Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Fri Feb 26 18:42:03 2016 +0000
Revision:
48:058ace2aed1d
Parent:
47:df7a88cd249c
Child:
49:37bd97eb7688
New plunger processing 1

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 /* Copyright 2014, 2015 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 38:091e511ce8a0 42 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 5:a70c0bce770d 85 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 86 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 87 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 40:cc0d9814522b 88 // of ports. The KL25Z hardware is limited to 10 PWM ports. Ports beyond the
mjr 40:cc0d9814522b 89 // 10 PWM ports are simple digital on/off ports. Intensity level settings on
mjr 40:cc0d9814522b 90 // digital ports is ignored, so such ports can only be used for devices such as
mjr 40:cc0d9814522b 91 // contactors and solenoids that don't need differeing intensities.
mjr 5:a70c0bce770d 92 //
mjr 40:cc0d9814522b 93 // Note that the KL25Z can only supply or sink 4mA on its output ports, so external
mjr 40:cc0d9814522b 94 // amplifier hardware is required to use the LedWiz emulation. Many different
mjr 40:cc0d9814522b 95 // hardware designs are possible, but there's a simple reference design in the
mjr 40:cc0d9814522b 96 // documentation that uses a Darlington array IC to increase the output from
mjr 40:cc0d9814522b 97 // each port to 500mA (the same level as the LedWiz), plus an extended design
mjr 40:cc0d9814522b 98 // that adds an optocoupler and MOSFET to provide very high power handling, up
mjr 40:cc0d9814522b 99 // to about 45A or 150W, with voltages up to 100V. That will handle just about
mjr 40:cc0d9814522b 100 // any DC device directly (wtihout relays or other amplifiers), and switches fast
mjr 40:cc0d9814522b 101 // enough to support PWM devices. For example, you can use it to drive a motor at
mjr 40:cc0d9814522b 102 // different speeds via the PWM intensity.
mjr 40:cc0d9814522b 103 //
mjr 40:cc0d9814522b 104 // The Controller device can report any desired LedWiz unit number to the host,
mjr 40:cc0d9814522b 105 // which makes it possible for one or more Pinscape Controller units to coexist
mjr 40:cc0d9814522b 106 // with one more more real LedWiz units in the same machine. The LedWiz design
mjr 40:cc0d9814522b 107 // allows for up to 16 units to be installed in one machine. Each device needs
mjr 40:cc0d9814522b 108 // to have a distinct LedWiz Unit Number, which allows software on the PC to
mjr 40:cc0d9814522b 109 // address each device independently.
mjr 5:a70c0bce770d 110 //
mjr 5:a70c0bce770d 111 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 112 // build any of the external port hardware (or attach anything to the output
mjr 40:cc0d9814522b 113 // ports at all) if the LedWiz features aren't needed.
mjr 6:cc35eb643e8f 114 //
mjr 26:cb71c4af2912 115 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 116 // external PWM controller chips for controlling device outputs, instead of using
mjr 26:cb71c4af2912 117 // the limited LedWiz emulation through the on-board GPIO ports as described above.
mjr 26:cb71c4af2912 118 // The software can control a set of daisy-chained TLC5940 chips, which provide
mjr 26:cb71c4af2912 119 // 16 PWM outputs per chip. Two of these chips give you the full complement
mjr 26:cb71c4af2912 120 // of 32 output ports of an actual LedWiz, and four give you 64 ports, which
mjr 33:d832bcab089e 121 // should be plenty for nearly any virtual pinball project. A private, extended
mjr 33:d832bcab089e 122 // version of the LedWiz protocol lets the host control the extra outputs, up to
mjr 33:d832bcab089e 123 // 128 outputs per KL25Z (8 TLC5940s). To take advantage of the extra outputs
mjr 33:d832bcab089e 124 // on the PC side, you need software that knows about the protocol extensions,
mjr 33:d832bcab089e 125 // which means you need the latest version of DirectOutput Framework (DOF). VP
mjr 33:d832bcab089e 126 // uses DOF for its output, so VP will be able to use the added ports without any
mjr 33:d832bcab089e 127 // extra work on your part. Older software (e.g., Future Pinball) that doesn't
mjr 33:d832bcab089e 128 // use DOF will still be able to use the LedWiz-compatible protocol, so it'll be
mjr 33:d832bcab089e 129 // able to control your first 32 ports (numbered 1-32 in the LedWiz scheme), but
mjr 33:d832bcab089e 130 // older software won't be able to address higher-numbered ports. That shouldn't
mjr 33:d832bcab089e 131 // be a problem because older software wouldn't know what to do with the extra
mjr 33:d832bcab089e 132 // devices anyway - FP, for example, is limited to a pre-defined set of outputs.
mjr 33:d832bcab089e 133 // As long as you put the most common devices on the first 32 outputs, and use
mjr 33:d832bcab089e 134 // higher numbered ports for the less common devices that older software can't
mjr 33:d832bcab089e 135 // use anyway, you'll get maximum functionality out of software new and old.
mjr 26:cb71c4af2912 136 //
mjr 38:091e511ce8a0 137 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 138 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 139 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 140 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 141 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 142 //
mjr 38:091e511ce8a0 143 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 144 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 145 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 146 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 147 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 148 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 149 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 150 //
mjr 35:e959ffba78fd 151 //
mjr 35:e959ffba78fd 152 //
mjr 33:d832bcab089e 153 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 154 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 155 //
mjr 48:058ace2aed1d 156 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 157 //
mjr 48:058ace2aed1d 158 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 159 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 160 // has been established)
mjr 48:058ace2aed1d 161 //
mjr 48:058ace2aed1d 162 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 163 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 164 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 165 //
mjr 38:091e511ce8a0 166 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 167 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 168 // transmissions are failing.
mjr 38:091e511ce8a0 169 //
mjr 6:cc35eb643e8f 170 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 171 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 172 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 173 // no plunger sensor configured.
mjr 6:cc35eb643e8f 174 //
mjr 38:091e511ce8a0 175 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 176 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 177 //
mjr 48:058ace2aed1d 178 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 179 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 180 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 181 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 182 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 183 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 184 //
mjr 48:058ace2aed1d 185 //
mjr 48:058ace2aed1d 186 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 187 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 188 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 189 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 190 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 191 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 192 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 193 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 194
mjr 33:d832bcab089e 195
mjr 0:5acbbe3f4cf4 196 #include "mbed.h"
mjr 6:cc35eb643e8f 197 #include "math.h"
mjr 48:058ace2aed1d 198 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 199 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 200 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 201 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 202 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 203 #include "crc32.h"
mjr 26:cb71c4af2912 204 #include "TLC5940.h"
mjr 34:6b981a2afab7 205 #include "74HC595.h"
mjr 35:e959ffba78fd 206 #include "nvm.h"
mjr 35:e959ffba78fd 207 #include "plunger.h"
mjr 35:e959ffba78fd 208 #include "ccdSensor.h"
mjr 35:e959ffba78fd 209 #include "potSensor.h"
mjr 35:e959ffba78fd 210 #include "nullSensor.h"
mjr 48:058ace2aed1d 211 #include "TinyDigitalIn.h"
mjr 2:c174f9ee414a 212
mjr 21:5048e16cc9ef 213 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 214 #include "config.h"
mjr 17:ab3cec0c8bf4 215
mjr 48:058ace2aed1d 216 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 217 //
mjr 48:058ace2aed1d 218 // Custom memory allocator. We use our own version of malloc() to provide
mjr 48:058ace2aed1d 219 // diagnostics if we run out of heap.
mjr 48:058ace2aed1d 220 //
mjr 48:058ace2aed1d 221 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 222 {
mjr 48:058ace2aed1d 223 // allocate through the normal library malloc; if that succeeds,
mjr 48:058ace2aed1d 224 // simply return the pointer we got from malloc
mjr 48:058ace2aed1d 225 void *ptr = malloc(siz);
mjr 48:058ace2aed1d 226 if (ptr != 0)
mjr 48:058ace2aed1d 227 return ptr;
mjr 48:058ace2aed1d 228
mjr 48:058ace2aed1d 229 // failed - display diagnostics
mjr 48:058ace2aed1d 230 for (;;)
mjr 48:058ace2aed1d 231 {
mjr 48:058ace2aed1d 232 diagLED(1, 0, 0);
mjr 48:058ace2aed1d 233 wait(.2);
mjr 48:058ace2aed1d 234 diagLED(1, 0, 1);
mjr 48:058ace2aed1d 235 wait(.2);
mjr 48:058ace2aed1d 236 }
mjr 48:058ace2aed1d 237 }
mjr 48:058ace2aed1d 238
mjr 48:058ace2aed1d 239 // overload operator new to call our custom malloc
mjr 48:058ace2aed1d 240 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 241 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 242
mjr 5:a70c0bce770d 243 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 244 //
mjr 38:091e511ce8a0 245 // Forward declarations
mjr 38:091e511ce8a0 246 //
mjr 38:091e511ce8a0 247 void setNightMode(bool on);
mjr 38:091e511ce8a0 248 void toggleNightMode();
mjr 38:091e511ce8a0 249
mjr 38:091e511ce8a0 250 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 251 // utilities
mjr 17:ab3cec0c8bf4 252
mjr 26:cb71c4af2912 253 // floating point square of a number
mjr 26:cb71c4af2912 254 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 255
mjr 26:cb71c4af2912 256 // floating point rounding
mjr 26:cb71c4af2912 257 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 258
mjr 17:ab3cec0c8bf4 259
mjr 33:d832bcab089e 260 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 261 //
mjr 40:cc0d9814522b 262 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 263 // the running state.
mjr 40:cc0d9814522b 264 //
mjr 40:cc0d9814522b 265 class Timer2: public Timer
mjr 40:cc0d9814522b 266 {
mjr 40:cc0d9814522b 267 public:
mjr 40:cc0d9814522b 268 Timer2() : running(false) { }
mjr 40:cc0d9814522b 269
mjr 40:cc0d9814522b 270 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 271 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 272
mjr 40:cc0d9814522b 273 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 274
mjr 40:cc0d9814522b 275 private:
mjr 40:cc0d9814522b 276 bool running;
mjr 40:cc0d9814522b 277 };
mjr 40:cc0d9814522b 278
mjr 40:cc0d9814522b 279 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 280 //
mjr 33:d832bcab089e 281 // USB product version number
mjr 5:a70c0bce770d 282 //
mjr 47:df7a88cd249c 283 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 284
mjr 33:d832bcab089e 285 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 286 //
mjr 6:cc35eb643e8f 287 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 288 //
mjr 6:cc35eb643e8f 289 #define JOYMAX 4096
mjr 6:cc35eb643e8f 290
mjr 9:fd65b0a94720 291
mjr 17:ab3cec0c8bf4 292 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 293 //
mjr 40:cc0d9814522b 294 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 295 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 296 //
mjr 35:e959ffba78fd 297
mjr 35:e959ffba78fd 298 // unsigned 16-bit integer
mjr 35:e959ffba78fd 299 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 300 {
mjr 35:e959ffba78fd 301 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 302 }
mjr 40:cc0d9814522b 303 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 304 {
mjr 40:cc0d9814522b 305 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 306 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 307 }
mjr 35:e959ffba78fd 308
mjr 35:e959ffba78fd 309 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 310 {
mjr 35:e959ffba78fd 311 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 312 }
mjr 40:cc0d9814522b 313 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 314 {
mjr 40:cc0d9814522b 315 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 316 }
mjr 35:e959ffba78fd 317
mjr 35:e959ffba78fd 318 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 319 {
mjr 35:e959ffba78fd 320 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 321 }
mjr 40:cc0d9814522b 322 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 323 {
mjr 40:cc0d9814522b 324 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 325 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 326 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 327 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 328 }
mjr 35:e959ffba78fd 329
mjr 35:e959ffba78fd 330 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 331 {
mjr 35:e959ffba78fd 332 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 333 }
mjr 35:e959ffba78fd 334
mjr 40:cc0d9814522b 335 static const PinName pinNameMap[] = {
mjr 40:cc0d9814522b 336 NC, PTA1, PTA2, PTA4, PTA5, PTA12, PTA13, PTA16, PTA17, PTB0, // 0-9
mjr 40:cc0d9814522b 337 PTB1, PTB2, PTB3, PTB8, PTB9, PTB10, PTB11, PTB18, PTB19, PTC0, // 10-19
mjr 40:cc0d9814522b 338 PTC1, PTC2, PTC3, PTC4, PTC5, PTC6, PTC7, PTC8, PTC9, PTC10, // 20-29
mjr 40:cc0d9814522b 339 PTC11, PTC12, PTC13, PTC16, PTC17, PTD0, PTD1, PTD2, PTD3, PTD4, // 30-39
mjr 40:cc0d9814522b 340 PTD5, PTD6, PTD7, PTE0, PTE1, PTE2, PTE3, PTE4, PTE5, PTE20, // 40-49
mjr 40:cc0d9814522b 341 PTE21, PTE22, PTE23, PTE29, PTE30, PTE31 // 50-55
mjr 40:cc0d9814522b 342 };
mjr 35:e959ffba78fd 343 inline PinName wirePinName(int c)
mjr 35:e959ffba78fd 344 {
mjr 40:cc0d9814522b 345 return (c < countof(pinNameMap) ? pinNameMap[c] : NC);
mjr 40:cc0d9814522b 346 }
mjr 40:cc0d9814522b 347 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 348 {
mjr 40:cc0d9814522b 349 b[0] = 0; // presume invalid -> NC
mjr 40:cc0d9814522b 350 for (int i = 0 ; i < countof(pinNameMap) ; ++i)
mjr 40:cc0d9814522b 351 {
mjr 40:cc0d9814522b 352 if (pinNameMap[i] == n)
mjr 40:cc0d9814522b 353 {
mjr 40:cc0d9814522b 354 b[0] = i;
mjr 40:cc0d9814522b 355 return;
mjr 40:cc0d9814522b 356 }
mjr 40:cc0d9814522b 357 }
mjr 35:e959ffba78fd 358 }
mjr 35:e959ffba78fd 359
mjr 35:e959ffba78fd 360
mjr 35:e959ffba78fd 361 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 362 //
mjr 38:091e511ce8a0 363 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 364 //
mjr 38:091e511ce8a0 365 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 366 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 367 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 368 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 369 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 370 // SPI capability.
mjr 38:091e511ce8a0 371 //
mjr 38:091e511ce8a0 372 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 373
mjr 38:091e511ce8a0 374 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 375 // on, and -1 is no change (leaves the current setting intact).
mjr 38:091e511ce8a0 376 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 377 {
mjr 38:091e511ce8a0 378 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 379 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 380 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 381 }
mjr 38:091e511ce8a0 382
mjr 38:091e511ce8a0 383 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 384 // an on-board LED segment
mjr 38:091e511ce8a0 385 struct LedSeg
mjr 38:091e511ce8a0 386 {
mjr 38:091e511ce8a0 387 bool r, g, b;
mjr 38:091e511ce8a0 388 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 389
mjr 38:091e511ce8a0 390 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 391 {
mjr 38:091e511ce8a0 392 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 393 // our on-board LED segments
mjr 38:091e511ce8a0 394 int t = pc.typ;
mjr 38:091e511ce8a0 395 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 396 {
mjr 38:091e511ce8a0 397 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 398 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 399 if (pin == LED1)
mjr 38:091e511ce8a0 400 r = true;
mjr 38:091e511ce8a0 401 else if (pin == LED2)
mjr 38:091e511ce8a0 402 g = true;
mjr 38:091e511ce8a0 403 else if (pin == LED3)
mjr 38:091e511ce8a0 404 b = true;
mjr 38:091e511ce8a0 405 }
mjr 38:091e511ce8a0 406 }
mjr 38:091e511ce8a0 407 };
mjr 38:091e511ce8a0 408
mjr 38:091e511ce8a0 409 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 410 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 411 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 412 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 413 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 414 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 415 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 416 {
mjr 38:091e511ce8a0 417 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 418 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 419 LedSeg l;
mjr 38:091e511ce8a0 420 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 421 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 422
mjr 38:091e511ce8a0 423 // check the special ports
mjr 38:091e511ce8a0 424 for (int i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 425 l.check(cfg.specialPort[i]);
mjr 38:091e511ce8a0 426
mjr 38:091e511ce8a0 427 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 428 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 429 // LedWiz use.
mjr 38:091e511ce8a0 430 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 431 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 432 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 433 }
mjr 38:091e511ce8a0 434
mjr 38:091e511ce8a0 435
mjr 38:091e511ce8a0 436 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 437 //
mjr 29:582472d0bc57 438 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 439 //
mjr 26:cb71c4af2912 440 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 441 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 442 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 443 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 444 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 445 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 446 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 447 // other if both features are to be used.
mjr 26:cb71c4af2912 448 //
mjr 26:cb71c4af2912 449 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 450 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 451 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 452 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 453 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 454 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 455 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 456 //
mjr 5:a70c0bce770d 457
mjr 29:582472d0bc57 458
mjr 26:cb71c4af2912 459 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 460 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 461 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 462 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 463 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 464
mjr 26:cb71c4af2912 465 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 466 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 467 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 468 class LwOut
mjr 6:cc35eb643e8f 469 {
mjr 6:cc35eb643e8f 470 public:
mjr 40:cc0d9814522b 471 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 472 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 473 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 474 };
mjr 26:cb71c4af2912 475
mjr 35:e959ffba78fd 476 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 477 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 478 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 479 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 480 // numbering.
mjr 35:e959ffba78fd 481 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 482 {
mjr 33:d832bcab089e 483 public:
mjr 35:e959ffba78fd 484 LwVirtualOut() { }
mjr 40:cc0d9814522b 485 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 486 };
mjr 26:cb71c4af2912 487
mjr 34:6b981a2afab7 488 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 489 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 490 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 491 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 492 {
mjr 34:6b981a2afab7 493 public:
mjr 34:6b981a2afab7 494 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 495 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 496
mjr 34:6b981a2afab7 497 private:
mjr 34:6b981a2afab7 498 LwOut *out;
mjr 34:6b981a2afab7 499 };
mjr 34:6b981a2afab7 500
mjr 40:cc0d9814522b 501 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 502 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 503 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 504 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 505 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 506 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 507 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 508 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 509 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 510 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 511 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 512 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 513 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 514 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 515 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 516 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 517 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 518 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 519 };
mjr 40:cc0d9814522b 520
mjr 40:cc0d9814522b 521 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 522 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 523 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 524 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 525 {
mjr 40:cc0d9814522b 526 public:
mjr 40:cc0d9814522b 527 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 528 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 529
mjr 40:cc0d9814522b 530 private:
mjr 40:cc0d9814522b 531 LwOut *out;
mjr 40:cc0d9814522b 532 };
mjr 40:cc0d9814522b 533
mjr 40:cc0d9814522b 534 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 535 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 536 // mode is engaged.
mjr 40:cc0d9814522b 537 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 538 {
mjr 40:cc0d9814522b 539 public:
mjr 40:cc0d9814522b 540 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 541 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 542
mjr 40:cc0d9814522b 543 static bool nightMode;
mjr 40:cc0d9814522b 544
mjr 40:cc0d9814522b 545 private:
mjr 40:cc0d9814522b 546 LwOut *out;
mjr 40:cc0d9814522b 547 };
mjr 40:cc0d9814522b 548
mjr 40:cc0d9814522b 549 // global night mode flag
mjr 40:cc0d9814522b 550 bool LwNoisyOut::nightMode = false;
mjr 40:cc0d9814522b 551
mjr 26:cb71c4af2912 552
mjr 35:e959ffba78fd 553 //
mjr 35:e959ffba78fd 554 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 555 // assignments set in config.h.
mjr 33:d832bcab089e 556 //
mjr 35:e959ffba78fd 557 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 558 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 559 {
mjr 35:e959ffba78fd 560 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 561 {
mjr 35:e959ffba78fd 562 tlc5940 = new TLC5940(cfg.tlc5940.sclk, cfg.tlc5940.sin, cfg.tlc5940.gsclk,
mjr 35:e959ffba78fd 563 cfg.tlc5940.blank, cfg.tlc5940.xlat, cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 564 }
mjr 35:e959ffba78fd 565 }
mjr 26:cb71c4af2912 566
mjr 40:cc0d9814522b 567 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 568 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 569 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 570 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 571 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 572 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 573 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 574 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 575 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 576 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 577 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 578 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 579 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 580 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 581 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 582 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 583 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 584 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 585 };
mjr 40:cc0d9814522b 586
mjr 40:cc0d9814522b 587 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 588 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 589 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 590 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 591 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 592 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 593 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 594 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 595 // are always 8 bits.
mjr 40:cc0d9814522b 596 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 597 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 598 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 599 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 600 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 601 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 602 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 603 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 604 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 605 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 606 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 607 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 608 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 609 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 610 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 611 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 612 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 613 };
mjr 40:cc0d9814522b 614
mjr 40:cc0d9814522b 615
mjr 26:cb71c4af2912 616 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 617 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 618 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 619 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 620 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 621 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 622 {
mjr 26:cb71c4af2912 623 public:
mjr 40:cc0d9814522b 624 Lw5940Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 625 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 626 {
mjr 26:cb71c4af2912 627 if (val != prv)
mjr 40:cc0d9814522b 628 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 629 }
mjr 26:cb71c4af2912 630 int idx;
mjr 40:cc0d9814522b 631 uint8_t prv;
mjr 26:cb71c4af2912 632 };
mjr 26:cb71c4af2912 633
mjr 40:cc0d9814522b 634 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 635 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 636 {
mjr 40:cc0d9814522b 637 public:
mjr 40:cc0d9814522b 638 Lw5940GammaOut(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 639 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 640 {
mjr 40:cc0d9814522b 641 if (val != prv)
mjr 40:cc0d9814522b 642 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 643 }
mjr 40:cc0d9814522b 644 int idx;
mjr 40:cc0d9814522b 645 uint8_t prv;
mjr 40:cc0d9814522b 646 };
mjr 40:cc0d9814522b 647
mjr 40:cc0d9814522b 648
mjr 33:d832bcab089e 649
mjr 34:6b981a2afab7 650 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 651 // config.h.
mjr 35:e959ffba78fd 652 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 653
mjr 35:e959ffba78fd 654 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 655 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 656 {
mjr 35:e959ffba78fd 657 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 658 {
mjr 35:e959ffba78fd 659 hc595 = new HC595(cfg.hc595.nchips, cfg.hc595.sin, cfg.hc595.sclk, cfg.hc595.latch, cfg.hc595.ena);
mjr 35:e959ffba78fd 660 hc595->init();
mjr 35:e959ffba78fd 661 hc595->update();
mjr 35:e959ffba78fd 662 }
mjr 35:e959ffba78fd 663 }
mjr 34:6b981a2afab7 664
mjr 34:6b981a2afab7 665 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 666 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 667 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 668 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 669 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 670 class Lw595Out: public LwOut
mjr 33:d832bcab089e 671 {
mjr 33:d832bcab089e 672 public:
mjr 40:cc0d9814522b 673 Lw595Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 674 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 675 {
mjr 34:6b981a2afab7 676 if (val != prv)
mjr 40:cc0d9814522b 677 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 678 }
mjr 34:6b981a2afab7 679 int idx;
mjr 40:cc0d9814522b 680 uint8_t prv;
mjr 33:d832bcab089e 681 };
mjr 33:d832bcab089e 682
mjr 26:cb71c4af2912 683
mjr 40:cc0d9814522b 684
mjr 40:cc0d9814522b 685 // Conversion table - 8-bit DOF output level to PWM float level
mjr 40:cc0d9814522b 686 // (normalized to 0.0..1.0 scale)
mjr 40:cc0d9814522b 687 static const float pwm_level[] = {
mjr 40:cc0d9814522b 688 0.000000, 0.003922, 0.007843, 0.011765, 0.015686, 0.019608, 0.023529, 0.027451,
mjr 40:cc0d9814522b 689 0.031373, 0.035294, 0.039216, 0.043137, 0.047059, 0.050980, 0.054902, 0.058824,
mjr 40:cc0d9814522b 690 0.062745, 0.066667, 0.070588, 0.074510, 0.078431, 0.082353, 0.086275, 0.090196,
mjr 40:cc0d9814522b 691 0.094118, 0.098039, 0.101961, 0.105882, 0.109804, 0.113725, 0.117647, 0.121569,
mjr 40:cc0d9814522b 692 0.125490, 0.129412, 0.133333, 0.137255, 0.141176, 0.145098, 0.149020, 0.152941,
mjr 40:cc0d9814522b 693 0.156863, 0.160784, 0.164706, 0.168627, 0.172549, 0.176471, 0.180392, 0.184314,
mjr 40:cc0d9814522b 694 0.188235, 0.192157, 0.196078, 0.200000, 0.203922, 0.207843, 0.211765, 0.215686,
mjr 40:cc0d9814522b 695 0.219608, 0.223529, 0.227451, 0.231373, 0.235294, 0.239216, 0.243137, 0.247059,
mjr 40:cc0d9814522b 696 0.250980, 0.254902, 0.258824, 0.262745, 0.266667, 0.270588, 0.274510, 0.278431,
mjr 40:cc0d9814522b 697 0.282353, 0.286275, 0.290196, 0.294118, 0.298039, 0.301961, 0.305882, 0.309804,
mjr 40:cc0d9814522b 698 0.313725, 0.317647, 0.321569, 0.325490, 0.329412, 0.333333, 0.337255, 0.341176,
mjr 40:cc0d9814522b 699 0.345098, 0.349020, 0.352941, 0.356863, 0.360784, 0.364706, 0.368627, 0.372549,
mjr 40:cc0d9814522b 700 0.376471, 0.380392, 0.384314, 0.388235, 0.392157, 0.396078, 0.400000, 0.403922,
mjr 40:cc0d9814522b 701 0.407843, 0.411765, 0.415686, 0.419608, 0.423529, 0.427451, 0.431373, 0.435294,
mjr 40:cc0d9814522b 702 0.439216, 0.443137, 0.447059, 0.450980, 0.454902, 0.458824, 0.462745, 0.466667,
mjr 40:cc0d9814522b 703 0.470588, 0.474510, 0.478431, 0.482353, 0.486275, 0.490196, 0.494118, 0.498039,
mjr 40:cc0d9814522b 704 0.501961, 0.505882, 0.509804, 0.513725, 0.517647, 0.521569, 0.525490, 0.529412,
mjr 40:cc0d9814522b 705 0.533333, 0.537255, 0.541176, 0.545098, 0.549020, 0.552941, 0.556863, 0.560784,
mjr 40:cc0d9814522b 706 0.564706, 0.568627, 0.572549, 0.576471, 0.580392, 0.584314, 0.588235, 0.592157,
mjr 40:cc0d9814522b 707 0.596078, 0.600000, 0.603922, 0.607843, 0.611765, 0.615686, 0.619608, 0.623529,
mjr 40:cc0d9814522b 708 0.627451, 0.631373, 0.635294, 0.639216, 0.643137, 0.647059, 0.650980, 0.654902,
mjr 40:cc0d9814522b 709 0.658824, 0.662745, 0.666667, 0.670588, 0.674510, 0.678431, 0.682353, 0.686275,
mjr 40:cc0d9814522b 710 0.690196, 0.694118, 0.698039, 0.701961, 0.705882, 0.709804, 0.713725, 0.717647,
mjr 40:cc0d9814522b 711 0.721569, 0.725490, 0.729412, 0.733333, 0.737255, 0.741176, 0.745098, 0.749020,
mjr 40:cc0d9814522b 712 0.752941, 0.756863, 0.760784, 0.764706, 0.768627, 0.772549, 0.776471, 0.780392,
mjr 40:cc0d9814522b 713 0.784314, 0.788235, 0.792157, 0.796078, 0.800000, 0.803922, 0.807843, 0.811765,
mjr 40:cc0d9814522b 714 0.815686, 0.819608, 0.823529, 0.827451, 0.831373, 0.835294, 0.839216, 0.843137,
mjr 40:cc0d9814522b 715 0.847059, 0.850980, 0.854902, 0.858824, 0.862745, 0.866667, 0.870588, 0.874510,
mjr 40:cc0d9814522b 716 0.878431, 0.882353, 0.886275, 0.890196, 0.894118, 0.898039, 0.901961, 0.905882,
mjr 40:cc0d9814522b 717 0.909804, 0.913725, 0.917647, 0.921569, 0.925490, 0.929412, 0.933333, 0.937255,
mjr 40:cc0d9814522b 718 0.941176, 0.945098, 0.949020, 0.952941, 0.956863, 0.960784, 0.964706, 0.968627,
mjr 40:cc0d9814522b 719 0.972549, 0.976471, 0.980392, 0.984314, 0.988235, 0.992157, 0.996078, 1.000000
mjr 40:cc0d9814522b 720 };
mjr 26:cb71c4af2912 721
mjr 26:cb71c4af2912 722 // LwOut class for a PWM-capable GPIO port
mjr 6:cc35eb643e8f 723 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 724 {
mjr 6:cc35eb643e8f 725 public:
mjr 43:7a6364d82a41 726 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 727 {
mjr 43:7a6364d82a41 728 prv = initVal ^ 0xFF;
mjr 43:7a6364d82a41 729 set(initVal);
mjr 43:7a6364d82a41 730 }
mjr 40:cc0d9814522b 731 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 732 {
mjr 13:72dda449c3c0 733 if (val != prv)
mjr 40:cc0d9814522b 734 p.write(pwm_level[prv = val]);
mjr 13:72dda449c3c0 735 }
mjr 6:cc35eb643e8f 736 PwmOut p;
mjr 40:cc0d9814522b 737 uint8_t prv;
mjr 6:cc35eb643e8f 738 };
mjr 26:cb71c4af2912 739
mjr 26:cb71c4af2912 740 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 741 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 742 {
mjr 6:cc35eb643e8f 743 public:
mjr 43:7a6364d82a41 744 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 745 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 746 {
mjr 13:72dda449c3c0 747 if (val != prv)
mjr 40:cc0d9814522b 748 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 749 }
mjr 6:cc35eb643e8f 750 DigitalOut p;
mjr 40:cc0d9814522b 751 uint8_t prv;
mjr 6:cc35eb643e8f 752 };
mjr 26:cb71c4af2912 753
mjr 29:582472d0bc57 754 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 755 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 756 // port n (0-based).
mjr 35:e959ffba78fd 757 //
mjr 35:e959ffba78fd 758 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 759 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 760 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 761 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 762 // 74HC595 ports).
mjr 33:d832bcab089e 763 static int numOutputs;
mjr 33:d832bcab089e 764 static LwOut **lwPin;
mjr 33:d832bcab089e 765
mjr 38:091e511ce8a0 766 // Special output ports:
mjr 38:091e511ce8a0 767 //
mjr 38:091e511ce8a0 768 // [0] = Night Mode indicator light
mjr 38:091e511ce8a0 769 //
mjr 38:091e511ce8a0 770 static LwOut *specialPin[1];
mjr 40:cc0d9814522b 771 const int SPECIAL_PIN_NIGHTMODE = 0;
mjr 38:091e511ce8a0 772
mjr 38:091e511ce8a0 773
mjr 35:e959ffba78fd 774 // Number of LedWiz emulation outputs. This is the number of ports
mjr 35:e959ffba78fd 775 // accessible through the standard (non-extended) LedWiz protocol
mjr 35:e959ffba78fd 776 // messages. The protocol has a fixed set of 32 outputs, but we
mjr 35:e959ffba78fd 777 // might have fewer actual outputs. This is therefore set to the
mjr 35:e959ffba78fd 778 // lower of 32 or the actual number of outputs.
mjr 35:e959ffba78fd 779 static int numLwOutputs;
mjr 35:e959ffba78fd 780
mjr 40:cc0d9814522b 781 // Current absolute brightness level for an output. This is a DOF
mjr 40:cc0d9814522b 782 // brightness level value, from 0 for fully off to 255 for fully on.
mjr 40:cc0d9814522b 783 // This is used for all extended ports (33 and above), and for any
mjr 40:cc0d9814522b 784 // LedWiz port with wizVal == 255.
mjr 40:cc0d9814522b 785 static uint8_t *outLevel;
mjr 38:091e511ce8a0 786
mjr 38:091e511ce8a0 787 // create a single output pin
mjr 38:091e511ce8a0 788 LwOut *createLwPin(LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 789 {
mjr 38:091e511ce8a0 790 // get this item's values
mjr 38:091e511ce8a0 791 int typ = pc.typ;
mjr 38:091e511ce8a0 792 int pin = pc.pin;
mjr 38:091e511ce8a0 793 int flags = pc.flags;
mjr 40:cc0d9814522b 794 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 795 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 796 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 797
mjr 38:091e511ce8a0 798 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 799 LwOut *lwp;
mjr 38:091e511ce8a0 800 switch (typ)
mjr 38:091e511ce8a0 801 {
mjr 38:091e511ce8a0 802 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 803 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 804 if (pin != 0)
mjr 48:058ace2aed1d 805 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 806 else
mjr 48:058ace2aed1d 807 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 808 break;
mjr 38:091e511ce8a0 809
mjr 38:091e511ce8a0 810 case PortTypeGPIODig:
mjr 38:091e511ce8a0 811 // Digital GPIO port
mjr 48:058ace2aed1d 812 if (pin != 0)
mjr 48:058ace2aed1d 813 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 814 else
mjr 48:058ace2aed1d 815 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 816 break;
mjr 38:091e511ce8a0 817
mjr 38:091e511ce8a0 818 case PortTypeTLC5940:
mjr 38:091e511ce8a0 819 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 820 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 821 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 822 {
mjr 40:cc0d9814522b 823 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 824 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 825 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 826 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 827 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 828 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 829 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 830 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 831 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 832 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 833 // for this unlikely case.
mjr 40:cc0d9814522b 834 if (gamma && !activeLow)
mjr 40:cc0d9814522b 835 {
mjr 40:cc0d9814522b 836 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 837 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 838
mjr 40:cc0d9814522b 839 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 840 gamma = false;
mjr 40:cc0d9814522b 841 }
mjr 40:cc0d9814522b 842 else
mjr 40:cc0d9814522b 843 {
mjr 40:cc0d9814522b 844 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 845 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 846 }
mjr 40:cc0d9814522b 847 }
mjr 38:091e511ce8a0 848 else
mjr 40:cc0d9814522b 849 {
mjr 40:cc0d9814522b 850 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 851 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 852 }
mjr 38:091e511ce8a0 853 break;
mjr 38:091e511ce8a0 854
mjr 38:091e511ce8a0 855 case PortType74HC595:
mjr 38:091e511ce8a0 856 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 857 // output number, create a virtual port)
mjr 38:091e511ce8a0 858 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 859 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 860 else
mjr 38:091e511ce8a0 861 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 862 break;
mjr 38:091e511ce8a0 863
mjr 38:091e511ce8a0 864 case PortTypeVirtual:
mjr 43:7a6364d82a41 865 case PortTypeDisabled:
mjr 38:091e511ce8a0 866 default:
mjr 38:091e511ce8a0 867 // virtual or unknown
mjr 38:091e511ce8a0 868 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 869 break;
mjr 38:091e511ce8a0 870 }
mjr 38:091e511ce8a0 871
mjr 40:cc0d9814522b 872 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 873 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 874 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 875 if (activeLow)
mjr 38:091e511ce8a0 876 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 877
mjr 40:cc0d9814522b 878 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 879 // needs to be
mjr 40:cc0d9814522b 880 if (noisy)
mjr 40:cc0d9814522b 881 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 882
mjr 40:cc0d9814522b 883 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 884 if (gamma)
mjr 40:cc0d9814522b 885 lwp = new LwGammaOut(lwp);
mjr 38:091e511ce8a0 886
mjr 38:091e511ce8a0 887 // turn it off initially
mjr 38:091e511ce8a0 888 lwp->set(0);
mjr 38:091e511ce8a0 889
mjr 38:091e511ce8a0 890 // return the pin
mjr 38:091e511ce8a0 891 return lwp;
mjr 38:091e511ce8a0 892 }
mjr 38:091e511ce8a0 893
mjr 6:cc35eb643e8f 894 // initialize the output pin array
mjr 35:e959ffba78fd 895 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 896 {
mjr 35:e959ffba78fd 897 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 898 // total number of ports.
mjr 35:e959ffba78fd 899 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 900 int i;
mjr 35:e959ffba78fd 901 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 902 {
mjr 35:e959ffba78fd 903 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 904 {
mjr 35:e959ffba78fd 905 numOutputs = i;
mjr 34:6b981a2afab7 906 break;
mjr 34:6b981a2afab7 907 }
mjr 33:d832bcab089e 908 }
mjr 33:d832bcab089e 909
mjr 35:e959ffba78fd 910 // the real LedWiz protocol can access at most 32 ports, or the
mjr 35:e959ffba78fd 911 // actual number of outputs, whichever is lower
mjr 35:e959ffba78fd 912 numLwOutputs = (numOutputs < 32 ? numOutputs : 32);
mjr 35:e959ffba78fd 913
mjr 33:d832bcab089e 914 // allocate the pin array
mjr 33:d832bcab089e 915 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 916
mjr 38:091e511ce8a0 917 // Allocate the current brightness array. For these, allocate at
mjr 38:091e511ce8a0 918 // least 32, so that we have enough for all LedWiz messages, but
mjr 38:091e511ce8a0 919 // allocate the full set of actual ports if we have more than the
mjr 38:091e511ce8a0 920 // LedWiz complement.
mjr 38:091e511ce8a0 921 int minOuts = numOutputs < 32 ? 32 : numOutputs;
mjr 40:cc0d9814522b 922 outLevel = new uint8_t[minOuts];
mjr 33:d832bcab089e 923
mjr 35:e959ffba78fd 924 // create the pin interface object for each port
mjr 35:e959ffba78fd 925 for (i = 0 ; i < numOutputs ; ++i)
mjr 38:091e511ce8a0 926 lwPin[i] = createLwPin(cfg.outPort[i], cfg);
mjr 34:6b981a2afab7 927
mjr 38:091e511ce8a0 928 // create the pin interface for each special port
mjr 38:091e511ce8a0 929 for (i = 0 ; i < countof(cfg.specialPort) ; ++i)
mjr 38:091e511ce8a0 930 specialPin[i] = createLwPin(cfg.specialPort[i], cfg);
mjr 6:cc35eb643e8f 931 }
mjr 6:cc35eb643e8f 932
mjr 29:582472d0bc57 933 // LedWiz output states.
mjr 29:582472d0bc57 934 //
mjr 29:582472d0bc57 935 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 936 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 937 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 938 // The two axes are independent.
mjr 29:582472d0bc57 939 //
mjr 29:582472d0bc57 940 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 941 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 942 // how many physical outputs we're using.
mjr 29:582472d0bc57 943
mjr 0:5acbbe3f4cf4 944 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 945 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 946
mjr 40:cc0d9814522b 947 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 40:cc0d9814522b 948 // for each LedWiz output. If the output was last updated through an
mjr 40:cc0d9814522b 949 // LedWiz protocol message, it will have one of these values:
mjr 29:582472d0bc57 950 //
mjr 29:582472d0bc57 951 // 0-48 = fixed brightness 0% to 100%
mjr 40:cc0d9814522b 952 // 49 = fixed brightness 100% (equivalent to 48)
mjr 29:582472d0bc57 953 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 954 // 130 = flash on / off
mjr 29:582472d0bc57 955 // 131 = on / ramp down
mjr 29:582472d0bc57 956 // 132 = ramp up / on
mjr 29:582472d0bc57 957 //
mjr 40:cc0d9814522b 958 // If the output was last updated through an extended protocol message,
mjr 40:cc0d9814522b 959 // it will have the special value 255. This means that we use the
mjr 40:cc0d9814522b 960 // outLevel[] value for the port instead of an LedWiz setting.
mjr 29:582472d0bc57 961 //
mjr 40:cc0d9814522b 962 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 40:cc0d9814522b 963 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 40:cc0d9814522b 964 // it, so we need to accept it for compatibility.)
mjr 1:d913e0afb2ac 965 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 966 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 967 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 968 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 969 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 970 };
mjr 0:5acbbe3f4cf4 971
mjr 29:582472d0bc57 972 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 973 // rate for lights in blinking states.
mjr 29:582472d0bc57 974 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 975
mjr 40:cc0d9814522b 976 // Current LedWiz flash cycle counter. This runs from 0 to 255
mjr 40:cc0d9814522b 977 // during each cycle.
mjr 29:582472d0bc57 978 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 979
mjr 40:cc0d9814522b 980 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 981 // level (0-255)
mjr 40:cc0d9814522b 982 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 983 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 984 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 985 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 986 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 987 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 988 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 989 255, 255
mjr 40:cc0d9814522b 990 };
mjr 40:cc0d9814522b 991
mjr 40:cc0d9814522b 992 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 40:cc0d9814522b 993 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 994 {
mjr 29:582472d0bc57 995 // if the output was last set with an extended protocol message,
mjr 29:582472d0bc57 996 // use the value set there, ignoring the output's LedWiz state
mjr 29:582472d0bc57 997 if (wizVal[idx] == 255)
mjr 29:582472d0bc57 998 return outLevel[idx];
mjr 29:582472d0bc57 999
mjr 29:582472d0bc57 1000 // if it's off, show at zero intensity
mjr 29:582472d0bc57 1001 if (!wizOn[idx])
mjr 29:582472d0bc57 1002 return 0;
mjr 29:582472d0bc57 1003
mjr 29:582472d0bc57 1004 // check the state
mjr 29:582472d0bc57 1005 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 1006 if (val <= 49)
mjr 29:582472d0bc57 1007 {
mjr 29:582472d0bc57 1008 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 1009 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 1010 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 1011 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 1012 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 1013 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 1014 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 1015 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 1016 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 1017 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 1018 // err in this direction, because while the difference in
mjr 29:582472d0bc57 1019 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 1020 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 1021 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 1022 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 1023 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 1024 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 1025 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 1026 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 1027 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 1028 //
mjr 40:cc0d9814522b 1029 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 1030 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 1031 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 1032 // it the same way for compatibility.
mjr 40:cc0d9814522b 1033 return lw_to_dof[val];
mjr 29:582472d0bc57 1034 }
mjr 29:582472d0bc57 1035 else if (val == 129)
mjr 29:582472d0bc57 1036 {
mjr 40:cc0d9814522b 1037 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 1038 return wizFlashCounter < 128
mjr 40:cc0d9814522b 1039 ? wizFlashCounter*2 + 1
mjr 40:cc0d9814522b 1040 : (255 - wizFlashCounter)*2;
mjr 29:582472d0bc57 1041 }
mjr 29:582472d0bc57 1042 else if (val == 130)
mjr 29:582472d0bc57 1043 {
mjr 40:cc0d9814522b 1044 // 130 = flash on / off
mjr 40:cc0d9814522b 1045 return wizFlashCounter < 128 ? 255 : 0;
mjr 29:582472d0bc57 1046 }
mjr 29:582472d0bc57 1047 else if (val == 131)
mjr 29:582472d0bc57 1048 {
mjr 40:cc0d9814522b 1049 // 131 = on / ramp down
mjr 40:cc0d9814522b 1050 return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2;
mjr 0:5acbbe3f4cf4 1051 }
mjr 29:582472d0bc57 1052 else if (val == 132)
mjr 29:582472d0bc57 1053 {
mjr 40:cc0d9814522b 1054 // 132 = ramp up / on
mjr 40:cc0d9814522b 1055 return wizFlashCounter < 128 ? wizFlashCounter*2 : 255;
mjr 29:582472d0bc57 1056 }
mjr 29:582472d0bc57 1057 else
mjr 13:72dda449c3c0 1058 {
mjr 29:582472d0bc57 1059 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1060 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1061 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1062 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1063 // to 48 (fully on).
mjr 40:cc0d9814522b 1064 return 255;
mjr 0:5acbbe3f4cf4 1065 }
mjr 0:5acbbe3f4cf4 1066 }
mjr 0:5acbbe3f4cf4 1067
mjr 29:582472d0bc57 1068 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 1069 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 1070 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 1071 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 1072 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 1073 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 1074 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 1075 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 1076 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 1077 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 1078 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 1079 static void wizPulse()
mjr 29:582472d0bc57 1080 {
mjr 29:582472d0bc57 1081 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 1082 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 1083 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 1084
mjr 29:582472d0bc57 1085 // if we have any flashing lights, update them
mjr 29:582472d0bc57 1086 int ena = false;
mjr 35:e959ffba78fd 1087 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1088 {
mjr 29:582472d0bc57 1089 if (wizOn[i])
mjr 29:582472d0bc57 1090 {
mjr 29:582472d0bc57 1091 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 1092 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 1093 {
mjr 40:cc0d9814522b 1094 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1095 ena = true;
mjr 29:582472d0bc57 1096 }
mjr 29:582472d0bc57 1097 }
mjr 29:582472d0bc57 1098 }
mjr 29:582472d0bc57 1099
mjr 29:582472d0bc57 1100 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 1101 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 1102 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 1103 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 1104 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 1105 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 1106 if (ena)
mjr 29:582472d0bc57 1107 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 1108 }
mjr 29:582472d0bc57 1109
mjr 29:582472d0bc57 1110 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1111 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1112 static void updateWizOuts()
mjr 1:d913e0afb2ac 1113 {
mjr 29:582472d0bc57 1114 // update each output
mjr 29:582472d0bc57 1115 int pulse = false;
mjr 35:e959ffba78fd 1116 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1117 {
mjr 29:582472d0bc57 1118 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 40:cc0d9814522b 1119 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1120 }
mjr 29:582472d0bc57 1121
mjr 29:582472d0bc57 1122 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 1123 // isn't running, turn it on
mjr 29:582472d0bc57 1124 if (pulse)
mjr 29:582472d0bc57 1125 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 1126
mjr 34:6b981a2afab7 1127 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1128 if (hc595 != 0)
mjr 35:e959ffba78fd 1129 hc595->update();
mjr 1:d913e0afb2ac 1130 }
mjr 38:091e511ce8a0 1131
mjr 38:091e511ce8a0 1132 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1133 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1134 static void updateAllOuts()
mjr 38:091e511ce8a0 1135 {
mjr 38:091e511ce8a0 1136 // uddate each LedWiz output
mjr 38:091e511ce8a0 1137 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 40:cc0d9814522b 1138 lwPin[i]->set(wizState(i));
mjr 34:6b981a2afab7 1139
mjr 38:091e511ce8a0 1140 // update each extended output
mjr 38:091e511ce8a0 1141 for (int i = 33 ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1142 lwPin[i]->set(outLevel[i]);
mjr 38:091e511ce8a0 1143
mjr 38:091e511ce8a0 1144 // flush 74HC595 changes, if necessary
mjr 38:091e511ce8a0 1145 if (hc595 != 0)
mjr 38:091e511ce8a0 1146 hc595->update();
mjr 38:091e511ce8a0 1147 }
mjr 38:091e511ce8a0 1148
mjr 11:bd9da7088e6e 1149 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1150 //
mjr 11:bd9da7088e6e 1151 // Button input
mjr 11:bd9da7088e6e 1152 //
mjr 11:bd9da7088e6e 1153
mjr 18:5e890ebd0023 1154 // button state
mjr 18:5e890ebd0023 1155 struct ButtonState
mjr 18:5e890ebd0023 1156 {
mjr 38:091e511ce8a0 1157 ButtonState()
mjr 38:091e511ce8a0 1158 {
mjr 38:091e511ce8a0 1159 di = NULL;
mjr 38:091e511ce8a0 1160 on = 0;
mjr 38:091e511ce8a0 1161 pressed = prev = 0;
mjr 38:091e511ce8a0 1162 dbstate = 0;
mjr 38:091e511ce8a0 1163 js = 0;
mjr 38:091e511ce8a0 1164 keymod = 0;
mjr 38:091e511ce8a0 1165 keycode = 0;
mjr 38:091e511ce8a0 1166 special = 0;
mjr 38:091e511ce8a0 1167 pulseState = 0;
mjr 38:091e511ce8a0 1168 pulseTime = 0.0f;
mjr 38:091e511ce8a0 1169 }
mjr 35:e959ffba78fd 1170
mjr 35:e959ffba78fd 1171 // DigitalIn for the button
mjr 48:058ace2aed1d 1172 TinyDigitalIn *di;
mjr 38:091e511ce8a0 1173
mjr 38:091e511ce8a0 1174 // current PHYSICAL on/off state, after debouncing
mjr 48:058ace2aed1d 1175 uint8_t on : 1;
mjr 18:5e890ebd0023 1176
mjr 38:091e511ce8a0 1177 // current LOGICAL on/off state as reported to the host.
mjr 48:058ace2aed1d 1178 uint8_t pressed : 1;
mjr 38:091e511ce8a0 1179
mjr 38:091e511ce8a0 1180 // previous logical on/off state, when keys were last processed for USB
mjr 38:091e511ce8a0 1181 // reports and local effects
mjr 48:058ace2aed1d 1182 uint8_t prev : 1;
mjr 38:091e511ce8a0 1183
mjr 38:091e511ce8a0 1184 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 1185 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 1186 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 1187 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 1188 // a parameter that determines how long we wait for transients to settle).
mjr 38:091e511ce8a0 1189 uint8_t dbstate;
mjr 35:e959ffba78fd 1190
mjr 35:e959ffba78fd 1191 // joystick button mask for the button, if mapped as a joystick button
mjr 35:e959ffba78fd 1192 uint32_t js;
mjr 35:e959ffba78fd 1193
mjr 35:e959ffba78fd 1194 // keyboard modifier bits and scan code for the button, if mapped as a keyboard key
mjr 35:e959ffba78fd 1195 uint8_t keymod;
mjr 35:e959ffba78fd 1196 uint8_t keycode;
mjr 35:e959ffba78fd 1197
mjr 35:e959ffba78fd 1198 // media control key code
mjr 35:e959ffba78fd 1199 uint8_t mediakey;
mjr 35:e959ffba78fd 1200
mjr 38:091e511ce8a0 1201 // special key code
mjr 38:091e511ce8a0 1202 uint8_t special;
mjr 38:091e511ce8a0 1203
mjr 38:091e511ce8a0 1204 // Pulse mode: a button in pulse mode transmits a brief logical button press and
mjr 38:091e511ce8a0 1205 // release each time the attached physical switch changes state. This is useful
mjr 38:091e511ce8a0 1206 // for cases where the host expects a key press for each change in the state of
mjr 38:091e511ce8a0 1207 // the physical switch. The canonical example is the Coin Door switch in VPinMAME,
mjr 38:091e511ce8a0 1208 // which requires pressing the END key to toggle the open/closed state. This
mjr 38:091e511ce8a0 1209 // software design isn't easily implemented in a physical coin door, though -
mjr 38:091e511ce8a0 1210 // the easiest way to sense a physical coin door's state is with a simple on/off
mjr 38:091e511ce8a0 1211 // switch. Pulse mode bridges that divide by converting a physical switch state
mjr 38:091e511ce8a0 1212 // to on/off toggle key reports to the host.
mjr 38:091e511ce8a0 1213 //
mjr 38:091e511ce8a0 1214 // Pulse state:
mjr 38:091e511ce8a0 1215 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 1216 // 1 -> off
mjr 38:091e511ce8a0 1217 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 1218 // 3 -> on
mjr 38:091e511ce8a0 1219 // 4 -> transitioning on-off
mjr 38:091e511ce8a0 1220 //
mjr 38:091e511ce8a0 1221 // Each state change sticks for a minimum period; when the timer expires,
mjr 38:091e511ce8a0 1222 // if the underlying physical switch is in a different state, we switch
mjr 38:091e511ce8a0 1223 // to the next state and restart the timer. pulseTime is the amount of
mjr 38:091e511ce8a0 1224 // time remaining before we can make another state transition. The state
mjr 38:091e511ce8a0 1225 // transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; this
mjr 38:091e511ce8a0 1226 // guarantees that the parity of the pulse count always matches the
mjr 38:091e511ce8a0 1227 // current physical switch state when the latter is stable, which makes
mjr 38:091e511ce8a0 1228 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 38:091e511ce8a0 1229 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 38:091e511ce8a0 1230 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 38:091e511ce8a0 1231 // This software system can't be fooled that way.)
mjr 38:091e511ce8a0 1232 uint8_t pulseState;
mjr 38:091e511ce8a0 1233 float pulseTime;
mjr 38:091e511ce8a0 1234
mjr 48:058ace2aed1d 1235 } __attribute__((packed)) buttonState[MAX_BUTTONS];
mjr 18:5e890ebd0023 1236
mjr 38:091e511ce8a0 1237
mjr 38:091e511ce8a0 1238 // Button data
mjr 38:091e511ce8a0 1239 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 1240
mjr 38:091e511ce8a0 1241 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 1242 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 1243 // modifier keys.
mjr 38:091e511ce8a0 1244 struct
mjr 38:091e511ce8a0 1245 {
mjr 38:091e511ce8a0 1246 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 1247 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 1248 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 1249 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 1250 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 1251
mjr 38:091e511ce8a0 1252 // Media key state
mjr 38:091e511ce8a0 1253 struct
mjr 38:091e511ce8a0 1254 {
mjr 38:091e511ce8a0 1255 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 1256 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 1257 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 1258
mjr 38:091e511ce8a0 1259 // button scan interrupt ticker
mjr 38:091e511ce8a0 1260 Ticker buttonTicker;
mjr 38:091e511ce8a0 1261
mjr 38:091e511ce8a0 1262 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 1263 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 1264 void scanButtons()
mjr 38:091e511ce8a0 1265 {
mjr 38:091e511ce8a0 1266 // scan all button input pins
mjr 38:091e511ce8a0 1267 ButtonState *bs = buttonState;
mjr 38:091e511ce8a0 1268 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 38:091e511ce8a0 1269 {
mjr 38:091e511ce8a0 1270 // if it's connected, check its physical state
mjr 38:091e511ce8a0 1271 if (bs->di != NULL)
mjr 38:091e511ce8a0 1272 {
mjr 38:091e511ce8a0 1273 // Shift the new state into the debounce history. Note that
mjr 38:091e511ce8a0 1274 // the physical pin inputs are active low (0V/GND = ON), so invert
mjr 38:091e511ce8a0 1275 // the reading by XOR'ing the low bit with 1. And of course we
mjr 38:091e511ce8a0 1276 // only want the low bit (since the history is effectively a bit
mjr 38:091e511ce8a0 1277 // vector), so mask the whole thing with 0x01 as well.
mjr 38:091e511ce8a0 1278 uint8_t db = bs->dbstate;
mjr 38:091e511ce8a0 1279 db <<= 1;
mjr 38:091e511ce8a0 1280 db |= (bs->di->read() & 0x01) ^ 0x01;
mjr 38:091e511ce8a0 1281 bs->dbstate = db;
mjr 38:091e511ce8a0 1282
mjr 38:091e511ce8a0 1283 // if we have all 0's or 1's in the history for the required
mjr 38:091e511ce8a0 1284 // debounce period, the key state is stable - check for a change
mjr 38:091e511ce8a0 1285 // to the last stable state
mjr 38:091e511ce8a0 1286 const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings
mjr 38:091e511ce8a0 1287 db &= stable;
mjr 38:091e511ce8a0 1288 if (db == 0 || db == stable)
mjr 38:091e511ce8a0 1289 bs->on = db;
mjr 38:091e511ce8a0 1290 }
mjr 38:091e511ce8a0 1291 }
mjr 38:091e511ce8a0 1292 }
mjr 38:091e511ce8a0 1293
mjr 38:091e511ce8a0 1294 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1295 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1296 // in the physical button state.
mjr 38:091e511ce8a0 1297 Timer buttonTimer;
mjr 12:669df364a565 1298
mjr 11:bd9da7088e6e 1299 // initialize the button inputs
mjr 35:e959ffba78fd 1300 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1301 {
mjr 35:e959ffba78fd 1302 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1303 kbKeys = false;
mjr 35:e959ffba78fd 1304
mjr 11:bd9da7088e6e 1305 // create the digital inputs
mjr 35:e959ffba78fd 1306 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1307 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1308 {
mjr 35:e959ffba78fd 1309 PinName pin = wirePinName(cfg.button[i].pin);
mjr 35:e959ffba78fd 1310 if (pin != NC)
mjr 35:e959ffba78fd 1311 {
mjr 35:e959ffba78fd 1312 // set up the GPIO input pin for this button
mjr 48:058ace2aed1d 1313 bs->di = new TinyDigitalIn(pin);
mjr 35:e959ffba78fd 1314
mjr 38:091e511ce8a0 1315 // if it's a pulse mode button, set the initial pulse state to Off
mjr 38:091e511ce8a0 1316 if (cfg.button[i].flags & BtnFlagPulse)
mjr 38:091e511ce8a0 1317 bs->pulseState = 1;
mjr 38:091e511ce8a0 1318
mjr 35:e959ffba78fd 1319 // note if it's a keyboard key of some kind (including media keys)
mjr 35:e959ffba78fd 1320 uint8_t val = cfg.button[i].val;
mjr 35:e959ffba78fd 1321 switch (cfg.button[i].typ)
mjr 35:e959ffba78fd 1322 {
mjr 35:e959ffba78fd 1323 case BtnTypeJoystick:
mjr 35:e959ffba78fd 1324 // joystick button - get the button bit mask
mjr 35:e959ffba78fd 1325 bs->js = 1 << val;
mjr 35:e959ffba78fd 1326 break;
mjr 35:e959ffba78fd 1327
mjr 35:e959ffba78fd 1328 case BtnTypeKey:
mjr 35:e959ffba78fd 1329 // regular keyboard key - note the scan code
mjr 35:e959ffba78fd 1330 bs->keycode = val;
mjr 35:e959ffba78fd 1331 kbKeys = true;
mjr 35:e959ffba78fd 1332 break;
mjr 35:e959ffba78fd 1333
mjr 35:e959ffba78fd 1334 case BtnTypeModKey:
mjr 35:e959ffba78fd 1335 // keyboard mod key - note the modifier mask
mjr 35:e959ffba78fd 1336 bs->keymod = val;
mjr 35:e959ffba78fd 1337 kbKeys = true;
mjr 35:e959ffba78fd 1338 break;
mjr 35:e959ffba78fd 1339
mjr 35:e959ffba78fd 1340 case BtnTypeMedia:
mjr 35:e959ffba78fd 1341 // media key - note the code
mjr 35:e959ffba78fd 1342 bs->mediakey = val;
mjr 35:e959ffba78fd 1343 kbKeys = true;
mjr 35:e959ffba78fd 1344 break;
mjr 39:b3815a1c3802 1345
mjr 39:b3815a1c3802 1346 case BtnTypeSpecial:
mjr 39:b3815a1c3802 1347 // special key
mjr 39:b3815a1c3802 1348 bs->special = val;
mjr 39:b3815a1c3802 1349 break;
mjr 35:e959ffba78fd 1350 }
mjr 35:e959ffba78fd 1351 }
mjr 11:bd9da7088e6e 1352 }
mjr 12:669df364a565 1353
mjr 38:091e511ce8a0 1354 // start the button scan thread
mjr 38:091e511ce8a0 1355 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1356
mjr 38:091e511ce8a0 1357 // start the button state transition timer
mjr 12:669df364a565 1358 buttonTimer.start();
mjr 11:bd9da7088e6e 1359 }
mjr 11:bd9da7088e6e 1360
mjr 38:091e511ce8a0 1361 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1362 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1363 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1364 // mapped to special device functions (e.g., Night Mode).
mjr 38:091e511ce8a0 1365 void processButtons()
mjr 35:e959ffba78fd 1366 {
mjr 35:e959ffba78fd 1367 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1368 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1369 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1370 int nkeys = 0;
mjr 11:bd9da7088e6e 1371
mjr 35:e959ffba78fd 1372 // clear the joystick buttons
mjr 36:b9747461331e 1373 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1374
mjr 35:e959ffba78fd 1375 // start with no media keys pressed
mjr 35:e959ffba78fd 1376 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1377
mjr 38:091e511ce8a0 1378 // calculate the time since the last run
mjr 35:e959ffba78fd 1379 float dt = buttonTimer.read();
mjr 18:5e890ebd0023 1380 buttonTimer.reset();
mjr 38:091e511ce8a0 1381
mjr 11:bd9da7088e6e 1382 // scan the button list
mjr 18:5e890ebd0023 1383 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1384 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1385 {
mjr 38:091e511ce8a0 1386 // if it's a pulse-mode switch, get the virtual pressed state
mjr 38:091e511ce8a0 1387 if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1388 {
mjr 38:091e511ce8a0 1389 // deduct the time to the next state change
mjr 38:091e511ce8a0 1390 bs->pulseTime -= dt;
mjr 38:091e511ce8a0 1391 if (bs->pulseTime < 0)
mjr 38:091e511ce8a0 1392 bs->pulseTime = 0;
mjr 38:091e511ce8a0 1393
mjr 38:091e511ce8a0 1394 // if the timer has expired, check for state changes
mjr 38:091e511ce8a0 1395 if (bs->pulseTime == 0)
mjr 18:5e890ebd0023 1396 {
mjr 38:091e511ce8a0 1397 const float pulseLength = 0.2;
mjr 38:091e511ce8a0 1398 switch (bs->pulseState)
mjr 18:5e890ebd0023 1399 {
mjr 38:091e511ce8a0 1400 case 1:
mjr 38:091e511ce8a0 1401 // off - if the physical switch is now on, start a button pulse
mjr 38:091e511ce8a0 1402 if (bs->on) {
mjr 38:091e511ce8a0 1403 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1404 bs->pulseState = 2;
mjr 38:091e511ce8a0 1405 bs->pressed = 1;
mjr 38:091e511ce8a0 1406 }
mjr 38:091e511ce8a0 1407 break;
mjr 18:5e890ebd0023 1408
mjr 38:091e511ce8a0 1409 case 2:
mjr 38:091e511ce8a0 1410 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1411 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1412 // change in state in the logical button
mjr 38:091e511ce8a0 1413 bs->pulseState = 3;
mjr 38:091e511ce8a0 1414 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1415 bs->pressed = 0;
mjr 38:091e511ce8a0 1416 break;
mjr 38:091e511ce8a0 1417
mjr 38:091e511ce8a0 1418 case 3:
mjr 38:091e511ce8a0 1419 // on - if the physical switch is now off, start a button pulse
mjr 38:091e511ce8a0 1420 if (!bs->on) {
mjr 38:091e511ce8a0 1421 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1422 bs->pulseState = 4;
mjr 38:091e511ce8a0 1423 bs->pressed = 1;
mjr 38:091e511ce8a0 1424 }
mjr 38:091e511ce8a0 1425 break;
mjr 38:091e511ce8a0 1426
mjr 38:091e511ce8a0 1427 case 4:
mjr 38:091e511ce8a0 1428 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 1429 bs->pulseState = 1;
mjr 38:091e511ce8a0 1430 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1431 bs->pressed = 0;
mjr 38:091e511ce8a0 1432 break;
mjr 18:5e890ebd0023 1433 }
mjr 18:5e890ebd0023 1434 }
mjr 38:091e511ce8a0 1435 }
mjr 38:091e511ce8a0 1436 else
mjr 38:091e511ce8a0 1437 {
mjr 38:091e511ce8a0 1438 // not a pulse switch - the logical state is the same as the physical state
mjr 38:091e511ce8a0 1439 bs->pressed = bs->on;
mjr 38:091e511ce8a0 1440 }
mjr 35:e959ffba78fd 1441
mjr 38:091e511ce8a0 1442 // carry out any edge effects from buttons changing states
mjr 38:091e511ce8a0 1443 if (bs->pressed != bs->prev)
mjr 38:091e511ce8a0 1444 {
mjr 38:091e511ce8a0 1445 // check for special key transitions
mjr 38:091e511ce8a0 1446 switch (bs->special)
mjr 35:e959ffba78fd 1447 {
mjr 38:091e511ce8a0 1448 case 1:
mjr 38:091e511ce8a0 1449 // night mode momentary switch - when the button transitions from
mjr 38:091e511ce8a0 1450 // OFF to ON, invert night mode
mjr 38:091e511ce8a0 1451 if (bs->pressed)
mjr 38:091e511ce8a0 1452 toggleNightMode();
mjr 38:091e511ce8a0 1453 break;
mjr 35:e959ffba78fd 1454
mjr 38:091e511ce8a0 1455 case 2:
mjr 38:091e511ce8a0 1456 // night mode toggle switch - when the button changes state, change
mjr 38:091e511ce8a0 1457 // night mode to match the new state
mjr 38:091e511ce8a0 1458 setNightMode(bs->pressed);
mjr 38:091e511ce8a0 1459 break;
mjr 35:e959ffba78fd 1460 }
mjr 38:091e511ce8a0 1461
mjr 38:091e511ce8a0 1462 // remember the new state for comparison on the next run
mjr 38:091e511ce8a0 1463 bs->prev = bs->pressed;
mjr 38:091e511ce8a0 1464 }
mjr 38:091e511ce8a0 1465
mjr 38:091e511ce8a0 1466 // if it's pressed, add it to the appropriate key state list
mjr 38:091e511ce8a0 1467 if (bs->pressed)
mjr 38:091e511ce8a0 1468 {
mjr 38:091e511ce8a0 1469 // OR in the joystick button bit, mod key bits, and media key bits
mjr 38:091e511ce8a0 1470 newjs |= bs->js;
mjr 38:091e511ce8a0 1471 modkeys |= bs->keymod;
mjr 38:091e511ce8a0 1472 mediakeys |= bs->mediakey;
mjr 38:091e511ce8a0 1473
mjr 38:091e511ce8a0 1474 // if it has a keyboard key, add the scan code to the active list
mjr 38:091e511ce8a0 1475 if (bs->keycode != 0 && nkeys < 7)
mjr 38:091e511ce8a0 1476 keys[nkeys++] = bs->keycode;
mjr 18:5e890ebd0023 1477 }
mjr 11:bd9da7088e6e 1478 }
mjr 36:b9747461331e 1479
mjr 36:b9747461331e 1480 // check for joystick button changes
mjr 36:b9747461331e 1481 if (jsButtons != newjs)
mjr 36:b9747461331e 1482 jsButtons = newjs;
mjr 11:bd9da7088e6e 1483
mjr 35:e959ffba78fd 1484 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 1485 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 1486 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 1487 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 1488 {
mjr 35:e959ffba78fd 1489 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 1490 kbState.changed = true;
mjr 35:e959ffba78fd 1491 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 1492 if (nkeys <= 6) {
mjr 35:e959ffba78fd 1493 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 1494 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 1495 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 1496 }
mjr 35:e959ffba78fd 1497 else {
mjr 35:e959ffba78fd 1498 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 1499 kbState.nkeys = 6;
mjr 35:e959ffba78fd 1500 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 1501 }
mjr 35:e959ffba78fd 1502 }
mjr 35:e959ffba78fd 1503
mjr 35:e959ffba78fd 1504 // Check for changes to media keys
mjr 35:e959ffba78fd 1505 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 1506 {
mjr 35:e959ffba78fd 1507 mediaState.changed = true;
mjr 35:e959ffba78fd 1508 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 1509 }
mjr 11:bd9da7088e6e 1510 }
mjr 11:bd9da7088e6e 1511
mjr 5:a70c0bce770d 1512 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1513 //
mjr 5:a70c0bce770d 1514 // Customization joystick subbclass
mjr 5:a70c0bce770d 1515 //
mjr 5:a70c0bce770d 1516
mjr 5:a70c0bce770d 1517 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 1518 {
mjr 5:a70c0bce770d 1519 public:
mjr 35:e959ffba78fd 1520 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 1521 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 1522 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 1523 {
mjr 5:a70c0bce770d 1524 suspended_ = false;
mjr 5:a70c0bce770d 1525 }
mjr 5:a70c0bce770d 1526
mjr 5:a70c0bce770d 1527 // are we connected?
mjr 5:a70c0bce770d 1528 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 1529
mjr 5:a70c0bce770d 1530 // Are we in suspend mode?
mjr 5:a70c0bce770d 1531 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 1532
mjr 5:a70c0bce770d 1533 protected:
mjr 5:a70c0bce770d 1534 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 1535 { suspended_ = suspended; }
mjr 5:a70c0bce770d 1536
mjr 5:a70c0bce770d 1537 // are we suspended?
mjr 5:a70c0bce770d 1538 int suspended_;
mjr 5:a70c0bce770d 1539 };
mjr 5:a70c0bce770d 1540
mjr 5:a70c0bce770d 1541 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1542 //
mjr 5:a70c0bce770d 1543 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 1544 //
mjr 5:a70c0bce770d 1545
mjr 5:a70c0bce770d 1546 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 1547 //
mjr 5:a70c0bce770d 1548 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 1549 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 1550 // automatic calibration.
mjr 5:a70c0bce770d 1551 //
mjr 5:a70c0bce770d 1552 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 1553 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 1554 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 1555 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 1556 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 1557 // every sample.
mjr 5:a70c0bce770d 1558 //
mjr 6:cc35eb643e8f 1559 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 1560 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 1561 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 1562 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 1563 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 1564 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 1565 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 1566 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 1567 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 1568 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 1569 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 1570 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 1571 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 1572 // of nudging, say).
mjr 5:a70c0bce770d 1573 //
mjr 5:a70c0bce770d 1574
mjr 17:ab3cec0c8bf4 1575 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 1576 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 1577
mjr 17:ab3cec0c8bf4 1578 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 1579 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 1580 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 1581
mjr 17:ab3cec0c8bf4 1582 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 1583 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 1584 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 1585 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 1586
mjr 17:ab3cec0c8bf4 1587
mjr 6:cc35eb643e8f 1588 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 1589 struct AccHist
mjr 5:a70c0bce770d 1590 {
mjr 6:cc35eb643e8f 1591 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1592 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 1593 {
mjr 6:cc35eb643e8f 1594 // save the raw position
mjr 6:cc35eb643e8f 1595 this->x = x;
mjr 6:cc35eb643e8f 1596 this->y = y;
mjr 6:cc35eb643e8f 1597 this->d = distance(prv);
mjr 6:cc35eb643e8f 1598 }
mjr 6:cc35eb643e8f 1599
mjr 6:cc35eb643e8f 1600 // reading for this entry
mjr 5:a70c0bce770d 1601 float x, y;
mjr 5:a70c0bce770d 1602
mjr 6:cc35eb643e8f 1603 // distance from previous entry
mjr 6:cc35eb643e8f 1604 float d;
mjr 5:a70c0bce770d 1605
mjr 6:cc35eb643e8f 1606 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 1607 float xtot, ytot;
mjr 6:cc35eb643e8f 1608 int cnt;
mjr 6:cc35eb643e8f 1609
mjr 6:cc35eb643e8f 1610 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1611 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 1612 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 1613 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 1614
mjr 6:cc35eb643e8f 1615 float distance(AccHist *p)
mjr 6:cc35eb643e8f 1616 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 1617 };
mjr 5:a70c0bce770d 1618
mjr 5:a70c0bce770d 1619 // accelerometer wrapper class
mjr 3:3514575d4f86 1620 class Accel
mjr 3:3514575d4f86 1621 {
mjr 3:3514575d4f86 1622 public:
mjr 3:3514575d4f86 1623 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 1624 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 1625 {
mjr 5:a70c0bce770d 1626 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 1627 irqPin_ = irqPin;
mjr 5:a70c0bce770d 1628
mjr 5:a70c0bce770d 1629 // reset and initialize
mjr 5:a70c0bce770d 1630 reset();
mjr 5:a70c0bce770d 1631 }
mjr 5:a70c0bce770d 1632
mjr 5:a70c0bce770d 1633 void reset()
mjr 5:a70c0bce770d 1634 {
mjr 6:cc35eb643e8f 1635 // clear the center point
mjr 6:cc35eb643e8f 1636 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 1637
mjr 6:cc35eb643e8f 1638 // start the calibration timer
mjr 5:a70c0bce770d 1639 tCenter_.start();
mjr 5:a70c0bce770d 1640 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 1641
mjr 5:a70c0bce770d 1642 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 1643 mma_.init();
mjr 6:cc35eb643e8f 1644
mjr 6:cc35eb643e8f 1645 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 1646 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1647
mjr 6:cc35eb643e8f 1648 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 1649 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 1650 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 1651
mjr 3:3514575d4f86 1652 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 1653 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 1654
mjr 3:3514575d4f86 1655 // start our timers
mjr 3:3514575d4f86 1656 tGet_.start();
mjr 3:3514575d4f86 1657 tInt_.start();
mjr 3:3514575d4f86 1658 }
mjr 3:3514575d4f86 1659
mjr 9:fd65b0a94720 1660 void get(int &x, int &y)
mjr 3:3514575d4f86 1661 {
mjr 3:3514575d4f86 1662 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 1663 __disable_irq();
mjr 3:3514575d4f86 1664
mjr 3:3514575d4f86 1665 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 1666 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 1667 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 1668
mjr 6:cc35eb643e8f 1669 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 1670 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1671
mjr 3:3514575d4f86 1672 // get the time since the last get() sample
mjr 38:091e511ce8a0 1673 float dt = tGet_.read_us()/1.0e6f;
mjr 3:3514575d4f86 1674 tGet_.reset();
mjr 3:3514575d4f86 1675
mjr 3:3514575d4f86 1676 // done manipulating the shared data
mjr 3:3514575d4f86 1677 __enable_irq();
mjr 3:3514575d4f86 1678
mjr 6:cc35eb643e8f 1679 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 1680 vx /= dt;
mjr 6:cc35eb643e8f 1681 vy /= dt;
mjr 6:cc35eb643e8f 1682
mjr 6:cc35eb643e8f 1683 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 1684 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1685 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 1686
mjr 5:a70c0bce770d 1687 // check for auto-centering every so often
mjr 48:058ace2aed1d 1688 if (tCenter_.read_us() > 1000000)
mjr 5:a70c0bce770d 1689 {
mjr 5:a70c0bce770d 1690 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 1691 AccHist *prv = p;
mjr 5:a70c0bce770d 1692 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 1693 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1694 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 1695
mjr 5:a70c0bce770d 1696 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 1697 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 1698 {
mjr 5:a70c0bce770d 1699 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 1700 static const float accTol = .01;
mjr 6:cc35eb643e8f 1701 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 1702 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 1703 && p0[1].d < accTol
mjr 6:cc35eb643e8f 1704 && p0[2].d < accTol
mjr 6:cc35eb643e8f 1705 && p0[3].d < accTol
mjr 6:cc35eb643e8f 1706 && p0[4].d < accTol)
mjr 5:a70c0bce770d 1707 {
mjr 6:cc35eb643e8f 1708 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 1709 // the samples over the rest period
mjr 6:cc35eb643e8f 1710 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 1711 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 1712 }
mjr 5:a70c0bce770d 1713 }
mjr 5:a70c0bce770d 1714 else
mjr 5:a70c0bce770d 1715 {
mjr 5:a70c0bce770d 1716 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 1717 ++nAccPrv_;
mjr 5:a70c0bce770d 1718 }
mjr 6:cc35eb643e8f 1719
mjr 6:cc35eb643e8f 1720 // clear the new item's running totals
mjr 6:cc35eb643e8f 1721 p->clearAvg();
mjr 5:a70c0bce770d 1722
mjr 5:a70c0bce770d 1723 // reset the timer
mjr 5:a70c0bce770d 1724 tCenter_.reset();
mjr 39:b3815a1c3802 1725
mjr 39:b3815a1c3802 1726 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 1727 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 1728 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 1729 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 1730 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 1731 // generation to continue.
mjr 39:b3815a1c3802 1732 //
mjr 39:b3815a1c3802 1733 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 1734 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 1735 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 1736 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 1737 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 1738 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 1739 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 1740 {
mjr 39:b3815a1c3802 1741 float x, y, z;
mjr 39:b3815a1c3802 1742 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 1743 }
mjr 5:a70c0bce770d 1744 }
mjr 5:a70c0bce770d 1745
mjr 6:cc35eb643e8f 1746 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 1747 x = rawToReport(vx);
mjr 6:cc35eb643e8f 1748 y = rawToReport(vy);
mjr 5:a70c0bce770d 1749
mjr 6:cc35eb643e8f 1750 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1751 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1752 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 1753 #endif
mjr 3:3514575d4f86 1754 }
mjr 29:582472d0bc57 1755
mjr 3:3514575d4f86 1756 private:
mjr 6:cc35eb643e8f 1757 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 1758 int rawToReport(float v)
mjr 5:a70c0bce770d 1759 {
mjr 6:cc35eb643e8f 1760 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 1761 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 1762
mjr 6:cc35eb643e8f 1763 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 1764 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 1765 static const int filter[] = {
mjr 6:cc35eb643e8f 1766 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 1767 0,
mjr 6:cc35eb643e8f 1768 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 1769 };
mjr 6:cc35eb643e8f 1770 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 1771 }
mjr 5:a70c0bce770d 1772
mjr 3:3514575d4f86 1773 // interrupt handler
mjr 3:3514575d4f86 1774 void isr()
mjr 3:3514575d4f86 1775 {
mjr 3:3514575d4f86 1776 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 1777 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 1778 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 1779 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 1780 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 1781 float x, y, z;
mjr 5:a70c0bce770d 1782 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 1783
mjr 3:3514575d4f86 1784 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 1785 float dt = tInt_.read();
mjr 3:3514575d4f86 1786 tInt_.reset();
mjr 6:cc35eb643e8f 1787
mjr 6:cc35eb643e8f 1788 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 1789 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 1790 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 1791
mjr 6:cc35eb643e8f 1792 // store the updates
mjr 6:cc35eb643e8f 1793 ax_ = x;
mjr 6:cc35eb643e8f 1794 ay_ = y;
mjr 6:cc35eb643e8f 1795 az_ = z;
mjr 3:3514575d4f86 1796 }
mjr 3:3514575d4f86 1797
mjr 3:3514575d4f86 1798 // underlying accelerometer object
mjr 3:3514575d4f86 1799 MMA8451Q mma_;
mjr 3:3514575d4f86 1800
mjr 5:a70c0bce770d 1801 // last raw acceleration readings
mjr 6:cc35eb643e8f 1802 float ax_, ay_, az_;
mjr 5:a70c0bce770d 1803
mjr 6:cc35eb643e8f 1804 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 1805 float vx_, vy_;
mjr 6:cc35eb643e8f 1806
mjr 3:3514575d4f86 1807 // timer for measuring time between get() samples
mjr 3:3514575d4f86 1808 Timer tGet_;
mjr 3:3514575d4f86 1809
mjr 3:3514575d4f86 1810 // timer for measuring time between interrupts
mjr 3:3514575d4f86 1811 Timer tInt_;
mjr 5:a70c0bce770d 1812
mjr 6:cc35eb643e8f 1813 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 1814 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 1815 // at rest.
mjr 6:cc35eb643e8f 1816 float cx_, cy_;
mjr 5:a70c0bce770d 1817
mjr 5:a70c0bce770d 1818 // timer for atuo-centering
mjr 5:a70c0bce770d 1819 Timer tCenter_;
mjr 6:cc35eb643e8f 1820
mjr 6:cc35eb643e8f 1821 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 1822 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 1823 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 1824 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 1825 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 1826 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 1827 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 1828 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 1829 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 1830 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 1831 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 1832 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 1833 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 1834 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 1835 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 1836
mjr 5:a70c0bce770d 1837 // interurupt pin name
mjr 5:a70c0bce770d 1838 PinName irqPin_;
mjr 5:a70c0bce770d 1839
mjr 5:a70c0bce770d 1840 // interrupt router
mjr 5:a70c0bce770d 1841 InterruptIn intIn_;
mjr 3:3514575d4f86 1842 };
mjr 3:3514575d4f86 1843
mjr 5:a70c0bce770d 1844
mjr 5:a70c0bce770d 1845 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1846 //
mjr 14:df700b22ca08 1847 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 1848 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1849 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1850 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 1851 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 1852 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 1853 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 1854 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 1855 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 1856 //
mjr 14:df700b22ca08 1857 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 1858 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 1859 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 1860 //
mjr 5:a70c0bce770d 1861 void clear_i2c()
mjr 5:a70c0bce770d 1862 {
mjr 38:091e511ce8a0 1863 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 1864 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1865 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1866
mjr 5:a70c0bce770d 1867 // clock the SCL 9 times
mjr 5:a70c0bce770d 1868 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1869 {
mjr 5:a70c0bce770d 1870 scl = 1;
mjr 5:a70c0bce770d 1871 wait_us(20);
mjr 5:a70c0bce770d 1872 scl = 0;
mjr 5:a70c0bce770d 1873 wait_us(20);
mjr 5:a70c0bce770d 1874 }
mjr 5:a70c0bce770d 1875 }
mjr 14:df700b22ca08 1876
mjr 14:df700b22ca08 1877 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 1878 //
mjr 33:d832bcab089e 1879 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 1880 // for a given interval before allowing an update.
mjr 33:d832bcab089e 1881 //
mjr 33:d832bcab089e 1882 class Debouncer
mjr 33:d832bcab089e 1883 {
mjr 33:d832bcab089e 1884 public:
mjr 33:d832bcab089e 1885 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 1886 {
mjr 33:d832bcab089e 1887 t.start();
mjr 33:d832bcab089e 1888 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 1889 this->tmin = tmin;
mjr 33:d832bcab089e 1890 }
mjr 33:d832bcab089e 1891
mjr 33:d832bcab089e 1892 // Get the current stable value
mjr 33:d832bcab089e 1893 bool val() const { return stable; }
mjr 33:d832bcab089e 1894
mjr 33:d832bcab089e 1895 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 1896 // input device.
mjr 33:d832bcab089e 1897 void sampleIn(bool val)
mjr 33:d832bcab089e 1898 {
mjr 33:d832bcab089e 1899 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 1900 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 1901 // on the sample reader.
mjr 33:d832bcab089e 1902 if (val != prv)
mjr 33:d832bcab089e 1903 {
mjr 33:d832bcab089e 1904 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 1905 t.reset();
mjr 33:d832bcab089e 1906
mjr 33:d832bcab089e 1907 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 1908 prv = val;
mjr 33:d832bcab089e 1909 }
mjr 33:d832bcab089e 1910 else if (val != stable)
mjr 33:d832bcab089e 1911 {
mjr 33:d832bcab089e 1912 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 1913 // and different from the stable value. This means that
mjr 33:d832bcab089e 1914 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 1915 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 1916 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 1917 if (t.read() > tmin)
mjr 33:d832bcab089e 1918 stable = val;
mjr 33:d832bcab089e 1919 }
mjr 33:d832bcab089e 1920 }
mjr 33:d832bcab089e 1921
mjr 33:d832bcab089e 1922 private:
mjr 33:d832bcab089e 1923 // current stable value
mjr 33:d832bcab089e 1924 bool stable;
mjr 33:d832bcab089e 1925
mjr 33:d832bcab089e 1926 // last raw sample value
mjr 33:d832bcab089e 1927 bool prv;
mjr 33:d832bcab089e 1928
mjr 33:d832bcab089e 1929 // elapsed time since last raw input change
mjr 33:d832bcab089e 1930 Timer t;
mjr 33:d832bcab089e 1931
mjr 33:d832bcab089e 1932 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 1933 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 1934 float tmin;
mjr 33:d832bcab089e 1935 };
mjr 33:d832bcab089e 1936
mjr 33:d832bcab089e 1937
mjr 33:d832bcab089e 1938 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1939 //
mjr 33:d832bcab089e 1940 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 1941 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 1942 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 1943 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 1944 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 1945 //
mjr 33:d832bcab089e 1946 void allOutputsOff()
mjr 33:d832bcab089e 1947 {
mjr 33:d832bcab089e 1948 // reset all LedWiz outputs to OFF/48
mjr 35:e959ffba78fd 1949 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 33:d832bcab089e 1950 {
mjr 33:d832bcab089e 1951 outLevel[i] = 0;
mjr 33:d832bcab089e 1952 wizOn[i] = 0;
mjr 33:d832bcab089e 1953 wizVal[i] = 48;
mjr 33:d832bcab089e 1954 lwPin[i]->set(0);
mjr 33:d832bcab089e 1955 }
mjr 33:d832bcab089e 1956
mjr 33:d832bcab089e 1957 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 40:cc0d9814522b 1958 for (int i = numLwOutputs ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 1959 {
mjr 33:d832bcab089e 1960 outLevel[i] = 0;
mjr 33:d832bcab089e 1961 lwPin[i]->set(0);
mjr 33:d832bcab089e 1962 }
mjr 33:d832bcab089e 1963
mjr 33:d832bcab089e 1964 // restore default LedWiz flash rate
mjr 33:d832bcab089e 1965 wizSpeed = 2;
mjr 34:6b981a2afab7 1966
mjr 34:6b981a2afab7 1967 // flush changes to hc595, if applicable
mjr 35:e959ffba78fd 1968 if (hc595 != 0)
mjr 35:e959ffba78fd 1969 hc595->update();
mjr 33:d832bcab089e 1970 }
mjr 33:d832bcab089e 1971
mjr 33:d832bcab089e 1972 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1973 //
mjr 33:d832bcab089e 1974 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 1975 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 1976 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 1977 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 1978 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 1979 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 1980 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 1981 //
mjr 33:d832bcab089e 1982 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 1983 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 1984 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 1985 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 1986 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 1987 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 1988 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 1989 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 1990 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 1991 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 1992 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 1993 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 1994 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 1995 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 1996 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 1997 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 1998 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 1999 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 2000 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 2001 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 2002 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 2003 //
mjr 40:cc0d9814522b 2004 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 2005 // of tricky but likely scenarios:
mjr 33:d832bcab089e 2006 //
mjr 33:d832bcab089e 2007 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 2008 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 2009 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 2010 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 2011 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 2012 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 2013 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 2014 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 2015 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 2016 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 2017 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 2018 //
mjr 33:d832bcab089e 2019 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 2020 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 2021 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 2022 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 2023 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 2024 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 2025 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 2026 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 2027 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 2028 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 2029 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 2030 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 2031 // first check.
mjr 33:d832bcab089e 2032 //
mjr 33:d832bcab089e 2033 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 2034 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 2035 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 2036 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 2037 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 2038 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 2039 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 2040 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 2041 //
mjr 33:d832bcab089e 2042
mjr 33:d832bcab089e 2043 // Current PSU2 state:
mjr 33:d832bcab089e 2044 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 2045 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 2046 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 2047 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 2048 // 5 -> TV relay on
mjr 33:d832bcab089e 2049 int psu2_state = 1;
mjr 35:e959ffba78fd 2050
mjr 35:e959ffba78fd 2051 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 2052 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 2053 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 2054
mjr 35:e959ffba78fd 2055 // TV ON switch relay control
mjr 35:e959ffba78fd 2056 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 2057
mjr 35:e959ffba78fd 2058 // Timer interrupt
mjr 35:e959ffba78fd 2059 Ticker tv_ticker;
mjr 35:e959ffba78fd 2060 float tv_delay_time;
mjr 33:d832bcab089e 2061 void TVTimerInt()
mjr 33:d832bcab089e 2062 {
mjr 35:e959ffba78fd 2063 // time since last state change
mjr 35:e959ffba78fd 2064 static Timer tv_timer;
mjr 35:e959ffba78fd 2065
mjr 33:d832bcab089e 2066 // Check our internal state
mjr 33:d832bcab089e 2067 switch (psu2_state)
mjr 33:d832bcab089e 2068 {
mjr 33:d832bcab089e 2069 case 1:
mjr 33:d832bcab089e 2070 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 2071 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 2072 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 2073 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 2074 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 2075 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 2076 {
mjr 33:d832bcab089e 2077 // switch to OFF state
mjr 33:d832bcab089e 2078 psu2_state = 2;
mjr 33:d832bcab089e 2079
mjr 33:d832bcab089e 2080 // try setting the latch
mjr 35:e959ffba78fd 2081 psu2_status_set->write(1);
mjr 33:d832bcab089e 2082 }
mjr 33:d832bcab089e 2083 break;
mjr 33:d832bcab089e 2084
mjr 33:d832bcab089e 2085 case 2:
mjr 33:d832bcab089e 2086 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 2087 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 2088 psu2_status_set->write(0);
mjr 33:d832bcab089e 2089 psu2_state = 3;
mjr 33:d832bcab089e 2090 break;
mjr 33:d832bcab089e 2091
mjr 33:d832bcab089e 2092 case 3:
mjr 33:d832bcab089e 2093 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 2094 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 2095 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 2096 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 2097 if (psu2_status_sense->read())
mjr 33:d832bcab089e 2098 {
mjr 33:d832bcab089e 2099 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 2100 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 2101 tv_timer.reset();
mjr 33:d832bcab089e 2102 tv_timer.start();
mjr 33:d832bcab089e 2103 psu2_state = 4;
mjr 33:d832bcab089e 2104 }
mjr 33:d832bcab089e 2105 else
mjr 33:d832bcab089e 2106 {
mjr 33:d832bcab089e 2107 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 2108 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 2109 // was turned on since the last check.
mjr 35:e959ffba78fd 2110 psu2_status_set->write(1);
mjr 33:d832bcab089e 2111 psu2_state = 2;
mjr 33:d832bcab089e 2112 }
mjr 33:d832bcab089e 2113 break;
mjr 33:d832bcab089e 2114
mjr 33:d832bcab089e 2115 case 4:
mjr 33:d832bcab089e 2116 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 2117 // delay time, pulse the relay.
mjr 35:e959ffba78fd 2118 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 2119 {
mjr 33:d832bcab089e 2120 // turn on the relay for one timer interval
mjr 35:e959ffba78fd 2121 tv_relay->write(1);
mjr 33:d832bcab089e 2122 psu2_state = 5;
mjr 33:d832bcab089e 2123 }
mjr 33:d832bcab089e 2124 break;
mjr 33:d832bcab089e 2125
mjr 33:d832bcab089e 2126 case 5:
mjr 33:d832bcab089e 2127 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 2128 // it's now time to turn it off and return to the default state.
mjr 35:e959ffba78fd 2129 tv_relay->write(0);
mjr 33:d832bcab089e 2130 psu2_state = 1;
mjr 33:d832bcab089e 2131 break;
mjr 33:d832bcab089e 2132 }
mjr 33:d832bcab089e 2133 }
mjr 33:d832bcab089e 2134
mjr 35:e959ffba78fd 2135 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 2136 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 2137 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 2138 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 2139 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 2140 {
mjr 35:e959ffba78fd 2141 // only start the timer if the status sense circuit pins are configured
mjr 35:e959ffba78fd 2142 if (cfg.TVON.statusPin != NC && cfg.TVON.latchPin != NC && cfg.TVON.relayPin != NC)
mjr 35:e959ffba78fd 2143 {
mjr 35:e959ffba78fd 2144 psu2_status_sense = new DigitalIn(cfg.TVON.statusPin);
mjr 35:e959ffba78fd 2145 psu2_status_set = new DigitalOut(cfg.TVON.latchPin);
mjr 35:e959ffba78fd 2146 tv_relay = new DigitalOut(cfg.TVON.relayPin);
mjr 40:cc0d9814522b 2147 tv_delay_time = cfg.TVON.delayTime/100.0;
mjr 35:e959ffba78fd 2148
mjr 35:e959ffba78fd 2149 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 2150 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 2151 }
mjr 35:e959ffba78fd 2152 }
mjr 35:e959ffba78fd 2153
mjr 35:e959ffba78fd 2154 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2155 //
mjr 35:e959ffba78fd 2156 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 2157 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 2158 //
mjr 35:e959ffba78fd 2159 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 2160 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 2161 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 2162 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 2163 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 2164 // again each time the firmware is updated.
mjr 35:e959ffba78fd 2165 //
mjr 35:e959ffba78fd 2166 NVM nvm;
mjr 35:e959ffba78fd 2167
mjr 35:e959ffba78fd 2168 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 2169 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 2170
mjr 35:e959ffba78fd 2171 // flash memory controller interface
mjr 35:e959ffba78fd 2172 FreescaleIAP iap;
mjr 35:e959ffba78fd 2173
mjr 35:e959ffba78fd 2174 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 2175 // required to store the structure
mjr 35:e959ffba78fd 2176 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 2177 {
mjr 35:e959ffba78fd 2178 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 2179 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 2180
mjr 35:e959ffba78fd 2181 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 2182 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 2183 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 2184
mjr 35:e959ffba78fd 2185 // return the address as a pointer
mjr 35:e959ffba78fd 2186 return (NVM *)addr;
mjr 35:e959ffba78fd 2187 }
mjr 35:e959ffba78fd 2188
mjr 35:e959ffba78fd 2189 // figure the flash address as a pointer
mjr 35:e959ffba78fd 2190 NVM *configFlashAddr()
mjr 35:e959ffba78fd 2191 {
mjr 35:e959ffba78fd 2192 int addr, numSectors;
mjr 35:e959ffba78fd 2193 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 2194 }
mjr 35:e959ffba78fd 2195
mjr 35:e959ffba78fd 2196 // Load the config from flash
mjr 35:e959ffba78fd 2197 void loadConfigFromFlash()
mjr 35:e959ffba78fd 2198 {
mjr 35:e959ffba78fd 2199 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 2200 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 2201 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 2202 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 2203 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 2204 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 2205 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 2206 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 2207 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 2208 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 2209 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 2210 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 2211 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 2212 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 2213 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 2214 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 2215
mjr 35:e959ffba78fd 2216 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 2217 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 2218
mjr 35:e959ffba78fd 2219 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 2220 if (flash->valid())
mjr 35:e959ffba78fd 2221 {
mjr 35:e959ffba78fd 2222 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 2223 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 2224 }
mjr 35:e959ffba78fd 2225 else
mjr 35:e959ffba78fd 2226 {
mjr 35:e959ffba78fd 2227 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 2228 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 2229 }
mjr 35:e959ffba78fd 2230 }
mjr 35:e959ffba78fd 2231
mjr 35:e959ffba78fd 2232 void saveConfigToFlash()
mjr 33:d832bcab089e 2233 {
mjr 35:e959ffba78fd 2234 int addr, sectors;
mjr 35:e959ffba78fd 2235 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 2236 nvm.save(iap, addr);
mjr 35:e959ffba78fd 2237 }
mjr 35:e959ffba78fd 2238
mjr 35:e959ffba78fd 2239 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2240 //
mjr 40:cc0d9814522b 2241 // Night mode setting updates
mjr 40:cc0d9814522b 2242 //
mjr 38:091e511ce8a0 2243
mjr 38:091e511ce8a0 2244 // Turn night mode on or off
mjr 38:091e511ce8a0 2245 static void setNightMode(bool on)
mjr 38:091e511ce8a0 2246 {
mjr 40:cc0d9814522b 2247 // set the new night mode flag in the noisy output class
mjr 40:cc0d9814522b 2248 LwNoisyOut::nightMode = on;
mjr 40:cc0d9814522b 2249
mjr 40:cc0d9814522b 2250 // update the special output pin that shows the night mode state
mjr 40:cc0d9814522b 2251 specialPin[SPECIAL_PIN_NIGHTMODE]->set(on ? 255 : 0);
mjr 40:cc0d9814522b 2252
mjr 40:cc0d9814522b 2253 // update all outputs for the mode change
mjr 40:cc0d9814522b 2254 updateAllOuts();
mjr 38:091e511ce8a0 2255 }
mjr 38:091e511ce8a0 2256
mjr 38:091e511ce8a0 2257 // Toggle night mode
mjr 38:091e511ce8a0 2258 static void toggleNightMode()
mjr 38:091e511ce8a0 2259 {
mjr 40:cc0d9814522b 2260 setNightMode(!LwNoisyOut::nightMode);
mjr 38:091e511ce8a0 2261 }
mjr 38:091e511ce8a0 2262
mjr 38:091e511ce8a0 2263
mjr 38:091e511ce8a0 2264 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2265 //
mjr 35:e959ffba78fd 2266 // Plunger Sensor
mjr 35:e959ffba78fd 2267 //
mjr 35:e959ffba78fd 2268
mjr 35:e959ffba78fd 2269 // the plunger sensor interface object
mjr 35:e959ffba78fd 2270 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 2271
mjr 35:e959ffba78fd 2272 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 2273 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 2274 void createPlunger()
mjr 35:e959ffba78fd 2275 {
mjr 35:e959ffba78fd 2276 // create the new sensor object according to the type
mjr 35:e959ffba78fd 2277 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 2278 {
mjr 35:e959ffba78fd 2279 case PlungerType_TSL1410RS:
mjr 35:e959ffba78fd 2280 // pins are: SI, CLOCK, AO
mjr 35:e959ffba78fd 2281 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 2282 break;
mjr 35:e959ffba78fd 2283
mjr 35:e959ffba78fd 2284 case PlungerType_TSL1410RP:
mjr 35:e959ffba78fd 2285 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2286 plungerSensor = new PlungerSensorTSL1410R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2287 break;
mjr 35:e959ffba78fd 2288
mjr 35:e959ffba78fd 2289 case PlungerType_TSL1412RS:
mjr 35:e959ffba78fd 2290 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2291 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], NC);
mjr 35:e959ffba78fd 2292 break;
mjr 35:e959ffba78fd 2293
mjr 35:e959ffba78fd 2294 case PlungerType_TSL1412RP:
mjr 35:e959ffba78fd 2295 // pins are: SI, CLOCK, AO1, AO2
mjr 35:e959ffba78fd 2296 plungerSensor = new PlungerSensorTSL1412R(cfg.plunger.sensorPin[0], cfg.plunger.sensorPin[1], cfg.plunger.sensorPin[2], cfg.plunger.sensorPin[3]);
mjr 35:e959ffba78fd 2297 break;
mjr 35:e959ffba78fd 2298
mjr 35:e959ffba78fd 2299 case PlungerType_Pot:
mjr 35:e959ffba78fd 2300 // pins are: AO
mjr 35:e959ffba78fd 2301 plungerSensor = new PlungerSensorPot(cfg.plunger.sensorPin[0]);
mjr 35:e959ffba78fd 2302 break;
mjr 35:e959ffba78fd 2303
mjr 35:e959ffba78fd 2304 case PlungerType_None:
mjr 35:e959ffba78fd 2305 default:
mjr 35:e959ffba78fd 2306 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 2307 break;
mjr 35:e959ffba78fd 2308 }
mjr 33:d832bcab089e 2309 }
mjr 33:d832bcab089e 2310
mjr 48:058ace2aed1d 2311 // Plunger reader
mjr 48:058ace2aed1d 2312 class PlungerReader
mjr 48:058ace2aed1d 2313 {
mjr 48:058ace2aed1d 2314 public:
mjr 48:058ace2aed1d 2315 PlungerReader()
mjr 48:058ace2aed1d 2316 {
mjr 48:058ace2aed1d 2317 // not in a firing event yet
mjr 48:058ace2aed1d 2318 firing = 0;
mjr 48:058ace2aed1d 2319
mjr 48:058ace2aed1d 2320 // no history yet
mjr 48:058ace2aed1d 2321 histIdx = 0;
mjr 48:058ace2aed1d 2322
mjr 48:058ace2aed1d 2323 // not in calibration mode
mjr 48:058ace2aed1d 2324 cal = false;
mjr 48:058ace2aed1d 2325 }
mjr 48:058ace2aed1d 2326
mjr 48:058ace2aed1d 2327 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 2328 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 2329 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 2330 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 2331 void read()
mjr 48:058ace2aed1d 2332 {
mjr 48:058ace2aed1d 2333 // Read a sample from the sensor
mjr 48:058ace2aed1d 2334 PlungerReading r;
mjr 48:058ace2aed1d 2335 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 2336 {
mjr 48:058ace2aed1d 2337 // if in calibration mode, apply it to the calibration
mjr 48:058ace2aed1d 2338 if (cal)
mjr 48:058ace2aed1d 2339 {
mjr 48:058ace2aed1d 2340 // if it's outside of the current calibration bounds,
mjr 48:058ace2aed1d 2341 // expand the bounds
mjr 48:058ace2aed1d 2342 if (r.pos < cfg.plunger.cal.min)
mjr 48:058ace2aed1d 2343 cfg.plunger.cal.min = r.pos;
mjr 48:058ace2aed1d 2344 if (r.pos < cfg.plunger.cal.zero)
mjr 48:058ace2aed1d 2345 cfg.plunger.cal.zero = r.pos;
mjr 48:058ace2aed1d 2346 if (r.pos > cfg.plunger.cal.max)
mjr 48:058ace2aed1d 2347 cfg.plunger.cal.max = r.pos;
mjr 48:058ace2aed1d 2348
mjr 48:058ace2aed1d 2349 // As long as we're in calibration mode, return the raw
mjr 48:058ace2aed1d 2350 // sensor position as the joystick value, adjusted to the
mjr 48:058ace2aed1d 2351 // JOYMAX scale.
mjr 48:058ace2aed1d 2352 z = int16_t((long(r.pos) * JOYMAX)/65535);
mjr 48:058ace2aed1d 2353 return;
mjr 48:058ace2aed1d 2354 }
mjr 48:058ace2aed1d 2355
mjr 48:058ace2aed1d 2356 // If the new reading is within 2ms of the previous reading,
mjr 48:058ace2aed1d 2357 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 2358 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 2359 // denominator (the time interval) for calculating the plunger
mjr 48:058ace2aed1d 2360 // velocity. (The CCD sensor can't take readings faster than
mjr 48:058ace2aed1d 2361 // this anyway, but other sensor types, such as potentiometers,
mjr 48:058ace2aed1d 2362 // can, so we have to throttle the rate artifically in case
mjr 48:058ace2aed1d 2363 // we're using a fast sensor like that.)
mjr 48:058ace2aed1d 2364 if (uint32_t(r.t - prv.t) < 2000UL)
mjr 48:058ace2aed1d 2365 return;
mjr 48:058ace2aed1d 2366
mjr 48:058ace2aed1d 2367 // bounds-check the calibration data
mjr 48:058ace2aed1d 2368 checkCalBounds(r.pos);
mjr 48:058ace2aed1d 2369
mjr 48:058ace2aed1d 2370 // calibrate and rescale the value
mjr 48:058ace2aed1d 2371 int pos = int(
mjr 48:058ace2aed1d 2372 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 48:058ace2aed1d 2373 / (cfg.plunger.cal.max - cfg.plunger.cal.zero));
mjr 48:058ace2aed1d 2374
mjr 48:058ace2aed1d 2375 // Calculate the velocity from the previous reading to here,
mjr 48:058ace2aed1d 2376 // in joystick distance units per microsecond.
mjr 48:058ace2aed1d 2377 //
mjr 48:058ace2aed1d 2378 // For reference, the physical plunger velocity ranges up
mjr 48:058ace2aed1d 2379 // to about 100,000 joystick distance units/sec. This is
mjr 48:058ace2aed1d 2380 // based on empirical measurements. The typical time for
mjr 48:058ace2aed1d 2381 // a real plunger to travel the full distance when released
mjr 48:058ace2aed1d 2382 // from full retraction is about 85ms, so the average velocity
mjr 48:058ace2aed1d 2383 // covering this distance is about 56,000 units/sec. The
mjr 48:058ace2aed1d 2384 // peak is probably about twice that. In real-world units,
mjr 48:058ace2aed1d 2385 // this translates to an average speed of about .75 m/s and
mjr 48:058ace2aed1d 2386 // a peak of about 1.5 m/s.
mjr 48:058ace2aed1d 2387 //
mjr 48:058ace2aed1d 2388 // Note that we actually calculate the value here in units
mjr 48:058ace2aed1d 2389 // per *microsecond* - the discussion above is in terms of
mjr 48:058ace2aed1d 2390 // units/sec because that's more on a human scale. Our
mjr 48:058ace2aed1d 2391 // choice of internal units here really isn't important,
mjr 48:058ace2aed1d 2392 // since we only use the velocity for comparison purposes,
mjr 48:058ace2aed1d 2393 // to detect acceleration trends. We therefore save ourselves
mjr 48:058ace2aed1d 2394 // a little CPU time by using the natural units of our inputs.
mjr 48:058ace2aed1d 2395 float v = float(pos - prv.pos)/float(r.t - prv.t);
mjr 48:058ace2aed1d 2396
mjr 48:058ace2aed1d 2397 // presume we'll just report the latest reading
mjr 48:058ace2aed1d 2398 z = pos;
mjr 48:058ace2aed1d 2399 vz = v;
mjr 48:058ace2aed1d 2400
mjr 48:058ace2aed1d 2401 // Check firing events
mjr 48:058ace2aed1d 2402 switch (firing)
mjr 48:058ace2aed1d 2403 {
mjr 48:058ace2aed1d 2404 case 0:
mjr 48:058ace2aed1d 2405 // Default state - not in a firing event.
mjr 48:058ace2aed1d 2406
mjr 48:058ace2aed1d 2407 // Check for a recent high water mark. Keep the high point
mjr 48:058ace2aed1d 2408 // within a small window
mjr 48:058ace2aed1d 2409
mjr 48:058ace2aed1d 2410 // If we have forward motion from a position that's retracted
mjr 48:058ace2aed1d 2411 // beyond a threshold, enter phase 1.
mjr 48:058ace2aed1d 2412 if (v < 0 && pos > JOYMAX/6)
mjr 48:058ace2aed1d 2413 {
mjr 48:058ace2aed1d 2414 // enter phase 1
mjr 48:058ace2aed1d 2415 firingMode(1);
mjr 48:058ace2aed1d 2416
mjr 48:058ace2aed1d 2417 // we don't have a freeze position yet, but note the start time
mjr 48:058ace2aed1d 2418 f1.pos = 0;
mjr 48:058ace2aed1d 2419 f1.t = r.t;
mjr 48:058ace2aed1d 2420
mjr 48:058ace2aed1d 2421 // Figure the fake "bounce" position in case we complete the
mjr 48:058ace2aed1d 2422 // firing event. This is the barrel spring compression proportional
mjr 48:058ace2aed1d 2423 // to the starting position. The barrel spring is about 1/6 the
mjr 48:058ace2aed1d 2424 // length of the main spring, so figure it compresses by 1/6 the
mjr 48:058ace2aed1d 2425 // distance.
mjr 48:058ace2aed1d 2426 f2.pos = -pos/6;
mjr 48:058ace2aed1d 2427 }
mjr 48:058ace2aed1d 2428 break;
mjr 48:058ace2aed1d 2429
mjr 48:058ace2aed1d 2430 case 1:
mjr 48:058ace2aed1d 2431 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 48:058ace2aed1d 2432 // the firing event. Otherwise, continue monitoring as long as we
mjr 48:058ace2aed1d 2433 // see acceleration in the forward direction.
mjr 48:058ace2aed1d 2434 if (pos <= 0)
mjr 48:058ace2aed1d 2435 {
mjr 48:058ace2aed1d 2436 // switch to the synthetic firing mode
mjr 48:058ace2aed1d 2437 firingMode(2);
mjr 48:058ace2aed1d 2438
mjr 48:058ace2aed1d 2439 // note the start time for the firing phase
mjr 48:058ace2aed1d 2440 f2.t = r.t;
mjr 48:058ace2aed1d 2441 }
mjr 48:058ace2aed1d 2442 else if (v < vprv)
mjr 48:058ace2aed1d 2443 {
mjr 48:058ace2aed1d 2444 // We're still accelerating, and we haven't crossed the zero
mjr 48:058ace2aed1d 2445 // point yet - stay in phase 1. (Note that forward motion is
mjr 48:058ace2aed1d 2446 // negative velocity, so accelerating means that the new
mjr 48:058ace2aed1d 2447 // velocity is more negative than the previous one, which
mjr 48:058ace2aed1d 2448 // is to say numerically less than - that's why the test
mjr 48:058ace2aed1d 2449 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 48:058ace2aed1d 2450 }
mjr 48:058ace2aed1d 2451 else if (uint32_t(r.t - prv.t) < 5000UL)
mjr 48:058ace2aed1d 2452 {
mjr 48:058ace2aed1d 2453 // We're not accelerating relative to the previous reading,
mjr 48:058ace2aed1d 2454 // but we're within 5ms of it. Throw out this reading to
mjr 48:058ace2aed1d 2455 // collect more data.
mjr 48:058ace2aed1d 2456 pos = prv.pos;
mjr 48:058ace2aed1d 2457 r.t = prv.t;
mjr 48:058ace2aed1d 2458 v = vprv;
mjr 48:058ace2aed1d 2459 }
mjr 48:058ace2aed1d 2460 else
mjr 48:058ace2aed1d 2461 {
mjr 48:058ace2aed1d 2462 // We're not accelerating. Cancel the firing event.
mjr 48:058ace2aed1d 2463 firingMode(0);
mjr 48:058ace2aed1d 2464 }
mjr 48:058ace2aed1d 2465
mjr 48:058ace2aed1d 2466 // If we've been in phase 1 for at least 25ms, we're probably
mjr 48:058ace2aed1d 2467 // really doing a release. Jump back to the recent local
mjr 48:058ace2aed1d 2468 // maximum where the release *really* started. This is always
mjr 48:058ace2aed1d 2469 // a bit before we started seeing sustained accleration, because
mjr 48:058ace2aed1d 2470 // the plunger motion for the first few milliseconds is too slow
mjr 48:058ace2aed1d 2471 // for our sensor precision to reliably detect acceleration.
mjr 48:058ace2aed1d 2472 if (firing == 1)
mjr 48:058ace2aed1d 2473 {
mjr 48:058ace2aed1d 2474 if (f1.pos != 0)
mjr 48:058ace2aed1d 2475 {
mjr 48:058ace2aed1d 2476 // we have a reset point - freeze there
mjr 48:058ace2aed1d 2477 z = f1.pos;
mjr 48:058ace2aed1d 2478 }
mjr 48:058ace2aed1d 2479 else if (uint32_t(r.t - f1.t) >= 25000UL)
mjr 48:058ace2aed1d 2480 {
mjr 48:058ace2aed1d 2481 // it's been long enough - set a reset point.
mjr 48:058ace2aed1d 2482 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 48:058ace2aed1d 2483 }
mjr 48:058ace2aed1d 2484 }
mjr 48:058ace2aed1d 2485 break;
mjr 48:058ace2aed1d 2486
mjr 48:058ace2aed1d 2487 case 2:
mjr 48:058ace2aed1d 2488 // Phase 2 - start of synthetic firing event. Report the fake
mjr 48:058ace2aed1d 2489 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 48:058ace2aed1d 2490 // this should be enough time to guarantee that VP sees this
mjr 48:058ace2aed1d 2491 // report at least once.
mjr 48:058ace2aed1d 2492 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 48:058ace2aed1d 2493 {
mjr 48:058ace2aed1d 2494 // report the bounce position
mjr 48:058ace2aed1d 2495 z = f2.pos;
mjr 48:058ace2aed1d 2496 }
mjr 48:058ace2aed1d 2497 else
mjr 48:058ace2aed1d 2498 {
mjr 48:058ace2aed1d 2499 // it's been long enough - switch to phase 3, where we
mjr 48:058ace2aed1d 2500 // report the park position until the real plunger comes
mjr 48:058ace2aed1d 2501 // to rest
mjr 48:058ace2aed1d 2502 firingMode(3);
mjr 48:058ace2aed1d 2503 z = 0;
mjr 48:058ace2aed1d 2504
mjr 48:058ace2aed1d 2505 // set the start of the "stability window" to the rest position
mjr 48:058ace2aed1d 2506 f3s.t = r.t;
mjr 48:058ace2aed1d 2507 f3s.pos = 0;
mjr 48:058ace2aed1d 2508
mjr 48:058ace2aed1d 2509 // set the start of the "retraction window" to the actual position
mjr 48:058ace2aed1d 2510 f3r = r;
mjr 48:058ace2aed1d 2511 }
mjr 48:058ace2aed1d 2512 break;
mjr 48:058ace2aed1d 2513
mjr 48:058ace2aed1d 2514 case 3:
mjr 48:058ace2aed1d 2515 // Phase 3 - in synthetic firing event. Report the park position
mjr 48:058ace2aed1d 2516 // until the plunger position stabilizes. Left to its own devices,
mjr 48:058ace2aed1d 2517 // the plunger will usualy bounce off the barrel spring several
mjr 48:058ace2aed1d 2518 // times before coming to rest, so we'll see oscillating motion
mjr 48:058ace2aed1d 2519 // for a second or two. In the simplest case, we can aimply wait
mjr 48:058ace2aed1d 2520 // for the plunger to stop moving for a short time. However, the
mjr 48:058ace2aed1d 2521 // player might intervene by pulling the plunger back again, so
mjr 48:058ace2aed1d 2522 // watch for that motion as well. If we're just bouncing freely,
mjr 48:058ace2aed1d 2523 // we'll see the direction change frequently. If the player is
mjr 48:058ace2aed1d 2524 // moving the plunger manually, the direction will be constant
mjr 48:058ace2aed1d 2525 // for longer.
mjr 48:058ace2aed1d 2526 if (v >= 0)
mjr 48:058ace2aed1d 2527 {
mjr 48:058ace2aed1d 2528 // We're moving back (or standing still). If this has been
mjr 48:058ace2aed1d 2529 // going on for a while, the user must have taken control.
mjr 48:058ace2aed1d 2530 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 48:058ace2aed1d 2531 {
mjr 48:058ace2aed1d 2532 // user has taken control - cancel firing mode
mjr 48:058ace2aed1d 2533 firingMode(0);
mjr 48:058ace2aed1d 2534 break;
mjr 48:058ace2aed1d 2535 }
mjr 48:058ace2aed1d 2536 }
mjr 48:058ace2aed1d 2537 else
mjr 48:058ace2aed1d 2538 {
mjr 48:058ace2aed1d 2539 // forward motion - reset retraction window
mjr 48:058ace2aed1d 2540 f3r.t = r.t;
mjr 48:058ace2aed1d 2541 }
mjr 48:058ace2aed1d 2542
mjr 48:058ace2aed1d 2543 // check if we've come to rest, or close enough
mjr 48:058ace2aed1d 2544 if (abs(r.pos - f3s.pos) < 200)
mjr 48:058ace2aed1d 2545 {
mjr 48:058ace2aed1d 2546 // It's within an eighth inch of the last starting point.
mjr 48:058ace2aed1d 2547 // If it's been here for 30ms, consider it stable.
mjr 48:058ace2aed1d 2548 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 48:058ace2aed1d 2549 {
mjr 48:058ace2aed1d 2550 // we're done with the firing event
mjr 48:058ace2aed1d 2551 firingMode(0);
mjr 48:058ace2aed1d 2552 }
mjr 48:058ace2aed1d 2553 else
mjr 48:058ace2aed1d 2554 {
mjr 48:058ace2aed1d 2555 // it's close to the last position but hasn't been
mjr 48:058ace2aed1d 2556 // here long enough; stay in firing mode and continue
mjr 48:058ace2aed1d 2557 // to report the park position
mjr 48:058ace2aed1d 2558 z = 0;
mjr 48:058ace2aed1d 2559 }
mjr 48:058ace2aed1d 2560 }
mjr 48:058ace2aed1d 2561 else
mjr 48:058ace2aed1d 2562 {
mjr 48:058ace2aed1d 2563 // It's not close enough to the last starting point, so use
mjr 48:058ace2aed1d 2564 // this as a new starting point, and stay in firing mode.
mjr 48:058ace2aed1d 2565 f3s = r;
mjr 48:058ace2aed1d 2566 z = 0;
mjr 48:058ace2aed1d 2567 }
mjr 48:058ace2aed1d 2568 break;
mjr 48:058ace2aed1d 2569 }
mjr 48:058ace2aed1d 2570
mjr 48:058ace2aed1d 2571 // save the new reading for next time
mjr 48:058ace2aed1d 2572 prv.pos = pos;
mjr 48:058ace2aed1d 2573 prv.t = r.t;
mjr 48:058ace2aed1d 2574 vprv = v;
mjr 48:058ace2aed1d 2575
mjr 48:058ace2aed1d 2576 // add it to the circular history buffer as well
mjr 48:058ace2aed1d 2577 hist[histIdx++] = prv;
mjr 48:058ace2aed1d 2578 histIdx %= countof(hist);
mjr 48:058ace2aed1d 2579 }
mjr 48:058ace2aed1d 2580 }
mjr 48:058ace2aed1d 2581
mjr 48:058ace2aed1d 2582 // Get the current value to report through the joystick interface
mjr 48:058ace2aed1d 2583 int16_t getPosition() const { return z; }
mjr 48:058ace2aed1d 2584
mjr 48:058ace2aed1d 2585 // Get the current velocity (joystick distance units per microsecond)
mjr 48:058ace2aed1d 2586 float getVelocity() const { return vz; }
mjr 48:058ace2aed1d 2587
mjr 48:058ace2aed1d 2588 // get the timestamp of the current joystick report (microseconds)
mjr 48:058ace2aed1d 2589 uint32_t getTimestamp() const { return prv.t; }
mjr 48:058ace2aed1d 2590
mjr 48:058ace2aed1d 2591 // Set calibration mode on or off
mjr 48:058ace2aed1d 2592 void calMode(bool f)
mjr 48:058ace2aed1d 2593 {
mjr 48:058ace2aed1d 2594 // if entering calibration mode, reset the saved calibration data
mjr 48:058ace2aed1d 2595 if (f && !cal)
mjr 48:058ace2aed1d 2596 cfg.plunger.cal.begin();
mjr 48:058ace2aed1d 2597
mjr 48:058ace2aed1d 2598 // remember the new mode
mjr 48:058ace2aed1d 2599 cal = f;
mjr 48:058ace2aed1d 2600 }
mjr 48:058ace2aed1d 2601
mjr 48:058ace2aed1d 2602 // is a firing event in progress?
mjr 48:058ace2aed1d 2603 bool isFiring() { return firing > 3; }
mjr 48:058ace2aed1d 2604
mjr 48:058ace2aed1d 2605 private:
mjr 48:058ace2aed1d 2606 // set a firing mode
mjr 48:058ace2aed1d 2607 inline void firingMode(int m)
mjr 48:058ace2aed1d 2608 {
mjr 48:058ace2aed1d 2609 firing = m;
mjr 48:058ace2aed1d 2610
mjr 48:058ace2aed1d 2611 // $$$
mjr 48:058ace2aed1d 2612 lwPin[3]->set(0);
mjr 48:058ace2aed1d 2613 lwPin[4]->set(0);
mjr 48:058ace2aed1d 2614 lwPin[5]->set(0);
mjr 48:058ace2aed1d 2615 switch (m)
mjr 48:058ace2aed1d 2616 {
mjr 48:058ace2aed1d 2617 case 1: lwPin[3]->set(255); break; // red
mjr 48:058ace2aed1d 2618 case 2: lwPin[4]->set(255); break; // green
mjr 48:058ace2aed1d 2619 case 3: lwPin[5]->set(255); break; // blue
mjr 48:058ace2aed1d 2620 case 4: lwPin[3]->set(255); lwPin[5]->set(255); break; // purple
mjr 48:058ace2aed1d 2621 }
mjr 48:058ace2aed1d 2622 //$$$
mjr 48:058ace2aed1d 2623 }
mjr 48:058ace2aed1d 2624
mjr 48:058ace2aed1d 2625 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 2626 // the given time limit.
mjr 48:058ace2aed1d 2627 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 2628 {
mjr 48:058ace2aed1d 2629 // start with the prior entry
mjr 48:058ace2aed1d 2630 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 2631 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 2632
mjr 48:058ace2aed1d 2633 // scan backwards for a local maximum
mjr 48:058ace2aed1d 2634 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 2635 {
mjr 48:058ace2aed1d 2636 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 2637 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 2638 break;
mjr 48:058ace2aed1d 2639
mjr 48:058ace2aed1d 2640 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 2641 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 2642 break;
mjr 48:058ace2aed1d 2643
mjr 48:058ace2aed1d 2644 // this is the new high
mjr 48:058ace2aed1d 2645 hi = hist[idx].pos;
mjr 48:058ace2aed1d 2646 }
mjr 48:058ace2aed1d 2647
mjr 48:058ace2aed1d 2648 // return the local maximum
mjr 48:058ace2aed1d 2649 return hi;
mjr 48:058ace2aed1d 2650 }
mjr 48:058ace2aed1d 2651
mjr 48:058ace2aed1d 2652 // Adjust the calibration bounds for a new reading. This is used
mjr 48:058ace2aed1d 2653 // while NOT in calibration mode to ensure that a reading doesn't
mjr 48:058ace2aed1d 2654 // violate the calibration limits. If it does, we'll readjust the
mjr 48:058ace2aed1d 2655 // limits to incorporate the new value.
mjr 48:058ace2aed1d 2656 void checkCalBounds(int pos)
mjr 48:058ace2aed1d 2657 {
mjr 48:058ace2aed1d 2658 // If the value is beyond the calibration maximum, increase the
mjr 48:058ace2aed1d 2659 // calibration point. This ensures that our joystick reading
mjr 48:058ace2aed1d 2660 // is always within the valid joystick field range.
mjr 48:058ace2aed1d 2661 if (pos > cfg.plunger.cal.max)
mjr 48:058ace2aed1d 2662 cfg.plunger.cal.max = pos;
mjr 48:058ace2aed1d 2663
mjr 48:058ace2aed1d 2664 // make sure we don't overflow in the opposite direction
mjr 48:058ace2aed1d 2665 if (pos < cfg.plunger.cal.zero
mjr 48:058ace2aed1d 2666 && cfg.plunger.cal.zero - pos > cfg.plunger.cal.max)
mjr 48:058ace2aed1d 2667 {
mjr 48:058ace2aed1d 2668 // we need to raise 'max' by this much to keep things in range
mjr 48:058ace2aed1d 2669 int adj = cfg.plunger.cal.zero - pos - cfg.plunger.cal.max;
mjr 48:058ace2aed1d 2670
mjr 48:058ace2aed1d 2671 // we can raise 'max' at most this much before overflowing
mjr 48:058ace2aed1d 2672 int lim = 0xffff - cfg.plunger.cal.max;
mjr 48:058ace2aed1d 2673
mjr 48:058ace2aed1d 2674 // if we have headroom to raise 'max' by 'adj', do so, otherwise
mjr 48:058ace2aed1d 2675 // raise it as much as we can and apply the excess to lowering the
mjr 48:058ace2aed1d 2676 // zero point
mjr 48:058ace2aed1d 2677 if (adj > lim)
mjr 48:058ace2aed1d 2678 {
mjr 48:058ace2aed1d 2679 cfg.plunger.cal.zero -= adj - lim;
mjr 48:058ace2aed1d 2680 adj = lim;
mjr 48:058ace2aed1d 2681 }
mjr 48:058ace2aed1d 2682 cfg.plunger.cal.max += adj;
mjr 48:058ace2aed1d 2683 }
mjr 48:058ace2aed1d 2684
mjr 48:058ace2aed1d 2685 // If the calibration max isn't higher than the calibration
mjr 48:058ace2aed1d 2686 // zero, we have a negative or zero scale range, which isn't
mjr 48:058ace2aed1d 2687 // physically meaningful. Fix it by forcing the max above
mjr 48:058ace2aed1d 2688 // the zero point (or the zero point below the max, if they're
mjr 48:058ace2aed1d 2689 // both pegged at the datatype maximum).
mjr 48:058ace2aed1d 2690 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 48:058ace2aed1d 2691 {
mjr 48:058ace2aed1d 2692 if (cfg.plunger.cal.zero != 0xFFFF)
mjr 48:058ace2aed1d 2693 cfg.plunger.cal.max = cfg.plunger.cal.zero + 1;
mjr 48:058ace2aed1d 2694 else
mjr 48:058ace2aed1d 2695 cfg.plunger.cal.zero -= 1;
mjr 48:058ace2aed1d 2696 }
mjr 48:058ace2aed1d 2697 }
mjr 48:058ace2aed1d 2698
mjr 48:058ace2aed1d 2699 // Previous reading
mjr 48:058ace2aed1d 2700 PlungerReading prv;
mjr 48:058ace2aed1d 2701
mjr 48:058ace2aed1d 2702 // velocity at previous reading
mjr 48:058ace2aed1d 2703 float vprv;
mjr 48:058ace2aed1d 2704
mjr 48:058ace2aed1d 2705 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 2706 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 2707 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 2708 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 2709 // exactly when it started. We throttle our readings to no more
mjr 48:058ace2aed1d 2710 // than one every 2ms, so we have at least N*2ms of history in this
mjr 48:058ace2aed1d 2711 // array.
mjr 48:058ace2aed1d 2712 PlungerReading hist[25];
mjr 48:058ace2aed1d 2713 int histIdx;
mjr 48:058ace2aed1d 2714
mjr 48:058ace2aed1d 2715 // Firing event state.
mjr 48:058ace2aed1d 2716 //
mjr 48:058ace2aed1d 2717 // A "firing event" happens when we detect that the physical plunger
mjr 48:058ace2aed1d 2718 // is moving forward fast enough that it was probably released. When
mjr 48:058ace2aed1d 2719 // we detect a firing event, we momentarily disconnect the joystick
mjr 48:058ace2aed1d 2720 // readings from the physical sensor, and instead feed in a series of
mjr 48:058ace2aed1d 2721 // synthesized readings that simulate an idealized release motion.
mjr 48:058ace2aed1d 2722 //
mjr 48:058ace2aed1d 2723 // The reason we create these synthetic readings is that they give us
mjr 48:058ace2aed1d 2724 // better results in VP and other PC pinball players. The joystick
mjr 48:058ace2aed1d 2725 // interface only lets us report the instantaneous plunger position.
mjr 48:058ace2aed1d 2726 // VP only reads the position at certain intervals, so it picks up
mjr 48:058ace2aed1d 2727 // a series of snapshots of the position, which it uses to infer the
mjr 48:058ace2aed1d 2728 // plunger velocity. But the plunger release motion is so fast that
mjr 48:058ace2aed1d 2729 // VP's sampling rate creates a classic digital "aliasing" problem.
mjr 48:058ace2aed1d 2730 //
mjr 48:058ace2aed1d 2731 // Our synthesized report structure is designed to overcome the
mjr 48:058ace2aed1d 2732 // aliasing problem by removing the intermediate position reports
mjr 48:058ace2aed1d 2733 // and only reporting the starting and ending positions. This
mjr 48:058ace2aed1d 2734 // allows the PC side to reliably read the extremes of the travel
mjr 48:058ace2aed1d 2735 // and work entirely in the simulation domain to simulate a plunger
mjr 48:058ace2aed1d 2736 // release of the detected distance. This produces more realistic
mjr 48:058ace2aed1d 2737 // results than feeding VP the real data, ironically.
mjr 48:058ace2aed1d 2738 //
mjr 48:058ace2aed1d 2739 // DETECTING A RELEASE MOTION
mjr 48:058ace2aed1d 2740 //
mjr 48:058ace2aed1d 2741 // How do we tell when the plunger is being released? The basic
mjr 48:058ace2aed1d 2742 // idea is to monitor the sensor data and look for a series of
mjr 48:058ace2aed1d 2743 // readings that match the profile of a release motion. For an
mjr 48:058ace2aed1d 2744 // idealized, mathematical model of a plunger, a release causes
mjr 48:058ace2aed1d 2745 // the plunger to start accelerating under the spring force.
mjr 48:058ace2aed1d 2746 //
mjr 48:058ace2aed1d 2747 // The real system has a couple of complications. First, there
mjr 48:058ace2aed1d 2748 // are some mechanical effects that make the motion less than
mjr 48:058ace2aed1d 2749 // ideal (in the sense of matching the mathematical model),
mjr 48:058ace2aed1d 2750 // like friction and wobble. This seems to be especially
mjr 48:058ace2aed1d 2751 // significant for the first 10-20ms of the release, probably
mjr 48:058ace2aed1d 2752 // because friction is a bigger factor at slow speeds, and
mjr 48:058ace2aed1d 2753 // also because of the uneven forces as the user lets go.
mjr 48:058ace2aed1d 2754 // Second, our sensor doesn't have infinite precision, and
mjr 48:058ace2aed1d 2755 // our clock doesn't either, and these error bars compound
mjr 48:058ace2aed1d 2756 // when we combine position and time to compute velocity.
mjr 48:058ace2aed1d 2757 //
mjr 48:058ace2aed1d 2758 // To deal with these real-world complications, we have a couple
mjr 48:058ace2aed1d 2759 // of strategies. First, we tolerate a little bit of non-uniformity
mjr 48:058ace2aed1d 2760 // in the acceleration, by waiting a little longer if we get a
mjr 48:058ace2aed1d 2761 // reading that doesn't appear to be accelerating. We still
mjr 48:058ace2aed1d 2762 // insist on continuous acceleration, but we basically double-check
mjr 48:058ace2aed1d 2763 // a reading by extending the time window when necessary. Second,
mjr 48:058ace2aed1d 2764 // when we detect a series of accelerating readings, we go back
mjr 48:058ace2aed1d 2765 // to prior readings from before the sustained acceleration
mjr 48:058ace2aed1d 2766 // began to find out when the motion really began.
mjr 48:058ace2aed1d 2767 //
mjr 48:058ace2aed1d 2768 // PROCESSING A RELEASE MOTION
mjr 48:058ace2aed1d 2769 //
mjr 48:058ace2aed1d 2770 // We continuously monitor the sensor data. When we see the position
mjr 48:058ace2aed1d 2771 // moving forward, toward the zero point, we start watching for
mjr 48:058ace2aed1d 2772 // sustained acceleration . If we see acceleration for more than a
mjr 48:058ace2aed1d 2773 // minimum threshold time (about 20ms), we freeze the reported
mjr 48:058ace2aed1d 2774 // position at the recent local maximum (from the recent history of
mjr 48:058ace2aed1d 2775 // readings) and wait for the acceleration to stop or for the plunger
mjr 48:058ace2aed1d 2776 // to cross the zero position. If it crosses the zero position
mjr 48:058ace2aed1d 2777 // while still accelerating, we initiate a firing event. Otherwise
mjr 48:058ace2aed1d 2778 // we return to instantaneous reporting of the actual position.
mjr 48:058ace2aed1d 2779 //
mjr 48:058ace2aed1d 2780 // HOW THIS LOOKS TO THE USER
mjr 48:058ace2aed1d 2781 //
mjr 48:058ace2aed1d 2782 // The typical timing to reach the zero point during a release
mjr 48:058ace2aed1d 2783 // is about 60-80ms. This is essentially the longest that we can
mjr 48:058ace2aed1d 2784 // stay in phase 1, so it's the longest that the readings will be
mjr 48:058ace2aed1d 2785 // frozen while we try to decide about a firing event. This is
mjr 48:058ace2aed1d 2786 // fast enough that it should be barely perceptible to the user.
mjr 48:058ace2aed1d 2787 // The synthetic firing event should trigger almost immediately
mjr 48:058ace2aed1d 2788 // upon releasing the plunger, from the user's perspective.
mjr 48:058ace2aed1d 2789 //
mjr 48:058ace2aed1d 2790 // The big danger with this approach is "false positives":
mjr 48:058ace2aed1d 2791 // mistaking manual motion under the user's control for a possible
mjr 48:058ace2aed1d 2792 // firing event. A false positive would produce a highly visible
mjr 48:058ace2aed1d 2793 // artifact, namely the on-screen plunger freezing in place while
mjr 48:058ace2aed1d 2794 // the player moves the real plunger. The strategy we use makes it
mjr 48:058ace2aed1d 2795 // almost impossible for this to happen long enough to be
mjr 48:058ace2aed1d 2796 // perceptible. To fool the system, you have to accelerate the
mjr 48:058ace2aed1d 2797 // plunger very steadily - with about 5ms granularity. It's
mjr 48:058ace2aed1d 2798 // really hard to do this, and especially unlikely that a user
mjr 48:058ace2aed1d 2799 // would do so accidentally.
mjr 48:058ace2aed1d 2800 //
mjr 48:058ace2aed1d 2801 // FIRING STATE VARIABLE
mjr 48:058ace2aed1d 2802 //
mjr 48:058ace2aed1d 2803 // The firing states are:
mjr 48:058ace2aed1d 2804 //
mjr 48:058ace2aed1d 2805 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 2806 // position to the joystick interface.
mjr 48:058ace2aed1d 2807 //
mjr 48:058ace2aed1d 2808 // 1 - Phase 1 - acceleration
mjr 48:058ace2aed1d 2809 //
mjr 48:058ace2aed1d 2810 // 2 - Firing event started. We report the "bounce" position for
mjr 48:058ace2aed1d 2811 // a minimum time.
mjr 48:058ace2aed1d 2812 //
mjr 48:058ace2aed1d 2813 // 3 - Firing event hold. We report the rest position for a
mjr 48:058ace2aed1d 2814 // minimum interval, or until the real plunger comes to rest
mjr 48:058ace2aed1d 2815 // somewhere, whichever comes first.
mjr 48:058ace2aed1d 2816 //
mjr 48:058ace2aed1d 2817 int firing;
mjr 48:058ace2aed1d 2818
mjr 48:058ace2aed1d 2819 // Position/timestamp at start of firing phase 1. We freeze the
mjr 48:058ace2aed1d 2820 // joystick reports at this position until we decide whether or not
mjr 48:058ace2aed1d 2821 // we're actually in a firing event. This isn't set until we're
mjr 48:058ace2aed1d 2822 // confident that we've been in the accleration phase for long
mjr 48:058ace2aed1d 2823 // enough; pos is non-zero when this is valid.
mjr 48:058ace2aed1d 2824 PlungerReading f1;
mjr 48:058ace2aed1d 2825
mjr 48:058ace2aed1d 2826 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 2827 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 2828 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 2829 // after enough time elapses.
mjr 48:058ace2aed1d 2830 PlungerReading f2;
mjr 48:058ace2aed1d 2831
mjr 48:058ace2aed1d 2832 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 2833 // We use this to determine when the plunger comes to rest. We set
mjr 48:058ace2aed1d 2834 // this at the beginning of phase 4, and then reset it when the
mjr 48:058ace2aed1d 2835 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 2836 PlungerReading f3s;
mjr 48:058ace2aed1d 2837
mjr 48:058ace2aed1d 2838 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 2839 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 2840 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 2841 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 2842 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 2843 // freely.
mjr 48:058ace2aed1d 2844 PlungerReading f3r;
mjr 48:058ace2aed1d 2845
mjr 48:058ace2aed1d 2846 // flag: we're in calibration mode
mjr 48:058ace2aed1d 2847 bool cal;
mjr 48:058ace2aed1d 2848
mjr 48:058ace2aed1d 2849 // next Z value to report to the joystick interface (in joystick
mjr 48:058ace2aed1d 2850 // distance units)
mjr 48:058ace2aed1d 2851 int z;
mjr 48:058ace2aed1d 2852
mjr 48:058ace2aed1d 2853 // velocity of this reading (joystick distance units per microsecond)
mjr 48:058ace2aed1d 2854 float vz;
mjr 48:058ace2aed1d 2855 };
mjr 48:058ace2aed1d 2856
mjr 48:058ace2aed1d 2857 // plunger reader singleton
mjr 48:058ace2aed1d 2858 PlungerReader plungerReader;
mjr 48:058ace2aed1d 2859
mjr 48:058ace2aed1d 2860 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 2861 //
mjr 48:058ace2aed1d 2862 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 2863 //
mjr 48:058ace2aed1d 2864 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 2865 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 2866 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 2867 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 2868 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 2869 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 2870 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 2871 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 2872 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 2873 //
mjr 48:058ace2aed1d 2874 // This feature has two configuration components:
mjr 48:058ace2aed1d 2875 //
mjr 48:058ace2aed1d 2876 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 2877 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 2878 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 2879 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 2880 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 2881 // plunger/launch button connection.
mjr 48:058ace2aed1d 2882 //
mjr 48:058ace2aed1d 2883 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 2884 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 2885 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 2886 // position.
mjr 48:058ace2aed1d 2887 //
mjr 48:058ace2aed1d 2888 class ZBLaunchBall
mjr 48:058ace2aed1d 2889 {
mjr 48:058ace2aed1d 2890 public:
mjr 48:058ace2aed1d 2891 ZBLaunchBall()
mjr 48:058ace2aed1d 2892 {
mjr 48:058ace2aed1d 2893 // start in the default state
mjr 48:058ace2aed1d 2894 lbState = 0;
mjr 48:058ace2aed1d 2895
mjr 48:058ace2aed1d 2896 // get the button bit for the ZB Launch Ball button
mjr 48:058ace2aed1d 2897 lbButtonBit = (1 << (cfg.plunger.zbLaunchBall.btn - 1));
mjr 48:058ace2aed1d 2898
mjr 48:058ace2aed1d 2899 // start the state transition timer
mjr 48:058ace2aed1d 2900 lbTimer.start();
mjr 48:058ace2aed1d 2901 }
mjr 48:058ace2aed1d 2902
mjr 48:058ace2aed1d 2903 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 2904 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 2905 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 2906 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 2907 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 2908 // joystick update to figure the new simulated button state.
mjr 48:058ace2aed1d 2909 void update(uint32_t &simButtons)
mjr 48:058ace2aed1d 2910 {
mjr 48:058ace2aed1d 2911 // Check for a simulated Launch Ball button press, if enabled
mjr 48:058ace2aed1d 2912 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 48:058ace2aed1d 2913 {
mjr 48:058ace2aed1d 2914 int znew = plungerReader.getPosition();
mjr 48:058ace2aed1d 2915 const int cockThreshold = JOYMAX/3;
mjr 48:058ace2aed1d 2916 const uint16_t pushThreshold = uint16_t(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0 * 65535.0);
mjr 48:058ace2aed1d 2917 int newState = lbState;
mjr 48:058ace2aed1d 2918 switch (lbState)
mjr 48:058ace2aed1d 2919 {
mjr 48:058ace2aed1d 2920 case 0:
mjr 48:058ace2aed1d 2921 // Base state. If the plunger is pulled back by an inch
mjr 48:058ace2aed1d 2922 // or more, go to "cocked" state. If the plunger is pushed
mjr 48:058ace2aed1d 2923 // forward by 1/4" or more, go to "pressed" state.
mjr 48:058ace2aed1d 2924 if (znew >= cockThreshold)
mjr 48:058ace2aed1d 2925 newState = 1;
mjr 48:058ace2aed1d 2926 else if (znew <= pushThreshold)
mjr 48:058ace2aed1d 2927 newState = 5;
mjr 48:058ace2aed1d 2928 break;
mjr 48:058ace2aed1d 2929
mjr 48:058ace2aed1d 2930 case 1:
mjr 48:058ace2aed1d 2931 // Cocked state. If a firing event is now in progress,
mjr 48:058ace2aed1d 2932 // go to "launch" state. Otherwise, if the plunger is less
mjr 48:058ace2aed1d 2933 // than 1" retracted, go to "uncocked" state - the player
mjr 48:058ace2aed1d 2934 // might be slowly returning the plunger to rest so as not
mjr 48:058ace2aed1d 2935 // to trigger a launch.
mjr 48:058ace2aed1d 2936 if (plungerReader.isFiring() || znew <= 0)
mjr 48:058ace2aed1d 2937 newState = 3;
mjr 48:058ace2aed1d 2938 else if (znew < cockThreshold)
mjr 48:058ace2aed1d 2939 newState = 2;
mjr 48:058ace2aed1d 2940 break;
mjr 48:058ace2aed1d 2941
mjr 48:058ace2aed1d 2942 case 2:
mjr 48:058ace2aed1d 2943 // Uncocked state. If the plunger is more than an inch
mjr 48:058ace2aed1d 2944 // retracted, return to cocked state. If we've been in
mjr 48:058ace2aed1d 2945 // the uncocked state for more than half a second, return
mjr 48:058ace2aed1d 2946 // to the base state. This allows the user to return the
mjr 48:058ace2aed1d 2947 // plunger to rest without triggering a launch, by moving
mjr 48:058ace2aed1d 2948 // it at manual speed to the rest position rather than
mjr 48:058ace2aed1d 2949 // releasing it.
mjr 48:058ace2aed1d 2950 if (znew >= cockThreshold)
mjr 48:058ace2aed1d 2951 newState = 1;
mjr 48:058ace2aed1d 2952 else if (lbTimer.read_us() > 500000)
mjr 48:058ace2aed1d 2953 newState = 0;
mjr 48:058ace2aed1d 2954 break;
mjr 48:058ace2aed1d 2955
mjr 48:058ace2aed1d 2956 case 3:
mjr 48:058ace2aed1d 2957 // Launch state. If the plunger is no longer pushed
mjr 48:058ace2aed1d 2958 // forward, switch to launch rest state.
mjr 48:058ace2aed1d 2959 if (znew >= 0)
mjr 48:058ace2aed1d 2960 newState = 4;
mjr 48:058ace2aed1d 2961 break;
mjr 48:058ace2aed1d 2962
mjr 48:058ace2aed1d 2963 case 4:
mjr 48:058ace2aed1d 2964 // Launch rest state. If the plunger is pushed forward
mjr 48:058ace2aed1d 2965 // again, switch back to launch state. If not, and we've
mjr 48:058ace2aed1d 2966 // been in this state for at least 200ms, return to the
mjr 48:058ace2aed1d 2967 // default state.
mjr 48:058ace2aed1d 2968 if (znew <= pushThreshold)
mjr 48:058ace2aed1d 2969 newState = 3;
mjr 48:058ace2aed1d 2970 else if (lbTimer.read_us() > 200000)
mjr 48:058ace2aed1d 2971 newState = 0;
mjr 48:058ace2aed1d 2972 break;
mjr 48:058ace2aed1d 2973
mjr 48:058ace2aed1d 2974 case 5:
mjr 48:058ace2aed1d 2975 // Press-and-Hold state. If the plunger is no longer pushed
mjr 48:058ace2aed1d 2976 // forward, AND it's been at least 50ms since we generated
mjr 48:058ace2aed1d 2977 // the simulated Launch Ball button press, return to the base
mjr 48:058ace2aed1d 2978 // state. The minimum time is to ensure that VP has a chance
mjr 48:058ace2aed1d 2979 // to see the button press and to avoid transient key bounce
mjr 48:058ace2aed1d 2980 // effects when the plunger position is right on the threshold.
mjr 48:058ace2aed1d 2981 if (znew > pushThreshold && lbTimer.read_us() > 50000)
mjr 48:058ace2aed1d 2982 newState = 0;
mjr 48:058ace2aed1d 2983 break;
mjr 48:058ace2aed1d 2984 }
mjr 48:058ace2aed1d 2985
mjr 48:058ace2aed1d 2986 // change states if desired
mjr 48:058ace2aed1d 2987 if (newState != lbState)
mjr 48:058ace2aed1d 2988 {
mjr 48:058ace2aed1d 2989 // If we're entering Launch state OR we're entering the
mjr 48:058ace2aed1d 2990 // Press-and-Hold state, AND the ZB Launch Ball LedWiz signal
mjr 48:058ace2aed1d 2991 // is turned on, simulate a Launch Ball button press.
mjr 48:058ace2aed1d 2992 if (((newState == 3 && lbState != 4) || newState == 5)
mjr 48:058ace2aed1d 2993 && wizOn[cfg.plunger.zbLaunchBall.port-1])
mjr 48:058ace2aed1d 2994 {
mjr 48:058ace2aed1d 2995 lbBtnTimer.reset();
mjr 48:058ace2aed1d 2996 lbBtnTimer.start();
mjr 48:058ace2aed1d 2997 simButtons |= lbButtonBit;
mjr 48:058ace2aed1d 2998 }
mjr 48:058ace2aed1d 2999
mjr 48:058ace2aed1d 3000 // if we're switching to state 0, release the button
mjr 48:058ace2aed1d 3001 if (newState == 0)
mjr 48:058ace2aed1d 3002 simButtons &= ~(1 << (cfg.plunger.zbLaunchBall.btn - 1));
mjr 48:058ace2aed1d 3003
mjr 48:058ace2aed1d 3004 // switch to the new state
mjr 48:058ace2aed1d 3005 lbState = newState;
mjr 48:058ace2aed1d 3006
mjr 48:058ace2aed1d 3007 // start timing in the new state
mjr 48:058ace2aed1d 3008 lbTimer.reset();
mjr 48:058ace2aed1d 3009 }
mjr 48:058ace2aed1d 3010
mjr 48:058ace2aed1d 3011 // If the Launch Ball button press is in effect, but the
mjr 48:058ace2aed1d 3012 // ZB Launch Ball LedWiz signal is no longer turned on, turn
mjr 48:058ace2aed1d 3013 // off the button.
mjr 48:058ace2aed1d 3014 //
mjr 48:058ace2aed1d 3015 // If we're in one of the Launch states (state #3 or #4),
mjr 48:058ace2aed1d 3016 // and the button has been on for long enough, turn it off.
mjr 48:058ace2aed1d 3017 // The Launch mode is triggered by a pull-and-release gesture.
mjr 48:058ace2aed1d 3018 // From the user's perspective, this is just a single gesture
mjr 48:058ace2aed1d 3019 // that should trigger just one momentary press on the Launch
mjr 48:058ace2aed1d 3020 // Ball button. Physically, though, the plunger usually
mjr 48:058ace2aed1d 3021 // bounces back and forth for 500ms or so before coming to
mjr 48:058ace2aed1d 3022 // rest after this gesture. That's what the whole state
mjr 48:058ace2aed1d 3023 // #3-#4 business is all about - we stay in this pair of
mjr 48:058ace2aed1d 3024 // states until the plunger comes to rest. As long as we're
mjr 48:058ace2aed1d 3025 // in these states, we won't send duplicate button presses.
mjr 48:058ace2aed1d 3026 // But we also don't want the one button press to continue
mjr 48:058ace2aed1d 3027 // the whole time, so we'll time it out now.
mjr 48:058ace2aed1d 3028 //
mjr 48:058ace2aed1d 3029 // (This could be written as one big 'if' condition, but
mjr 48:058ace2aed1d 3030 // I'm breaking it out verbosely like this to make it easier
mjr 48:058ace2aed1d 3031 // for human readers such as myself to comprehend the logic.)
mjr 48:058ace2aed1d 3032 if ((simButtons & lbButtonBit) != 0)
mjr 48:058ace2aed1d 3033 {
mjr 48:058ace2aed1d 3034 int turnOff = false;
mjr 48:058ace2aed1d 3035
mjr 48:058ace2aed1d 3036 // turn it off if the ZB Launch Ball signal is off
mjr 48:058ace2aed1d 3037 if (!wizOn[cfg.plunger.zbLaunchBall.port-1])
mjr 48:058ace2aed1d 3038 turnOff = true;
mjr 48:058ace2aed1d 3039
mjr 48:058ace2aed1d 3040 // also turn it off if we're in state 3 or 4 ("Launch"),
mjr 48:058ace2aed1d 3041 // and the button has been on long enough
mjr 48:058ace2aed1d 3042 if ((lbState == 3 || lbState == 4) && lbBtnTimer.read_us() > 250000)
mjr 48:058ace2aed1d 3043 turnOff = true;
mjr 48:058ace2aed1d 3044
mjr 48:058ace2aed1d 3045 // if we decided to turn off the button, do so
mjr 48:058ace2aed1d 3046 if (turnOff)
mjr 48:058ace2aed1d 3047 {
mjr 48:058ace2aed1d 3048 lbBtnTimer.stop();
mjr 48:058ace2aed1d 3049 simButtons &= ~lbButtonBit;
mjr 48:058ace2aed1d 3050 }
mjr 48:058ace2aed1d 3051 }
mjr 48:058ace2aed1d 3052 }
mjr 48:058ace2aed1d 3053 }
mjr 48:058ace2aed1d 3054
mjr 48:058ace2aed1d 3055 private:
mjr 48:058ace2aed1d 3056 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 3057 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 3058 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 3059 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 3060 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 3061 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 3062 //
mjr 48:058ace2aed1d 3063 // States:
mjr 48:058ace2aed1d 3064 // 0 = default
mjr 48:058ace2aed1d 3065 // 1 = cocked (plunger has been pulled back about 1" from state 0)
mjr 48:058ace2aed1d 3066 // 2 = uncocked (plunger is pulled back less than 1" from state 1)
mjr 48:058ace2aed1d 3067 // 3 = launching, plunger is forward beyond park position
mjr 48:058ace2aed1d 3068 // 4 = launching, plunger is behind park position
mjr 48:058ace2aed1d 3069 // 5 = pressed and holding (plunger has been pressed forward beyond
mjr 48:058ace2aed1d 3070 // the park position from state 0)
mjr 48:058ace2aed1d 3071 int lbState;
mjr 48:058ace2aed1d 3072
mjr 48:058ace2aed1d 3073 // button bit for ZB launch ball button
mjr 48:058ace2aed1d 3074 uint32_t lbButtonBit;
mjr 48:058ace2aed1d 3075
mjr 48:058ace2aed1d 3076 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 3077 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 3078 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 3079 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 3080 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 3081 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 3082 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 3083 Timer lbTimer;
mjr 48:058ace2aed1d 3084
mjr 48:058ace2aed1d 3085 // Launch Ball simulated push timer. We start this when we simulate
mjr 48:058ace2aed1d 3086 // the button push, and turn off the simulated button when enough time
mjr 48:058ace2aed1d 3087 // has elapsed.
mjr 48:058ace2aed1d 3088 Timer lbBtnTimer;
mjr 48:058ace2aed1d 3089 };
mjr 48:058ace2aed1d 3090
mjr 35:e959ffba78fd 3091 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3092 //
mjr 35:e959ffba78fd 3093 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 3094 //
mjr 35:e959ffba78fd 3095 void reboot(USBJoystick &js)
mjr 35:e959ffba78fd 3096 {
mjr 35:e959ffba78fd 3097 // disconnect from USB
mjr 35:e959ffba78fd 3098 js.disconnect();
mjr 35:e959ffba78fd 3099
mjr 35:e959ffba78fd 3100 // wait a few seconds to make sure the host notices the disconnect
mjr 35:e959ffba78fd 3101 wait(5);
mjr 35:e959ffba78fd 3102
mjr 35:e959ffba78fd 3103 // reset the device
mjr 35:e959ffba78fd 3104 NVIC_SystemReset();
mjr 35:e959ffba78fd 3105 while (true) { }
mjr 35:e959ffba78fd 3106 }
mjr 35:e959ffba78fd 3107
mjr 35:e959ffba78fd 3108 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3109 //
mjr 35:e959ffba78fd 3110 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 3111 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 3112 //
mjr 35:e959ffba78fd 3113 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 3114 {
mjr 35:e959ffba78fd 3115 int tmp;
mjr 35:e959ffba78fd 3116 switch (cfg.orientation)
mjr 35:e959ffba78fd 3117 {
mjr 35:e959ffba78fd 3118 case OrientationFront:
mjr 35:e959ffba78fd 3119 tmp = x;
mjr 35:e959ffba78fd 3120 x = y;
mjr 35:e959ffba78fd 3121 y = tmp;
mjr 35:e959ffba78fd 3122 break;
mjr 35:e959ffba78fd 3123
mjr 35:e959ffba78fd 3124 case OrientationLeft:
mjr 35:e959ffba78fd 3125 x = -x;
mjr 35:e959ffba78fd 3126 break;
mjr 35:e959ffba78fd 3127
mjr 35:e959ffba78fd 3128 case OrientationRight:
mjr 35:e959ffba78fd 3129 y = -y;
mjr 35:e959ffba78fd 3130 break;
mjr 35:e959ffba78fd 3131
mjr 35:e959ffba78fd 3132 case OrientationRear:
mjr 35:e959ffba78fd 3133 tmp = -x;
mjr 35:e959ffba78fd 3134 x = -y;
mjr 35:e959ffba78fd 3135 y = tmp;
mjr 35:e959ffba78fd 3136 break;
mjr 35:e959ffba78fd 3137 }
mjr 35:e959ffba78fd 3138 }
mjr 35:e959ffba78fd 3139
mjr 35:e959ffba78fd 3140 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3141 //
mjr 35:e959ffba78fd 3142 // Device status. We report this on each update so that the host config
mjr 35:e959ffba78fd 3143 // tool can detect our current settings. This is a bit mask consisting
mjr 35:e959ffba78fd 3144 // of these bits:
mjr 35:e959ffba78fd 3145 // 0x0001 -> plunger sensor enabled
mjr 35:e959ffba78fd 3146 // 0x8000 -> RESERVED - must always be zero
mjr 35:e959ffba78fd 3147 //
mjr 35:e959ffba78fd 3148 // Note that the high bit (0x8000) must always be 0, since we use that
mjr 35:e959ffba78fd 3149 // to distinguish special request reply packets.
mjr 35:e959ffba78fd 3150 uint16_t statusFlags;
mjr 35:e959ffba78fd 3151
mjr 45:c42166b2878c 3152 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 45:c42166b2878c 3153 // (helpful for installing and setting up the sensor and light source)
mjr 35:e959ffba78fd 3154 bool reportPix = false;
mjr 48:058ace2aed1d 3155 uint8_t reportPixFlags; // pixel report flag bits (see ccdSensor.h)
mjr 48:058ace2aed1d 3156 uint8_t reportPixVisMode; // pixel report visualization mode (see ccdSensor.h)
mjr 35:e959ffba78fd 3157
mjr 33:d832bcab089e 3158
mjr 35:e959ffba78fd 3159 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3160 //
mjr 35:e959ffba78fd 3161 // Calibration button state:
mjr 35:e959ffba78fd 3162 // 0 = not pushed
mjr 35:e959ffba78fd 3163 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 3164 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 3165 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 3166 int calBtnState = 0;
mjr 35:e959ffba78fd 3167
mjr 35:e959ffba78fd 3168 // calibration button debounce timer
mjr 35:e959ffba78fd 3169 Timer calBtnTimer;
mjr 35:e959ffba78fd 3170
mjr 35:e959ffba78fd 3171 // calibration button light state
mjr 35:e959ffba78fd 3172 int calBtnLit = false;
mjr 35:e959ffba78fd 3173
mjr 35:e959ffba78fd 3174
mjr 35:e959ffba78fd 3175 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3176 //
mjr 40:cc0d9814522b 3177 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 3178 //
mjr 40:cc0d9814522b 3179
mjr 40:cc0d9814522b 3180 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 3181 #define if_msg_valid(test) if (test)
mjr 40:cc0d9814522b 3182 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 40:cc0d9814522b 3183 #define v_ui16(var, ofs) cfg.var = wireUI16(data+ofs)
mjr 40:cc0d9814522b 3184 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 40:cc0d9814522b 3185 #define v_func configVarSet
mjr 40:cc0d9814522b 3186 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 3187
mjr 40:cc0d9814522b 3188 // redefine everything for the SET messages
mjr 40:cc0d9814522b 3189 #undef if_msg_valid
mjr 40:cc0d9814522b 3190 #undef v_byte
mjr 40:cc0d9814522b 3191 #undef v_ui16
mjr 40:cc0d9814522b 3192 #undef v_pin
mjr 40:cc0d9814522b 3193 #undef v_func
mjr 38:091e511ce8a0 3194
mjr 40:cc0d9814522b 3195 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 3196 #define if_msg_valid(test)
mjr 40:cc0d9814522b 3197 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 40:cc0d9814522b 3198 #define v_ui16(var, ofs) ui16Wire(data+ofs, cfg.var)
mjr 40:cc0d9814522b 3199 #define v_pin(var, ofs) pinNameWire(data+ofs, cfg.var)
mjr 40:cc0d9814522b 3200 #define v_func configVarGet
mjr 40:cc0d9814522b 3201 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 3202
mjr 35:e959ffba78fd 3203
mjr 35:e959ffba78fd 3204 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3205 //
mjr 35:e959ffba78fd 3206 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 3207 // LedWiz protocol.
mjr 33:d832bcab089e 3208 //
mjr 48:058ace2aed1d 3209 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js)
mjr 35:e959ffba78fd 3210 {
mjr 38:091e511ce8a0 3211 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 3212 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 3213 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 3214 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 3215 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 3216 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 3217 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 3218 // So our full protocol is as follows:
mjr 38:091e511ce8a0 3219 //
mjr 38:091e511ce8a0 3220 // first byte =
mjr 38:091e511ce8a0 3221 // 0-48 -> LWZ-PBA
mjr 38:091e511ce8a0 3222 // 64 -> LWZ SBA
mjr 38:091e511ce8a0 3223 // 65 -> private control message; second byte specifies subtype
mjr 38:091e511ce8a0 3224 // 129-132 -> LWZ-PBA
mjr 38:091e511ce8a0 3225 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 3226 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 3227 // other -> reserved for future use
mjr 38:091e511ce8a0 3228 //
mjr 39:b3815a1c3802 3229 uint8_t *data = lwm.data;
mjr 38:091e511ce8a0 3230 if (data[0] == 64)
mjr 35:e959ffba78fd 3231 {
mjr 38:091e511ce8a0 3232 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 38:091e511ce8a0 3233 // for the outputs; 5th byte is the pulse speed (1-7)
mjr 38:091e511ce8a0 3234 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 38:091e511ce8a0 3235 // data[1], data[2], data[3], data[4], data[5]);
mjr 38:091e511ce8a0 3236
mjr 38:091e511ce8a0 3237 // update all on/off states
mjr 38:091e511ce8a0 3238 for (int i = 0, bit = 1, ri = 1 ; i < numLwOutputs ; ++i, bit <<= 1)
mjr 35:e959ffba78fd 3239 {
mjr 38:091e511ce8a0 3240 // figure the on/off state bit for this output
mjr 38:091e511ce8a0 3241 if (bit == 0x100) {
mjr 38:091e511ce8a0 3242 bit = 1;
mjr 38:091e511ce8a0 3243 ++ri;
mjr 35:e959ffba78fd 3244 }
mjr 35:e959ffba78fd 3245
mjr 38:091e511ce8a0 3246 // set the on/off state
mjr 38:091e511ce8a0 3247 wizOn[i] = ((data[ri] & bit) != 0);
mjr 38:091e511ce8a0 3248
mjr 38:091e511ce8a0 3249 // If the wizVal setting is 255, it means that this
mjr 38:091e511ce8a0 3250 // output was last set to a brightness value with the
mjr 38:091e511ce8a0 3251 // extended protocol. Return it to LedWiz control by
mjr 38:091e511ce8a0 3252 // rescaling the brightness setting to the LedWiz range
mjr 38:091e511ce8a0 3253 // and updating wizVal with the result. If it's any
mjr 38:091e511ce8a0 3254 // other value, it was previously set by a PBA message,
mjr 38:091e511ce8a0 3255 // so simply retain the last setting - in the normal
mjr 38:091e511ce8a0 3256 // LedWiz protocol, the "profile" (brightness) and on/off
mjr 38:091e511ce8a0 3257 // states are independent, so an SBA just turns an output
mjr 38:091e511ce8a0 3258 // on or off but retains its last brightness level.
mjr 38:091e511ce8a0 3259 if (wizVal[i] == 255)
mjr 40:cc0d9814522b 3260 wizVal[i] = (uint8_t)round(outLevel[i]/255.0 * 48.0);
mjr 38:091e511ce8a0 3261 }
mjr 38:091e511ce8a0 3262
mjr 38:091e511ce8a0 3263 // set the flash speed - enforce the value range 1-7
mjr 38:091e511ce8a0 3264 wizSpeed = data[5];
mjr 38:091e511ce8a0 3265 if (wizSpeed < 1)
mjr 38:091e511ce8a0 3266 wizSpeed = 1;
mjr 38:091e511ce8a0 3267 else if (wizSpeed > 7)
mjr 38:091e511ce8a0 3268 wizSpeed = 7;
mjr 38:091e511ce8a0 3269
mjr 38:091e511ce8a0 3270 // update the physical outputs
mjr 38:091e511ce8a0 3271 updateWizOuts();
mjr 38:091e511ce8a0 3272 if (hc595 != 0)
mjr 38:091e511ce8a0 3273 hc595->update();
mjr 38:091e511ce8a0 3274
mjr 38:091e511ce8a0 3275 // reset the PBA counter
mjr 38:091e511ce8a0 3276 pbaIdx = 0;
mjr 38:091e511ce8a0 3277 }
mjr 38:091e511ce8a0 3278 else if (data[0] == 65)
mjr 38:091e511ce8a0 3279 {
mjr 38:091e511ce8a0 3280 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 3281 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 3282 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 3283 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 3284 // message type.
mjr 39:b3815a1c3802 3285 switch (data[1])
mjr 38:091e511ce8a0 3286 {
mjr 39:b3815a1c3802 3287 case 0:
mjr 39:b3815a1c3802 3288 // No Op
mjr 39:b3815a1c3802 3289 break;
mjr 39:b3815a1c3802 3290
mjr 39:b3815a1c3802 3291 case 1:
mjr 38:091e511ce8a0 3292 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 3293 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 3294 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 3295 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 3296 {
mjr 39:b3815a1c3802 3297
mjr 39:b3815a1c3802 3298 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 3299 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 3300 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 3301
mjr 39:b3815a1c3802 3302 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 3303 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 3304
mjr 39:b3815a1c3802 3305 // set the configuration parameters from the message
mjr 39:b3815a1c3802 3306 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 3307 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 3308
mjr 39:b3815a1c3802 3309 // update the status flags
mjr 39:b3815a1c3802 3310 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 39:b3815a1c3802 3311
mjr 39:b3815a1c3802 3312 // save the configuration
mjr 39:b3815a1c3802 3313 saveConfigToFlash();
mjr 39:b3815a1c3802 3314
mjr 39:b3815a1c3802 3315 // reboot if necessary
mjr 39:b3815a1c3802 3316 if (needReset)
mjr 39:b3815a1c3802 3317 reboot(js);
mjr 39:b3815a1c3802 3318 }
mjr 39:b3815a1c3802 3319 break;
mjr 38:091e511ce8a0 3320
mjr 39:b3815a1c3802 3321 case 2:
mjr 38:091e511ce8a0 3322 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 3323 // (No parameters)
mjr 38:091e511ce8a0 3324
mjr 38:091e511ce8a0 3325 // enter calibration mode
mjr 38:091e511ce8a0 3326 calBtnState = 3;
mjr 48:058ace2aed1d 3327 plungerReader.calMode(true);
mjr 38:091e511ce8a0 3328 calBtnTimer.reset();
mjr 39:b3815a1c3802 3329 break;
mjr 39:b3815a1c3802 3330
mjr 39:b3815a1c3802 3331 case 3:
mjr 38:091e511ce8a0 3332 // 3 = pixel dump
mjr 48:058ace2aed1d 3333 // data[2] = flag bits
mjr 48:058ace2aed1d 3334 // data[3] = visualization mode
mjr 38:091e511ce8a0 3335 reportPix = true;
mjr 48:058ace2aed1d 3336 reportPixFlags = data[2];
mjr 48:058ace2aed1d 3337 reportPixVisMode = data[3];
mjr 38:091e511ce8a0 3338
mjr 38:091e511ce8a0 3339 // show purple until we finish sending the report
mjr 38:091e511ce8a0 3340 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 3341 break;
mjr 39:b3815a1c3802 3342
mjr 39:b3815a1c3802 3343 case 4:
mjr 38:091e511ce8a0 3344 // 4 = hardware configuration query
mjr 38:091e511ce8a0 3345 // (No parameters)
mjr 38:091e511ce8a0 3346 js.reportConfig(
mjr 38:091e511ce8a0 3347 numOutputs,
mjr 38:091e511ce8a0 3348 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 40:cc0d9814522b 3349 cfg.plunger.cal.zero, cfg.plunger.cal.max,
mjr 40:cc0d9814522b 3350 nvm.valid());
mjr 39:b3815a1c3802 3351 break;
mjr 39:b3815a1c3802 3352
mjr 39:b3815a1c3802 3353 case 5:
mjr 38:091e511ce8a0 3354 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 3355 allOutputsOff();
mjr 39:b3815a1c3802 3356 break;
mjr 39:b3815a1c3802 3357
mjr 39:b3815a1c3802 3358 case 6:
mjr 38:091e511ce8a0 3359 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 3360 saveConfigToFlash();
mjr 38:091e511ce8a0 3361
mjr 38:091e511ce8a0 3362 // Reboot the microcontroller. Nearly all config changes
mjr 38:091e511ce8a0 3363 // require a reset, and a reset only takes a few seconds,
mjr 38:091e511ce8a0 3364 // so we don't bother tracking whether or not a reboot is
mjr 38:091e511ce8a0 3365 // really needed.
mjr 38:091e511ce8a0 3366 reboot(js);
mjr 39:b3815a1c3802 3367 break;
mjr 40:cc0d9814522b 3368
mjr 40:cc0d9814522b 3369 case 7:
mjr 40:cc0d9814522b 3370 // 7 = Device ID report
mjr 40:cc0d9814522b 3371 // (No parameters)
mjr 40:cc0d9814522b 3372 js.reportID();
mjr 40:cc0d9814522b 3373 break;
mjr 40:cc0d9814522b 3374
mjr 40:cc0d9814522b 3375 case 8:
mjr 40:cc0d9814522b 3376 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 3377 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 3378 setNightMode(data[2]);
mjr 40:cc0d9814522b 3379 break;
mjr 38:091e511ce8a0 3380 }
mjr 38:091e511ce8a0 3381 }
mjr 38:091e511ce8a0 3382 else if (data[0] == 66)
mjr 38:091e511ce8a0 3383 {
mjr 38:091e511ce8a0 3384 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 3385 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 3386 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 3387 // in a variable-dependent format.
mjr 40:cc0d9814522b 3388 configVarSet(data);
mjr 38:091e511ce8a0 3389 }
mjr 38:091e511ce8a0 3390 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 3391 {
mjr 38:091e511ce8a0 3392 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 3393 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 3394 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 3395 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 3396 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 3397 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 3398 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 3399 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 3400 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 3401 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 3402 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 3403 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 3404 //
mjr 38:091e511ce8a0 3405 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 3406 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 3407 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 3408 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 3409 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 3410 // address those ports anyway.
mjr 38:091e511ce8a0 3411 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 3412 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 38:091e511ce8a0 3413 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 3414 {
mjr 38:091e511ce8a0 3415 // set the brightness level for the output
mjr 40:cc0d9814522b 3416 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 3417 outLevel[i] = b;
mjr 38:091e511ce8a0 3418
mjr 38:091e511ce8a0 3419 // if it's in the basic LedWiz output set, set the LedWiz
mjr 38:091e511ce8a0 3420 // profile value to 255, which means "use outLevel"
mjr 38:091e511ce8a0 3421 if (i < 32)
mjr 38:091e511ce8a0 3422 wizVal[i] = 255;
mjr 38:091e511ce8a0 3423
mjr 38:091e511ce8a0 3424 // set the output
mjr 40:cc0d9814522b 3425 lwPin[i]->set(b);
mjr 38:091e511ce8a0 3426 }
mjr 38:091e511ce8a0 3427
mjr 38:091e511ce8a0 3428 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 3429 if (hc595 != 0)
mjr 38:091e511ce8a0 3430 hc595->update();
mjr 38:091e511ce8a0 3431 }
mjr 38:091e511ce8a0 3432 else
mjr 38:091e511ce8a0 3433 {
mjr 38:091e511ce8a0 3434 // Everything else is LWZ-PBA. This is a full "profile"
mjr 38:091e511ce8a0 3435 // dump from the host for one bank of 8 outputs. Each
mjr 38:091e511ce8a0 3436 // byte sets one output in the current bank. The current
mjr 38:091e511ce8a0 3437 // bank is implied; the bank starts at 0 and is reset to 0
mjr 38:091e511ce8a0 3438 // by any LWZ-SBA message, and is incremented to the next
mjr 38:091e511ce8a0 3439 // bank by each LWZ-PBA message. Our variable pbaIdx keeps
mjr 38:091e511ce8a0 3440 // track of our notion of the current bank. There's no direct
mjr 38:091e511ce8a0 3441 // way for the host to select the bank; it just has to count
mjr 38:091e511ce8a0 3442 // on us staying in sync. In practice, the host will always
mjr 38:091e511ce8a0 3443 // send a full set of 4 PBA messages in a row to set all 32
mjr 38:091e511ce8a0 3444 // outputs.
mjr 38:091e511ce8a0 3445 //
mjr 38:091e511ce8a0 3446 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 3447 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 3448 // wizVal[] entry for each output, and that takes precedence
mjr 38:091e511ce8a0 3449 // over the extended protocol settings.
mjr 38:091e511ce8a0 3450 //
mjr 38:091e511ce8a0 3451 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 3452 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 3453
mjr 38:091e511ce8a0 3454 // Update all output profile settings
mjr 38:091e511ce8a0 3455 for (int i = 0 ; i < 8 ; ++i)
mjr 38:091e511ce8a0 3456 wizVal[pbaIdx + i] = data[i];
mjr 38:091e511ce8a0 3457
mjr 38:091e511ce8a0 3458 // Update the physical LED state if this is the last bank.
mjr 38:091e511ce8a0 3459 // Note that hosts always send a full set of four PBA
mjr 38:091e511ce8a0 3460 // messages, so there's no need to do a physical update
mjr 38:091e511ce8a0 3461 // until we've received the last bank's PBA message.
mjr 38:091e511ce8a0 3462 if (pbaIdx == 24)
mjr 38:091e511ce8a0 3463 {
mjr 35:e959ffba78fd 3464 updateWizOuts();
mjr 35:e959ffba78fd 3465 if (hc595 != 0)
mjr 35:e959ffba78fd 3466 hc595->update();
mjr 35:e959ffba78fd 3467 pbaIdx = 0;
mjr 35:e959ffba78fd 3468 }
mjr 38:091e511ce8a0 3469 else
mjr 38:091e511ce8a0 3470 pbaIdx += 8;
mjr 38:091e511ce8a0 3471 }
mjr 38:091e511ce8a0 3472 }
mjr 35:e959ffba78fd 3473
mjr 33:d832bcab089e 3474
mjr 38:091e511ce8a0 3475 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 3476 //
mjr 38:091e511ce8a0 3477 // Pre-connection diagnostic flasher
mjr 38:091e511ce8a0 3478 //
mjr 38:091e511ce8a0 3479 void preConnectFlasher()
mjr 38:091e511ce8a0 3480 {
mjr 48:058ace2aed1d 3481 diagLED(1, 1, 0);
mjr 38:091e511ce8a0 3482 wait(0.05);
mjr 38:091e511ce8a0 3483 diagLED(0, 0, 0);
mjr 35:e959ffba78fd 3484 }
mjr 17:ab3cec0c8bf4 3485
mjr 17:ab3cec0c8bf4 3486 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 3487 //
mjr 5:a70c0bce770d 3488 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 3489 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 3490 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 3491 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 3492 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 3493 // port outputs.
mjr 5:a70c0bce770d 3494 //
mjr 0:5acbbe3f4cf4 3495 int main(void)
mjr 0:5acbbe3f4cf4 3496 {
mjr 39:b3815a1c3802 3497 printf("\r\nPinscape Controller starting\r\n");
mjr 39:b3815a1c3802 3498 // memory config debugging: {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 3499
mjr 39:b3815a1c3802 3500 // clear the I2C bus (for the accelerometer)
mjr 35:e959ffba78fd 3501 clear_i2c();
mjr 38:091e511ce8a0 3502
mjr 43:7a6364d82a41 3503 // load the saved configuration (or set factory defaults if no flash
mjr 43:7a6364d82a41 3504 // configuration has ever been saved)
mjr 35:e959ffba78fd 3505 loadConfigFromFlash();
mjr 35:e959ffba78fd 3506
mjr 38:091e511ce8a0 3507 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 3508 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 3509
mjr 38:091e511ce8a0 3510 // set up the pre-connected ticker
mjr 38:091e511ce8a0 3511 Ticker preConnectTicker;
mjr 38:091e511ce8a0 3512 preConnectTicker.attach(preConnectFlasher, 3);
mjr 38:091e511ce8a0 3513
mjr 33:d832bcab089e 3514 // we're not connected/awake yet
mjr 33:d832bcab089e 3515 bool connected = false;
mjr 40:cc0d9814522b 3516 Timer connectChangeTimer;
mjr 33:d832bcab089e 3517
mjr 35:e959ffba78fd 3518 // create the plunger sensor interface
mjr 35:e959ffba78fd 3519 createPlunger();
mjr 33:d832bcab089e 3520
mjr 35:e959ffba78fd 3521 // set up the TLC5940 interface and start the TLC5940 clock, if applicable
mjr 35:e959ffba78fd 3522 init_tlc5940(cfg);
mjr 34:6b981a2afab7 3523
mjr 34:6b981a2afab7 3524 // enable the 74HC595 chips, if present
mjr 35:e959ffba78fd 3525 init_hc595(cfg);
mjr 6:cc35eb643e8f 3526
mjr 38:091e511ce8a0 3527 // Initialize the LedWiz ports. Note that it's important to wait until
mjr 38:091e511ce8a0 3528 // after initializing the various off-board output port controller chip
mjr 38:091e511ce8a0 3529 // sybsystems (TLC5940, 74HC595), since pins attached to peripheral
mjr 38:091e511ce8a0 3530 // controllers will need to address their respective controller objects,
mjr 38:091e511ce8a0 3531 // which don't exit until we initialize those subsystems.
mjr 35:e959ffba78fd 3532 initLwOut(cfg);
mjr 48:058ace2aed1d 3533
mjr 35:e959ffba78fd 3534 // start the TLC5940 clock
mjr 35:e959ffba78fd 3535 if (tlc5940 != 0)
mjr 35:e959ffba78fd 3536 tlc5940->start();
mjr 35:e959ffba78fd 3537
mjr 40:cc0d9814522b 3538 // start the TV timer, if applicable
mjr 40:cc0d9814522b 3539 startTVTimer(cfg);
mjr 48:058ace2aed1d 3540
mjr 35:e959ffba78fd 3541 // initialize the button input ports
mjr 35:e959ffba78fd 3542 bool kbKeys = false;
mjr 35:e959ffba78fd 3543 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 3544
mjr 6:cc35eb643e8f 3545 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 3546 // number from the saved configuration.
mjr 35:e959ffba78fd 3547 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, true, cfg.joystickEnabled, kbKeys);
mjr 38:091e511ce8a0 3548
mjr 38:091e511ce8a0 3549 // we're now connected - kill the pre-connect ticker
mjr 38:091e511ce8a0 3550 preConnectTicker.detach();
mjr 40:cc0d9814522b 3551
mjr 38:091e511ce8a0 3552 // Last report timer for the joytick interface. We use the joystick timer
mjr 38:091e511ce8a0 3553 // to throttle the report rate, because VP doesn't benefit from reports any
mjr 38:091e511ce8a0 3554 // faster than about every 10ms.
mjr 38:091e511ce8a0 3555 Timer jsReportTimer;
mjr 38:091e511ce8a0 3556 jsReportTimer.start();
mjr 38:091e511ce8a0 3557
mjr 48:058ace2aed1d 3558 Timer plungerIntervalTimer; plungerIntervalTimer.start(); // $$$
mjr 48:058ace2aed1d 3559
mjr 38:091e511ce8a0 3560 // Time since we successfully sent a USB report. This is a hacky workaround
mjr 38:091e511ce8a0 3561 // for sporadic problems in the USB stack that I haven't been able to figure
mjr 38:091e511ce8a0 3562 // out. If we go too long without successfully sending a USB report, we'll
mjr 38:091e511ce8a0 3563 // try resetting the connection.
mjr 38:091e511ce8a0 3564 Timer jsOKTimer;
mjr 38:091e511ce8a0 3565 jsOKTimer.start();
mjr 35:e959ffba78fd 3566
mjr 35:e959ffba78fd 3567 // set the initial status flags
mjr 35:e959ffba78fd 3568 statusFlags = (cfg.plunger.enabled ? 0x01 : 0x00);
mjr 17:ab3cec0c8bf4 3569
mjr 17:ab3cec0c8bf4 3570 // initialize the calibration buttons, if present
mjr 35:e959ffba78fd 3571 DigitalIn *calBtn = (cfg.plunger.cal.btn == NC ? 0 : new DigitalIn(cfg.plunger.cal.btn));
mjr 35:e959ffba78fd 3572 DigitalOut *calBtnLed = (cfg.plunger.cal.led == NC ? 0 : new DigitalOut(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 3573
mjr 35:e959ffba78fd 3574 // initialize the calibration button
mjr 1:d913e0afb2ac 3575 calBtnTimer.start();
mjr 35:e959ffba78fd 3576 calBtnState = 0;
mjr 1:d913e0afb2ac 3577
mjr 1:d913e0afb2ac 3578 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 3579 Timer hbTimer;
mjr 1:d913e0afb2ac 3580 hbTimer.start();
mjr 1:d913e0afb2ac 3581 int hb = 0;
mjr 5:a70c0bce770d 3582 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 3583
mjr 1:d913e0afb2ac 3584 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 3585 Timer acTimer;
mjr 1:d913e0afb2ac 3586 acTimer.start();
mjr 1:d913e0afb2ac 3587
mjr 0:5acbbe3f4cf4 3588 // create the accelerometer object
mjr 5:a70c0bce770d 3589 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 48:058ace2aed1d 3590
mjr 17:ab3cec0c8bf4 3591 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 3592 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 3593 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 3594
mjr 17:ab3cec0c8bf4 3595 // Simulated button states. This is a vector of button states
mjr 17:ab3cec0c8bf4 3596 // for the simulated buttons. We combine this with the physical
mjr 17:ab3cec0c8bf4 3597 // button states on each USB joystick report, so we will report
mjr 17:ab3cec0c8bf4 3598 // a button as pressed if either the physical button is being pressed
mjr 17:ab3cec0c8bf4 3599 // or we're simulating a press on the button. This is used for the
mjr 17:ab3cec0c8bf4 3600 // simulated Launch Ball button.
mjr 17:ab3cec0c8bf4 3601 uint32_t simButtons = 0;
mjr 6:cc35eb643e8f 3602
mjr 48:058ace2aed1d 3603 // initialize the plunger sensor
mjr 35:e959ffba78fd 3604 plungerSensor->init();
mjr 10:976666ffa4ef 3605
mjr 48:058ace2aed1d 3606 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 3607 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 3608
mjr 43:7a6364d82a41 3609 Timer dbgTimer; dbgTimer.start(); // $$$ plunger debug report timer
mjr 43:7a6364d82a41 3610
mjr 1:d913e0afb2ac 3611 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 3612 // host requests
mjr 0:5acbbe3f4cf4 3613 for (;;)
mjr 0:5acbbe3f4cf4 3614 {
mjr 48:058ace2aed1d 3615 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 3616 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 3617 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 3618 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 3619 LedWizMsg lwm;
mjr 48:058ace2aed1d 3620 Timer lwt;
mjr 48:058ace2aed1d 3621 lwt.start();
mjr 48:058ace2aed1d 3622 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 48:058ace2aed1d 3623 handleInputMsg(lwm, js);
mjr 1:d913e0afb2ac 3624
mjr 1:d913e0afb2ac 3625 // check for plunger calibration
mjr 17:ab3cec0c8bf4 3626 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 3627 {
mjr 1:d913e0afb2ac 3628 // check the state
mjr 1:d913e0afb2ac 3629 switch (calBtnState)
mjr 0:5acbbe3f4cf4 3630 {
mjr 1:d913e0afb2ac 3631 case 0:
mjr 1:d913e0afb2ac 3632 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 3633 calBtnTimer.reset();
mjr 1:d913e0afb2ac 3634 calBtnState = 1;
mjr 1:d913e0afb2ac 3635 break;
mjr 1:d913e0afb2ac 3636
mjr 1:d913e0afb2ac 3637 case 1:
mjr 1:d913e0afb2ac 3638 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 3639 // passed, start the hold period
mjr 48:058ace2aed1d 3640 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 3641 calBtnState = 2;
mjr 1:d913e0afb2ac 3642 break;
mjr 1:d913e0afb2ac 3643
mjr 1:d913e0afb2ac 3644 case 2:
mjr 1:d913e0afb2ac 3645 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 3646 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 3647 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 3648 {
mjr 1:d913e0afb2ac 3649 // enter calibration mode
mjr 1:d913e0afb2ac 3650 calBtnState = 3;
mjr 9:fd65b0a94720 3651 calBtnTimer.reset();
mjr 35:e959ffba78fd 3652
mjr 44:b5ac89b9cd5d 3653 // begin the plunger calibration limits
mjr 48:058ace2aed1d 3654 plungerReader.calMode(true);
mjr 1:d913e0afb2ac 3655 }
mjr 1:d913e0afb2ac 3656 break;
mjr 2:c174f9ee414a 3657
mjr 2:c174f9ee414a 3658 case 3:
mjr 9:fd65b0a94720 3659 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 3660 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 3661 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 3662 break;
mjr 0:5acbbe3f4cf4 3663 }
mjr 0:5acbbe3f4cf4 3664 }
mjr 1:d913e0afb2ac 3665 else
mjr 1:d913e0afb2ac 3666 {
mjr 2:c174f9ee414a 3667 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 3668 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 3669 // and save the results to flash.
mjr 2:c174f9ee414a 3670 //
mjr 2:c174f9ee414a 3671 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 3672 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 3673 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 3674 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 3675 {
mjr 2:c174f9ee414a 3676 // exit calibration mode
mjr 1:d913e0afb2ac 3677 calBtnState = 0;
mjr 48:058ace2aed1d 3678 plungerReader.calMode(false);
mjr 2:c174f9ee414a 3679
mjr 6:cc35eb643e8f 3680 // save the updated configuration
mjr 35:e959ffba78fd 3681 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 3682 saveConfigToFlash();
mjr 2:c174f9ee414a 3683 }
mjr 2:c174f9ee414a 3684 else if (calBtnState != 3)
mjr 2:c174f9ee414a 3685 {
mjr 2:c174f9ee414a 3686 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 3687 calBtnState = 0;
mjr 2:c174f9ee414a 3688 }
mjr 1:d913e0afb2ac 3689 }
mjr 1:d913e0afb2ac 3690
mjr 1:d913e0afb2ac 3691 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 3692 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 3693 switch (calBtnState)
mjr 0:5acbbe3f4cf4 3694 {
mjr 1:d913e0afb2ac 3695 case 2:
mjr 1:d913e0afb2ac 3696 // in the hold period - flash the light
mjr 48:058ace2aed1d 3697 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 3698 break;
mjr 1:d913e0afb2ac 3699
mjr 1:d913e0afb2ac 3700 case 3:
mjr 1:d913e0afb2ac 3701 // calibration mode - show steady on
mjr 1:d913e0afb2ac 3702 newCalBtnLit = true;
mjr 1:d913e0afb2ac 3703 break;
mjr 1:d913e0afb2ac 3704
mjr 1:d913e0afb2ac 3705 default:
mjr 1:d913e0afb2ac 3706 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 3707 newCalBtnLit = false;
mjr 1:d913e0afb2ac 3708 break;
mjr 1:d913e0afb2ac 3709 }
mjr 3:3514575d4f86 3710
mjr 3:3514575d4f86 3711 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 3712 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 3713 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 3714 {
mjr 1:d913e0afb2ac 3715 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 3716 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 3717 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 3718 calBtnLed->write(1);
mjr 38:091e511ce8a0 3719 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 3720 }
mjr 2:c174f9ee414a 3721 else {
mjr 17:ab3cec0c8bf4 3722 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 3723 calBtnLed->write(0);
mjr 38:091e511ce8a0 3724 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 3725 }
mjr 1:d913e0afb2ac 3726 }
mjr 35:e959ffba78fd 3727
mjr 48:058ace2aed1d 3728 // read the plunger sensor
mjr 48:058ace2aed1d 3729 plungerReader.read();
mjr 48:058ace2aed1d 3730
mjr 38:091e511ce8a0 3731 // process button updates
mjr 38:091e511ce8a0 3732 processButtons();
mjr 37:ed52738445fc 3733
mjr 48:058ace2aed1d 3734 // handle the ZB Launch Ball feature
mjr 48:058ace2aed1d 3735 zbLaunchBall.update(simButtons);
mjr 48:058ace2aed1d 3736
mjr 38:091e511ce8a0 3737 // send a keyboard report if we have new data
mjr 37:ed52738445fc 3738 if (kbState.changed)
mjr 37:ed52738445fc 3739 {
mjr 38:091e511ce8a0 3740 // send a keyboard report
mjr 37:ed52738445fc 3741 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 3742 kbState.changed = false;
mjr 37:ed52738445fc 3743 }
mjr 38:091e511ce8a0 3744
mjr 38:091e511ce8a0 3745 // likewise for the media controller
mjr 37:ed52738445fc 3746 if (mediaState.changed)
mjr 37:ed52738445fc 3747 {
mjr 38:091e511ce8a0 3748 // send a media report
mjr 37:ed52738445fc 3749 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 3750 mediaState.changed = false;
mjr 37:ed52738445fc 3751 }
mjr 38:091e511ce8a0 3752
mjr 38:091e511ce8a0 3753 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 3754 bool jsOK = false;
mjr 17:ab3cec0c8bf4 3755
mjr 17:ab3cec0c8bf4 3756 // If it's been long enough since our last USB status report,
mjr 17:ab3cec0c8bf4 3757 // send the new report. We throttle the report rate because
mjr 17:ab3cec0c8bf4 3758 // it can overwhelm the PC side if we report too frequently.
mjr 17:ab3cec0c8bf4 3759 // VP only wants to sync with the real world in 10ms intervals,
mjr 35:e959ffba78fd 3760 // so reporting more frequently creates I/O overhead without
mjr 35:e959ffba78fd 3761 // doing anything to improve the simulation.
mjr 48:058ace2aed1d 3762 if (cfg.joystickEnabled /* $$$ && jsReportTimer.read_us() > 10000 */)
mjr 17:ab3cec0c8bf4 3763 {
mjr 17:ab3cec0c8bf4 3764 // read the accelerometer
mjr 17:ab3cec0c8bf4 3765 int xa, ya;
mjr 17:ab3cec0c8bf4 3766 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 3767
mjr 17:ab3cec0c8bf4 3768 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 3769 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 3770 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 3771 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 3772 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 3773
mjr 17:ab3cec0c8bf4 3774 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 3775 x = xa;
mjr 17:ab3cec0c8bf4 3776 y = ya;
mjr 17:ab3cec0c8bf4 3777
mjr 48:058ace2aed1d 3778 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 3779 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 3780 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 3781 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 3782 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 3783 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 3784 // regular plunger inputs.
mjr 48:058ace2aed1d 3785 int z = plungerReader.getPosition();
mjr 48:058ace2aed1d 3786 int zrep = (!cfg.plunger.enabled ? 0 :
mjr 48:058ace2aed1d 3787 cfg.plunger.zbLaunchBall.port != 0
mjr 48:058ace2aed1d 3788 && wizOn[cfg.plunger.zbLaunchBall.port-1] ? 0 :
mjr 48:058ace2aed1d 3789 z);
mjr 35:e959ffba78fd 3790
mjr 35:e959ffba78fd 3791 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 3792 accelRotate(x, y);
mjr 35:e959ffba78fd 3793
mjr 48:058ace2aed1d 3794 #if 0
mjr 48:058ace2aed1d 3795 // $$$ report velocity in x axis and timestamp in y axis
mjr 48:058ace2aed1d 3796 x = int(plungerReader.getVelocity() * 1.0 * JOYMAX);
mjr 48:058ace2aed1d 3797 y = (plungerReader.getTimestamp() / 1000) % JOYMAX;
mjr 48:058ace2aed1d 3798 #endif
mjr 48:058ace2aed1d 3799
mjr 35:e959ffba78fd 3800 // send the joystick report
mjr 38:091e511ce8a0 3801 jsOK = js.update(x, y, zrep, jsButtons | simButtons, statusFlags);
mjr 21:5048e16cc9ef 3802
mjr 17:ab3cec0c8bf4 3803 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 3804 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 3805 }
mjr 21:5048e16cc9ef 3806
mjr 10:976666ffa4ef 3807 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 3808 if (reportPix)
mjr 10:976666ffa4ef 3809 {
mjr 17:ab3cec0c8bf4 3810 // send the report
mjr 48:058ace2aed1d 3811 plungerSensor->sendExposureReport(js, reportPixFlags, reportPixVisMode);
mjr 17:ab3cec0c8bf4 3812
mjr 10:976666ffa4ef 3813 // we have satisfied this request
mjr 10:976666ffa4ef 3814 reportPix = false;
mjr 10:976666ffa4ef 3815 }
mjr 10:976666ffa4ef 3816
mjr 35:e959ffba78fd 3817 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 3818 // periodically for the sake of the Windows config tool.
mjr 48:058ace2aed1d 3819 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 200000)
mjr 21:5048e16cc9ef 3820 {
mjr 38:091e511ce8a0 3821 jsOK = js.updateStatus(0);
mjr 38:091e511ce8a0 3822 jsReportTimer.reset();
mjr 38:091e511ce8a0 3823 }
mjr 38:091e511ce8a0 3824
mjr 38:091e511ce8a0 3825 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 3826 if (jsOK)
mjr 38:091e511ce8a0 3827 {
mjr 38:091e511ce8a0 3828 jsOKTimer.reset();
mjr 38:091e511ce8a0 3829 jsOKTimer.start();
mjr 21:5048e16cc9ef 3830 }
mjr 21:5048e16cc9ef 3831
mjr 6:cc35eb643e8f 3832 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 3833 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 3834 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 3835 #endif
mjr 6:cc35eb643e8f 3836
mjr 33:d832bcab089e 3837 // check for connection status changes
mjr 40:cc0d9814522b 3838 bool newConnected = js.isConnected() && !js.isSuspended();
mjr 33:d832bcab089e 3839 if (newConnected != connected)
mjr 33:d832bcab089e 3840 {
mjr 33:d832bcab089e 3841 // give it a few seconds to stabilize
mjr 40:cc0d9814522b 3842 connectChangeTimer.start();
mjr 40:cc0d9814522b 3843 if (connectChangeTimer.read() > 3)
mjr 33:d832bcab089e 3844 {
mjr 33:d832bcab089e 3845 // note the new status
mjr 33:d832bcab089e 3846 connected = newConnected;
mjr 40:cc0d9814522b 3847
mjr 40:cc0d9814522b 3848 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 3849 connectChangeTimer.stop();
mjr 40:cc0d9814522b 3850 connectChangeTimer.reset();
mjr 33:d832bcab089e 3851
mjr 40:cc0d9814522b 3852 // adjust to the new status
mjr 40:cc0d9814522b 3853 if (connected)
mjr 40:cc0d9814522b 3854 {
mjr 40:cc0d9814522b 3855 // We're newly connected. This means we just powered on, we were
mjr 40:cc0d9814522b 3856 // just plugged in to the PC USB port after being unplugged, or the
mjr 40:cc0d9814522b 3857 // PC just came out of sleep/suspend mode and resumed the connection.
mjr 40:cc0d9814522b 3858 // In any of these cases, we can now assume that the PC power supply
mjr 40:cc0d9814522b 3859 // is on (the PC must be on for the USB connection to be running, and
mjr 40:cc0d9814522b 3860 // if the PC is on, its power supply is on). This also means that
mjr 40:cc0d9814522b 3861 // power to any external output controller chips (TLC5940, 74HC595)
mjr 40:cc0d9814522b 3862 // is now on, because those have to be powered from the PC power
mjr 40:cc0d9814522b 3863 // supply to allow for a reliable data connection to the KL25Z.
mjr 40:cc0d9814522b 3864 // We can thus now set clear initial output state in those chips and
mjr 40:cc0d9814522b 3865 // enable their outputs.
mjr 40:cc0d9814522b 3866 if (tlc5940 != 0)
mjr 40:cc0d9814522b 3867 {
mjr 40:cc0d9814522b 3868 tlc5940->update(true);
mjr 40:cc0d9814522b 3869 tlc5940->enable(true);
mjr 40:cc0d9814522b 3870 }
mjr 40:cc0d9814522b 3871 if (hc595 != 0)
mjr 40:cc0d9814522b 3872 {
mjr 40:cc0d9814522b 3873 hc595->update(true);
mjr 40:cc0d9814522b 3874 hc595->enable(true);
mjr 40:cc0d9814522b 3875 }
mjr 40:cc0d9814522b 3876 }
mjr 40:cc0d9814522b 3877 else
mjr 40:cc0d9814522b 3878 {
mjr 40:cc0d9814522b 3879 // We're no longer connected. Turn off all outputs.
mjr 33:d832bcab089e 3880 allOutputsOff();
mjr 40:cc0d9814522b 3881
mjr 40:cc0d9814522b 3882 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 3883 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 3884 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 3885 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 3886 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 3887 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 3888 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 3889 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 3890 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 3891 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 3892 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 3893 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 3894 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 3895 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 3896 // the power first comes on.
mjr 40:cc0d9814522b 3897 if (tlc5940 != 0)
mjr 40:cc0d9814522b 3898 tlc5940->enable(false);
mjr 40:cc0d9814522b 3899 if (hc595 != 0)
mjr 40:cc0d9814522b 3900 hc595->enable(false);
mjr 40:cc0d9814522b 3901 }
mjr 33:d832bcab089e 3902 }
mjr 33:d832bcab089e 3903 }
mjr 48:058ace2aed1d 3904
mjr 48:058ace2aed1d 3905 // if we're disconnected, initiate a new connection
mjr 48:058ace2aed1d 3906 if (!connected && !js.isConnected())
mjr 48:058ace2aed1d 3907 {
mjr 48:058ace2aed1d 3908 // show connect-wait diagnostics
mjr 48:058ace2aed1d 3909 diagLED(0, 0, 0);
mjr 48:058ace2aed1d 3910 preConnectTicker.attach(preConnectFlasher, 3);
mjr 48:058ace2aed1d 3911
mjr 48:058ace2aed1d 3912 // wait for the connection
mjr 48:058ace2aed1d 3913 js.connect(true);
mjr 48:058ace2aed1d 3914
mjr 48:058ace2aed1d 3915 // remove the connection diagnostic ticker
mjr 48:058ace2aed1d 3916 preConnectTicker.detach();
mjr 48:058ace2aed1d 3917 }
mjr 43:7a6364d82a41 3918
mjr 43:7a6364d82a41 3919 // $$$
mjr 48:058ace2aed1d 3920 #if 0
mjr 43:7a6364d82a41 3921 if (dbgTimer.read() > 10) {
mjr 43:7a6364d82a41 3922 dbgTimer.reset();
mjr 43:7a6364d82a41 3923 if (plungerSensor != 0 && (cfg.plunger.sensorType == PlungerType_TSL1410RS || cfg.plunger.sensorType == PlungerType_TSL1410RP))
mjr 43:7a6364d82a41 3924 {
mjr 43:7a6364d82a41 3925 PlungerSensorTSL1410R *ps = (PlungerSensorTSL1410R *)plungerSensor;
mjr 47:df7a88cd249c 3926 uint32_t nRuns;
mjr 48:058ace2aed1d 3927 uint64_t totalTime;
mjr 47:df7a88cd249c 3928 ps->ccd.getTimingStats(totalTime, nRuns);
mjr 48:058ace2aed1d 3929 printf("average plunger read time: %f ms (total=%f, n=%d)\r\n", totalTime / 1000.0f / nRuns, totalTime, nRuns);
mjr 43:7a6364d82a41 3930 }
mjr 43:7a6364d82a41 3931 }
mjr 48:058ace2aed1d 3932 #endif
mjr 43:7a6364d82a41 3933 // end $$$
mjr 38:091e511ce8a0 3934
mjr 6:cc35eb643e8f 3935 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 3936 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 3937 {
mjr 33:d832bcab089e 3938 if (!newConnected)
mjr 2:c174f9ee414a 3939 {
mjr 5:a70c0bce770d 3940 // suspended - turn off the LED
mjr 38:091e511ce8a0 3941 diagLED(0, 0, 0);
mjr 5:a70c0bce770d 3942
mjr 5:a70c0bce770d 3943 // show a status flash every so often
mjr 5:a70c0bce770d 3944 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 3945 {
mjr 38:091e511ce8a0 3946 // disconnected = short red/red flash
mjr 38:091e511ce8a0 3947 // suspended = short red flash
mjr 5:a70c0bce770d 3948 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 3949 {
mjr 38:091e511ce8a0 3950 diagLED(1, 0, 0);
mjr 5:a70c0bce770d 3951 wait(0.05);
mjr 38:091e511ce8a0 3952 diagLED(0, 0, 0);
mjr 5:a70c0bce770d 3953 wait(0.25);
mjr 5:a70c0bce770d 3954 }
mjr 5:a70c0bce770d 3955 }
mjr 2:c174f9ee414a 3956 }
mjr 38:091e511ce8a0 3957 else if (jsOKTimer.read() > 5)
mjr 38:091e511ce8a0 3958 {
mjr 39:b3815a1c3802 3959 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 3960 // Our outgoing joystick messages aren't going through, even though we
mjr 39:b3815a1c3802 3961 // think we're still connected. This indicates that one or more of our
mjr 39:b3815a1c3802 3962 // USB endpoints have stopped working, which can happen as a result of
mjr 39:b3815a1c3802 3963 // bugs in the USB HAL or latency responding to a USB IRQ. Show a
mjr 39:b3815a1c3802 3964 // distinctive diagnostic flash to signal the error. I haven't found a
mjr 39:b3815a1c3802 3965 // way to recover from this class of error other than rebooting the MCU,
mjr 40:cc0d9814522b 3966 // so the goal is to fix the HAL so that this error never happens.
mjr 40:cc0d9814522b 3967 //
mjr 40:cc0d9814522b 3968 // NOTE! This diagnostic code *hopefully* shouldn't occur. It happened
mjr 40:cc0d9814522b 3969 // in the past due to a number of bugs in the mbed KL25Z USB HAL that
mjr 40:cc0d9814522b 3970 // I've since fixed. I think I found all of the cases that caused it,
mjr 40:cc0d9814522b 3971 // but I'm leaving the diagnostics here in case there are other bugs
mjr 40:cc0d9814522b 3972 // still lurking that can trigger the same symptoms.
mjr 38:091e511ce8a0 3973 jsOKTimer.stop();
mjr 38:091e511ce8a0 3974 hb = !hb;
mjr 38:091e511ce8a0 3975 diagLED(1, hb, 0);
mjr 38:091e511ce8a0 3976 }
mjr 35:e959ffba78fd 3977 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 3978 {
mjr 6:cc35eb643e8f 3979 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 3980 hb = !hb;
mjr 38:091e511ce8a0 3981 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 3982 }
mjr 6:cc35eb643e8f 3983 else
mjr 6:cc35eb643e8f 3984 {
mjr 6:cc35eb643e8f 3985 // connected - flash blue/green
mjr 2:c174f9ee414a 3986 hb = !hb;
mjr 38:091e511ce8a0 3987 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 3988 }
mjr 1:d913e0afb2ac 3989
mjr 1:d913e0afb2ac 3990 // reset the heartbeat timer
mjr 1:d913e0afb2ac 3991 hbTimer.reset();
mjr 5:a70c0bce770d 3992 ++hbcnt;
mjr 1:d913e0afb2ac 3993 }
mjr 1:d913e0afb2ac 3994 }
mjr 0:5acbbe3f4cf4 3995 }