 }
mjr 35:e959ffba78fd 1684 }
mjr 34:6b981a2afab7 1685
mjr 34:6b981a2afab7 1686 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1687 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1688 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1689 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1690 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1691 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1692 {
mjr 33:d832bcab089e 1693 public:
mjr 60:f38da020aa13 1694 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1695 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1696 {
mjr 34:6b981a2afab7 1697 if (val != prv)
mjr 40:cc0d9814522b 1698 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1699 }
mjr 60:f38da020aa13 1700 uint8_t idx;
mjr 40:cc0d9814522b 1701 uint8_t prv;
mjr 33:d832bcab089e 1702 };
mjr 33:d832bcab089e 1703
mjr 26:cb71c4af2912 1704
mjr 40:cc0d9814522b 1705
mjr 64:ef7ca92dff36 1706 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1707 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1708 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1709 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1710 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1711 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1712 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1713 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1714 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1715 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1716 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1717 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1718 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1719 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1720 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1721 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1722 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1723 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1724 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1725 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1726 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1727 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1728 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1729 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1730 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1731 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1732 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1733 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1734 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1735 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1736 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1737 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1738 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1739 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1740 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1741 };
mjr 26:cb71c4af2912 1742
mjr 64:ef7ca92dff36 1743
mjr 92:f264fbaa1be5 1744 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1745 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1746 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1747 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1748 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1749 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1750 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1751 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1752 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1753 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1754 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1755 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1756 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1757 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1758 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1759 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1760 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1761 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1762 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1763 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1764 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1765 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1766 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1767 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1768 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1769 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1770 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1771 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1772 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1773 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1774 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1775 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1776 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1777 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1778 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1779 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1780 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1781 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1782 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1783 };
mjr 64:ef7ca92dff36 1784
mjr 77:0b96f6867312 1785 // Polled-update PWM output list
mjr 74:822a92bc11d2 1786 //
mjr 77:0b96f6867312 1787 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1788 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1789 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1790 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1791 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1792 //
mjr 92:f264fbaa1be5 1793 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1794 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1795 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1796 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1797 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1798 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1799 //
mjr 92:f264fbaa1be5 1800 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1801 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1802 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1803 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1804 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1805 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1806 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1807 // enough to become noticeable.
mjr 92:f264fbaa1be5 1808 //
mjr 92:f264fbaa1be5 1809 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1810 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1811 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1812 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1813 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1814 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1815 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1816 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1817 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1818 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1819 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1820 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1821 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1822 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1823 //
mjr 92:f264fbaa1be5 1824 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1825 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1826 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1827 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1828 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1829 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1830 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1831 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1832 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1833 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1834 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1835 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1836 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1837 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1838 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1839 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1840 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1841 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1842 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1843 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1844 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1845 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1846 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1847 //
mjr 77:0b96f6867312 1848 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1849 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1850 // of polled items.
mjr 74:822a92bc11d2 1851 static int numPolledPwm;
mjr 74:822a92bc11d2 1852 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1853
mjr 74:822a92bc11d2 1854 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1855 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1856 {
mjr 6:cc35eb643e8f 1857 public:
mjr 43:7a6364d82a41 1858 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1859 {
mjr 77:0b96f6867312 1860 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1861 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1862 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1863
mjr 94:0476b3e2b996 1864 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1865 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1866 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1867 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1868 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1869 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1870 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1871 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1872 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1873 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1874 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1875 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1876 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1877 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1878 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1879 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1880
mjr 94:0476b3e2b996 1881 // set the initial brightness value
mjr 77:0b96f6867312 1882 set(initVal);
mjr 43:7a6364d82a41 1883 }
mjr 74:822a92bc11d2 1884
mjr 40:cc0d9814522b 1885 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1886 {
mjr 77:0b96f6867312 1887 // save the new value
mjr 74:822a92bc11d2 1888 this->val = val;
mjr 77:0b96f6867312 1889
mjr 77:0b96f6867312 1890 // commit it to the hardware
mjr 77:0b96f6867312 1891 commit();
mjr 13:72dda449c3c0 1892 }
mjr 74:822a92bc11d2 1893
mjr 74:822a92bc11d2 1894 // handle periodic update polling
mjr 74:822a92bc11d2 1895 void poll()
mjr 74:822a92bc11d2 1896 {
mjr 77:0b96f6867312 1897 commit();
mjr 74:822a92bc11d2 1898 }
mjr 74:822a92bc11d2 1899
mjr 74:822a92bc11d2 1900 protected:
mjr 77:0b96f6867312 1901 virtual void commit()
mjr 74:822a92bc11d2 1902 {
mjr 74:822a92bc11d2 1903 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1904 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1905 }
mjr 74:822a92bc11d2 1906
mjr 77:0b96f6867312 1907 NewPwmOut p;
mjr 77:0b96f6867312 1908 uint8_t val;
mjr 6:cc35eb643e8f 1909 };
mjr 26:cb71c4af2912 1910
mjr 74:822a92bc11d2 1911 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1912 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1913 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1914 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1915 {
mjr 64:ef7ca92dff36 1916 public:
mjr 64:ef7ca92dff36 1917 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1918 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1919 {
mjr 64:ef7ca92dff36 1920 }
mjr 74:822a92bc11d2 1921
mjr 74:822a92bc11d2 1922 protected:
mjr 77:0b96f6867312 1923 virtual void commit()
mjr 64:ef7ca92dff36 1924 {
mjr 74:822a92bc11d2 1925 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1926 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1927 }
mjr 64:ef7ca92dff36 1928 };
mjr 64:ef7ca92dff36 1929
mjr 74:822a92bc11d2 1930 // poll the PWM outputs
mjr 74:822a92bc11d2 1931 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1932 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1933 void pollPwmUpdates()
mjr 74:822a92bc11d2 1934 {
mjr 94:0476b3e2b996 1935 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1936 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1937 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1938 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1939 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1940 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1941 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1942 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1943 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1944 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1945 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1946 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1947 // viewer.
mjr 94:0476b3e2b996 1948 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1949 {
mjr 74:822a92bc11d2 1950 // time the run for statistics collection
mjr 74:822a92bc11d2 1951 IF_DIAG(
mjr 74:822a92bc11d2 1952 Timer t;
mjr 74:822a92bc11d2 1953 t.start();
mjr 74:822a92bc11d2 1954 )
mjr 74:822a92bc11d2 1955
mjr 74:822a92bc11d2 1956 // poll each output
mjr 74:822a92bc11d2 1957 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1958 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1959
mjr 74:822a92bc11d2 1960 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1961 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1962
mjr 74:822a92bc11d2 1963 // collect statistics
mjr 74:822a92bc11d2 1964 IF_DIAG(
mjr 76:7f5912b6340e 1965 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1966 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1967 )
mjr 74:822a92bc11d2 1968 }
mjr 74:822a92bc11d2 1969 }
mjr 64:ef7ca92dff36 1970
mjr 26:cb71c4af2912 1971 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1972 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1973 {
mjr 6:cc35eb643e8f 1974 public:
mjr 43:7a6364d82a41 1975 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1976 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1977 {
mjr 13:72dda449c3c0 1978 if (val != prv)
mjr 40:cc0d9814522b 1979 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1980 }
mjr 6:cc35eb643e8f 1981 DigitalOut p;
mjr 40:cc0d9814522b 1982 uint8_t prv;
mjr 6:cc35eb643e8f 1983 };
mjr 26:cb71c4af2912 1984
mjr 29:582472d0bc57 1985 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1986 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1987 // port n (0-based).
mjr 35:e959ffba78fd 1988 //
mjr 35:e959ffba78fd 1989 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1990 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1991 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1992 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1993 // 74HC595 ports).
mjr 33:d832bcab089e 1994 static int numOutputs;
mjr 33:d832bcab089e 1995 static LwOut **lwPin;
mjr 33:d832bcab089e 1996
mjr 38:091e511ce8a0 1997 // create a single output pin
mjr 53:9b2611964afc 1998 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1999 {
mjr 38:091e511ce8a0 2000 // get this item's values
mjr 38:091e511ce8a0 2001 int typ = pc.typ;
mjr 38:091e511ce8a0 2002 int pin = pc.pin;
mjr 38:091e511ce8a0 2003 int flags = pc.flags;
mjr 40:cc0d9814522b 2004 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 2005 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 2006 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 2007 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 2008 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 2009
mjr 89:c43cd923401c 2010 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 2011 if (flipperLogic)
mjr 89:c43cd923401c 2012 gamma = false;
mjr 38:091e511ce8a0 2013
mjr 38:091e511ce8a0 2014 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 2015 LwOut *lwp;
mjr 38:091e511ce8a0 2016 switch (typ)
mjr 38:091e511ce8a0 2017 {
mjr 38:091e511ce8a0 2018 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 2019 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 2020 if (pin != 0)
mjr 64:ef7ca92dff36 2021 {
mjr 64:ef7ca92dff36 2022 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 2023 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 2024 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 2025 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 2026 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 2027 {
mjr 64:ef7ca92dff36 2028 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 2029 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 2030
mjr 64:ef7ca92dff36 2031 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 2032 gamma = false;
mjr 64:ef7ca92dff36 2033 }
mjr 64:ef7ca92dff36 2034 else
mjr 64:ef7ca92dff36 2035 {
mjr 64:ef7ca92dff36 2036 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 2037 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 2038 }
mjr 64:ef7ca92dff36 2039 }
mjr 48:058ace2aed1d 2040 else
mjr 48:058ace2aed1d 2041 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2042 break;
mjr 38:091e511ce8a0 2043
mjr 38:091e511ce8a0 2044 case PortTypeGPIODig:
mjr 38:091e511ce8a0 2045 // Digital GPIO port
mjr 48:058ace2aed1d 2046 if (pin != 0)
mjr 48:058ace2aed1d 2047 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 2048 else
mjr 48:058ace2aed1d 2049 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2050 break;
mjr 38:091e511ce8a0 2051
mjr 38:091e511ce8a0 2052 case PortTypeTLC5940:
mjr 38:091e511ce8a0 2053 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 2054 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 2055 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 2056 {
mjr 40:cc0d9814522b 2057 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 2058 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 2059 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 2060 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 2061 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 2062 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 2063 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 2064 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 2065 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 2066 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 2067 // for this unlikely case.
mjr 40:cc0d9814522b 2068 if (gamma && !activeLow)
mjr 40:cc0d9814522b 2069 {
mjr 40:cc0d9814522b 2070 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 2071 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 2072
mjr 40:cc0d9814522b 2073 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 2074 gamma = false;
mjr 40:cc0d9814522b 2075 }
mjr 40:cc0d9814522b 2076 else
mjr 40:cc0d9814522b 2077 {
mjr 40:cc0d9814522b 2078 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 2079 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 2080 }
mjr 40:cc0d9814522b 2081 }
mjr 38:091e511ce8a0 2082 else
mjr 40:cc0d9814522b 2083 {
mjr 40:cc0d9814522b 2084 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 2085 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 2086 }
mjr 38:091e511ce8a0 2087 break;
mjr 38:091e511ce8a0 2088
mjr 38:091e511ce8a0 2089 case PortType74HC595:
mjr 87:8d35c74403af 2090 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 2091 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 2092 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 2093 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 2094 else
mjr 38:091e511ce8a0 2095 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2096 break;
mjr 87:8d35c74403af 2097
mjr 87:8d35c74403af 2098 case PortTypeTLC59116:
mjr 87:8d35c74403af 2099 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2100 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2101 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2102 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2103 if (tlc59116 != 0)
mjr 87:8d35c74403af 2104 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2105 break;
mjr 38:091e511ce8a0 2106
mjr 38:091e511ce8a0 2107 case PortTypeVirtual:
mjr 43:7a6364d82a41 2108 case PortTypeDisabled:
mjr 38:091e511ce8a0 2109 default:
mjr 38:091e511ce8a0 2110 // virtual or unknown
mjr 38:091e511ce8a0 2111 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2112 break;
mjr 38:091e511ce8a0 2113 }
mjr 38:091e511ce8a0 2114
mjr 40:cc0d9814522b 2115 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2116 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2117 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2118 if (activeLow)
mjr 38:091e511ce8a0 2119 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2120
mjr 89:c43cd923401c 2121 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2122 if (flipperLogic)
mjr 89:c43cd923401c 2123 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2124
mjr 99:8139b0c274f4 2125 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2126 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2127 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2128 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2129 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2130
mjr 89:c43cd923401c 2131 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2132 if (noisy)
mjr 40:cc0d9814522b 2133 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2134
mjr 40:cc0d9814522b 2135 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2136 if (gamma)
mjr 40:cc0d9814522b 2137 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2138
mjr 53:9b2611964afc 2139 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2140 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2141 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2142 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2143 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2144
mjr 53:9b2611964afc 2145 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2146 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2147 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2148
mjr 38:091e511ce8a0 2149 // turn it off initially
mjr 38:091e511ce8a0 2150 lwp->set(0);
mjr 38:091e511ce8a0 2151
mjr 38:091e511ce8a0 2152 // return the pin
mjr 38:091e511ce8a0 2153 return lwp;
mjr 38:091e511ce8a0 2154 }
mjr 38:091e511ce8a0 2155
mjr 6:cc35eb643e8f 2156 // initialize the output pin array
mjr 35:e959ffba78fd 2157 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2158 {
mjr 99:8139b0c274f4 2159 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2160 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2161 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2162
mjr 35:e959ffba78fd 2163 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2164 // total number of ports.
mjr 35:e959ffba78fd 2165 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2166 int i;
mjr 35:e959ffba78fd 2167 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2168 {
mjr 35:e959ffba78fd 2169 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2170 {
mjr 35:e959ffba78fd 2171 numOutputs = i;
mjr 34:6b981a2afab7 2172 break;
mjr 34:6b981a2afab7 2173 }
mjr 33:d832bcab089e 2174 }
mjr 33:d832bcab089e 2175
mjr 73:4e8ce0b18915 2176 // allocate the pin array
mjr 73:4e8ce0b18915 2177 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2178
mjr 73:4e8ce0b18915 2179 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2180 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2181
mjr 114:c2410d2cfaf1 2182 // initialize all brightness levels to 0 (off)
mjr 114:c2410d2cfaf1 2183 memset(outLevel, 0, numOutputs);
mjr 114:c2410d2cfaf1 2184
mjr 73:4e8ce0b18915 2185 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2186 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2187 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2188
mjr 73:4e8ce0b18915 2189 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2190 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2191 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2192
mjr 73:4e8ce0b18915 2193 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2194 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2195 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2196
mjr 35:e959ffba78fd 2197 // create the pin interface object for each port
mjr 35:e959ffba78fd 2198 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2199 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2200 }
mjr 6:cc35eb643e8f 2201
mjr 76:7f5912b6340e 2202 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2203 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2204 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2205 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2206 // equivalent to 48.
mjr 40:cc0d9814522b 2207 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2208 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2209 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2210 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2211 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2212 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2213 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2214 255, 255
mjr 40:cc0d9814522b 2215 };
mjr 40:cc0d9814522b 2216
mjr 76:7f5912b6340e 2217 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2218 // level (1..48)
mjr 76:7f5912b6340e 2219 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2220 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2221 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2222 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2223 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2224 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2225 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2226 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2227 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2228 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2229 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2230 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2231 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2232 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2233 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2234 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2235 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2236 };
mjr 76:7f5912b6340e 2237
mjr 74:822a92bc11d2 2238 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2239 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2240 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2241 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2242 //
mjr 74:822a92bc11d2 2243 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2244 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2245 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2246 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2247 //
mjr 74:822a92bc11d2 2248 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2249 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2250 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2251 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2252 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2253 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2254 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2255 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2256 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2257 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2258 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2259 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2260 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2261 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2262 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2263 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2264 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2265 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2266 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2267 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2268
mjr 74:822a92bc11d2 2269 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2270 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2272 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2273 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2274 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2275 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2276 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2277 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2278 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2279 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2280 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2281 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2282 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2283 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2284 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2285 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2286
mjr 74:822a92bc11d2 2287 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2288 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2289 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2290 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2291 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2292 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2293 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2294 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2295 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2296 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2297 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2298 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2299 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2300 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2301 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2302 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2303 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2304
mjr 74:822a92bc11d2 2305 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2306 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2307 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2308 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2309 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2310 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2311 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2312 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2313 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2314 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2315 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2316 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2317 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2318 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2319 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2320 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2321 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2322 };
mjr 74:822a92bc11d2 2323
mjr 74:822a92bc11d2 2324 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2325 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2326 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2327
mjr 76:7f5912b6340e 2328 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2329 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2330
mjr 76:7f5912b6340e 2331 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2332 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2333 // outputs on each cycle.
mjr 29:582472d0bc57 2334 static void wizPulse()
mjr 29:582472d0bc57 2335 {
mjr 76:7f5912b6340e 2336 // current bank
mjr 76:7f5912b6340e 2337 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2338
mjr 76:7f5912b6340e 2339 // start a timer for statistics collection
mjr 76:7f5912b6340e 2340 IF_DIAG(
mjr 76:7f5912b6340e 2341 Timer t;
mjr 76:7f5912b6340e 2342 t.start();
mjr 76:7f5912b6340e 2343 )
mjr 76:7f5912b6340e 2344
mjr 76:7f5912b6340e 2345 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2346 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2347 //
mjr 76:7f5912b6340e 2348 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2349 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2350 //
mjr 76:7f5912b6340e 2351 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2352 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2353 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2354 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2355 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2356 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2357 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2358 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2359 // current cycle.
mjr 76:7f5912b6340e 2360 //
mjr 76:7f5912b6340e 2361 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2362 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2363 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2364 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2365 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2366 //
mjr 76:7f5912b6340e 2367 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2368 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2369 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2370 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2371 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2372 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2373 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2374 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2375 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2376 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2377 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2378 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2379 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2380 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2381 // bit counts.
mjr 76:7f5912b6340e 2382 //
mjr 76:7f5912b6340e 2383 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2384 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2385 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2386 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2387 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2388 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2389 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2390 // one division for another!
mjr 76:7f5912b6340e 2391 //
mjr 76:7f5912b6340e 2392 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2393 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2394 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2395 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2396 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2397 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2398 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2399 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2400 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2401 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2402 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2403 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2404 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2405 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2406 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2407 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2408 // remainder calculation anyway.
mjr 76:7f5912b6340e 2409 //
mjr 76:7f5912b6340e 2410 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2411 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2412 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2413 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2414 //
mjr 76:7f5912b6340e 2415 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2416 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2417 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2418 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2419 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2420 // the result, since we started with 32.
mjr 76:7f5912b6340e 2421 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2422 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2423 };
mjr 76:7f5912b6340e 2424 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2425
mjr 76:7f5912b6340e 2426 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2427 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2428 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2429 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2430 toPort = numOutputs;
mjr 76:7f5912b6340e 2431
mjr 76:7f5912b6340e 2432 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2433 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2434 {
mjr 76:7f5912b6340e 2435 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2436 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2437 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2438 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2439 if (wizOn[i])
mjr 29:582472d0bc57 2440 {
mjr 76:7f5912b6340e 2441 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2442 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2443 {
mjr 76:7f5912b6340e 2444 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2445 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2446 }
mjr 29:582472d0bc57 2447 }
mjr 76:7f5912b6340e 2448 }
mjr 76:7f5912b6340e 2449
mjr 34:6b981a2afab7 2450 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2451 if (hc595 != 0)
mjr 35:e959ffba78fd 2452 hc595->update();
mjr 76:7f5912b6340e 2453
mjr 76:7f5912b6340e 2454 // switch to the next bank
mjr 76:7f5912b6340e 2455 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2456 wizPulseBank = 0;
mjr 76:7f5912b6340e 2457
mjr 76:7f5912b6340e 2458 // collect timing statistics
mjr 76:7f5912b6340e 2459 IF_DIAG(
mjr 76:7f5912b6340e 2460 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2461 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2462 )
mjr 1:d913e0afb2ac 2463 }
mjr 38:091e511ce8a0 2464
mjr 76:7f5912b6340e 2465 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2466 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2467 {
mjr 76:7f5912b6340e 2468 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2469 if (wizOn[port])
mjr 76:7f5912b6340e 2470 {
mjr 76:7f5912b6340e 2471 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2472 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2473 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2474 // it on the next cycle.
mjr 76:7f5912b6340e 2475 int val = wizVal[port];
mjr 76:7f5912b6340e 2476 if (val <= 49)
mjr 76:7f5912b6340e 2477 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2478 }
mjr 76:7f5912b6340e 2479 else
mjr 76:7f5912b6340e 2480 {
mjr 76:7f5912b6340e 2481 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2482 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2483 }
mjr 73:4e8ce0b18915 2484 }
mjr 73:4e8ce0b18915 2485
mjr 73:4e8ce0b18915 2486 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2487 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2488 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2489 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2490 //
mjr 73:4e8ce0b18915 2491 void allOutputsOff()
mjr 73:4e8ce0b18915 2492 {
mjr 92:f264fbaa1be5 2493 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2494 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2495 {
mjr 73:4e8ce0b18915 2496 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2497 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2498 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2499 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2500 }
mjr 73:4e8ce0b18915 2501
mjr 73:4e8ce0b18915 2502 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2503 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2504 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2505
mjr 73:4e8ce0b18915 2506 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2507 if (hc595 != 0)
mjr 38:091e511ce8a0 2508 hc595->update();
mjr 38:091e511ce8a0 2509 }
mjr 38:091e511ce8a0 2510
mjr 74:822a92bc11d2 2511 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2512 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2513 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2514 // address any port group.
mjr 74:822a92bc11d2 2515 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2516 {
mjr 76:7f5912b6340e 2517 // update all on/off states in the group
mjr 74:822a92bc11d2 2518 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2519 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2520 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2521 {
mjr 74:822a92bc11d2 2522 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2523 if (bit == 0x100) {
mjr 74:822a92bc11d2 2524 bit = 1;
mjr 74:822a92bc11d2 2525 ++imsg;
mjr 74:822a92bc11d2 2526 }
mjr 74:822a92bc11d2 2527
mjr 74:822a92bc11d2 2528 // set the on/off state
mjr 76:7f5912b6340e 2529 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2530
mjr 76:7f5912b6340e 2531 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2532 updateLwPort(port);
mjr 74:822a92bc11d2 2533 }
mjr 74:822a92bc11d2 2534
mjr 74:822a92bc11d2 2535 // set the flash speed for the port group
mjr 74:822a92bc11d2 2536 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2537 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2538
mjr 76:7f5912b6340e 2539 // update 74HC959 outputs
mjr 76:7f5912b6340e 2540 if (hc595 != 0)
mjr 76:7f5912b6340e 2541 hc595->update();
mjr 74:822a92bc11d2 2542 }
mjr 74:822a92bc11d2 2543
mjr 74:822a92bc11d2 2544 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2545 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2546 {
mjr 74:822a92bc11d2 2547 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2548 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2549 {
mjr 74:822a92bc11d2 2550 // get the value
mjr 74:822a92bc11d2 2551 uint8_t v = data[i];
mjr 74:822a92bc11d2 2552
mjr 74:822a92bc11d2 2553 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2554 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2555 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2556 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2557 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2558 // as such.
mjr 74:822a92bc11d2 2559 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2560 v = 48;
mjr 74:822a92bc11d2 2561
mjr 74:822a92bc11d2 2562 // store it
mjr 76:7f5912b6340e 2563 wizVal[port] = v;
mjr 76:7f5912b6340e 2564
mjr 76:7f5912b6340e 2565 // update the port
mjr 76:7f5912b6340e 2566 updateLwPort(port);
mjr 74:822a92bc11d2 2567 }
mjr 74:822a92bc11d2 2568
mjr 76:7f5912b6340e 2569 // update 74HC595 outputs
mjr 76:7f5912b6340e 2570 if (hc595 != 0)
mjr 76:7f5912b6340e 2571 hc595->update();
mjr 74:822a92bc11d2 2572 }
mjr 74:822a92bc11d2 2573
mjr 77:0b96f6867312 2574 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2575 //
mjr 77:0b96f6867312 2576 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2577 //
mjr 77:0b96f6867312 2578
mjr 77:0b96f6867312 2579 // receiver
mjr 77:0b96f6867312 2580 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2581
mjr 77:0b96f6867312 2582 // transmitter
mjr 77:0b96f6867312 2583 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2584
mjr 77:0b96f6867312 2585 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2586 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2587 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2588 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2589 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2590 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2591 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2592 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2593 // configuration slot n
mjr 77:0b96f6867312 2594 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2595
mjr 78:1e00b3fa11af 2596 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2597 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2598 // protocol.
mjr 78:1e00b3fa11af 2599 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2600
mjr 78:1e00b3fa11af 2601 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2602 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2603 // while waiting for the rest.
mjr 78:1e00b3fa11af 2604 static struct
mjr 78:1e00b3fa11af 2605 {
mjr 78:1e00b3fa11af 2606 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2607 uint64_t code; // code
mjr 78:1e00b3fa11af 2608 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2609 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2610 } IRAdHocCmd;
mjr 88:98bce687e6c0 2611
mjr 77:0b96f6867312 2612
mjr 77:0b96f6867312 2613 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2614 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2615 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2616 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2617 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2618 // amount of time.
mjr 77:0b96f6867312 2619 Timer IRTimer;
mjr 77:0b96f6867312 2620
mjr 77:0b96f6867312 2621 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2622 // The states are:
mjr 77:0b96f6867312 2623 //
mjr 77:0b96f6867312 2624 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2625 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2626 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2627 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2628 //
mjr 77:0b96f6867312 2629 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2630 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2631 // received within a reasonable time.
mjr 77:0b96f6867312 2632 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2633
mjr 77:0b96f6867312 2634 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2635 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2636 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2637 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2638 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2639 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2640 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2641 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2642 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2643
mjr 78:1e00b3fa11af 2644 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2645 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2646 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2647 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2648 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2649 // index; 0 represents no command.
mjr 77:0b96f6867312 2650 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2651
mjr 77:0b96f6867312 2652 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2653 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2654 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2655 // command we received.
mjr 77:0b96f6867312 2656 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2657
mjr 77:0b96f6867312 2658 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2659 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2660 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2661 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2662 // distinct key press.
mjr 77:0b96f6867312 2663 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2664
mjr 78:1e00b3fa11af 2665
mjr 77:0b96f6867312 2666 // initialize
mjr 77:0b96f6867312 2667 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2668 {
mjr 77:0b96f6867312 2669 PinName pin;
mjr 77:0b96f6867312 2670
mjr 77:0b96f6867312 2671 // start the IR timer
mjr 77:0b96f6867312 2672 IRTimer.start();
mjr 77:0b96f6867312 2673
mjr 77:0b96f6867312 2674 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2675 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2676 {
mjr 77:0b96f6867312 2677 // no virtual buttons yet
mjr 77:0b96f6867312 2678 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2679 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2680
mjr 77:0b96f6867312 2681 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2682 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2683 {
mjr 77:0b96f6867312 2684 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2685 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2686 }
mjr 77:0b96f6867312 2687
mjr 77:0b96f6867312 2688 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2689 // real button inputs
mjr 77:0b96f6867312 2690 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2691 {
mjr 77:0b96f6867312 2692 // get the button
mjr 77:0b96f6867312 2693 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2694
mjr 77:0b96f6867312 2695 // check the unshifted button
mjr 77:0b96f6867312 2696 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2697 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2698 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2699 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2700
mjr 77:0b96f6867312 2701 // check the shifted button
mjr 77:0b96f6867312 2702 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2703 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2704 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2705 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2706 }
mjr 77:0b96f6867312 2707
mjr 77:0b96f6867312 2708 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2709 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2710 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2711
mjr 77:0b96f6867312 2712 // create the transmitter
mjr 77:0b96f6867312 2713 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2714
mjr 77:0b96f6867312 2715 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2716 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2717 {
mjr 77:0b96f6867312 2718 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2719 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2720 if (vb != 0xFF)
mjr 77:0b96f6867312 2721 {
mjr 77:0b96f6867312 2722 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2723 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2724 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2725 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2726 }
mjr 77:0b96f6867312 2727 }
mjr 77:0b96f6867312 2728 }
mjr 77:0b96f6867312 2729
mjr 77:0b96f6867312 2730 // if there's a receiver, set it up
mjr 77:0b96f6867312 2731 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2732 {
mjr 77:0b96f6867312 2733 // create the receiver
mjr 77:0b96f6867312 2734 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2735
mjr 77:0b96f6867312 2736 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2737 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2738 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2739
mjr 77:0b96f6867312 2740 // enable it
mjr 77:0b96f6867312 2741 ir_rx->enable();
mjr 77:0b96f6867312 2742
mjr 77:0b96f6867312 2743 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2744 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2745 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2746 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2747 {
mjr 77:0b96f6867312 2748 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2749 if (cb.protocol != 0
mjr 77:0b96f6867312 2750 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2751 {
mjr 77:0b96f6867312 2752 kbKeys = true;
mjr 77:0b96f6867312 2753 break;
mjr 77:0b96f6867312 2754 }
mjr 77:0b96f6867312 2755 }
mjr 77:0b96f6867312 2756 }
mjr 77:0b96f6867312 2757 }
mjr 77:0b96f6867312 2758
mjr 77:0b96f6867312 2759 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2760 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2761 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2762 {
mjr 77:0b96f6867312 2763 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2764 if (ir_tx != 0)
mjr 77:0b96f6867312 2765 {
mjr 77:0b96f6867312 2766 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2767 int slot = cmd - 1;
mjr 77:0b96f6867312 2768
mjr 77:0b96f6867312 2769 // press or release the virtual button
mjr 77:0b96f6867312 2770 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2771 }
mjr 77:0b96f6867312 2772 }
mjr 77:0b96f6867312 2773
mjr 78:1e00b3fa11af 2774 // Process IR input and output
mjr 77:0b96f6867312 2775 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2776 {
mjr 78:1e00b3fa11af 2777 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2778 if (ir_tx != 0)
mjr 77:0b96f6867312 2779 {
mjr 78:1e00b3fa11af 2780 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2781 // is ready to send, send it.
mjr 78:1e00b3fa11af 2782 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2783 {
mjr 78:1e00b3fa11af 2784 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2785 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2786 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2787 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2788
mjr 78:1e00b3fa11af 2789 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2790 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2791 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2792
mjr 78:1e00b3fa11af 2793 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2794 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2795 }
mjr 77:0b96f6867312 2796 }
mjr 78:1e00b3fa11af 2797
mjr 78:1e00b3fa11af 2798 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2799 if (ir_rx != 0)
mjr 77:0b96f6867312 2800 {
mjr 78:1e00b3fa11af 2801 // Time out any received command
mjr 78:1e00b3fa11af 2802 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2803 {
mjr 80:94dc2946871b 2804 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2805 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2806 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2807 if (t > 200000)
mjr 78:1e00b3fa11af 2808 IRCommandIn = 0;
mjr 80:94dc2946871b 2809 else if (t > 50000)
mjr 78:1e00b3fa11af 2810 IRKeyGap = false;
mjr 78:1e00b3fa11af 2811 }
mjr 78:1e00b3fa11af 2812
mjr 78:1e00b3fa11af 2813 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2814 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2815 {
mjr 78:1e00b3fa11af 2816 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2817 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2818 // limit.
mjr 78:1e00b3fa11af 2819 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2820 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2821 int n;
mjr 78:1e00b3fa11af 2822 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2823
mjr 78:1e00b3fa11af 2824 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2825 if (n != 0)
mjr 78:1e00b3fa11af 2826 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2827
mjr 78:1e00b3fa11af 2828 // check for a command
mjr 78:1e00b3fa11af 2829 IRCommand c;
mjr 78:1e00b3fa11af 2830 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2831 {
mjr 78:1e00b3fa11af 2832 // check the current learning state
mjr 78:1e00b3fa11af 2833 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2834 {
mjr 78:1e00b3fa11af 2835 case 1:
mjr 78:1e00b3fa11af 2836 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2837 // This is it.
mjr 78:1e00b3fa11af 2838 learnedIRCode = c;
mjr 78:1e00b3fa11af 2839
mjr 78:1e00b3fa11af 2840 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2841 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2842 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2843 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2844 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2845 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2846 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2847 break;
mjr 78:1e00b3fa11af 2848
mjr 78:1e00b3fa11af 2849 case 2:
mjr 78:1e00b3fa11af 2850 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2851 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2852 //
mjr 78:1e00b3fa11af 2853 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2854 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2855 //
mjr 78:1e00b3fa11af 2856 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2857 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2858 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2859 // them.
mjr 78:1e00b3fa11af 2860 //
mjr 78:1e00b3fa11af 2861 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2862 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2863 // over.
mjr 78:1e00b3fa11af 2864 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2865 && c.hasDittos
mjr 78:1e00b3fa11af 2866 && c.ditto)
mjr 78:1e00b3fa11af 2867 {
mjr 78:1e00b3fa11af 2868 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2869 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2870 }
mjr 78:1e00b3fa11af 2871 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2872 && c.hasDittos
mjr 78:1e00b3fa11af 2873 && !c.ditto
mjr 78:1e00b3fa11af 2874 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2875 {
mjr 78:1e00b3fa11af 2876 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2877 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2878 // protocol supports them
mjr 78:1e00b3fa11af 2879 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2880 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2881 }
mjr 78:1e00b3fa11af 2882 else
mjr 78:1e00b3fa11af 2883 {
mjr 78:1e00b3fa11af 2884 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2885 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2886 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2887 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2888 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2889 }
mjr 78:1e00b3fa11af 2890 break;
mjr 78:1e00b3fa11af 2891 }
mjr 77:0b96f6867312 2892
mjr 78:1e00b3fa11af 2893 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2894 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2895 // learning mode.
mjr 78:1e00b3fa11af 2896 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2897 {
mjr 78:1e00b3fa11af 2898 // figure the flags:
mjr 78:1e00b3fa11af 2899 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2900 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2901 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2902 flags |= 0x02;
mjr 78:1e00b3fa11af 2903
mjr 78:1e00b3fa11af 2904 // report the code
mjr 78:1e00b3fa11af 2905 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2906
mjr 78:1e00b3fa11af 2907 // exit learning mode
mjr 78:1e00b3fa11af 2908 IRLearningMode = 0;
mjr 77:0b96f6867312 2909 }
mjr 77:0b96f6867312 2910 }
mjr 77:0b96f6867312 2911
mjr 78:1e00b3fa11af 2912 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2913 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2914 {
mjr 78:1e00b3fa11af 2915 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2916 // zero data elements
mjr 78:1e00b3fa11af 2917 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2918
mjr 78:1e00b3fa11af 2919
mjr 78:1e00b3fa11af 2920 // cancel learning mode
mjr 77:0b96f6867312 2921 IRLearningMode = 0;
mjr 77:0b96f6867312 2922 }
mjr 77:0b96f6867312 2923 }
mjr 78:1e00b3fa11af 2924 else
mjr 77:0b96f6867312 2925 {
mjr 78:1e00b3fa11af 2926 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2927 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2928 ir_rx->process();
mjr 78:1e00b3fa11af 2929
mjr 78:1e00b3fa11af 2930 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2931 // have been read.
mjr 78:1e00b3fa11af 2932 IRCommand c;
mjr 78:1e00b3fa11af 2933 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2934 {
mjr 78:1e00b3fa11af 2935 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2936 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2937 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2938 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2939 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2940 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2941 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2942 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2943 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2944 //
mjr 78:1e00b3fa11af 2945 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2946 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2947 // command.
mjr 78:1e00b3fa11af 2948 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2949 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2950 {
mjr 78:1e00b3fa11af 2951 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2952 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2953 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2954 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2955 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2956 if (c.ditto)
mjr 78:1e00b3fa11af 2957 {
mjr 78:1e00b3fa11af 2958 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2959 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2960 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2961 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2962 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2963 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2964 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2965 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2966 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2967 }
mjr 78:1e00b3fa11af 2968 else
mjr 78:1e00b3fa11af 2969 {
mjr 78:1e00b3fa11af 2970 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2971 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2972 // prior command.
mjr 78:1e00b3fa11af 2973 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2974 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2975 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2976
mjr 78:1e00b3fa11af 2977 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2978 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2979 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2980 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2981 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2982 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2983 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2984 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2985 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2986 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2987 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2988 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2989 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2990 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2991 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2992 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2993 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2994 autoRepeat =
mjr 78:1e00b3fa11af 2995 repeat
mjr 78:1e00b3fa11af 2996 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2997 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2998 }
mjr 78:1e00b3fa11af 2999 }
mjr 78:1e00b3fa11af 3000
mjr 78:1e00b3fa11af 3001 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 3002 if (repeat)
mjr 78:1e00b3fa11af 3003 {
mjr 78:1e00b3fa11af 3004 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 3005 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 3006 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 3007 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 3008 // key press event.
mjr 78:1e00b3fa11af 3009 if (!autoRepeat)
mjr 78:1e00b3fa11af 3010 IRKeyGap = true;
mjr 78:1e00b3fa11af 3011
mjr 78:1e00b3fa11af 3012 // restart the key-up timer
mjr 78:1e00b3fa11af 3013 IRTimer.reset();
mjr 78:1e00b3fa11af 3014 }
mjr 78:1e00b3fa11af 3015 else if (c.ditto)
mjr 78:1e00b3fa11af 3016 {
mjr 78:1e00b3fa11af 3017 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 3018 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 3019 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 3020 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 3021 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 3022 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 3023 // a full command for a new key press.
mjr 78:1e00b3fa11af 3024 IRCommandIn = 0;
mjr 77:0b96f6867312 3025 }
mjr 77:0b96f6867312 3026 else
mjr 77:0b96f6867312 3027 {
mjr 78:1e00b3fa11af 3028 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 3029 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 3030 // the new command).
mjr 78:1e00b3fa11af 3031 IRCommandIn = 0;
mjr 77:0b96f6867312 3032
mjr 78:1e00b3fa11af 3033 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 3034 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 3035 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 3036 {
mjr 78:1e00b3fa11af 3037 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 3038 // list both match the input, it's a match
mjr 78:1e00b3fa11af 3039 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 3040 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 3041 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 3042 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 3043 {
mjr 78:1e00b3fa11af 3044 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 3045 // remember the starting time.
mjr 78:1e00b3fa11af 3046 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 3047 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 3048 IRTimer.reset();
mjr 78:1e00b3fa11af 3049
mjr 78:1e00b3fa11af 3050 // no need to keep searching
mjr 78:1e00b3fa11af 3051 break;
mjr 78:1e00b3fa11af 3052 }
mjr 77:0b96f6867312 3053 }
mjr 77:0b96f6867312 3054 }
mjr 77:0b96f6867312 3055 }
mjr 77:0b96f6867312 3056 }
mjr 77:0b96f6867312 3057 }
mjr 77:0b96f6867312 3058 }
mjr 77:0b96f6867312 3059
mjr 74:822a92bc11d2 3060
mjr 11:bd9da7088e6e 3061 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 3062 //
mjr 11:bd9da7088e6e 3063 // Button input
mjr 11:bd9da7088e6e 3064 //
mjr 11:bd9da7088e6e 3065
mjr 18:5e890ebd0023 3066 // button state
mjr 18:5e890ebd0023 3067 struct ButtonState
mjr 18:5e890ebd0023 3068 {
mjr 38:091e511ce8a0 3069 ButtonState()
mjr 38:091e511ce8a0 3070 {
mjr 53:9b2611964afc 3071 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 3072 virtState = 0;
mjr 53:9b2611964afc 3073 dbState = 0;
mjr 38:091e511ce8a0 3074 pulseState = 0;
mjr 53:9b2611964afc 3075 pulseTime = 0;
mjr 38:091e511ce8a0 3076 }
mjr 35:e959ffba78fd 3077
mjr 53:9b2611964afc 3078 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 3079 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 3080 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 3081 //
mjr 53:9b2611964afc 3082 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 3083 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 3084 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 3085 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 3086 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 3087 void virtPress(bool on)
mjr 53:9b2611964afc 3088 {
mjr 53:9b2611964afc 3089 // Increment or decrement the current state
mjr 53:9b2611964afc 3090 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 3091 }
mjr 53:9b2611964afc 3092
mjr 53:9b2611964afc 3093 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 3094 TinyDigitalIn di;
mjr 38:091e511ce8a0 3095
mjr 65:739875521aae 3096 // Time of last pulse state transition.
mjr 65:739875521aae 3097 //
mjr 65:739875521aae 3098 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 3099 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 3100 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 3101 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 3102 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 3103 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 3104 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 3105 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 3106 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 3107 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 3108 // This software system can't be fooled that way.)
mjr 65:739875521aae 3109 uint32_t pulseTime;
mjr 18:5e890ebd0023 3110
mjr 65:739875521aae 3111 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 3112 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 3113 uint8_t cfgIndex;
mjr 53:9b2611964afc 3114
mjr 53:9b2611964afc 3115 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 3116 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 3117 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 3118 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 3119 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 3120 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 3121 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 3122 // and physical source states.
mjr 53:9b2611964afc 3123 uint8_t virtState;
mjr 38:091e511ce8a0 3124
mjr 38:091e511ce8a0 3125 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 3126 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 3127 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 3128 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 3129 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 3130 uint8_t dbState;
mjr 38:091e511ce8a0 3131
mjr 65:739875521aae 3132 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 3133 uint8_t physState : 1;
mjr 65:739875521aae 3134
mjr 65:739875521aae 3135 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 3136 uint8_t logState : 1;
mjr 65:739875521aae 3137
mjr 79:682ae3171a08 3138 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 3139 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 3140 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 3141 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 3142 uint8_t prevLogState : 1;
mjr 65:739875521aae 3143
mjr 65:739875521aae 3144 // Pulse state
mjr 65:739875521aae 3145 //
mjr 65:739875521aae 3146 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 3147 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 3148 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 3149 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 3150 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 3151 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 3152 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 3153 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 3154 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 3155 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 3156 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 3157 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 3158 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 3159 //
mjr 38:091e511ce8a0 3160 // Pulse state:
mjr 38:091e511ce8a0 3161 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 3162 // 1 -> off
mjr 38:091e511ce8a0 3163 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 3164 // 3 -> on
mjr 38:091e511ce8a0 3165 // 4 -> transitioning on-off
mjr 65:739875521aae 3166 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 3167
mjr 65:739875521aae 3168 } __attribute__((packed));
mjr 65:739875521aae 3169
mjr 65:739875521aae 3170 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 3171 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 3172 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 3173
mjr 66:2e3583fbd2f4 3174 // Shift button state
mjr 66:2e3583fbd2f4 3175 struct
mjr 66:2e3583fbd2f4 3176 {
mjr 66:2e3583fbd2f4 3177 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 3178 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 3179 // 0 = not shifted
mjr 66:2e3583fbd2f4 3180 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 3181 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 3182 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 3183 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 3184 }
mjr 66:2e3583fbd2f4 3185 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 3186
mjr 38:091e511ce8a0 3187 // Button data
mjr 38:091e511ce8a0 3188 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 3189
mjr 38:091e511ce8a0 3190 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 3191 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 3192 // modifier keys.
mjr 38:091e511ce8a0 3193 struct
mjr 38:091e511ce8a0 3194 {
mjr 38:091e511ce8a0 3195 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 3196 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 3197 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 3198 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 3199 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 3200
mjr 38:091e511ce8a0 3201 // Media key state
mjr 38:091e511ce8a0 3202 struct
mjr 38:091e511ce8a0 3203 {
mjr 38:091e511ce8a0 3204 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 3205 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 3206 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 3207
mjr 79:682ae3171a08 3208 // button scan interrupt timer
mjr 79:682ae3171a08 3209 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 3210
mjr 38:091e511ce8a0 3211 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 3212 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 3213 void scanButtons()
mjr 38:091e511ce8a0 3214 {
mjr 79:682ae3171a08 3215 // schedule the next interrupt
mjr 79:682ae3171a08 3216 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 3217
mjr 38:091e511ce8a0 3218 // scan all button input pins
mjr 73:4e8ce0b18915 3219 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 3220 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 3221 {
mjr 73:4e8ce0b18915 3222 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 3223 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 3224 bs->dbState = db;
mjr 73:4e8ce0b18915 3225
mjr 73:4e8ce0b18915 3226 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 3227 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 3228 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 3229 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 3230 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 3231 db &= stable;
mjr 73:4e8ce0b18915 3232 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 3233 bs->physState = !db;
mjr 38:091e511ce8a0 3234 }
mjr 38:091e511ce8a0 3235 }
mjr 38:091e511ce8a0 3236
mjr 38:091e511ce8a0 3237 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 3238 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 3239 // in the physical button state.
mjr 38:091e511ce8a0 3240 Timer buttonTimer;
mjr 12:669df364a565 3241
mjr 65:739875521aae 3242 // Count a button during the initial setup scan
mjr 72:884207c0aab0 3243 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 3244 {
mjr 65:739875521aae 3245 // count it
mjr 65:739875521aae 3246 ++nButtons;
mjr 65:739875521aae 3247
mjr 67:c39e66c4e000 3248 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 3249 // keyboard interface
mjr 72:884207c0aab0 3250 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 3251 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 3252 kbKeys = true;
mjr 65:739875521aae 3253 }
mjr 65:739875521aae 3254
mjr 11:bd9da7088e6e 3255 // initialize the button inputs
mjr 35:e959ffba78fd 3256 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 3257 {
mjr 66:2e3583fbd2f4 3258 // presume no shift key
mjr 66:2e3583fbd2f4 3259 shiftButton.index = -1;
mjr 82:4f6209cb5c33 3260 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 3261
mjr 65:739875521aae 3262 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 3263 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 3264 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 3265 nButtons = 0;
mjr 65:739875521aae 3266 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3267 {
mjr 65:739875521aae 3268 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 3269 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 3270 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 3271 }
mjr 65:739875521aae 3272
mjr 65:739875521aae 3273 // Count virtual buttons
mjr 65:739875521aae 3274
mjr 65:739875521aae 3275 // ZB Launch
mjr 65:739875521aae 3276 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 3277 {
mjr 65:739875521aae 3278 // valid - remember the live button index
mjr 65:739875521aae 3279 zblButtonIndex = nButtons;
mjr 65:739875521aae 3280
mjr 65:739875521aae 3281 // count it
mjr 72:884207c0aab0 3282 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 3283 }
mjr 65:739875521aae 3284
mjr 65:739875521aae 3285 // Allocate the live button slots
mjr 65:739875521aae 3286 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 3287
mjr 65:739875521aae 3288 // Configure the physical inputs
mjr 65:739875521aae 3289 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3290 {
mjr 65:739875521aae 3291 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 3292 if (pin != NC)
mjr 65:739875521aae 3293 {
mjr 65:739875521aae 3294 // point back to the config slot for the keyboard data
mjr 65:739875521aae 3295 bs->cfgIndex = i;
mjr 65:739875521aae 3296
mjr 65:739875521aae 3297 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 3298 bs->di.assignPin(pin);
mjr 65:739875521aae 3299
mjr 65:739875521aae 3300 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 3301 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 3302 bs->pulseState = 1;
mjr 65:739875521aae 3303
mjr 66:2e3583fbd2f4 3304 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 3305 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 3306 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 3307 // config slots are left unused.
mjr 78:1e00b3fa11af 3308 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 3309 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 3310
mjr 65:739875521aae 3311 // advance to the next button
mjr 65:739875521aae 3312 ++bs;
mjr 65:739875521aae 3313 }
mjr 65:739875521aae 3314 }
mjr 65:739875521aae 3315
mjr 53:9b2611964afc 3316 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 3317 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 3318 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 3319 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 3320
mjr 53:9b2611964afc 3321 // ZB Launch Ball button
mjr 65:739875521aae 3322 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 3323 {
mjr 65:739875521aae 3324 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 3325 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 3326 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 3327 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 3328 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 3329 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 3330 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 3331 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 3332
mjr 66:2e3583fbd2f4 3333 // advance to the next button
mjr 65:739875521aae 3334 ++bs;
mjr 11:bd9da7088e6e 3335 }
mjr 12:669df364a565 3336
mjr 38:091e511ce8a0 3337 // start the button scan thread
mjr 79:682ae3171a08 3338 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 3339
mjr 38:091e511ce8a0 3340 // start the button state transition timer
mjr 12:669df364a565 3341 buttonTimer.start();
mjr 11:bd9da7088e6e 3342 }
mjr 11:bd9da7088e6e 3343
mjr 67:c39e66c4e000 3344 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 3345 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 3346 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 3347 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 3348 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 3349 //
mjr 67:c39e66c4e000 3350 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 3351 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 3352 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 3353 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 3354 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 3355 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 3356 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 3357 //
mjr 67:c39e66c4e000 3358 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 3359 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 3360 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 3361 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 3362 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 3363 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 3364 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 3365 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 3366 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 3367 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 3368 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 3369 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 3370 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 3371 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 3372 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 3373 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 3374 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 3375 };
mjr 77:0b96f6867312 3376
mjr 77:0b96f6867312 3377 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 3378 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 3379 // states of the button iputs.
mjr 77:0b96f6867312 3380 struct KeyState
mjr 77:0b96f6867312 3381 {
mjr 77:0b96f6867312 3382 KeyState()
mjr 77:0b96f6867312 3383 {
mjr 77:0b96f6867312 3384 // zero all members
mjr 77:0b96f6867312 3385 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 3386 }
mjr 77:0b96f6867312 3387
mjr 77:0b96f6867312 3388 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 3389 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 3390 uint8_t mediakeys;
mjr 77:0b96f6867312 3391
mjr 77:0b96f6867312 3392 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 3393 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 3394 // USBJoystick.cpp).
mjr 77:0b96f6867312 3395 uint8_t modkeys;
mjr 77:0b96f6867312 3396
mjr 77:0b96f6867312 3397 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 3398 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 3399 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 3400 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 3401 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 3402 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 3403 uint8_t keys[7];
mjr 77:0b96f6867312 3404
mjr 77:0b96f6867312 3405 // number of valid entries in keys[] array
mjr 77:0b96f6867312 3406 int nkeys;
mjr 77:0b96f6867312 3407
mjr 77:0b96f6867312 3408 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 3409 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 3410 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 3411 uint32_t js;
mjr 77:0b96f6867312 3412
mjr 77:0b96f6867312 3413
mjr 77:0b96f6867312 3414 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 3415 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 3416 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 3417 {
mjr 77:0b96f6867312 3418 // add the key according to the type
mjr 77:0b96f6867312 3419 switch (typ)
mjr 77:0b96f6867312 3420 {
mjr 77:0b96f6867312 3421 case BtnTypeJoystick:
mjr 77:0b96f6867312 3422 // joystick button
mjr 77:0b96f6867312 3423 js |= (1 << (val - 1));
mjr 77:0b96f6867312 3424 break;
mjr 77:0b96f6867312 3425
mjr 77:0b96f6867312 3426 case BtnTypeKey:
mjr 77:0b96f6867312 3427 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 3428 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 3429 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 3430 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 3431 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 3432 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 3433 // explicitly using media keys if desired.
mjr 77:0b96f6867312 3434 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 3435 {
mjr 77:0b96f6867312 3436 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 3437 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 3438 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 3439 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3440 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3441 }
mjr 77:0b96f6867312 3442 else
mjr 77:0b96f6867312 3443 {
mjr 77:0b96f6867312 3444 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3445 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3446 // apply, add the key to the key array.
mjr 77:0b96f6867312 3447 if (nkeys < 7)
mjr 77:0b96f6867312 3448 {
mjr 77:0b96f6867312 3449 bool found = false;
mjr 77:0b96f6867312 3450 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3451 {
mjr 77:0b96f6867312 3452 if (keys[i] == val)
mjr 77:0b96f6867312 3453 {
mjr 77:0b96f6867312 3454 found = true;
mjr 77:0b96f6867312 3455 break;
mjr 77:0b96f6867312 3456 }
mjr 77:0b96f6867312 3457 }
mjr 77:0b96f6867312 3458 if (!found)
mjr 77:0b96f6867312 3459 keys[nkeys++] = val;
mjr 77:0b96f6867312 3460 }
mjr 77:0b96f6867312 3461 }
mjr 77:0b96f6867312 3462 break;
mjr 77:0b96f6867312 3463
mjr 77:0b96f6867312 3464 case BtnTypeMedia:
mjr 77:0b96f6867312 3465 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3466 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3467 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3468 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3469 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3470 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3471 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3472 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3473 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3474 break;
mjr 77:0b96f6867312 3475 }
mjr 77:0b96f6867312 3476 }
mjr 77:0b96f6867312 3477 };
mjr 67:c39e66c4e000 3478
mjr 67:c39e66c4e000 3479
mjr 38:091e511ce8a0 3480 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3481 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3482 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3483 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3484 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3485 {
mjr 77:0b96f6867312 3486 // key state
mjr 77:0b96f6867312 3487 KeyState ks;
mjr 38:091e511ce8a0 3488
mjr 38:091e511ce8a0 3489 // calculate the time since the last run
mjr 53:9b2611964afc 3490 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3491 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3492
mjr 66:2e3583fbd2f4 3493 // check the shift button state
mjr 66:2e3583fbd2f4 3494 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3495 {
mjr 78:1e00b3fa11af 3496 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3497 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3498
mjr 78:1e00b3fa11af 3499 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3500 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3501 {
mjr 66:2e3583fbd2f4 3502 case 0:
mjr 78:1e00b3fa11af 3503 default:
mjr 78:1e00b3fa11af 3504 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3505 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3506 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3507 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3508 {
mjr 78:1e00b3fa11af 3509 case 0:
mjr 78:1e00b3fa11af 3510 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3511 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3512 if (sbs->physState)
mjr 78:1e00b3fa11af 3513 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3514 break;
mjr 78:1e00b3fa11af 3515
mjr 78:1e00b3fa11af 3516 case 1:
mjr 78:1e00b3fa11af 3517 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3518 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3519 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3520 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3521 // pulse event.
mjr 78:1e00b3fa11af 3522 if (!sbs->physState)
mjr 78:1e00b3fa11af 3523 {
mjr 78:1e00b3fa11af 3524 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3525 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3526 }
mjr 78:1e00b3fa11af 3527 break;
mjr 78:1e00b3fa11af 3528
mjr 78:1e00b3fa11af 3529 case 2:
mjr 78:1e00b3fa11af 3530 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3531 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3532 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3533 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3534 // suppressed.
mjr 78:1e00b3fa11af 3535 if (!sbs->physState)
mjr 78:1e00b3fa11af 3536 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3537 break;
mjr 78:1e00b3fa11af 3538
mjr 78:1e00b3fa11af 3539 case 3:
mjr 78:1e00b3fa11af 3540 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3541 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3542 // has expired.
mjr 78:1e00b3fa11af 3543 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3544 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3545 else
mjr 78:1e00b3fa11af 3546 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3547 break;
mjr 78:1e00b3fa11af 3548 }
mjr 66:2e3583fbd2f4 3549 break;
mjr 66:2e3583fbd2f4 3550
mjr 66:2e3583fbd2f4 3551 case 1:
mjr 78:1e00b3fa11af 3552 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3553 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3554 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3555 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3556 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3557 break;
mjr 66:2e3583fbd2f4 3558 }
mjr 66:2e3583fbd2f4 3559 }
mjr 38:091e511ce8a0 3560
mjr 11:bd9da7088e6e 3561 // scan the button list
mjr 18:5e890ebd0023 3562 ButtonState *bs = buttonState;
mjr 65:739875521aae 3563 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3564 {
mjr 77:0b96f6867312 3565 // get the config entry for the button
mjr 77:0b96f6867312 3566 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3567
mjr 66:2e3583fbd2f4 3568 // Check the button type:
mjr 66:2e3583fbd2f4 3569 // - shift button
mjr 66:2e3583fbd2f4 3570 // - pulsed button
mjr 66:2e3583fbd2f4 3571 // - regular button
mjr 66:2e3583fbd2f4 3572 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3573 {
mjr 78:1e00b3fa11af 3574 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3575 // depends on the mode.
mjr 78:1e00b3fa11af 3576 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3577 {
mjr 78:1e00b3fa11af 3578 case 0:
mjr 78:1e00b3fa11af 3579 default:
mjr 78:1e00b3fa11af 3580 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3581 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3582 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3583 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3584 break;
mjr 78:1e00b3fa11af 3585
mjr 78:1e00b3fa11af 3586 case 1:
mjr 78:1e00b3fa11af 3587 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3588 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3589 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3590 break;
mjr 66:2e3583fbd2f4 3591 }
mjr 66:2e3583fbd2f4 3592 }
mjr 66:2e3583fbd2f4 3593 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3594 {
mjr 38:091e511ce8a0 3595 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3596 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3597 {
mjr 53:9b2611964afc 3598 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3599 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3600 }
mjr 53:9b2611964afc 3601 else
mjr 53:9b2611964afc 3602 {
mjr 53:9b2611964afc 3603 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3604 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3605 switch (bs->pulseState)
mjr 18:5e890ebd0023 3606 {
mjr 38:091e511ce8a0 3607 case 1:
mjr 38:091e511ce8a0 3608 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3609 if (bs->physState)
mjr 53:9b2611964afc 3610 {
mjr 38:091e511ce8a0 3611 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3612 bs->pulseState = 2;
mjr 53:9b2611964afc 3613 bs->logState = 1;
mjr 38:091e511ce8a0 3614 }
mjr 38:091e511ce8a0 3615 break;
mjr 18:5e890ebd0023 3616
mjr 38:091e511ce8a0 3617 case 2:
mjr 38:091e511ce8a0 3618 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3619 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3620 // change in state in the logical button
mjr 38:091e511ce8a0 3621 bs->pulseState = 3;
mjr 38:091e511ce8a0 3622 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3623 bs->logState = 0;
mjr 38:091e511ce8a0 3624 break;
mjr 38:091e511ce8a0 3625
mjr 38:091e511ce8a0 3626 case 3:
mjr 38:091e511ce8a0 3627 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3628 if (!bs->physState)
mjr 53:9b2611964afc 3629 {
mjr 38:091e511ce8a0 3630 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3631 bs->pulseState = 4;
mjr 53:9b2611964afc 3632 bs->logState = 1;
mjr 38:091e511ce8a0 3633 }
mjr 38:091e511ce8a0 3634 break;
mjr 38:091e511ce8a0 3635
mjr 38:091e511ce8a0 3636 case 4:
mjr 38:091e511ce8a0 3637 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3638 bs->pulseState = 1;
mjr 38:091e511ce8a0 3639 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3640 bs->logState = 0;
mjr 38:091e511ce8a0 3641 break;
mjr 18:5e890ebd0023 3642 }
mjr 18:5e890ebd0023 3643 }
mjr 38:091e511ce8a0 3644 }
mjr 38:091e511ce8a0 3645 else
mjr 38:091e511ce8a0 3646 {
mjr 38:091e511ce8a0 3647 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3648 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3649 }
mjr 77:0b96f6867312 3650
mjr 77:0b96f6867312 3651 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3652 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3653 //
mjr 78:1e00b3fa11af 3654 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3655 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3656 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3657 //
mjr 78:1e00b3fa11af 3658 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3659 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3660 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3661 //
mjr 78:1e00b3fa11af 3662 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3663 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3664 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3665 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3666 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3667 bool useShift =
mjr 77:0b96f6867312 3668 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3669 && shiftButton.index != i
mjr 77:0b96f6867312 3670 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3671 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3672 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3673
mjr 77:0b96f6867312 3674 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3675 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3676 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3677 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3678 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3679 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3680 shiftButton.state = 2;
mjr 35:e959ffba78fd 3681
mjr 38:091e511ce8a0 3682 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3683 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3684 {
mjr 77:0b96f6867312 3685 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3686 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3687 {
mjr 77:0b96f6867312 3688 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3689 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3690 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3691 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3692 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3693 // the night mode state.
mjr 77:0b96f6867312 3694 //
mjr 77:0b96f6867312 3695 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3696 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3697 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3698 {
mjr 77:0b96f6867312 3699 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3700 // current switch state.
mjr 53:9b2611964afc 3701 setNightMode(bs->logState);
mjr 53:9b2611964afc 3702 }
mjr 82:4f6209cb5c33 3703 else if (bs->logState)
mjr 53:9b2611964afc 3704 {
mjr 77:0b96f6867312 3705 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3706 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3707 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3708 // OFF to ON.
mjr 66:2e3583fbd2f4 3709 //
mjr 77:0b96f6867312 3710 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3711 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3712 // button.
mjr 77:0b96f6867312 3713 bool pressed;
mjr 98:4df3c0f7e707 3714 if (shiftButton.index == i)
mjr 98:4df3c0f7e707 3715 {
mjr 98:4df3c0f7e707 3716 // This button is both the Shift button AND the Night
mjr 98:4df3c0f7e707 3717 // Mode button. This is a special case in that the
mjr 98:4df3c0f7e707 3718 // Shift status is irrelevant, because it's obviously
mjr 98:4df3c0f7e707 3719 // identical to the Night Mode status. So it doesn't
mjr 98:4df3c0f7e707 3720 // matter whether or not the Night Mode button has the
mjr 98:4df3c0f7e707 3721 // shifted flags; the raw button state is all that
mjr 98:4df3c0f7e707 3722 // counts in this case.
mjr 98:4df3c0f7e707 3723 pressed = true;
mjr 98:4df3c0f7e707 3724 }
mjr 98:4df3c0f7e707 3725 else if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3726 {
mjr 77:0b96f6867312 3727 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3728 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3729 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3730 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3731 }
mjr 77:0b96f6867312 3732 else
mjr 77:0b96f6867312 3733 {
mjr 77:0b96f6867312 3734 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3735 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3736 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3737 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3738 }
mjr 66:2e3583fbd2f4 3739
mjr 66:2e3583fbd2f4 3740 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3741 // toggle night mode
mjr 66:2e3583fbd2f4 3742 if (pressed)
mjr 53:9b2611964afc 3743 toggleNightMode();
mjr 53:9b2611964afc 3744 }
mjr 35:e959ffba78fd 3745 }
mjr 38:091e511ce8a0 3746
mjr 77:0b96f6867312 3747 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3748 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3749 if (irc != 0)
mjr 77:0b96f6867312 3750 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3751
mjr 38:091e511ce8a0 3752 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3753 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3754 }
mjr 38:091e511ce8a0 3755
mjr 53:9b2611964afc 3756 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3757 // key state list
mjr 53:9b2611964afc 3758 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3759 {
mjr 70:9f58735a1732 3760 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3761 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3762 uint8_t typ, val;
mjr 77:0b96f6867312 3763 if (useShift)
mjr 66:2e3583fbd2f4 3764 {
mjr 77:0b96f6867312 3765 typ = bc->typ2;
mjr 77:0b96f6867312 3766 val = bc->val2;
mjr 66:2e3583fbd2f4 3767 }
mjr 77:0b96f6867312 3768 else
mjr 77:0b96f6867312 3769 {
mjr 77:0b96f6867312 3770 typ = bc->typ;
mjr 77:0b96f6867312 3771 val = bc->val;
mjr 77:0b96f6867312 3772 }
mjr 77:0b96f6867312 3773
mjr 70:9f58735a1732 3774 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3775 // the keyboard or joystick event.
mjr 77:0b96f6867312 3776 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3777 }
mjr 11:bd9da7088e6e 3778 }
mjr 77:0b96f6867312 3779
mjr 77:0b96f6867312 3780 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3781 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3782 // the IR key.
mjr 77:0b96f6867312 3783 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3784 {
mjr 77:0b96f6867312 3785 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3786 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3787 }
mjr 77:0b96f6867312 3788
mjr 77:0b96f6867312 3789 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3790 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3791
mjr 77:0b96f6867312 3792 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3793 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3794 jsButtons = ks.js;
mjr 77:0b96f6867312 3795
mjr 77:0b96f6867312 3796 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3797 // something changes)
mjr 77:0b96f6867312 3798 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3799 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3800 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3801 {
mjr 35:e959ffba78fd 3802 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3803 kbState.changed = true;
mjr 77:0b96f6867312 3804 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3805 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3806 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3807 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3808 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3809 }
mjr 35:e959ffba78fd 3810 else {
mjr 35:e959ffba78fd 3811 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3812 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3813 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3814 }
mjr 35:e959ffba78fd 3815 }
mjr 35:e959ffba78fd 3816
mjr 77:0b96f6867312 3817 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3818 // something changes)
mjr 77:0b96f6867312 3819 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3820 {
mjr 77:0b96f6867312 3821 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3822 mediaState.changed = true;
mjr 77:0b96f6867312 3823 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3824 }
mjr 11:bd9da7088e6e 3825 }
mjr 11:bd9da7088e6e 3826
mjr 73:4e8ce0b18915 3827 // Send a button status report
mjr 73:4e8ce0b18915 3828 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3829 {
mjr 73:4e8ce0b18915 3830 // start with all buttons off
mjr 73:4e8ce0b18915 3831 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3832 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3833
mjr 73:4e8ce0b18915 3834 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3835 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3836 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3837 {
mjr 73:4e8ce0b18915 3838 // get the physical state
mjr 73:4e8ce0b18915 3839 int b = bs->physState;
mjr 73:4e8ce0b18915 3840
mjr 73:4e8ce0b18915 3841 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3842 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3843 int si = idx / 8;
mjr 73:4e8ce0b18915 3844 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3845 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3846 }
mjr 73:4e8ce0b18915 3847
mjr 73:4e8ce0b18915 3848 // send the report
mjr 73:4e8ce0b18915 3849 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3850 }
mjr 73:4e8ce0b18915 3851
mjr 5:a70c0bce770d 3852 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3853 //
mjr 5:a70c0bce770d 3854 // Customization joystick subbclass
mjr 5:a70c0bce770d 3855 //
mjr 5:a70c0bce770d 3856
mjr 5:a70c0bce770d 3857 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3858 {
mjr 5:a70c0bce770d 3859 public:
mjr 35:e959ffba78fd 3860 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3861 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3862 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3863 {
mjr 54:fd77a6b2f76c 3864 sleeping_ = false;
mjr 54:fd77a6b2f76c 3865 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3866 timer_.start();
mjr 54:fd77a6b2f76c 3867 }
mjr 54:fd77a6b2f76c 3868
mjr 54:fd77a6b2f76c 3869 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3870 void diagFlash()
mjr 54:fd77a6b2f76c 3871 {
mjr 54:fd77a6b2f76c 3872 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3873 {
mjr 54:fd77a6b2f76c 3874 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3875 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3876 {
mjr 54:fd77a6b2f76c 3877 // short red flash
mjr 54:fd77a6b2f76c 3878 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3879 wait_us(50000);
mjr 54:fd77a6b2f76c 3880 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3881 wait_us(50000);
mjr 54:fd77a6b2f76c 3882 }
mjr 54:fd77a6b2f76c 3883 }
mjr 5:a70c0bce770d 3884 }
mjr 5:a70c0bce770d 3885
mjr 5:a70c0bce770d 3886 // are we connected?
mjr 5:a70c0bce770d 3887 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3888
mjr 54:fd77a6b2f76c 3889 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3890 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3891 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3892 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3893 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3894
mjr 54:fd77a6b2f76c 3895 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3896 //
mjr 54:fd77a6b2f76c 3897 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3898 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3899 // other way.
mjr 54:fd77a6b2f76c 3900 //
mjr 54:fd77a6b2f76c 3901 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3902 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3903 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3904 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3905 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3906 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3907 //
mjr 54:fd77a6b2f76c 3908 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3909 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3910 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3911 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3912 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3913 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3914 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3915 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3916 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3917 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3918 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3919 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3920 // is effectively dead.
mjr 54:fd77a6b2f76c 3921 //
mjr 54:fd77a6b2f76c 3922 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3923 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3924 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3925 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3926 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3927 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3928 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3929 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3930 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3931 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3932 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3933 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3934 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3935 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3936 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3937 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3938 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3939 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3940 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3941 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3942 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3943 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3944 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3945 // a disconnect.
mjr 54:fd77a6b2f76c 3946 //
mjr 54:fd77a6b2f76c 3947 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3948 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3949 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3950 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3951 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3952 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3953 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3954 //
mjr 54:fd77a6b2f76c 3955 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3956 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3957 //
mjr 54:fd77a6b2f76c 3958 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3959 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3960 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3961 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3962 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3963 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3964 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3965 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3966 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3967 // reliable in practice.
mjr 54:fd77a6b2f76c 3968 //
mjr 54:fd77a6b2f76c 3969 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3970 //
mjr 54:fd77a6b2f76c 3971 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3972 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3973 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3974 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3975 // return.
mjr 54:fd77a6b2f76c 3976 //
mjr 54:fd77a6b2f76c 3977 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3978 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3979 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3980 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3981 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3982 //
mjr 54:fd77a6b2f76c 3983 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3984 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3985 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3986 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3987 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3988 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3989 //
mjr 54:fd77a6b2f76c 3990 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3991 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3992 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3993 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3994 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3995 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3996 // freezes over.
mjr 54:fd77a6b2f76c 3997 //
mjr 54:fd77a6b2f76c 3998 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3999 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 4000 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 4001 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 4002 // less than second with this code in place.
mjr 54:fd77a6b2f76c 4003 void recoverConnection()
mjr 54:fd77a6b2f76c 4004 {
mjr 54:fd77a6b2f76c 4005 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 4006 if (reconnectPending_)
mjr 54:fd77a6b2f76c 4007 {
mjr 54:fd77a6b2f76c 4008 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 4009 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 4010 {
mjr 54:fd77a6b2f76c 4011 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 4012 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 4013 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 4014 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 4015 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 4016 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 4017 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 4018 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 4019 __disable_irq();
mjr 54:fd77a6b2f76c 4020 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 4021 {
mjr 54:fd77a6b2f76c 4022 connect(false);
mjr 54:fd77a6b2f76c 4023 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 4024 done = true;
mjr 54:fd77a6b2f76c 4025 }
mjr 54:fd77a6b2f76c 4026 __enable_irq();
mjr 54:fd77a6b2f76c 4027 }
mjr 54:fd77a6b2f76c 4028 }
mjr 54:fd77a6b2f76c 4029 }
mjr 5:a70c0bce770d 4030
mjr 5:a70c0bce770d 4031 protected:
mjr 54:fd77a6b2f76c 4032 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 4033 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 4034 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 4035 //
mjr 54:fd77a6b2f76c 4036 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 4037 //
mjr 54:fd77a6b2f76c 4038 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 4039 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 4040 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 4041 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 4042 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 4043 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 4044 {
mjr 54:fd77a6b2f76c 4045 // note the new state
mjr 54:fd77a6b2f76c 4046 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 4047
mjr 54:fd77a6b2f76c 4048 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 4049 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 4050 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 4051 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 4052 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 4053 {
mjr 54:fd77a6b2f76c 4054 disconnect();
mjr 54:fd77a6b2f76c 4055 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 4056 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 4057 }
mjr 54:fd77a6b2f76c 4058 }
mjr 54:fd77a6b2f76c 4059
mjr 54:fd77a6b2f76c 4060 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 4061 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 4062
mjr 54:fd77a6b2f76c 4063 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 4064 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 4065
mjr 54:fd77a6b2f76c 4066 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 4067 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 4068
mjr 54:fd77a6b2f76c 4069 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 4070 Timer timer_;
mjr 5:a70c0bce770d 4071 };
mjr 5:a70c0bce770d 4072
mjr 5:a70c0bce770d 4073 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4074 //
mjr 5:a70c0bce770d 4075 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 4076 //
mjr 5:a70c0bce770d 4077
mjr 5:a70c0bce770d 4078 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 4079 //
mjr 5:a70c0bce770d 4080 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 4081 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 4082 // automatic calibration.
mjr 5:a70c0bce770d 4083 //
mjr 77:0b96f6867312 4084 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 4085 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 4086 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 4087 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 4088 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 4089 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 4090 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 4091 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 4092 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 4093 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 4094 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 4095 //
mjr 77:0b96f6867312 4096 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 4097 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 4098 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 4099 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 4100 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 4101 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 4102 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 4103 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 4104 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 4105 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 4106 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 4107 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 4108 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 4109 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 4110 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 4111 // rather than change it across the board.
mjr 5:a70c0bce770d 4112 //
mjr 6:cc35eb643e8f 4113 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 4114 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 4115 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 4116 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 4117 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 4118 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 4119 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 4120 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 4121 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 4122 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 4123 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 4124 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 4125 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 4126 // of nudging, say).
mjr 5:a70c0bce770d 4127 //
mjr 5:a70c0bce770d 4128
mjr 17:ab3cec0c8bf4 4129 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 4130 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 4131
mjr 112:8ed709f455c0 4132 // I2C pins for the accelerometer (constant for the KL25Z)
mjr 112:8ed709f455c0 4133 #define MMA8451_SDA_PIN PTE25
mjr 112:8ed709f455c0 4134 #define MMA8451_SCL_PIN PTE24
mjr 17:ab3cec0c8bf4 4135
mjr 17:ab3cec0c8bf4 4136 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 4137 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 4138 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 4139 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 4140
mjr 17:ab3cec0c8bf4 4141
mjr 6:cc35eb643e8f 4142 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 4143 struct AccHist
mjr 5:a70c0bce770d 4144 {
mjr 77:0b96f6867312 4145 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4146 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 4147 {
mjr 6:cc35eb643e8f 4148 // save the raw position
mjr 6:cc35eb643e8f 4149 this->x = x;
mjr 6:cc35eb643e8f 4150 this->y = y;
mjr 77:0b96f6867312 4151 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 4152 }
mjr 6:cc35eb643e8f 4153
mjr 6:cc35eb643e8f 4154 // reading for this entry
mjr 77:0b96f6867312 4155 int x, y;
mjr 77:0b96f6867312 4156
mjr 77:0b96f6867312 4157 // (distance from previous entry) squared
mjr 77:0b96f6867312 4158 int dsq;
mjr 5:a70c0bce770d 4159
mjr 6:cc35eb643e8f 4160 // total and count of samples averaged over this period
mjr 77:0b96f6867312 4161 int xtot, ytot;
mjr 6:cc35eb643e8f 4162 int cnt;
mjr 6:cc35eb643e8f 4163
mjr 77:0b96f6867312 4164 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4165 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 4166 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 4167 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 4168
mjr 77:0b96f6867312 4169 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 4170 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 4171 };
mjr 5:a70c0bce770d 4172
mjr 5:a70c0bce770d 4173 // accelerometer wrapper class
mjr 3:3514575d4f86 4174 class Accel
mjr 3:3514575d4f86 4175 {
mjr 3:3514575d4f86 4176 public:
mjr 112:8ed709f455c0 4177 Accel(const Config &cfg) : mma_(MMA8451_SDA_PIN, MMA8451_SCL_PIN, MMA8451_I2C_ADDRESS)
mjr 3:3514575d4f86 4178 {
mjr 77:0b96f6867312 4179 // remember the range
mjr 112:8ed709f455c0 4180 range_ = cfg.accel.range;
mjr 78:1e00b3fa11af 4181
mjr 78:1e00b3fa11af 4182 // set the auto-centering mode
mjr 112:8ed709f455c0 4183 setAutoCenterMode(cfg.accel.autoCenterTime);
mjr 78:1e00b3fa11af 4184
mjr 78:1e00b3fa11af 4185 // no manual centering request has been received
mjr 78:1e00b3fa11af 4186 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 4187
mjr 5:a70c0bce770d 4188 // reset and initialize
mjr 5:a70c0bce770d 4189 reset();
mjr 5:a70c0bce770d 4190 }
mjr 5:a70c0bce770d 4191
mjr 112:8ed709f455c0 4192 // Do a full reset of the object. This tries to clear the I2C
mjr 112:8ed709f455c0 4193 // bus, and then re-creates the Accel object in place, running
mjr 112:8ed709f455c0 4194 // through all of the constructors again. This is only a "soft"
mjr 112:8ed709f455c0 4195 // reset, since the KL25Z doesn't give us any way to do a power
mjr 112:8ed709f455c0 4196 // cycle on the MMA8451Q from software - its power connection is
mjr 112:8ed709f455c0 4197 // hardwired to the KL25Z's main board power connection, so the
mjr 112:8ed709f455c0 4198 // only way to power cycle the accelerometer is to power cycle
mjr 112:8ed709f455c0 4199 // the whole board.
mjr 112:8ed709f455c0 4200 //
mjr 112:8ed709f455c0 4201 // We use this to try to reset the accelerometer if it stops
mjr 112:8ed709f455c0 4202 // sending us new samples. I've received a few reports from
mjr 112:8ed709f455c0 4203 // people who say their accelerometers seem to stop working even
mjr 112:8ed709f455c0 4204 // though the rest of the firmware is still functioning normally,
mjr 112:8ed709f455c0 4205 // which suggests that there's either a problem in the Accel class
mjr 112:8ed709f455c0 4206 // itself, or that the MMA8451Q can get into a non-responsive state
mjr 112:8ed709f455c0 4207 // under some circumstances. Since the reports have been extremely
mjr 112:8ed709f455c0 4208 // rare and isolated, and since I've never myself seen this happen
mjr 112:8ed709f455c0 4209 // on any of the multiple KL25Z boards I've tested with (even after
mjr 112:8ed709f455c0 4210 // leaving them running for days at a time), my best guess is that
mjr 112:8ed709f455c0 4211 // it's actually a fault in the MMA8451Q. The fact that everyone
mjr 112:8ed709f455c0 4212 // who's experienced the accelerometer freeze says that the rest of
mjr 112:8ed709f455c0 4213 // the firwmare is still working supports this hypothesis - given
mjr 112:8ed709f455c0 4214 // that the firmware is single-threaded, it seems unlikely that a
mjr 112:8ed709f455c0 4215 // "crash" of some kind in the accelerometer code wouldn't crash
mjr 112:8ed709f455c0 4216 // the firmware as a whole. This soft reset code is an attempt to
mjr 112:8ed709f455c0 4217 // recover from a scenario where the MMA8451Q hardware is still
mjr 112:8ed709f455c0 4218 // functioning properly, but its internal state machine is somehow
mjr 112:8ed709f455c0 4219 // out of sync with the host in such a way that it can no longer
mjr 112:8ed709f455c0 4220 // send us samples - either its I2C state machine is stuck in the
mjr 112:8ed709f455c0 4221 // middle of a transaction, or its sample processing state machine
mjr 112:8ed709f455c0 4222 // is no longer taking samples. The soft reset doesn't have any
mjr 112:8ed709f455c0 4223 // hope of rebooting the chip if the freeze is due to some kind
mjr 112:8ed709f455c0 4224 // of hardware fault, because our only connection to the chip is
mjr 112:8ed709f455c0 4225 // the I2C bus, and there's no reason to think its I2C state
mjr 112:8ed709f455c0 4226 // machine would even be running in the event of a hardware fault.
mjr 112:8ed709f455c0 4227 // Hopefully we can find out which it is by testing this fix on
mjr 112:8ed709f455c0 4228 // boards where the problem is known to have occurred, since it
mjr 112:8ed709f455c0 4229 // seems to be readily repeatable for the people who experience
mjr 112:8ed709f455c0 4230 // it at all.
mjr 112:8ed709f455c0 4231 static void softReset(Accel *accel, const Config &config)
mjr 112:8ed709f455c0 4232 {
mjr 112:8ed709f455c0 4233 // save the current centering position, so that the user
mjr 112:8ed709f455c0 4234 // doesn't see a jump across the reset
mjr 112:8ed709f455c0 4235 int cx = accel->cx_, cy = accel->cy_;
mjr 112:8ed709f455c0 4236
mjr 112:8ed709f455c0 4237 // try to reset the I2C bus, in case that's
mjr 112:8ed709f455c0 4238 accel->clear_i2c();
mjr 112:8ed709f455c0 4239
mjr 112:8ed709f455c0 4240 // re-construct the Accel object
mjr 112:8ed709f455c0 4241 new (accel) Accel(config);
mjr 112:8ed709f455c0 4242
mjr 112:8ed709f455c0 4243 // restore the center point
mjr 112:8ed709f455c0 4244 accel->cx_ = cx;
mjr 112:8ed709f455c0 4245 accel->cy_ = cy;
mjr 112:8ed709f455c0 4246 }
mjr 112:8ed709f455c0 4247
mjr 78:1e00b3fa11af 4248 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 4249 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 4250 // as soon as we have enough data.
mjr 78:1e00b3fa11af 4251 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 4252
mjr 78:1e00b3fa11af 4253 // set the auto-centering mode
mjr 78:1e00b3fa11af 4254 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 4255 {
mjr 78:1e00b3fa11af 4256 // remember the mode
mjr 78:1e00b3fa11af 4257 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 4258
mjr 78:1e00b3fa11af 4259 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 4260 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 4261 if (mode == 0)
mjr 78:1e00b3fa11af 4262 {
mjr 78:1e00b3fa11af 4263 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 4264 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 4265 }
mjr 78:1e00b3fa11af 4266 else if (mode <= 60)
mjr 78:1e00b3fa11af 4267 {
mjr 78:1e00b3fa11af 4268 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 4269 // interval is 1/5 of this
mjr 78:1e00b3fa11af 4270 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 4271 }
mjr 78:1e00b3fa11af 4272 else
mjr 78:1e00b3fa11af 4273 {
mjr 78:1e00b3fa11af 4274 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 4275 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 4276 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 4277 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 4278 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 4279 // includes recent data.
mjr 78:1e00b3fa11af 4280 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 4281 }
mjr 78:1e00b3fa11af 4282 }
mjr 78:1e00b3fa11af 4283
mjr 112:8ed709f455c0 4284 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 112:8ed709f455c0 4285 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 112:8ed709f455c0 4286 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 112:8ed709f455c0 4287 // the MMA's SDA line stuck low. Presumably, the MMA8451Q's internal state
mjr 112:8ed709f455c0 4288 // machine is still in the middle of an I2C transaction, and it expects the
mjr 112:8ed709f455c0 4289 // host to clock in/out the rest of the bits for the transaction. Forcing a
mjr 112:8ed709f455c0 4290 // series of clock pulses through SCL is the standard remedy for this type
mjr 112:8ed709f455c0 4291 // of situation, since it should force the state machine to the end of the
mjr 112:8ed709f455c0 4292 // I2C state it's stuck in so that it's ready to start a new transaction.
mjr 112:8ed709f455c0 4293 // This really shouldn't be necessary, because the mbed library I2C code that
mjr 112:8ed709f455c0 4294 // we're using in the MMA8451Q driver appears to do the same thing when it
mjr 112:8ed709f455c0 4295 // sets up the I2C pins, but it should at least be harmless. What we really
mjr 112:8ed709f455c0 4296 // need is a way to power-cycle the MMA8451Q, but the KL25Z simply isn't
mjr 112:8ed709f455c0 4297 // wired to do that from software; the only way is to power-cycle the whole
mjr 112:8ed709f455c0 4298 // board.
mjr 112:8ed709f455c0 4299 //
mjr 112:8ed709f455c0 4300 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 112:8ed709f455c0 4301 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 112:8ed709f455c0 4302 // unplugging both of its USB connections.
mjr 112:8ed709f455c0 4303 //
mjr 112:8ed709f455c0 4304 // The entire Accel object must be re-constructed after calling this,
mjr 112:8ed709f455c0 4305 // because this reconfigures the I2C SDA/SCL pins as plain digital in/out
mjr 112:8ed709f455c0 4306 // pins. They have to be reconfigured as I2C pins again by the I2C
mjr 112:8ed709f455c0 4307 // constructor after this is called.
mjr 112:8ed709f455c0 4308 static bool clear_i2c()
mjr 112:8ed709f455c0 4309 {
mjr 112:8ed709f455c0 4310 // set up both pints as input pins
mjr 112:8ed709f455c0 4311 DigitalInOut pin_sda(MMA8451_SDA_PIN, PIN_INPUT, PullNone, 1);
mjr 112:8ed709f455c0 4312 DigitalInOut pin_scl(MMA8451_SCL_PIN, PIN_INPUT, PullNone, 1);
mjr 112:8ed709f455c0 4313
mjr 112:8ed709f455c0 4314 // if SCL is being held low, the bus is locked by another device;
mjr 112:8ed709f455c0 4315 // wait a couple of milliseconds and then give up
mjr 112:8ed709f455c0 4316 Timer t;
mjr 112:8ed709f455c0 4317 t.start();
mjr 112:8ed709f455c0 4318 while (pin_scl == 0 && t.read_us() < 2000) { }
mjr 112:8ed709f455c0 4319 if (pin_scl == 0)
mjr 112:8ed709f455c0 4320 return false;
mjr 112:8ed709f455c0 4321
mjr 112:8ed709f455c0 4322 // if SDA and SCL are both high, the bus is free
mjr 112:8ed709f455c0 4323 if (pin_sda == 1)
mjr 112:8ed709f455c0 4324 return true;
mjr 112:8ed709f455c0 4325
mjr 112:8ed709f455c0 4326 // Send a series of clock pulses to try to knock the device out
mjr 112:8ed709f455c0 4327 // of whatever I2C transaction it thinks it's in the middle of.
mjr 112:8ed709f455c0 4328 // 9 pulses should be sufficient for a device with byte commands,
mjr 112:8ed709f455c0 4329 // but do some extra for good measure, in case it's in some kind
mjr 112:8ed709f455c0 4330 // of multi-byte transaction.
mjr 112:8ed709f455c0 4331 pin_scl.mode(PullNone);
mjr 112:8ed709f455c0 4332 pin_scl.output();
mjr 112:8ed709f455c0 4333 for (int count = 0; count < 35; count++)
mjr 112:8ed709f455c0 4334 {
mjr 112:8ed709f455c0 4335 pin_scl.mode(PullNone);
mjr 112:8ed709f455c0 4336 pin_scl = 0;
mjr 112:8ed709f455c0 4337 wait_us(5);
mjr 112:8ed709f455c0 4338 pin_scl.mode(PullUp);
mjr 112:8ed709f455c0 4339 pin_scl = 1;
mjr 112:8ed709f455c0 4340 wait_us(5);
mjr 112:8ed709f455c0 4341 }
mjr 112:8ed709f455c0 4342
mjr 112:8ed709f455c0 4343 // Send Stop
mjr 112:8ed709f455c0 4344 pin_sda.output();
mjr 112:8ed709f455c0 4345 pin_sda = 0;
mjr 112:8ed709f455c0 4346 wait_us(5);
mjr 112:8ed709f455c0 4347 pin_scl = 1;
mjr 112:8ed709f455c0 4348 wait_us(5);
mjr 112:8ed709f455c0 4349 pin_sda = 1;
mjr 112:8ed709f455c0 4350 wait_us(5);
mjr 112:8ed709f455c0 4351
mjr 112:8ed709f455c0 4352 // confirm that both SDA and SCL are now high, indicating that
mjr 112:8ed709f455c0 4353 // the bus is free
mjr 112:8ed709f455c0 4354 pin_sda.input();
mjr 112:8ed709f455c0 4355 pin_scl.input();
mjr 112:8ed709f455c0 4356 return (pin_scl != 0 && pin_sda != 0);
mjr 112:8ed709f455c0 4357 }
mjr 112:8ed709f455c0 4358
mjr 5:a70c0bce770d 4359 void reset()
mjr 5:a70c0bce770d 4360 {
mjr 6:cc35eb643e8f 4361 // clear the center point
mjr 77:0b96f6867312 4362 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 4363
mjr 77:0b96f6867312 4364 // start the auto-centering timer
mjr 5:a70c0bce770d 4365 tCenter_.start();
mjr 5:a70c0bce770d 4366 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 4367
mjr 5:a70c0bce770d 4368 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 4369 mma_.init();
mjr 77:0b96f6867312 4370
mjr 77:0b96f6867312 4371 // set the range
mjr 77:0b96f6867312 4372 mma_.setRange(
mjr 77:0b96f6867312 4373 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 4374 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 4375 2);
mjr 6:cc35eb643e8f 4376
mjr 77:0b96f6867312 4377 // set the average accumulators to zero
mjr 77:0b96f6867312 4378 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4379 nSum_ = 0;
mjr 3:3514575d4f86 4380
mjr 3:3514575d4f86 4381 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 4382 mma_.getAccXYZ(ax_, ay_, az_);
mjr 112:8ed709f455c0 4383
mjr 112:8ed709f455c0 4384 // start the FIFO timer
mjr 112:8ed709f455c0 4385 fifoTimer.reset();
mjr 112:8ed709f455c0 4386 fifoTimer.start();
mjr 112:8ed709f455c0 4387 tLastSample = tLastChangedSample = fifoTimer.read_us();
mjr 3:3514575d4f86 4388 }
mjr 3:3514575d4f86 4389
mjr 112:8ed709f455c0 4390 // Poll the accelerometer. Returns true on success, false if the
mjr 112:8ed709f455c0 4391 // device appears to be wedged (because we haven't received a unique
mjr 112:8ed709f455c0 4392 // sample in a long time). The caller can try re-creating the Accel
mjr 112:8ed709f455c0 4393 // object if the device is wedged.
mjr 112:8ed709f455c0 4394 bool poll()
mjr 76:7f5912b6340e 4395 {
mjr 77:0b96f6867312 4396 // read samples until we clear the FIFO
mjr 77:0b96f6867312 4397 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 4398 {
mjr 112:8ed709f455c0 4399 // read the raw data
mjr 77:0b96f6867312 4400 int x, y, z;
mjr 77:0b96f6867312 4401 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 4402
mjr 112:8ed709f455c0 4403 // note the time
mjr 112:8ed709f455c0 4404 tLastSample = fifoTimer.read_us();
mjr 112:8ed709f455c0 4405
mjr 112:8ed709f455c0 4406 // note if this sample differs from the last one, to see if
mjr 112:8ed709f455c0 4407 // the accelerometer appears to be stuck
mjr 112:8ed709f455c0 4408 if (x != ax_ || y != ay_ || z != az_)
mjr 112:8ed709f455c0 4409 tLastChangedSample = tLastSample;
mjr 112:8ed709f455c0 4410
mjr 77:0b96f6867312 4411 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 4412 xSum_ += (x - cx_);
mjr 77:0b96f6867312 4413 ySum_ += (y - cy_);
mjr 77:0b96f6867312 4414 ++nSum_;
mjr 77:0b96f6867312 4415
mjr 77:0b96f6867312 4416 // store the updates
mjr 77:0b96f6867312 4417 ax_ = x;
mjr 77:0b96f6867312 4418 ay_ = y;
mjr 77:0b96f6867312 4419 az_ = z;
mjr 77:0b96f6867312 4420 }
mjr 112:8ed709f455c0 4421
mjr 112:8ed709f455c0 4422 // If we haven't seen a new sample in a while, the device
mjr 112:8ed709f455c0 4423 // might be stuck. Some people have observed an apparent
mjr 112:8ed709f455c0 4424 // freeze in the accelerometer readings even while the
mjr 112:8ed709f455c0 4425 // pluger and key inputs continue working, which seems
mjr 112:8ed709f455c0 4426 // like it must be due to something stuck on the MMA8451Q.
mjr 112:8ed709f455c0 4427 // The caller can try a software reset in that case, by
mjr 112:8ed709f455c0 4428 // re-creating the Accel object. That will go through
mjr 112:8ed709f455c0 4429 // all of the I2C and MMA8451Q intialization code again
mjr 112:8ed709f455c0 4430 // to try to get things back to a good state.
mjr 112:8ed709f455c0 4431 //
mjr 112:8ed709f455c0 4432 // We poll about every 2.5ms (or more often, depending on
mjr 112:8ed709f455c0 4433 // the plunger sensor type), and we have the accelerometer
mjr 112:8ed709f455c0 4434 // set to generate samples at 800 Hz = every 1.25ms, so it
mjr 112:8ed709f455c0 4435 // would definitely indicate trouble if the last samples
mjr 112:8ed709f455c0 4436 // from the device are older than 5ms. As for *unique*
mjr 112:8ed709f455c0 4437 // samples, that's a harder call, since it depends on how
mjr 112:8ed709f455c0 4438 // much background noise there is. Given the sensitivity
mjr 112:8ed709f455c0 4439 // of the device, though, my experience is that nearly
mjr 112:8ed709f455c0 4440 // every sample will have at least one bit of difference
mjr 112:8ed709f455c0 4441 // from the last, so it's unlikely to see more than a few
mjr 112:8ed709f455c0 4442 // identical samples in a row, and extremely unlikely to
mjr 112:8ed709f455c0 4443 // see, say, 10 or 20 consecutive identical readings. To
mjr 112:8ed709f455c0 4444 // be conservative, we'll time out the existence of a
mjr 112:8ed709f455c0 4445 // reading at 100ms, and unique readings at 2s. This
mjr 112:8ed709f455c0 4446 // should reset a non-responsive device well before the
mjr 112:8ed709f455c0 4447 // freeze becomes apparent to the user (unless they're
mjr 112:8ed709f455c0 4448 // deliberately looking for it), but should also ensure
mjr 112:8ed709f455c0 4449 // that we don't reset unnecessarily - 2s represents 1600
mjr 112:8ed709f455c0 4450 // consecutive identical samples, and I think the odds of
mjr 112:8ed709f455c0 4451 // that happening for real are practically zero, barring
mjr 112:8ed709f455c0 4452 // some kind of test bed with extreme vibration suppression.
mjr 112:8ed709f455c0 4453 uint32_t tNow = fifoTimer.read_us();
mjr 112:8ed709f455c0 4454 if (static_cast<uint32_t>(tNow - tLastSample) > 100000 // 100 ms
mjr 112:8ed709f455c0 4455 || static_cast<uint32_t>(tNow - tLastChangedSample) > 2000000) // 2 seconds
mjr 112:8ed709f455c0 4456 {
mjr 112:8ed709f455c0 4457 // appears to be wedged
mjr 112:8ed709f455c0 4458 return false;
mjr 112:8ed709f455c0 4459 }
mjr 112:8ed709f455c0 4460
mjr 112:8ed709f455c0 4461 // okay
mjr 112:8ed709f455c0 4462 return true;
mjr 76:7f5912b6340e 4463 }
mjr 112:8ed709f455c0 4464
mjr 112:8ed709f455c0 4465 // timer, for monitoring incoming FIFO samples
mjr 112:8ed709f455c0 4466 Timer fifoTimer;
mjr 112:8ed709f455c0 4467
mjr 112:8ed709f455c0 4468 // time of last sample from FIFO
mjr 112:8ed709f455c0 4469 uint32_t tLastSample;
mjr 112:8ed709f455c0 4470
mjr 112:8ed709f455c0 4471 // time of last *different* sample from FIFO
mjr 112:8ed709f455c0 4472 uint32_t tLastChangedSample;
mjr 112:8ed709f455c0 4473
mjr 9:fd65b0a94720 4474 void get(int &x, int &y)
mjr 3:3514575d4f86 4475 {
mjr 77:0b96f6867312 4476 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 4477 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 4478 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 4479 int nSum = nSum_;
mjr 6:cc35eb643e8f 4480
mjr 77:0b96f6867312 4481 // reset the average accumulators for the next run
mjr 77:0b96f6867312 4482 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4483 nSum_ = 0;
mjr 77:0b96f6867312 4484
mjr 77:0b96f6867312 4485 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 4486 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4487 p->addAvg(ax, ay);
mjr 77:0b96f6867312 4488
mjr 78:1e00b3fa11af 4489 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 4490 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 4491 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 4492 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 4493 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 4494 {
mjr 77:0b96f6867312 4495 // add the latest raw sample to the history list
mjr 77:0b96f6867312 4496 AccHist *prv = p;
mjr 77:0b96f6867312 4497 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 4498 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4499 iAccPrv_ = 0;
mjr 77:0b96f6867312 4500 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4501 p->set(ax, ay, prv);
mjr 77:0b96f6867312 4502
mjr 78:1e00b3fa11af 4503 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 4504 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4505 {
mjr 78:1e00b3fa11af 4506 // Center if:
mjr 78:1e00b3fa11af 4507 //
mjr 78:1e00b3fa11af 4508 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 4509 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 4510 //
mjr 78:1e00b3fa11af 4511 // - A manual centering request is pending
mjr 78:1e00b3fa11af 4512 //
mjr 77:0b96f6867312 4513 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 4514 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 4515 if (manualCenterRequest_
mjr 78:1e00b3fa11af 4516 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 4517 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 4518 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 4519 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 4520 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 4521 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 4522 {
mjr 77:0b96f6867312 4523 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 4524 // the samples over the rest period
mjr 77:0b96f6867312 4525 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 4526 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 4527
mjr 78:1e00b3fa11af 4528 // clear any pending manual centering request
mjr 78:1e00b3fa11af 4529 manualCenterRequest_ = false;
mjr 77:0b96f6867312 4530 }
mjr 77:0b96f6867312 4531 }
mjr 77:0b96f6867312 4532 else
mjr 77:0b96f6867312 4533 {
mjr 77:0b96f6867312 4534 // not enough samples yet; just up the count
mjr 77:0b96f6867312 4535 ++nAccPrv_;
mjr 77:0b96f6867312 4536 }
mjr 6:cc35eb643e8f 4537
mjr 77:0b96f6867312 4538 // clear the new item's running totals
mjr 77:0b96f6867312 4539 p->clearAvg();
mjr 5:a70c0bce770d 4540
mjr 77:0b96f6867312 4541 // reset the timer
mjr 77:0b96f6867312 4542 tCenter_.reset();
mjr 77:0b96f6867312 4543 }
mjr 5:a70c0bce770d 4544
mjr 77:0b96f6867312 4545 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 4546 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 4547 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 4548
mjr 6:cc35eb643e8f 4549 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 4550 if (x != 0 || y != 0)
mjr 77:0b96f6867312 4551 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 4552 #endif
mjr 77:0b96f6867312 4553 }
mjr 29:582472d0bc57 4554
mjr 3:3514575d4f86 4555 private:
mjr 6:cc35eb643e8f 4556 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 4557 int rawToReport(int v)
mjr 5:a70c0bce770d 4558 {
mjr 77:0b96f6867312 4559 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 4560 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 4561 // so their scale is 2^13.
mjr 77:0b96f6867312 4562 //
mjr 77:0b96f6867312 4563 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 4564 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 4565 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 4566 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 4567 int i = v*JOYMAX;
mjr 77:0b96f6867312 4568 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 4569
mjr 6:cc35eb643e8f 4570 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 4571 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 4572 static const int filter[] = {
mjr 6:cc35eb643e8f 4573 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 4574 0,
mjr 6:cc35eb643e8f 4575 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 4576 };
mjr 6:cc35eb643e8f 4577 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 4578 }
mjr 5:a70c0bce770d 4579
mjr 3:3514575d4f86 4580 // underlying accelerometer object
mjr 3:3514575d4f86 4581 MMA8451Q mma_;
mjr 3:3514575d4f86 4582
mjr 77:0b96f6867312 4583 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 4584 // scale -8192..+8191
mjr 77:0b96f6867312 4585 int ax_, ay_, az_;
mjr 77:0b96f6867312 4586
mjr 77:0b96f6867312 4587 // running sum of readings since last get()
mjr 77:0b96f6867312 4588 int xSum_, ySum_;
mjr 77:0b96f6867312 4589
mjr 77:0b96f6867312 4590 // number of readings since last get()
mjr 77:0b96f6867312 4591 int nSum_;
mjr 6:cc35eb643e8f 4592
mjr 6:cc35eb643e8f 4593 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 4594 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 4595 // at rest.
mjr 77:0b96f6867312 4596 int cx_, cy_;
mjr 77:0b96f6867312 4597
mjr 77:0b96f6867312 4598 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 4599 uint8_t range_;
mjr 78:1e00b3fa11af 4600
mjr 78:1e00b3fa11af 4601 // auto-center mode:
mjr 78:1e00b3fa11af 4602 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 4603 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 4604 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 4605 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 4606
mjr 78:1e00b3fa11af 4607 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 4608 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 4609
mjr 78:1e00b3fa11af 4610 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 4611 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 4612
mjr 77:0b96f6867312 4613 // atuo-centering timer
mjr 5:a70c0bce770d 4614 Timer tCenter_;
mjr 112:8ed709f455c0 4615
mjr 6:cc35eb643e8f 4616 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 4617 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 4618 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 4619 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 4620 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 4621 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 4622 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 4623 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 4624 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 4625 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 4626 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 4627 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 4628 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 4629 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 4630 AccHist accPrv_[maxAccPrv];
mjr 3:3514575d4f86 4631 };
mjr 3:3514575d4f86 4632
mjr 76:7f5912b6340e 4633
mjr 14:df700b22ca08 4634 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4635 //
mjr 33:d832bcab089e 4636 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4637 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4638 //
mjr 33:d832bcab089e 4639 class Debouncer
mjr 33:d832bcab089e 4640 {
mjr 33:d832bcab089e 4641 public:
mjr 33:d832bcab089e 4642 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4643 {
mjr 33:d832bcab089e 4644 t.start();
mjr 33:d832bcab089e 4645 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4646 this->tmin = tmin;
mjr 33:d832bcab089e 4647 }
mjr 33:d832bcab089e 4648
mjr 33:d832bcab089e 4649 // Get the current stable value
mjr 33:d832bcab089e 4650 bool val() const { return stable; }
mjr 33:d832bcab089e 4651
mjr 33:d832bcab089e 4652 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4653 // input device.
mjr 33:d832bcab089e 4654 void sampleIn(bool val)
mjr 33:d832bcab089e 4655 {
mjr 33:d832bcab089e 4656 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4657 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4658 // on the sample reader.
mjr 33:d832bcab089e 4659 if (val != prv)
mjr 33:d832bcab089e 4660 {
mjr 33:d832bcab089e 4661 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4662 t.reset();
mjr 33:d832bcab089e 4663
mjr 33:d832bcab089e 4664 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4665 prv = val;
mjr 33:d832bcab089e 4666 }
mjr 33:d832bcab089e 4667 else if (val != stable)
mjr 33:d832bcab089e 4668 {
mjr 33:d832bcab089e 4669 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4670 // and different from the stable value. This means that
mjr 33:d832bcab089e 4671 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4672 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4673 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4674 if (t.read() > tmin)
mjr 33:d832bcab089e 4675 stable = val;
mjr 33:d832bcab089e 4676 }
mjr 33:d832bcab089e 4677 }
mjr 33:d832bcab089e 4678
mjr 33:d832bcab089e 4679 private:
mjr 33:d832bcab089e 4680 // current stable value
mjr 33:d832bcab089e 4681 bool stable;
mjr 33:d832bcab089e 4682
mjr 33:d832bcab089e 4683 // last raw sample value
mjr 33:d832bcab089e 4684 bool prv;
mjr 33:d832bcab089e 4685
mjr 33:d832bcab089e 4686 // elapsed time since last raw input change
mjr 33:d832bcab089e 4687 Timer t;
mjr 33:d832bcab089e 4688
mjr 33:d832bcab089e 4689 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4690 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4691 float tmin;
mjr 33:d832bcab089e 4692 };
mjr 33:d832bcab089e 4693
mjr 33:d832bcab089e 4694
mjr 33:d832bcab089e 4695 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4696 //
mjr 33:d832bcab089e 4697 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4698 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4699 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4700 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4701 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4702 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4703 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4704 //
mjr 33:d832bcab089e 4705 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4706 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4707 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4708 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4709 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4710 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4711 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4712 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4713 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4714 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4715 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4716 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4717 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4718 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4719 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4720 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4721 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4722 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4723 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4724 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4725 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4726 //
mjr 40:cc0d9814522b 4727 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4728 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4729 //
mjr 33:d832bcab089e 4730 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4731 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4732 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4733 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4734 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4735 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4736 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4737 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4738 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4739 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4740 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4741 //
mjr 33:d832bcab089e 4742 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4743 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4744 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4745 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4746 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4747 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4748 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4749 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4750 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4751 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4752 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4753 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4754 // first check.
mjr 33:d832bcab089e 4755 //
mjr 33:d832bcab089e 4756 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4757 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4758 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4759 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4760 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4761 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4762 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4763 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4764 //
mjr 33:d832bcab089e 4765
mjr 77:0b96f6867312 4766 // Current PSU2 power state:
mjr 33:d832bcab089e 4767 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4768 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4769 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4770 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4771 // 5 -> TV relay on
mjr 77:0b96f6867312 4772 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4773 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4774
mjr 73:4e8ce0b18915 4775 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4776 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4777 // separate state for each:
mjr 73:4e8ce0b18915 4778 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4779 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4780 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4781 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4782 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4783
mjr 79:682ae3171a08 4784 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4785 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4786
mjr 77:0b96f6867312 4787 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4788 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4789 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4790 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4791 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4792 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4793 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4794 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4795 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4796 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4797 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4798
mjr 77:0b96f6867312 4799 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4800 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4801
mjr 35:e959ffba78fd 4802 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4803 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4804 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4805
mjr 73:4e8ce0b18915 4806 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4807 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4808 {
mjr 73:4e8ce0b18915 4809 // update the state
mjr 73:4e8ce0b18915 4810 if (state)
mjr 73:4e8ce0b18915 4811 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4812 else
mjr 73:4e8ce0b18915 4813 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4814
mjr 73:4e8ce0b18915 4815 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4816 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4817 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4818 }
mjr 35:e959ffba78fd 4819
mjr 86:e30a1f60f783 4820 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4821 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4822 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4823 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4824 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4825 // we say it's okay.
mjr 86:e30a1f60f783 4826 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4827 {
mjr 86:e30a1f60f783 4828 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4829 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4830 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4831 // to the same state later.
mjr 86:e30a1f60f783 4832 return psu2_state == 1;
mjr 86:e30a1f60f783 4833 }
mjr 86:e30a1f60f783 4834
mjr 77:0b96f6867312 4835 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4836 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4837 // functions.
mjr 77:0b96f6867312 4838 Timer powerStatusTimer;
mjr 77:0b96f6867312 4839 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4840 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4841 {
mjr 79:682ae3171a08 4842 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4843 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4844 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4845 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4846 {
mjr 79:682ae3171a08 4847 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4848 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4849 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4850 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4851 }
mjr 79:682ae3171a08 4852
mjr 77:0b96f6867312 4853 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4854 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4855 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4856 // skip this whole routine.
mjr 77:0b96f6867312 4857 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4858 return;
mjr 77:0b96f6867312 4859
mjr 77:0b96f6867312 4860 // reset the update timer for next time
mjr 77:0b96f6867312 4861 powerStatusTimer.reset();
mjr 77:0b96f6867312 4862
mjr 77:0b96f6867312 4863 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4864 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4865 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4866 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4867 static Timer tv_timer;
mjr 35:e959ffba78fd 4868
mjr 33:d832bcab089e 4869 // Check our internal state
mjr 33:d832bcab089e 4870 switch (psu2_state)
mjr 33:d832bcab089e 4871 {
mjr 33:d832bcab089e 4872 case 1:
mjr 33:d832bcab089e 4873 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4874 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4875 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4876 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4877 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4878 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4879 {
mjr 33:d832bcab089e 4880 // switch to OFF state
mjr 33:d832bcab089e 4881 psu2_state = 2;
mjr 33:d832bcab089e 4882
mjr 33:d832bcab089e 4883 // try setting the latch
mjr 35:e959ffba78fd 4884 psu2_status_set->write(1);
mjr 33:d832bcab089e 4885 }
mjr 77:0b96f6867312 4886 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4887 break;
mjr 33:d832bcab089e 4888
mjr 33:d832bcab089e 4889 case 2:
mjr 33:d832bcab089e 4890 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4891 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4892 psu2_status_set->write(0);
mjr 33:d832bcab089e 4893 psu2_state = 3;
mjr 77:0b96f6867312 4894 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4895 break;
mjr 33:d832bcab089e 4896
mjr 33:d832bcab089e 4897 case 3:
mjr 33:d832bcab089e 4898 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4899 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4900 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4901 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4902 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4903 {
mjr 33:d832bcab089e 4904 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4905 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4906 tv_timer.reset();
mjr 33:d832bcab089e 4907 tv_timer.start();
mjr 33:d832bcab089e 4908 psu2_state = 4;
mjr 73:4e8ce0b18915 4909
mjr 73:4e8ce0b18915 4910 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4911 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4912 }
mjr 33:d832bcab089e 4913 else
mjr 33:d832bcab089e 4914 {
mjr 33:d832bcab089e 4915 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4916 // our last check. Return to idle state.
mjr 87:8d35c74403af 4917 psu2_state = 1;
mjr 33:d832bcab089e 4918 }
mjr 33:d832bcab089e 4919 break;
mjr 33:d832bcab089e 4920
mjr 33:d832bcab089e 4921 case 4:
mjr 77:0b96f6867312 4922 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4923 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4924 // off again before the countdown finished.
mjr 77:0b96f6867312 4925 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4926 {
mjr 77:0b96f6867312 4927 // power is off - start a new check cycle
mjr 77:0b96f6867312 4928 psu2_status_set->write(1);
mjr 77:0b96f6867312 4929 psu2_state = 2;
mjr 77:0b96f6867312 4930 break;
mjr 77:0b96f6867312 4931 }
mjr 77:0b96f6867312 4932
mjr 77:0b96f6867312 4933 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4934 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4935
mjr 77:0b96f6867312 4936 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4937 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4938 {
mjr 33:d832bcab089e 4939 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4940 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4941 psu2_state = 5;
mjr 77:0b96f6867312 4942
mjr 77:0b96f6867312 4943 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4944 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4945 }
mjr 33:d832bcab089e 4946 break;
mjr 33:d832bcab089e 4947
mjr 33:d832bcab089e 4948 case 5:
mjr 33:d832bcab089e 4949 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4950 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4951 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4952
mjr 77:0b96f6867312 4953 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4954 psu2_state = 6;
mjr 77:0b96f6867312 4955 tvon_ir_state = 0;
mjr 77:0b96f6867312 4956
mjr 77:0b96f6867312 4957 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4958 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4959 break;
mjr 77:0b96f6867312 4960
mjr 77:0b96f6867312 4961 case 6:
mjr 77:0b96f6867312 4962 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4963 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4964 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4965 psu2_state = 1;
mjr 77:0b96f6867312 4966 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4967
mjr 77:0b96f6867312 4968 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4969 if (ir_tx != 0)
mjr 77:0b96f6867312 4970 {
mjr 77:0b96f6867312 4971 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4972 if (ir_tx->isSending())
mjr 77:0b96f6867312 4973 {
mjr 77:0b96f6867312 4974 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4975 // state 6.
mjr 77:0b96f6867312 4976 psu2_state = 6;
mjr 77:0b96f6867312 4977 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4978 break;
mjr 77:0b96f6867312 4979 }
mjr 77:0b96f6867312 4980
mjr 77:0b96f6867312 4981 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4982 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4983 // number.
mjr 77:0b96f6867312 4984 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4985 {
mjr 77:0b96f6867312 4986 // is this a TV ON command?
mjr 77:0b96f6867312 4987 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4988 {
mjr 77:0b96f6867312 4989 // It's a TV ON command - check if it's the one we're
mjr 109:310ac82cbbee 4990 // looking for. We can match any code starting at the
mjr 109:310ac82cbbee 4991 // current state. (We ignore codes BEFORE the current
mjr 109:310ac82cbbee 4992 // state, because we've already processed them on past
mjr 109:310ac82cbbee 4993 // iterations.)
mjr 109:310ac82cbbee 4994 if (n >= tvon_ir_state)
mjr 77:0b96f6867312 4995 {
mjr 77:0b96f6867312 4996 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4997 // pushing its virtual button.
mjr 77:0b96f6867312 4998 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4999 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 5000
mjr 77:0b96f6867312 5001 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 5002 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 5003 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 5004 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 5005 // to send the code once.
mjr 77:0b96f6867312 5006 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 5007
mjr 77:0b96f6867312 5008 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 5009 // await the end of this transmission and move on to
mjr 77:0b96f6867312 5010 // the next one.
mjr 77:0b96f6867312 5011 psu2_state = 6;
mjr 77:0b96f6867312 5012 tvon_ir_state++;
mjr 77:0b96f6867312 5013 break;
mjr 77:0b96f6867312 5014 }
mjr 77:0b96f6867312 5015
mjr 77:0b96f6867312 5016 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 5017 ++n;
mjr 77:0b96f6867312 5018 }
mjr 77:0b96f6867312 5019 }
mjr 77:0b96f6867312 5020 }
mjr 33:d832bcab089e 5021 break;
mjr 33:d832bcab089e 5022 }
mjr 77:0b96f6867312 5023
mjr 77:0b96f6867312 5024 // update the diagnostic LEDs
mjr 77:0b96f6867312 5025 diagLED();
mjr 33:d832bcab089e 5026 }
mjr 33:d832bcab089e 5027
mjr 77:0b96f6867312 5028 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 5029 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 5030 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 5031 // are configured as NC.
mjr 77:0b96f6867312 5032 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 5033 {
mjr 55:4db125cd11a0 5034 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 5035 // time is nonzero
mjr 77:0b96f6867312 5036 powerStatusTimer.reset();
mjr 77:0b96f6867312 5037 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 5038 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 5039 {
mjr 77:0b96f6867312 5040 // set up the power sensing circuit connections
mjr 53:9b2611964afc 5041 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 5042 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 5043
mjr 77:0b96f6867312 5044 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 5045 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 5046 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 5047
mjr 77:0b96f6867312 5048 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 5049 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 5050 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 5051 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 5052
mjr 77:0b96f6867312 5053 // Start the TV timer
mjr 77:0b96f6867312 5054 powerStatusTimer.start();
mjr 35:e959ffba78fd 5055 }
mjr 35:e959ffba78fd 5056 }
mjr 35:e959ffba78fd 5057
mjr 73:4e8ce0b18915 5058 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 5059 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 5060 //
mjr 73:4e8ce0b18915 5061 // Mode:
mjr 73:4e8ce0b18915 5062 // 0 = turn relay off
mjr 73:4e8ce0b18915 5063 // 1 = turn relay on
mjr 73:4e8ce0b18915 5064 // 2 = pulse relay
mjr 73:4e8ce0b18915 5065 void TVRelay(int mode)
mjr 73:4e8ce0b18915 5066 {
mjr 73:4e8ce0b18915 5067 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 5068 if (tv_relay == 0)
mjr 73:4e8ce0b18915 5069 return;
mjr 73:4e8ce0b18915 5070
mjr 73:4e8ce0b18915 5071 switch (mode)
mjr 73:4e8ce0b18915 5072 {
mjr 73:4e8ce0b18915 5073 case 0:
mjr 73:4e8ce0b18915 5074 // relay off
mjr 73:4e8ce0b18915 5075 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 5076 break;
mjr 73:4e8ce0b18915 5077
mjr 73:4e8ce0b18915 5078 case 1:
mjr 73:4e8ce0b18915 5079 // relay on
mjr 73:4e8ce0b18915 5080 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 5081 break;
mjr 73:4e8ce0b18915 5082
mjr 73:4e8ce0b18915 5083 case 2:
mjr 79:682ae3171a08 5084 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 5085 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 5086 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 5087 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 5088 break;
mjr 73:4e8ce0b18915 5089 }
mjr 73:4e8ce0b18915 5090 }
mjr 73:4e8ce0b18915 5091
mjr 73:4e8ce0b18915 5092
mjr 35:e959ffba78fd 5093 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5094 //
mjr 35:e959ffba78fd 5095 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 5096 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 5097 //
mjr 35:e959ffba78fd 5098 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 5099 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 5100 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 5101 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 5102 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 5103 // again each time the firmware is updated.
mjr 35:e959ffba78fd 5104 //
mjr 35:e959ffba78fd 5105 NVM nvm;
mjr 35:e959ffba78fd 5106
mjr 86:e30a1f60f783 5107 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 5108 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 5109 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 5110 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 5111
mjr 86:e30a1f60f783 5112 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 5113 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 5114
mjr 79:682ae3171a08 5115 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 5116 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 5117
mjr 86:e30a1f60f783 5118 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 5119 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 5120
mjr 86:e30a1f60f783 5121
mjr 35:e959ffba78fd 5122 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 5123 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 5124
mjr 35:e959ffba78fd 5125 // flash memory controller interface
mjr 35:e959ffba78fd 5126 FreescaleIAP iap;
mjr 35:e959ffba78fd 5127
mjr 79:682ae3171a08 5128 // figure the flash address for the config data
mjr 79:682ae3171a08 5129 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 5130 {
mjr 79:682ae3171a08 5131 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 5132 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 5133
mjr 79:682ae3171a08 5134 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 5135 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 5136
mjr 79:682ae3171a08 5137 // locate it at the top of memory
mjr 79:682ae3171a08 5138 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 5139
mjr 79:682ae3171a08 5140 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 5141 return (const NVM *)addr;
mjr 35:e959ffba78fd 5142 }
mjr 35:e959ffba78fd 5143
mjr 76:7f5912b6340e 5144 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 5145 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 5146 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 5147 // in either case.
mjr 76:7f5912b6340e 5148 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 5149 {
mjr 35:e959ffba78fd 5150 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 5151 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 5152 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 5153 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 5154 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 5155 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 5156 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 5157 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 5158 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 5159 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 5160 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 5161 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 5162 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 5163 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 5164 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 5165 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 5166
mjr 35:e959ffba78fd 5167 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 5168 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 5169
mjr 35:e959ffba78fd 5170 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 5171 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 5172 if (nvm_valid)
mjr 35:e959ffba78fd 5173 {
mjr 35:e959ffba78fd 5174 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 5175 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 5176 }
mjr 35:e959ffba78fd 5177 else
mjr 35:e959ffba78fd 5178 {
mjr 76:7f5912b6340e 5179 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 5180 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 5181 }
mjr 76:7f5912b6340e 5182
mjr 76:7f5912b6340e 5183 // tell the caller what happened
mjr 76:7f5912b6340e 5184 return nvm_valid;
mjr 35:e959ffba78fd 5185 }
mjr 35:e959ffba78fd 5186
mjr 86:e30a1f60f783 5187 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 5188 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 5189 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 5190 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 5191 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 5192 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 5193 {
mjr 76:7f5912b6340e 5194 // get the config block location in the flash memory
mjr 77:0b96f6867312 5195 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 5196
mjr 101:755f44622abc 5197 // save the data
mjr 101:755f44622abc 5198 bool ok = nvm.save(iap, addr);
mjr 101:755f44622abc 5199
mjr 101:755f44622abc 5200 // if the save succeeded, do post-save work
mjr 101:755f44622abc 5201 if (ok)
mjr 86:e30a1f60f783 5202 {
mjr 86:e30a1f60f783 5203 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 5204 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 5205
mjr 86:e30a1f60f783 5206 // start the followup timer
mjr 87:8d35c74403af 5207 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 5208 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 5209 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 5210
mjr 86:e30a1f60f783 5211 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 5212 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 5213 }
mjr 101:755f44622abc 5214
mjr 101:755f44622abc 5215 // return the success indication
mjr 101:755f44622abc 5216 return ok;
mjr 76:7f5912b6340e 5217 }
mjr 76:7f5912b6340e 5218
mjr 76:7f5912b6340e 5219 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 5220 //
mjr 76:7f5912b6340e 5221 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 5222 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 5223 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 5224 // downloading it to the device.
mjr 76:7f5912b6340e 5225 //
mjr 100:1ff35c07217c 5226 // Ideally, we'd use the host-loaded memory for all configuration updates
mjr 100:1ff35c07217c 5227 // from the host - that is, any time the host wants to update config settings,
mjr 100:1ff35c07217c 5228 // such as via user input in the config tool. In the past, I wanted to do
mjr 100:1ff35c07217c 5229 // it this way because it seemed to be unreliable to write flash memory via
mjr 100:1ff35c07217c 5230 // the device. But that turned out to be due to a bug in the mbed Ticker
mjr 100:1ff35c07217c 5231 // code (of all things!), which we've fixed - since then, flash writing on
mjr 100:1ff35c07217c 5232 // the device has been bulletproof. Even so, doing host-to-device flash
mjr 100:1ff35c07217c 5233 // writing for config updates would be nice just for the sake of speed, as
mjr 100:1ff35c07217c 5234 // the alternative is that we send the variables one at a time by USB, which
mjr 100:1ff35c07217c 5235 // takes noticeable time when reprogramming the whole config set. But
mjr 100:1ff35c07217c 5236 // there's no way to accomplish a single-sector flash write via OpenSDA; you
mjr 100:1ff35c07217c 5237 // can only rewrite the entire flash memory as a unit.
mjr 100:1ff35c07217c 5238 //
mjr 100:1ff35c07217c 5239 // We can at least use this approach to do a fast configuration restore
mjr 100:1ff35c07217c 5240 // when downloading new firmware. In that case, we're rewriting all of
mjr 100:1ff35c07217c 5241 // flash memory anyway, so we might as well include the config data.
mjr 76:7f5912b6340e 5242 //
mjr 76:7f5912b6340e 5243 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 5244 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 5245 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 5246 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 5247 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 5248 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 5249 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 5250 //
mjr 76:7f5912b6340e 5251 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 5252 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 5253 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 5254 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 5255 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 5256 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 5257 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 5258 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 5259 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 5260 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 5261
mjr 76:7f5912b6340e 5262 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 5263 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 5264 {
mjr 76:7f5912b6340e 5265 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 5266 // 32-byte signature header
mjr 76:7f5912b6340e 5267 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 5268 };
mjr 76:7f5912b6340e 5269
mjr 76:7f5912b6340e 5270 // forward reference to config var store function
mjr 76:7f5912b6340e 5271 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 5272
mjr 76:7f5912b6340e 5273 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 5274 // configuration object.
mjr 76:7f5912b6340e 5275 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 5276 {
mjr 76:7f5912b6340e 5277 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 5278 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 5279 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 5280 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 5281 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 5282 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 5283 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 5284 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 5285 {
mjr 76:7f5912b6340e 5286 // load this variable
mjr 76:7f5912b6340e 5287 configVarSet(p);
mjr 76:7f5912b6340e 5288 }
mjr 35:e959ffba78fd 5289 }
mjr 35:e959ffba78fd 5290
mjr 35:e959ffba78fd 5291 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5292 //
mjr 55:4db125cd11a0 5293 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 5294 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 5295 //
mjr 55:4db125cd11a0 5296 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 5297 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 5298 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 101:755f44622abc 5299 uint8_t tReportPlungerStat; // timestamp of most recent plunger status request
mjr 55:4db125cd11a0 5300
mjr 55:4db125cd11a0 5301
mjr 55:4db125cd11a0 5302 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 5303 //
mjr 40:cc0d9814522b 5304 // Night mode setting updates
mjr 40:cc0d9814522b 5305 //
mjr 38:091e511ce8a0 5306
mjr 38:091e511ce8a0 5307 // Turn night mode on or off
mjr 38:091e511ce8a0 5308 static void setNightMode(bool on)
mjr 38:091e511ce8a0 5309 {
mjr 77:0b96f6867312 5310 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 5311 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 5312 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 5313 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 5314
mjr 40:cc0d9814522b 5315 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 5316 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 5317 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 5318 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 5319
mjr 76:7f5912b6340e 5320 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 5321 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 5322 // mode change.
mjr 76:7f5912b6340e 5323 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 5324 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 5325
mjr 76:7f5912b6340e 5326 // update 74HC595 outputs
mjr 76:7f5912b6340e 5327 if (hc595 != 0)
mjr 76:7f5912b6340e 5328 hc595->update();
mjr 38:091e511ce8a0 5329 }
mjr 38:091e511ce8a0 5330
mjr 38:091e511ce8a0 5331 // Toggle night mode
mjr 38:091e511ce8a0 5332 static void toggleNightMode()
mjr 38:091e511ce8a0 5333 {
mjr 53:9b2611964afc 5334 setNightMode(!nightMode);
mjr 38:091e511ce8a0 5335 }
mjr 38:091e511ce8a0 5336
mjr 38:091e511ce8a0 5337
mjr 38:091e511ce8a0 5338 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5339 //
mjr 35:e959ffba78fd 5340 // Plunger Sensor
mjr 35:e959ffba78fd 5341 //
mjr 35:e959ffba78fd 5342
mjr 35:e959ffba78fd 5343 // the plunger sensor interface object
mjr 35:e959ffba78fd 5344 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 5345
mjr 76:7f5912b6340e 5346
mjr 35:e959ffba78fd 5347 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 5348 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 5349 void createPlunger()
mjr 35:e959ffba78fd 5350 {
mjr 35:e959ffba78fd 5351 // create the new sensor object according to the type
mjr 35:e959ffba78fd 5352 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 5353 {
mjr 82:4f6209cb5c33 5354 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 5355 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 5356 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5357 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 5358 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5359 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5360 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5361 break;
mjr 35:e959ffba78fd 5362
mjr 82:4f6209cb5c33 5363 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 5364 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 5365 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5366 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 5367 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5368 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5369 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5370 break;
mjr 35:e959ffba78fd 5371
mjr 35:e959ffba78fd 5372 case PlungerType_Pot:
mjr 82:4f6209cb5c33 5373 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 5374 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 5375 // pins are: AO (analog in)
mjr 53:9b2611964afc 5376 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 5377 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 5378 break;
mjr 82:4f6209cb5c33 5379
mjr 82:4f6209cb5c33 5380 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 5381 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 5382 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 5383 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 5384 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 5385 300,
mjr 82:4f6209cb5c33 5386 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5387 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 5388 break;
mjr 82:4f6209cb5c33 5389
mjr 82:4f6209cb5c33 5390 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 5391 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 5392 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 5393 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 5394 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5395 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5396 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5397 break;
mjr 82:4f6209cb5c33 5398
mjr 82:4f6209cb5c33 5399 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 5400 // VL6180X time-of-flight IR distance sensor
mjr 111:42dc75fbe623 5401 // pins are: SDA, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 5402 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 5403 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5404 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5405 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5406 break;
mjr 82:4f6209cb5c33 5407
mjr 100:1ff35c07217c 5408 case PlungerType_AEAT6012:
mjr 100:1ff35c07217c 5409 // Broadcom AEAT-6012-A06 magnetic rotary encoder
mjr 100:1ff35c07217c 5410 // pins are: CS (chip select, dig out), CLK (dig out), DO (data, dig in)
mjr 100:1ff35c07217c 5411 plungerSensor = new PlungerSensorAEAT601X<12>(
mjr 100:1ff35c07217c 5412 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5413 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5414 wirePinName(cfg.plunger.sensorPin[2]));
mjr 100:1ff35c07217c 5415 break;
mjr 100:1ff35c07217c 5416
mjr 100:1ff35c07217c 5417 case PlungerType_TCD1103:
mjr 100:1ff35c07217c 5418 // Toshiba TCD1103GFG linear CCD, optical edge detection, with
mjr 100:1ff35c07217c 5419 // inverted logic gates.
mjr 100:1ff35c07217c 5420 // Pins are: fM (master clock, PWM), OS (sample data, analog in),
mjr 100:1ff35c07217c 5421 // ICG (integration clear gate, dig out), SH (shift gate, dig out)
mjr 100:1ff35c07217c 5422 plungerSensor = new PlungerSensorTCD1103<true>(
mjr 100:1ff35c07217c 5423 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5424 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5425 wirePinName(cfg.plunger.sensorPin[2]),
mjr 100:1ff35c07217c 5426 wirePinName(cfg.plunger.sensorPin[3]));
mjr 100:1ff35c07217c 5427 break;
mjr 100:1ff35c07217c 5428
mjr 111:42dc75fbe623 5429 case PlungerType_VCNL4010:
mjr 111:42dc75fbe623 5430 // VCNL4010 IR proximity sensor pins are: SDA, SCL
mjr 111:42dc75fbe623 5431 plungerSensor = new PlungerSensorVCNL4010(
mjr 111:42dc75fbe623 5432 wirePinName(cfg.plunger.sensorPin[0]),
mjr 113:7330439f2ffc 5433 wirePinName(cfg.plunger.sensorPin[1]),
mjr 113:7330439f2ffc 5434 cfg.plunger.param1);
mjr 111:42dc75fbe623 5435 break;
mjr 111:42dc75fbe623 5436
mjr 35:e959ffba78fd 5437 case PlungerType_None:
mjr 35:e959ffba78fd 5438 default:
mjr 35:e959ffba78fd 5439 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 5440 break;
mjr 35:e959ffba78fd 5441 }
mjr 100:1ff35c07217c 5442
mjr 100:1ff35c07217c 5443 // initialize the plunger from the saved configuration
mjr 100:1ff35c07217c 5444 plungerSensor->restoreCalibration(cfg);
mjr 86:e30a1f60f783 5445
mjr 87:8d35c74403af 5446 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 5447 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 5448 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 5449 }
mjr 33:d832bcab089e 5450
mjr 52:8298b2a73eb2 5451 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 5452 bool plungerCalMode;
mjr 52:8298b2a73eb2 5453
mjr 48:058ace2aed1d 5454 // Plunger reader
mjr 51:57eb311faafa 5455 //
mjr 51:57eb311faafa 5456 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 5457 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 5458 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 5459 //
mjr 51:57eb311faafa 5460 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 5461 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 5462 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 5463 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 5464 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 5465 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 5466 // firing motion.
mjr 51:57eb311faafa 5467 //
mjr 51:57eb311faafa 5468 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 5469 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 5470 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 5471 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 5472 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 5473 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 5474 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 5475 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 5476 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 5477 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 5478 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 5479 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 5480 // a classic digital aliasing effect.
mjr 51:57eb311faafa 5481 //
mjr 51:57eb311faafa 5482 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 5483 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 5484 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 5485 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 5486 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 5487 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 5488 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 5489 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 5490 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 5491 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 5492 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 5493 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 5494 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 5495 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 5496 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 5497 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 5498 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 5499 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 5500 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 5501 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 5502 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 5503 //
mjr 48:058ace2aed1d 5504 class PlungerReader
mjr 48:058ace2aed1d 5505 {
mjr 48:058ace2aed1d 5506 public:
mjr 48:058ace2aed1d 5507 PlungerReader()
mjr 48:058ace2aed1d 5508 {
mjr 48:058ace2aed1d 5509 // not in a firing event yet
mjr 48:058ace2aed1d 5510 firing = 0;
mjr 48:058ace2aed1d 5511 }
mjr 76:7f5912b6340e 5512
mjr 48:058ace2aed1d 5513 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 5514 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 5515 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 5516 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 5517 void read()
mjr 48:058ace2aed1d 5518 {
mjr 76:7f5912b6340e 5519 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 5520 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 5521 return;
mjr 76:7f5912b6340e 5522
mjr 48:058ace2aed1d 5523 // Read a sample from the sensor
mjr 48:058ace2aed1d 5524 PlungerReading r;
mjr 48:058ace2aed1d 5525 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 5526 {
mjr 53:9b2611964afc 5527 // check for calibration mode
mjr 53:9b2611964afc 5528 if (plungerCalMode)
mjr 53:9b2611964afc 5529 {
mjr 53:9b2611964afc 5530 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 5531 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 5532 // expand the envelope to include this new value.
mjr 53:9b2611964afc 5533 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 5534 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 5535 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 5536 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 5537
mjr 76:7f5912b6340e 5538 // update our cached calibration data
mjr 76:7f5912b6340e 5539 onUpdateCal();
mjr 50:40015764bbe6 5540
mjr 53:9b2611964afc 5541 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 5542 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 5543 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 5544 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 5545 if (calState == 0)
mjr 53:9b2611964afc 5546 {
mjr 53:9b2611964afc 5547 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 5548 {
mjr 53:9b2611964afc 5549 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 5550 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 5551 {
mjr 53:9b2611964afc 5552 // we've been at rest long enough - count it
mjr 53:9b2611964afc 5553 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 5554 calZeroPosN += 1;
mjr 53:9b2611964afc 5555
mjr 53:9b2611964afc 5556 // update the zero position from the new average
mjr 53:9b2611964afc 5557 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 5558 onUpdateCal();
mjr 53:9b2611964afc 5559
mjr 53:9b2611964afc 5560 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 5561 calState = 1;
mjr 53:9b2611964afc 5562 }
mjr 53:9b2611964afc 5563 }
mjr 53:9b2611964afc 5564 else
mjr 53:9b2611964afc 5565 {
mjr 53:9b2611964afc 5566 // we're not close to the last position - start again here
mjr 53:9b2611964afc 5567 calZeroStart = r;
mjr 53:9b2611964afc 5568 }
mjr 53:9b2611964afc 5569 }
mjr 53:9b2611964afc 5570
mjr 53:9b2611964afc 5571 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 5572 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 5573 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 5574 r.pos = int(
mjr 53:9b2611964afc 5575 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 5576 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 5577 }
mjr 53:9b2611964afc 5578 else
mjr 53:9b2611964afc 5579 {
mjr 53:9b2611964afc 5580 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 5581 // rescale to the joystick range.
mjr 76:7f5912b6340e 5582 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 5583
mjr 53:9b2611964afc 5584 // limit the result to the valid joystick range
mjr 53:9b2611964afc 5585 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 5586 r.pos = JOYMAX;
mjr 53:9b2611964afc 5587 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 5588 r.pos = -JOYMAX;
mjr 53:9b2611964afc 5589 }
mjr 50:40015764bbe6 5590
mjr 87:8d35c74403af 5591 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 5592 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 5593 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 5594 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 5595 //
mjr 87:8d35c74403af 5596 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 5597 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 5598 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 5599 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 5600 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 5601 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 5602 // 25-50ms.
mjr 87:8d35c74403af 5603 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 5604 return;
mjr 87:8d35c74403af 5605
mjr 87:8d35c74403af 5606 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 5607 z = r.pos;
mjr 87:8d35c74403af 5608
mjr 87:8d35c74403af 5609 // Firing event detection.
mjr 87:8d35c74403af 5610 //
mjr 87:8d35c74403af 5611 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 5612 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 5613 // spring tension.
mjr 50:40015764bbe6 5614 //
mjr 87:8d35c74403af 5615 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 5616 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 5617 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 5618 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 5619 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 5620 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 5621 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 5622 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 5623 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 5624 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 5625 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 5626 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 5627 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 5628 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 5629 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 5630 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 5631 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 5632 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 5633 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 5634 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 5635 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 5636 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 5637 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 5638 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5639 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5640 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5641 // forward position for a short time.
mjr 76:7f5912b6340e 5642 //
mjr 87:8d35c74403af 5643 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5644 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5645 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5646 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5647 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5648 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5649 //
mjr 87:8d35c74403af 5650 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5651 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5652 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5653 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5654 // to the park position.
mjr 87:8d35c74403af 5655 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5656 switch (firing)
mjr 50:40015764bbe6 5657 {
mjr 50:40015764bbe6 5658 case 0:
mjr 87:8d35c74403af 5659 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5660 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5661 // release, enter firing mode.
mjr 87:8d35c74403af 5662 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5663 {
mjr 87:8d35c74403af 5664 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5665 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5666 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5667 {
mjr 87:8d35c74403af 5668 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5669 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5670 firingMode(1);
mjr 87:8d35c74403af 5671 f0 = prv;
mjr 87:8d35c74403af 5672 z = f0.pos;
mjr 87:8d35c74403af 5673
mjr 87:8d35c74403af 5674 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5675 // state 2 (not at rest)
mjr 87:8d35c74403af 5676 if (calState == 1)
mjr 87:8d35c74403af 5677 calState = 2;
mjr 87:8d35c74403af 5678 }
mjr 50:40015764bbe6 5679 }
mjr 50:40015764bbe6 5680 break;
mjr 50:40015764bbe6 5681
mjr 50:40015764bbe6 5682 case 1:
mjr 87:8d35c74403af 5683 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5684 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5685 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5686 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5687 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5688 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5689 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5690 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5691 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5692 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5693 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5694 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5695 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5696 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5697 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5698 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5699 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5700 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5701 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5702 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5703 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5704 if (r.pos <= 0)
mjr 50:40015764bbe6 5705 {
mjr 87:8d35c74403af 5706 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5707 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5708 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5709 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5710 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5711 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5712 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5713 // physics.
mjr 50:40015764bbe6 5714 firingMode(2);
mjr 53:9b2611964afc 5715
mjr 53:9b2611964afc 5716 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5717 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5718 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5719 {
mjr 53:9b2611964afc 5720 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5721 // come to rest
mjr 53:9b2611964afc 5722 calState = 0;
mjr 53:9b2611964afc 5723
mjr 87:8d35c74403af 5724 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5725 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5726 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5727 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5728 {
mjr 53:9b2611964afc 5729 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5730 calRlsTimeN += 1;
mjr 53:9b2611964afc 5731 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5732 }
mjr 53:9b2611964afc 5733 }
mjr 87:8d35c74403af 5734
mjr 87:8d35c74403af 5735 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5736 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5737 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5738 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5739 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5740 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5741 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5742 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5743 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5744 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5745 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5746 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5747 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5748 // small in any case.)
mjr 87:8d35c74403af 5749 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5750
mjr 87:8d35c74403af 5751 // reset the starting time for this phase
mjr 87:8d35c74403af 5752 f0.t = r.t;
mjr 50:40015764bbe6 5753 }
mjr 50:40015764bbe6 5754 else
mjr 50:40015764bbe6 5755 {
mjr 87:8d35c74403af 5756 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5757 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5758 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5759 if (dt < 50000
mjr 87:8d35c74403af 5760 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5761 {
mjr 87:8d35c74403af 5762 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5763 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5764 // stay in the first release phase.
mjr 87:8d35c74403af 5765 z = f0.pos;
mjr 87:8d35c74403af 5766 }
mjr 87:8d35c74403af 5767 else
mjr 87:8d35c74403af 5768 {
mjr 87:8d35c74403af 5769 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5770 // motion. Return to the default state.
mjr 87:8d35c74403af 5771 firingMode(0);
mjr 87:8d35c74403af 5772 calState = 1;
mjr 87:8d35c74403af 5773 }
mjr 50:40015764bbe6 5774 }
mjr 50:40015764bbe6 5775 break;
mjr 50:40015764bbe6 5776
mjr 50:40015764bbe6 5777 case 2:
mjr 87:8d35c74403af 5778 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5779 // Hold here for 25ms.
mjr 87:8d35c74403af 5780 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5781 {
mjr 87:8d35c74403af 5782 // stay here for now
mjr 87:8d35c74403af 5783 z = f0.pos;
mjr 50:40015764bbe6 5784 }
mjr 50:40015764bbe6 5785 else
mjr 50:40015764bbe6 5786 {
mjr 87:8d35c74403af 5787 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5788 // position until the plunger comes to rest
mjr 50:40015764bbe6 5789 firingMode(3);
mjr 50:40015764bbe6 5790 z = 0;
mjr 87:8d35c74403af 5791
mjr 87:8d35c74403af 5792 // remember when we started
mjr 87:8d35c74403af 5793 f0.t = r.t;
mjr 50:40015764bbe6 5794 }
mjr 50:40015764bbe6 5795 break;
mjr 50:40015764bbe6 5796
mjr 50:40015764bbe6 5797 case 3:
mjr 87:8d35c74403af 5798 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5799 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5800 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5801 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5802 {
mjr 87:8d35c74403af 5803 // stay here a while longer
mjr 87:8d35c74403af 5804 z = 0;
mjr 50:40015764bbe6 5805 }
mjr 50:40015764bbe6 5806 else
mjr 50:40015764bbe6 5807 {
mjr 87:8d35c74403af 5808 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5809 firingMode(0);
mjr 50:40015764bbe6 5810 }
mjr 50:40015764bbe6 5811 break;
mjr 50:40015764bbe6 5812 }
mjr 50:40015764bbe6 5813
mjr 82:4f6209cb5c33 5814 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5815 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5816 {
mjr 82:4f6209cb5c33 5817 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5818 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5819 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5820 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5821 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5822 {
mjr 82:4f6209cb5c33 5823 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5824 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5825 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5826 }
mjr 82:4f6209cb5c33 5827 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5828 {
mjr 82:4f6209cb5c33 5829 // auto-zero now
mjr 82:4f6209cb5c33 5830 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5831
mjr 82:4f6209cb5c33 5832 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5833 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5834 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5835 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5836 }
mjr 82:4f6209cb5c33 5837 }
mjr 82:4f6209cb5c33 5838
mjr 87:8d35c74403af 5839 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5840 prv = r;
mjr 48:058ace2aed1d 5841 }
mjr 48:058ace2aed1d 5842 }
mjr 48:058ace2aed1d 5843
mjr 48:058ace2aed1d 5844 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5845 int16_t getPosition()
mjr 58:523fdcffbe6d 5846 {
mjr 86:e30a1f60f783 5847 // return the last reading
mjr 86:e30a1f60f783 5848 return z;
mjr 55:4db125cd11a0 5849 }
mjr 58:523fdcffbe6d 5850
mjr 48:058ace2aed1d 5851 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5852 void setCalMode(bool f)
mjr 48:058ace2aed1d 5853 {
mjr 52:8298b2a73eb2 5854 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5855 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5856 {
mjr 52:8298b2a73eb2 5857 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5858 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5859
mjr 52:8298b2a73eb2 5860 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5861 calState = 0;
mjr 52:8298b2a73eb2 5862 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5863 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5864 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5865 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5866
mjr 82:4f6209cb5c33 5867 // tell the plunger we're starting calibration
mjr 100:1ff35c07217c 5868 plungerSensor->beginCalibration(cfg);
mjr 82:4f6209cb5c33 5869
mjr 52:8298b2a73eb2 5870 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5871 PlungerReading r;
mjr 52:8298b2a73eb2 5872 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5873 {
mjr 52:8298b2a73eb2 5874 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5875 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5876 onUpdateCal();
mjr 52:8298b2a73eb2 5877
mjr 52:8298b2a73eb2 5878 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5879 calZeroStart = r;
mjr 52:8298b2a73eb2 5880 }
mjr 52:8298b2a73eb2 5881 else
mjr 52:8298b2a73eb2 5882 {
mjr 52:8298b2a73eb2 5883 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5884 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5885 onUpdateCal();
mjr 52:8298b2a73eb2 5886
mjr 52:8298b2a73eb2 5887 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5888 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5889 calZeroStart.t = 0;
mjr 53:9b2611964afc 5890 }
mjr 53:9b2611964afc 5891 }
mjr 53:9b2611964afc 5892 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5893 {
mjr 53:9b2611964afc 5894 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5895 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5896 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5897 // physically meaningless.
mjr 53:9b2611964afc 5898 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5899 {
mjr 53:9b2611964afc 5900 // bad settings - reset to defaults
mjr 53:9b2611964afc 5901 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5902 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 5903 }
mjr 100:1ff35c07217c 5904
mjr 100:1ff35c07217c 5905 // finalize the configuration in the plunger object
mjr 100:1ff35c07217c 5906 plungerSensor->endCalibration(cfg);
mjr 100:1ff35c07217c 5907
mjr 100:1ff35c07217c 5908 // update our internal cached information for the new calibration
mjr 100:1ff35c07217c 5909 onUpdateCal();
mjr 52:8298b2a73eb2 5910 }
mjr 52:8298b2a73eb2 5911
mjr 48:058ace2aed1d 5912 // remember the new mode
mjr 52:8298b2a73eb2 5913 plungerCalMode = f;
mjr 48:058ace2aed1d 5914 }
mjr 48:058ace2aed1d 5915
mjr 76:7f5912b6340e 5916 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5917 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5918 // cached inverse is calculated as
mjr 76:7f5912b6340e 5919 //
mjr 76:7f5912b6340e 5920 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5921 //
mjr 76:7f5912b6340e 5922 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5923 //
mjr 76:7f5912b6340e 5924 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5925 //
mjr 76:7f5912b6340e 5926 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5927 int invCalRange;
mjr 76:7f5912b6340e 5928
mjr 76:7f5912b6340e 5929 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5930 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5931 {
mjr 76:7f5912b6340e 5932 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5933 }
mjr 76:7f5912b6340e 5934
mjr 76:7f5912b6340e 5935 void onUpdateCal()
mjr 76:7f5912b6340e 5936 {
mjr 76:7f5912b6340e 5937 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5938 }
mjr 76:7f5912b6340e 5939
mjr 48:058ace2aed1d 5940 // is a firing event in progress?
mjr 53:9b2611964afc 5941 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5942
mjr 48:058ace2aed1d 5943 private:
mjr 87:8d35c74403af 5944 // current reported joystick reading
mjr 87:8d35c74403af 5945 int z;
mjr 87:8d35c74403af 5946
mjr 87:8d35c74403af 5947 // previous reading
mjr 87:8d35c74403af 5948 PlungerReading prv;
mjr 87:8d35c74403af 5949
mjr 52:8298b2a73eb2 5950 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5951 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5952 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5953 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5954 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5955 // 1 = at rest
mjr 52:8298b2a73eb2 5956 // 2 = retracting
mjr 52:8298b2a73eb2 5957 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5958 uint8_t calState;
mjr 52:8298b2a73eb2 5959
mjr 52:8298b2a73eb2 5960 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5961 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5962 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5963 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5964 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5965 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5966 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5967 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5968 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5969 long calZeroPosSum;
mjr 52:8298b2a73eb2 5970 int calZeroPosN;
mjr 52:8298b2a73eb2 5971
mjr 52:8298b2a73eb2 5972 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5973 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5974 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5975 int calRlsTimeN;
mjr 52:8298b2a73eb2 5976
mjr 85:3c28aee81cde 5977 // Auto-zeroing timer
mjr 85:3c28aee81cde 5978 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5979
mjr 48:058ace2aed1d 5980 // set a firing mode
mjr 48:058ace2aed1d 5981 inline void firingMode(int m)
mjr 48:058ace2aed1d 5982 {
mjr 48:058ace2aed1d 5983 firing = m;
mjr 48:058ace2aed1d 5984 }
mjr 48:058ace2aed1d 5985
mjr 48:058ace2aed1d 5986 // Firing event state.
mjr 48:058ace2aed1d 5987 //
mjr 87:8d35c74403af 5988 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5989 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5990 //
mjr 87:8d35c74403af 5991 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5992 //
mjr 87:8d35c74403af 5993 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5994 //
mjr 87:8d35c74403af 5995 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5996 //
mjr 48:058ace2aed1d 5997 int firing;
mjr 48:058ace2aed1d 5998
mjr 87:8d35c74403af 5999 // Starting position for current firing mode phase
mjr 87:8d35c74403af 6000 PlungerReading f0;
mjr 48:058ace2aed1d 6001 };
mjr 48:058ace2aed1d 6002
mjr 48:058ace2aed1d 6003 // plunger reader singleton
mjr 48:058ace2aed1d 6004 PlungerReader plungerReader;
mjr 48:058ace2aed1d 6005
mjr 48:058ace2aed1d 6006 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 6007 //
mjr 48:058ace2aed1d 6008 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 6009 //
mjr 48:058ace2aed1d 6010 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 6011 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 6012 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 6013 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 6014 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 6015 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 6016 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 6017 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 6018 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 6019 //
mjr 48:058ace2aed1d 6020 // This feature has two configuration components:
mjr 48:058ace2aed1d 6021 //
mjr 48:058ace2aed1d 6022 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 6023 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 6024 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 6025 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 6026 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 6027 // plunger/launch button connection.
mjr 48:058ace2aed1d 6028 //
mjr 48:058ace2aed1d 6029 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 6030 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 6031 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 6032 // position.
mjr 48:058ace2aed1d 6033 //
mjr 48:058ace2aed1d 6034 class ZBLaunchBall
mjr 48:058ace2aed1d 6035 {
mjr 48:058ace2aed1d 6036 public:
mjr 48:058ace2aed1d 6037 ZBLaunchBall()
mjr 48:058ace2aed1d 6038 {
mjr 48:058ace2aed1d 6039 // start in the default state
mjr 48:058ace2aed1d 6040 lbState = 0;
mjr 53:9b2611964afc 6041 btnState = false;
mjr 48:058ace2aed1d 6042 }
mjr 48:058ace2aed1d 6043
mjr 48:058ace2aed1d 6044 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 6045 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 6046 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 6047 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 6048 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 6049 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 6050 void update()
mjr 48:058ace2aed1d 6051 {
mjr 53:9b2611964afc 6052 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 6053 // plunger firing event
mjr 53:9b2611964afc 6054 if (zbLaunchOn)
mjr 48:058ace2aed1d 6055 {
mjr 53:9b2611964afc 6056 // note the new position
mjr 48:058ace2aed1d 6057 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 6058
mjr 53:9b2611964afc 6059 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 6060 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 6061
mjr 53:9b2611964afc 6062 // check the state
mjr 48:058ace2aed1d 6063 switch (lbState)
mjr 48:058ace2aed1d 6064 {
mjr 48:058ace2aed1d 6065 case 0:
mjr 53:9b2611964afc 6066 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 6067 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 6068 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 6069 // the button.
mjr 53:9b2611964afc 6070 if (plungerReader.isFiring())
mjr 53:9b2611964afc 6071 {
mjr 53:9b2611964afc 6072 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 6073 lbTimer.reset();
mjr 53:9b2611964afc 6074 lbTimer.start();
mjr 53:9b2611964afc 6075 setButton(true);
mjr 53:9b2611964afc 6076
mjr 53:9b2611964afc 6077 // switch to state 1
mjr 53:9b2611964afc 6078 lbState = 1;
mjr 53:9b2611964afc 6079 }
mjr 48:058ace2aed1d 6080 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 6081 {
mjr 53:9b2611964afc 6082 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 6083 // button as long as we're pushed forward
mjr 53:9b2611964afc 6084 setButton(true);
mjr 53:9b2611964afc 6085 }
mjr 53:9b2611964afc 6086 else
mjr 53:9b2611964afc 6087 {
mjr 53:9b2611964afc 6088 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 6089 setButton(false);
mjr 53:9b2611964afc 6090 }
mjr 48:058ace2aed1d 6091 break;
mjr 48:058ace2aed1d 6092
mjr 48:058ace2aed1d 6093 case 1:
mjr 53:9b2611964afc 6094 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 6095 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 6096 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 6097 {
mjr 53:9b2611964afc 6098 // timer expired - turn off the button
mjr 53:9b2611964afc 6099 setButton(false);
mjr 53:9b2611964afc 6100
mjr 53:9b2611964afc 6101 // switch to state 2
mjr 53:9b2611964afc 6102 lbState = 2;
mjr 53:9b2611964afc 6103 }
mjr 48:058ace2aed1d 6104 break;
mjr 48:058ace2aed1d 6105
mjr 48:058ace2aed1d 6106 case 2:
mjr 53:9b2611964afc 6107 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 6108 // plunger launch event to end.
mjr 53:9b2611964afc 6109 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 6110 {
mjr 53:9b2611964afc 6111 // firing event done - return to default state
mjr 53:9b2611964afc 6112 lbState = 0;
mjr 53:9b2611964afc 6113 }
mjr 48:058ace2aed1d 6114 break;
mjr 48:058ace2aed1d 6115 }
mjr 53:9b2611964afc 6116 }
mjr 53:9b2611964afc 6117 else
mjr 53:9b2611964afc 6118 {
mjr 53:9b2611964afc 6119 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 6120 setButton(false);
mjr 48:058ace2aed1d 6121
mjr 53:9b2611964afc 6122 // return to the default state
mjr 53:9b2611964afc 6123 lbState = 0;
mjr 48:058ace2aed1d 6124 }
mjr 48:058ace2aed1d 6125 }
mjr 53:9b2611964afc 6126
mjr 53:9b2611964afc 6127 // Set the button state
mjr 53:9b2611964afc 6128 void setButton(bool on)
mjr 53:9b2611964afc 6129 {
mjr 53:9b2611964afc 6130 if (btnState != on)
mjr 53:9b2611964afc 6131 {
mjr 53:9b2611964afc 6132 // remember the new state
mjr 53:9b2611964afc 6133 btnState = on;
mjr 53:9b2611964afc 6134
mjr 53:9b2611964afc 6135 // update the virtual button state
mjr 65:739875521aae 6136 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 6137 }
mjr 53:9b2611964afc 6138 }
mjr 53:9b2611964afc 6139
mjr 48:058ace2aed1d 6140 private:
mjr 48:058ace2aed1d 6141 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 6142 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 6143 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 6144 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 6145 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 6146 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 6147 //
mjr 48:058ace2aed1d 6148 // States:
mjr 48:058ace2aed1d 6149 // 0 = default
mjr 53:9b2611964afc 6150 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 6151 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 6152 // firing event to end)
mjr 53:9b2611964afc 6153 uint8_t lbState;
mjr 48:058ace2aed1d 6154
mjr 53:9b2611964afc 6155 // button state
mjr 53:9b2611964afc 6156 bool btnState;
mjr 48:058ace2aed1d 6157
mjr 48:058ace2aed1d 6158 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 6159 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 6160 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 6161 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 6162 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 6163 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 6164 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 6165 Timer lbTimer;
mjr 48:058ace2aed1d 6166 };
mjr 48:058ace2aed1d 6167
mjr 35:e959ffba78fd 6168 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6169 //
mjr 35:e959ffba78fd 6170 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 6171 //
mjr 54:fd77a6b2f76c 6172 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 6173 {
mjr 35:e959ffba78fd 6174 // disconnect from USB
mjr 54:fd77a6b2f76c 6175 if (disconnect)
mjr 54:fd77a6b2f76c 6176 js.disconnect();
mjr 35:e959ffba78fd 6177
mjr 35:e959ffba78fd 6178 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 6179 wait_us(pause_us);
mjr 35:e959ffba78fd 6180
mjr 35:e959ffba78fd 6181 // reset the device
mjr 35:e959ffba78fd 6182 NVIC_SystemReset();
mjr 35:e959ffba78fd 6183 while (true) { }
mjr 35:e959ffba78fd 6184 }
mjr 35:e959ffba78fd 6185
mjr 35:e959ffba78fd 6186 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6187 //
mjr 35:e959ffba78fd 6188 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 6189 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 6190 //
mjr 35:e959ffba78fd 6191 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 6192 {
mjr 35:e959ffba78fd 6193 int tmp;
mjr 78:1e00b3fa11af 6194 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 6195 {
mjr 35:e959ffba78fd 6196 case OrientationFront:
mjr 35:e959ffba78fd 6197 tmp = x;
mjr 35:e959ffba78fd 6198 x = y;
mjr 35:e959ffba78fd 6199 y = tmp;
mjr 35:e959ffba78fd 6200 break;
mjr 35:e959ffba78fd 6201
mjr 35:e959ffba78fd 6202 case OrientationLeft:
mjr 35:e959ffba78fd 6203 x = -x;
mjr 35:e959ffba78fd 6204 break;
mjr 35:e959ffba78fd 6205
mjr 35:e959ffba78fd 6206 case OrientationRight:
mjr 35:e959ffba78fd 6207 y = -y;
mjr 35:e959ffba78fd 6208 break;
mjr 35:e959ffba78fd 6209
mjr 35:e959ffba78fd 6210 case OrientationRear:
mjr 35:e959ffba78fd 6211 tmp = -x;
mjr 35:e959ffba78fd 6212 x = -y;
mjr 35:e959ffba78fd 6213 y = tmp;
mjr 35:e959ffba78fd 6214 break;
mjr 35:e959ffba78fd 6215 }
mjr 35:e959ffba78fd 6216 }
mjr 35:e959ffba78fd 6217
mjr 35:e959ffba78fd 6218 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6219 //
mjr 35:e959ffba78fd 6220 // Calibration button state:
mjr 35:e959ffba78fd 6221 // 0 = not pushed
mjr 35:e959ffba78fd 6222 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 6223 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 6224 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 6225 int calBtnState = 0;
mjr 35:e959ffba78fd 6226
mjr 35:e959ffba78fd 6227 // calibration button debounce timer
mjr 35:e959ffba78fd 6228 Timer calBtnTimer;
mjr 35:e959ffba78fd 6229
mjr 35:e959ffba78fd 6230 // calibration button light state
mjr 35:e959ffba78fd 6231 int calBtnLit = false;
mjr 35:e959ffba78fd 6232
mjr 35:e959ffba78fd 6233
mjr 35:e959ffba78fd 6234 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6235 //
mjr 40:cc0d9814522b 6236 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 6237 //
mjr 40:cc0d9814522b 6238
mjr 40:cc0d9814522b 6239 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 6240 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 6241 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 6242 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 6243 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 6244 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 6245 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 6246 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6247 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6248 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 6249 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 6250 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 6251
mjr 40:cc0d9814522b 6252 // redefine everything for the SET messages
mjr 40:cc0d9814522b 6253 #undef if_msg_valid
mjr 40:cc0d9814522b 6254 #undef v_byte
mjr 40:cc0d9814522b 6255 #undef v_ui16
mjr 77:0b96f6867312 6256 #undef v_ui32
mjr 40:cc0d9814522b 6257 #undef v_pin
mjr 53:9b2611964afc 6258 #undef v_byte_ro
mjr 91:ae9be42652bf 6259 #undef v_byte_wo
mjr 74:822a92bc11d2 6260 #undef v_ui32_ro
mjr 74:822a92bc11d2 6261 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 6262 #undef v_func
mjr 38:091e511ce8a0 6263
mjr 91:ae9be42652bf 6264 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 6265 #define if_msg_valid(test)
mjr 53:9b2611964afc 6266 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 6267 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 6268 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 6269 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 6270 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 6271 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 6272 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 6273 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 6274 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 6275 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 6276
mjr 35:e959ffba78fd 6277
mjr 35:e959ffba78fd 6278 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6279 //
mjr 101:755f44622abc 6280 // Timer for timestamping input requests
mjr 101:755f44622abc 6281 //
mjr 101:755f44622abc 6282 Timer requestTimestamper;
mjr 101:755f44622abc 6283
mjr 101:755f44622abc 6284 // ---------------------------------------------------------------------------
mjr 101:755f44622abc 6285 //
mjr 35:e959ffba78fd 6286 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 6287 // LedWiz protocol.
mjr 33:d832bcab089e 6288 //
mjr 78:1e00b3fa11af 6289 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 6290 {
mjr 38:091e511ce8a0 6291 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 6292 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 6293 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 6294 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 6295 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 6296 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 6297 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 6298 // So our full protocol is as follows:
mjr 38:091e511ce8a0 6299 //
mjr 38:091e511ce8a0 6300 // first byte =
mjr 74:822a92bc11d2 6301 // 0-48 -> PBA
mjr 74:822a92bc11d2 6302 // 64 -> SBA
mjr 38:091e511ce8a0 6303 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 6304 // 129-132 -> PBA
mjr 38:091e511ce8a0 6305 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 6306 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 6307 // other -> reserved for future use
mjr 38:091e511ce8a0 6308 //
mjr 39:b3815a1c3802 6309 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 6310 if (data[0] == 64)
mjr 35:e959ffba78fd 6311 {
mjr 74:822a92bc11d2 6312 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 6313 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 6314 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 6315 sba_sbx(0, data);
mjr 74:822a92bc11d2 6316
mjr 74:822a92bc11d2 6317 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 6318 pbaIdx = 0;
mjr 38:091e511ce8a0 6319 }
mjr 38:091e511ce8a0 6320 else if (data[0] == 65)
mjr 38:091e511ce8a0 6321 {
mjr 38:091e511ce8a0 6322 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 6323 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 6324 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 6325 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 6326 // message type.
mjr 39:b3815a1c3802 6327 switch (data[1])
mjr 38:091e511ce8a0 6328 {
mjr 39:b3815a1c3802 6329 case 0:
mjr 39:b3815a1c3802 6330 // No Op
mjr 39:b3815a1c3802 6331 break;
mjr 39:b3815a1c3802 6332
mjr 39:b3815a1c3802 6333 case 1:
mjr 38:091e511ce8a0 6334 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 6335 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 6336 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 6337 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 6338 {
mjr 39:b3815a1c3802 6339
mjr 39:b3815a1c3802 6340 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 6341 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 6342 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 6343
mjr 86:e30a1f60f783 6344 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 6345 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 6346
mjr 39:b3815a1c3802 6347 // set the configuration parameters from the message
mjr 39:b3815a1c3802 6348 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 6349 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 6350
mjr 77:0b96f6867312 6351 // set the flag to do the save
mjr 86:e30a1f60f783 6352 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 6353 }
mjr 39:b3815a1c3802 6354 break;
mjr 38:091e511ce8a0 6355
mjr 39:b3815a1c3802 6356 case 2:
mjr 38:091e511ce8a0 6357 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 6358 // (No parameters)
mjr 38:091e511ce8a0 6359
mjr 38:091e511ce8a0 6360 // enter calibration mode
mjr 38:091e511ce8a0 6361 calBtnState = 3;
mjr 52:8298b2a73eb2 6362 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 6363 calBtnTimer.reset();
mjr 39:b3815a1c3802 6364 break;
mjr 39:b3815a1c3802 6365
mjr 39:b3815a1c3802 6366 case 3:
mjr 52:8298b2a73eb2 6367 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 6368 // data[2] = flag bits
mjr 53:9b2611964afc 6369 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 6370 reportPlungerStat = true;
mjr 53:9b2611964afc 6371 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 6372 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 6373
mjr 101:755f44622abc 6374 // set the extra integration time in the sensor
mjr 101:755f44622abc 6375 plungerSensor->setExtraIntegrationTime(reportPlungerStatTime * 100);
mjr 101:755f44622abc 6376
mjr 101:755f44622abc 6377 // make a note of the request timestamp
mjr 101:755f44622abc 6378 tReportPlungerStat = requestTimestamper.read_us();
mjr 101:755f44622abc 6379
mjr 38:091e511ce8a0 6380 // show purple until we finish sending the report
mjr 38:091e511ce8a0 6381 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 6382 break;
mjr 39:b3815a1c3802 6383
mjr 39:b3815a1c3802 6384 case 4:
mjr 38:091e511ce8a0 6385 // 4 = hardware configuration query
mjr 38:091e511ce8a0 6386 // (No parameters)
mjr 38:091e511ce8a0 6387 js.reportConfig(
mjr 38:091e511ce8a0 6388 numOutputs,
mjr 38:091e511ce8a0 6389 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 6390 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 6391 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 6392 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 6393 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 6394 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 6395 true, // we support the configurable joystick report timing features
mjr 99:8139b0c274f4 6396 true, // chime logic is supported
mjr 79:682ae3171a08 6397 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 6398 break;
mjr 39:b3815a1c3802 6399
mjr 39:b3815a1c3802 6400 case 5:
mjr 38:091e511ce8a0 6401 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 6402 allOutputsOff();
mjr 39:b3815a1c3802 6403 break;
mjr 39:b3815a1c3802 6404
mjr 39:b3815a1c3802 6405 case 6:
mjr 85:3c28aee81cde 6406 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 6407 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 6408 //
mjr 85:3c28aee81cde 6409 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 6410 // data[3] = flags:
mjr 85:3c28aee81cde 6411 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 6412 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 6413 break;
mjr 40:cc0d9814522b 6414
mjr 40:cc0d9814522b 6415 case 7:
mjr 40:cc0d9814522b 6416 // 7 = Device ID report
mjr 53:9b2611964afc 6417 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 6418 js.reportID(data[2]);
mjr 40:cc0d9814522b 6419 break;
mjr 40:cc0d9814522b 6420
mjr 40:cc0d9814522b 6421 case 8:
mjr 40:cc0d9814522b 6422 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 6423 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 6424 setNightMode(data[2]);
mjr 40:cc0d9814522b 6425 break;
mjr 52:8298b2a73eb2 6426
mjr 52:8298b2a73eb2 6427 case 9:
mjr 52:8298b2a73eb2 6428 // 9 = Config variable query.
mjr 52:8298b2a73eb2 6429 // data[2] = config var ID
mjr 52:8298b2a73eb2 6430 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 6431 {
mjr 53:9b2611964afc 6432 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 6433 // the rest of the buffer
mjr 52:8298b2a73eb2 6434 uint8_t reply[8];
mjr 52:8298b2a73eb2 6435 reply[1] = data[2];
mjr 52:8298b2a73eb2 6436 reply[2] = data[3];
mjr 53:9b2611964afc 6437 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 6438
mjr 52:8298b2a73eb2 6439 // query the value
mjr 52:8298b2a73eb2 6440 configVarGet(reply);
mjr 52:8298b2a73eb2 6441
mjr 52:8298b2a73eb2 6442 // send the reply
mjr 52:8298b2a73eb2 6443 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 6444 }
mjr 52:8298b2a73eb2 6445 break;
mjr 53:9b2611964afc 6446
mjr 53:9b2611964afc 6447 case 10:
mjr 53:9b2611964afc 6448 // 10 = Build ID query.
mjr 53:9b2611964afc 6449 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 6450 break;
mjr 73:4e8ce0b18915 6451
mjr 73:4e8ce0b18915 6452 case 11:
mjr 73:4e8ce0b18915 6453 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 6454 // data[2] = operation:
mjr 73:4e8ce0b18915 6455 // 0 = turn relay off
mjr 73:4e8ce0b18915 6456 // 1 = turn relay on
mjr 73:4e8ce0b18915 6457 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 6458 TVRelay(data[2]);
mjr 73:4e8ce0b18915 6459 break;
mjr 73:4e8ce0b18915 6460
mjr 73:4e8ce0b18915 6461 case 12:
mjr 77:0b96f6867312 6462 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 6463 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 6464 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 6465 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 6466 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 6467
mjr 77:0b96f6867312 6468 // enter IR learning mode
mjr 77:0b96f6867312 6469 IRLearningMode = 1;
mjr 77:0b96f6867312 6470
mjr 77:0b96f6867312 6471 // cancel any regular IR input in progress
mjr 77:0b96f6867312 6472 IRCommandIn = 0;
mjr 77:0b96f6867312 6473
mjr 77:0b96f6867312 6474 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 6475 IRTimer.reset();
mjr 73:4e8ce0b18915 6476 break;
mjr 73:4e8ce0b18915 6477
mjr 73:4e8ce0b18915 6478 case 13:
mjr 73:4e8ce0b18915 6479 // 13 = Send button status report
mjr 73:4e8ce0b18915 6480 reportButtonStatus(js);
mjr 73:4e8ce0b18915 6481 break;
mjr 78:1e00b3fa11af 6482
mjr 78:1e00b3fa11af 6483 case 14:
mjr 78:1e00b3fa11af 6484 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 6485 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 6486 break;
mjr 78:1e00b3fa11af 6487
mjr 78:1e00b3fa11af 6488 case 15:
mjr 78:1e00b3fa11af 6489 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 6490 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 6491 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 6492 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 6493 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 6494 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 6495 break;
mjr 78:1e00b3fa11af 6496
mjr 78:1e00b3fa11af 6497 case 16:
mjr 78:1e00b3fa11af 6498 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 6499 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 6500 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 6501 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 6502 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 6503 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 6504 break;
mjr 88:98bce687e6c0 6505
mjr 88:98bce687e6c0 6506 case 17:
mjr 88:98bce687e6c0 6507 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 6508 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 6509 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 6510 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 6511 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 6512 {
mjr 88:98bce687e6c0 6513 // get the IR command slot in the config
mjr 88:98bce687e6c0 6514 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 6515
mjr 88:98bce687e6c0 6516 // copy the IR command data from the config
mjr 88:98bce687e6c0 6517 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 6518 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 6519 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 6520
mjr 88:98bce687e6c0 6521 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 6522 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 6523 // is free
mjr 88:98bce687e6c0 6524 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 6525 }
mjr 88:98bce687e6c0 6526 break;
mjr 38:091e511ce8a0 6527 }
mjr 38:091e511ce8a0 6528 }
mjr 38:091e511ce8a0 6529 else if (data[0] == 66)
mjr 38:091e511ce8a0 6530 {
mjr 38:091e511ce8a0 6531 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 6532 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 6533 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 6534 // in a variable-dependent format.
mjr 40:cc0d9814522b 6535 configVarSet(data);
mjr 86:e30a1f60f783 6536
mjr 87:8d35c74403af 6537 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 6538 // dynamically
mjr 87:8d35c74403af 6539 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 6540 }
mjr 74:822a92bc11d2 6541 else if (data[0] == 67)
mjr 74:822a92bc11d2 6542 {
mjr 74:822a92bc11d2 6543 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 6544 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 6545 // to ports beyond the first 32.
mjr 74:822a92bc11d2 6546 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 6547 }
mjr 74:822a92bc11d2 6548 else if (data[0] == 68)
mjr 74:822a92bc11d2 6549 {
mjr 74:822a92bc11d2 6550 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 6551 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 6552 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 6553
mjr 74:822a92bc11d2 6554 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 6555 int portGroup = data[1];
mjr 74:822a92bc11d2 6556
mjr 74:822a92bc11d2 6557 // unpack the brightness values
mjr 74:822a92bc11d2 6558 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 6559 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 6560 uint8_t bri[8] = {
mjr 74:822a92bc11d2 6561 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 6562 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 6563 };
mjr 74:822a92bc11d2 6564
mjr 74:822a92bc11d2 6565 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 6566 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 6567 {
mjr 74:822a92bc11d2 6568 if (bri[i] >= 60)
mjr 74:822a92bc11d2 6569 bri[i] += 129-60;
mjr 74:822a92bc11d2 6570 }
mjr 74:822a92bc11d2 6571
mjr 74:822a92bc11d2 6572 // Carry out the PBA
mjr 74:822a92bc11d2 6573 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 6574 }
mjr 38:091e511ce8a0 6575 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 6576 {
mjr 38:091e511ce8a0 6577 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 6578 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 6579 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 6580 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 6581 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 6582 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 6583 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 6584 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 6585 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 6586 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 6587 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 6588 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 6589 //
mjr 38:091e511ce8a0 6590 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 6591 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 6592 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 6593 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 6594 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 6595 // address those ports anyway.
mjr 63:5cd1a5f3a41b 6596
mjr 63:5cd1a5f3a41b 6597 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 6598 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 6599 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 6600
mjr 63:5cd1a5f3a41b 6601 // update each port
mjr 38:091e511ce8a0 6602 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 6603 {
mjr 38:091e511ce8a0 6604 // set the brightness level for the output
mjr 40:cc0d9814522b 6605 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 6606 outLevel[i] = b;
mjr 38:091e511ce8a0 6607
mjr 74:822a92bc11d2 6608 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 6609 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 6610 // LedWiz mode on a future update
mjr 76:7f5912b6340e 6611 if (b != 0)
mjr 76:7f5912b6340e 6612 {
mjr 76:7f5912b6340e 6613 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 6614 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 6615 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 6616 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 6617 // forward unchanged.
mjr 76:7f5912b6340e 6618 wizOn[i] = 1;
mjr 76:7f5912b6340e 6619 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 6620 }
mjr 76:7f5912b6340e 6621 else
mjr 76:7f5912b6340e 6622 {
mjr 76:7f5912b6340e 6623 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 6624 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 6625 wizOn[i] = 0;
mjr 76:7f5912b6340e 6626 }
mjr 74:822a92bc11d2 6627
mjr 38:091e511ce8a0 6628 // set the output
mjr 40:cc0d9814522b 6629 lwPin[i]->set(b);
mjr 38:091e511ce8a0 6630 }
mjr 38:091e511ce8a0 6631
mjr 38:091e511ce8a0 6632 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 6633 if (hc595 != 0)
mjr 38:091e511ce8a0 6634 hc595->update();
mjr 38:091e511ce8a0 6635 }
mjr 38:091e511ce8a0 6636 else
mjr 38:091e511ce8a0 6637 {
mjr 74:822a92bc11d2 6638 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 6639 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 6640 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 6641 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 6642 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 6643 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 6644 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 6645 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 6646 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 6647 //
mjr 38:091e511ce8a0 6648 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 6649 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 6650 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 6651 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 6652 // protocol mode.
mjr 38:091e511ce8a0 6653 //
mjr 38:091e511ce8a0 6654 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 6655 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 6656
mjr 74:822a92bc11d2 6657 // carry out the PBA
mjr 74:822a92bc11d2 6658 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6659
mjr 74:822a92bc11d2 6660 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6661 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6662 }
mjr 38:091e511ce8a0 6663 }
mjr 35:e959ffba78fd 6664
mjr 38:091e511ce8a0 6665 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6666 //
mjr 5:a70c0bce770d 6667 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6668 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6669 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6670 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6671 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6672 // port outputs.
mjr 5:a70c0bce770d 6673 //
mjr 0:5acbbe3f4cf4 6674 int main(void)
mjr 0:5acbbe3f4cf4 6675 {
mjr 60:f38da020aa13 6676 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6677 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6678
mjr 98:4df3c0f7e707 6679 // Set the default PWM period to 0.5ms = 2 kHz. This will be used
mjr 98:4df3c0f7e707 6680 // for PWM channels on PWM units whose periods aren't changed
mjr 98:4df3c0f7e707 6681 // explicitly, so it'll apply to LW outputs assigned to GPIO pins.
mjr 98:4df3c0f7e707 6682 // The KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6683 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6684 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6685 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6686 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6687 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6688 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6689 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6690 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6691 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6692 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6693 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6694 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6695 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6696 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6697 //
mjr 94:0476b3e2b996 6698 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6699 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6700 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6701 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6702 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6703 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6704 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6705
mjr 76:7f5912b6340e 6706 // clear the I2C connection
mjr 112:8ed709f455c0 6707 Accel::clear_i2c();
mjr 82:4f6209cb5c33 6708
mjr 82:4f6209cb5c33 6709 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6710 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6711 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6712 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6713 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6714 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6715
mjr 76:7f5912b6340e 6716 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6717 // configuration data:
mjr 76:7f5912b6340e 6718 //
mjr 76:7f5912b6340e 6719 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6720 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6721 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6722 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6723 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6724 // to store user settings updates.
mjr 76:7f5912b6340e 6725 //
mjr 76:7f5912b6340e 6726 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6727 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6728 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6729 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6730 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6731 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6732 // without a separate download of the config data.
mjr 76:7f5912b6340e 6733 //
mjr 76:7f5912b6340e 6734 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6735 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6736 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6737 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6738 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6739 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6740 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6741 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6742 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6743 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6744 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6745 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6746 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6747
mjr 38:091e511ce8a0 6748 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6749 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6750
mjr 33:d832bcab089e 6751 // we're not connected/awake yet
mjr 33:d832bcab089e 6752 bool connected = false;
mjr 40:cc0d9814522b 6753 Timer connectChangeTimer;
mjr 33:d832bcab089e 6754
mjr 35:e959ffba78fd 6755 // create the plunger sensor interface
mjr 35:e959ffba78fd 6756 createPlunger();
mjr 76:7f5912b6340e 6757
mjr 76:7f5912b6340e 6758 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6759 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6760
mjr 60:f38da020aa13 6761 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6762 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6763
mjr 87:8d35c74403af 6764 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6765 init_tlc59116(cfg);
mjr 87:8d35c74403af 6766
mjr 60:f38da020aa13 6767 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6768 init_hc595(cfg);
mjr 6:cc35eb643e8f 6769
mjr 54:fd77a6b2f76c 6770 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6771 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6772 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6773 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6774 initLwOut(cfg);
mjr 48:058ace2aed1d 6775
mjr 60:f38da020aa13 6776 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6777 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6778 tlc5940->start();
mjr 87:8d35c74403af 6779
mjr 77:0b96f6867312 6780 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6781 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6782 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6783 // USB keyboard interface.
mjr 77:0b96f6867312 6784 bool kbKeys = false;
mjr 77:0b96f6867312 6785
mjr 77:0b96f6867312 6786 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6787 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6788
mjr 77:0b96f6867312 6789 // start the power status time, if applicable
mjr 77:0b96f6867312 6790 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6791
mjr 35:e959ffba78fd 6792 // initialize the button input ports
mjr 35:e959ffba78fd 6793 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6794
mjr 60:f38da020aa13 6795 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6796 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6797 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6798 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6799 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6800 // to the joystick interface.
mjr 51:57eb311faafa 6801 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6802 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6803
mjr 101:755f44622abc 6804 // start the request timestamp timer
mjr 101:755f44622abc 6805 requestTimestamper.start();
mjr 101:755f44622abc 6806
mjr 60:f38da020aa13 6807 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6808 // flash pattern while waiting.
mjr 70:9f58735a1732 6809 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6810 connTimeoutTimer.start();
mjr 70:9f58735a1732 6811 connFlashTimer.start();
mjr 51:57eb311faafa 6812 while (!js.configured())
mjr 51:57eb311faafa 6813 {
mjr 51:57eb311faafa 6814 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6815 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6816 {
mjr 51:57eb311faafa 6817 // short yellow flash
mjr 51:57eb311faafa 6818 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6819 wait_us(50000);
mjr 51:57eb311faafa 6820 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6821
mjr 51:57eb311faafa 6822 // reset the flash timer
mjr 70:9f58735a1732 6823 connFlashTimer.reset();
mjr 51:57eb311faafa 6824 }
mjr 70:9f58735a1732 6825
mjr 77:0b96f6867312 6826 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6827 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6828 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6829 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6830 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6831 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6832 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6833 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6834 reboot(js, false, 0);
mjr 77:0b96f6867312 6835
mjr 77:0b96f6867312 6836 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6837 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6838 }
mjr 60:f38da020aa13 6839
mjr 60:f38da020aa13 6840 // we're now connected to the host
mjr 54:fd77a6b2f76c 6841 connected = true;
mjr 40:cc0d9814522b 6842
mjr 92:f264fbaa1be5 6843 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6844 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6845 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6846 //
mjr 92:f264fbaa1be5 6847 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6848 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6849 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6850 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6851 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6852 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6853 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6854 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6855 // sampling rate as best we can.
mjr 38:091e511ce8a0 6856 Timer jsReportTimer;
mjr 38:091e511ce8a0 6857 jsReportTimer.start();
mjr 38:091e511ce8a0 6858
mjr 92:f264fbaa1be5 6859 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6860 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6861 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6862 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6863 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6864 //
mjr 92:f264fbaa1be5 6865 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6866 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6867 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6868 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6869 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6870 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6871
mjr 92:f264fbaa1be5 6872 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6873 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6874 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6875 // can be set in the configuration.
mjr 92:f264fbaa1be5 6876 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6877
mjr 60:f38da020aa13 6878 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6879 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6880 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6881 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6882 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6883 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6884 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6885 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6886 Timer jsOKTimer;
mjr 38:091e511ce8a0 6887 jsOKTimer.start();
mjr 35:e959ffba78fd 6888
mjr 55:4db125cd11a0 6889 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6890 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6891 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6892 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6893 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6894
mjr 55:4db125cd11a0 6895 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6896 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6897 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6898
mjr 55:4db125cd11a0 6899 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6900 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6901 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6902
mjr 35:e959ffba78fd 6903 // initialize the calibration button
mjr 1:d913e0afb2ac 6904 calBtnTimer.start();
mjr 35:e959ffba78fd 6905 calBtnState = 0;
mjr 1:d913e0afb2ac 6906
mjr 1:d913e0afb2ac 6907 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6908 Timer hbTimer;
mjr 1:d913e0afb2ac 6909 hbTimer.start();
mjr 1:d913e0afb2ac 6910 int hb = 0;
mjr 5:a70c0bce770d 6911 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6912
mjr 1:d913e0afb2ac 6913 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6914 Timer acTimer;
mjr 1:d913e0afb2ac 6915 acTimer.start();
mjr 1:d913e0afb2ac 6916
mjr 0:5acbbe3f4cf4 6917 // create the accelerometer object
mjr 112:8ed709f455c0 6918 Accel accel(cfg);
mjr 76:7f5912b6340e 6919
mjr 48:058ace2aed1d 6920 // initialize the plunger sensor
mjr 35:e959ffba78fd 6921 plungerSensor->init();
mjr 10:976666ffa4ef 6922
mjr 48:058ace2aed1d 6923 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6924 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6925
mjr 54:fd77a6b2f76c 6926 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6927 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6928 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6929 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6930 hc595->enable(true);
mjr 87:8d35c74403af 6931 if (tlc59116 != 0)
mjr 87:8d35c74403af 6932 tlc59116->enable(true);
mjr 74:822a92bc11d2 6933
mjr 76:7f5912b6340e 6934 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6935 wizCycleTimer.start();
mjr 74:822a92bc11d2 6936
mjr 74:822a92bc11d2 6937 // start the PWM update polling timer
mjr 74:822a92bc11d2 6938 polledPwmTimer.start();
mjr 43:7a6364d82a41 6939
mjr 1:d913e0afb2ac 6940 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6941 // host requests
mjr 0:5acbbe3f4cf4 6942 for (;;)
mjr 0:5acbbe3f4cf4 6943 {
mjr 74:822a92bc11d2 6944 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6945 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 96:68d5621ff49f 6946
mjr 48:058ace2aed1d 6947 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6948 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6949 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6950 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6951 LedWizMsg lwm;
mjr 48:058ace2aed1d 6952 Timer lwt;
mjr 48:058ace2aed1d 6953 lwt.start();
mjr 77:0b96f6867312 6954 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6955 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6956 {
mjr 78:1e00b3fa11af 6957 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6958 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6959 }
mjr 74:822a92bc11d2 6960
mjr 74:822a92bc11d2 6961 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6962 IF_DIAG(
mjr 74:822a92bc11d2 6963 if (msgCount != 0)
mjr 74:822a92bc11d2 6964 {
mjr 76:7f5912b6340e 6965 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6966 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6967 }
mjr 74:822a92bc11d2 6968 )
mjr 74:822a92bc11d2 6969
mjr 77:0b96f6867312 6970 // process IR input
mjr 77:0b96f6867312 6971 process_IR(cfg, js);
mjr 77:0b96f6867312 6972
mjr 77:0b96f6867312 6973 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6974 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6975
mjr 74:822a92bc11d2 6976 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6977 wizPulse();
mjr 74:822a92bc11d2 6978
mjr 74:822a92bc11d2 6979 // update PWM outputs
mjr 74:822a92bc11d2 6980 pollPwmUpdates();
mjr 77:0b96f6867312 6981
mjr 99:8139b0c274f4 6982 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 6983 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 6984 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 6985
mjr 77:0b96f6867312 6986 // poll the accelerometer
mjr 112:8ed709f455c0 6987 if (!accel.poll())
mjr 112:8ed709f455c0 6988 Accel::softReset(&accel, cfg);
mjr 55:4db125cd11a0 6989
mjr 96:68d5621ff49f 6990 // Note the "effective" plunger enabled status. This has two
mjr 96:68d5621ff49f 6991 // components: the explicit "enabled" bit, and the plunger sensor
mjr 96:68d5621ff49f 6992 // type setting. For most purposes, a plunger type of NONE is
mjr 96:68d5621ff49f 6993 // equivalent to disabled. Set this to explicit 0x01 or 0x00
mjr 96:68d5621ff49f 6994 // so that we can OR the bit into status reports.
mjr 96:68d5621ff49f 6995 uint8_t effectivePlungerEnabled = (cfg.plunger.enabled
mjr 96:68d5621ff49f 6996 && cfg.plunger.sensorType != PlungerType_None) ? 0x01 : 0x00;
mjr 96:68d5621ff49f 6997
mjr 76:7f5912b6340e 6998 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6999 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7000
mjr 55:4db125cd11a0 7001 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 7002 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7003 tlc5940->send();
mjr 87:8d35c74403af 7004
mjr 87:8d35c74403af 7005 // send TLC59116 data updates
mjr 87:8d35c74403af 7006 if (tlc59116 != 0)
mjr 87:8d35c74403af 7007 tlc59116->send();
mjr 1:d913e0afb2ac 7008
mjr 76:7f5912b6340e 7009 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 7010 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 7011
mjr 1:d913e0afb2ac 7012 // check for plunger calibration
mjr 17:ab3cec0c8bf4 7013 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 7014 {
mjr 1:d913e0afb2ac 7015 // check the state
mjr 1:d913e0afb2ac 7016 switch (calBtnState)
mjr 0:5acbbe3f4cf4 7017 {
mjr 1:d913e0afb2ac 7018 case 0:
mjr 1:d913e0afb2ac 7019 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 7020 calBtnTimer.reset();
mjr 1:d913e0afb2ac 7021 calBtnState = 1;
mjr 1:d913e0afb2ac 7022 break;
mjr 1:d913e0afb2ac 7023
mjr 1:d913e0afb2ac 7024 case 1:
mjr 1:d913e0afb2ac 7025 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 7026 // passed, start the hold period
mjr 48:058ace2aed1d 7027 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 7028 calBtnState = 2;
mjr 1:d913e0afb2ac 7029 break;
mjr 1:d913e0afb2ac 7030
mjr 1:d913e0afb2ac 7031 case 2:
mjr 1:d913e0afb2ac 7032 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 7033 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 7034 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 7035 {
mjr 1:d913e0afb2ac 7036 // enter calibration mode
mjr 1:d913e0afb2ac 7037 calBtnState = 3;
mjr 9:fd65b0a94720 7038 calBtnTimer.reset();
mjr 35:e959ffba78fd 7039
mjr 44:b5ac89b9cd5d 7040 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 7041 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 7042 }
mjr 1:d913e0afb2ac 7043 break;
mjr 2:c174f9ee414a 7044
mjr 2:c174f9ee414a 7045 case 3:
mjr 9:fd65b0a94720 7046 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 7047 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 7048 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 7049 break;
mjr 0:5acbbe3f4cf4 7050 }
mjr 0:5acbbe3f4cf4 7051 }
mjr 1:d913e0afb2ac 7052 else
mjr 1:d913e0afb2ac 7053 {
mjr 2:c174f9ee414a 7054 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 7055 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 7056 // and save the results to flash.
mjr 2:c174f9ee414a 7057 //
mjr 2:c174f9ee414a 7058 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 7059 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 7060 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 7061 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 7062 {
mjr 2:c174f9ee414a 7063 // exit calibration mode
mjr 1:d913e0afb2ac 7064 calBtnState = 0;
mjr 52:8298b2a73eb2 7065 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 7066
mjr 6:cc35eb643e8f 7067 // save the updated configuration
mjr 35:e959ffba78fd 7068 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 7069 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 7070 }
mjr 2:c174f9ee414a 7071 else if (calBtnState != 3)
mjr 2:c174f9ee414a 7072 {
mjr 2:c174f9ee414a 7073 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 7074 calBtnState = 0;
mjr 2:c174f9ee414a 7075 }
mjr 1:d913e0afb2ac 7076 }
mjr 1:d913e0afb2ac 7077
mjr 1:d913e0afb2ac 7078 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 7079 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 7080 switch (calBtnState)
mjr 0:5acbbe3f4cf4 7081 {
mjr 1:d913e0afb2ac 7082 case 2:
mjr 1:d913e0afb2ac 7083 // in the hold period - flash the light
mjr 48:058ace2aed1d 7084 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 7085 break;
mjr 1:d913e0afb2ac 7086
mjr 1:d913e0afb2ac 7087 case 3:
mjr 1:d913e0afb2ac 7088 // calibration mode - show steady on
mjr 1:d913e0afb2ac 7089 newCalBtnLit = true;
mjr 1:d913e0afb2ac 7090 break;
mjr 1:d913e0afb2ac 7091
mjr 1:d913e0afb2ac 7092 default:
mjr 1:d913e0afb2ac 7093 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 7094 newCalBtnLit = false;
mjr 1:d913e0afb2ac 7095 break;
mjr 1:d913e0afb2ac 7096 }
mjr 3:3514575d4f86 7097
mjr 3:3514575d4f86 7098 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 7099 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 7100 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 7101 {
mjr 1:d913e0afb2ac 7102 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 7103 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 7104 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 7105 calBtnLed->write(1);
mjr 38:091e511ce8a0 7106 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 7107 }
mjr 2:c174f9ee414a 7108 else {
mjr 17:ab3cec0c8bf4 7109 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 7110 calBtnLed->write(0);
mjr 38:091e511ce8a0 7111 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 7112 }
mjr 1:d913e0afb2ac 7113 }
mjr 35:e959ffba78fd 7114
mjr 76:7f5912b6340e 7115 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 7116 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7117
mjr 48:058ace2aed1d 7118 // read the plunger sensor
mjr 48:058ace2aed1d 7119 plungerReader.read();
mjr 48:058ace2aed1d 7120
mjr 76:7f5912b6340e 7121 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 7122 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7123
mjr 53:9b2611964afc 7124 // update the ZB Launch Ball status
mjr 53:9b2611964afc 7125 zbLaunchBall.update();
mjr 37:ed52738445fc 7126
mjr 76:7f5912b6340e 7127 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 7128 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7129
mjr 53:9b2611964afc 7130 // process button updates
mjr 53:9b2611964afc 7131 processButtons(cfg);
mjr 53:9b2611964afc 7132
mjr 76:7f5912b6340e 7133 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 7134 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7135
mjr 38:091e511ce8a0 7136 // send a keyboard report if we have new data
mjr 37:ed52738445fc 7137 if (kbState.changed)
mjr 37:ed52738445fc 7138 {
mjr 38:091e511ce8a0 7139 // send a keyboard report
mjr 37:ed52738445fc 7140 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 7141 kbState.changed = false;
mjr 37:ed52738445fc 7142 }
mjr 38:091e511ce8a0 7143
mjr 38:091e511ce8a0 7144 // likewise for the media controller
mjr 37:ed52738445fc 7145 if (mediaState.changed)
mjr 37:ed52738445fc 7146 {
mjr 38:091e511ce8a0 7147 // send a media report
mjr 37:ed52738445fc 7148 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 7149 mediaState.changed = false;
mjr 37:ed52738445fc 7150 }
mjr 38:091e511ce8a0 7151
mjr 76:7f5912b6340e 7152 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 7153 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7154
mjr 38:091e511ce8a0 7155 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 7156 bool jsOK = false;
mjr 55:4db125cd11a0 7157
mjr 55:4db125cd11a0 7158 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 7159 uint16_t statusFlags =
mjr 96:68d5621ff49f 7160 effectivePlungerEnabled // 0x01
mjr 77:0b96f6867312 7161 | nightMode // 0x02
mjr 79:682ae3171a08 7162 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 7163 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 7164 if (IRLearningMode != 0)
mjr 77:0b96f6867312 7165 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 7166
mjr 50:40015764bbe6 7167 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 7168 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 7169 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 7170 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 7171 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 7172 {
mjr 92:f264fbaa1be5 7173 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 7174 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 7175 // not, repeat the last sample.
mjr 92:f264fbaa1be5 7176 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 7177 {
mjr 92:f264fbaa1be5 7178 // read the accelerometer
mjr 92:f264fbaa1be5 7179 int xa, ya;
mjr 92:f264fbaa1be5 7180 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 7181
mjr 92:f264fbaa1be5 7182 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 7183 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 7184 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 7185 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 7186 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 7187
mjr 92:f264fbaa1be5 7188 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 7189 x = xa;
mjr 92:f264fbaa1be5 7190 y = ya;
mjr 92:f264fbaa1be5 7191
mjr 95:8eca8acbb82c 7192 // rotate X and Y according to the device orientation in the cabinet
mjr 95:8eca8acbb82c 7193 accelRotate(x, y);
mjr 95:8eca8acbb82c 7194
mjr 92:f264fbaa1be5 7195 // reset the stutter counter
mjr 92:f264fbaa1be5 7196 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 7197 }
mjr 17:ab3cec0c8bf4 7198
mjr 48:058ace2aed1d 7199 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 7200 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 7201 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 7202 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 7203 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 7204 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 7205 // regular plunger inputs.
mjr 92:f264fbaa1be5 7206 int zActual = plungerReader.getPosition();
mjr 96:68d5621ff49f 7207 int zReported = (!effectivePlungerEnabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 7208
mjr 35:e959ffba78fd 7209 // send the joystick report
mjr 92:f264fbaa1be5 7210 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 7211
mjr 17:ab3cec0c8bf4 7212 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 7213 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 7214 }
mjr 21:5048e16cc9ef 7215
mjr 52:8298b2a73eb2 7216 // If we're in sensor status mode, report all pixel exposure values
mjr 101:755f44622abc 7217 if (reportPlungerStat && plungerSensor->ready())
mjr 10:976666ffa4ef 7218 {
mjr 17:ab3cec0c8bf4 7219 // send the report
mjr 101:755f44622abc 7220 plungerSensor->sendStatusReport(js, reportPlungerStatFlags);
mjr 17:ab3cec0c8bf4 7221
mjr 10:976666ffa4ef 7222 // we have satisfied this request
mjr 52:8298b2a73eb2 7223 reportPlungerStat = false;
mjr 10:976666ffa4ef 7224 }
mjr 10:976666ffa4ef 7225
mjr 101:755f44622abc 7226 // Reset the plunger status report extra timer after enough time has
mjr 101:755f44622abc 7227 // elapsed to satisfy the request. We don't just do this immediately
mjr 101:755f44622abc 7228 // because of the complexities of the pixel frame buffer pipelines in
mjr 101:755f44622abc 7229 // most of the image sensors. The pipelines delay the effect of the
mjr 101:755f44622abc 7230 // exposure time request by a couple of frames, so we can't be sure
mjr 101:755f44622abc 7231 // exactly when they're applied - meaning we can't consider the
mjr 101:755f44622abc 7232 // delay time to be consumed after a fixed number of frames. Instead,
mjr 101:755f44622abc 7233 // we'll consider it consumed after a long enough time to be sure
mjr 101:755f44622abc 7234 // we've sent a few frames. The extra time value is meant to be an
mjr 101:755f44622abc 7235 // interactive tool for debugging, so it's not important to reset it
mjr 101:755f44622abc 7236 // immediately - the user will probably want to see the effect over
mjr 101:755f44622abc 7237 // many frames, so they're likely to keep sending requests with the
mjr 101:755f44622abc 7238 // time value over and over. They'll eventually shut down the frame
mjr 101:755f44622abc 7239 // viewer and return to normal operation, at which point the requests
mjr 101:755f44622abc 7240 // will stop. So we just have to clear things out after we haven't
mjr 101:755f44622abc 7241 // seen a request with extra time for a little while.
mjr 101:755f44622abc 7242 if (reportPlungerStatTime != 0
mjr 101:755f44622abc 7243 && static_cast<uint32_t>(requestTimestamper.read_us() - tReportPlungerStat) > 1000000)
mjr 101:755f44622abc 7244 {
mjr 101:755f44622abc 7245 reportPlungerStatTime = 0;
mjr 101:755f44622abc 7246 plungerSensor->setExtraIntegrationTime(0);
mjr 101:755f44622abc 7247 }
mjr 101:755f44622abc 7248
mjr 35:e959ffba78fd 7249 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 7250 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 7251 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 7252 {
mjr 55:4db125cd11a0 7253 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 7254 jsReportTimer.reset();
mjr 38:091e511ce8a0 7255 }
mjr 38:091e511ce8a0 7256
mjr 38:091e511ce8a0 7257 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 7258 if (jsOK)
mjr 38:091e511ce8a0 7259 {
mjr 38:091e511ce8a0 7260 jsOKTimer.reset();
mjr 38:091e511ce8a0 7261 jsOKTimer.start();
mjr 21:5048e16cc9ef 7262 }
mjr 21:5048e16cc9ef 7263
mjr 76:7f5912b6340e 7264 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 7265 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7266
mjr 6:cc35eb643e8f 7267 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 7268 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 7269 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 7270 #endif
mjr 6:cc35eb643e8f 7271
mjr 33:d832bcab089e 7272 // check for connection status changes
mjr 54:fd77a6b2f76c 7273 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 7274 if (newConnected != connected)
mjr 33:d832bcab089e 7275 {
mjr 54:fd77a6b2f76c 7276 // give it a moment to stabilize
mjr 40:cc0d9814522b 7277 connectChangeTimer.start();
mjr 55:4db125cd11a0 7278 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 7279 {
mjr 33:d832bcab089e 7280 // note the new status
mjr 33:d832bcab089e 7281 connected = newConnected;
mjr 40:cc0d9814522b 7282
mjr 40:cc0d9814522b 7283 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 7284 connectChangeTimer.stop();
mjr 40:cc0d9814522b 7285 connectChangeTimer.reset();
mjr 33:d832bcab089e 7286
mjr 54:fd77a6b2f76c 7287 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 7288 if (!connected)
mjr 40:cc0d9814522b 7289 {
mjr 54:fd77a6b2f76c 7290 // turn off all outputs
mjr 33:d832bcab089e 7291 allOutputsOff();
mjr 40:cc0d9814522b 7292
mjr 40:cc0d9814522b 7293 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 7294 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 7295 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 7296 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 7297 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 7298 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 7299 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 7300 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 7301 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 7302 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 7303 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 7304 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 7305 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 7306 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 7307 // the power first comes on.
mjr 40:cc0d9814522b 7308 if (tlc5940 != 0)
mjr 40:cc0d9814522b 7309 tlc5940->enable(false);
mjr 87:8d35c74403af 7310 if (tlc59116 != 0)
mjr 87:8d35c74403af 7311 tlc59116->enable(false);
mjr 40:cc0d9814522b 7312 if (hc595 != 0)
mjr 40:cc0d9814522b 7313 hc595->enable(false);
mjr 40:cc0d9814522b 7314 }
mjr 33:d832bcab089e 7315 }
mjr 33:d832bcab089e 7316 }
mjr 48:058ace2aed1d 7317
mjr 53:9b2611964afc 7318 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 7319 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 7320 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 7321 {
mjr 85:3c28aee81cde 7322 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 7323 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 7324 {
mjr 86:e30a1f60f783 7325 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 7326 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 7327 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 7328 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 7329 // status allows it.
mjr 86:e30a1f60f783 7330 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 7331 reboot(js);
mjr 82:4f6209cb5c33 7332 }
mjr 85:3c28aee81cde 7333 else
mjr 85:3c28aee81cde 7334 {
mjr 86:e30a1f60f783 7335 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 7336
mjr 86:e30a1f60f783 7337 // stop and reset the post-save timer
mjr 86:e30a1f60f783 7338 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 7339 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 7340
mjr 86:e30a1f60f783 7341 // clear the post-save success flag
mjr 86:e30a1f60f783 7342 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 7343 }
mjr 77:0b96f6867312 7344 }
mjr 86:e30a1f60f783 7345
mjr 48:058ace2aed1d 7346 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 7347 if (!connected)
mjr 48:058ace2aed1d 7348 {
mjr 54:fd77a6b2f76c 7349 // show USB HAL debug events
mjr 54:fd77a6b2f76c 7350 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 7351 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 7352
mjr 54:fd77a6b2f76c 7353 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 7354 js.diagFlash();
mjr 54:fd77a6b2f76c 7355
mjr 54:fd77a6b2f76c 7356 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 7357 diagLED(0, 0, 0);
mjr 51:57eb311faafa 7358
mjr 51:57eb311faafa 7359 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 7360 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 7361 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 7362
mjr 54:fd77a6b2f76c 7363 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 7364 Timer diagTimer;
mjr 54:fd77a6b2f76c 7365 diagTimer.reset();
mjr 54:fd77a6b2f76c 7366 diagTimer.start();
mjr 74:822a92bc11d2 7367
mjr 74:822a92bc11d2 7368 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 7369 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 7370
mjr 54:fd77a6b2f76c 7371 // loop until we get our connection back
mjr 54:fd77a6b2f76c 7372 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 7373 {
mjr 54:fd77a6b2f76c 7374 // try to recover the connection
mjr 54:fd77a6b2f76c 7375 js.recoverConnection();
mjr 54:fd77a6b2f76c 7376
mjr 99:8139b0c274f4 7377 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 7378 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 7379 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 7380
mjr 55:4db125cd11a0 7381 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 7382 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7383 tlc5940->send();
mjr 87:8d35c74403af 7384
mjr 87:8d35c74403af 7385 // update TLC59116 outputs
mjr 87:8d35c74403af 7386 if (tlc59116 != 0)
mjr 87:8d35c74403af 7387 tlc59116->send();
mjr 55:4db125cd11a0 7388
mjr 54:fd77a6b2f76c 7389 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 7390 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 7391 {
mjr 54:fd77a6b2f76c 7392 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 7393 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 7394
mjr 54:fd77a6b2f76c 7395 // show diagnostic feedback
mjr 54:fd77a6b2f76c 7396 js.diagFlash();
mjr 51:57eb311faafa 7397
mjr 51:57eb311faafa 7398 // reset the flash timer
mjr 54:fd77a6b2f76c 7399 diagTimer.reset();
mjr 51:57eb311faafa 7400 }
mjr 51:57eb311faafa 7401
mjr 77:0b96f6867312 7402 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 7403 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 7404 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 7405 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 7406 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 7407 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 7408 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 7409 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 7410 // round and keep waiting.
mjr 51:57eb311faafa 7411 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 7412 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7413 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7414 reboot(js, false, 0);
mjr 77:0b96f6867312 7415
mjr 77:0b96f6867312 7416 // update the PSU2 power sensing status
mjr 77:0b96f6867312 7417 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 7418 }
mjr 54:fd77a6b2f76c 7419
mjr 74:822a92bc11d2 7420 // resume the main loop timer
mjr 74:822a92bc11d2 7421 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 7422
mjr 54:fd77a6b2f76c 7423 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 7424 connected = true;
mjr 54:fd77a6b2f76c 7425 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 7426
mjr 54:fd77a6b2f76c 7427 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 7428 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7429 tlc5940->enable(true);
mjr 87:8d35c74403af 7430 if (tlc59116 != 0)
mjr 87:8d35c74403af 7431 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 7432 if (hc595 != 0)
mjr 54:fd77a6b2f76c 7433 {
mjr 55:4db125cd11a0 7434 hc595->enable(true);
mjr 54:fd77a6b2f76c 7435 hc595->update(true);
mjr 51:57eb311faafa 7436 }
mjr 48:058ace2aed1d 7437 }
mjr 43:7a6364d82a41 7438
mjr 6:cc35eb643e8f 7439 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 7440 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 7441 {
mjr 54:fd77a6b2f76c 7442 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 7443 {
mjr 39:b3815a1c3802 7444 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 7445 //
mjr 54:fd77a6b2f76c 7446 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 7447 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 7448 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 7449 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 7450 hb = !hb;
mjr 38:091e511ce8a0 7451 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 7452
mjr 54:fd77a6b2f76c 7453 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 7454 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 7455 // with the USB connection.
mjr 54:fd77a6b2f76c 7456 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 7457 {
mjr 54:fd77a6b2f76c 7458 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 7459 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 7460 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 7461 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 7462 // power status allows it.
mjr 86:e30a1f60f783 7463 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7464 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7465 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 7466 }
mjr 54:fd77a6b2f76c 7467 else
mjr 54:fd77a6b2f76c 7468 {
mjr 54:fd77a6b2f76c 7469 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 7470 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 7471 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 7472 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 7473 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 7474 }
mjr 38:091e511ce8a0 7475 }
mjr 73:4e8ce0b18915 7476 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 7477 {
mjr 73:4e8ce0b18915 7478 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 7479 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 7480 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 7481 }
mjr 96:68d5621ff49f 7482 else if (effectivePlungerEnabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 7483 {
mjr 6:cc35eb643e8f 7484 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 7485 hb = !hb;
mjr 38:091e511ce8a0 7486 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 7487 }
mjr 6:cc35eb643e8f 7488 else
mjr 6:cc35eb643e8f 7489 {
mjr 6:cc35eb643e8f 7490 // connected - flash blue/green
mjr 2:c174f9ee414a 7491 hb = !hb;
mjr 38:091e511ce8a0 7492 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 7493 }
mjr 1:d913e0afb2ac 7494
mjr 1:d913e0afb2ac 7495 // reset the heartbeat timer
mjr 1:d913e0afb2ac 7496 hbTimer.reset();
mjr 5:a70c0bce770d 7497 ++hbcnt;
mjr 1:d913e0afb2ac 7498 }
mjr 74:822a92bc11d2 7499
mjr 74:822a92bc11d2 7500 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 7501 IF_DIAG(
mjr 76:7f5912b6340e 7502 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 7503 mainLoopIterCount++;
mjr 74:822a92bc11d2 7504 )
mjr 1:d913e0afb2ac 7505 }
mjr 0:5acbbe3f4cf4 7506 }