Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Sun Jan 28 20:00:57 2018 +0000
Revision:
94:0476b3e2b996
Parent:
93:177832c29041
Child:
95:8eca8acbb82c
Change default PWM frequency for GPIO ports to 2 kHz

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 89:c43cd923401c 838 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 839 // top of a physical pin output.
mjr 89:c43cd923401c 840 //
mjr 89:c43cd923401c 841 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 842 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 843 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 844 // level is ON.
mjr 89:c43cd923401c 845 //
mjr 89:c43cd923401c 846 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 847 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 848 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 849 //
mjr 89:c43cd923401c 850 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 851 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 852 // power and start a timer.
mjr 89:c43cd923401c 853 //
mjr 89:c43cd923401c 854 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 855 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 856 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 857 //
mjr 89:c43cd923401c 858 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 859 {
mjr 89:c43cd923401c 860 public:
mjr 89:c43cd923401c 861 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 862 // the configuration.
mjr 89:c43cd923401c 863 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 864 : out(o), params(params)
mjr 89:c43cd923401c 865 {
mjr 89:c43cd923401c 866 // initially OFF
mjr 89:c43cd923401c 867 state = 0;
mjr 89:c43cd923401c 868 }
mjr 89:c43cd923401c 869
mjr 89:c43cd923401c 870 virtual void set(uint8_t level)
mjr 89:c43cd923401c 871 {
mjr 89:c43cd923401c 872 // remebmber the new nominal level set by the client
mjr 89:c43cd923401c 873 val = level;
mjr 89:c43cd923401c 874
mjr 89:c43cd923401c 875 // update the physical output according to our current timing state
mjr 89:c43cd923401c 876 switch (state)
mjr 89:c43cd923401c 877 {
mjr 89:c43cd923401c 878 case 0:
mjr 89:c43cd923401c 879 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 880 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 881 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 882 // off, so there's no change.
mjr 89:c43cd923401c 883 if (level != 0)
mjr 89:c43cd923401c 884 {
mjr 89:c43cd923401c 885 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 886 state = 1;
mjr 89:c43cd923401c 887
mjr 89:c43cd923401c 888 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 889 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 890 // requested
mjr 89:c43cd923401c 891 out->set(level);
mjr 89:c43cd923401c 892
mjr 89:c43cd923401c 893 // add myself to the pending timer list
mjr 89:c43cd923401c 894 pending[nPending++] = this;
mjr 89:c43cd923401c 895
mjr 89:c43cd923401c 896 // note the starting time
mjr 89:c43cd923401c 897 t0 = timer.read_us();
mjr 89:c43cd923401c 898 }
mjr 89:c43cd923401c 899 break;
mjr 89:c43cd923401c 900
mjr 89:c43cd923401c 901 case 1:
mjr 89:c43cd923401c 902 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 903 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 904 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 905 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 906 out->set(level);
mjr 89:c43cd923401c 907 if (level == 0)
mjr 89:c43cd923401c 908 {
mjr 89:c43cd923401c 909 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 910 // so we need to remove it from the list.
mjr 89:c43cd923401c 911 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 912 {
mjr 89:c43cd923401c 913 // is this us?
mjr 89:c43cd923401c 914 if (pending[i] == this)
mjr 89:c43cd923401c 915 {
mjr 89:c43cd923401c 916 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 917 // last list entry
mjr 89:c43cd923401c 918 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 919
mjr 89:c43cd923401c 920 // no need to look any further
mjr 89:c43cd923401c 921 break;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923 }
mjr 89:c43cd923401c 924
mjr 89:c43cd923401c 925 // switch to state 0 (off)
mjr 89:c43cd923401c 926 state = 0;
mjr 89:c43cd923401c 927 }
mjr 89:c43cd923401c 928 break;
mjr 89:c43cd923401c 929
mjr 89:c43cd923401c 930 case 2:
mjr 89:c43cd923401c 931 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 932 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 933 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 934 // as the upper bound.
mjr 89:c43cd923401c 935 if (level == 0)
mjr 89:c43cd923401c 936 {
mjr 89:c43cd923401c 937 // switching off - turn off the physical output
mjr 89:c43cd923401c 938 out->set(0);
mjr 89:c43cd923401c 939
mjr 89:c43cd923401c 940 // go to state 0 (off)
mjr 89:c43cd923401c 941 state = 0;
mjr 89:c43cd923401c 942 }
mjr 89:c43cd923401c 943 else
mjr 89:c43cd923401c 944 {
mjr 89:c43cd923401c 945 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 946 // lower of the requested power and the hold power
mjr 89:c43cd923401c 947 uint8_t hold = holdPower();
mjr 89:c43cd923401c 948 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953
mjr 89:c43cd923401c 954 // Class initialization
mjr 89:c43cd923401c 955 static void classInit(Config &cfg)
mjr 89:c43cd923401c 956 {
mjr 89:c43cd923401c 957 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 958 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 959 // all of these outputs.
mjr 89:c43cd923401c 960 int n = 0;
mjr 89:c43cd923401c 961 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 964 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 965 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 966 ++n;
mjr 89:c43cd923401c 967 }
mjr 89:c43cd923401c 968
mjr 89:c43cd923401c 969 // allocate space for the pending timer list
mjr 89:c43cd923401c 970 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 971
mjr 89:c43cd923401c 972 // there's nothing in the pending list yet
mjr 89:c43cd923401c 973 nPending = 0;
mjr 89:c43cd923401c 974
mjr 89:c43cd923401c 975 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 976 // use it to figure elapsed times.
mjr 89:c43cd923401c 977 timer.start();
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979
mjr 89:c43cd923401c 980 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 981 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 982 static void poll()
mjr 89:c43cd923401c 983 {
mjr 89:c43cd923401c 984 // note the current time
mjr 89:c43cd923401c 985 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 986
mjr 89:c43cd923401c 987 // go through the timer list
mjr 89:c43cd923401c 988 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 989 {
mjr 89:c43cd923401c 990 // get the port
mjr 89:c43cd923401c 991 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 992
mjr 89:c43cd923401c 993 // assume we'll keep it
mjr 89:c43cd923401c 994 bool remove = false;
mjr 89:c43cd923401c 995
mjr 89:c43cd923401c 996 // check if the port is still on
mjr 89:c43cd923401c 997 if (port->state != 0)
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1000 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1001 {
mjr 89:c43cd923401c 1002 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1003 port->state = 2;
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1006 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1007 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1008 uint8_t val = port->val;
mjr 89:c43cd923401c 1009 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1010
mjr 89:c43cd923401c 1011 // we're done with the timer
mjr 89:c43cd923401c 1012 remove = true;
mjr 89:c43cd923401c 1013 }
mjr 89:c43cd923401c 1014 }
mjr 89:c43cd923401c 1015 else
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1018 // it from the timer list
mjr 89:c43cd923401c 1019 remove = true;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021
mjr 89:c43cd923401c 1022 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1023 if (remove)
mjr 89:c43cd923401c 1024 {
mjr 89:c43cd923401c 1025 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1026 // the last entry in the list.
mjr 89:c43cd923401c 1027 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1030 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1031 }
mjr 89:c43cd923401c 1032 else
mjr 89:c43cd923401c 1033 {
mjr 89:c43cd923401c 1034 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1035 ++i;
mjr 89:c43cd923401c 1036 }
mjr 89:c43cd923401c 1037 }
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039
mjr 89:c43cd923401c 1040 protected:
mjr 89:c43cd923401c 1041 // underlying physical output
mjr 89:c43cd923401c 1042 LwOut *out;
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1045 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1046 uint32_t t0;
mjr 89:c43cd923401c 1047
mjr 89:c43cd923401c 1048 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1049 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1050 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1051 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1052 // if it's lower.
mjr 89:c43cd923401c 1053 uint8_t val;
mjr 89:c43cd923401c 1054
mjr 89:c43cd923401c 1055 // Current port state:
mjr 89:c43cd923401c 1056 //
mjr 89:c43cd923401c 1057 // 0 = off
mjr 89:c43cd923401c 1058 // 1 = on at initial full power
mjr 89:c43cd923401c 1059 // 2 = on at hold power
mjr 89:c43cd923401c 1060 uint8_t state;
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1063 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1064 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1065 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1066 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1067 uint8_t params;
mjr 89:c43cd923401c 1068
mjr 89:c43cd923401c 1069 // Figure the initial full-power time in microseconds
mjr 89:c43cd923401c 1070 inline uint32_t fullPowerTime_us() const { return ((params >> 4) + 1)*50000; }
mjr 89:c43cd923401c 1071
mjr 89:c43cd923401c 1072 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1073 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1074
mjr 89:c43cd923401c 1075 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1076 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1077 // (which runs continuously).
mjr 89:c43cd923401c 1078 static Timer timer;
mjr 89:c43cd923401c 1079
mjr 89:c43cd923401c 1080 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 89:c43cd923401c 1081 // transitions from OFF to ON, tis timer
mjr 89:c43cd923401c 1082 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1083 static uint8_t nPending;
mjr 89:c43cd923401c 1084 };
mjr 89:c43cd923401c 1085
mjr 89:c43cd923401c 1086 // Flipper Logic statics
mjr 89:c43cd923401c 1087 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1088 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1089 uint8_t LwFlipperLogicOut::nPending;
mjr 89:c43cd923401c 1090
mjr 35:e959ffba78fd 1091 //
mjr 35:e959ffba78fd 1092 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1093 // assignments set in config.h.
mjr 33:d832bcab089e 1094 //
mjr 35:e959ffba78fd 1095 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1096 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1097 {
mjr 35:e959ffba78fd 1098 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1099 {
mjr 53:9b2611964afc 1100 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1101 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1102 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1103 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1104 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1105 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1106 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1107 }
mjr 35:e959ffba78fd 1108 }
mjr 26:cb71c4af2912 1109
mjr 40:cc0d9814522b 1110 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1111 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1112 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1113 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1114 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1115 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1116 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1117 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1118 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1119 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1120 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1121 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1122 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1123 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1124 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1125 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1126 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1127 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1128 };
mjr 40:cc0d9814522b 1129
mjr 40:cc0d9814522b 1130 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1131 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1132 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1133 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1134 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1135 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1136 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1137 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1138 // are always 8 bits.
mjr 40:cc0d9814522b 1139 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1140 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1141 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1142 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1143 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1144 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1145 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1146 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1147 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1148 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1149 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1150 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1151 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1152 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1153 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1154 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1155 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1156 };
mjr 40:cc0d9814522b 1157
mjr 26:cb71c4af2912 1158 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1159 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1160 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1161 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1162 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1163 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1164 {
mjr 26:cb71c4af2912 1165 public:
mjr 60:f38da020aa13 1166 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1167 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1168 {
mjr 26:cb71c4af2912 1169 if (val != prv)
mjr 40:cc0d9814522b 1170 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1171 }
mjr 60:f38da020aa13 1172 uint8_t idx;
mjr 40:cc0d9814522b 1173 uint8_t prv;
mjr 26:cb71c4af2912 1174 };
mjr 26:cb71c4af2912 1175
mjr 40:cc0d9814522b 1176 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1177 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1178 {
mjr 40:cc0d9814522b 1179 public:
mjr 60:f38da020aa13 1180 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1181 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1182 {
mjr 40:cc0d9814522b 1183 if (val != prv)
mjr 40:cc0d9814522b 1184 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1185 }
mjr 60:f38da020aa13 1186 uint8_t idx;
mjr 40:cc0d9814522b 1187 uint8_t prv;
mjr 40:cc0d9814522b 1188 };
mjr 40:cc0d9814522b 1189
mjr 87:8d35c74403af 1190 //
mjr 87:8d35c74403af 1191 // TLC59116 interface object
mjr 87:8d35c74403af 1192 //
mjr 87:8d35c74403af 1193 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1194 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1195 {
mjr 87:8d35c74403af 1196 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1197 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1198 {
mjr 87:8d35c74403af 1199 // set up the interface
mjr 87:8d35c74403af 1200 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1201 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1202 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1203 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1204
mjr 87:8d35c74403af 1205 // initialize the chips
mjr 87:8d35c74403af 1206 tlc59116->init();
mjr 87:8d35c74403af 1207 }
mjr 87:8d35c74403af 1208 }
mjr 87:8d35c74403af 1209
mjr 87:8d35c74403af 1210 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1211 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1212 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1213 // (0-15).
mjr 87:8d35c74403af 1214 //
mjr 87:8d35c74403af 1215 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1216 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1217 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1218 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1219 {
mjr 87:8d35c74403af 1220 public:
mjr 87:8d35c74403af 1221 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1222 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1223 {
mjr 87:8d35c74403af 1224 if (val != prv)
mjr 87:8d35c74403af 1225 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1226 }
mjr 87:8d35c74403af 1227
mjr 87:8d35c74403af 1228 protected:
mjr 87:8d35c74403af 1229 uint8_t addr;
mjr 87:8d35c74403af 1230 uint8_t port;
mjr 87:8d35c74403af 1231 uint8_t prv;
mjr 87:8d35c74403af 1232 };
mjr 87:8d35c74403af 1233
mjr 87:8d35c74403af 1234
mjr 87:8d35c74403af 1235 //
mjr 34:6b981a2afab7 1236 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1237 // config.h.
mjr 87:8d35c74403af 1238 //
mjr 35:e959ffba78fd 1239 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1240
mjr 35:e959ffba78fd 1241 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1242 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1243 {
mjr 35:e959ffba78fd 1244 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1245 {
mjr 53:9b2611964afc 1246 hc595 = new HC595(
mjr 53:9b2611964afc 1247 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1248 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1249 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1250 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1251 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1252 hc595->init();
mjr 35:e959ffba78fd 1253 hc595->update();
mjr 35:e959ffba78fd 1254 }
mjr 35:e959ffba78fd 1255 }
mjr 34:6b981a2afab7 1256
mjr 34:6b981a2afab7 1257 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1258 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1259 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1260 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1261 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1262 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1263 {
mjr 33:d832bcab089e 1264 public:
mjr 60:f38da020aa13 1265 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1266 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1267 {
mjr 34:6b981a2afab7 1268 if (val != prv)
mjr 40:cc0d9814522b 1269 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1270 }
mjr 60:f38da020aa13 1271 uint8_t idx;
mjr 40:cc0d9814522b 1272 uint8_t prv;
mjr 33:d832bcab089e 1273 };
mjr 33:d832bcab089e 1274
mjr 26:cb71c4af2912 1275
mjr 40:cc0d9814522b 1276
mjr 64:ef7ca92dff36 1277 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1278 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1279 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1280 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1281 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1282 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1283 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1284 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1285 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1286 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1287 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1288 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1289 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1290 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1291 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1292 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1293 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1294 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1295 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1296 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1297 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1298 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1299 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1300 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1301 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1302 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1303 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1304 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1305 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1306 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1307 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1308 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1309 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1310 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1311 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1312 };
mjr 26:cb71c4af2912 1313
mjr 64:ef7ca92dff36 1314
mjr 92:f264fbaa1be5 1315 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1316 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1317 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1318 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1319 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1320 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1321 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1322 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1323 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1324 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1325 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1326 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1327 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1328 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1329 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1330 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1331 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1332 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1333 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1334 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1335 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1336 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1337 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1338 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1339 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1340 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1341 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1342 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1343 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1344 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1345 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1346 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1347 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1348 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1349 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1350 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1351 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1352 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1353 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1354 };
mjr 64:ef7ca92dff36 1355
mjr 77:0b96f6867312 1356 // Polled-update PWM output list
mjr 74:822a92bc11d2 1357 //
mjr 77:0b96f6867312 1358 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1359 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1360 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1361 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1362 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1363 //
mjr 92:f264fbaa1be5 1364 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1365 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1366 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1367 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1368 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1369 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1370 //
mjr 92:f264fbaa1be5 1371 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1372 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1373 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1374 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1375 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1376 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1377 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1378 // enough to become noticeable.
mjr 92:f264fbaa1be5 1379 //
mjr 92:f264fbaa1be5 1380 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1381 // mbed solution isn't really a solution at all because it creates a separate
mjr 92:f264fbaa1be5 1382 // problem of its own. The mbed approach is reset the TPM "count" register
mjr 92:f264fbaa1be5 1383 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1384 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1385 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1386 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1387 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1388 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1389 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1390 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1391 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1392 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1393 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1394 //
mjr 92:f264fbaa1be5 1395 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1396 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1397 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1398 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1399 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1400 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1401 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1402 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1403 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1404 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1405 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1406 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1407 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1408 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1409 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1410 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1411 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1412 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1413 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1414 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1415 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1416 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1417 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1418 //
mjr 77:0b96f6867312 1419 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1420 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1421 // of polled items.
mjr 74:822a92bc11d2 1422 static int numPolledPwm;
mjr 74:822a92bc11d2 1423 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1424
mjr 74:822a92bc11d2 1425 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1426 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1427 {
mjr 6:cc35eb643e8f 1428 public:
mjr 43:7a6364d82a41 1429 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1430 {
mjr 77:0b96f6867312 1431 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1432 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1433 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1434
mjr 94:0476b3e2b996 1435 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1436 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1437 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1438 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1439 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1440 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1441 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1442 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1443 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1444 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1445 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1446 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1447 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1448 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1449 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1450 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1451
mjr 94:0476b3e2b996 1452 // set the initial brightness value
mjr 77:0b96f6867312 1453 set(initVal);
mjr 43:7a6364d82a41 1454 }
mjr 74:822a92bc11d2 1455
mjr 40:cc0d9814522b 1456 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1457 {
mjr 77:0b96f6867312 1458 // save the new value
mjr 74:822a92bc11d2 1459 this->val = val;
mjr 77:0b96f6867312 1460
mjr 77:0b96f6867312 1461 // commit it to the hardware
mjr 77:0b96f6867312 1462 commit();
mjr 13:72dda449c3c0 1463 }
mjr 74:822a92bc11d2 1464
mjr 74:822a92bc11d2 1465 // handle periodic update polling
mjr 74:822a92bc11d2 1466 void poll()
mjr 74:822a92bc11d2 1467 {
mjr 77:0b96f6867312 1468 commit();
mjr 74:822a92bc11d2 1469 }
mjr 74:822a92bc11d2 1470
mjr 74:822a92bc11d2 1471 protected:
mjr 77:0b96f6867312 1472 virtual void commit()
mjr 74:822a92bc11d2 1473 {
mjr 74:822a92bc11d2 1474 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1475 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1476 }
mjr 74:822a92bc11d2 1477
mjr 77:0b96f6867312 1478 NewPwmOut p;
mjr 77:0b96f6867312 1479 uint8_t val;
mjr 6:cc35eb643e8f 1480 };
mjr 26:cb71c4af2912 1481
mjr 74:822a92bc11d2 1482 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1483 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1484 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1485 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1486 {
mjr 64:ef7ca92dff36 1487 public:
mjr 64:ef7ca92dff36 1488 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1489 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1490 {
mjr 64:ef7ca92dff36 1491 }
mjr 74:822a92bc11d2 1492
mjr 74:822a92bc11d2 1493 protected:
mjr 77:0b96f6867312 1494 virtual void commit()
mjr 64:ef7ca92dff36 1495 {
mjr 74:822a92bc11d2 1496 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1497 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1498 }
mjr 64:ef7ca92dff36 1499 };
mjr 64:ef7ca92dff36 1500
mjr 74:822a92bc11d2 1501 // poll the PWM outputs
mjr 74:822a92bc11d2 1502 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1503 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1504 void pollPwmUpdates()
mjr 74:822a92bc11d2 1505 {
mjr 94:0476b3e2b996 1506 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1507 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1508 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1509 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1510 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1511 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1512 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1513 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1514 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1515 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1516 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1517 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1518 // viewer.
mjr 94:0476b3e2b996 1519 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1520 {
mjr 74:822a92bc11d2 1521 // time the run for statistics collection
mjr 74:822a92bc11d2 1522 IF_DIAG(
mjr 74:822a92bc11d2 1523 Timer t;
mjr 74:822a92bc11d2 1524 t.start();
mjr 74:822a92bc11d2 1525 )
mjr 74:822a92bc11d2 1526
mjr 74:822a92bc11d2 1527 // poll each output
mjr 74:822a92bc11d2 1528 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1529 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1530
mjr 74:822a92bc11d2 1531 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1532 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1533
mjr 74:822a92bc11d2 1534 // collect statistics
mjr 74:822a92bc11d2 1535 IF_DIAG(
mjr 76:7f5912b6340e 1536 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1537 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1538 )
mjr 74:822a92bc11d2 1539 }
mjr 74:822a92bc11d2 1540 }
mjr 64:ef7ca92dff36 1541
mjr 26:cb71c4af2912 1542 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1543 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1544 {
mjr 6:cc35eb643e8f 1545 public:
mjr 43:7a6364d82a41 1546 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1547 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1548 {
mjr 13:72dda449c3c0 1549 if (val != prv)
mjr 40:cc0d9814522b 1550 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1551 }
mjr 6:cc35eb643e8f 1552 DigitalOut p;
mjr 40:cc0d9814522b 1553 uint8_t prv;
mjr 6:cc35eb643e8f 1554 };
mjr 26:cb71c4af2912 1555
mjr 29:582472d0bc57 1556 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1557 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1558 // port n (0-based).
mjr 35:e959ffba78fd 1559 //
mjr 35:e959ffba78fd 1560 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1561 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1562 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1563 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1564 // 74HC595 ports).
mjr 33:d832bcab089e 1565 static int numOutputs;
mjr 33:d832bcab089e 1566 static LwOut **lwPin;
mjr 33:d832bcab089e 1567
mjr 38:091e511ce8a0 1568 // create a single output pin
mjr 53:9b2611964afc 1569 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1570 {
mjr 38:091e511ce8a0 1571 // get this item's values
mjr 38:091e511ce8a0 1572 int typ = pc.typ;
mjr 38:091e511ce8a0 1573 int pin = pc.pin;
mjr 38:091e511ce8a0 1574 int flags = pc.flags;
mjr 40:cc0d9814522b 1575 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1576 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1577 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1578 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 89:c43cd923401c 1579
mjr 89:c43cd923401c 1580 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1581 if (flipperLogic)
mjr 89:c43cd923401c 1582 gamma = false;
mjr 38:091e511ce8a0 1583
mjr 38:091e511ce8a0 1584 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1585 LwOut *lwp;
mjr 38:091e511ce8a0 1586 switch (typ)
mjr 38:091e511ce8a0 1587 {
mjr 38:091e511ce8a0 1588 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1589 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1590 if (pin != 0)
mjr 64:ef7ca92dff36 1591 {
mjr 64:ef7ca92dff36 1592 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1593 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1594 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1595 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1596 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1597 {
mjr 64:ef7ca92dff36 1598 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1599 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1600
mjr 64:ef7ca92dff36 1601 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1602 gamma = false;
mjr 64:ef7ca92dff36 1603 }
mjr 64:ef7ca92dff36 1604 else
mjr 64:ef7ca92dff36 1605 {
mjr 64:ef7ca92dff36 1606 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1607 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1608 }
mjr 64:ef7ca92dff36 1609 }
mjr 48:058ace2aed1d 1610 else
mjr 48:058ace2aed1d 1611 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1612 break;
mjr 38:091e511ce8a0 1613
mjr 38:091e511ce8a0 1614 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1615 // Digital GPIO port
mjr 48:058ace2aed1d 1616 if (pin != 0)
mjr 48:058ace2aed1d 1617 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1618 else
mjr 48:058ace2aed1d 1619 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1620 break;
mjr 38:091e511ce8a0 1621
mjr 38:091e511ce8a0 1622 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1623 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1624 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1625 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1626 {
mjr 40:cc0d9814522b 1627 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1628 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1629 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1630 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1631 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1632 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1633 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1634 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1635 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1636 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1637 // for this unlikely case.
mjr 40:cc0d9814522b 1638 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1639 {
mjr 40:cc0d9814522b 1640 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1641 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1642
mjr 40:cc0d9814522b 1643 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1644 gamma = false;
mjr 40:cc0d9814522b 1645 }
mjr 40:cc0d9814522b 1646 else
mjr 40:cc0d9814522b 1647 {
mjr 40:cc0d9814522b 1648 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1649 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1650 }
mjr 40:cc0d9814522b 1651 }
mjr 38:091e511ce8a0 1652 else
mjr 40:cc0d9814522b 1653 {
mjr 40:cc0d9814522b 1654 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1655 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1656 }
mjr 38:091e511ce8a0 1657 break;
mjr 38:091e511ce8a0 1658
mjr 38:091e511ce8a0 1659 case PortType74HC595:
mjr 87:8d35c74403af 1660 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1661 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1662 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1663 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1664 else
mjr 38:091e511ce8a0 1665 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1666 break;
mjr 87:8d35c74403af 1667
mjr 87:8d35c74403af 1668 case PortTypeTLC59116:
mjr 87:8d35c74403af 1669 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1670 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1671 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1672 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1673 if (tlc59116 != 0)
mjr 87:8d35c74403af 1674 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1675 break;
mjr 38:091e511ce8a0 1676
mjr 38:091e511ce8a0 1677 case PortTypeVirtual:
mjr 43:7a6364d82a41 1678 case PortTypeDisabled:
mjr 38:091e511ce8a0 1679 default:
mjr 38:091e511ce8a0 1680 // virtual or unknown
mjr 38:091e511ce8a0 1681 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1682 break;
mjr 38:091e511ce8a0 1683 }
mjr 38:091e511ce8a0 1684
mjr 40:cc0d9814522b 1685 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1686 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1687 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1688 if (activeLow)
mjr 38:091e511ce8a0 1689 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1690
mjr 89:c43cd923401c 1691 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 1692 if (flipperLogic)
mjr 89:c43cd923401c 1693 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 1694
mjr 89:c43cd923401c 1695 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 1696 if (noisy)
mjr 40:cc0d9814522b 1697 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1698
mjr 40:cc0d9814522b 1699 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1700 if (gamma)
mjr 40:cc0d9814522b 1701 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1702
mjr 53:9b2611964afc 1703 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1704 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1705 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1706 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1707 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1708
mjr 53:9b2611964afc 1709 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1710 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1711 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1712
mjr 38:091e511ce8a0 1713 // turn it off initially
mjr 38:091e511ce8a0 1714 lwp->set(0);
mjr 38:091e511ce8a0 1715
mjr 38:091e511ce8a0 1716 // return the pin
mjr 38:091e511ce8a0 1717 return lwp;
mjr 38:091e511ce8a0 1718 }
mjr 38:091e511ce8a0 1719
mjr 6:cc35eb643e8f 1720 // initialize the output pin array
mjr 35:e959ffba78fd 1721 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1722 {
mjr 89:c43cd923401c 1723 // Initialize the Flipper Logic outputs
mjr 89:c43cd923401c 1724 LwFlipperLogicOut::classInit(cfg);
mjr 89:c43cd923401c 1725
mjr 35:e959ffba78fd 1726 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1727 // total number of ports.
mjr 35:e959ffba78fd 1728 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1729 int i;
mjr 35:e959ffba78fd 1730 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1731 {
mjr 35:e959ffba78fd 1732 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1733 {
mjr 35:e959ffba78fd 1734 numOutputs = i;
mjr 34:6b981a2afab7 1735 break;
mjr 34:6b981a2afab7 1736 }
mjr 33:d832bcab089e 1737 }
mjr 33:d832bcab089e 1738
mjr 73:4e8ce0b18915 1739 // allocate the pin array
mjr 73:4e8ce0b18915 1740 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1741
mjr 73:4e8ce0b18915 1742 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1743 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1744
mjr 73:4e8ce0b18915 1745 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1746 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1747 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1748
mjr 73:4e8ce0b18915 1749 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1750 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1751 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1752
mjr 73:4e8ce0b18915 1753 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1754 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1755 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1756
mjr 35:e959ffba78fd 1757 // create the pin interface object for each port
mjr 35:e959ffba78fd 1758 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1759 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1760 }
mjr 6:cc35eb643e8f 1761
mjr 76:7f5912b6340e 1762 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1763 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1764 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1765 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1766 // equivalent to 48.
mjr 40:cc0d9814522b 1767 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1768 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1769 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1770 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1771 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1772 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1773 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1774 255, 255
mjr 40:cc0d9814522b 1775 };
mjr 40:cc0d9814522b 1776
mjr 76:7f5912b6340e 1777 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1778 // level (1..48)
mjr 76:7f5912b6340e 1779 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1780 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1781 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1782 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1783 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1784 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1785 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1786 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1787 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1788 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1789 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1790 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1791 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1792 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1793 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1794 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1795 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1796 };
mjr 76:7f5912b6340e 1797
mjr 74:822a92bc11d2 1798 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1799 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1800 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1801 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1802 //
mjr 74:822a92bc11d2 1803 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1804 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1805 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1806 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1807 //
mjr 74:822a92bc11d2 1808 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1809 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1810 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1811 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1812 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1813 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1814 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1815 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1816 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1817 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1818 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1819 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1820 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1821 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1822 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1823 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1824 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1825 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1826 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1827 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1828
mjr 74:822a92bc11d2 1829 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1830 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1831 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1832 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1833 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1834 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1835 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1836 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1837 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1838 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1839 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1840 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1841 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1842 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1843 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1844 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1845 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1846
mjr 74:822a92bc11d2 1847 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1848 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1849 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1850 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1851 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1852 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1853 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1854 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1855 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1856 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1857 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1858 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1859 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1860 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1861 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1862 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1863 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1864
mjr 74:822a92bc11d2 1865 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1866 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1867 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1868 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1869 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1870 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1871 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1872 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1873 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1874 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1875 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1876 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1877 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1878 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1879 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1880 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1881 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1882 };
mjr 74:822a92bc11d2 1883
mjr 74:822a92bc11d2 1884 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1885 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1886 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1887
mjr 76:7f5912b6340e 1888 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1889 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1890
mjr 76:7f5912b6340e 1891 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1892 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1893 // outputs on each cycle.
mjr 29:582472d0bc57 1894 static void wizPulse()
mjr 29:582472d0bc57 1895 {
mjr 76:7f5912b6340e 1896 // current bank
mjr 76:7f5912b6340e 1897 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1898
mjr 76:7f5912b6340e 1899 // start a timer for statistics collection
mjr 76:7f5912b6340e 1900 IF_DIAG(
mjr 76:7f5912b6340e 1901 Timer t;
mjr 76:7f5912b6340e 1902 t.start();
mjr 76:7f5912b6340e 1903 )
mjr 76:7f5912b6340e 1904
mjr 76:7f5912b6340e 1905 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1906 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1907 //
mjr 76:7f5912b6340e 1908 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1909 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1910 //
mjr 76:7f5912b6340e 1911 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1912 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1913 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1914 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1915 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1916 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1917 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1918 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1919 // current cycle.
mjr 76:7f5912b6340e 1920 //
mjr 76:7f5912b6340e 1921 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1922 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1923 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1924 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1925 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1926 //
mjr 76:7f5912b6340e 1927 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1928 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1929 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1930 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1931 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1932 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1933 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1934 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1935 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1936 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1937 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1938 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1939 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1940 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1941 // bit counts.
mjr 76:7f5912b6340e 1942 //
mjr 76:7f5912b6340e 1943 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1944 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1945 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1946 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1947 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1948 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1949 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1950 // one division for another!
mjr 76:7f5912b6340e 1951 //
mjr 76:7f5912b6340e 1952 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1953 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1954 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1955 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1956 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1957 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1958 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1959 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1960 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1961 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1962 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1963 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1964 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1965 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1966 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1967 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1968 // remainder calculation anyway.
mjr 76:7f5912b6340e 1969 //
mjr 76:7f5912b6340e 1970 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1971 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1972 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1973 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1974 //
mjr 76:7f5912b6340e 1975 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1976 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1977 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1978 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1979 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1980 // the result, since we started with 32.
mjr 76:7f5912b6340e 1981 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1982 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1983 };
mjr 76:7f5912b6340e 1984 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1985
mjr 76:7f5912b6340e 1986 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1987 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1988 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1989 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1990 toPort = numOutputs;
mjr 76:7f5912b6340e 1991
mjr 76:7f5912b6340e 1992 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1993 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1994 {
mjr 76:7f5912b6340e 1995 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1996 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1997 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1998 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1999 if (wizOn[i])
mjr 29:582472d0bc57 2000 {
mjr 76:7f5912b6340e 2001 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2002 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2003 {
mjr 76:7f5912b6340e 2004 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2005 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2006 }
mjr 29:582472d0bc57 2007 }
mjr 76:7f5912b6340e 2008 }
mjr 76:7f5912b6340e 2009
mjr 34:6b981a2afab7 2010 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2011 if (hc595 != 0)
mjr 35:e959ffba78fd 2012 hc595->update();
mjr 76:7f5912b6340e 2013
mjr 76:7f5912b6340e 2014 // switch to the next bank
mjr 76:7f5912b6340e 2015 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2016 wizPulseBank = 0;
mjr 76:7f5912b6340e 2017
mjr 76:7f5912b6340e 2018 // collect timing statistics
mjr 76:7f5912b6340e 2019 IF_DIAG(
mjr 76:7f5912b6340e 2020 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2021 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2022 )
mjr 1:d913e0afb2ac 2023 }
mjr 38:091e511ce8a0 2024
mjr 76:7f5912b6340e 2025 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2026 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2027 {
mjr 76:7f5912b6340e 2028 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2029 if (wizOn[port])
mjr 76:7f5912b6340e 2030 {
mjr 76:7f5912b6340e 2031 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2032 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2033 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2034 // it on the next cycle.
mjr 76:7f5912b6340e 2035 int val = wizVal[port];
mjr 76:7f5912b6340e 2036 if (val <= 49)
mjr 76:7f5912b6340e 2037 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2038 }
mjr 76:7f5912b6340e 2039 else
mjr 76:7f5912b6340e 2040 {
mjr 76:7f5912b6340e 2041 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2042 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2043 }
mjr 73:4e8ce0b18915 2044 }
mjr 73:4e8ce0b18915 2045
mjr 73:4e8ce0b18915 2046 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2047 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2048 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2049 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2050 //
mjr 73:4e8ce0b18915 2051 void allOutputsOff()
mjr 73:4e8ce0b18915 2052 {
mjr 92:f264fbaa1be5 2053 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2054 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2055 {
mjr 73:4e8ce0b18915 2056 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2057 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2058 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2059 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2060 }
mjr 73:4e8ce0b18915 2061
mjr 73:4e8ce0b18915 2062 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2063 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2064 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2065
mjr 73:4e8ce0b18915 2066 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2067 if (hc595 != 0)
mjr 38:091e511ce8a0 2068 hc595->update();
mjr 38:091e511ce8a0 2069 }
mjr 38:091e511ce8a0 2070
mjr 74:822a92bc11d2 2071 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2072 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2073 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2074 // address any port group.
mjr 74:822a92bc11d2 2075 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2076 {
mjr 76:7f5912b6340e 2077 // update all on/off states in the group
mjr 74:822a92bc11d2 2078 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2079 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2080 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2081 {
mjr 74:822a92bc11d2 2082 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2083 if (bit == 0x100) {
mjr 74:822a92bc11d2 2084 bit = 1;
mjr 74:822a92bc11d2 2085 ++imsg;
mjr 74:822a92bc11d2 2086 }
mjr 74:822a92bc11d2 2087
mjr 74:822a92bc11d2 2088 // set the on/off state
mjr 76:7f5912b6340e 2089 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2090
mjr 76:7f5912b6340e 2091 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2092 updateLwPort(port);
mjr 74:822a92bc11d2 2093 }
mjr 74:822a92bc11d2 2094
mjr 74:822a92bc11d2 2095 // set the flash speed for the port group
mjr 74:822a92bc11d2 2096 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2097 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2098
mjr 76:7f5912b6340e 2099 // update 74HC959 outputs
mjr 76:7f5912b6340e 2100 if (hc595 != 0)
mjr 76:7f5912b6340e 2101 hc595->update();
mjr 74:822a92bc11d2 2102 }
mjr 74:822a92bc11d2 2103
mjr 74:822a92bc11d2 2104 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2105 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2106 {
mjr 74:822a92bc11d2 2107 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2108 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2109 {
mjr 74:822a92bc11d2 2110 // get the value
mjr 74:822a92bc11d2 2111 uint8_t v = data[i];
mjr 74:822a92bc11d2 2112
mjr 74:822a92bc11d2 2113 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2114 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2115 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2116 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2117 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2118 // as such.
mjr 74:822a92bc11d2 2119 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2120 v = 48;
mjr 74:822a92bc11d2 2121
mjr 74:822a92bc11d2 2122 // store it
mjr 76:7f5912b6340e 2123 wizVal[port] = v;
mjr 76:7f5912b6340e 2124
mjr 76:7f5912b6340e 2125 // update the port
mjr 76:7f5912b6340e 2126 updateLwPort(port);
mjr 74:822a92bc11d2 2127 }
mjr 74:822a92bc11d2 2128
mjr 76:7f5912b6340e 2129 // update 74HC595 outputs
mjr 76:7f5912b6340e 2130 if (hc595 != 0)
mjr 76:7f5912b6340e 2131 hc595->update();
mjr 74:822a92bc11d2 2132 }
mjr 74:822a92bc11d2 2133
mjr 77:0b96f6867312 2134 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2135 //
mjr 77:0b96f6867312 2136 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2137 //
mjr 77:0b96f6867312 2138
mjr 77:0b96f6867312 2139 // receiver
mjr 77:0b96f6867312 2140 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2141
mjr 77:0b96f6867312 2142 // transmitter
mjr 77:0b96f6867312 2143 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2144
mjr 77:0b96f6867312 2145 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2146 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2147 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2148 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2149 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2150 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2151 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2152 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2153 // configuration slot n
mjr 77:0b96f6867312 2154 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2155
mjr 78:1e00b3fa11af 2156 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2157 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2158 // protocol.
mjr 78:1e00b3fa11af 2159 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2160
mjr 78:1e00b3fa11af 2161 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2162 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2163 // while waiting for the rest.
mjr 78:1e00b3fa11af 2164 static struct
mjr 78:1e00b3fa11af 2165 {
mjr 78:1e00b3fa11af 2166 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2167 uint64_t code; // code
mjr 78:1e00b3fa11af 2168 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2169 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2170 } IRAdHocCmd;
mjr 88:98bce687e6c0 2171
mjr 77:0b96f6867312 2172
mjr 77:0b96f6867312 2173 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2174 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2175 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2176 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2177 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2178 // amount of time.
mjr 77:0b96f6867312 2179 Timer IRTimer;
mjr 77:0b96f6867312 2180
mjr 77:0b96f6867312 2181 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2182 // The states are:
mjr 77:0b96f6867312 2183 //
mjr 77:0b96f6867312 2184 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2185 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2186 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2187 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2188 //
mjr 77:0b96f6867312 2189 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2190 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2191 // received within a reasonable time.
mjr 77:0b96f6867312 2192 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2193
mjr 77:0b96f6867312 2194 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2195 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2196 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2197 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2198 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2199 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2200 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2201 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2202 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2203
mjr 78:1e00b3fa11af 2204 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2205 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2206 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2207 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2208 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2209 // index; 0 represents no command.
mjr 77:0b96f6867312 2210 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2211
mjr 77:0b96f6867312 2212 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2213 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2214 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2215 // command we received.
mjr 77:0b96f6867312 2216 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2217
mjr 77:0b96f6867312 2218 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2219 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2220 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2221 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2222 // distinct key press.
mjr 77:0b96f6867312 2223 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2224
mjr 78:1e00b3fa11af 2225
mjr 77:0b96f6867312 2226 // initialize
mjr 77:0b96f6867312 2227 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2228 {
mjr 77:0b96f6867312 2229 PinName pin;
mjr 77:0b96f6867312 2230
mjr 77:0b96f6867312 2231 // start the IR timer
mjr 77:0b96f6867312 2232 IRTimer.start();
mjr 77:0b96f6867312 2233
mjr 77:0b96f6867312 2234 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2235 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2236 {
mjr 77:0b96f6867312 2237 // no virtual buttons yet
mjr 77:0b96f6867312 2238 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2239 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2240
mjr 77:0b96f6867312 2241 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2242 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2243 {
mjr 77:0b96f6867312 2244 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2245 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2246 }
mjr 77:0b96f6867312 2247
mjr 77:0b96f6867312 2248 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2249 // real button inputs
mjr 77:0b96f6867312 2250 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2251 {
mjr 77:0b96f6867312 2252 // get the button
mjr 77:0b96f6867312 2253 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2254
mjr 77:0b96f6867312 2255 // check the unshifted button
mjr 77:0b96f6867312 2256 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2257 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2258 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2259 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2260
mjr 77:0b96f6867312 2261 // check the shifted button
mjr 77:0b96f6867312 2262 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2263 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2264 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2265 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2266 }
mjr 77:0b96f6867312 2267
mjr 77:0b96f6867312 2268 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2269 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2270 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2271
mjr 77:0b96f6867312 2272 // create the transmitter
mjr 77:0b96f6867312 2273 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2274
mjr 77:0b96f6867312 2275 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2276 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2277 {
mjr 77:0b96f6867312 2278 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2279 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2280 if (vb != 0xFF)
mjr 77:0b96f6867312 2281 {
mjr 77:0b96f6867312 2282 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2283 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2284 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2285 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2286 }
mjr 77:0b96f6867312 2287 }
mjr 77:0b96f6867312 2288 }
mjr 77:0b96f6867312 2289
mjr 77:0b96f6867312 2290 // if there's a receiver, set it up
mjr 77:0b96f6867312 2291 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2292 {
mjr 77:0b96f6867312 2293 // create the receiver
mjr 77:0b96f6867312 2294 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2295
mjr 77:0b96f6867312 2296 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2297 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2298 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2299
mjr 77:0b96f6867312 2300 // enable it
mjr 77:0b96f6867312 2301 ir_rx->enable();
mjr 77:0b96f6867312 2302
mjr 77:0b96f6867312 2303 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2304 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2305 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2306 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2307 {
mjr 77:0b96f6867312 2308 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2309 if (cb.protocol != 0
mjr 77:0b96f6867312 2310 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2311 {
mjr 77:0b96f6867312 2312 kbKeys = true;
mjr 77:0b96f6867312 2313 break;
mjr 77:0b96f6867312 2314 }
mjr 77:0b96f6867312 2315 }
mjr 77:0b96f6867312 2316 }
mjr 77:0b96f6867312 2317 }
mjr 77:0b96f6867312 2318
mjr 77:0b96f6867312 2319 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2320 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2321 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2322 {
mjr 77:0b96f6867312 2323 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2324 if (ir_tx != 0)
mjr 77:0b96f6867312 2325 {
mjr 77:0b96f6867312 2326 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2327 int slot = cmd - 1;
mjr 77:0b96f6867312 2328
mjr 77:0b96f6867312 2329 // press or release the virtual button
mjr 77:0b96f6867312 2330 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2331 }
mjr 77:0b96f6867312 2332 }
mjr 77:0b96f6867312 2333
mjr 78:1e00b3fa11af 2334 // Process IR input and output
mjr 77:0b96f6867312 2335 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2336 {
mjr 78:1e00b3fa11af 2337 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2338 if (ir_tx != 0)
mjr 77:0b96f6867312 2339 {
mjr 78:1e00b3fa11af 2340 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2341 // is ready to send, send it.
mjr 78:1e00b3fa11af 2342 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2343 {
mjr 78:1e00b3fa11af 2344 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2345 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2346 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2347 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2348
mjr 78:1e00b3fa11af 2349 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2350 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2351 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2352
mjr 78:1e00b3fa11af 2353 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2354 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2355 }
mjr 77:0b96f6867312 2356 }
mjr 78:1e00b3fa11af 2357
mjr 78:1e00b3fa11af 2358 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2359 if (ir_rx != 0)
mjr 77:0b96f6867312 2360 {
mjr 78:1e00b3fa11af 2361 // Time out any received command
mjr 78:1e00b3fa11af 2362 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2363 {
mjr 80:94dc2946871b 2364 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2365 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2366 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2367 if (t > 200000)
mjr 78:1e00b3fa11af 2368 IRCommandIn = 0;
mjr 80:94dc2946871b 2369 else if (t > 50000)
mjr 78:1e00b3fa11af 2370 IRKeyGap = false;
mjr 78:1e00b3fa11af 2371 }
mjr 78:1e00b3fa11af 2372
mjr 78:1e00b3fa11af 2373 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2374 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2375 {
mjr 78:1e00b3fa11af 2376 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2377 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2378 // limit.
mjr 78:1e00b3fa11af 2379 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2380 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2381 int n;
mjr 78:1e00b3fa11af 2382 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2383
mjr 78:1e00b3fa11af 2384 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2385 if (n != 0)
mjr 78:1e00b3fa11af 2386 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2387
mjr 78:1e00b3fa11af 2388 // check for a command
mjr 78:1e00b3fa11af 2389 IRCommand c;
mjr 78:1e00b3fa11af 2390 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2391 {
mjr 78:1e00b3fa11af 2392 // check the current learning state
mjr 78:1e00b3fa11af 2393 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2394 {
mjr 78:1e00b3fa11af 2395 case 1:
mjr 78:1e00b3fa11af 2396 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2397 // This is it.
mjr 78:1e00b3fa11af 2398 learnedIRCode = c;
mjr 78:1e00b3fa11af 2399
mjr 78:1e00b3fa11af 2400 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2401 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2402 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2403 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2404 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2405 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2406 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2407 break;
mjr 78:1e00b3fa11af 2408
mjr 78:1e00b3fa11af 2409 case 2:
mjr 78:1e00b3fa11af 2410 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2411 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2412 //
mjr 78:1e00b3fa11af 2413 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2414 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2415 //
mjr 78:1e00b3fa11af 2416 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2417 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2418 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2419 // them.
mjr 78:1e00b3fa11af 2420 //
mjr 78:1e00b3fa11af 2421 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2422 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2423 // over.
mjr 78:1e00b3fa11af 2424 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2425 && c.hasDittos
mjr 78:1e00b3fa11af 2426 && c.ditto)
mjr 78:1e00b3fa11af 2427 {
mjr 78:1e00b3fa11af 2428 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2429 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2430 }
mjr 78:1e00b3fa11af 2431 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2432 && c.hasDittos
mjr 78:1e00b3fa11af 2433 && !c.ditto
mjr 78:1e00b3fa11af 2434 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2435 {
mjr 78:1e00b3fa11af 2436 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2437 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2438 // protocol supports them
mjr 78:1e00b3fa11af 2439 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2440 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2441 }
mjr 78:1e00b3fa11af 2442 else
mjr 78:1e00b3fa11af 2443 {
mjr 78:1e00b3fa11af 2444 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2445 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2446 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2447 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2448 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2449 }
mjr 78:1e00b3fa11af 2450 break;
mjr 78:1e00b3fa11af 2451 }
mjr 77:0b96f6867312 2452
mjr 78:1e00b3fa11af 2453 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2454 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2455 // learning mode.
mjr 78:1e00b3fa11af 2456 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2457 {
mjr 78:1e00b3fa11af 2458 // figure the flags:
mjr 78:1e00b3fa11af 2459 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2460 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2461 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2462 flags |= 0x02;
mjr 78:1e00b3fa11af 2463
mjr 78:1e00b3fa11af 2464 // report the code
mjr 78:1e00b3fa11af 2465 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2466
mjr 78:1e00b3fa11af 2467 // exit learning mode
mjr 78:1e00b3fa11af 2468 IRLearningMode = 0;
mjr 77:0b96f6867312 2469 }
mjr 77:0b96f6867312 2470 }
mjr 77:0b96f6867312 2471
mjr 78:1e00b3fa11af 2472 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2473 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2474 {
mjr 78:1e00b3fa11af 2475 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2476 // zero data elements
mjr 78:1e00b3fa11af 2477 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2478
mjr 78:1e00b3fa11af 2479
mjr 78:1e00b3fa11af 2480 // cancel learning mode
mjr 77:0b96f6867312 2481 IRLearningMode = 0;
mjr 77:0b96f6867312 2482 }
mjr 77:0b96f6867312 2483 }
mjr 78:1e00b3fa11af 2484 else
mjr 77:0b96f6867312 2485 {
mjr 78:1e00b3fa11af 2486 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2487 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2488 ir_rx->process();
mjr 78:1e00b3fa11af 2489
mjr 78:1e00b3fa11af 2490 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2491 // have been read.
mjr 78:1e00b3fa11af 2492 IRCommand c;
mjr 78:1e00b3fa11af 2493 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2494 {
mjr 78:1e00b3fa11af 2495 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2496 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2497 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2498 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2499 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2500 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2501 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2502 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2503 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2504 //
mjr 78:1e00b3fa11af 2505 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2506 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2507 // command.
mjr 78:1e00b3fa11af 2508 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2509 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2510 {
mjr 78:1e00b3fa11af 2511 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2512 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2513 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2514 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2515 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2516 if (c.ditto)
mjr 78:1e00b3fa11af 2517 {
mjr 78:1e00b3fa11af 2518 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2519 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2520 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2521 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2522 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2523 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2524 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2525 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2526 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2527 }
mjr 78:1e00b3fa11af 2528 else
mjr 78:1e00b3fa11af 2529 {
mjr 78:1e00b3fa11af 2530 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2531 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2532 // prior command.
mjr 78:1e00b3fa11af 2533 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2534 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2535 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2536
mjr 78:1e00b3fa11af 2537 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2538 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2539 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2540 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2541 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2542 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2543 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2544 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2545 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2546 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2547 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2548 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2549 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2550 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2551 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2552 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2553 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2554 autoRepeat =
mjr 78:1e00b3fa11af 2555 repeat
mjr 78:1e00b3fa11af 2556 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2557 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2558 }
mjr 78:1e00b3fa11af 2559 }
mjr 78:1e00b3fa11af 2560
mjr 78:1e00b3fa11af 2561 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2562 if (repeat)
mjr 78:1e00b3fa11af 2563 {
mjr 78:1e00b3fa11af 2564 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2565 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2566 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2567 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2568 // key press event.
mjr 78:1e00b3fa11af 2569 if (!autoRepeat)
mjr 78:1e00b3fa11af 2570 IRKeyGap = true;
mjr 78:1e00b3fa11af 2571
mjr 78:1e00b3fa11af 2572 // restart the key-up timer
mjr 78:1e00b3fa11af 2573 IRTimer.reset();
mjr 78:1e00b3fa11af 2574 }
mjr 78:1e00b3fa11af 2575 else if (c.ditto)
mjr 78:1e00b3fa11af 2576 {
mjr 78:1e00b3fa11af 2577 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2578 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2579 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2580 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2581 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2582 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2583 // a full command for a new key press.
mjr 78:1e00b3fa11af 2584 IRCommandIn = 0;
mjr 77:0b96f6867312 2585 }
mjr 77:0b96f6867312 2586 else
mjr 77:0b96f6867312 2587 {
mjr 78:1e00b3fa11af 2588 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2589 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2590 // the new command).
mjr 78:1e00b3fa11af 2591 IRCommandIn = 0;
mjr 77:0b96f6867312 2592
mjr 78:1e00b3fa11af 2593 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2594 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2595 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2596 {
mjr 78:1e00b3fa11af 2597 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2598 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2599 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2600 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2601 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2602 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2603 {
mjr 78:1e00b3fa11af 2604 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2605 // remember the starting time.
mjr 78:1e00b3fa11af 2606 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2607 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2608 IRTimer.reset();
mjr 78:1e00b3fa11af 2609
mjr 78:1e00b3fa11af 2610 // no need to keep searching
mjr 78:1e00b3fa11af 2611 break;
mjr 78:1e00b3fa11af 2612 }
mjr 77:0b96f6867312 2613 }
mjr 77:0b96f6867312 2614 }
mjr 77:0b96f6867312 2615 }
mjr 77:0b96f6867312 2616 }
mjr 77:0b96f6867312 2617 }
mjr 77:0b96f6867312 2618 }
mjr 77:0b96f6867312 2619
mjr 74:822a92bc11d2 2620
mjr 11:bd9da7088e6e 2621 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2622 //
mjr 11:bd9da7088e6e 2623 // Button input
mjr 11:bd9da7088e6e 2624 //
mjr 11:bd9da7088e6e 2625
mjr 18:5e890ebd0023 2626 // button state
mjr 18:5e890ebd0023 2627 struct ButtonState
mjr 18:5e890ebd0023 2628 {
mjr 38:091e511ce8a0 2629 ButtonState()
mjr 38:091e511ce8a0 2630 {
mjr 53:9b2611964afc 2631 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2632 virtState = 0;
mjr 53:9b2611964afc 2633 dbState = 0;
mjr 38:091e511ce8a0 2634 pulseState = 0;
mjr 53:9b2611964afc 2635 pulseTime = 0;
mjr 38:091e511ce8a0 2636 }
mjr 35:e959ffba78fd 2637
mjr 53:9b2611964afc 2638 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2639 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2640 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2641 //
mjr 53:9b2611964afc 2642 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2643 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2644 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2645 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2646 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2647 void virtPress(bool on)
mjr 53:9b2611964afc 2648 {
mjr 53:9b2611964afc 2649 // Increment or decrement the current state
mjr 53:9b2611964afc 2650 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2651 }
mjr 53:9b2611964afc 2652
mjr 53:9b2611964afc 2653 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2654 TinyDigitalIn di;
mjr 38:091e511ce8a0 2655
mjr 65:739875521aae 2656 // Time of last pulse state transition.
mjr 65:739875521aae 2657 //
mjr 65:739875521aae 2658 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2659 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2660 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2661 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2662 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2663 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2664 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2665 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2666 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2667 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2668 // This software system can't be fooled that way.)
mjr 65:739875521aae 2669 uint32_t pulseTime;
mjr 18:5e890ebd0023 2670
mjr 65:739875521aae 2671 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2672 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2673 uint8_t cfgIndex;
mjr 53:9b2611964afc 2674
mjr 53:9b2611964afc 2675 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2676 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2677 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2678 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2679 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2680 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2681 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2682 // and physical source states.
mjr 53:9b2611964afc 2683 uint8_t virtState;
mjr 38:091e511ce8a0 2684
mjr 38:091e511ce8a0 2685 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2686 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2687 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2688 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2689 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2690 uint8_t dbState;
mjr 38:091e511ce8a0 2691
mjr 65:739875521aae 2692 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2693 uint8_t physState : 1;
mjr 65:739875521aae 2694
mjr 65:739875521aae 2695 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2696 uint8_t logState : 1;
mjr 65:739875521aae 2697
mjr 79:682ae3171a08 2698 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2699 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2700 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2701 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2702 uint8_t prevLogState : 1;
mjr 65:739875521aae 2703
mjr 65:739875521aae 2704 // Pulse state
mjr 65:739875521aae 2705 //
mjr 65:739875521aae 2706 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2707 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2708 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2709 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2710 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2711 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2712 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2713 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2714 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2715 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2716 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2717 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2718 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2719 //
mjr 38:091e511ce8a0 2720 // Pulse state:
mjr 38:091e511ce8a0 2721 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2722 // 1 -> off
mjr 38:091e511ce8a0 2723 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2724 // 3 -> on
mjr 38:091e511ce8a0 2725 // 4 -> transitioning on-off
mjr 65:739875521aae 2726 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2727
mjr 65:739875521aae 2728 } __attribute__((packed));
mjr 65:739875521aae 2729
mjr 65:739875521aae 2730 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2731 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2732 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2733
mjr 66:2e3583fbd2f4 2734 // Shift button state
mjr 66:2e3583fbd2f4 2735 struct
mjr 66:2e3583fbd2f4 2736 {
mjr 66:2e3583fbd2f4 2737 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2738 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2739 // 0 = not shifted
mjr 66:2e3583fbd2f4 2740 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2741 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2742 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2743 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2744 }
mjr 66:2e3583fbd2f4 2745 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2746
mjr 38:091e511ce8a0 2747 // Button data
mjr 38:091e511ce8a0 2748 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2749
mjr 38:091e511ce8a0 2750 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2751 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2752 // modifier keys.
mjr 38:091e511ce8a0 2753 struct
mjr 38:091e511ce8a0 2754 {
mjr 38:091e511ce8a0 2755 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2756 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2757 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2758 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2759 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2760
mjr 38:091e511ce8a0 2761 // Media key state
mjr 38:091e511ce8a0 2762 struct
mjr 38:091e511ce8a0 2763 {
mjr 38:091e511ce8a0 2764 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2765 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2766 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2767
mjr 79:682ae3171a08 2768 // button scan interrupt timer
mjr 79:682ae3171a08 2769 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2770
mjr 38:091e511ce8a0 2771 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2772 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2773 void scanButtons()
mjr 38:091e511ce8a0 2774 {
mjr 79:682ae3171a08 2775 // schedule the next interrupt
mjr 79:682ae3171a08 2776 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2777
mjr 38:091e511ce8a0 2778 // scan all button input pins
mjr 73:4e8ce0b18915 2779 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2780 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2781 {
mjr 73:4e8ce0b18915 2782 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2783 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2784 bs->dbState = db;
mjr 73:4e8ce0b18915 2785
mjr 73:4e8ce0b18915 2786 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2787 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2788 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2789 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2790 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2791 db &= stable;
mjr 73:4e8ce0b18915 2792 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2793 bs->physState = !db;
mjr 38:091e511ce8a0 2794 }
mjr 38:091e511ce8a0 2795 }
mjr 38:091e511ce8a0 2796
mjr 38:091e511ce8a0 2797 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2798 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2799 // in the physical button state.
mjr 38:091e511ce8a0 2800 Timer buttonTimer;
mjr 12:669df364a565 2801
mjr 65:739875521aae 2802 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2803 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2804 {
mjr 65:739875521aae 2805 // count it
mjr 65:739875521aae 2806 ++nButtons;
mjr 65:739875521aae 2807
mjr 67:c39e66c4e000 2808 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2809 // keyboard interface
mjr 72:884207c0aab0 2810 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2811 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2812 kbKeys = true;
mjr 65:739875521aae 2813 }
mjr 65:739875521aae 2814
mjr 11:bd9da7088e6e 2815 // initialize the button inputs
mjr 35:e959ffba78fd 2816 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2817 {
mjr 66:2e3583fbd2f4 2818 // presume no shift key
mjr 66:2e3583fbd2f4 2819 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2820 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2821
mjr 65:739875521aae 2822 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2823 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2824 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2825 nButtons = 0;
mjr 65:739875521aae 2826 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2827 {
mjr 65:739875521aae 2828 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2829 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2830 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2831 }
mjr 65:739875521aae 2832
mjr 65:739875521aae 2833 // Count virtual buttons
mjr 65:739875521aae 2834
mjr 65:739875521aae 2835 // ZB Launch
mjr 65:739875521aae 2836 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2837 {
mjr 65:739875521aae 2838 // valid - remember the live button index
mjr 65:739875521aae 2839 zblButtonIndex = nButtons;
mjr 65:739875521aae 2840
mjr 65:739875521aae 2841 // count it
mjr 72:884207c0aab0 2842 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2843 }
mjr 65:739875521aae 2844
mjr 65:739875521aae 2845 // Allocate the live button slots
mjr 65:739875521aae 2846 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2847
mjr 65:739875521aae 2848 // Configure the physical inputs
mjr 65:739875521aae 2849 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2850 {
mjr 65:739875521aae 2851 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2852 if (pin != NC)
mjr 65:739875521aae 2853 {
mjr 65:739875521aae 2854 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2855 bs->cfgIndex = i;
mjr 65:739875521aae 2856
mjr 65:739875521aae 2857 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2858 bs->di.assignPin(pin);
mjr 65:739875521aae 2859
mjr 65:739875521aae 2860 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2861 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2862 bs->pulseState = 1;
mjr 65:739875521aae 2863
mjr 66:2e3583fbd2f4 2864 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2865 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2866 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2867 // config slots are left unused.
mjr 78:1e00b3fa11af 2868 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2869 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2870
mjr 65:739875521aae 2871 // advance to the next button
mjr 65:739875521aae 2872 ++bs;
mjr 65:739875521aae 2873 }
mjr 65:739875521aae 2874 }
mjr 65:739875521aae 2875
mjr 53:9b2611964afc 2876 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2877 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2878 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2879 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2880
mjr 53:9b2611964afc 2881 // ZB Launch Ball button
mjr 65:739875521aae 2882 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2883 {
mjr 65:739875521aae 2884 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2885 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2886 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2887 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2888 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2889 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2890 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2891 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2892
mjr 66:2e3583fbd2f4 2893 // advance to the next button
mjr 65:739875521aae 2894 ++bs;
mjr 11:bd9da7088e6e 2895 }
mjr 12:669df364a565 2896
mjr 38:091e511ce8a0 2897 // start the button scan thread
mjr 79:682ae3171a08 2898 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2899
mjr 38:091e511ce8a0 2900 // start the button state transition timer
mjr 12:669df364a565 2901 buttonTimer.start();
mjr 11:bd9da7088e6e 2902 }
mjr 11:bd9da7088e6e 2903
mjr 67:c39e66c4e000 2904 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2905 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2906 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2907 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2908 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2909 //
mjr 67:c39e66c4e000 2910 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2911 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2912 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2913 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2914 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2915 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2916 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2917 //
mjr 67:c39e66c4e000 2918 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2919 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2920 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2921 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2922 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2923 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2924 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2925 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2926 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2927 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2928 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2929 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2930 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2931 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2932 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2933 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2934 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2935 };
mjr 77:0b96f6867312 2936
mjr 77:0b96f6867312 2937 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2938 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2939 // states of the button iputs.
mjr 77:0b96f6867312 2940 struct KeyState
mjr 77:0b96f6867312 2941 {
mjr 77:0b96f6867312 2942 KeyState()
mjr 77:0b96f6867312 2943 {
mjr 77:0b96f6867312 2944 // zero all members
mjr 77:0b96f6867312 2945 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2946 }
mjr 77:0b96f6867312 2947
mjr 77:0b96f6867312 2948 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2949 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2950 uint8_t mediakeys;
mjr 77:0b96f6867312 2951
mjr 77:0b96f6867312 2952 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2953 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2954 // USBJoystick.cpp).
mjr 77:0b96f6867312 2955 uint8_t modkeys;
mjr 77:0b96f6867312 2956
mjr 77:0b96f6867312 2957 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2958 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2959 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2960 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2961 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2962 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2963 uint8_t keys[7];
mjr 77:0b96f6867312 2964
mjr 77:0b96f6867312 2965 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2966 int nkeys;
mjr 77:0b96f6867312 2967
mjr 77:0b96f6867312 2968 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2969 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2970 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2971 uint32_t js;
mjr 77:0b96f6867312 2972
mjr 77:0b96f6867312 2973
mjr 77:0b96f6867312 2974 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2975 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2976 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2977 {
mjr 77:0b96f6867312 2978 // add the key according to the type
mjr 77:0b96f6867312 2979 switch (typ)
mjr 77:0b96f6867312 2980 {
mjr 77:0b96f6867312 2981 case BtnTypeJoystick:
mjr 77:0b96f6867312 2982 // joystick button
mjr 77:0b96f6867312 2983 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2984 break;
mjr 77:0b96f6867312 2985
mjr 77:0b96f6867312 2986 case BtnTypeKey:
mjr 77:0b96f6867312 2987 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2988 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2989 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2990 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2991 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2992 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2993 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2994 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2995 {
mjr 77:0b96f6867312 2996 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2997 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2998 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2999 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3000 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3001 }
mjr 77:0b96f6867312 3002 else
mjr 77:0b96f6867312 3003 {
mjr 77:0b96f6867312 3004 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3005 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3006 // apply, add the key to the key array.
mjr 77:0b96f6867312 3007 if (nkeys < 7)
mjr 77:0b96f6867312 3008 {
mjr 77:0b96f6867312 3009 bool found = false;
mjr 77:0b96f6867312 3010 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3011 {
mjr 77:0b96f6867312 3012 if (keys[i] == val)
mjr 77:0b96f6867312 3013 {
mjr 77:0b96f6867312 3014 found = true;
mjr 77:0b96f6867312 3015 break;
mjr 77:0b96f6867312 3016 }
mjr 77:0b96f6867312 3017 }
mjr 77:0b96f6867312 3018 if (!found)
mjr 77:0b96f6867312 3019 keys[nkeys++] = val;
mjr 77:0b96f6867312 3020 }
mjr 77:0b96f6867312 3021 }
mjr 77:0b96f6867312 3022 break;
mjr 77:0b96f6867312 3023
mjr 77:0b96f6867312 3024 case BtnTypeMedia:
mjr 77:0b96f6867312 3025 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3026 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3027 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3028 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3029 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3030 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3031 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3032 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3033 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3034 break;
mjr 77:0b96f6867312 3035 }
mjr 77:0b96f6867312 3036 }
mjr 77:0b96f6867312 3037 };
mjr 67:c39e66c4e000 3038
mjr 67:c39e66c4e000 3039
mjr 38:091e511ce8a0 3040 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3041 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3042 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3043 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3044 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3045 {
mjr 77:0b96f6867312 3046 // key state
mjr 77:0b96f6867312 3047 KeyState ks;
mjr 38:091e511ce8a0 3048
mjr 38:091e511ce8a0 3049 // calculate the time since the last run
mjr 53:9b2611964afc 3050 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3051 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3052
mjr 66:2e3583fbd2f4 3053 // check the shift button state
mjr 66:2e3583fbd2f4 3054 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3055 {
mjr 78:1e00b3fa11af 3056 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3057 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3058
mjr 78:1e00b3fa11af 3059 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3060 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3061 {
mjr 66:2e3583fbd2f4 3062 case 0:
mjr 78:1e00b3fa11af 3063 default:
mjr 78:1e00b3fa11af 3064 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3065 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3066 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3067 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3068 {
mjr 78:1e00b3fa11af 3069 case 0:
mjr 78:1e00b3fa11af 3070 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3071 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3072 if (sbs->physState)
mjr 78:1e00b3fa11af 3073 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3074 break;
mjr 78:1e00b3fa11af 3075
mjr 78:1e00b3fa11af 3076 case 1:
mjr 78:1e00b3fa11af 3077 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3078 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3079 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3080 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3081 // pulse event.
mjr 78:1e00b3fa11af 3082 if (!sbs->physState)
mjr 78:1e00b3fa11af 3083 {
mjr 78:1e00b3fa11af 3084 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3085 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3086 }
mjr 78:1e00b3fa11af 3087 break;
mjr 78:1e00b3fa11af 3088
mjr 78:1e00b3fa11af 3089 case 2:
mjr 78:1e00b3fa11af 3090 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3091 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3092 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3093 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3094 // suppressed.
mjr 78:1e00b3fa11af 3095 if (!sbs->physState)
mjr 78:1e00b3fa11af 3096 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3097 break;
mjr 78:1e00b3fa11af 3098
mjr 78:1e00b3fa11af 3099 case 3:
mjr 78:1e00b3fa11af 3100 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3101 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3102 // has expired.
mjr 78:1e00b3fa11af 3103 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3104 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3105 else
mjr 78:1e00b3fa11af 3106 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3107 break;
mjr 78:1e00b3fa11af 3108 }
mjr 66:2e3583fbd2f4 3109 break;
mjr 66:2e3583fbd2f4 3110
mjr 66:2e3583fbd2f4 3111 case 1:
mjr 78:1e00b3fa11af 3112 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3113 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3114 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3115 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3116 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3117 break;
mjr 66:2e3583fbd2f4 3118 }
mjr 66:2e3583fbd2f4 3119 }
mjr 38:091e511ce8a0 3120
mjr 11:bd9da7088e6e 3121 // scan the button list
mjr 18:5e890ebd0023 3122 ButtonState *bs = buttonState;
mjr 65:739875521aae 3123 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3124 {
mjr 77:0b96f6867312 3125 // get the config entry for the button
mjr 77:0b96f6867312 3126 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3127
mjr 66:2e3583fbd2f4 3128 // Check the button type:
mjr 66:2e3583fbd2f4 3129 // - shift button
mjr 66:2e3583fbd2f4 3130 // - pulsed button
mjr 66:2e3583fbd2f4 3131 // - regular button
mjr 66:2e3583fbd2f4 3132 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3133 {
mjr 78:1e00b3fa11af 3134 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3135 // depends on the mode.
mjr 78:1e00b3fa11af 3136 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3137 {
mjr 78:1e00b3fa11af 3138 case 0:
mjr 78:1e00b3fa11af 3139 default:
mjr 78:1e00b3fa11af 3140 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3141 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3142 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3143 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3144 break;
mjr 78:1e00b3fa11af 3145
mjr 78:1e00b3fa11af 3146 case 1:
mjr 78:1e00b3fa11af 3147 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3148 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3149 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3150 break;
mjr 66:2e3583fbd2f4 3151 }
mjr 66:2e3583fbd2f4 3152 }
mjr 66:2e3583fbd2f4 3153 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3154 {
mjr 38:091e511ce8a0 3155 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3156 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3157 {
mjr 53:9b2611964afc 3158 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3159 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3160 }
mjr 53:9b2611964afc 3161 else
mjr 53:9b2611964afc 3162 {
mjr 53:9b2611964afc 3163 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3164 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3165 switch (bs->pulseState)
mjr 18:5e890ebd0023 3166 {
mjr 38:091e511ce8a0 3167 case 1:
mjr 38:091e511ce8a0 3168 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3169 if (bs->physState)
mjr 53:9b2611964afc 3170 {
mjr 38:091e511ce8a0 3171 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3172 bs->pulseState = 2;
mjr 53:9b2611964afc 3173 bs->logState = 1;
mjr 38:091e511ce8a0 3174 }
mjr 38:091e511ce8a0 3175 break;
mjr 18:5e890ebd0023 3176
mjr 38:091e511ce8a0 3177 case 2:
mjr 38:091e511ce8a0 3178 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3179 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3180 // change in state in the logical button
mjr 38:091e511ce8a0 3181 bs->pulseState = 3;
mjr 38:091e511ce8a0 3182 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3183 bs->logState = 0;
mjr 38:091e511ce8a0 3184 break;
mjr 38:091e511ce8a0 3185
mjr 38:091e511ce8a0 3186 case 3:
mjr 38:091e511ce8a0 3187 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3188 if (!bs->physState)
mjr 53:9b2611964afc 3189 {
mjr 38:091e511ce8a0 3190 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3191 bs->pulseState = 4;
mjr 53:9b2611964afc 3192 bs->logState = 1;
mjr 38:091e511ce8a0 3193 }
mjr 38:091e511ce8a0 3194 break;
mjr 38:091e511ce8a0 3195
mjr 38:091e511ce8a0 3196 case 4:
mjr 38:091e511ce8a0 3197 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3198 bs->pulseState = 1;
mjr 38:091e511ce8a0 3199 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3200 bs->logState = 0;
mjr 38:091e511ce8a0 3201 break;
mjr 18:5e890ebd0023 3202 }
mjr 18:5e890ebd0023 3203 }
mjr 38:091e511ce8a0 3204 }
mjr 38:091e511ce8a0 3205 else
mjr 38:091e511ce8a0 3206 {
mjr 38:091e511ce8a0 3207 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3208 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3209 }
mjr 77:0b96f6867312 3210
mjr 77:0b96f6867312 3211 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3212 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3213 //
mjr 78:1e00b3fa11af 3214 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3215 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3216 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3217 //
mjr 78:1e00b3fa11af 3218 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3219 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3220 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3221 //
mjr 78:1e00b3fa11af 3222 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3223 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3224 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3225 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3226 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3227 bool useShift =
mjr 77:0b96f6867312 3228 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3229 && shiftButton.index != i
mjr 77:0b96f6867312 3230 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3231 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3232 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3233
mjr 77:0b96f6867312 3234 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3235 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3236 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3237 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3238 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3239 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3240 shiftButton.state = 2;
mjr 35:e959ffba78fd 3241
mjr 38:091e511ce8a0 3242 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3243 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3244 {
mjr 77:0b96f6867312 3245 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3246 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3247 {
mjr 77:0b96f6867312 3248 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3249 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3250 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3251 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3252 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3253 // the night mode state.
mjr 77:0b96f6867312 3254 //
mjr 77:0b96f6867312 3255 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3256 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3257 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3258 {
mjr 77:0b96f6867312 3259 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3260 // current switch state.
mjr 53:9b2611964afc 3261 setNightMode(bs->logState);
mjr 53:9b2611964afc 3262 }
mjr 82:4f6209cb5c33 3263 else if (bs->logState)
mjr 53:9b2611964afc 3264 {
mjr 77:0b96f6867312 3265 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3266 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3267 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3268 // OFF to ON.
mjr 66:2e3583fbd2f4 3269 //
mjr 77:0b96f6867312 3270 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3271 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3272 // button.
mjr 77:0b96f6867312 3273 bool pressed;
mjr 66:2e3583fbd2f4 3274 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3275 {
mjr 77:0b96f6867312 3276 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3277 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3278 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3279 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3280 }
mjr 77:0b96f6867312 3281 else
mjr 77:0b96f6867312 3282 {
mjr 77:0b96f6867312 3283 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3284 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3285 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3286 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3287 }
mjr 66:2e3583fbd2f4 3288
mjr 66:2e3583fbd2f4 3289 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3290 // toggle night mode
mjr 66:2e3583fbd2f4 3291 if (pressed)
mjr 53:9b2611964afc 3292 toggleNightMode();
mjr 53:9b2611964afc 3293 }
mjr 35:e959ffba78fd 3294 }
mjr 38:091e511ce8a0 3295
mjr 77:0b96f6867312 3296 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3297 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3298 if (irc != 0)
mjr 77:0b96f6867312 3299 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3300
mjr 38:091e511ce8a0 3301 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3302 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3303 }
mjr 38:091e511ce8a0 3304
mjr 53:9b2611964afc 3305 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3306 // key state list
mjr 53:9b2611964afc 3307 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3308 {
mjr 70:9f58735a1732 3309 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3310 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3311 uint8_t typ, val;
mjr 77:0b96f6867312 3312 if (useShift)
mjr 66:2e3583fbd2f4 3313 {
mjr 77:0b96f6867312 3314 typ = bc->typ2;
mjr 77:0b96f6867312 3315 val = bc->val2;
mjr 66:2e3583fbd2f4 3316 }
mjr 77:0b96f6867312 3317 else
mjr 77:0b96f6867312 3318 {
mjr 77:0b96f6867312 3319 typ = bc->typ;
mjr 77:0b96f6867312 3320 val = bc->val;
mjr 77:0b96f6867312 3321 }
mjr 77:0b96f6867312 3322
mjr 70:9f58735a1732 3323 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3324 // the keyboard or joystick event.
mjr 77:0b96f6867312 3325 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3326 }
mjr 11:bd9da7088e6e 3327 }
mjr 77:0b96f6867312 3328
mjr 77:0b96f6867312 3329 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3330 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3331 // the IR key.
mjr 77:0b96f6867312 3332 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3333 {
mjr 77:0b96f6867312 3334 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3335 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3336 }
mjr 77:0b96f6867312 3337
mjr 77:0b96f6867312 3338 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3339 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3340
mjr 77:0b96f6867312 3341 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3342 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3343 jsButtons = ks.js;
mjr 77:0b96f6867312 3344
mjr 77:0b96f6867312 3345 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3346 // something changes)
mjr 77:0b96f6867312 3347 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3348 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3349 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3350 {
mjr 35:e959ffba78fd 3351 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3352 kbState.changed = true;
mjr 77:0b96f6867312 3353 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3354 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3355 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3356 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3357 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3358 }
mjr 35:e959ffba78fd 3359 else {
mjr 35:e959ffba78fd 3360 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3361 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3362 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3363 }
mjr 35:e959ffba78fd 3364 }
mjr 35:e959ffba78fd 3365
mjr 77:0b96f6867312 3366 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3367 // something changes)
mjr 77:0b96f6867312 3368 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3369 {
mjr 77:0b96f6867312 3370 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3371 mediaState.changed = true;
mjr 77:0b96f6867312 3372 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3373 }
mjr 11:bd9da7088e6e 3374 }
mjr 11:bd9da7088e6e 3375
mjr 73:4e8ce0b18915 3376 // Send a button status report
mjr 73:4e8ce0b18915 3377 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3378 {
mjr 73:4e8ce0b18915 3379 // start with all buttons off
mjr 73:4e8ce0b18915 3380 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3381 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3382
mjr 73:4e8ce0b18915 3383 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3384 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3385 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3386 {
mjr 73:4e8ce0b18915 3387 // get the physical state
mjr 73:4e8ce0b18915 3388 int b = bs->physState;
mjr 73:4e8ce0b18915 3389
mjr 73:4e8ce0b18915 3390 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3391 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3392 int si = idx / 8;
mjr 73:4e8ce0b18915 3393 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3394 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3395 }
mjr 73:4e8ce0b18915 3396
mjr 73:4e8ce0b18915 3397 // send the report
mjr 73:4e8ce0b18915 3398 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3399 }
mjr 73:4e8ce0b18915 3400
mjr 5:a70c0bce770d 3401 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3402 //
mjr 5:a70c0bce770d 3403 // Customization joystick subbclass
mjr 5:a70c0bce770d 3404 //
mjr 5:a70c0bce770d 3405
mjr 5:a70c0bce770d 3406 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3407 {
mjr 5:a70c0bce770d 3408 public:
mjr 35:e959ffba78fd 3409 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3410 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3411 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3412 {
mjr 54:fd77a6b2f76c 3413 sleeping_ = false;
mjr 54:fd77a6b2f76c 3414 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3415 timer_.start();
mjr 54:fd77a6b2f76c 3416 }
mjr 54:fd77a6b2f76c 3417
mjr 54:fd77a6b2f76c 3418 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3419 void diagFlash()
mjr 54:fd77a6b2f76c 3420 {
mjr 54:fd77a6b2f76c 3421 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3422 {
mjr 54:fd77a6b2f76c 3423 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3424 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3425 {
mjr 54:fd77a6b2f76c 3426 // short red flash
mjr 54:fd77a6b2f76c 3427 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3428 wait_us(50000);
mjr 54:fd77a6b2f76c 3429 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3430 wait_us(50000);
mjr 54:fd77a6b2f76c 3431 }
mjr 54:fd77a6b2f76c 3432 }
mjr 5:a70c0bce770d 3433 }
mjr 5:a70c0bce770d 3434
mjr 5:a70c0bce770d 3435 // are we connected?
mjr 5:a70c0bce770d 3436 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3437
mjr 54:fd77a6b2f76c 3438 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3439 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3440 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3441 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3442 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3443
mjr 54:fd77a6b2f76c 3444 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3445 //
mjr 54:fd77a6b2f76c 3446 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3447 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3448 // other way.
mjr 54:fd77a6b2f76c 3449 //
mjr 54:fd77a6b2f76c 3450 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3451 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3452 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3453 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3454 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3455 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3456 //
mjr 54:fd77a6b2f76c 3457 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3458 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3459 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3460 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3461 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3462 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3463 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3464 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3465 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3466 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3467 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3468 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3469 // is effectively dead.
mjr 54:fd77a6b2f76c 3470 //
mjr 54:fd77a6b2f76c 3471 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3472 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3473 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3474 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3475 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3476 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3477 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3478 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3479 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3480 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3481 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3482 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3483 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3484 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3485 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3486 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3487 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3488 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3489 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3490 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3491 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3492 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3493 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3494 // a disconnect.
mjr 54:fd77a6b2f76c 3495 //
mjr 54:fd77a6b2f76c 3496 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3497 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3498 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3499 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3500 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3501 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3502 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3503 //
mjr 54:fd77a6b2f76c 3504 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3505 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3506 //
mjr 54:fd77a6b2f76c 3507 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3508 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3509 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3510 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3511 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3512 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3513 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3514 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3515 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3516 // reliable in practice.
mjr 54:fd77a6b2f76c 3517 //
mjr 54:fd77a6b2f76c 3518 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3519 //
mjr 54:fd77a6b2f76c 3520 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3521 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3522 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3523 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3524 // return.
mjr 54:fd77a6b2f76c 3525 //
mjr 54:fd77a6b2f76c 3526 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3527 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3528 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3529 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3530 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3531 //
mjr 54:fd77a6b2f76c 3532 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3533 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3534 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3535 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3536 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3537 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3538 //
mjr 54:fd77a6b2f76c 3539 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3540 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3541 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3542 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3543 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3544 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3545 // freezes over.
mjr 54:fd77a6b2f76c 3546 //
mjr 54:fd77a6b2f76c 3547 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3548 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3549 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3550 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3551 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3552 void recoverConnection()
mjr 54:fd77a6b2f76c 3553 {
mjr 54:fd77a6b2f76c 3554 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3555 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3556 {
mjr 54:fd77a6b2f76c 3557 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3558 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3559 {
mjr 54:fd77a6b2f76c 3560 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3561 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3562 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3563 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3564 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3565 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3566 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3567 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3568 __disable_irq();
mjr 54:fd77a6b2f76c 3569 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3570 {
mjr 54:fd77a6b2f76c 3571 connect(false);
mjr 54:fd77a6b2f76c 3572 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3573 done = true;
mjr 54:fd77a6b2f76c 3574 }
mjr 54:fd77a6b2f76c 3575 __enable_irq();
mjr 54:fd77a6b2f76c 3576 }
mjr 54:fd77a6b2f76c 3577 }
mjr 54:fd77a6b2f76c 3578 }
mjr 5:a70c0bce770d 3579
mjr 5:a70c0bce770d 3580 protected:
mjr 54:fd77a6b2f76c 3581 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3582 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3583 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3584 //
mjr 54:fd77a6b2f76c 3585 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3586 //
mjr 54:fd77a6b2f76c 3587 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3588 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3589 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3590 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3591 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3592 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3593 {
mjr 54:fd77a6b2f76c 3594 // note the new state
mjr 54:fd77a6b2f76c 3595 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3596
mjr 54:fd77a6b2f76c 3597 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3598 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3599 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3600 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3601 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3602 {
mjr 54:fd77a6b2f76c 3603 disconnect();
mjr 54:fd77a6b2f76c 3604 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3605 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3606 }
mjr 54:fd77a6b2f76c 3607 }
mjr 54:fd77a6b2f76c 3608
mjr 54:fd77a6b2f76c 3609 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3610 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3611
mjr 54:fd77a6b2f76c 3612 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3613 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3614
mjr 54:fd77a6b2f76c 3615 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3616 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3617
mjr 54:fd77a6b2f76c 3618 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3619 Timer timer_;
mjr 5:a70c0bce770d 3620 };
mjr 5:a70c0bce770d 3621
mjr 5:a70c0bce770d 3622 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3623 //
mjr 5:a70c0bce770d 3624 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3625 //
mjr 5:a70c0bce770d 3626
mjr 5:a70c0bce770d 3627 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3628 //
mjr 5:a70c0bce770d 3629 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3630 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3631 // automatic calibration.
mjr 5:a70c0bce770d 3632 //
mjr 77:0b96f6867312 3633 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3634 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3635 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3636 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3637 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3638 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3639 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3640 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3641 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3642 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3643 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3644 //
mjr 77:0b96f6867312 3645 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3646 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3647 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3648 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3649 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3650 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3651 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3652 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3653 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3654 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3655 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3656 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3657 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3658 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3659 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3660 // rather than change it across the board.
mjr 5:a70c0bce770d 3661 //
mjr 6:cc35eb643e8f 3662 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3663 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3664 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3665 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3666 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3667 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3668 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3669 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3670 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3671 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3672 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3673 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3674 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3675 // of nudging, say).
mjr 5:a70c0bce770d 3676 //
mjr 5:a70c0bce770d 3677
mjr 17:ab3cec0c8bf4 3678 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3679 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3680
mjr 17:ab3cec0c8bf4 3681 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3682 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3683 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3684
mjr 17:ab3cec0c8bf4 3685 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3686 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3687 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3688 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3689
mjr 17:ab3cec0c8bf4 3690
mjr 6:cc35eb643e8f 3691 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3692 struct AccHist
mjr 5:a70c0bce770d 3693 {
mjr 77:0b96f6867312 3694 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3695 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3696 {
mjr 6:cc35eb643e8f 3697 // save the raw position
mjr 6:cc35eb643e8f 3698 this->x = x;
mjr 6:cc35eb643e8f 3699 this->y = y;
mjr 77:0b96f6867312 3700 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3701 }
mjr 6:cc35eb643e8f 3702
mjr 6:cc35eb643e8f 3703 // reading for this entry
mjr 77:0b96f6867312 3704 int x, y;
mjr 77:0b96f6867312 3705
mjr 77:0b96f6867312 3706 // (distance from previous entry) squared
mjr 77:0b96f6867312 3707 int dsq;
mjr 5:a70c0bce770d 3708
mjr 6:cc35eb643e8f 3709 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3710 int xtot, ytot;
mjr 6:cc35eb643e8f 3711 int cnt;
mjr 6:cc35eb643e8f 3712
mjr 77:0b96f6867312 3713 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3714 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3715 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3716 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3717
mjr 77:0b96f6867312 3718 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3719 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3720 };
mjr 5:a70c0bce770d 3721
mjr 5:a70c0bce770d 3722 // accelerometer wrapper class
mjr 3:3514575d4f86 3723 class Accel
mjr 3:3514575d4f86 3724 {
mjr 3:3514575d4f86 3725 public:
mjr 78:1e00b3fa11af 3726 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3727 int range, int autoCenterMode)
mjr 77:0b96f6867312 3728 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3729 {
mjr 5:a70c0bce770d 3730 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3731 irqPin_ = irqPin;
mjr 77:0b96f6867312 3732
mjr 77:0b96f6867312 3733 // remember the range
mjr 77:0b96f6867312 3734 range_ = range;
mjr 78:1e00b3fa11af 3735
mjr 78:1e00b3fa11af 3736 // set the auto-centering mode
mjr 78:1e00b3fa11af 3737 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3738
mjr 78:1e00b3fa11af 3739 // no manual centering request has been received
mjr 78:1e00b3fa11af 3740 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3741
mjr 5:a70c0bce770d 3742 // reset and initialize
mjr 5:a70c0bce770d 3743 reset();
mjr 5:a70c0bce770d 3744 }
mjr 5:a70c0bce770d 3745
mjr 78:1e00b3fa11af 3746 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3747 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3748 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3749 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3750
mjr 78:1e00b3fa11af 3751 // set the auto-centering mode
mjr 78:1e00b3fa11af 3752 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3753 {
mjr 78:1e00b3fa11af 3754 // remember the mode
mjr 78:1e00b3fa11af 3755 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3756
mjr 78:1e00b3fa11af 3757 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3758 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3759 if (mode == 0)
mjr 78:1e00b3fa11af 3760 {
mjr 78:1e00b3fa11af 3761 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3762 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3763 }
mjr 78:1e00b3fa11af 3764 else if (mode <= 60)
mjr 78:1e00b3fa11af 3765 {
mjr 78:1e00b3fa11af 3766 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3767 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3768 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3769 }
mjr 78:1e00b3fa11af 3770 else
mjr 78:1e00b3fa11af 3771 {
mjr 78:1e00b3fa11af 3772 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3773 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3774 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3775 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3776 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3777 // includes recent data.
mjr 78:1e00b3fa11af 3778 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3779 }
mjr 78:1e00b3fa11af 3780 }
mjr 78:1e00b3fa11af 3781
mjr 5:a70c0bce770d 3782 void reset()
mjr 5:a70c0bce770d 3783 {
mjr 6:cc35eb643e8f 3784 // clear the center point
mjr 77:0b96f6867312 3785 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3786
mjr 77:0b96f6867312 3787 // start the auto-centering timer
mjr 5:a70c0bce770d 3788 tCenter_.start();
mjr 5:a70c0bce770d 3789 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3790
mjr 5:a70c0bce770d 3791 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3792 mma_.init();
mjr 77:0b96f6867312 3793
mjr 77:0b96f6867312 3794 // set the range
mjr 77:0b96f6867312 3795 mma_.setRange(
mjr 77:0b96f6867312 3796 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3797 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3798 2);
mjr 6:cc35eb643e8f 3799
mjr 77:0b96f6867312 3800 // set the average accumulators to zero
mjr 77:0b96f6867312 3801 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3802 nSum_ = 0;
mjr 3:3514575d4f86 3803
mjr 3:3514575d4f86 3804 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3805 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3806 }
mjr 3:3514575d4f86 3807
mjr 77:0b96f6867312 3808 void poll()
mjr 76:7f5912b6340e 3809 {
mjr 77:0b96f6867312 3810 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3811 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3812 {
mjr 77:0b96f6867312 3813 int x, y, z;
mjr 77:0b96f6867312 3814 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3815
mjr 77:0b96f6867312 3816 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3817 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3818 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3819 ++nSum_;
mjr 77:0b96f6867312 3820
mjr 77:0b96f6867312 3821 // store the updates
mjr 77:0b96f6867312 3822 ax_ = x;
mjr 77:0b96f6867312 3823 ay_ = y;
mjr 77:0b96f6867312 3824 az_ = z;
mjr 77:0b96f6867312 3825 }
mjr 76:7f5912b6340e 3826 }
mjr 77:0b96f6867312 3827
mjr 9:fd65b0a94720 3828 void get(int &x, int &y)
mjr 3:3514575d4f86 3829 {
mjr 77:0b96f6867312 3830 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3831 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3832 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3833 int nSum = nSum_;
mjr 6:cc35eb643e8f 3834
mjr 77:0b96f6867312 3835 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3836 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3837 nSum_ = 0;
mjr 77:0b96f6867312 3838
mjr 77:0b96f6867312 3839 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3840 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3841 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3842
mjr 78:1e00b3fa11af 3843 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3844 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3845 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3846 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3847 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3848 {
mjr 77:0b96f6867312 3849 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3850 AccHist *prv = p;
mjr 77:0b96f6867312 3851 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3852 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3853 iAccPrv_ = 0;
mjr 77:0b96f6867312 3854 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3855 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3856
mjr 78:1e00b3fa11af 3857 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3858 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3859 {
mjr 78:1e00b3fa11af 3860 // Center if:
mjr 78:1e00b3fa11af 3861 //
mjr 78:1e00b3fa11af 3862 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3863 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3864 //
mjr 78:1e00b3fa11af 3865 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3866 //
mjr 77:0b96f6867312 3867 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3868 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3869 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3870 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3871 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3872 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3873 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3874 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3875 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3876 {
mjr 77:0b96f6867312 3877 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3878 // the samples over the rest period
mjr 77:0b96f6867312 3879 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3880 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3881
mjr 78:1e00b3fa11af 3882 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3883 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3884 }
mjr 77:0b96f6867312 3885 }
mjr 77:0b96f6867312 3886 else
mjr 77:0b96f6867312 3887 {
mjr 77:0b96f6867312 3888 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3889 ++nAccPrv_;
mjr 77:0b96f6867312 3890 }
mjr 6:cc35eb643e8f 3891
mjr 77:0b96f6867312 3892 // clear the new item's running totals
mjr 77:0b96f6867312 3893 p->clearAvg();
mjr 5:a70c0bce770d 3894
mjr 77:0b96f6867312 3895 // reset the timer
mjr 77:0b96f6867312 3896 tCenter_.reset();
mjr 77:0b96f6867312 3897 }
mjr 5:a70c0bce770d 3898
mjr 77:0b96f6867312 3899 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3900 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3901 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3902
mjr 6:cc35eb643e8f 3903 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3904 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3905 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3906 #endif
mjr 77:0b96f6867312 3907 }
mjr 29:582472d0bc57 3908
mjr 3:3514575d4f86 3909 private:
mjr 6:cc35eb643e8f 3910 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3911 int rawToReport(int v)
mjr 5:a70c0bce770d 3912 {
mjr 77:0b96f6867312 3913 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3914 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3915 // so their scale is 2^13.
mjr 77:0b96f6867312 3916 //
mjr 77:0b96f6867312 3917 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3918 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3919 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3920 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3921 int i = v*JOYMAX;
mjr 77:0b96f6867312 3922 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3923
mjr 6:cc35eb643e8f 3924 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3925 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3926 static const int filter[] = {
mjr 6:cc35eb643e8f 3927 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3928 0,
mjr 6:cc35eb643e8f 3929 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3930 };
mjr 6:cc35eb643e8f 3931 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3932 }
mjr 5:a70c0bce770d 3933
mjr 3:3514575d4f86 3934 // underlying accelerometer object
mjr 3:3514575d4f86 3935 MMA8451Q mma_;
mjr 3:3514575d4f86 3936
mjr 77:0b96f6867312 3937 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3938 // scale -8192..+8191
mjr 77:0b96f6867312 3939 int ax_, ay_, az_;
mjr 77:0b96f6867312 3940
mjr 77:0b96f6867312 3941 // running sum of readings since last get()
mjr 77:0b96f6867312 3942 int xSum_, ySum_;
mjr 77:0b96f6867312 3943
mjr 77:0b96f6867312 3944 // number of readings since last get()
mjr 77:0b96f6867312 3945 int nSum_;
mjr 6:cc35eb643e8f 3946
mjr 6:cc35eb643e8f 3947 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3948 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3949 // at rest.
mjr 77:0b96f6867312 3950 int cx_, cy_;
mjr 77:0b96f6867312 3951
mjr 77:0b96f6867312 3952 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3953 uint8_t range_;
mjr 78:1e00b3fa11af 3954
mjr 78:1e00b3fa11af 3955 // auto-center mode:
mjr 78:1e00b3fa11af 3956 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3957 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3958 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3959 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3960
mjr 78:1e00b3fa11af 3961 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3962 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3963
mjr 78:1e00b3fa11af 3964 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3965 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3966
mjr 77:0b96f6867312 3967 // atuo-centering timer
mjr 5:a70c0bce770d 3968 Timer tCenter_;
mjr 6:cc35eb643e8f 3969
mjr 6:cc35eb643e8f 3970 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3971 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3972 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3973 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3974 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3975 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3976 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3977 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3978 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3979 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3980 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3981 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3982 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3983 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3984 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3985
mjr 5:a70c0bce770d 3986 // interurupt pin name
mjr 5:a70c0bce770d 3987 PinName irqPin_;
mjr 3:3514575d4f86 3988 };
mjr 3:3514575d4f86 3989
mjr 5:a70c0bce770d 3990 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3991 //
mjr 14:df700b22ca08 3992 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3993 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3994 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3995 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3996 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3997 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3998 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3999 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 4000 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 4001 //
mjr 14:df700b22ca08 4002 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 4003 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 4004 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 4005 //
mjr 5:a70c0bce770d 4006 void clear_i2c()
mjr 5:a70c0bce770d 4007 {
mjr 38:091e511ce8a0 4008 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 4009 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 4010 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 4011
mjr 5:a70c0bce770d 4012 // clock the SCL 9 times
mjr 5:a70c0bce770d 4013 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 4014 {
mjr 5:a70c0bce770d 4015 scl = 1;
mjr 5:a70c0bce770d 4016 wait_us(20);
mjr 5:a70c0bce770d 4017 scl = 0;
mjr 5:a70c0bce770d 4018 wait_us(20);
mjr 5:a70c0bce770d 4019 }
mjr 5:a70c0bce770d 4020 }
mjr 76:7f5912b6340e 4021
mjr 76:7f5912b6340e 4022
mjr 14:df700b22ca08 4023 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4024 //
mjr 33:d832bcab089e 4025 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4026 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4027 //
mjr 33:d832bcab089e 4028 class Debouncer
mjr 33:d832bcab089e 4029 {
mjr 33:d832bcab089e 4030 public:
mjr 33:d832bcab089e 4031 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4032 {
mjr 33:d832bcab089e 4033 t.start();
mjr 33:d832bcab089e 4034 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4035 this->tmin = tmin;
mjr 33:d832bcab089e 4036 }
mjr 33:d832bcab089e 4037
mjr 33:d832bcab089e 4038 // Get the current stable value
mjr 33:d832bcab089e 4039 bool val() const { return stable; }
mjr 33:d832bcab089e 4040
mjr 33:d832bcab089e 4041 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4042 // input device.
mjr 33:d832bcab089e 4043 void sampleIn(bool val)
mjr 33:d832bcab089e 4044 {
mjr 33:d832bcab089e 4045 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4046 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4047 // on the sample reader.
mjr 33:d832bcab089e 4048 if (val != prv)
mjr 33:d832bcab089e 4049 {
mjr 33:d832bcab089e 4050 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4051 t.reset();
mjr 33:d832bcab089e 4052
mjr 33:d832bcab089e 4053 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4054 prv = val;
mjr 33:d832bcab089e 4055 }
mjr 33:d832bcab089e 4056 else if (val != stable)
mjr 33:d832bcab089e 4057 {
mjr 33:d832bcab089e 4058 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4059 // and different from the stable value. This means that
mjr 33:d832bcab089e 4060 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4061 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4062 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4063 if (t.read() > tmin)
mjr 33:d832bcab089e 4064 stable = val;
mjr 33:d832bcab089e 4065 }
mjr 33:d832bcab089e 4066 }
mjr 33:d832bcab089e 4067
mjr 33:d832bcab089e 4068 private:
mjr 33:d832bcab089e 4069 // current stable value
mjr 33:d832bcab089e 4070 bool stable;
mjr 33:d832bcab089e 4071
mjr 33:d832bcab089e 4072 // last raw sample value
mjr 33:d832bcab089e 4073 bool prv;
mjr 33:d832bcab089e 4074
mjr 33:d832bcab089e 4075 // elapsed time since last raw input change
mjr 33:d832bcab089e 4076 Timer t;
mjr 33:d832bcab089e 4077
mjr 33:d832bcab089e 4078 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4079 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4080 float tmin;
mjr 33:d832bcab089e 4081 };
mjr 33:d832bcab089e 4082
mjr 33:d832bcab089e 4083
mjr 33:d832bcab089e 4084 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4085 //
mjr 33:d832bcab089e 4086 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4087 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4088 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4089 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4090 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4091 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4092 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4093 //
mjr 33:d832bcab089e 4094 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4095 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4096 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4097 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4098 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4099 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4100 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4101 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4102 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4103 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4104 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4105 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4106 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4107 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4108 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4109 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4110 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4111 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4112 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4113 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4114 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4115 //
mjr 40:cc0d9814522b 4116 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4117 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4118 //
mjr 33:d832bcab089e 4119 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4120 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4121 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4122 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4123 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4124 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4125 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4126 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4127 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4128 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4129 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4130 //
mjr 33:d832bcab089e 4131 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4132 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4133 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4134 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4135 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4136 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4137 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4138 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4139 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4140 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4141 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4142 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4143 // first check.
mjr 33:d832bcab089e 4144 //
mjr 33:d832bcab089e 4145 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4146 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4147 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4148 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4149 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4150 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4151 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4152 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4153 //
mjr 33:d832bcab089e 4154
mjr 77:0b96f6867312 4155 // Current PSU2 power state:
mjr 33:d832bcab089e 4156 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4157 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4158 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4159 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4160 // 5 -> TV relay on
mjr 77:0b96f6867312 4161 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4162 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4163
mjr 73:4e8ce0b18915 4164 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4165 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4166 // separate state for each:
mjr 73:4e8ce0b18915 4167 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4168 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4169 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4170 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4171 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4172
mjr 79:682ae3171a08 4173 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4174 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4175
mjr 77:0b96f6867312 4176 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4177 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4178 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4179 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4180 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4181 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4182 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4183 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4184 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4185 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4186 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4187
mjr 77:0b96f6867312 4188 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4189 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4190
mjr 35:e959ffba78fd 4191 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4192 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4193 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4194
mjr 73:4e8ce0b18915 4195 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4196 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4197 {
mjr 73:4e8ce0b18915 4198 // update the state
mjr 73:4e8ce0b18915 4199 if (state)
mjr 73:4e8ce0b18915 4200 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4201 else
mjr 73:4e8ce0b18915 4202 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4203
mjr 73:4e8ce0b18915 4204 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4205 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4206 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4207 }
mjr 35:e959ffba78fd 4208
mjr 86:e30a1f60f783 4209 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4210 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4211 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4212 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4213 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4214 // we say it's okay.
mjr 86:e30a1f60f783 4215 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4216 {
mjr 86:e30a1f60f783 4217 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4218 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4219 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4220 // to the same state later.
mjr 86:e30a1f60f783 4221 return psu2_state == 1;
mjr 86:e30a1f60f783 4222 }
mjr 86:e30a1f60f783 4223
mjr 77:0b96f6867312 4224 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4225 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4226 // functions.
mjr 77:0b96f6867312 4227 Timer powerStatusTimer;
mjr 77:0b96f6867312 4228 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4229 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4230 {
mjr 79:682ae3171a08 4231 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4232 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4233 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4234 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4235 {
mjr 79:682ae3171a08 4236 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4237 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4238 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4239 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4240 }
mjr 79:682ae3171a08 4241
mjr 77:0b96f6867312 4242 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4243 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4244 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4245 // skip this whole routine.
mjr 77:0b96f6867312 4246 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4247 return;
mjr 77:0b96f6867312 4248
mjr 77:0b96f6867312 4249 // reset the update timer for next time
mjr 77:0b96f6867312 4250 powerStatusTimer.reset();
mjr 77:0b96f6867312 4251
mjr 77:0b96f6867312 4252 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4253 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4254 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4255 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4256 static Timer tv_timer;
mjr 35:e959ffba78fd 4257
mjr 33:d832bcab089e 4258 // Check our internal state
mjr 33:d832bcab089e 4259 switch (psu2_state)
mjr 33:d832bcab089e 4260 {
mjr 33:d832bcab089e 4261 case 1:
mjr 33:d832bcab089e 4262 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4263 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4264 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4265 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4266 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4267 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4268 {
mjr 33:d832bcab089e 4269 // switch to OFF state
mjr 33:d832bcab089e 4270 psu2_state = 2;
mjr 33:d832bcab089e 4271
mjr 33:d832bcab089e 4272 // try setting the latch
mjr 35:e959ffba78fd 4273 psu2_status_set->write(1);
mjr 33:d832bcab089e 4274 }
mjr 77:0b96f6867312 4275 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4276 break;
mjr 33:d832bcab089e 4277
mjr 33:d832bcab089e 4278 case 2:
mjr 33:d832bcab089e 4279 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4280 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4281 psu2_status_set->write(0);
mjr 33:d832bcab089e 4282 psu2_state = 3;
mjr 77:0b96f6867312 4283 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4284 break;
mjr 33:d832bcab089e 4285
mjr 33:d832bcab089e 4286 case 3:
mjr 33:d832bcab089e 4287 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4288 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4289 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4290 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4291 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4292 {
mjr 33:d832bcab089e 4293 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4294 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4295 tv_timer.reset();
mjr 33:d832bcab089e 4296 tv_timer.start();
mjr 33:d832bcab089e 4297 psu2_state = 4;
mjr 73:4e8ce0b18915 4298
mjr 73:4e8ce0b18915 4299 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4300 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4301 }
mjr 33:d832bcab089e 4302 else
mjr 33:d832bcab089e 4303 {
mjr 33:d832bcab089e 4304 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4305 // our last check. Return to idle state.
mjr 87:8d35c74403af 4306 psu2_state = 1;
mjr 33:d832bcab089e 4307 }
mjr 33:d832bcab089e 4308 break;
mjr 33:d832bcab089e 4309
mjr 33:d832bcab089e 4310 case 4:
mjr 77:0b96f6867312 4311 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4312 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4313 // off again before the countdown finished.
mjr 77:0b96f6867312 4314 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4315 {
mjr 77:0b96f6867312 4316 // power is off - start a new check cycle
mjr 77:0b96f6867312 4317 psu2_status_set->write(1);
mjr 77:0b96f6867312 4318 psu2_state = 2;
mjr 77:0b96f6867312 4319 break;
mjr 77:0b96f6867312 4320 }
mjr 77:0b96f6867312 4321
mjr 77:0b96f6867312 4322 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4323 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4324
mjr 77:0b96f6867312 4325 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4326 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4327 {
mjr 33:d832bcab089e 4328 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4329 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4330 psu2_state = 5;
mjr 77:0b96f6867312 4331
mjr 77:0b96f6867312 4332 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4333 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4334 }
mjr 33:d832bcab089e 4335 break;
mjr 33:d832bcab089e 4336
mjr 33:d832bcab089e 4337 case 5:
mjr 33:d832bcab089e 4338 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4339 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4340 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4341
mjr 77:0b96f6867312 4342 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4343 psu2_state = 6;
mjr 77:0b96f6867312 4344 tvon_ir_state = 0;
mjr 77:0b96f6867312 4345
mjr 77:0b96f6867312 4346 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4347 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4348 break;
mjr 77:0b96f6867312 4349
mjr 77:0b96f6867312 4350 case 6:
mjr 77:0b96f6867312 4351 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4352 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4353 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4354 psu2_state = 1;
mjr 77:0b96f6867312 4355 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4356
mjr 77:0b96f6867312 4357 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4358 if (ir_tx != 0)
mjr 77:0b96f6867312 4359 {
mjr 77:0b96f6867312 4360 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4361 if (ir_tx->isSending())
mjr 77:0b96f6867312 4362 {
mjr 77:0b96f6867312 4363 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4364 // state 6.
mjr 77:0b96f6867312 4365 psu2_state = 6;
mjr 77:0b96f6867312 4366 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4367 break;
mjr 77:0b96f6867312 4368 }
mjr 77:0b96f6867312 4369
mjr 77:0b96f6867312 4370 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4371 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4372 // number.
mjr 77:0b96f6867312 4373 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4374 {
mjr 77:0b96f6867312 4375 // is this a TV ON command?
mjr 77:0b96f6867312 4376 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4377 {
mjr 77:0b96f6867312 4378 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4379 // looking for.
mjr 77:0b96f6867312 4380 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4381 {
mjr 77:0b96f6867312 4382 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4383 // pushing its virtual button.
mjr 77:0b96f6867312 4384 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4385 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4386
mjr 77:0b96f6867312 4387 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4388 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4389 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4390 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4391 // to send the code once.
mjr 77:0b96f6867312 4392 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4393
mjr 77:0b96f6867312 4394 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4395 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4396 // the next one.
mjr 77:0b96f6867312 4397 psu2_state = 6;
mjr 77:0b96f6867312 4398 tvon_ir_state++;
mjr 77:0b96f6867312 4399 break;
mjr 77:0b96f6867312 4400 }
mjr 77:0b96f6867312 4401
mjr 77:0b96f6867312 4402 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4403 ++n;
mjr 77:0b96f6867312 4404 }
mjr 77:0b96f6867312 4405 }
mjr 77:0b96f6867312 4406 }
mjr 33:d832bcab089e 4407 break;
mjr 33:d832bcab089e 4408 }
mjr 77:0b96f6867312 4409
mjr 77:0b96f6867312 4410 // update the diagnostic LEDs
mjr 77:0b96f6867312 4411 diagLED();
mjr 33:d832bcab089e 4412 }
mjr 33:d832bcab089e 4413
mjr 77:0b96f6867312 4414 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4415 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4416 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4417 // are configured as NC.
mjr 77:0b96f6867312 4418 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4419 {
mjr 55:4db125cd11a0 4420 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4421 // time is nonzero
mjr 77:0b96f6867312 4422 powerStatusTimer.reset();
mjr 77:0b96f6867312 4423 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4424 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4425 {
mjr 77:0b96f6867312 4426 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4427 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4428 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4429
mjr 77:0b96f6867312 4430 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4431 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4432 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4433
mjr 77:0b96f6867312 4434 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4435 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4436 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4437 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4438
mjr 77:0b96f6867312 4439 // Start the TV timer
mjr 77:0b96f6867312 4440 powerStatusTimer.start();
mjr 35:e959ffba78fd 4441 }
mjr 35:e959ffba78fd 4442 }
mjr 35:e959ffba78fd 4443
mjr 73:4e8ce0b18915 4444 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4445 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4446 //
mjr 73:4e8ce0b18915 4447 // Mode:
mjr 73:4e8ce0b18915 4448 // 0 = turn relay off
mjr 73:4e8ce0b18915 4449 // 1 = turn relay on
mjr 73:4e8ce0b18915 4450 // 2 = pulse relay
mjr 73:4e8ce0b18915 4451 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4452 {
mjr 73:4e8ce0b18915 4453 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4454 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4455 return;
mjr 73:4e8ce0b18915 4456
mjr 73:4e8ce0b18915 4457 switch (mode)
mjr 73:4e8ce0b18915 4458 {
mjr 73:4e8ce0b18915 4459 case 0:
mjr 73:4e8ce0b18915 4460 // relay off
mjr 73:4e8ce0b18915 4461 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4462 break;
mjr 73:4e8ce0b18915 4463
mjr 73:4e8ce0b18915 4464 case 1:
mjr 73:4e8ce0b18915 4465 // relay on
mjr 73:4e8ce0b18915 4466 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4467 break;
mjr 73:4e8ce0b18915 4468
mjr 73:4e8ce0b18915 4469 case 2:
mjr 79:682ae3171a08 4470 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4471 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4472 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4473 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4474 break;
mjr 73:4e8ce0b18915 4475 }
mjr 73:4e8ce0b18915 4476 }
mjr 73:4e8ce0b18915 4477
mjr 73:4e8ce0b18915 4478
mjr 35:e959ffba78fd 4479 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4480 //
mjr 35:e959ffba78fd 4481 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4482 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4483 //
mjr 35:e959ffba78fd 4484 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4485 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4486 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4487 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4488 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4489 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4490 //
mjr 35:e959ffba78fd 4491 NVM nvm;
mjr 35:e959ffba78fd 4492
mjr 86:e30a1f60f783 4493 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4494 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4495 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4496 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4497
mjr 86:e30a1f60f783 4498 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4499 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4500
mjr 79:682ae3171a08 4501 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4502 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4503
mjr 86:e30a1f60f783 4504 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4505 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4506
mjr 86:e30a1f60f783 4507
mjr 35:e959ffba78fd 4508 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4509 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4510
mjr 35:e959ffba78fd 4511 // flash memory controller interface
mjr 35:e959ffba78fd 4512 FreescaleIAP iap;
mjr 35:e959ffba78fd 4513
mjr 79:682ae3171a08 4514 // figure the flash address for the config data
mjr 79:682ae3171a08 4515 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4516 {
mjr 79:682ae3171a08 4517 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4518 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4519
mjr 79:682ae3171a08 4520 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4521 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4522
mjr 79:682ae3171a08 4523 // locate it at the top of memory
mjr 79:682ae3171a08 4524 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4525
mjr 79:682ae3171a08 4526 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4527 return (const NVM *)addr;
mjr 35:e959ffba78fd 4528 }
mjr 35:e959ffba78fd 4529
mjr 76:7f5912b6340e 4530 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4531 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4532 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4533 // in either case.
mjr 76:7f5912b6340e 4534 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4535 {
mjr 35:e959ffba78fd 4536 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4537 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4538 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4539 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4540 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4541 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4542 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4543 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4544 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4545 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4546 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4547 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4548 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4549 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4550 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4551 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4552
mjr 35:e959ffba78fd 4553 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4554 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4555
mjr 35:e959ffba78fd 4556 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4557 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4558 if (nvm_valid)
mjr 35:e959ffba78fd 4559 {
mjr 35:e959ffba78fd 4560 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4561 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4562 }
mjr 35:e959ffba78fd 4563 else
mjr 35:e959ffba78fd 4564 {
mjr 76:7f5912b6340e 4565 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4566 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4567 }
mjr 76:7f5912b6340e 4568
mjr 76:7f5912b6340e 4569 // tell the caller what happened
mjr 76:7f5912b6340e 4570 return nvm_valid;
mjr 35:e959ffba78fd 4571 }
mjr 35:e959ffba78fd 4572
mjr 86:e30a1f60f783 4573 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4574 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4575 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4576 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4577 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4578 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4579 {
mjr 76:7f5912b6340e 4580 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4581 waitPlungerIdle();
mjr 76:7f5912b6340e 4582
mjr 76:7f5912b6340e 4583 // get the config block location in the flash memory
mjr 77:0b96f6867312 4584 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4585
mjr 79:682ae3171a08 4586 // save the data
mjr 86:e30a1f60f783 4587 if (nvm.save(iap, addr))
mjr 86:e30a1f60f783 4588 {
mjr 86:e30a1f60f783 4589 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4590 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4591
mjr 86:e30a1f60f783 4592 // start the followup timer
mjr 87:8d35c74403af 4593 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4594 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4595 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4596
mjr 86:e30a1f60f783 4597 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4598 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 4599
mjr 86:e30a1f60f783 4600 // return success
mjr 86:e30a1f60f783 4601 return true;
mjr 86:e30a1f60f783 4602 }
mjr 86:e30a1f60f783 4603 else
mjr 86:e30a1f60f783 4604 {
mjr 86:e30a1f60f783 4605 // return failure
mjr 86:e30a1f60f783 4606 return false;
mjr 86:e30a1f60f783 4607 }
mjr 76:7f5912b6340e 4608 }
mjr 76:7f5912b6340e 4609
mjr 76:7f5912b6340e 4610 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4611 //
mjr 76:7f5912b6340e 4612 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4613 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4614 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4615 // downloading it to the device.
mjr 76:7f5912b6340e 4616 //
mjr 76:7f5912b6340e 4617 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4618 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4619 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4620 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4621 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4622 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4623 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4624 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4625 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4626 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4627 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4628 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4629 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4630 //
mjr 76:7f5912b6340e 4631 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4632 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4633 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4634 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4635 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4636 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4637 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4638 //
mjr 76:7f5912b6340e 4639 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4640 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4641 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4642 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4643 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4644 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4645 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4646 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4647 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4648 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4649
mjr 76:7f5912b6340e 4650 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4651 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4652 {
mjr 76:7f5912b6340e 4653 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4654 // 32-byte signature header
mjr 76:7f5912b6340e 4655 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4656 };
mjr 76:7f5912b6340e 4657
mjr 76:7f5912b6340e 4658 // forward reference to config var store function
mjr 76:7f5912b6340e 4659 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4660
mjr 76:7f5912b6340e 4661 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4662 // configuration object.
mjr 76:7f5912b6340e 4663 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4664 {
mjr 76:7f5912b6340e 4665 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4666 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4667 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4668 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4669 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4670 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4671 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4672 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4673 {
mjr 76:7f5912b6340e 4674 // load this variable
mjr 76:7f5912b6340e 4675 configVarSet(p);
mjr 76:7f5912b6340e 4676 }
mjr 35:e959ffba78fd 4677 }
mjr 35:e959ffba78fd 4678
mjr 35:e959ffba78fd 4679 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4680 //
mjr 55:4db125cd11a0 4681 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4682 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4683 //
mjr 55:4db125cd11a0 4684 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4685 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4686 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4687
mjr 55:4db125cd11a0 4688
mjr 55:4db125cd11a0 4689
mjr 55:4db125cd11a0 4690 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4691 //
mjr 40:cc0d9814522b 4692 // Night mode setting updates
mjr 40:cc0d9814522b 4693 //
mjr 38:091e511ce8a0 4694
mjr 38:091e511ce8a0 4695 // Turn night mode on or off
mjr 38:091e511ce8a0 4696 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4697 {
mjr 77:0b96f6867312 4698 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4699 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4700 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4701 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4702
mjr 40:cc0d9814522b 4703 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4704 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4705 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4706 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4707
mjr 76:7f5912b6340e 4708 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4709 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4710 // mode change.
mjr 76:7f5912b6340e 4711 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4712 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4713
mjr 76:7f5912b6340e 4714 // update 74HC595 outputs
mjr 76:7f5912b6340e 4715 if (hc595 != 0)
mjr 76:7f5912b6340e 4716 hc595->update();
mjr 38:091e511ce8a0 4717 }
mjr 38:091e511ce8a0 4718
mjr 38:091e511ce8a0 4719 // Toggle night mode
mjr 38:091e511ce8a0 4720 static void toggleNightMode()
mjr 38:091e511ce8a0 4721 {
mjr 53:9b2611964afc 4722 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4723 }
mjr 38:091e511ce8a0 4724
mjr 38:091e511ce8a0 4725
mjr 38:091e511ce8a0 4726 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4727 //
mjr 35:e959ffba78fd 4728 // Plunger Sensor
mjr 35:e959ffba78fd 4729 //
mjr 35:e959ffba78fd 4730
mjr 35:e959ffba78fd 4731 // the plunger sensor interface object
mjr 35:e959ffba78fd 4732 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4733
mjr 87:8d35c74403af 4734 // wait for the plunger sensor to complete any outstanding DMA transfer
mjr 76:7f5912b6340e 4735 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4736 {
mjr 87:8d35c74403af 4737 while (plungerSensor->dmaBusy()) { }
mjr 76:7f5912b6340e 4738 }
mjr 76:7f5912b6340e 4739
mjr 35:e959ffba78fd 4740 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4741 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4742 void createPlunger()
mjr 35:e959ffba78fd 4743 {
mjr 35:e959ffba78fd 4744 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4745 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4746 {
mjr 82:4f6209cb5c33 4747 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 4748 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 4749 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4750 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4751 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4752 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4753 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4754 break;
mjr 35:e959ffba78fd 4755
mjr 82:4f6209cb5c33 4756 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 4757 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 4758 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4759 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4760 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4761 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4762 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4763 break;
mjr 35:e959ffba78fd 4764
mjr 35:e959ffba78fd 4765 case PlungerType_Pot:
mjr 82:4f6209cb5c33 4766 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 4767 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 4768 // pins are: AO (analog in)
mjr 53:9b2611964afc 4769 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4770 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4771 break;
mjr 82:4f6209cb5c33 4772
mjr 82:4f6209cb5c33 4773 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 4774 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 4775 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 4776 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 4777 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 4778 300,
mjr 82:4f6209cb5c33 4779 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4780 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 4781 break;
mjr 82:4f6209cb5c33 4782
mjr 82:4f6209cb5c33 4783 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 4784 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 4785 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 4786 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 4787 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4788 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4789 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4790 break;
mjr 82:4f6209cb5c33 4791
mjr 82:4f6209cb5c33 4792 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 4793 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 4794 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 4795 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 4796 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4797 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4798 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4799 break;
mjr 82:4f6209cb5c33 4800
mjr 35:e959ffba78fd 4801 case PlungerType_None:
mjr 35:e959ffba78fd 4802 default:
mjr 35:e959ffba78fd 4803 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4804 break;
mjr 35:e959ffba78fd 4805 }
mjr 86:e30a1f60f783 4806
mjr 87:8d35c74403af 4807 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 4808 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 4809 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 4810 }
mjr 33:d832bcab089e 4811
mjr 52:8298b2a73eb2 4812 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4813 bool plungerCalMode;
mjr 52:8298b2a73eb2 4814
mjr 48:058ace2aed1d 4815 // Plunger reader
mjr 51:57eb311faafa 4816 //
mjr 51:57eb311faafa 4817 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4818 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4819 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4820 //
mjr 51:57eb311faafa 4821 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4822 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4823 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4824 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4825 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4826 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4827 // firing motion.
mjr 51:57eb311faafa 4828 //
mjr 51:57eb311faafa 4829 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4830 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4831 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4832 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4833 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4834 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4835 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4836 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4837 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4838 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4839 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4840 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4841 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4842 //
mjr 51:57eb311faafa 4843 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4844 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4845 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4846 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4847 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4848 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4849 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4850 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4851 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4852 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4853 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4854 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4855 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4856 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4857 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4858 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4859 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4860 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4861 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4862 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4863 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4864 //
mjr 48:058ace2aed1d 4865 class PlungerReader
mjr 48:058ace2aed1d 4866 {
mjr 48:058ace2aed1d 4867 public:
mjr 48:058ace2aed1d 4868 PlungerReader()
mjr 48:058ace2aed1d 4869 {
mjr 48:058ace2aed1d 4870 // not in a firing event yet
mjr 48:058ace2aed1d 4871 firing = 0;
mjr 48:058ace2aed1d 4872 }
mjr 76:7f5912b6340e 4873
mjr 48:058ace2aed1d 4874 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4875 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4876 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4877 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4878 void read()
mjr 48:058ace2aed1d 4879 {
mjr 76:7f5912b6340e 4880 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4881 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4882 return;
mjr 76:7f5912b6340e 4883
mjr 48:058ace2aed1d 4884 // Read a sample from the sensor
mjr 48:058ace2aed1d 4885 PlungerReading r;
mjr 48:058ace2aed1d 4886 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4887 {
mjr 53:9b2611964afc 4888 // check for calibration mode
mjr 53:9b2611964afc 4889 if (plungerCalMode)
mjr 53:9b2611964afc 4890 {
mjr 53:9b2611964afc 4891 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4892 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4893 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4894 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4895 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4896 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4897 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4898
mjr 76:7f5912b6340e 4899 // update our cached calibration data
mjr 76:7f5912b6340e 4900 onUpdateCal();
mjr 50:40015764bbe6 4901
mjr 53:9b2611964afc 4902 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4903 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4904 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4905 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4906 if (calState == 0)
mjr 53:9b2611964afc 4907 {
mjr 53:9b2611964afc 4908 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4909 {
mjr 53:9b2611964afc 4910 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4911 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4912 {
mjr 53:9b2611964afc 4913 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4914 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4915 calZeroPosN += 1;
mjr 53:9b2611964afc 4916
mjr 53:9b2611964afc 4917 // update the zero position from the new average
mjr 53:9b2611964afc 4918 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4919 onUpdateCal();
mjr 53:9b2611964afc 4920
mjr 53:9b2611964afc 4921 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4922 calState = 1;
mjr 53:9b2611964afc 4923 }
mjr 53:9b2611964afc 4924 }
mjr 53:9b2611964afc 4925 else
mjr 53:9b2611964afc 4926 {
mjr 53:9b2611964afc 4927 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4928 calZeroStart = r;
mjr 53:9b2611964afc 4929 }
mjr 53:9b2611964afc 4930 }
mjr 53:9b2611964afc 4931
mjr 53:9b2611964afc 4932 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4933 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4934 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4935 r.pos = int(
mjr 53:9b2611964afc 4936 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4937 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4938 }
mjr 53:9b2611964afc 4939 else
mjr 53:9b2611964afc 4940 {
mjr 53:9b2611964afc 4941 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4942 // rescale to the joystick range.
mjr 76:7f5912b6340e 4943 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4944
mjr 53:9b2611964afc 4945 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4946 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4947 r.pos = JOYMAX;
mjr 53:9b2611964afc 4948 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4949 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4950 }
mjr 50:40015764bbe6 4951
mjr 87:8d35c74403af 4952 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 4953 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 4954 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 4955 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 4956 //
mjr 87:8d35c74403af 4957 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 4958 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 4959 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 4960 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 4961 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 4962 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 4963 // 25-50ms.
mjr 87:8d35c74403af 4964 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 4965 return;
mjr 87:8d35c74403af 4966
mjr 87:8d35c74403af 4967 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 4968 z = r.pos;
mjr 87:8d35c74403af 4969
mjr 87:8d35c74403af 4970 // Firing event detection.
mjr 87:8d35c74403af 4971 //
mjr 87:8d35c74403af 4972 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 4973 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 4974 // spring tension.
mjr 50:40015764bbe6 4975 //
mjr 87:8d35c74403af 4976 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 4977 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 4978 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 4979 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 4980 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 4981 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 4982 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 4983 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 4984 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 4985 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 4986 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 4987 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 4988 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 4989 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 4990 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 4991 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 4992 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 4993 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 4994 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 4995 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 4996 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 4997 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 4998 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 4999 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5000 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5001 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5002 // forward position for a short time.
mjr 76:7f5912b6340e 5003 //
mjr 87:8d35c74403af 5004 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5005 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5006 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5007 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5008 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5009 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5010 //
mjr 87:8d35c74403af 5011 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5012 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5013 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5014 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5015 // to the park position.
mjr 87:8d35c74403af 5016 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5017 switch (firing)
mjr 50:40015764bbe6 5018 {
mjr 50:40015764bbe6 5019 case 0:
mjr 87:8d35c74403af 5020 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5021 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5022 // release, enter firing mode.
mjr 87:8d35c74403af 5023 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5024 {
mjr 87:8d35c74403af 5025 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5026 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5027 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5028 {
mjr 87:8d35c74403af 5029 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5030 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5031 firingMode(1);
mjr 87:8d35c74403af 5032 f0 = prv;
mjr 87:8d35c74403af 5033 z = f0.pos;
mjr 87:8d35c74403af 5034
mjr 87:8d35c74403af 5035 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5036 // state 2 (not at rest)
mjr 87:8d35c74403af 5037 if (calState == 1)
mjr 87:8d35c74403af 5038 calState = 2;
mjr 87:8d35c74403af 5039 }
mjr 50:40015764bbe6 5040 }
mjr 50:40015764bbe6 5041 break;
mjr 50:40015764bbe6 5042
mjr 50:40015764bbe6 5043 case 1:
mjr 87:8d35c74403af 5044 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5045 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5046 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5047 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5048 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5049 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5050 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5051 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5052 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5053 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5054 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5055 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5056 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5057 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5058 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5059 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5060 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5061 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5062 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5063 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5064 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5065 if (r.pos <= 0)
mjr 50:40015764bbe6 5066 {
mjr 87:8d35c74403af 5067 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5068 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5069 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5070 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5071 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5072 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5073 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5074 // physics.
mjr 50:40015764bbe6 5075 firingMode(2);
mjr 53:9b2611964afc 5076
mjr 53:9b2611964afc 5077 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5078 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5079 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5080 {
mjr 53:9b2611964afc 5081 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5082 // come to rest
mjr 53:9b2611964afc 5083 calState = 0;
mjr 53:9b2611964afc 5084
mjr 87:8d35c74403af 5085 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5086 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5087 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5088 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5089 {
mjr 53:9b2611964afc 5090 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5091 calRlsTimeN += 1;
mjr 53:9b2611964afc 5092 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5093 }
mjr 53:9b2611964afc 5094 }
mjr 87:8d35c74403af 5095
mjr 87:8d35c74403af 5096 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5097 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5098 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5099 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5100 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5101 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5102 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5103 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5104 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5105 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5106 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5107 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5108 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5109 // small in any case.)
mjr 87:8d35c74403af 5110 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5111
mjr 87:8d35c74403af 5112 // reset the starting time for this phase
mjr 87:8d35c74403af 5113 f0.t = r.t;
mjr 50:40015764bbe6 5114 }
mjr 50:40015764bbe6 5115 else
mjr 50:40015764bbe6 5116 {
mjr 87:8d35c74403af 5117 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5118 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5119 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5120 if (dt < 50000
mjr 87:8d35c74403af 5121 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5122 {
mjr 87:8d35c74403af 5123 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5124 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5125 // stay in the first release phase.
mjr 87:8d35c74403af 5126 z = f0.pos;
mjr 87:8d35c74403af 5127 }
mjr 87:8d35c74403af 5128 else
mjr 87:8d35c74403af 5129 {
mjr 87:8d35c74403af 5130 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5131 // motion. Return to the default state.
mjr 87:8d35c74403af 5132 firingMode(0);
mjr 87:8d35c74403af 5133 calState = 1;
mjr 87:8d35c74403af 5134 }
mjr 50:40015764bbe6 5135 }
mjr 50:40015764bbe6 5136 break;
mjr 50:40015764bbe6 5137
mjr 50:40015764bbe6 5138 case 2:
mjr 87:8d35c74403af 5139 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5140 // Hold here for 25ms.
mjr 87:8d35c74403af 5141 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5142 {
mjr 87:8d35c74403af 5143 // stay here for now
mjr 87:8d35c74403af 5144 z = f0.pos;
mjr 50:40015764bbe6 5145 }
mjr 50:40015764bbe6 5146 else
mjr 50:40015764bbe6 5147 {
mjr 87:8d35c74403af 5148 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5149 // position until the plunger comes to rest
mjr 50:40015764bbe6 5150 firingMode(3);
mjr 50:40015764bbe6 5151 z = 0;
mjr 87:8d35c74403af 5152
mjr 87:8d35c74403af 5153 // remember when we started
mjr 87:8d35c74403af 5154 f0.t = r.t;
mjr 50:40015764bbe6 5155 }
mjr 50:40015764bbe6 5156 break;
mjr 50:40015764bbe6 5157
mjr 50:40015764bbe6 5158 case 3:
mjr 87:8d35c74403af 5159 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5160 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5161 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5162 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5163 {
mjr 87:8d35c74403af 5164 // stay here a while longer
mjr 87:8d35c74403af 5165 z = 0;
mjr 50:40015764bbe6 5166 }
mjr 50:40015764bbe6 5167 else
mjr 50:40015764bbe6 5168 {
mjr 87:8d35c74403af 5169 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5170 firingMode(0);
mjr 50:40015764bbe6 5171 }
mjr 50:40015764bbe6 5172 break;
mjr 50:40015764bbe6 5173 }
mjr 50:40015764bbe6 5174
mjr 82:4f6209cb5c33 5175 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5176 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5177 {
mjr 82:4f6209cb5c33 5178 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5179 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5180 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5181 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5182 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5183 {
mjr 82:4f6209cb5c33 5184 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5185 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5186 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5187 }
mjr 82:4f6209cb5c33 5188 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5189 {
mjr 82:4f6209cb5c33 5190 // auto-zero now
mjr 82:4f6209cb5c33 5191 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5192
mjr 82:4f6209cb5c33 5193 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5194 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5195 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5196 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5197 }
mjr 82:4f6209cb5c33 5198 }
mjr 82:4f6209cb5c33 5199
mjr 87:8d35c74403af 5200 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5201 prv = r;
mjr 48:058ace2aed1d 5202 }
mjr 48:058ace2aed1d 5203 }
mjr 48:058ace2aed1d 5204
mjr 48:058ace2aed1d 5205 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5206 int16_t getPosition()
mjr 58:523fdcffbe6d 5207 {
mjr 86:e30a1f60f783 5208 // return the last reading
mjr 86:e30a1f60f783 5209 return z;
mjr 55:4db125cd11a0 5210 }
mjr 58:523fdcffbe6d 5211
mjr 48:058ace2aed1d 5212 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5213 void setCalMode(bool f)
mjr 48:058ace2aed1d 5214 {
mjr 52:8298b2a73eb2 5215 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5216 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5217 {
mjr 52:8298b2a73eb2 5218 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5219 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5220
mjr 52:8298b2a73eb2 5221 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5222 calState = 0;
mjr 52:8298b2a73eb2 5223 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5224 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5225 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5226 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5227
mjr 82:4f6209cb5c33 5228 // tell the plunger we're starting calibration
mjr 82:4f6209cb5c33 5229 plungerSensor->beginCalibration();
mjr 82:4f6209cb5c33 5230
mjr 52:8298b2a73eb2 5231 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5232 PlungerReading r;
mjr 52:8298b2a73eb2 5233 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5234 {
mjr 52:8298b2a73eb2 5235 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5236 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5237 onUpdateCal();
mjr 52:8298b2a73eb2 5238
mjr 52:8298b2a73eb2 5239 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5240 calZeroStart = r;
mjr 52:8298b2a73eb2 5241 }
mjr 52:8298b2a73eb2 5242 else
mjr 52:8298b2a73eb2 5243 {
mjr 52:8298b2a73eb2 5244 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5245 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5246 onUpdateCal();
mjr 52:8298b2a73eb2 5247
mjr 52:8298b2a73eb2 5248 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5249 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5250 calZeroStart.t = 0;
mjr 53:9b2611964afc 5251 }
mjr 53:9b2611964afc 5252 }
mjr 53:9b2611964afc 5253 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5254 {
mjr 53:9b2611964afc 5255 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5256 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5257 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5258 // physically meaningless.
mjr 53:9b2611964afc 5259 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5260 {
mjr 53:9b2611964afc 5261 // bad settings - reset to defaults
mjr 53:9b2611964afc 5262 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5263 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5264 onUpdateCal();
mjr 52:8298b2a73eb2 5265 }
mjr 52:8298b2a73eb2 5266 }
mjr 52:8298b2a73eb2 5267
mjr 48:058ace2aed1d 5268 // remember the new mode
mjr 52:8298b2a73eb2 5269 plungerCalMode = f;
mjr 48:058ace2aed1d 5270 }
mjr 48:058ace2aed1d 5271
mjr 76:7f5912b6340e 5272 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5273 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5274 // cached inverse is calculated as
mjr 76:7f5912b6340e 5275 //
mjr 76:7f5912b6340e 5276 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5277 //
mjr 76:7f5912b6340e 5278 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5279 //
mjr 76:7f5912b6340e 5280 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5281 //
mjr 76:7f5912b6340e 5282 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5283 int invCalRange;
mjr 76:7f5912b6340e 5284
mjr 76:7f5912b6340e 5285 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5286 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5287 {
mjr 76:7f5912b6340e 5288 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5289 }
mjr 76:7f5912b6340e 5290
mjr 76:7f5912b6340e 5291 void onUpdateCal()
mjr 76:7f5912b6340e 5292 {
mjr 76:7f5912b6340e 5293 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5294 }
mjr 76:7f5912b6340e 5295
mjr 48:058ace2aed1d 5296 // is a firing event in progress?
mjr 53:9b2611964afc 5297 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5298
mjr 48:058ace2aed1d 5299 private:
mjr 87:8d35c74403af 5300 // current reported joystick reading
mjr 87:8d35c74403af 5301 int z;
mjr 87:8d35c74403af 5302
mjr 87:8d35c74403af 5303 // previous reading
mjr 87:8d35c74403af 5304 PlungerReading prv;
mjr 87:8d35c74403af 5305
mjr 52:8298b2a73eb2 5306 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5307 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5308 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5309 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5310 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5311 // 1 = at rest
mjr 52:8298b2a73eb2 5312 // 2 = retracting
mjr 52:8298b2a73eb2 5313 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5314 uint8_t calState;
mjr 52:8298b2a73eb2 5315
mjr 52:8298b2a73eb2 5316 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5317 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5318 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5319 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5320 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5321 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5322 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5323 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5324 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5325 long calZeroPosSum;
mjr 52:8298b2a73eb2 5326 int calZeroPosN;
mjr 52:8298b2a73eb2 5327
mjr 52:8298b2a73eb2 5328 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5329 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5330 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5331 int calRlsTimeN;
mjr 52:8298b2a73eb2 5332
mjr 85:3c28aee81cde 5333 // Auto-zeroing timer
mjr 85:3c28aee81cde 5334 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5335
mjr 48:058ace2aed1d 5336 // set a firing mode
mjr 48:058ace2aed1d 5337 inline void firingMode(int m)
mjr 48:058ace2aed1d 5338 {
mjr 48:058ace2aed1d 5339 firing = m;
mjr 48:058ace2aed1d 5340 }
mjr 48:058ace2aed1d 5341
mjr 48:058ace2aed1d 5342 // Firing event state.
mjr 48:058ace2aed1d 5343 //
mjr 87:8d35c74403af 5344 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5345 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5346 //
mjr 87:8d35c74403af 5347 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5348 //
mjr 87:8d35c74403af 5349 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5350 //
mjr 87:8d35c74403af 5351 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5352 //
mjr 48:058ace2aed1d 5353 int firing;
mjr 48:058ace2aed1d 5354
mjr 87:8d35c74403af 5355 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5356 PlungerReading f0;
mjr 48:058ace2aed1d 5357 };
mjr 48:058ace2aed1d 5358
mjr 48:058ace2aed1d 5359 // plunger reader singleton
mjr 48:058ace2aed1d 5360 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5361
mjr 48:058ace2aed1d 5362 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5363 //
mjr 48:058ace2aed1d 5364 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5365 //
mjr 48:058ace2aed1d 5366 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5367 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5368 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5369 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5370 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5371 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5372 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5373 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5374 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5375 //
mjr 48:058ace2aed1d 5376 // This feature has two configuration components:
mjr 48:058ace2aed1d 5377 //
mjr 48:058ace2aed1d 5378 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5379 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5380 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5381 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5382 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5383 // plunger/launch button connection.
mjr 48:058ace2aed1d 5384 //
mjr 48:058ace2aed1d 5385 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5386 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5387 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5388 // position.
mjr 48:058ace2aed1d 5389 //
mjr 48:058ace2aed1d 5390 class ZBLaunchBall
mjr 48:058ace2aed1d 5391 {
mjr 48:058ace2aed1d 5392 public:
mjr 48:058ace2aed1d 5393 ZBLaunchBall()
mjr 48:058ace2aed1d 5394 {
mjr 48:058ace2aed1d 5395 // start in the default state
mjr 48:058ace2aed1d 5396 lbState = 0;
mjr 53:9b2611964afc 5397 btnState = false;
mjr 48:058ace2aed1d 5398 }
mjr 48:058ace2aed1d 5399
mjr 48:058ace2aed1d 5400 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5401 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5402 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5403 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5404 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5405 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5406 void update()
mjr 48:058ace2aed1d 5407 {
mjr 53:9b2611964afc 5408 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5409 // plunger firing event
mjr 53:9b2611964afc 5410 if (zbLaunchOn)
mjr 48:058ace2aed1d 5411 {
mjr 53:9b2611964afc 5412 // note the new position
mjr 48:058ace2aed1d 5413 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5414
mjr 53:9b2611964afc 5415 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5416 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5417
mjr 53:9b2611964afc 5418 // check the state
mjr 48:058ace2aed1d 5419 switch (lbState)
mjr 48:058ace2aed1d 5420 {
mjr 48:058ace2aed1d 5421 case 0:
mjr 53:9b2611964afc 5422 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5423 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5424 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5425 // the button.
mjr 53:9b2611964afc 5426 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5427 {
mjr 53:9b2611964afc 5428 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5429 lbTimer.reset();
mjr 53:9b2611964afc 5430 lbTimer.start();
mjr 53:9b2611964afc 5431 setButton(true);
mjr 53:9b2611964afc 5432
mjr 53:9b2611964afc 5433 // switch to state 1
mjr 53:9b2611964afc 5434 lbState = 1;
mjr 53:9b2611964afc 5435 }
mjr 48:058ace2aed1d 5436 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5437 {
mjr 53:9b2611964afc 5438 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5439 // button as long as we're pushed forward
mjr 53:9b2611964afc 5440 setButton(true);
mjr 53:9b2611964afc 5441 }
mjr 53:9b2611964afc 5442 else
mjr 53:9b2611964afc 5443 {
mjr 53:9b2611964afc 5444 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5445 setButton(false);
mjr 53:9b2611964afc 5446 }
mjr 48:058ace2aed1d 5447 break;
mjr 48:058ace2aed1d 5448
mjr 48:058ace2aed1d 5449 case 1:
mjr 53:9b2611964afc 5450 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5451 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5452 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5453 {
mjr 53:9b2611964afc 5454 // timer expired - turn off the button
mjr 53:9b2611964afc 5455 setButton(false);
mjr 53:9b2611964afc 5456
mjr 53:9b2611964afc 5457 // switch to state 2
mjr 53:9b2611964afc 5458 lbState = 2;
mjr 53:9b2611964afc 5459 }
mjr 48:058ace2aed1d 5460 break;
mjr 48:058ace2aed1d 5461
mjr 48:058ace2aed1d 5462 case 2:
mjr 53:9b2611964afc 5463 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5464 // plunger launch event to end.
mjr 53:9b2611964afc 5465 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5466 {
mjr 53:9b2611964afc 5467 // firing event done - return to default state
mjr 53:9b2611964afc 5468 lbState = 0;
mjr 53:9b2611964afc 5469 }
mjr 48:058ace2aed1d 5470 break;
mjr 48:058ace2aed1d 5471 }
mjr 53:9b2611964afc 5472 }
mjr 53:9b2611964afc 5473 else
mjr 53:9b2611964afc 5474 {
mjr 53:9b2611964afc 5475 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5476 setButton(false);
mjr 48:058ace2aed1d 5477
mjr 53:9b2611964afc 5478 // return to the default state
mjr 53:9b2611964afc 5479 lbState = 0;
mjr 48:058ace2aed1d 5480 }
mjr 48:058ace2aed1d 5481 }
mjr 53:9b2611964afc 5482
mjr 53:9b2611964afc 5483 // Set the button state
mjr 53:9b2611964afc 5484 void setButton(bool on)
mjr 53:9b2611964afc 5485 {
mjr 53:9b2611964afc 5486 if (btnState != on)
mjr 53:9b2611964afc 5487 {
mjr 53:9b2611964afc 5488 // remember the new state
mjr 53:9b2611964afc 5489 btnState = on;
mjr 53:9b2611964afc 5490
mjr 53:9b2611964afc 5491 // update the virtual button state
mjr 65:739875521aae 5492 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5493 }
mjr 53:9b2611964afc 5494 }
mjr 53:9b2611964afc 5495
mjr 48:058ace2aed1d 5496 private:
mjr 48:058ace2aed1d 5497 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5498 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5499 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5500 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5501 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5502 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5503 //
mjr 48:058ace2aed1d 5504 // States:
mjr 48:058ace2aed1d 5505 // 0 = default
mjr 53:9b2611964afc 5506 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5507 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5508 // firing event to end)
mjr 53:9b2611964afc 5509 uint8_t lbState;
mjr 48:058ace2aed1d 5510
mjr 53:9b2611964afc 5511 // button state
mjr 53:9b2611964afc 5512 bool btnState;
mjr 48:058ace2aed1d 5513
mjr 48:058ace2aed1d 5514 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5515 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5516 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5517 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5518 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5519 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5520 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5521 Timer lbTimer;
mjr 48:058ace2aed1d 5522 };
mjr 48:058ace2aed1d 5523
mjr 35:e959ffba78fd 5524 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5525 //
mjr 35:e959ffba78fd 5526 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5527 //
mjr 54:fd77a6b2f76c 5528 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5529 {
mjr 35:e959ffba78fd 5530 // disconnect from USB
mjr 54:fd77a6b2f76c 5531 if (disconnect)
mjr 54:fd77a6b2f76c 5532 js.disconnect();
mjr 35:e959ffba78fd 5533
mjr 35:e959ffba78fd 5534 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5535 wait_us(pause_us);
mjr 35:e959ffba78fd 5536
mjr 35:e959ffba78fd 5537 // reset the device
mjr 35:e959ffba78fd 5538 NVIC_SystemReset();
mjr 35:e959ffba78fd 5539 while (true) { }
mjr 35:e959ffba78fd 5540 }
mjr 35:e959ffba78fd 5541
mjr 35:e959ffba78fd 5542 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5543 //
mjr 35:e959ffba78fd 5544 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5545 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5546 //
mjr 35:e959ffba78fd 5547 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5548 {
mjr 35:e959ffba78fd 5549 int tmp;
mjr 78:1e00b3fa11af 5550 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5551 {
mjr 35:e959ffba78fd 5552 case OrientationFront:
mjr 35:e959ffba78fd 5553 tmp = x;
mjr 35:e959ffba78fd 5554 x = y;
mjr 35:e959ffba78fd 5555 y = tmp;
mjr 35:e959ffba78fd 5556 break;
mjr 35:e959ffba78fd 5557
mjr 35:e959ffba78fd 5558 case OrientationLeft:
mjr 35:e959ffba78fd 5559 x = -x;
mjr 35:e959ffba78fd 5560 break;
mjr 35:e959ffba78fd 5561
mjr 35:e959ffba78fd 5562 case OrientationRight:
mjr 35:e959ffba78fd 5563 y = -y;
mjr 35:e959ffba78fd 5564 break;
mjr 35:e959ffba78fd 5565
mjr 35:e959ffba78fd 5566 case OrientationRear:
mjr 35:e959ffba78fd 5567 tmp = -x;
mjr 35:e959ffba78fd 5568 x = -y;
mjr 35:e959ffba78fd 5569 y = tmp;
mjr 35:e959ffba78fd 5570 break;
mjr 35:e959ffba78fd 5571 }
mjr 35:e959ffba78fd 5572 }
mjr 35:e959ffba78fd 5573
mjr 35:e959ffba78fd 5574 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5575 //
mjr 35:e959ffba78fd 5576 // Calibration button state:
mjr 35:e959ffba78fd 5577 // 0 = not pushed
mjr 35:e959ffba78fd 5578 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5579 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5580 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5581 int calBtnState = 0;
mjr 35:e959ffba78fd 5582
mjr 35:e959ffba78fd 5583 // calibration button debounce timer
mjr 35:e959ffba78fd 5584 Timer calBtnTimer;
mjr 35:e959ffba78fd 5585
mjr 35:e959ffba78fd 5586 // calibration button light state
mjr 35:e959ffba78fd 5587 int calBtnLit = false;
mjr 35:e959ffba78fd 5588
mjr 35:e959ffba78fd 5589
mjr 35:e959ffba78fd 5590 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5591 //
mjr 40:cc0d9814522b 5592 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5593 //
mjr 40:cc0d9814522b 5594
mjr 40:cc0d9814522b 5595 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5596 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5597 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 5598 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5599 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5600 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5601 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5602 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5603 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5604 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5605 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5606 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5607
mjr 40:cc0d9814522b 5608 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5609 #undef if_msg_valid
mjr 40:cc0d9814522b 5610 #undef v_byte
mjr 40:cc0d9814522b 5611 #undef v_ui16
mjr 77:0b96f6867312 5612 #undef v_ui32
mjr 40:cc0d9814522b 5613 #undef v_pin
mjr 53:9b2611964afc 5614 #undef v_byte_ro
mjr 91:ae9be42652bf 5615 #undef v_byte_wo
mjr 74:822a92bc11d2 5616 #undef v_ui32_ro
mjr 74:822a92bc11d2 5617 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5618 #undef v_func
mjr 38:091e511ce8a0 5619
mjr 91:ae9be42652bf 5620 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 5621 #define if_msg_valid(test)
mjr 53:9b2611964afc 5622 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5623 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5624 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5625 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5626 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5627 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5628 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 5629 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 5630 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5631 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5632
mjr 35:e959ffba78fd 5633
mjr 35:e959ffba78fd 5634 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5635 //
mjr 35:e959ffba78fd 5636 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5637 // LedWiz protocol.
mjr 33:d832bcab089e 5638 //
mjr 78:1e00b3fa11af 5639 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5640 {
mjr 38:091e511ce8a0 5641 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5642 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5643 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5644 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5645 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5646 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5647 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5648 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5649 //
mjr 38:091e511ce8a0 5650 // first byte =
mjr 74:822a92bc11d2 5651 // 0-48 -> PBA
mjr 74:822a92bc11d2 5652 // 64 -> SBA
mjr 38:091e511ce8a0 5653 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5654 // 129-132 -> PBA
mjr 38:091e511ce8a0 5655 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5656 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5657 // other -> reserved for future use
mjr 38:091e511ce8a0 5658 //
mjr 39:b3815a1c3802 5659 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5660 if (data[0] == 64)
mjr 35:e959ffba78fd 5661 {
mjr 74:822a92bc11d2 5662 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5663 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5664 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5665 sba_sbx(0, data);
mjr 74:822a92bc11d2 5666
mjr 74:822a92bc11d2 5667 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5668 pbaIdx = 0;
mjr 38:091e511ce8a0 5669 }
mjr 38:091e511ce8a0 5670 else if (data[0] == 65)
mjr 38:091e511ce8a0 5671 {
mjr 38:091e511ce8a0 5672 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5673 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5674 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5675 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5676 // message type.
mjr 39:b3815a1c3802 5677 switch (data[1])
mjr 38:091e511ce8a0 5678 {
mjr 39:b3815a1c3802 5679 case 0:
mjr 39:b3815a1c3802 5680 // No Op
mjr 39:b3815a1c3802 5681 break;
mjr 39:b3815a1c3802 5682
mjr 39:b3815a1c3802 5683 case 1:
mjr 38:091e511ce8a0 5684 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5685 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5686 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5687 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5688 {
mjr 39:b3815a1c3802 5689
mjr 39:b3815a1c3802 5690 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5691 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5692 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5693
mjr 86:e30a1f60f783 5694 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 5695 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5696
mjr 39:b3815a1c3802 5697 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5698 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5699 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5700
mjr 77:0b96f6867312 5701 // set the flag to do the save
mjr 86:e30a1f60f783 5702 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 5703 }
mjr 39:b3815a1c3802 5704 break;
mjr 38:091e511ce8a0 5705
mjr 39:b3815a1c3802 5706 case 2:
mjr 38:091e511ce8a0 5707 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5708 // (No parameters)
mjr 38:091e511ce8a0 5709
mjr 38:091e511ce8a0 5710 // enter calibration mode
mjr 38:091e511ce8a0 5711 calBtnState = 3;
mjr 52:8298b2a73eb2 5712 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5713 calBtnTimer.reset();
mjr 39:b3815a1c3802 5714 break;
mjr 39:b3815a1c3802 5715
mjr 39:b3815a1c3802 5716 case 3:
mjr 52:8298b2a73eb2 5717 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5718 // data[2] = flag bits
mjr 53:9b2611964afc 5719 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5720 reportPlungerStat = true;
mjr 53:9b2611964afc 5721 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5722 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5723
mjr 38:091e511ce8a0 5724 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5725 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5726 break;
mjr 39:b3815a1c3802 5727
mjr 39:b3815a1c3802 5728 case 4:
mjr 38:091e511ce8a0 5729 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5730 // (No parameters)
mjr 38:091e511ce8a0 5731 js.reportConfig(
mjr 38:091e511ce8a0 5732 numOutputs,
mjr 38:091e511ce8a0 5733 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5734 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5735 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5736 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5737 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 5738 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 5739 true, // we support the configurable joystick report timing features
mjr 79:682ae3171a08 5740 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 5741 break;
mjr 39:b3815a1c3802 5742
mjr 39:b3815a1c3802 5743 case 5:
mjr 38:091e511ce8a0 5744 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5745 allOutputsOff();
mjr 39:b3815a1c3802 5746 break;
mjr 39:b3815a1c3802 5747
mjr 39:b3815a1c3802 5748 case 6:
mjr 85:3c28aee81cde 5749 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 5750 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 5751 //
mjr 85:3c28aee81cde 5752 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 5753 // data[3] = flags:
mjr 85:3c28aee81cde 5754 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 5755 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 5756 break;
mjr 40:cc0d9814522b 5757
mjr 40:cc0d9814522b 5758 case 7:
mjr 40:cc0d9814522b 5759 // 7 = Device ID report
mjr 53:9b2611964afc 5760 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5761 js.reportID(data[2]);
mjr 40:cc0d9814522b 5762 break;
mjr 40:cc0d9814522b 5763
mjr 40:cc0d9814522b 5764 case 8:
mjr 40:cc0d9814522b 5765 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5766 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5767 setNightMode(data[2]);
mjr 40:cc0d9814522b 5768 break;
mjr 52:8298b2a73eb2 5769
mjr 52:8298b2a73eb2 5770 case 9:
mjr 52:8298b2a73eb2 5771 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5772 // data[2] = config var ID
mjr 52:8298b2a73eb2 5773 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5774 {
mjr 53:9b2611964afc 5775 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5776 // the rest of the buffer
mjr 52:8298b2a73eb2 5777 uint8_t reply[8];
mjr 52:8298b2a73eb2 5778 reply[1] = data[2];
mjr 52:8298b2a73eb2 5779 reply[2] = data[3];
mjr 53:9b2611964afc 5780 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5781
mjr 52:8298b2a73eb2 5782 // query the value
mjr 52:8298b2a73eb2 5783 configVarGet(reply);
mjr 52:8298b2a73eb2 5784
mjr 52:8298b2a73eb2 5785 // send the reply
mjr 52:8298b2a73eb2 5786 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5787 }
mjr 52:8298b2a73eb2 5788 break;
mjr 53:9b2611964afc 5789
mjr 53:9b2611964afc 5790 case 10:
mjr 53:9b2611964afc 5791 // 10 = Build ID query.
mjr 53:9b2611964afc 5792 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5793 break;
mjr 73:4e8ce0b18915 5794
mjr 73:4e8ce0b18915 5795 case 11:
mjr 73:4e8ce0b18915 5796 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5797 // data[2] = operation:
mjr 73:4e8ce0b18915 5798 // 0 = turn relay off
mjr 73:4e8ce0b18915 5799 // 1 = turn relay on
mjr 73:4e8ce0b18915 5800 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5801 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5802 break;
mjr 73:4e8ce0b18915 5803
mjr 73:4e8ce0b18915 5804 case 12:
mjr 77:0b96f6867312 5805 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5806 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5807 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5808 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5809 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5810
mjr 77:0b96f6867312 5811 // enter IR learning mode
mjr 77:0b96f6867312 5812 IRLearningMode = 1;
mjr 77:0b96f6867312 5813
mjr 77:0b96f6867312 5814 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5815 IRCommandIn = 0;
mjr 77:0b96f6867312 5816
mjr 77:0b96f6867312 5817 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5818 IRTimer.reset();
mjr 73:4e8ce0b18915 5819 break;
mjr 73:4e8ce0b18915 5820
mjr 73:4e8ce0b18915 5821 case 13:
mjr 73:4e8ce0b18915 5822 // 13 = Send button status report
mjr 73:4e8ce0b18915 5823 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5824 break;
mjr 78:1e00b3fa11af 5825
mjr 78:1e00b3fa11af 5826 case 14:
mjr 78:1e00b3fa11af 5827 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5828 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5829 break;
mjr 78:1e00b3fa11af 5830
mjr 78:1e00b3fa11af 5831 case 15:
mjr 78:1e00b3fa11af 5832 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5833 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5834 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5835 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5836 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5837 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5838 break;
mjr 78:1e00b3fa11af 5839
mjr 78:1e00b3fa11af 5840 case 16:
mjr 78:1e00b3fa11af 5841 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5842 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5843 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5844 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5845 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5846 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5847 break;
mjr 88:98bce687e6c0 5848
mjr 88:98bce687e6c0 5849 case 17:
mjr 88:98bce687e6c0 5850 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 5851 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 5852 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 5853 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 5854 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 5855 {
mjr 88:98bce687e6c0 5856 // get the IR command slot in the config
mjr 88:98bce687e6c0 5857 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 5858
mjr 88:98bce687e6c0 5859 // copy the IR command data from the config
mjr 88:98bce687e6c0 5860 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 5861 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 5862 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 5863
mjr 88:98bce687e6c0 5864 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 5865 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 5866 // is free
mjr 88:98bce687e6c0 5867 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 5868 }
mjr 88:98bce687e6c0 5869 break;
mjr 38:091e511ce8a0 5870 }
mjr 38:091e511ce8a0 5871 }
mjr 38:091e511ce8a0 5872 else if (data[0] == 66)
mjr 38:091e511ce8a0 5873 {
mjr 38:091e511ce8a0 5874 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5875 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5876 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5877 // in a variable-dependent format.
mjr 40:cc0d9814522b 5878 configVarSet(data);
mjr 86:e30a1f60f783 5879
mjr 87:8d35c74403af 5880 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 5881 // dynamically
mjr 87:8d35c74403af 5882 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 5883 }
mjr 74:822a92bc11d2 5884 else if (data[0] == 67)
mjr 74:822a92bc11d2 5885 {
mjr 74:822a92bc11d2 5886 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5887 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5888 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5889 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5890 }
mjr 74:822a92bc11d2 5891 else if (data[0] == 68)
mjr 74:822a92bc11d2 5892 {
mjr 74:822a92bc11d2 5893 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5894 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5895 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5896
mjr 74:822a92bc11d2 5897 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5898 int portGroup = data[1];
mjr 74:822a92bc11d2 5899
mjr 74:822a92bc11d2 5900 // unpack the brightness values
mjr 74:822a92bc11d2 5901 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5902 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5903 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5904 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5905 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5906 };
mjr 74:822a92bc11d2 5907
mjr 74:822a92bc11d2 5908 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5909 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5910 {
mjr 74:822a92bc11d2 5911 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5912 bri[i] += 129-60;
mjr 74:822a92bc11d2 5913 }
mjr 74:822a92bc11d2 5914
mjr 74:822a92bc11d2 5915 // Carry out the PBA
mjr 74:822a92bc11d2 5916 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5917 }
mjr 38:091e511ce8a0 5918 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5919 {
mjr 38:091e511ce8a0 5920 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5921 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5922 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5923 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5924 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5925 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5926 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5927 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5928 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5929 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5930 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5931 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5932 //
mjr 38:091e511ce8a0 5933 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5934 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5935 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5936 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5937 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5938 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5939
mjr 63:5cd1a5f3a41b 5940 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5941 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5942 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5943
mjr 63:5cd1a5f3a41b 5944 // update each port
mjr 38:091e511ce8a0 5945 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5946 {
mjr 38:091e511ce8a0 5947 // set the brightness level for the output
mjr 40:cc0d9814522b 5948 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5949 outLevel[i] = b;
mjr 38:091e511ce8a0 5950
mjr 74:822a92bc11d2 5951 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5952 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5953 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5954 if (b != 0)
mjr 76:7f5912b6340e 5955 {
mjr 76:7f5912b6340e 5956 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5957 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5958 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5959 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5960 // forward unchanged.
mjr 76:7f5912b6340e 5961 wizOn[i] = 1;
mjr 76:7f5912b6340e 5962 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5963 }
mjr 76:7f5912b6340e 5964 else
mjr 76:7f5912b6340e 5965 {
mjr 76:7f5912b6340e 5966 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5967 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5968 wizOn[i] = 0;
mjr 76:7f5912b6340e 5969 }
mjr 74:822a92bc11d2 5970
mjr 38:091e511ce8a0 5971 // set the output
mjr 40:cc0d9814522b 5972 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5973 }
mjr 38:091e511ce8a0 5974
mjr 38:091e511ce8a0 5975 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5976 if (hc595 != 0)
mjr 38:091e511ce8a0 5977 hc595->update();
mjr 38:091e511ce8a0 5978 }
mjr 38:091e511ce8a0 5979 else
mjr 38:091e511ce8a0 5980 {
mjr 74:822a92bc11d2 5981 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5982 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5983 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5984 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5985 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5986 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5987 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5988 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5989 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5990 //
mjr 38:091e511ce8a0 5991 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5992 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5993 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5994 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5995 // protocol mode.
mjr 38:091e511ce8a0 5996 //
mjr 38:091e511ce8a0 5997 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5998 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5999
mjr 74:822a92bc11d2 6000 // carry out the PBA
mjr 74:822a92bc11d2 6001 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6002
mjr 74:822a92bc11d2 6003 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6004 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6005 }
mjr 38:091e511ce8a0 6006 }
mjr 35:e959ffba78fd 6007
mjr 38:091e511ce8a0 6008 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6009 //
mjr 5:a70c0bce770d 6010 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6011 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6012 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6013 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6014 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6015 // port outputs.
mjr 5:a70c0bce770d 6016 //
mjr 0:5acbbe3f4cf4 6017 int main(void)
mjr 0:5acbbe3f4cf4 6018 {
mjr 60:f38da020aa13 6019 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6020 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6021
mjr 94:0476b3e2b996 6022 // Set the default PWM period to 1ms. This will be used for PWM
mjr 94:0476b3e2b996 6023 // channels on PWM units whose periods aren't changed explicitly,
mjr 94:0476b3e2b996 6024 // so it'll apply to LW outputs assigned to GPIO pins. Note that
mjr 94:0476b3e2b996 6025 // the KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6026 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6027 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6028 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6029 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6030 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6031 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6032 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6033 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6034 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6035 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6036 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6037 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6038 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6039 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6040 //
mjr 94:0476b3e2b996 6041 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6042 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6043 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6044 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6045 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6046 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6047 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6048
mjr 76:7f5912b6340e 6049 // clear the I2C connection
mjr 35:e959ffba78fd 6050 clear_i2c();
mjr 82:4f6209cb5c33 6051
mjr 82:4f6209cb5c33 6052 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6053 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6054 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6055 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6056 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6057 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6058
mjr 76:7f5912b6340e 6059 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6060 // configuration data:
mjr 76:7f5912b6340e 6061 //
mjr 76:7f5912b6340e 6062 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6063 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6064 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6065 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6066 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6067 // to store user settings updates.
mjr 76:7f5912b6340e 6068 //
mjr 76:7f5912b6340e 6069 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6070 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6071 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6072 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6073 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6074 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6075 // without a separate download of the config data.
mjr 76:7f5912b6340e 6076 //
mjr 76:7f5912b6340e 6077 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6078 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6079 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6080 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6081 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6082 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6083 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6084 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6085 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6086 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6087 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6088 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6089 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6090
mjr 38:091e511ce8a0 6091 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6092 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6093
mjr 33:d832bcab089e 6094 // we're not connected/awake yet
mjr 33:d832bcab089e 6095 bool connected = false;
mjr 40:cc0d9814522b 6096 Timer connectChangeTimer;
mjr 33:d832bcab089e 6097
mjr 35:e959ffba78fd 6098 // create the plunger sensor interface
mjr 35:e959ffba78fd 6099 createPlunger();
mjr 76:7f5912b6340e 6100
mjr 76:7f5912b6340e 6101 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6102 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6103
mjr 60:f38da020aa13 6104 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6105 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6106
mjr 87:8d35c74403af 6107 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6108 init_tlc59116(cfg);
mjr 87:8d35c74403af 6109
mjr 60:f38da020aa13 6110 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6111 init_hc595(cfg);
mjr 6:cc35eb643e8f 6112
mjr 54:fd77a6b2f76c 6113 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6114 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6115 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6116 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6117 initLwOut(cfg);
mjr 48:058ace2aed1d 6118
mjr 60:f38da020aa13 6119 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6120 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6121 tlc5940->start();
mjr 87:8d35c74403af 6122
mjr 77:0b96f6867312 6123 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6124 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6125 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6126 // USB keyboard interface.
mjr 77:0b96f6867312 6127 bool kbKeys = false;
mjr 77:0b96f6867312 6128
mjr 77:0b96f6867312 6129 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6130 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6131
mjr 77:0b96f6867312 6132 // start the power status time, if applicable
mjr 77:0b96f6867312 6133 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6134
mjr 35:e959ffba78fd 6135 // initialize the button input ports
mjr 35:e959ffba78fd 6136 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6137
mjr 60:f38da020aa13 6138 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6139 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6140 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6141 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6142 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6143 // to the joystick interface.
mjr 51:57eb311faafa 6144 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6145 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6146
mjr 60:f38da020aa13 6147 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6148 // flash pattern while waiting.
mjr 70:9f58735a1732 6149 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6150 connTimeoutTimer.start();
mjr 70:9f58735a1732 6151 connFlashTimer.start();
mjr 51:57eb311faafa 6152 while (!js.configured())
mjr 51:57eb311faafa 6153 {
mjr 51:57eb311faafa 6154 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6155 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6156 {
mjr 51:57eb311faafa 6157 // short yellow flash
mjr 51:57eb311faafa 6158 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6159 wait_us(50000);
mjr 51:57eb311faafa 6160 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6161
mjr 51:57eb311faafa 6162 // reset the flash timer
mjr 70:9f58735a1732 6163 connFlashTimer.reset();
mjr 51:57eb311faafa 6164 }
mjr 70:9f58735a1732 6165
mjr 77:0b96f6867312 6166 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6167 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6168 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6169 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6170 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6171 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6172 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6173 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6174 reboot(js, false, 0);
mjr 77:0b96f6867312 6175
mjr 77:0b96f6867312 6176 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6177 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6178 }
mjr 60:f38da020aa13 6179
mjr 60:f38da020aa13 6180 // we're now connected to the host
mjr 54:fd77a6b2f76c 6181 connected = true;
mjr 40:cc0d9814522b 6182
mjr 92:f264fbaa1be5 6183 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6184 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6185 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6186 //
mjr 92:f264fbaa1be5 6187 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6188 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6189 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6190 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6191 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6192 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6193 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6194 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6195 // sampling rate as best we can.
mjr 38:091e511ce8a0 6196 Timer jsReportTimer;
mjr 38:091e511ce8a0 6197 jsReportTimer.start();
mjr 38:091e511ce8a0 6198
mjr 92:f264fbaa1be5 6199 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6200 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6201 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6202 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6203 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6204 //
mjr 92:f264fbaa1be5 6205 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6206 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6207 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6208 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6209 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6210 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6211
mjr 92:f264fbaa1be5 6212 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6213 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6214 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6215 // can be set in the configuration.
mjr 92:f264fbaa1be5 6216 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6217
mjr 60:f38da020aa13 6218 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6219 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6220 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6221 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6222 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6223 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6224 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6225 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6226 Timer jsOKTimer;
mjr 38:091e511ce8a0 6227 jsOKTimer.start();
mjr 35:e959ffba78fd 6228
mjr 55:4db125cd11a0 6229 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6230 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6231 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6232 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6233 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6234
mjr 55:4db125cd11a0 6235 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6236 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6237 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6238
mjr 55:4db125cd11a0 6239 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6240 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6241 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6242
mjr 35:e959ffba78fd 6243 // initialize the calibration button
mjr 1:d913e0afb2ac 6244 calBtnTimer.start();
mjr 35:e959ffba78fd 6245 calBtnState = 0;
mjr 1:d913e0afb2ac 6246
mjr 1:d913e0afb2ac 6247 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6248 Timer hbTimer;
mjr 1:d913e0afb2ac 6249 hbTimer.start();
mjr 1:d913e0afb2ac 6250 int hb = 0;
mjr 5:a70c0bce770d 6251 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6252
mjr 1:d913e0afb2ac 6253 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6254 Timer acTimer;
mjr 1:d913e0afb2ac 6255 acTimer.start();
mjr 1:d913e0afb2ac 6256
mjr 0:5acbbe3f4cf4 6257 // create the accelerometer object
mjr 77:0b96f6867312 6258 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6259 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6260
mjr 48:058ace2aed1d 6261 // initialize the plunger sensor
mjr 35:e959ffba78fd 6262 plungerSensor->init();
mjr 10:976666ffa4ef 6263
mjr 48:058ace2aed1d 6264 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6265 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6266
mjr 54:fd77a6b2f76c 6267 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6268 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6269 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6270 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6271 hc595->enable(true);
mjr 87:8d35c74403af 6272 if (tlc59116 != 0)
mjr 87:8d35c74403af 6273 tlc59116->enable(true);
mjr 74:822a92bc11d2 6274
mjr 76:7f5912b6340e 6275 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6276 wizCycleTimer.start();
mjr 74:822a92bc11d2 6277
mjr 74:822a92bc11d2 6278 // start the PWM update polling timer
mjr 74:822a92bc11d2 6279 polledPwmTimer.start();
mjr 43:7a6364d82a41 6280
mjr 1:d913e0afb2ac 6281 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6282 // host requests
mjr 0:5acbbe3f4cf4 6283 for (;;)
mjr 0:5acbbe3f4cf4 6284 {
mjr 74:822a92bc11d2 6285 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6286 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 6287
mjr 48:058ace2aed1d 6288 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6289 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6290 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6291 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6292 LedWizMsg lwm;
mjr 48:058ace2aed1d 6293 Timer lwt;
mjr 48:058ace2aed1d 6294 lwt.start();
mjr 77:0b96f6867312 6295 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6296 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6297 {
mjr 78:1e00b3fa11af 6298 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6299 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6300 }
mjr 74:822a92bc11d2 6301
mjr 74:822a92bc11d2 6302 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6303 IF_DIAG(
mjr 74:822a92bc11d2 6304 if (msgCount != 0)
mjr 74:822a92bc11d2 6305 {
mjr 76:7f5912b6340e 6306 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6307 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6308 }
mjr 74:822a92bc11d2 6309 )
mjr 74:822a92bc11d2 6310
mjr 77:0b96f6867312 6311 // process IR input
mjr 77:0b96f6867312 6312 process_IR(cfg, js);
mjr 77:0b96f6867312 6313
mjr 77:0b96f6867312 6314 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6315 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6316
mjr 74:822a92bc11d2 6317 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6318 wizPulse();
mjr 74:822a92bc11d2 6319
mjr 74:822a92bc11d2 6320 // update PWM outputs
mjr 74:822a92bc11d2 6321 pollPwmUpdates();
mjr 77:0b96f6867312 6322
mjr 89:c43cd923401c 6323 // update Flipper Logic outputs
mjr 89:c43cd923401c 6324 LwFlipperLogicOut::poll();
mjr 89:c43cd923401c 6325
mjr 77:0b96f6867312 6326 // poll the accelerometer
mjr 77:0b96f6867312 6327 accel.poll();
mjr 55:4db125cd11a0 6328
mjr 76:7f5912b6340e 6329 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6330 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6331
mjr 55:4db125cd11a0 6332 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6333 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6334 tlc5940->send();
mjr 87:8d35c74403af 6335
mjr 87:8d35c74403af 6336 // send TLC59116 data updates
mjr 87:8d35c74403af 6337 if (tlc59116 != 0)
mjr 87:8d35c74403af 6338 tlc59116->send();
mjr 1:d913e0afb2ac 6339
mjr 76:7f5912b6340e 6340 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6341 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6342
mjr 1:d913e0afb2ac 6343 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6344 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6345 {
mjr 1:d913e0afb2ac 6346 // check the state
mjr 1:d913e0afb2ac 6347 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6348 {
mjr 1:d913e0afb2ac 6349 case 0:
mjr 1:d913e0afb2ac 6350 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6351 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6352 calBtnState = 1;
mjr 1:d913e0afb2ac 6353 break;
mjr 1:d913e0afb2ac 6354
mjr 1:d913e0afb2ac 6355 case 1:
mjr 1:d913e0afb2ac 6356 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6357 // passed, start the hold period
mjr 48:058ace2aed1d 6358 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6359 calBtnState = 2;
mjr 1:d913e0afb2ac 6360 break;
mjr 1:d913e0afb2ac 6361
mjr 1:d913e0afb2ac 6362 case 2:
mjr 1:d913e0afb2ac 6363 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6364 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6365 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6366 {
mjr 1:d913e0afb2ac 6367 // enter calibration mode
mjr 1:d913e0afb2ac 6368 calBtnState = 3;
mjr 9:fd65b0a94720 6369 calBtnTimer.reset();
mjr 35:e959ffba78fd 6370
mjr 44:b5ac89b9cd5d 6371 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6372 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6373 }
mjr 1:d913e0afb2ac 6374 break;
mjr 2:c174f9ee414a 6375
mjr 2:c174f9ee414a 6376 case 3:
mjr 9:fd65b0a94720 6377 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6378 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6379 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6380 break;
mjr 0:5acbbe3f4cf4 6381 }
mjr 0:5acbbe3f4cf4 6382 }
mjr 1:d913e0afb2ac 6383 else
mjr 1:d913e0afb2ac 6384 {
mjr 2:c174f9ee414a 6385 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6386 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6387 // and save the results to flash.
mjr 2:c174f9ee414a 6388 //
mjr 2:c174f9ee414a 6389 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6390 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6391 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6392 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6393 {
mjr 2:c174f9ee414a 6394 // exit calibration mode
mjr 1:d913e0afb2ac 6395 calBtnState = 0;
mjr 52:8298b2a73eb2 6396 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6397
mjr 6:cc35eb643e8f 6398 // save the updated configuration
mjr 35:e959ffba78fd 6399 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6400 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6401 }
mjr 2:c174f9ee414a 6402 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6403 {
mjr 2:c174f9ee414a 6404 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6405 calBtnState = 0;
mjr 2:c174f9ee414a 6406 }
mjr 1:d913e0afb2ac 6407 }
mjr 1:d913e0afb2ac 6408
mjr 1:d913e0afb2ac 6409 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6410 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6411 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6412 {
mjr 1:d913e0afb2ac 6413 case 2:
mjr 1:d913e0afb2ac 6414 // in the hold period - flash the light
mjr 48:058ace2aed1d 6415 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6416 break;
mjr 1:d913e0afb2ac 6417
mjr 1:d913e0afb2ac 6418 case 3:
mjr 1:d913e0afb2ac 6419 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6420 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6421 break;
mjr 1:d913e0afb2ac 6422
mjr 1:d913e0afb2ac 6423 default:
mjr 1:d913e0afb2ac 6424 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6425 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6426 break;
mjr 1:d913e0afb2ac 6427 }
mjr 3:3514575d4f86 6428
mjr 3:3514575d4f86 6429 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6430 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6431 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6432 {
mjr 1:d913e0afb2ac 6433 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6434 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6435 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6436 calBtnLed->write(1);
mjr 38:091e511ce8a0 6437 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6438 }
mjr 2:c174f9ee414a 6439 else {
mjr 17:ab3cec0c8bf4 6440 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6441 calBtnLed->write(0);
mjr 38:091e511ce8a0 6442 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6443 }
mjr 1:d913e0afb2ac 6444 }
mjr 35:e959ffba78fd 6445
mjr 76:7f5912b6340e 6446 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6447 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6448
mjr 48:058ace2aed1d 6449 // read the plunger sensor
mjr 48:058ace2aed1d 6450 plungerReader.read();
mjr 48:058ace2aed1d 6451
mjr 76:7f5912b6340e 6452 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6453 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6454
mjr 53:9b2611964afc 6455 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6456 zbLaunchBall.update();
mjr 37:ed52738445fc 6457
mjr 76:7f5912b6340e 6458 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6459 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6460
mjr 53:9b2611964afc 6461 // process button updates
mjr 53:9b2611964afc 6462 processButtons(cfg);
mjr 53:9b2611964afc 6463
mjr 76:7f5912b6340e 6464 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6465 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6466
mjr 38:091e511ce8a0 6467 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6468 if (kbState.changed)
mjr 37:ed52738445fc 6469 {
mjr 38:091e511ce8a0 6470 // send a keyboard report
mjr 37:ed52738445fc 6471 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6472 kbState.changed = false;
mjr 37:ed52738445fc 6473 }
mjr 38:091e511ce8a0 6474
mjr 38:091e511ce8a0 6475 // likewise for the media controller
mjr 37:ed52738445fc 6476 if (mediaState.changed)
mjr 37:ed52738445fc 6477 {
mjr 38:091e511ce8a0 6478 // send a media report
mjr 37:ed52738445fc 6479 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6480 mediaState.changed = false;
mjr 37:ed52738445fc 6481 }
mjr 38:091e511ce8a0 6482
mjr 76:7f5912b6340e 6483 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6484 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6485
mjr 38:091e511ce8a0 6486 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6487 bool jsOK = false;
mjr 55:4db125cd11a0 6488
mjr 55:4db125cd11a0 6489 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6490 uint16_t statusFlags =
mjr 77:0b96f6867312 6491 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6492 | nightMode // 0x02
mjr 79:682ae3171a08 6493 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6494 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6495 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6496 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6497
mjr 50:40015764bbe6 6498 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6499 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6500 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6501 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 6502 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 6503 {
mjr 92:f264fbaa1be5 6504 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 6505 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 6506 // not, repeat the last sample.
mjr 92:f264fbaa1be5 6507 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 6508 {
mjr 92:f264fbaa1be5 6509 // read the accelerometer
mjr 92:f264fbaa1be5 6510 int xa, ya;
mjr 92:f264fbaa1be5 6511 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6512
mjr 92:f264fbaa1be5 6513 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 6514 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 6515 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 6516 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 6517 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 6518
mjr 92:f264fbaa1be5 6519 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 6520 x = xa;
mjr 92:f264fbaa1be5 6521 y = ya;
mjr 92:f264fbaa1be5 6522
mjr 92:f264fbaa1be5 6523 // reset the stutter counter
mjr 92:f264fbaa1be5 6524 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6525 }
mjr 17:ab3cec0c8bf4 6526
mjr 48:058ace2aed1d 6527 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6528 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6529 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6530 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6531 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6532 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6533 // regular plunger inputs.
mjr 92:f264fbaa1be5 6534 int zActual = plungerReader.getPosition();
mjr 92:f264fbaa1be5 6535 int zReported = (!cfg.plunger.enabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 6536
mjr 35:e959ffba78fd 6537 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6538 accelRotate(x, y);
mjr 35:e959ffba78fd 6539
mjr 35:e959ffba78fd 6540 // send the joystick report
mjr 92:f264fbaa1be5 6541 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6542
mjr 17:ab3cec0c8bf4 6543 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6544 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6545 }
mjr 21:5048e16cc9ef 6546
mjr 52:8298b2a73eb2 6547 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6548 if (reportPlungerStat)
mjr 10:976666ffa4ef 6549 {
mjr 17:ab3cec0c8bf4 6550 // send the report
mjr 53:9b2611964afc 6551 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6552
mjr 10:976666ffa4ef 6553 // we have satisfied this request
mjr 52:8298b2a73eb2 6554 reportPlungerStat = false;
mjr 10:976666ffa4ef 6555 }
mjr 10:976666ffa4ef 6556
mjr 35:e959ffba78fd 6557 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6558 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6559 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6560 {
mjr 55:4db125cd11a0 6561 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6562 jsReportTimer.reset();
mjr 38:091e511ce8a0 6563 }
mjr 38:091e511ce8a0 6564
mjr 38:091e511ce8a0 6565 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6566 if (jsOK)
mjr 38:091e511ce8a0 6567 {
mjr 38:091e511ce8a0 6568 jsOKTimer.reset();
mjr 38:091e511ce8a0 6569 jsOKTimer.start();
mjr 21:5048e16cc9ef 6570 }
mjr 21:5048e16cc9ef 6571
mjr 76:7f5912b6340e 6572 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6573 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6574
mjr 6:cc35eb643e8f 6575 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6576 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6577 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6578 #endif
mjr 6:cc35eb643e8f 6579
mjr 33:d832bcab089e 6580 // check for connection status changes
mjr 54:fd77a6b2f76c 6581 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6582 if (newConnected != connected)
mjr 33:d832bcab089e 6583 {
mjr 54:fd77a6b2f76c 6584 // give it a moment to stabilize
mjr 40:cc0d9814522b 6585 connectChangeTimer.start();
mjr 55:4db125cd11a0 6586 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6587 {
mjr 33:d832bcab089e 6588 // note the new status
mjr 33:d832bcab089e 6589 connected = newConnected;
mjr 40:cc0d9814522b 6590
mjr 40:cc0d9814522b 6591 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6592 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6593 connectChangeTimer.reset();
mjr 33:d832bcab089e 6594
mjr 54:fd77a6b2f76c 6595 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6596 if (!connected)
mjr 40:cc0d9814522b 6597 {
mjr 54:fd77a6b2f76c 6598 // turn off all outputs
mjr 33:d832bcab089e 6599 allOutputsOff();
mjr 40:cc0d9814522b 6600
mjr 40:cc0d9814522b 6601 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6602 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6603 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6604 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6605 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6606 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6607 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6608 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6609 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6610 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6611 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6612 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6613 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6614 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6615 // the power first comes on.
mjr 40:cc0d9814522b 6616 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6617 tlc5940->enable(false);
mjr 87:8d35c74403af 6618 if (tlc59116 != 0)
mjr 87:8d35c74403af 6619 tlc59116->enable(false);
mjr 40:cc0d9814522b 6620 if (hc595 != 0)
mjr 40:cc0d9814522b 6621 hc595->enable(false);
mjr 40:cc0d9814522b 6622 }
mjr 33:d832bcab089e 6623 }
mjr 33:d832bcab089e 6624 }
mjr 48:058ace2aed1d 6625
mjr 53:9b2611964afc 6626 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 6627 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 6628 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 6629 {
mjr 85:3c28aee81cde 6630 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 6631 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 6632 {
mjr 86:e30a1f60f783 6633 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 6634 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 6635 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 6636 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 6637 // status allows it.
mjr 86:e30a1f60f783 6638 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 6639 reboot(js);
mjr 82:4f6209cb5c33 6640 }
mjr 85:3c28aee81cde 6641 else
mjr 85:3c28aee81cde 6642 {
mjr 86:e30a1f60f783 6643 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 6644
mjr 86:e30a1f60f783 6645 // stop and reset the post-save timer
mjr 86:e30a1f60f783 6646 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 6647 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 6648
mjr 86:e30a1f60f783 6649 // clear the post-save success flag
mjr 86:e30a1f60f783 6650 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 6651 }
mjr 77:0b96f6867312 6652 }
mjr 86:e30a1f60f783 6653
mjr 48:058ace2aed1d 6654 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6655 if (!connected)
mjr 48:058ace2aed1d 6656 {
mjr 54:fd77a6b2f76c 6657 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6658 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6659 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6660
mjr 54:fd77a6b2f76c 6661 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6662 js.diagFlash();
mjr 54:fd77a6b2f76c 6663
mjr 54:fd77a6b2f76c 6664 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6665 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6666
mjr 51:57eb311faafa 6667 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6668 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6669 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6670
mjr 54:fd77a6b2f76c 6671 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6672 Timer diagTimer;
mjr 54:fd77a6b2f76c 6673 diagTimer.reset();
mjr 54:fd77a6b2f76c 6674 diagTimer.start();
mjr 74:822a92bc11d2 6675
mjr 74:822a92bc11d2 6676 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6677 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6678
mjr 54:fd77a6b2f76c 6679 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6680 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6681 {
mjr 54:fd77a6b2f76c 6682 // try to recover the connection
mjr 54:fd77a6b2f76c 6683 js.recoverConnection();
mjr 54:fd77a6b2f76c 6684
mjr 89:c43cd923401c 6685 // update Flipper Logic outputs
mjr 89:c43cd923401c 6686 LwFlipperLogicOut::poll();
mjr 89:c43cd923401c 6687
mjr 55:4db125cd11a0 6688 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6689 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6690 tlc5940->send();
mjr 87:8d35c74403af 6691
mjr 87:8d35c74403af 6692 // update TLC59116 outputs
mjr 87:8d35c74403af 6693 if (tlc59116 != 0)
mjr 87:8d35c74403af 6694 tlc59116->send();
mjr 55:4db125cd11a0 6695
mjr 54:fd77a6b2f76c 6696 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6697 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6698 {
mjr 54:fd77a6b2f76c 6699 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6700 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6701
mjr 54:fd77a6b2f76c 6702 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6703 js.diagFlash();
mjr 51:57eb311faafa 6704
mjr 51:57eb311faafa 6705 // reset the flash timer
mjr 54:fd77a6b2f76c 6706 diagTimer.reset();
mjr 51:57eb311faafa 6707 }
mjr 51:57eb311faafa 6708
mjr 77:0b96f6867312 6709 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6710 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6711 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6712 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6713 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6714 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 6715 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 6716 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 6717 // round and keep waiting.
mjr 51:57eb311faafa 6718 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6719 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6720 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6721 reboot(js, false, 0);
mjr 77:0b96f6867312 6722
mjr 77:0b96f6867312 6723 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6724 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6725 }
mjr 54:fd77a6b2f76c 6726
mjr 74:822a92bc11d2 6727 // resume the main loop timer
mjr 74:822a92bc11d2 6728 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6729
mjr 54:fd77a6b2f76c 6730 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6731 connected = true;
mjr 54:fd77a6b2f76c 6732 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6733
mjr 54:fd77a6b2f76c 6734 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6735 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6736 tlc5940->enable(true);
mjr 87:8d35c74403af 6737 if (tlc59116 != 0)
mjr 87:8d35c74403af 6738 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 6739 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6740 {
mjr 55:4db125cd11a0 6741 hc595->enable(true);
mjr 54:fd77a6b2f76c 6742 hc595->update(true);
mjr 51:57eb311faafa 6743 }
mjr 48:058ace2aed1d 6744 }
mjr 43:7a6364d82a41 6745
mjr 6:cc35eb643e8f 6746 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6747 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6748 {
mjr 54:fd77a6b2f76c 6749 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6750 {
mjr 39:b3815a1c3802 6751 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6752 //
mjr 54:fd77a6b2f76c 6753 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6754 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6755 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6756 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6757 hb = !hb;
mjr 38:091e511ce8a0 6758 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6759
mjr 54:fd77a6b2f76c 6760 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6761 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6762 // with the USB connection.
mjr 54:fd77a6b2f76c 6763 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6764 {
mjr 54:fd77a6b2f76c 6765 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6766 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6767 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 6768 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 6769 // power status allows it.
mjr 86:e30a1f60f783 6770 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6771 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6772 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6773 }
mjr 54:fd77a6b2f76c 6774 else
mjr 54:fd77a6b2f76c 6775 {
mjr 54:fd77a6b2f76c 6776 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6777 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6778 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6779 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6780 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6781 }
mjr 38:091e511ce8a0 6782 }
mjr 73:4e8ce0b18915 6783 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6784 {
mjr 73:4e8ce0b18915 6785 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6786 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6787 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6788 }
mjr 35:e959ffba78fd 6789 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6790 {
mjr 6:cc35eb643e8f 6791 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6792 hb = !hb;
mjr 38:091e511ce8a0 6793 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6794 }
mjr 6:cc35eb643e8f 6795 else
mjr 6:cc35eb643e8f 6796 {
mjr 6:cc35eb643e8f 6797 // connected - flash blue/green
mjr 2:c174f9ee414a 6798 hb = !hb;
mjr 38:091e511ce8a0 6799 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6800 }
mjr 1:d913e0afb2ac 6801
mjr 1:d913e0afb2ac 6802 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6803 hbTimer.reset();
mjr 5:a70c0bce770d 6804 ++hbcnt;
mjr 1:d913e0afb2ac 6805 }
mjr 74:822a92bc11d2 6806
mjr 74:822a92bc11d2 6807 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6808 IF_DIAG(
mjr 76:7f5912b6340e 6809 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6810 mainLoopIterCount++;
mjr 74:822a92bc11d2 6811 )
mjr 1:d913e0afb2ac 6812 }
mjr 0:5acbbe3f4cf4 6813 }