Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Fri Jan 27 23:47:15 2017 +0000
Revision:
74:822a92bc11d2
Parent:
73:4e8ce0b18915
Child:
75:677892300e7a
SBX/PBX extensions for multiple virtual LedWiz units on client; PWM GPIO update fixes; LedWiz pulse speed settings changed to match real LedWiz

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 143 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 144 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 145 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 146 //
mjr 35:e959ffba78fd 147 //
mjr 35:e959ffba78fd 148 //
mjr 33:d832bcab089e 149 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 150 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 151 //
mjr 48:058ace2aed1d 152 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 153 //
mjr 48:058ace2aed1d 154 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 155 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 156 // has been established)
mjr 48:058ace2aed1d 157 //
mjr 48:058ace2aed1d 158 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 159 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 160 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 161 //
mjr 38:091e511ce8a0 162 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 163 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 164 // transmissions are failing.
mjr 38:091e511ce8a0 165 //
mjr 73:4e8ce0b18915 166 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 167 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 168 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 169 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 170 // enabled.
mjr 73:4e8ce0b18915 171 //
mjr 6:cc35eb643e8f 172 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 173 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 174 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 175 // no plunger sensor configured.
mjr 6:cc35eb643e8f 176 //
mjr 38:091e511ce8a0 177 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 178 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 179 //
mjr 48:058ace2aed1d 180 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 181 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 182 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 183 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 184 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 185 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 186 //
mjr 48:058ace2aed1d 187 //
mjr 48:058ace2aed1d 188 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 189 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 190 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 191 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 192 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 193 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 194 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 195 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 196
mjr 33:d832bcab089e 197
mjr 0:5acbbe3f4cf4 198 #include "mbed.h"
mjr 6:cc35eb643e8f 199 #include "math.h"
mjr 74:822a92bc11d2 200 #include "diags.h"
mjr 48:058ace2aed1d 201 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 202 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 203 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 204 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 205 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 206 #include "crc32.h"
mjr 26:cb71c4af2912 207 #include "TLC5940.h"
mjr 34:6b981a2afab7 208 #include "74HC595.h"
mjr 35:e959ffba78fd 209 #include "nvm.h"
mjr 35:e959ffba78fd 210 #include "plunger.h"
mjr 35:e959ffba78fd 211 #include "ccdSensor.h"
mjr 35:e959ffba78fd 212 #include "potSensor.h"
mjr 35:e959ffba78fd 213 #include "nullSensor.h"
mjr 48:058ace2aed1d 214 #include "TinyDigitalIn.h"
mjr 74:822a92bc11d2 215
mjr 2:c174f9ee414a 216
mjr 21:5048e16cc9ef 217 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 218 #include "config.h"
mjr 17:ab3cec0c8bf4 219
mjr 53:9b2611964afc 220
mjr 53:9b2611964afc 221 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 222 //
mjr 53:9b2611964afc 223 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 224 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 225 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 226 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 227 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 228 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 229 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 230 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 231 // interface.
mjr 53:9b2611964afc 232 //
mjr 53:9b2611964afc 233 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 234 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 235 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 236 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 237 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 238 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 239 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 240 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 241 //
mjr 53:9b2611964afc 242 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 243 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 244 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 245 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 246 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 247 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 248 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 249 //
mjr 53:9b2611964afc 250 const char *getOpenSDAID()
mjr 53:9b2611964afc 251 {
mjr 53:9b2611964afc 252 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 253 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 254 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 255
mjr 53:9b2611964afc 256 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 257 }
mjr 53:9b2611964afc 258
mjr 53:9b2611964afc 259 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 260 //
mjr 53:9b2611964afc 261 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 262 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 263 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 264 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 265 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 266 // want from this.
mjr 53:9b2611964afc 267 //
mjr 53:9b2611964afc 268 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 269 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 270 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 271 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 272 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 273 // macros.
mjr 53:9b2611964afc 274 //
mjr 53:9b2611964afc 275 const char *getBuildID()
mjr 53:9b2611964afc 276 {
mjr 53:9b2611964afc 277 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 278 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 279 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 280
mjr 53:9b2611964afc 281 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 282 }
mjr 53:9b2611964afc 283
mjr 74:822a92bc11d2 284 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 285 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 286 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 74:822a92bc11d2 287 float mainLoopIterTime, mainLoopIterCount;
mjr 74:822a92bc11d2 288 float mainLoopMsgTime, mainLoopMsgCount;
mjr 53:9b2611964afc 289
mjr 48:058ace2aed1d 290 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 291 //
mjr 59:94eb9265b6d7 292 // Custom memory allocator. We use our own version of malloc() for more
mjr 59:94eb9265b6d7 293 // efficient memory usage, and to provide diagnostics if we run out of heap.
mjr 48:058ace2aed1d 294 //
mjr 59:94eb9265b6d7 295 // We can implement a more efficient malloc than the library can because we
mjr 59:94eb9265b6d7 296 // can make an assumption that the library can't: allocations are permanent.
mjr 59:94eb9265b6d7 297 // The normal malloc has to assume that allocations can be freed, so it has
mjr 59:94eb9265b6d7 298 // to track blocks individually. For the purposes of this program, though,
mjr 59:94eb9265b6d7 299 // we don't have to do this because virtually all of our allocations are
mjr 59:94eb9265b6d7 300 // de facto permanent. We only allocate dyanmic memory during setup, and
mjr 59:94eb9265b6d7 301 // once we set things up, we never delete anything. This means that we can
mjr 59:94eb9265b6d7 302 // allocate memory in bare blocks without any bookkeeping overhead.
mjr 59:94eb9265b6d7 303 //
mjr 59:94eb9265b6d7 304 // In addition, we can make a much larger overall pool of memory available
mjr 59:94eb9265b6d7 305 // in a custom allocator. The mbed library malloc() seems to have a pool
mjr 59:94eb9265b6d7 306 // of about 3K to work with, even though there's really about 9K of RAM
mjr 59:94eb9265b6d7 307 // left over after counting the static writable data and reserving space
mjr 59:94eb9265b6d7 308 // for a reasonable stack. I haven't looked at the mbed malloc to see why
mjr 59:94eb9265b6d7 309 // they're so stingy, but it appears from empirical testing that we can
mjr 59:94eb9265b6d7 310 // create a static array up to about 9K before things get crashy.
mjr 59:94eb9265b6d7 311
mjr 73:4e8ce0b18915 312 // Dynamic memory pool. We'll reserve space for all dynamic
mjr 73:4e8ce0b18915 313 // allocations by creating a simple C array of bytes. The size
mjr 73:4e8ce0b18915 314 // of this array is the maximum number of bytes we can allocate
mjr 73:4e8ce0b18915 315 // with malloc or operator 'new'.
mjr 73:4e8ce0b18915 316 //
mjr 73:4e8ce0b18915 317 // The maximum safe size for this array is, in essence, the
mjr 73:4e8ce0b18915 318 // amount of physical KL25Z RAM left over after accounting for
mjr 73:4e8ce0b18915 319 // static data throughout the rest of the program, the run-time
mjr 73:4e8ce0b18915 320 // stack, and any other space reserved for compiler or MCU
mjr 73:4e8ce0b18915 321 // overhead. Unfortunately, it's not straightforward to
mjr 73:4e8ce0b18915 322 // determine this analytically. The big complication is that
mjr 73:4e8ce0b18915 323 // the minimum stack size isn't easily predictable, as the stack
mjr 73:4e8ce0b18915 324 // grows according to what the program does. In addition, the
mjr 73:4e8ce0b18915 325 // mbed platform tools don't give us detailed data on the
mjr 73:4e8ce0b18915 326 // compiler/linker memory map. All we get is a generic total
mjr 73:4e8ce0b18915 327 // RAM requirement, which doesn't necessarily account for all
mjr 73:4e8ce0b18915 328 // overhead (e.g., gaps inserted to get proper alignment for
mjr 73:4e8ce0b18915 329 // particular memory blocks).
mjr 73:4e8ce0b18915 330 //
mjr 73:4e8ce0b18915 331 // A very rough estimate: the total RAM size reported by the
mjr 73:4e8ce0b18915 332 // linker is about 3.5K (currently - that can obviously change
mjr 73:4e8ce0b18915 333 // as the project evolves) out of 16K total. Assuming about a
mjr 73:4e8ce0b18915 334 // 3K stack, that leaves in the ballpark of 10K. Empirically,
mjr 73:4e8ce0b18915 335 // that seems pretty close. In testing, we start to see some
mjr 73:4e8ce0b18915 336 // instability at 10K, while 9K seems safe. To be conservative,
mjr 73:4e8ce0b18915 337 // we'll reduce this to 8K.
mjr 73:4e8ce0b18915 338 //
mjr 73:4e8ce0b18915 339 // Our measured total usage in the base configuration (22 GPIO
mjr 73:4e8ce0b18915 340 // output ports, TSL1410R plunger sensor) is about 4000 bytes.
mjr 73:4e8ce0b18915 341 // A pretty fully decked-out configuration (121 output ports,
mjr 73:4e8ce0b18915 342 // with 8 TLC5940 chips and 3 74HC595 chips, plus the TSL1412R
mjr 73:4e8ce0b18915 343 // sensor with the higher pixel count, and all expansion board
mjr 73:4e8ce0b18915 344 // features enabled) comes to about 6700 bytes. That leaves
mjr 73:4e8ce0b18915 345 // us with about 1.5K free out of our 8K, so we still have a
mjr 73:4e8ce0b18915 346 // little more headroom for future expansion.
mjr 73:4e8ce0b18915 347 //
mjr 73:4e8ce0b18915 348 // For comparison, the standard mbed malloc() runs out of
mjr 73:4e8ce0b18915 349 // memory at about 6K. That's what led to this custom malloc:
mjr 73:4e8ce0b18915 350 // we can just fit the base configuration into that 4K, but
mjr 73:4e8ce0b18915 351 // it's not enough space for more complex setups. There's
mjr 73:4e8ce0b18915 352 // still a little room for squeezing out unnecessary space
mjr 73:4e8ce0b18915 353 // from the mbed library code, but at this point I'd prefer
mjr 73:4e8ce0b18915 354 // to treat that as a last resort, since it would mean having
mjr 73:4e8ce0b18915 355 // to fork private copies of the libraries.
mjr 73:4e8ce0b18915 356 static const size_t XMALLOC_POOL_SIZE = 8*1024;
mjr 73:4e8ce0b18915 357 static char xmalloc_pool[XMALLOC_POOL_SIZE];
mjr 73:4e8ce0b18915 358 static char *xmalloc_nxt = xmalloc_pool;
mjr 73:4e8ce0b18915 359 static size_t xmalloc_rem = XMALLOC_POOL_SIZE;
mjr 73:4e8ce0b18915 360
mjr 48:058ace2aed1d 361 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 362 {
mjr 59:94eb9265b6d7 363 // align to a 4-byte increment
mjr 59:94eb9265b6d7 364 siz = (siz + 3) & ~3;
mjr 59:94eb9265b6d7 365
mjr 59:94eb9265b6d7 366 // If insufficient memory is available, halt and show a fast red/purple
mjr 59:94eb9265b6d7 367 // diagnostic flash. We don't want to return, since we assume throughout
mjr 59:94eb9265b6d7 368 // the program that all memory allocations must succeed. Note that this
mjr 59:94eb9265b6d7 369 // is generally considered bad programming practice in applications on
mjr 59:94eb9265b6d7 370 // "real" computers, but for the purposes of this microcontroller app,
mjr 59:94eb9265b6d7 371 // there's no point in checking for failed allocations individually
mjr 59:94eb9265b6d7 372 // because there's no way to recover from them. It's better in this
mjr 59:94eb9265b6d7 373 // context to handle failed allocations as fatal errors centrally. We
mjr 59:94eb9265b6d7 374 // can't recover from these automatically, so we have to resort to user
mjr 59:94eb9265b6d7 375 // intervention, which we signal with the diagnostic LED flashes.
mjr 73:4e8ce0b18915 376 if (siz > xmalloc_rem)
mjr 59:94eb9265b6d7 377 {
mjr 59:94eb9265b6d7 378 // halt with the diagnostic display (by looping forever)
mjr 59:94eb9265b6d7 379 for (;;)
mjr 59:94eb9265b6d7 380 {
mjr 59:94eb9265b6d7 381 diagLED(1, 0, 0);
mjr 59:94eb9265b6d7 382 wait_us(200000);
mjr 59:94eb9265b6d7 383 diagLED(1, 0, 1);
mjr 59:94eb9265b6d7 384 wait_us(200000);
mjr 59:94eb9265b6d7 385 }
mjr 59:94eb9265b6d7 386 }
mjr 48:058ace2aed1d 387
mjr 59:94eb9265b6d7 388 // get the next free location from the pool to return
mjr 73:4e8ce0b18915 389 char *ret = xmalloc_nxt;
mjr 59:94eb9265b6d7 390
mjr 59:94eb9265b6d7 391 // advance the pool pointer and decrement the remaining size counter
mjr 73:4e8ce0b18915 392 xmalloc_nxt += siz;
mjr 73:4e8ce0b18915 393 xmalloc_rem -= siz;
mjr 59:94eb9265b6d7 394
mjr 59:94eb9265b6d7 395 // return the allocated block
mjr 59:94eb9265b6d7 396 return ret;
mjr 73:4e8ce0b18915 397 };
mjr 73:4e8ce0b18915 398
mjr 73:4e8ce0b18915 399 // our malloc() replacement
mjr 48:058ace2aed1d 400
mjr 59:94eb9265b6d7 401 // Overload operator new to call our custom malloc. This ensures that
mjr 59:94eb9265b6d7 402 // all 'new' allocations throughout the program (including library code)
mjr 59:94eb9265b6d7 403 // go through our private allocator.
mjr 48:058ace2aed1d 404 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 405 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 406
mjr 59:94eb9265b6d7 407 // Since we don't do bookkeeping to track released memory, 'delete' does
mjr 59:94eb9265b6d7 408 // nothing. In actual testing, this routine appears to never be called.
mjr 59:94eb9265b6d7 409 // If it *is* ever called, it will simply leave the block in place, which
mjr 59:94eb9265b6d7 410 // will make it unavailable for re-use but will otherwise be harmless.
mjr 59:94eb9265b6d7 411 void operator delete(void *ptr) { }
mjr 59:94eb9265b6d7 412
mjr 59:94eb9265b6d7 413
mjr 5:a70c0bce770d 414 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 415 //
mjr 38:091e511ce8a0 416 // Forward declarations
mjr 38:091e511ce8a0 417 //
mjr 38:091e511ce8a0 418 void setNightMode(bool on);
mjr 38:091e511ce8a0 419 void toggleNightMode();
mjr 38:091e511ce8a0 420
mjr 38:091e511ce8a0 421 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 422 // utilities
mjr 17:ab3cec0c8bf4 423
mjr 26:cb71c4af2912 424 // floating point square of a number
mjr 26:cb71c4af2912 425 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 426
mjr 26:cb71c4af2912 427 // floating point rounding
mjr 26:cb71c4af2912 428 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 429
mjr 17:ab3cec0c8bf4 430
mjr 33:d832bcab089e 431 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 432 //
mjr 40:cc0d9814522b 433 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 434 // the running state.
mjr 40:cc0d9814522b 435 //
mjr 40:cc0d9814522b 436 class Timer2: public Timer
mjr 40:cc0d9814522b 437 {
mjr 40:cc0d9814522b 438 public:
mjr 40:cc0d9814522b 439 Timer2() : running(false) { }
mjr 40:cc0d9814522b 440
mjr 40:cc0d9814522b 441 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 442 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 443
mjr 40:cc0d9814522b 444 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 445
mjr 40:cc0d9814522b 446 private:
mjr 40:cc0d9814522b 447 bool running;
mjr 40:cc0d9814522b 448 };
mjr 40:cc0d9814522b 449
mjr 53:9b2611964afc 450
mjr 53:9b2611964afc 451 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Reboot timer. When we have a deferred reboot operation pending, we
mjr 53:9b2611964afc 454 // set the target time and start the timer.
mjr 53:9b2611964afc 455 Timer2 rebootTimer;
mjr 53:9b2611964afc 456 long rebootTime_us;
mjr 53:9b2611964afc 457
mjr 40:cc0d9814522b 458 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 459 //
mjr 33:d832bcab089e 460 // USB product version number
mjr 5:a70c0bce770d 461 //
mjr 47:df7a88cd249c 462 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 463
mjr 33:d832bcab089e 464 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 465 //
mjr 6:cc35eb643e8f 466 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 467 //
mjr 6:cc35eb643e8f 468 #define JOYMAX 4096
mjr 6:cc35eb643e8f 469
mjr 9:fd65b0a94720 470
mjr 17:ab3cec0c8bf4 471 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 472 //
mjr 40:cc0d9814522b 473 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 474 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 475 //
mjr 35:e959ffba78fd 476
mjr 35:e959ffba78fd 477 // unsigned 16-bit integer
mjr 35:e959ffba78fd 478 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 479 {
mjr 35:e959ffba78fd 480 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 481 }
mjr 40:cc0d9814522b 482 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 483 {
mjr 40:cc0d9814522b 484 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 485 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 486 }
mjr 35:e959ffba78fd 487
mjr 35:e959ffba78fd 488 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 489 {
mjr 35:e959ffba78fd 490 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 491 }
mjr 40:cc0d9814522b 492 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 493 {
mjr 40:cc0d9814522b 494 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 495 }
mjr 35:e959ffba78fd 496
mjr 35:e959ffba78fd 497 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 498 {
mjr 35:e959ffba78fd 499 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 500 }
mjr 40:cc0d9814522b 501 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 502 {
mjr 40:cc0d9814522b 503 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 504 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 505 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 506 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 507 }
mjr 35:e959ffba78fd 508
mjr 35:e959ffba78fd 509 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 510 {
mjr 35:e959ffba78fd 511 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 512 }
mjr 35:e959ffba78fd 513
mjr 53:9b2611964afc 514 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 515 //
mjr 53:9b2611964afc 516 // The internal mbed PinName format is
mjr 53:9b2611964afc 517 //
mjr 53:9b2611964afc 518 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 519 //
mjr 53:9b2611964afc 520 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 521 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 522 //
mjr 53:9b2611964afc 523 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 524 // pin name fits in 8 bits:
mjr 53:9b2611964afc 525 //
mjr 53:9b2611964afc 526 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 527 //
mjr 53:9b2611964afc 528 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 529 //
mjr 53:9b2611964afc 530 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 531 //
mjr 53:9b2611964afc 532 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 533 {
mjr 53:9b2611964afc 534 if (c == 0xFF)
mjr 53:9b2611964afc 535 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 536 else
mjr 53:9b2611964afc 537 return PinName(
mjr 53:9b2611964afc 538 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 539 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 540 }
mjr 40:cc0d9814522b 541 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 542 {
mjr 53:9b2611964afc 543 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 544 }
mjr 35:e959ffba78fd 545
mjr 35:e959ffba78fd 546
mjr 35:e959ffba78fd 547 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 548 //
mjr 38:091e511ce8a0 549 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 550 //
mjr 38:091e511ce8a0 551 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 552 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 553 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 554 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 555 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 556 // SPI capability.
mjr 38:091e511ce8a0 557 //
mjr 38:091e511ce8a0 558 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 559
mjr 73:4e8ce0b18915 560 // Power on timer state for diagnostics. We flash the blue LED when
mjr 73:4e8ce0b18915 561 // nothing else is going on. State 0-1 = off, 2-3 = on
mjr 73:4e8ce0b18915 562 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 563
mjr 38:091e511ce8a0 564 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 565 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 566 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 567 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 568 {
mjr 73:4e8ce0b18915 569 // remember the new state
mjr 73:4e8ce0b18915 570 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 571
mjr 73:4e8ce0b18915 572 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 573 // applying it to the blue LED
mjr 73:4e8ce0b18915 574 if (diagLEDState == 0)
mjr 73:4e8ce0b18915 575 b = (powerTimerDiagState >= 2);
mjr 73:4e8ce0b18915 576
mjr 73:4e8ce0b18915 577 // set the new state
mjr 38:091e511ce8a0 578 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 579 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 580 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 581 }
mjr 38:091e511ce8a0 582
mjr 73:4e8ce0b18915 583 // update the LEDs with the current state
mjr 73:4e8ce0b18915 584 void diagLED(void)
mjr 73:4e8ce0b18915 585 {
mjr 73:4e8ce0b18915 586 diagLED(
mjr 73:4e8ce0b18915 587 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 588 (diagLEDState >> 1) & 0x01,
mjr 73:4e8ce0b18915 589 (diagLEDState >> 1) & 0x02);
mjr 73:4e8ce0b18915 590 }
mjr 73:4e8ce0b18915 591
mjr 38:091e511ce8a0 592 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 593 // an on-board LED segment
mjr 38:091e511ce8a0 594 struct LedSeg
mjr 38:091e511ce8a0 595 {
mjr 38:091e511ce8a0 596 bool r, g, b;
mjr 38:091e511ce8a0 597 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 598
mjr 38:091e511ce8a0 599 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 600 {
mjr 38:091e511ce8a0 601 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 602 // our on-board LED segments
mjr 38:091e511ce8a0 603 int t = pc.typ;
mjr 38:091e511ce8a0 604 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 605 {
mjr 38:091e511ce8a0 606 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 607 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 608 if (pin == LED1)
mjr 38:091e511ce8a0 609 r = true;
mjr 38:091e511ce8a0 610 else if (pin == LED2)
mjr 38:091e511ce8a0 611 g = true;
mjr 38:091e511ce8a0 612 else if (pin == LED3)
mjr 38:091e511ce8a0 613 b = true;
mjr 38:091e511ce8a0 614 }
mjr 38:091e511ce8a0 615 }
mjr 38:091e511ce8a0 616 };
mjr 38:091e511ce8a0 617
mjr 38:091e511ce8a0 618 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 619 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 620 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 621 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 622 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 623 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 624 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 625 {
mjr 38:091e511ce8a0 626 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 627 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 628 LedSeg l;
mjr 38:091e511ce8a0 629 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 630 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 631
mjr 38:091e511ce8a0 632 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 633 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 634 // LedWiz use.
mjr 38:091e511ce8a0 635 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 636 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 637 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 638 }
mjr 38:091e511ce8a0 639
mjr 38:091e511ce8a0 640
mjr 38:091e511ce8a0 641 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 642 //
mjr 29:582472d0bc57 643 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 644 //
mjr 26:cb71c4af2912 645 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 646 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 647 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 648 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 649 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 650 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 651 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 652 // other if both features are to be used.
mjr 26:cb71c4af2912 653 //
mjr 26:cb71c4af2912 654 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 655 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 656 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 657 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 658 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 659 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 660 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 661 //
mjr 5:a70c0bce770d 662
mjr 29:582472d0bc57 663
mjr 26:cb71c4af2912 664 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 665 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 666 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 667 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 668 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 669
mjr 26:cb71c4af2912 670 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 671 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 672 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 673 class LwOut
mjr 6:cc35eb643e8f 674 {
mjr 6:cc35eb643e8f 675 public:
mjr 40:cc0d9814522b 676 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 677 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 678 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 679 };
mjr 26:cb71c4af2912 680
mjr 35:e959ffba78fd 681 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 682 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 683 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 684 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 685 // numbering.
mjr 35:e959ffba78fd 686 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 687 {
mjr 33:d832bcab089e 688 public:
mjr 35:e959ffba78fd 689 LwVirtualOut() { }
mjr 40:cc0d9814522b 690 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 691 };
mjr 26:cb71c4af2912 692
mjr 34:6b981a2afab7 693 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 694 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 695 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 696 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 697 {
mjr 34:6b981a2afab7 698 public:
mjr 34:6b981a2afab7 699 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 700 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 701
mjr 34:6b981a2afab7 702 private:
mjr 53:9b2611964afc 703 // underlying physical output
mjr 34:6b981a2afab7 704 LwOut *out;
mjr 34:6b981a2afab7 705 };
mjr 34:6b981a2afab7 706
mjr 53:9b2611964afc 707 // Global ZB Launch Ball state
mjr 53:9b2611964afc 708 bool zbLaunchOn = false;
mjr 53:9b2611964afc 709
mjr 53:9b2611964afc 710 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 711 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 712 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 713 {
mjr 53:9b2611964afc 714 public:
mjr 53:9b2611964afc 715 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 716 virtual void set(uint8_t val)
mjr 53:9b2611964afc 717 {
mjr 53:9b2611964afc 718 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 719 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 720
mjr 53:9b2611964afc 721 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 722 out->set(val);
mjr 53:9b2611964afc 723 }
mjr 53:9b2611964afc 724
mjr 53:9b2611964afc 725 private:
mjr 53:9b2611964afc 726 // underlying physical or virtual output
mjr 53:9b2611964afc 727 LwOut *out;
mjr 53:9b2611964afc 728 };
mjr 53:9b2611964afc 729
mjr 53:9b2611964afc 730
mjr 40:cc0d9814522b 731 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 732 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 733 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 734 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 735 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 736 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 737 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 738 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 739 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 740 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 741 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 742 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 743 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 744 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 745 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 746 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 747 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 748 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 749 };
mjr 40:cc0d9814522b 750
mjr 40:cc0d9814522b 751 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 752 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 753 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 754 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 755 {
mjr 40:cc0d9814522b 756 public:
mjr 40:cc0d9814522b 757 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 758 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 759
mjr 40:cc0d9814522b 760 private:
mjr 40:cc0d9814522b 761 LwOut *out;
mjr 40:cc0d9814522b 762 };
mjr 40:cc0d9814522b 763
mjr 53:9b2611964afc 764 // global night mode flag
mjr 53:9b2611964afc 765 static bool nightMode = false;
mjr 53:9b2611964afc 766
mjr 40:cc0d9814522b 767 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 768 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 769 // mode is engaged.
mjr 40:cc0d9814522b 770 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 771 {
mjr 40:cc0d9814522b 772 public:
mjr 40:cc0d9814522b 773 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 774 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 775
mjr 53:9b2611964afc 776 private:
mjr 53:9b2611964afc 777 LwOut *out;
mjr 53:9b2611964afc 778 };
mjr 53:9b2611964afc 779
mjr 53:9b2611964afc 780 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 781 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 782 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 783 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 784 {
mjr 53:9b2611964afc 785 public:
mjr 53:9b2611964afc 786 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 787 virtual void set(uint8_t)
mjr 53:9b2611964afc 788 {
mjr 53:9b2611964afc 789 // ignore the host value and simply show the current
mjr 53:9b2611964afc 790 // night mode setting
mjr 53:9b2611964afc 791 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 792 }
mjr 40:cc0d9814522b 793
mjr 40:cc0d9814522b 794 private:
mjr 40:cc0d9814522b 795 LwOut *out;
mjr 40:cc0d9814522b 796 };
mjr 40:cc0d9814522b 797
mjr 26:cb71c4af2912 798
mjr 35:e959ffba78fd 799 //
mjr 35:e959ffba78fd 800 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 801 // assignments set in config.h.
mjr 33:d832bcab089e 802 //
mjr 35:e959ffba78fd 803 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 804 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 805 {
mjr 35:e959ffba78fd 806 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 807 {
mjr 53:9b2611964afc 808 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 809 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 810 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 811 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 812 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 813 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 814 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 815 }
mjr 35:e959ffba78fd 816 }
mjr 26:cb71c4af2912 817
mjr 40:cc0d9814522b 818 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 819 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 820 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 821 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 822 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 823 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 824 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 825 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 826 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 827 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 828 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 829 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 830 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 831 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 832 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 833 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 834 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 835 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 836 };
mjr 40:cc0d9814522b 837
mjr 40:cc0d9814522b 838 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 839 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 840 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 841 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 842 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 843 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 844 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 845 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 846 // are always 8 bits.
mjr 40:cc0d9814522b 847 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 848 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 849 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 850 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 851 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 852 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 853 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 854 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 855 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 856 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 857 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 858 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 859 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 860 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 861 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 862 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 863 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 864 };
mjr 40:cc0d9814522b 865
mjr 26:cb71c4af2912 866 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 867 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 868 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 869 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 870 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 871 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 872 {
mjr 26:cb71c4af2912 873 public:
mjr 60:f38da020aa13 874 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 875 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 876 {
mjr 26:cb71c4af2912 877 if (val != prv)
mjr 40:cc0d9814522b 878 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 879 }
mjr 60:f38da020aa13 880 uint8_t idx;
mjr 40:cc0d9814522b 881 uint8_t prv;
mjr 26:cb71c4af2912 882 };
mjr 26:cb71c4af2912 883
mjr 40:cc0d9814522b 884 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 885 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 886 {
mjr 40:cc0d9814522b 887 public:
mjr 60:f38da020aa13 888 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 889 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 890 {
mjr 40:cc0d9814522b 891 if (val != prv)
mjr 40:cc0d9814522b 892 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 893 }
mjr 60:f38da020aa13 894 uint8_t idx;
mjr 40:cc0d9814522b 895 uint8_t prv;
mjr 40:cc0d9814522b 896 };
mjr 40:cc0d9814522b 897
mjr 40:cc0d9814522b 898
mjr 33:d832bcab089e 899
mjr 34:6b981a2afab7 900 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 901 // config.h.
mjr 35:e959ffba78fd 902 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 903
mjr 35:e959ffba78fd 904 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 905 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 906 {
mjr 35:e959ffba78fd 907 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 908 {
mjr 53:9b2611964afc 909 hc595 = new HC595(
mjr 53:9b2611964afc 910 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 911 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 912 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 913 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 914 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 915 hc595->init();
mjr 35:e959ffba78fd 916 hc595->update();
mjr 35:e959ffba78fd 917 }
mjr 35:e959ffba78fd 918 }
mjr 34:6b981a2afab7 919
mjr 34:6b981a2afab7 920 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 921 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 922 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 923 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 924 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 925 class Lw595Out: public LwOut
mjr 33:d832bcab089e 926 {
mjr 33:d832bcab089e 927 public:
mjr 60:f38da020aa13 928 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 929 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 930 {
mjr 34:6b981a2afab7 931 if (val != prv)
mjr 40:cc0d9814522b 932 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 933 }
mjr 60:f38da020aa13 934 uint8_t idx;
mjr 40:cc0d9814522b 935 uint8_t prv;
mjr 33:d832bcab089e 936 };
mjr 33:d832bcab089e 937
mjr 26:cb71c4af2912 938
mjr 40:cc0d9814522b 939
mjr 64:ef7ca92dff36 940 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 941 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 942 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 943 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 944 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 945 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 946 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 947 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 948 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 949 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 950 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 951 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 952 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 953 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 954 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 955 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 956 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 957 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 958 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 959 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 960 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 961 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 962 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 963 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 964 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 965 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 966 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 967 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 968 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 969 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 970 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 971 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 972 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 973 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 974 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 975 };
mjr 26:cb71c4af2912 976
mjr 64:ef7ca92dff36 977
mjr 64:ef7ca92dff36 978 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 979 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 980 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 981 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 982 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 983 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 984 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 985 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 986 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 987 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 988 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 989 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 990 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 991 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 992 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 993 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 994 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 995 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 996 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 997 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 998 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 999 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1000 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1001 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1002 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1003 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1004 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1005 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1006 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1007 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1008 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1009 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1010 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1011 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1012 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1013 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1014 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1015 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1016 };
mjr 64:ef7ca92dff36 1017
mjr 74:822a92bc11d2 1018 // MyPwmOut - a slight customization of the base mbed PwmOut class. The
mjr 74:822a92bc11d2 1019 // mbed version of PwmOut.write() resets the PWM cycle counter on every
mjr 74:822a92bc11d2 1020 // update. That's problematic, because the counter reset interrupts the
mjr 74:822a92bc11d2 1021 // cycle in progress, causing a momentary drop in brightness that's visible
mjr 74:822a92bc11d2 1022 // to the eye if the output is connected to an LED or other light source.
mjr 74:822a92bc11d2 1023 // This is especially noticeable when making gradual changes consisting of
mjr 74:822a92bc11d2 1024 // many updates in a short time, such as a slow fade, because the light
mjr 74:822a92bc11d2 1025 // visibly flickers on every step of the transition. This customized
mjr 74:822a92bc11d2 1026 // version removes the cycle reset, which makes for glitch-free updates
mjr 74:822a92bc11d2 1027 // and nice smooth fades.
mjr 74:822a92bc11d2 1028 //
mjr 74:822a92bc11d2 1029 // Initially, I thought the counter reset in the mbed code was simply a
mjr 74:822a92bc11d2 1030 // bug. According to the KL25Z hardware reference, you update the duty
mjr 74:822a92bc11d2 1031 // cycle by writing to the "compare values" (CvN) register. There's no
mjr 74:822a92bc11d2 1032 // hint that you should reset the cycle counter, and indeed, the hardware
mjr 74:822a92bc11d2 1033 // goes out of its way to allow updates mid-cycle (as we'll see shortly).
mjr 74:822a92bc11d2 1034 // They went to lengths specifically so that you *don't* have to reset
mjr 74:822a92bc11d2 1035 // that counter. And there's no comment in the mbed code explaining the
mjr 74:822a92bc11d2 1036 // cycle reset, so it looked to me like something that must have been
mjr 74:822a92bc11d2 1037 // added by someone who didn't read the manual carefully enough and didn't
mjr 74:822a92bc11d2 1038 // test the result thoroughly enough to find the glitch it causes.
mjr 74:822a92bc11d2 1039 //
mjr 74:822a92bc11d2 1040 // After some experimentation, though, I've come to think the code was
mjr 74:822a92bc11d2 1041 // added intentionally, as a workaround for a rather nasty KL25Z hardware
mjr 74:822a92bc11d2 1042 // bug. Whoever wrote the code didn't add any comments explaning why it's
mjr 74:822a92bc11d2 1043 // there, so we can't know for sure, but it does happen to work around the
mjr 74:822a92bc11d2 1044 // bug, so it's a good bet the original programmer found the same hardware
mjr 74:822a92bc11d2 1045 // problem and came up with the counter reset as an imperfect solution.
mjr 74:822a92bc11d2 1046 //
mjr 74:822a92bc11d2 1047 // We'll get to the KL25Z hardware bug shortly, but first we need to look at
mjr 74:822a92bc11d2 1048 // how the hardware is *supposed* to work. The KL25Z is *supposed* to make
mjr 74:822a92bc11d2 1049 // it super easy for software to do glitch-free updates of the duty cycle of
mjr 74:822a92bc11d2 1050 // a PWM channel. With PWM hardware in general, you have to be careful to
mjr 74:822a92bc11d2 1051 // update the duty cycle counter between grayscale cycles, beacuse otherwise
mjr 74:822a92bc11d2 1052 // you might interrupt the cycle in progress and cause a brightness glitch.
mjr 74:822a92bc11d2 1053 // The KL25Z TPM simplifies this with a "staging" register for the duty
mjr 74:822a92bc11d2 1054 // cycle counter. At the end of each cycle, the TPM moves the value from
mjr 74:822a92bc11d2 1055 // the staging register into its internal register that actually controls
mjr 74:822a92bc11d2 1056 // the duty cycle. The idea is that the software can write a new value to
mjr 74:822a92bc11d2 1057 // the staging register at any time, and the hardware will take care of
mjr 74:822a92bc11d2 1058 // synchronizing the actual internal update with the grayscale cycle. In
mjr 74:822a92bc11d2 1059 // principle, this frees the software of any special timing considerations
mjr 74:822a92bc11d2 1060 // for PWM updates.
mjr 74:822a92bc11d2 1061 //
mjr 74:822a92bc11d2 1062 // Now for the bug. The staging register works as advertised, except for
mjr 74:822a92bc11d2 1063 // one little detail: it seems to be implemented as a one-element queue
mjr 74:822a92bc11d2 1064 // that won't accept a new write until the existing value has been read.
mjr 74:822a92bc11d2 1065 // The read only happens at the start of the new cycle. So the effect is
mjr 74:822a92bc11d2 1066 // that we can only write one update per cycle. Any writes after the first
mjr 74:822a92bc11d2 1067 // are simply dropped, lost forever. That causes even worse problems than
mjr 74:822a92bc11d2 1068 // the original glitch. For example, if we're doing a fade-out, the last
mjr 74:822a92bc11d2 1069 // couple of updates in the fade might get lost, leaving the output slightly
mjr 74:822a92bc11d2 1070 // on at the end, when it's supposed to be completely off.
mjr 74:822a92bc11d2 1071 //
mjr 74:822a92bc11d2 1072 // The mbed workaround of resetting the cycle counter fixes the lost-update
mjr 74:822a92bc11d2 1073 // problem, but it causes the constant glitching during fades. So we need
mjr 74:822a92bc11d2 1074 // a third way that works around the hardware problem without causing
mjr 74:822a92bc11d2 1075 // update glitches.
mjr 74:822a92bc11d2 1076 //
mjr 74:822a92bc11d2 1077 // Here's my solution: we basically implement our own staging register,
mjr 74:822a92bc11d2 1078 // using the same principle as the hardware staging register, but hopefully
mjr 74:822a92bc11d2 1079 // with an implementation that actually works! First, when we update a PWM
mjr 74:822a92bc11d2 1080 // output, we won't actually write the value to the hardware register.
mjr 74:822a92bc11d2 1081 // Instead, we'll just stash it internally, effectively in our own staging
mjr 74:822a92bc11d2 1082 // register (but actually just a member variable of this object). Then
mjr 74:822a92bc11d2 1083 // we'll periodically transfer these staged updates to the actual hardware
mjr 74:822a92bc11d2 1084 // registers, being careful to do this no more than once per PWM cycle.
mjr 74:822a92bc11d2 1085 // One way to do this would be to use an interrupt handler that fires at
mjr 74:822a92bc11d2 1086 // the end of the PWM cycle, but that would be fairly complex because we
mjr 74:822a92bc11d2 1087 // have many (up to 10) PWM channels. Instead, we'll just use polling:
mjr 74:822a92bc11d2 1088 // we'll call a routine periodically in our main loop, and we'll transfer
mjr 74:822a92bc11d2 1089 // updates for all of the channels that have been updated since the last
mjr 74:822a92bc11d2 1090 // pass. We can get away with this simple polling approach because the
mjr 74:822a92bc11d2 1091 // hardware design *partially* works: it does manage to free us from the
mjr 74:822a92bc11d2 1092 // need to synchronize updates with the exact end of a PWM cycle. As long
mjr 74:822a92bc11d2 1093 // as we do no more than one write per cycle, we're golden. That's easy
mjr 74:822a92bc11d2 1094 // to accomplish, too: all we need to do is make sure that our polling
mjr 74:822a92bc11d2 1095 // interval is slightly longer than the PWM period. That ensures that
mjr 74:822a92bc11d2 1096 // we can never have two updates during one PWM cycle. It does mean that
mjr 74:822a92bc11d2 1097 // we might have zero updates on some cycles, causing a one-cycle delay
mjr 74:822a92bc11d2 1098 // before an update is actually put into effect, but that shouldn't ever
mjr 74:822a92bc11d2 1099 // be noticeable since the cycles are so short. Specifically, we'll use
mjr 74:822a92bc11d2 1100 // the mbed default 20ms PWM period, and we'll do our update polling
mjr 74:822a92bc11d2 1101 // every 25ms.
mjr 74:822a92bc11d2 1102 class LessGlitchyPwmOut: public PwmOut
mjr 74:822a92bc11d2 1103 {
mjr 74:822a92bc11d2 1104 public:
mjr 74:822a92bc11d2 1105 LessGlitchyPwmOut(PinName pin) : PwmOut(pin) { }
mjr 74:822a92bc11d2 1106
mjr 74:822a92bc11d2 1107 void write(float value)
mjr 74:822a92bc11d2 1108 {
mjr 74:822a92bc11d2 1109 // Update the counter without resetting the counter.
mjr 74:822a92bc11d2 1110 //
mjr 74:822a92bc11d2 1111 // NB: this causes problems if there are multiple writes in one
mjr 74:822a92bc11d2 1112 // PWM cycle: the first write will be applied and later writes
mjr 74:822a92bc11d2 1113 // during the same cycle will be lost. Callers must take care
mjr 74:822a92bc11d2 1114 // to limit writes to one per cycle.
mjr 74:822a92bc11d2 1115 *_pwm.CnV = uint32_t((*_pwm.MOD + 1) * value);
mjr 74:822a92bc11d2 1116 }
mjr 74:822a92bc11d2 1117 };
mjr 74:822a92bc11d2 1118
mjr 74:822a92bc11d2 1119
mjr 74:822a92bc11d2 1120 // Collection of PwmOut objects to update on each polling cycle. The
mjr 74:822a92bc11d2 1121 // KL25Z has 10 physical PWM channels, so we need at most 10 polled outputs.
mjr 74:822a92bc11d2 1122 static int numPolledPwm;
mjr 74:822a92bc11d2 1123 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1124
mjr 74:822a92bc11d2 1125 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1126 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1127 {
mjr 6:cc35eb643e8f 1128 public:
mjr 43:7a6364d82a41 1129 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1130 {
mjr 74:822a92bc11d2 1131 // set the cycle time to 20ms
mjr 74:822a92bc11d2 1132 p.period_ms(20);
mjr 74:822a92bc11d2 1133
mjr 74:822a92bc11d2 1134 // add myself to the list of polled outputs for periodic updates
mjr 74:822a92bc11d2 1135 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1136 polledPwm[numPolledPwm++] = this;
mjr 74:822a92bc11d2 1137
mjr 74:822a92bc11d2 1138 // set the initial value, and an explicitly different previous value
mjr 74:822a92bc11d2 1139 prv = ~initVal;
mjr 43:7a6364d82a41 1140 set(initVal);
mjr 43:7a6364d82a41 1141 }
mjr 74:822a92bc11d2 1142
mjr 40:cc0d9814522b 1143 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1144 {
mjr 74:822a92bc11d2 1145 // on set, just save the value for a later 'commit'
mjr 74:822a92bc11d2 1146 this->val = val;
mjr 13:72dda449c3c0 1147 }
mjr 74:822a92bc11d2 1148
mjr 74:822a92bc11d2 1149 // handle periodic update polling
mjr 74:822a92bc11d2 1150 void poll()
mjr 74:822a92bc11d2 1151 {
mjr 74:822a92bc11d2 1152 // if the value has changed, commit it
mjr 74:822a92bc11d2 1153 if (val != prv)
mjr 74:822a92bc11d2 1154 {
mjr 74:822a92bc11d2 1155 prv = val;
mjr 74:822a92bc11d2 1156 commit(val);
mjr 74:822a92bc11d2 1157 }
mjr 74:822a92bc11d2 1158 }
mjr 74:822a92bc11d2 1159
mjr 74:822a92bc11d2 1160 protected:
mjr 74:822a92bc11d2 1161 virtual void commit(uint8_t v)
mjr 74:822a92bc11d2 1162 {
mjr 74:822a92bc11d2 1163 // write the current value to the PWM controller if it's changed
mjr 74:822a92bc11d2 1164 p.write(dof_to_pwm[v]);
mjr 74:822a92bc11d2 1165 }
mjr 74:822a92bc11d2 1166
mjr 74:822a92bc11d2 1167 LessGlitchyPwmOut p;
mjr 74:822a92bc11d2 1168 uint8_t val, prv;
mjr 6:cc35eb643e8f 1169 };
mjr 26:cb71c4af2912 1170
mjr 74:822a92bc11d2 1171 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1172 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1173 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1174 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1175 {
mjr 64:ef7ca92dff36 1176 public:
mjr 64:ef7ca92dff36 1177 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1178 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1179 {
mjr 64:ef7ca92dff36 1180 }
mjr 74:822a92bc11d2 1181
mjr 74:822a92bc11d2 1182 protected:
mjr 74:822a92bc11d2 1183 virtual void commit(uint8_t v)
mjr 64:ef7ca92dff36 1184 {
mjr 74:822a92bc11d2 1185 // write the current value to the PWM controller if it's changed
mjr 74:822a92bc11d2 1186 p.write(dof_to_gamma_pwm[v]);
mjr 64:ef7ca92dff36 1187 }
mjr 64:ef7ca92dff36 1188 };
mjr 64:ef7ca92dff36 1189
mjr 74:822a92bc11d2 1190 // poll the PWM outputs
mjr 74:822a92bc11d2 1191 Timer polledPwmTimer;
mjr 74:822a92bc11d2 1192 float polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1193 void pollPwmUpdates()
mjr 74:822a92bc11d2 1194 {
mjr 74:822a92bc11d2 1195 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1196 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1197 {
mjr 74:822a92bc11d2 1198 // time the run for statistics collection
mjr 74:822a92bc11d2 1199 IF_DIAG(
mjr 74:822a92bc11d2 1200 Timer t;
mjr 74:822a92bc11d2 1201 t.start();
mjr 74:822a92bc11d2 1202 )
mjr 74:822a92bc11d2 1203
mjr 74:822a92bc11d2 1204 // poll each output
mjr 74:822a92bc11d2 1205 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1206 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1207
mjr 74:822a92bc11d2 1208 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1209 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1210
mjr 74:822a92bc11d2 1211 // collect statistics
mjr 74:822a92bc11d2 1212 IF_DIAG(
mjr 74:822a92bc11d2 1213 polledPwmTotalTime += t.read();
mjr 74:822a92bc11d2 1214 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1215 )
mjr 74:822a92bc11d2 1216 }
mjr 74:822a92bc11d2 1217 }
mjr 64:ef7ca92dff36 1218
mjr 26:cb71c4af2912 1219 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1220 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1221 {
mjr 6:cc35eb643e8f 1222 public:
mjr 43:7a6364d82a41 1223 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1224 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1225 {
mjr 13:72dda449c3c0 1226 if (val != prv)
mjr 40:cc0d9814522b 1227 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1228 }
mjr 6:cc35eb643e8f 1229 DigitalOut p;
mjr 40:cc0d9814522b 1230 uint8_t prv;
mjr 6:cc35eb643e8f 1231 };
mjr 26:cb71c4af2912 1232
mjr 29:582472d0bc57 1233 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1234 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1235 // port n (0-based).
mjr 35:e959ffba78fd 1236 //
mjr 35:e959ffba78fd 1237 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1238 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1239 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1240 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1241 // 74HC595 ports).
mjr 33:d832bcab089e 1242 static int numOutputs;
mjr 33:d832bcab089e 1243 static LwOut **lwPin;
mjr 33:d832bcab089e 1244
mjr 73:4e8ce0b18915 1245 // LedWiz output states.
mjr 73:4e8ce0b18915 1246 //
mjr 73:4e8ce0b18915 1247 // The LedWiz protocol has two separate control axes for each output.
mjr 73:4e8ce0b18915 1248 // One axis is its on/off state; the other is its "profile" state, which
mjr 73:4e8ce0b18915 1249 // is either a fixed brightness or a blinking pattern for the light.
mjr 73:4e8ce0b18915 1250 // The two axes are independent.
mjr 73:4e8ce0b18915 1251 //
mjr 73:4e8ce0b18915 1252 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 73:4e8ce0b18915 1253 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 74:822a92bc11d2 1254 // extended protocol allows the client to send LedWiz-style messages that
mjr 74:822a92bc11d2 1255 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 74:822a92bc11d2 1256 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 74:822a92bc11d2 1257 // allowing them to control all of our ports. The clients will still be
mjr 74:822a92bc11d2 1258 // using LedWiz-style states to control the ports, so we need to support
mjr 74:822a92bc11d2 1259 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 73:4e8ce0b18915 1260
mjr 73:4e8ce0b18915 1261 // on/off state for each LedWiz output
mjr 73:4e8ce0b18915 1262 static uint8_t *wizOn;
mjr 73:4e8ce0b18915 1263
mjr 73:4e8ce0b18915 1264 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 73:4e8ce0b18915 1265 // for each LedWiz output. If the output was last updated through an
mjr 73:4e8ce0b18915 1266 // LedWiz protocol message, it will have one of these values:
mjr 73:4e8ce0b18915 1267 //
mjr 73:4e8ce0b18915 1268 // 0-48 = fixed brightness 0% to 100%
mjr 73:4e8ce0b18915 1269 // 49 = fixed brightness 100% (equivalent to 48)
mjr 73:4e8ce0b18915 1270 // 129 = ramp up / ramp down
mjr 73:4e8ce0b18915 1271 // 130 = flash on / off
mjr 73:4e8ce0b18915 1272 // 131 = on / ramp down
mjr 73:4e8ce0b18915 1273 // 132 = ramp up / on
mjr 73:4e8ce0b18915 1274 //
mjr 73:4e8ce0b18915 1275 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 73:4e8ce0b18915 1276 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 73:4e8ce0b18915 1277 // it, so we need to accept it for compatibility.)
mjr 73:4e8ce0b18915 1278 static uint8_t *wizVal;
mjr 73:4e8ce0b18915 1279
mjr 73:4e8ce0b18915 1280 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 74:822a92bc11d2 1281 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 74:822a92bc11d2 1282 // what the numbers mean in real time units, but by observation, the
mjr 74:822a92bc11d2 1283 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 74:822a92bc11d2 1284 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 74:822a92bc11d2 1285 // The period is the full cycle time of the flash waveform.
mjr 74:822a92bc11d2 1286 //
mjr 74:822a92bc11d2 1287 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 74:822a92bc11d2 1288 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 74:822a92bc11d2 1289 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 74:822a92bc11d2 1290 // this dynamically once we know the number of actual outputs, but the
mjr 74:822a92bc11d2 1291 // upper limit is low enough that it's more efficient to use a fixed array
mjr 74:822a92bc11d2 1292 // at the maximum size.
mjr 73:4e8ce0b18915 1293 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 73:4e8ce0b18915 1294 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 73:4e8ce0b18915 1295
mjr 74:822a92bc11d2 1296 // LedWiz cycle counters. These must be updated before calling wizState().
mjr 73:4e8ce0b18915 1297 static uint8_t wizFlashCounter[MAX_LW_BANKS];
mjr 35:e959ffba78fd 1298
mjr 74:822a92bc11d2 1299
mjr 63:5cd1a5f3a41b 1300 // Current absolute brightness levels for all outputs. These are
mjr 63:5cd1a5f3a41b 1301 // DOF brightness level value, from 0 for fully off to 255 for fully
mjr 63:5cd1a5f3a41b 1302 // on. These are always used for extended ports (33 and above), and
mjr 63:5cd1a5f3a41b 1303 // are used for LedWiz ports (1-32) when we're in extended protocol
mjr 63:5cd1a5f3a41b 1304 // mode (i.e., ledWizMode == false).
mjr 40:cc0d9814522b 1305 static uint8_t *outLevel;
mjr 38:091e511ce8a0 1306
mjr 38:091e511ce8a0 1307 // create a single output pin
mjr 53:9b2611964afc 1308 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1309 {
mjr 38:091e511ce8a0 1310 // get this item's values
mjr 38:091e511ce8a0 1311 int typ = pc.typ;
mjr 38:091e511ce8a0 1312 int pin = pc.pin;
mjr 38:091e511ce8a0 1313 int flags = pc.flags;
mjr 40:cc0d9814522b 1314 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1315 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1316 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1317
mjr 38:091e511ce8a0 1318 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1319 LwOut *lwp;
mjr 38:091e511ce8a0 1320 switch (typ)
mjr 38:091e511ce8a0 1321 {
mjr 38:091e511ce8a0 1322 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1323 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1324 if (pin != 0)
mjr 64:ef7ca92dff36 1325 {
mjr 64:ef7ca92dff36 1326 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1327 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1328 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1329 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1330 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1331 {
mjr 64:ef7ca92dff36 1332 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1333 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1334
mjr 64:ef7ca92dff36 1335 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1336 gamma = false;
mjr 64:ef7ca92dff36 1337 }
mjr 64:ef7ca92dff36 1338 else
mjr 64:ef7ca92dff36 1339 {
mjr 64:ef7ca92dff36 1340 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1341 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1342 }
mjr 64:ef7ca92dff36 1343 }
mjr 48:058ace2aed1d 1344 else
mjr 48:058ace2aed1d 1345 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1346 break;
mjr 38:091e511ce8a0 1347
mjr 38:091e511ce8a0 1348 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1349 // Digital GPIO port
mjr 48:058ace2aed1d 1350 if (pin != 0)
mjr 48:058ace2aed1d 1351 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1352 else
mjr 48:058ace2aed1d 1353 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1354 break;
mjr 38:091e511ce8a0 1355
mjr 38:091e511ce8a0 1356 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1357 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1358 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1359 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1360 {
mjr 40:cc0d9814522b 1361 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1362 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1363 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1364 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1365 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1366 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1367 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1368 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1369 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1370 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1371 // for this unlikely case.
mjr 40:cc0d9814522b 1372 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1373 {
mjr 40:cc0d9814522b 1374 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1375 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1376
mjr 40:cc0d9814522b 1377 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1378 gamma = false;
mjr 40:cc0d9814522b 1379 }
mjr 40:cc0d9814522b 1380 else
mjr 40:cc0d9814522b 1381 {
mjr 40:cc0d9814522b 1382 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1383 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1384 }
mjr 40:cc0d9814522b 1385 }
mjr 38:091e511ce8a0 1386 else
mjr 40:cc0d9814522b 1387 {
mjr 40:cc0d9814522b 1388 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1389 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1390 }
mjr 38:091e511ce8a0 1391 break;
mjr 38:091e511ce8a0 1392
mjr 38:091e511ce8a0 1393 case PortType74HC595:
mjr 38:091e511ce8a0 1394 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1395 // output number, create a virtual port)
mjr 38:091e511ce8a0 1396 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1397 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1398 else
mjr 38:091e511ce8a0 1399 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1400 break;
mjr 38:091e511ce8a0 1401
mjr 38:091e511ce8a0 1402 case PortTypeVirtual:
mjr 43:7a6364d82a41 1403 case PortTypeDisabled:
mjr 38:091e511ce8a0 1404 default:
mjr 38:091e511ce8a0 1405 // virtual or unknown
mjr 38:091e511ce8a0 1406 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1407 break;
mjr 38:091e511ce8a0 1408 }
mjr 38:091e511ce8a0 1409
mjr 40:cc0d9814522b 1410 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1411 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1412 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1413 if (activeLow)
mjr 38:091e511ce8a0 1414 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1415
mjr 40:cc0d9814522b 1416 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1417 // needs to be
mjr 40:cc0d9814522b 1418 if (noisy)
mjr 40:cc0d9814522b 1419 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1420
mjr 40:cc0d9814522b 1421 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1422 if (gamma)
mjr 40:cc0d9814522b 1423 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1424
mjr 53:9b2611964afc 1425 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1426 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1427 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1428 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1429 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1430
mjr 53:9b2611964afc 1431 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1432 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1433 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1434
mjr 38:091e511ce8a0 1435 // turn it off initially
mjr 38:091e511ce8a0 1436 lwp->set(0);
mjr 38:091e511ce8a0 1437
mjr 38:091e511ce8a0 1438 // return the pin
mjr 38:091e511ce8a0 1439 return lwp;
mjr 38:091e511ce8a0 1440 }
mjr 38:091e511ce8a0 1441
mjr 6:cc35eb643e8f 1442 // initialize the output pin array
mjr 35:e959ffba78fd 1443 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1444 {
mjr 35:e959ffba78fd 1445 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1446 // total number of ports.
mjr 35:e959ffba78fd 1447 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1448 int i;
mjr 35:e959ffba78fd 1449 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1450 {
mjr 35:e959ffba78fd 1451 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1452 {
mjr 35:e959ffba78fd 1453 numOutputs = i;
mjr 34:6b981a2afab7 1454 break;
mjr 34:6b981a2afab7 1455 }
mjr 33:d832bcab089e 1456 }
mjr 33:d832bcab089e 1457
mjr 73:4e8ce0b18915 1458 // allocate the pin array
mjr 73:4e8ce0b18915 1459 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1460
mjr 73:4e8ce0b18915 1461 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1462 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1463
mjr 73:4e8ce0b18915 1464 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1465 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1466 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1467
mjr 73:4e8ce0b18915 1468 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1469 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1470 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1471
mjr 73:4e8ce0b18915 1472 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1473 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1474 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1475
mjr 35:e959ffba78fd 1476 // create the pin interface object for each port
mjr 35:e959ffba78fd 1477 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1478 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1479 }
mjr 6:cc35eb643e8f 1480
mjr 63:5cd1a5f3a41b 1481 // LedWiz/Extended protocol mode.
mjr 63:5cd1a5f3a41b 1482 //
mjr 63:5cd1a5f3a41b 1483 // We implement output port control using both the legacy LedWiz
mjr 63:5cd1a5f3a41b 1484 // protocol and a private extended protocol (which is 100% backwards
mjr 63:5cd1a5f3a41b 1485 // compatible with the LedWiz protocol: we recognize all valid legacy
mjr 63:5cd1a5f3a41b 1486 // protocol commands and handle them the same way a real LedWiz does).
mjr 74:822a92bc11d2 1487 //
mjr 74:822a92bc11d2 1488 // The legacy LedWiz protocol has only two message types, which
mjr 74:822a92bc11d2 1489 // set output port states for a fixed set of 32 outputs. One message
mjr 74:822a92bc11d2 1490 // sets the "switch" state (on/off) of the ports, and the other sets
mjr 74:822a92bc11d2 1491 // the "profile" state (brightness or flash pattern). The two states
mjr 74:822a92bc11d2 1492 // are stored independently, so turning a port off via the switch state
mjr 74:822a92bc11d2 1493 // doesn't forget or change its brightness: turning it back on will
mjr 74:822a92bc11d2 1494 // restore the same brightness or flash pattern as before. The "profile"
mjr 74:822a92bc11d2 1495 // state can be a brightness level from 1 to 49, or one of four flash
mjr 74:822a92bc11d2 1496 // patterns, identified by a value from 129 to 132. The flash pattern
mjr 74:822a92bc11d2 1497 // and brightness levels are mutually exclusive, since the single
mjr 74:822a92bc11d2 1498 // "profile" setting per port selects which is used.
mjr 63:5cd1a5f3a41b 1499 //
mjr 74:822a92bc11d2 1500 // The extended protocol discards the flash pattern options and instead
mjr 74:822a92bc11d2 1501 // uses the full byte range 0..255 for brightness levels. Modern clients
mjr 74:822a92bc11d2 1502 // based on DOF don't use the flash patterns, since DOF simply sends
mjr 74:822a92bc11d2 1503 // the individual brightness updates when it wants to create fades or
mjr 74:822a92bc11d2 1504 // flashes. What we gain by dropping the flash options is finer
mjr 74:822a92bc11d2 1505 // gradations of brightness - 256 levels rather than the LedWiz's 48.
mjr 74:822a92bc11d2 1506 // This makes for noticeably smoother fades and a wider gamut for RGB
mjr 74:822a92bc11d2 1507 // color mixing. The extended protocol also drops the LedWiz notion of
mjr 74:822a92bc11d2 1508 // separate "switch" and "profile" settings, and instead combines the
mjr 74:822a92bc11d2 1509 // two into the single brightness setting, with brightness 0 meaning off.
mjr 74:822a92bc11d2 1510 // This also is the way DOF thinks about the problem, so it's a better
mjr 74:822a92bc11d2 1511 // match to modern clients.
mjr 63:5cd1a5f3a41b 1512 //
mjr 74:822a92bc11d2 1513 // To reconcile the different approaches in the two protocols to setting
mjr 74:822a92bc11d2 1514 // output port states, we use a global mode: LedWiz mode or Pinscape mode.
mjr 74:822a92bc11d2 1515 // Whenever an output port message is received, we switch this flag to the
mjr 74:822a92bc11d2 1516 // mode of the message. The assumption is that only one client at a time
mjr 74:822a92bc11d2 1517 // will be manipulating output ports, and that any given client uses one
mjr 74:822a92bc11d2 1518 // protocol exclusively. There's no reason a client should mix the
mjr 74:822a92bc11d2 1519 // protocols; if a client is aware of the Pinscape protocol at all, it
mjr 74:822a92bc11d2 1520 // should use it exclusively.
mjr 63:5cd1a5f3a41b 1521 static uint8_t ledWizMode = true;
mjr 63:5cd1a5f3a41b 1522
mjr 40:cc0d9814522b 1523 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 1524 // level (0-255)
mjr 40:cc0d9814522b 1525 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1526 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1527 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1528 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1529 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1530 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1531 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1532 255, 255
mjr 40:cc0d9814522b 1533 };
mjr 40:cc0d9814522b 1534
mjr 74:822a92bc11d2 1535 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1536 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1537 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1538 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1539 //
mjr 74:822a92bc11d2 1540 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1541 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1542 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1543 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1544 //
mjr 74:822a92bc11d2 1545 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1546 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1547 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1548 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1549 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1550 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1551 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1552 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1553 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1554 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1555 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1556 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1557 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1558 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1559 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1560 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1561 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1562 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1563 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1564 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1565
mjr 74:822a92bc11d2 1566 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1567 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1568 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1569 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1570 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1571 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1572 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1573 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1574 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1575 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1576 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1577 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1578 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1579 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1580 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1581 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1582 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1583
mjr 74:822a92bc11d2 1584 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1585 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1586 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1587 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1588 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1589 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1590 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1591 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1592 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1593 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1594 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1595 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1596 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1597 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1598 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1599 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1600 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1601
mjr 74:822a92bc11d2 1602 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1603 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1604 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1605 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1606 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1607 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1608 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1609 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1610 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1611 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1612 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1613 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1614 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1615 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1616 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1617 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1618 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1619 };
mjr 74:822a92bc11d2 1620
mjr 40:cc0d9814522b 1621 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 74:822a92bc11d2 1622 // Note: update all wizFlashCounter[] entries before calling this to
mjr 74:822a92bc11d2 1623 // ensure that we're at the right place in each flash cycle.
mjr 74:822a92bc11d2 1624 //
mjr 74:822a92bc11d2 1625 // Important: the caller must update the wizFlashCounter[] array before
mjr 74:822a92bc11d2 1626 // calling this. We leave it to the caller to update the array rather
mjr 74:822a92bc11d2 1627 // than doing it here, because each set of 32 outputs shares the same
mjr 74:822a92bc11d2 1628 // counter entry.
mjr 40:cc0d9814522b 1629 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 1630 {
mjr 63:5cd1a5f3a41b 1631 // If we're in extended protocol mode, ignore the LedWiz setting
mjr 63:5cd1a5f3a41b 1632 // for the port and use the new protocol setting instead.
mjr 63:5cd1a5f3a41b 1633 if (!ledWizMode)
mjr 29:582472d0bc57 1634 return outLevel[idx];
mjr 29:582472d0bc57 1635
mjr 29:582472d0bc57 1636 // if it's off, show at zero intensity
mjr 29:582472d0bc57 1637 if (!wizOn[idx])
mjr 29:582472d0bc57 1638 return 0;
mjr 29:582472d0bc57 1639
mjr 29:582472d0bc57 1640 // check the state
mjr 29:582472d0bc57 1641 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 1642 if (val <= 49)
mjr 29:582472d0bc57 1643 {
mjr 29:582472d0bc57 1644 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 1645 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 1646 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 1647 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 1648 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 1649 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 1650 // 100% on to match the documentation. This won't be perfectly
mjr 73:4e8ce0b18915 1651 // compatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 1652 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 1653 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 1654 // err in this direction, because while the difference in
mjr 29:582472d0bc57 1655 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 1656 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 1657 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 1658 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 1659 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 1660 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 1661 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 1662 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 1663 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 1664 //
mjr 40:cc0d9814522b 1665 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 1666 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 1667 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 1668 // it the same way for compatibility.
mjr 40:cc0d9814522b 1669 return lw_to_dof[val];
mjr 29:582472d0bc57 1670 }
mjr 74:822a92bc11d2 1671 else if (val >= 129 && val <= 132)
mjr 29:582472d0bc57 1672 {
mjr 74:822a92bc11d2 1673 // flash mode - get the current counter for the bank, and look
mjr 74:822a92bc11d2 1674 // up the current position in the cycle for the mode
mjr 73:4e8ce0b18915 1675 const int c = wizFlashCounter[idx/32];
mjr 74:822a92bc11d2 1676 return wizFlashLookup[((val-129)*256) + c];
mjr 29:582472d0bc57 1677 }
mjr 29:582472d0bc57 1678 else
mjr 13:72dda449c3c0 1679 {
mjr 29:582472d0bc57 1680 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1681 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1682 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1683 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1684 // to 48 (fully on).
mjr 40:cc0d9814522b 1685 return 255;
mjr 0:5acbbe3f4cf4 1686 }
mjr 0:5acbbe3f4cf4 1687 }
mjr 0:5acbbe3f4cf4 1688
mjr 74:822a92bc11d2 1689 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1690 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1691 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1692
mjr 74:822a92bc11d2 1693 // Update the LedWiz flash cycle counters
mjr 74:822a92bc11d2 1694 static void updateWizCycleCounts()
mjr 74:822a92bc11d2 1695 {
mjr 74:822a92bc11d2 1696 // Update the LedWiz flash cycle positions. Each cycle is 2/N
mjr 74:822a92bc11d2 1697 // seconds long, where N is the speed setting for the bank. N
mjr 74:822a92bc11d2 1698 // ranges from 1 to 7.
mjr 74:822a92bc11d2 1699 //
mjr 74:822a92bc11d2 1700 // Note that we treat the microsecond clock as a 32-bit unsigned
mjr 74:822a92bc11d2 1701 // int. This rolls over (i.e., exceeds 0xffffffff) every 71 minutes.
mjr 74:822a92bc11d2 1702 // We only care about the phase of the current LedWiz cycle, so we
mjr 74:822a92bc11d2 1703 // don't actually care about the absolute time - we only care about
mjr 74:822a92bc11d2 1704 // the time relative to some arbitrary starting point. Whenever the
mjr 74:822a92bc11d2 1705 // clock rolls over, it effectively sets a new starting point; since
mjr 74:822a92bc11d2 1706 // we only need an arbitrary starting point, that's largely okay.
mjr 74:822a92bc11d2 1707 // The one drawback is that these epoch resets can obviously occur
mjr 74:822a92bc11d2 1708 // in the middle of a cycle. When this occurs, the update just before
mjr 74:822a92bc11d2 1709 // the rollover and the update just after the rollover will use
mjr 74:822a92bc11d2 1710 // different epochs, so their phases might be misaligned. That could
mjr 74:822a92bc11d2 1711 // cause a sudden jump in brightness between the two updates and a
mjr 74:822a92bc11d2 1712 // shorter-than-usual or longer-than-usual time for that cycle. To
mjr 74:822a92bc11d2 1713 // avoid that, we'd have to use a higher-precision clock (say, a 64-bit
mjr 74:822a92bc11d2 1714 // microsecond counter) and do all of the calculations at the higher
mjr 74:822a92bc11d2 1715 // precision. Given that the rollover only happens once every 71
mjr 74:822a92bc11d2 1716 // minutes, and that the only problem it causes is a momentary glitch
mjr 74:822a92bc11d2 1717 // in the flash pattern, I think it's an equitable trade for the slightly
mjr 74:822a92bc11d2 1718 // faster processing in the 32-bit domain. This routine is called
mjr 74:822a92bc11d2 1719 // frequently from the main loop, so it's critial to minimize execution
mjr 74:822a92bc11d2 1720 // time.
mjr 74:822a92bc11d2 1721 uint32_t tcur = wizCycleTimer.read_us();
mjr 74:822a92bc11d2 1722 for (int i = 0 ; i < MAX_LW_BANKS ; ++i)
mjr 74:822a92bc11d2 1723 {
mjr 74:822a92bc11d2 1724 // Figure the point in the cycle. The LedWiz "speed" setting is
mjr 74:822a92bc11d2 1725 // waveform period in 0.25s units. (There's no official LedWiz
mjr 74:822a92bc11d2 1726 // documentation of what the speed means in real units, so this is
mjr 74:822a92bc11d2 1727 // based on observations.)
mjr 74:822a92bc11d2 1728 //
mjr 74:822a92bc11d2 1729 // We do this calculation frequently from the main loop, since we
mjr 74:822a92bc11d2 1730 // have to do it every time we update the output flash cycles,
mjr 74:822a92bc11d2 1731 // which in turn has to be done frequently to make the cycles
mjr 74:822a92bc11d2 1732 // appear smooth to users. So we're going to get a bit tricky
mjr 74:822a92bc11d2 1733 // with integer arithmetic to streamline it. The goal is to find
mjr 74:822a92bc11d2 1734 // the current phase position in the output waveform; in abstract
mjr 74:822a92bc11d2 1735 // terms, we're trying to find the angle, 0 to 2*pi, in the current
mjr 74:822a92bc11d2 1736 // cycle. Floating point arithmetic is expensive on the KL25Z
mjr 74:822a92bc11d2 1737 // since it's all done in software, so we'll do everything in
mjr 74:822a92bc11d2 1738 // integers. To do that, rather than trying to find the phase
mjr 74:822a92bc11d2 1739 // angle as a continuous quantity, we'll quantize it, into 256
mjr 74:822a92bc11d2 1740 // quanta per cycle. Each quantum is 1/256 of the cycle length,
mjr 74:822a92bc11d2 1741 // so for a 1-second cycle (LedWiz speed 4), each quantum is
mjr 74:822a92bc11d2 1742 // 1/256 of second or about 3.9ms. To find the phase, then, we
mjr 74:822a92bc11d2 1743 // simply take the current time (as an elapsed time from an
mjr 74:822a92bc11d2 1744 // arbitrary zero point aka epoch), quantize it into 3.9ms chunks,
mjr 74:822a92bc11d2 1745 // and calculate the remainder mod 256. Remainder mod 256 is a
mjr 74:822a92bc11d2 1746 // fast operation since it's equivalent to bit masking with 0xFF.
mjr 74:822a92bc11d2 1747 // (That's why we chose a power of two for the number of quanta
mjr 74:822a92bc11d2 1748 // per cycle.) Our timer gives us microseconds since it started,
mjr 74:822a92bc11d2 1749 // so to convert to quanta, we divide by microseconds per quantum;
mjr 74:822a92bc11d2 1750 // in the case of speed 1 with its 3.906ms quanta, we divide by
mjr 74:822a92bc11d2 1751 // 3906. But we can take this one step further, getting really
mjr 74:822a92bc11d2 1752 // tricky now. Dividing by N is the same as muliplying by X/N
mjr 74:822a92bc11d2 1753 // for some X, and then dividing the result by X. Why, you ask,
mjr 74:822a92bc11d2 1754 // would we want to do two operations where we could do one?
mjr 74:822a92bc11d2 1755 // Because if we're clever, the two operations will be much
mjr 74:822a92bc11d2 1756 // faster the the one. The M0+ has no DIVIDE instruction, so
mjr 74:822a92bc11d2 1757 // integer division has to be done in software, at a cost of about
mjr 74:822a92bc11d2 1758 // 100 clocks per operation. The KL25Z M0+ has a one-cycle
mjr 74:822a92bc11d2 1759 // hardware multiplier, though. But doesn't that leave that
mjr 74:822a92bc11d2 1760 // second division still to do? Yes, but if we choose a power
mjr 74:822a92bc11d2 1761 // of 2 for X, we can do that division with a bit shift, another
mjr 74:822a92bc11d2 1762 // single-cycle operation. So we can do the division in two
mjr 74:822a92bc11d2 1763 // cycles by breaking it up into a multiply + shift.
mjr 74:822a92bc11d2 1764 //
mjr 74:822a92bc11d2 1765 // Each entry in this array represents X/N for the corresponding
mjr 74:822a92bc11d2 1766 // LedWiz speed, where N is the number of time quanta per cycle
mjr 74:822a92bc11d2 1767 // and X is 2^24. The time quanta are chosen such that 256
mjr 74:822a92bc11d2 1768 // quanta add up to approximately (LedWiz speed setting * 0.25s).
mjr 74:822a92bc11d2 1769 //
mjr 74:822a92bc11d2 1770 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 74:822a92bc11d2 1771 // to get the final result mod 256. But we don't have to actually
mjr 74:822a92bc11d2 1772 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 74:822a92bc11d2 1773 // point base (X in the narrative above). The final shift right by
mjr 74:822a92bc11d2 1774 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 74:822a92bc11d2 1775 // the result, since we started with 32.
mjr 74:822a92bc11d2 1776 #if 1
mjr 74:822a92bc11d2 1777 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 74:822a92bc11d2 1778 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 74:822a92bc11d2 1779 };
mjr 74:822a92bc11d2 1780 wizFlashCounter[i] = ((tcur * inv_us_per_quantum[wizSpeed[i]]) >> 24);
mjr 74:822a92bc11d2 1781 #else
mjr 74:822a92bc11d2 1782 // Old, slightly less tricky way: this is almost the same as
mjr 74:822a92bc11d2 1783 // above, but does the division the straightforward way. The
mjr 74:822a92bc11d2 1784 // array gives us the length of the quantum per microsecond for
mjr 74:822a92bc11d2 1785 // each speed setting, so we just divide the microsecond counter
mjr 74:822a92bc11d2 1786 // by the quantum size to get the current time in quantum units,
mjr 74:822a92bc11d2 1787 // then figure the remainder mod 256 of the result to get the
mjr 74:822a92bc11d2 1788 // current cycle phase position.
mjr 74:822a92bc11d2 1789 static const uint32_t us_per_quantum[] = { // indexed by LedWiz "speed"
mjr 74:822a92bc11d2 1790 0, 977, 1953, 2930, 3906, 4883, 5859, 6836
mjr 74:822a92bc11d2 1791 };
mjr 74:822a92bc11d2 1792 wizFlashCounter[i] = (tcur/us_per_quantum[wizSpeed[i]]) & 0xFF;
mjr 74:822a92bc11d2 1793 #endif
mjr 74:822a92bc11d2 1794 }
mjr 74:822a92bc11d2 1795 }
mjr 74:822a92bc11d2 1796
mjr 74:822a92bc11d2 1797 // LedWiz flash timer pulse. The main loop calls this periodically
mjr 74:822a92bc11d2 1798 // to update outputs set to LedWiz flash modes.
mjr 74:822a92bc11d2 1799 Timer wizPulseTimer;
mjr 74:822a92bc11d2 1800 float wizPulseTotalTime, wizPulseRunCount;
mjr 74:822a92bc11d2 1801 const uint32_t WIZ_INTERVAL_US = 8000;
mjr 29:582472d0bc57 1802 static void wizPulse()
mjr 29:582472d0bc57 1803 {
mjr 74:822a92bc11d2 1804 // if it's been long enough, update the LedWiz outputs
mjr 74:822a92bc11d2 1805 if (wizPulseTimer.read_us() >= WIZ_INTERVAL_US)
mjr 73:4e8ce0b18915 1806 {
mjr 74:822a92bc11d2 1807 // reset the timer for the next round
mjr 74:822a92bc11d2 1808 wizPulseTimer.reset();
mjr 74:822a92bc11d2 1809
mjr 74:822a92bc11d2 1810 // if we're in LedWiz mode, update flashing outputs
mjr 74:822a92bc11d2 1811 if (ledWizMode)
mjr 29:582472d0bc57 1812 {
mjr 74:822a92bc11d2 1813 // start a timer for statistics collection
mjr 74:822a92bc11d2 1814 IF_DIAG(
mjr 74:822a92bc11d2 1815 Timer t;
mjr 74:822a92bc11d2 1816 t.start();
mjr 74:822a92bc11d2 1817 )
mjr 74:822a92bc11d2 1818
mjr 74:822a92bc11d2 1819 // update the cycle counters
mjr 74:822a92bc11d2 1820 updateWizCycleCounts();
mjr 74:822a92bc11d2 1821
mjr 74:822a92bc11d2 1822 // update all outputs set to flashing values
mjr 74:822a92bc11d2 1823 for (int i = numOutputs ; i > 0 ; )
mjr 29:582472d0bc57 1824 {
mjr 74:822a92bc11d2 1825 if (wizOn[--i])
mjr 74:822a92bc11d2 1826 {
mjr 74:822a92bc11d2 1827 // If the "brightness" is in the range 129..132, it's a
mjr 74:822a92bc11d2 1828 // flash mode. Note that we only have to check the high
mjr 74:822a92bc11d2 1829 // bit here, because the protocol message handler validates
mjr 74:822a92bc11d2 1830 // the wizVal[] entries when storing them: the only valid
mjr 74:822a92bc11d2 1831 // values with the high bit set are 129..132. Skipping
mjr 74:822a92bc11d2 1832 // validation here saves us a tiny bit of work, which we
mjr 74:822a92bc11d2 1833 // care about because we have to loop over all outputs
mjr 74:822a92bc11d2 1834 // here, and we invoke this frequently from the main loop.
mjr 74:822a92bc11d2 1835 const uint8_t val = wizVal[i];
mjr 74:822a92bc11d2 1836 if ((val & 0x80) != 0)
mjr 74:822a92bc11d2 1837 {
mjr 74:822a92bc11d2 1838 // get the current cycle time, then look up the
mjr 74:822a92bc11d2 1839 // value for the mode at the cycle time
mjr 74:822a92bc11d2 1840 const int c = wizFlashCounter[i >> 5];
mjr 74:822a92bc11d2 1841 lwPin[i]->set(wizFlashLookup[((val-129) << 8) + c]);
mjr 74:822a92bc11d2 1842 }
mjr 74:822a92bc11d2 1843 }
mjr 29:582472d0bc57 1844 }
mjr 74:822a92bc11d2 1845
mjr 74:822a92bc11d2 1846 // flush changes to 74HC595 chips, if attached
mjr 74:822a92bc11d2 1847 if (hc595 != 0)
mjr 74:822a92bc11d2 1848 hc595->update();
mjr 74:822a92bc11d2 1849
mjr 74:822a92bc11d2 1850 // collect timing statistics
mjr 74:822a92bc11d2 1851 IF_DIAG(
mjr 74:822a92bc11d2 1852 wizPulseTotalTime += t.read();
mjr 74:822a92bc11d2 1853 wizPulseRunCount += 1;
mjr 74:822a92bc11d2 1854 )
mjr 29:582472d0bc57 1855 }
mjr 29:582472d0bc57 1856 }
mjr 29:582472d0bc57 1857 }
mjr 29:582472d0bc57 1858
mjr 29:582472d0bc57 1859 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1860 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1861 static void updateWizOuts()
mjr 1:d913e0afb2ac 1862 {
mjr 74:822a92bc11d2 1863 // update the cycle counters
mjr 74:822a92bc11d2 1864 updateWizCycleCounts();
mjr 74:822a92bc11d2 1865
mjr 29:582472d0bc57 1866 // update each output
mjr 73:4e8ce0b18915 1867 for (int i = 0 ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1868 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1869
mjr 34:6b981a2afab7 1870 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1871 if (hc595 != 0)
mjr 35:e959ffba78fd 1872 hc595->update();
mjr 1:d913e0afb2ac 1873 }
mjr 38:091e511ce8a0 1874
mjr 38:091e511ce8a0 1875 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1876 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1877 static void updateAllOuts()
mjr 38:091e511ce8a0 1878 {
mjr 74:822a92bc11d2 1879 // update LedWiz states
mjr 74:822a92bc11d2 1880 updateWizOuts();
mjr 73:4e8ce0b18915 1881 }
mjr 73:4e8ce0b18915 1882
mjr 73:4e8ce0b18915 1883 //
mjr 73:4e8ce0b18915 1884 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1885 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1886 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1887 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1888 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1889 //
mjr 73:4e8ce0b18915 1890 void allOutputsOff()
mjr 73:4e8ce0b18915 1891 {
mjr 73:4e8ce0b18915 1892 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1893 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1894 {
mjr 73:4e8ce0b18915 1895 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1896 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1897 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1898 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1899 }
mjr 73:4e8ce0b18915 1900
mjr 73:4e8ce0b18915 1901 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1902 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1903 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1904
mjr 74:822a92bc11d2 1905 // revert to LedWiz mode for output controls
mjr 74:822a92bc11d2 1906 ledWizMode = true;
mjr 73:4e8ce0b18915 1907
mjr 73:4e8ce0b18915 1908 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1909 if (hc595 != 0)
mjr 38:091e511ce8a0 1910 hc595->update();
mjr 38:091e511ce8a0 1911 }
mjr 38:091e511ce8a0 1912
mjr 74:822a92bc11d2 1913 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1914 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1915 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1916 // address any port group.
mjr 74:822a92bc11d2 1917 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1918 {
mjr 74:822a92bc11d2 1919 // switch to LedWiz protocol mode
mjr 74:822a92bc11d2 1920 ledWizMode = true;
mjr 74:822a92bc11d2 1921
mjr 74:822a92bc11d2 1922 // update all on/off states
mjr 74:822a92bc11d2 1923 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1924 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1925 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1926 {
mjr 74:822a92bc11d2 1927 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1928 if (bit == 0x100) {
mjr 74:822a92bc11d2 1929 bit = 1;
mjr 74:822a92bc11d2 1930 ++imsg;
mjr 74:822a92bc11d2 1931 }
mjr 74:822a92bc11d2 1932
mjr 74:822a92bc11d2 1933 // set the on/off state
mjr 74:822a92bc11d2 1934 wizOn[port] = ((data[imsg] & bit) != 0);
mjr 74:822a92bc11d2 1935 }
mjr 74:822a92bc11d2 1936
mjr 74:822a92bc11d2 1937 // set the flash speed for the port group
mjr 74:822a92bc11d2 1938 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1939 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1940
mjr 74:822a92bc11d2 1941 // update the physical outputs with the new LedWiz states
mjr 74:822a92bc11d2 1942 updateWizOuts();
mjr 74:822a92bc11d2 1943 }
mjr 74:822a92bc11d2 1944
mjr 74:822a92bc11d2 1945 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1946 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1947 {
mjr 74:822a92bc11d2 1948 // switch LedWiz protocol mode
mjr 74:822a92bc11d2 1949 ledWizMode = true;
mjr 74:822a92bc11d2 1950
mjr 74:822a92bc11d2 1951 // update each wizVal entry from the brightness data
mjr 74:822a92bc11d2 1952 for (int i = 0, iwiz = basePort ; i < 8 && iwiz < numOutputs ; ++i, ++iwiz)
mjr 74:822a92bc11d2 1953 {
mjr 74:822a92bc11d2 1954 // get the value
mjr 74:822a92bc11d2 1955 uint8_t v = data[i];
mjr 74:822a92bc11d2 1956
mjr 74:822a92bc11d2 1957 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1958 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1959 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1960 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1961 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1962 // as such.
mjr 74:822a92bc11d2 1963 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1964 v = 48;
mjr 74:822a92bc11d2 1965
mjr 74:822a92bc11d2 1966 // store it
mjr 74:822a92bc11d2 1967 wizVal[iwiz] = v;
mjr 74:822a92bc11d2 1968 }
mjr 74:822a92bc11d2 1969
mjr 74:822a92bc11d2 1970 // update the physical outputs
mjr 74:822a92bc11d2 1971 updateWizOuts();
mjr 74:822a92bc11d2 1972 }
mjr 74:822a92bc11d2 1973
mjr 74:822a92bc11d2 1974
mjr 11:bd9da7088e6e 1975 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1976 //
mjr 11:bd9da7088e6e 1977 // Button input
mjr 11:bd9da7088e6e 1978 //
mjr 11:bd9da7088e6e 1979
mjr 18:5e890ebd0023 1980 // button state
mjr 18:5e890ebd0023 1981 struct ButtonState
mjr 18:5e890ebd0023 1982 {
mjr 38:091e511ce8a0 1983 ButtonState()
mjr 38:091e511ce8a0 1984 {
mjr 53:9b2611964afc 1985 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 1986 virtState = 0;
mjr 53:9b2611964afc 1987 dbState = 0;
mjr 38:091e511ce8a0 1988 pulseState = 0;
mjr 53:9b2611964afc 1989 pulseTime = 0;
mjr 38:091e511ce8a0 1990 }
mjr 35:e959ffba78fd 1991
mjr 53:9b2611964afc 1992 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 1993 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 1994 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 1995 //
mjr 53:9b2611964afc 1996 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 1997 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 1998 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 1999 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2000 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2001 void virtPress(bool on)
mjr 53:9b2611964afc 2002 {
mjr 53:9b2611964afc 2003 // Increment or decrement the current state
mjr 53:9b2611964afc 2004 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2005 }
mjr 53:9b2611964afc 2006
mjr 53:9b2611964afc 2007 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2008 TinyDigitalIn di;
mjr 38:091e511ce8a0 2009
mjr 65:739875521aae 2010 // Time of last pulse state transition.
mjr 65:739875521aae 2011 //
mjr 65:739875521aae 2012 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2013 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2014 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2015 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2016 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2017 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2018 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2019 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2020 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2021 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2022 // This software system can't be fooled that way.)
mjr 65:739875521aae 2023 uint32_t pulseTime;
mjr 18:5e890ebd0023 2024
mjr 65:739875521aae 2025 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2026 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2027 uint8_t cfgIndex;
mjr 53:9b2611964afc 2028
mjr 53:9b2611964afc 2029 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2030 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2031 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2032 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2033 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2034 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2035 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2036 // and physical source states.
mjr 53:9b2611964afc 2037 uint8_t virtState;
mjr 38:091e511ce8a0 2038
mjr 38:091e511ce8a0 2039 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2040 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2041 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2042 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2043 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2044 uint8_t dbState;
mjr 38:091e511ce8a0 2045
mjr 65:739875521aae 2046 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2047 uint8_t physState : 1;
mjr 65:739875521aae 2048
mjr 65:739875521aae 2049 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2050 uint8_t logState : 1;
mjr 65:739875521aae 2051
mjr 65:739875521aae 2052 // previous logical on/off state, when keys were last processed for USB
mjr 65:739875521aae 2053 // reports and local effects
mjr 65:739875521aae 2054 uint8_t prevLogState : 1;
mjr 65:739875521aae 2055
mjr 65:739875521aae 2056 // Pulse state
mjr 65:739875521aae 2057 //
mjr 65:739875521aae 2058 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2059 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2060 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2061 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2062 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2063 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2064 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2065 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2066 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2067 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2068 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 65:739875521aae 2069 // option brdiges this gap by generating a toggle key event each time
mjr 65:739875521aae 2070 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2071 //
mjr 38:091e511ce8a0 2072 // Pulse state:
mjr 38:091e511ce8a0 2073 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2074 // 1 -> off
mjr 38:091e511ce8a0 2075 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2076 // 3 -> on
mjr 38:091e511ce8a0 2077 // 4 -> transitioning on-off
mjr 65:739875521aae 2078 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2079
mjr 65:739875521aae 2080 } __attribute__((packed));
mjr 65:739875521aae 2081
mjr 65:739875521aae 2082 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2083 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2084 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2085
mjr 66:2e3583fbd2f4 2086 // Shift button state
mjr 66:2e3583fbd2f4 2087 struct
mjr 66:2e3583fbd2f4 2088 {
mjr 66:2e3583fbd2f4 2089 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 66:2e3583fbd2f4 2090 uint8_t state : 2; // current shift state:
mjr 66:2e3583fbd2f4 2091 // 0 = not shifted
mjr 66:2e3583fbd2f4 2092 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2093 // 2 = shift button down, key pressed
mjr 66:2e3583fbd2f4 2094 uint8_t pulse : 1; // sending pulsed keystroke on release
mjr 66:2e3583fbd2f4 2095 uint32_t pulseTime; // time of start of pulsed keystroke
mjr 66:2e3583fbd2f4 2096 }
mjr 66:2e3583fbd2f4 2097 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2098
mjr 38:091e511ce8a0 2099 // Button data
mjr 38:091e511ce8a0 2100 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2101
mjr 38:091e511ce8a0 2102 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2103 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2104 // modifier keys.
mjr 38:091e511ce8a0 2105 struct
mjr 38:091e511ce8a0 2106 {
mjr 38:091e511ce8a0 2107 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2108 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2109 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2110 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2111 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2112
mjr 38:091e511ce8a0 2113 // Media key state
mjr 38:091e511ce8a0 2114 struct
mjr 38:091e511ce8a0 2115 {
mjr 38:091e511ce8a0 2116 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2117 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2118 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2119
mjr 38:091e511ce8a0 2120 // button scan interrupt ticker
mjr 38:091e511ce8a0 2121 Ticker buttonTicker;
mjr 38:091e511ce8a0 2122
mjr 38:091e511ce8a0 2123 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2124 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2125 void scanButtons()
mjr 38:091e511ce8a0 2126 {
mjr 38:091e511ce8a0 2127 // scan all button input pins
mjr 73:4e8ce0b18915 2128 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2129 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2130 {
mjr 73:4e8ce0b18915 2131 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2132 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2133 bs->dbState = db;
mjr 73:4e8ce0b18915 2134
mjr 73:4e8ce0b18915 2135 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2136 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2137 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2138 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2139 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2140 db &= stable;
mjr 73:4e8ce0b18915 2141 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2142 bs->physState = !db;
mjr 38:091e511ce8a0 2143 }
mjr 38:091e511ce8a0 2144 }
mjr 38:091e511ce8a0 2145
mjr 38:091e511ce8a0 2146 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2147 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2148 // in the physical button state.
mjr 38:091e511ce8a0 2149 Timer buttonTimer;
mjr 12:669df364a565 2150
mjr 65:739875521aae 2151 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2152 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2153 {
mjr 65:739875521aae 2154 // count it
mjr 65:739875521aae 2155 ++nButtons;
mjr 65:739875521aae 2156
mjr 67:c39e66c4e000 2157 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2158 // keyboard interface
mjr 72:884207c0aab0 2159 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2160 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2161 kbKeys = true;
mjr 65:739875521aae 2162 }
mjr 65:739875521aae 2163
mjr 11:bd9da7088e6e 2164 // initialize the button inputs
mjr 35:e959ffba78fd 2165 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2166 {
mjr 35:e959ffba78fd 2167 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 2168 kbKeys = false;
mjr 35:e959ffba78fd 2169
mjr 66:2e3583fbd2f4 2170 // presume no shift key
mjr 66:2e3583fbd2f4 2171 shiftButton.index = -1;
mjr 66:2e3583fbd2f4 2172
mjr 65:739875521aae 2173 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2174 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2175 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2176 nButtons = 0;
mjr 65:739875521aae 2177 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2178 {
mjr 65:739875521aae 2179 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2180 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2181 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2182 }
mjr 65:739875521aae 2183
mjr 65:739875521aae 2184 // Count virtual buttons
mjr 65:739875521aae 2185
mjr 65:739875521aae 2186 // ZB Launch
mjr 65:739875521aae 2187 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2188 {
mjr 65:739875521aae 2189 // valid - remember the live button index
mjr 65:739875521aae 2190 zblButtonIndex = nButtons;
mjr 65:739875521aae 2191
mjr 65:739875521aae 2192 // count it
mjr 72:884207c0aab0 2193 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2194 }
mjr 65:739875521aae 2195
mjr 65:739875521aae 2196 // Allocate the live button slots
mjr 65:739875521aae 2197 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2198
mjr 65:739875521aae 2199 // Configure the physical inputs
mjr 65:739875521aae 2200 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2201 {
mjr 65:739875521aae 2202 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2203 if (pin != NC)
mjr 65:739875521aae 2204 {
mjr 65:739875521aae 2205 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2206 bs->cfgIndex = i;
mjr 65:739875521aae 2207
mjr 65:739875521aae 2208 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2209 bs->di.assignPin(pin);
mjr 65:739875521aae 2210
mjr 65:739875521aae 2211 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2212 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2213 bs->pulseState = 1;
mjr 65:739875521aae 2214
mjr 66:2e3583fbd2f4 2215 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2216 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2217 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2218 // config slots are left unused.
mjr 66:2e3583fbd2f4 2219 if (cfg.shiftButton == i+1)
mjr 66:2e3583fbd2f4 2220 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2221
mjr 65:739875521aae 2222 // advance to the next button
mjr 65:739875521aae 2223 ++bs;
mjr 65:739875521aae 2224 }
mjr 65:739875521aae 2225 }
mjr 65:739875521aae 2226
mjr 53:9b2611964afc 2227 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2228 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2229 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2230 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2231
mjr 53:9b2611964afc 2232 // ZB Launch Ball button
mjr 65:739875521aae 2233 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2234 {
mjr 65:739875521aae 2235 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2236 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2237 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2238 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2239 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2240 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2241 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2242 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2243
mjr 66:2e3583fbd2f4 2244 // advance to the next button
mjr 65:739875521aae 2245 ++bs;
mjr 11:bd9da7088e6e 2246 }
mjr 12:669df364a565 2247
mjr 38:091e511ce8a0 2248 // start the button scan thread
mjr 38:091e511ce8a0 2249 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2250
mjr 38:091e511ce8a0 2251 // start the button state transition timer
mjr 12:669df364a565 2252 buttonTimer.start();
mjr 11:bd9da7088e6e 2253 }
mjr 11:bd9da7088e6e 2254
mjr 67:c39e66c4e000 2255 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2256 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2257 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2258 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2259 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2260 //
mjr 67:c39e66c4e000 2261 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2262 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2263 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2264 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2265 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2266 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2267 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2268 //
mjr 67:c39e66c4e000 2269 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2271 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2272 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2273 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2274 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2275 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2276 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2277 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2278 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2279 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2280 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2281 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2282 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2283 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2284 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2285 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 67:c39e66c4e000 2286 };
mjr 67:c39e66c4e000 2287
mjr 67:c39e66c4e000 2288
mjr 38:091e511ce8a0 2289 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2290 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2291 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2292 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2293 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2294 {
mjr 35:e959ffba78fd 2295 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 2296 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 2297 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 2298 int nkeys = 0;
mjr 11:bd9da7088e6e 2299
mjr 35:e959ffba78fd 2300 // clear the joystick buttons
mjr 36:b9747461331e 2301 uint32_t newjs = 0;
mjr 35:e959ffba78fd 2302
mjr 35:e959ffba78fd 2303 // start with no media keys pressed
mjr 35:e959ffba78fd 2304 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 2305
mjr 38:091e511ce8a0 2306 // calculate the time since the last run
mjr 53:9b2611964afc 2307 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2308 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2309
mjr 66:2e3583fbd2f4 2310 // check the shift button state
mjr 66:2e3583fbd2f4 2311 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2312 {
mjr 66:2e3583fbd2f4 2313 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 66:2e3583fbd2f4 2314 switch (shiftButton.state)
mjr 66:2e3583fbd2f4 2315 {
mjr 66:2e3583fbd2f4 2316 case 0:
mjr 66:2e3583fbd2f4 2317 // Not shifted. Check if the button is now down: if so,
mjr 66:2e3583fbd2f4 2318 // switch to state 1 (shift button down, no key pressed yet).
mjr 66:2e3583fbd2f4 2319 if (sbs->physState)
mjr 66:2e3583fbd2f4 2320 shiftButton.state = 1;
mjr 66:2e3583fbd2f4 2321 break;
mjr 66:2e3583fbd2f4 2322
mjr 66:2e3583fbd2f4 2323 case 1:
mjr 66:2e3583fbd2f4 2324 // Shift button down, no key pressed yet. If the button is
mjr 66:2e3583fbd2f4 2325 // now up, it counts as an ordinary button press instead of
mjr 66:2e3583fbd2f4 2326 // a shift button press, since the shift function was never
mjr 66:2e3583fbd2f4 2327 // used. Return to unshifted state and start a timed key
mjr 66:2e3583fbd2f4 2328 // pulse event.
mjr 66:2e3583fbd2f4 2329 if (!sbs->physState)
mjr 66:2e3583fbd2f4 2330 {
mjr 66:2e3583fbd2f4 2331 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2332 shiftButton.pulse = 1;
mjr 66:2e3583fbd2f4 2333 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 66:2e3583fbd2f4 2334 }
mjr 66:2e3583fbd2f4 2335 break;
mjr 66:2e3583fbd2f4 2336
mjr 66:2e3583fbd2f4 2337 case 2:
mjr 66:2e3583fbd2f4 2338 // Shift button down, other key was pressed. If the button is
mjr 66:2e3583fbd2f4 2339 // now up, simply clear the shift state without sending a key
mjr 66:2e3583fbd2f4 2340 // press for the shift button itself to the PC. The shift
mjr 66:2e3583fbd2f4 2341 // function was used, so its ordinary key press function is
mjr 66:2e3583fbd2f4 2342 // suppressed.
mjr 66:2e3583fbd2f4 2343 if (!sbs->physState)
mjr 66:2e3583fbd2f4 2344 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2345 break;
mjr 66:2e3583fbd2f4 2346 }
mjr 66:2e3583fbd2f4 2347 }
mjr 38:091e511ce8a0 2348
mjr 11:bd9da7088e6e 2349 // scan the button list
mjr 18:5e890ebd0023 2350 ButtonState *bs = buttonState;
mjr 65:739875521aae 2351 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2352 {
mjr 66:2e3583fbd2f4 2353 // Check the button type:
mjr 66:2e3583fbd2f4 2354 // - shift button
mjr 66:2e3583fbd2f4 2355 // - pulsed button
mjr 66:2e3583fbd2f4 2356 // - regular button
mjr 66:2e3583fbd2f4 2357 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2358 {
mjr 66:2e3583fbd2f4 2359 // This is the shift button. Its logical state for key
mjr 66:2e3583fbd2f4 2360 // reporting purposes is controlled by the shift buttton
mjr 66:2e3583fbd2f4 2361 // pulse timer. If we're in a pulse, its logical state
mjr 66:2e3583fbd2f4 2362 // is pressed.
mjr 66:2e3583fbd2f4 2363 if (shiftButton.pulse)
mjr 66:2e3583fbd2f4 2364 {
mjr 66:2e3583fbd2f4 2365 // deduct the current interval from the pulse time, ending
mjr 66:2e3583fbd2f4 2366 // the pulse if the time has expired
mjr 66:2e3583fbd2f4 2367 if (shiftButton.pulseTime > dt)
mjr 66:2e3583fbd2f4 2368 shiftButton.pulseTime -= dt;
mjr 66:2e3583fbd2f4 2369 else
mjr 66:2e3583fbd2f4 2370 shiftButton.pulse = 0;
mjr 66:2e3583fbd2f4 2371 }
mjr 66:2e3583fbd2f4 2372
mjr 66:2e3583fbd2f4 2373 // the button is logically pressed if we're in a pulse
mjr 66:2e3583fbd2f4 2374 bs->logState = shiftButton.pulse;
mjr 66:2e3583fbd2f4 2375 }
mjr 66:2e3583fbd2f4 2376 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2377 {
mjr 38:091e511ce8a0 2378 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2379 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2380 {
mjr 53:9b2611964afc 2381 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2382 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2383 }
mjr 53:9b2611964afc 2384 else
mjr 53:9b2611964afc 2385 {
mjr 53:9b2611964afc 2386 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2387 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2388 switch (bs->pulseState)
mjr 18:5e890ebd0023 2389 {
mjr 38:091e511ce8a0 2390 case 1:
mjr 38:091e511ce8a0 2391 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2392 if (bs->physState)
mjr 53:9b2611964afc 2393 {
mjr 38:091e511ce8a0 2394 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2395 bs->pulseState = 2;
mjr 53:9b2611964afc 2396 bs->logState = 1;
mjr 38:091e511ce8a0 2397 }
mjr 38:091e511ce8a0 2398 break;
mjr 18:5e890ebd0023 2399
mjr 38:091e511ce8a0 2400 case 2:
mjr 38:091e511ce8a0 2401 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2402 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2403 // change in state in the logical button
mjr 38:091e511ce8a0 2404 bs->pulseState = 3;
mjr 38:091e511ce8a0 2405 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2406 bs->logState = 0;
mjr 38:091e511ce8a0 2407 break;
mjr 38:091e511ce8a0 2408
mjr 38:091e511ce8a0 2409 case 3:
mjr 38:091e511ce8a0 2410 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2411 if (!bs->physState)
mjr 53:9b2611964afc 2412 {
mjr 38:091e511ce8a0 2413 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2414 bs->pulseState = 4;
mjr 53:9b2611964afc 2415 bs->logState = 1;
mjr 38:091e511ce8a0 2416 }
mjr 38:091e511ce8a0 2417 break;
mjr 38:091e511ce8a0 2418
mjr 38:091e511ce8a0 2419 case 4:
mjr 38:091e511ce8a0 2420 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2421 bs->pulseState = 1;
mjr 38:091e511ce8a0 2422 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2423 bs->logState = 0;
mjr 38:091e511ce8a0 2424 break;
mjr 18:5e890ebd0023 2425 }
mjr 18:5e890ebd0023 2426 }
mjr 38:091e511ce8a0 2427 }
mjr 38:091e511ce8a0 2428 else
mjr 38:091e511ce8a0 2429 {
mjr 38:091e511ce8a0 2430 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2431 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2432 }
mjr 35:e959ffba78fd 2433
mjr 38:091e511ce8a0 2434 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2435 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2436 {
mjr 38:091e511ce8a0 2437 // check for special key transitions
mjr 53:9b2611964afc 2438 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2439 {
mjr 53:9b2611964afc 2440 // Check the switch type in the config flags. If flag 0x01 is set,
mjr 53:9b2611964afc 2441 // it's a persistent on/off switch, so the night mode state simply
mjr 53:9b2611964afc 2442 // follows the current state of the switch. Otherwise, it's a
mjr 53:9b2611964afc 2443 // momentary button, so each button push (i.e., each transition from
mjr 53:9b2611964afc 2444 // logical state OFF to ON) toggles the current night mode state.
mjr 53:9b2611964afc 2445 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 2446 {
mjr 69:cc5039284fac 2447 // on/off switch - when the button changes state, change
mjr 53:9b2611964afc 2448 // night mode to match the new state
mjr 53:9b2611964afc 2449 setNightMode(bs->logState);
mjr 53:9b2611964afc 2450 }
mjr 53:9b2611964afc 2451 else
mjr 53:9b2611964afc 2452 {
mjr 66:2e3583fbd2f4 2453 // Momentary switch - toggle the night mode state when the
mjr 53:9b2611964afc 2454 // physical button is pushed (i.e., when its logical state
mjr 66:2e3583fbd2f4 2455 // transitions from OFF to ON).
mjr 66:2e3583fbd2f4 2456 //
mjr 66:2e3583fbd2f4 2457 // In momentary mode, night mode flag 0x02 makes it the
mjr 66:2e3583fbd2f4 2458 // shifted version of the button. In this case, only
mjr 66:2e3583fbd2f4 2459 // proceed if the shift button is pressed.
mjr 66:2e3583fbd2f4 2460 bool pressed = bs->logState;
mjr 66:2e3583fbd2f4 2461 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2462 {
mjr 66:2e3583fbd2f4 2463 // if the shift button is pressed but hasn't been used
mjr 66:2e3583fbd2f4 2464 // as a shift yet, mark it as used, so that it doesn't
mjr 66:2e3583fbd2f4 2465 // also generate its own key code on release
mjr 66:2e3583fbd2f4 2466 if (shiftButton.state == 1)
mjr 66:2e3583fbd2f4 2467 shiftButton.state = 2;
mjr 66:2e3583fbd2f4 2468
mjr 66:2e3583fbd2f4 2469 // if the shift button isn't even pressed
mjr 66:2e3583fbd2f4 2470 if (shiftButton.state == 0)
mjr 66:2e3583fbd2f4 2471 pressed = false;
mjr 66:2e3583fbd2f4 2472 }
mjr 66:2e3583fbd2f4 2473
mjr 66:2e3583fbd2f4 2474 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2475 // toggle night mode
mjr 66:2e3583fbd2f4 2476 if (pressed)
mjr 53:9b2611964afc 2477 toggleNightMode();
mjr 53:9b2611964afc 2478 }
mjr 35:e959ffba78fd 2479 }
mjr 38:091e511ce8a0 2480
mjr 38:091e511ce8a0 2481 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2482 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2483 }
mjr 38:091e511ce8a0 2484
mjr 53:9b2611964afc 2485 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2486 // key state list
mjr 53:9b2611964afc 2487 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2488 {
mjr 70:9f58735a1732 2489 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 2490 // going to use the normal unshifted meaning.
mjr 65:739875521aae 2491 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 70:9f58735a1732 2492 uint8_t typ = bc->typ;
mjr 70:9f58735a1732 2493 uint8_t val = bc->val;
mjr 70:9f58735a1732 2494
mjr 70:9f58735a1732 2495 // If the shift button is down, check for a shifted meaning.
mjr 70:9f58735a1732 2496 if (shiftButton.state)
mjr 66:2e3583fbd2f4 2497 {
mjr 70:9f58735a1732 2498 // assume there's no shifted meaning
mjr 70:9f58735a1732 2499 bool useShift = false;
mjr 66:2e3583fbd2f4 2500
mjr 70:9f58735a1732 2501 // If the button has a shifted meaning, use that. The
mjr 70:9f58735a1732 2502 // meaning might be a keyboard key or joystick button,
mjr 70:9f58735a1732 2503 // but it could also be as the Night Mode toggle.
mjr 70:9f58735a1732 2504 //
mjr 70:9f58735a1732 2505 // The condition to check if it's the Night Mode toggle
mjr 70:9f58735a1732 2506 // is a little complicated. First, the easy part: our
mjr 70:9f58735a1732 2507 // button index has to match the Night Mode button index.
mjr 70:9f58735a1732 2508 // Now the hard part: the Night Mode button flags have
mjr 70:9f58735a1732 2509 // to be set to 0x01 OFF and 0x02 ON: toggle mode (not
mjr 70:9f58735a1732 2510 // switch mode, 0x01), and shift mode, 0x02. So AND the
mjr 70:9f58735a1732 2511 // flags with 0x03 to get these two bits, and check that
mjr 70:9f58735a1732 2512 // the result is 0x02, meaning that only shift mode is on.
mjr 70:9f58735a1732 2513 if (bc->typ2 != BtnTypeNone)
mjr 70:9f58735a1732 2514 {
mjr 70:9f58735a1732 2515 // there's a shifted key assignment - use it
mjr 70:9f58735a1732 2516 typ = bc->typ2;
mjr 70:9f58735a1732 2517 val = bc->val2;
mjr 70:9f58735a1732 2518 useShift = true;
mjr 70:9f58735a1732 2519 }
mjr 70:9f58735a1732 2520 else if (cfg.nightMode.btn == i+1
mjr 70:9f58735a1732 2521 && (cfg.nightMode.flags & 0x03) == 0x02)
mjr 70:9f58735a1732 2522 {
mjr 70:9f58735a1732 2523 // shift+button = night mode toggle
mjr 70:9f58735a1732 2524 typ = BtnTypeNone;
mjr 70:9f58735a1732 2525 val = 0;
mjr 70:9f58735a1732 2526 useShift = true;
mjr 70:9f58735a1732 2527 }
mjr 70:9f58735a1732 2528
mjr 70:9f58735a1732 2529 // If there's a shifted meaning, advance the shift
mjr 70:9f58735a1732 2530 // button state from 1 to 2 if applicable. This signals
mjr 70:9f58735a1732 2531 // that we've "consumed" the shift button press as the
mjr 70:9f58735a1732 2532 // shift button, so it shouldn't generate its own key
mjr 70:9f58735a1732 2533 // code event when released.
mjr 70:9f58735a1732 2534 if (useShift && shiftButton.state == 1)
mjr 66:2e3583fbd2f4 2535 shiftButton.state = 2;
mjr 66:2e3583fbd2f4 2536 }
mjr 66:2e3583fbd2f4 2537
mjr 70:9f58735a1732 2538 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 2539 // the keyboard or joystick event.
mjr 66:2e3583fbd2f4 2540 switch (typ)
mjr 53:9b2611964afc 2541 {
mjr 53:9b2611964afc 2542 case BtnTypeJoystick:
mjr 53:9b2611964afc 2543 // joystick button
mjr 53:9b2611964afc 2544 newjs |= (1 << (val - 1));
mjr 53:9b2611964afc 2545 break;
mjr 53:9b2611964afc 2546
mjr 53:9b2611964afc 2547 case BtnTypeKey:
mjr 67:c39e66c4e000 2548 // Keyboard key. The USB keyboard report encodes regular
mjr 67:c39e66c4e000 2549 // keys and modifier keys separately, so we need to check
mjr 67:c39e66c4e000 2550 // which type we have. Note that past versions mapped the
mjr 67:c39e66c4e000 2551 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 67:c39e66c4e000 2552 // Mute keys to the corresponding Media keys. We no longer
mjr 67:c39e66c4e000 2553 // do this; instead, we have the separate BtnTypeMedia for
mjr 67:c39e66c4e000 2554 // explicitly using media keys if desired.
mjr 67:c39e66c4e000 2555 if (val >= 0xE0 && val <= 0xE7)
mjr 53:9b2611964afc 2556 {
mjr 67:c39e66c4e000 2557 // It's a modifier key. These are represented in the USB
mjr 67:c39e66c4e000 2558 // reports with a bit mask. We arrange the mask bits in
mjr 67:c39e66c4e000 2559 // the same order as the scan codes, so we can figure the
mjr 67:c39e66c4e000 2560 // appropriate bit with a simple shift.
mjr 53:9b2611964afc 2561 modkeys |= (1 << (val - 0xE0));
mjr 53:9b2611964afc 2562 }
mjr 53:9b2611964afc 2563 else
mjr 53:9b2611964afc 2564 {
mjr 67:c39e66c4e000 2565 // It's a regular key. Make sure it's not already in the
mjr 67:c39e66c4e000 2566 // list, and that the list isn't full. If neither of these
mjr 67:c39e66c4e000 2567 // apply, add the key to the key array.
mjr 53:9b2611964afc 2568 if (nkeys < 7)
mjr 53:9b2611964afc 2569 {
mjr 57:cc03231f676b 2570 bool found = false;
mjr 53:9b2611964afc 2571 for (int j = 0 ; j < nkeys ; ++j)
mjr 53:9b2611964afc 2572 {
mjr 53:9b2611964afc 2573 if (keys[j] == val)
mjr 53:9b2611964afc 2574 {
mjr 53:9b2611964afc 2575 found = true;
mjr 53:9b2611964afc 2576 break;
mjr 53:9b2611964afc 2577 }
mjr 53:9b2611964afc 2578 }
mjr 53:9b2611964afc 2579 if (!found)
mjr 53:9b2611964afc 2580 keys[nkeys++] = val;
mjr 53:9b2611964afc 2581 }
mjr 53:9b2611964afc 2582 }
mjr 53:9b2611964afc 2583 break;
mjr 67:c39e66c4e000 2584
mjr 67:c39e66c4e000 2585 case BtnTypeMedia:
mjr 67:c39e66c4e000 2586 // Media control key. The media keys are mapped in the USB
mjr 67:c39e66c4e000 2587 // report to bits, whereas the key codes are specified in the
mjr 67:c39e66c4e000 2588 // config with their USB usage numbers. E.g., the config val
mjr 67:c39e66c4e000 2589 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 67:c39e66c4e000 2590 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 67:c39e66c4e000 2591 // from the USB usage number to the mask bit. If the key isn't
mjr 67:c39e66c4e000 2592 // among the subset we support, the mapped bit will be zero, so
mjr 67:c39e66c4e000 2593 // the "|=" will have no effect and the key will be ignored.
mjr 67:c39e66c4e000 2594 mediakeys |= mediaKeyMap[val];
mjr 67:c39e66c4e000 2595 break;
mjr 53:9b2611964afc 2596 }
mjr 18:5e890ebd0023 2597 }
mjr 11:bd9da7088e6e 2598 }
mjr 36:b9747461331e 2599
mjr 36:b9747461331e 2600 // check for joystick button changes
mjr 36:b9747461331e 2601 if (jsButtons != newjs)
mjr 36:b9747461331e 2602 jsButtons = newjs;
mjr 11:bd9da7088e6e 2603
mjr 35:e959ffba78fd 2604 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 2605 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 2606 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 2607 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 2608 {
mjr 35:e959ffba78fd 2609 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2610 kbState.changed = true;
mjr 35:e959ffba78fd 2611 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 2612 if (nkeys <= 6) {
mjr 35:e959ffba78fd 2613 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 2614 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 2615 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 2616 }
mjr 35:e959ffba78fd 2617 else {
mjr 35:e959ffba78fd 2618 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 2619 kbState.nkeys = 6;
mjr 35:e959ffba78fd 2620 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 2621 }
mjr 35:e959ffba78fd 2622 }
mjr 35:e959ffba78fd 2623
mjr 35:e959ffba78fd 2624 // Check for changes to media keys
mjr 35:e959ffba78fd 2625 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 2626 {
mjr 35:e959ffba78fd 2627 mediaState.changed = true;
mjr 35:e959ffba78fd 2628 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 2629 }
mjr 11:bd9da7088e6e 2630 }
mjr 11:bd9da7088e6e 2631
mjr 73:4e8ce0b18915 2632 // Send a button status report
mjr 73:4e8ce0b18915 2633 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 2634 {
mjr 73:4e8ce0b18915 2635 // start with all buttons off
mjr 73:4e8ce0b18915 2636 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 2637 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 2638
mjr 73:4e8ce0b18915 2639 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 2640 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 2641 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 2642 {
mjr 73:4e8ce0b18915 2643 // get the physical state
mjr 73:4e8ce0b18915 2644 int b = bs->physState;
mjr 73:4e8ce0b18915 2645
mjr 73:4e8ce0b18915 2646 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 2647 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 2648 int si = idx / 8;
mjr 73:4e8ce0b18915 2649 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 2650 state[si] |= b << shift;
mjr 73:4e8ce0b18915 2651 }
mjr 73:4e8ce0b18915 2652
mjr 73:4e8ce0b18915 2653 // send the report
mjr 73:4e8ce0b18915 2654 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 2655 }
mjr 73:4e8ce0b18915 2656
mjr 5:a70c0bce770d 2657 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2658 //
mjr 5:a70c0bce770d 2659 // Customization joystick subbclass
mjr 5:a70c0bce770d 2660 //
mjr 5:a70c0bce770d 2661
mjr 5:a70c0bce770d 2662 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 2663 {
mjr 5:a70c0bce770d 2664 public:
mjr 35:e959ffba78fd 2665 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 2666 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 2667 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 2668 {
mjr 54:fd77a6b2f76c 2669 sleeping_ = false;
mjr 54:fd77a6b2f76c 2670 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 2671 timer_.start();
mjr 54:fd77a6b2f76c 2672 }
mjr 54:fd77a6b2f76c 2673
mjr 54:fd77a6b2f76c 2674 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 2675 void diagFlash()
mjr 54:fd77a6b2f76c 2676 {
mjr 54:fd77a6b2f76c 2677 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 2678 {
mjr 54:fd77a6b2f76c 2679 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 2680 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 2681 {
mjr 54:fd77a6b2f76c 2682 // short red flash
mjr 54:fd77a6b2f76c 2683 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 2684 wait_us(50000);
mjr 54:fd77a6b2f76c 2685 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 2686 wait_us(50000);
mjr 54:fd77a6b2f76c 2687 }
mjr 54:fd77a6b2f76c 2688 }
mjr 5:a70c0bce770d 2689 }
mjr 5:a70c0bce770d 2690
mjr 5:a70c0bce770d 2691 // are we connected?
mjr 5:a70c0bce770d 2692 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 2693
mjr 54:fd77a6b2f76c 2694 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 2695 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 2696 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 2697 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 2698 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 2699
mjr 54:fd77a6b2f76c 2700 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 2701 //
mjr 54:fd77a6b2f76c 2702 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 2703 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 2704 // other way.
mjr 54:fd77a6b2f76c 2705 //
mjr 54:fd77a6b2f76c 2706 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 2707 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 2708 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 2709 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 2710 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 2711 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 2712 //
mjr 54:fd77a6b2f76c 2713 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 2714 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 2715 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 2716 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 2717 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 2718 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 2719 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 2720 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 2721 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 2722 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 2723 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 2724 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 2725 // is effectively dead.
mjr 54:fd77a6b2f76c 2726 //
mjr 54:fd77a6b2f76c 2727 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 2728 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 2729 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 2730 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 2731 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 2732 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 2733 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 2734 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 2735 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 2736 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 2737 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 2738 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 2739 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 2740 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 2741 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 2742 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 2743 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 2744 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 2745 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 2746 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 2747 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 2748 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 2749 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 2750 // a disconnect.
mjr 54:fd77a6b2f76c 2751 //
mjr 54:fd77a6b2f76c 2752 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 2753 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 2754 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 2755 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 2756 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 2757 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 2758 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 2759 //
mjr 54:fd77a6b2f76c 2760 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 2761 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 2762 //
mjr 54:fd77a6b2f76c 2763 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 2764 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 2765 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 2766 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 2767 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 2768 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 2769 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 2770 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 2771 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 2772 // reliable in practice.
mjr 54:fd77a6b2f76c 2773 //
mjr 54:fd77a6b2f76c 2774 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 2775 //
mjr 54:fd77a6b2f76c 2776 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 2777 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 2778 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 2779 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 2780 // return.
mjr 54:fd77a6b2f76c 2781 //
mjr 54:fd77a6b2f76c 2782 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 2783 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 2784 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 2785 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 2786 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 2787 //
mjr 54:fd77a6b2f76c 2788 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 2789 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 2790 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 2791 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 2792 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 2793 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 2794 //
mjr 54:fd77a6b2f76c 2795 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 2796 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 2797 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 2798 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 2799 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 2800 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 2801 // freezes over.
mjr 54:fd77a6b2f76c 2802 //
mjr 54:fd77a6b2f76c 2803 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 2804 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 2805 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 2806 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 2807 // less than second with this code in place.
mjr 54:fd77a6b2f76c 2808 void recoverConnection()
mjr 54:fd77a6b2f76c 2809 {
mjr 54:fd77a6b2f76c 2810 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 2811 if (reconnectPending_)
mjr 54:fd77a6b2f76c 2812 {
mjr 54:fd77a6b2f76c 2813 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 2814 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 2815 {
mjr 54:fd77a6b2f76c 2816 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 2817 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 2818 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 2819 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 2820 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 2821 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 2822 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 2823 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 2824 __disable_irq();
mjr 54:fd77a6b2f76c 2825 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 2826 {
mjr 54:fd77a6b2f76c 2827 connect(false);
mjr 54:fd77a6b2f76c 2828 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 2829 done = true;
mjr 54:fd77a6b2f76c 2830 }
mjr 54:fd77a6b2f76c 2831 __enable_irq();
mjr 54:fd77a6b2f76c 2832 }
mjr 54:fd77a6b2f76c 2833 }
mjr 54:fd77a6b2f76c 2834 }
mjr 5:a70c0bce770d 2835
mjr 5:a70c0bce770d 2836 protected:
mjr 54:fd77a6b2f76c 2837 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 2838 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 2839 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 2840 //
mjr 54:fd77a6b2f76c 2841 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 2842 //
mjr 54:fd77a6b2f76c 2843 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 2844 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 2845 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 2846 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 2847 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 2848 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 2849 {
mjr 54:fd77a6b2f76c 2850 // note the new state
mjr 54:fd77a6b2f76c 2851 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 2852
mjr 54:fd77a6b2f76c 2853 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 2854 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 2855 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 2856 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 2857 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 2858 {
mjr 54:fd77a6b2f76c 2859 disconnect();
mjr 54:fd77a6b2f76c 2860 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 2861 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 2862 }
mjr 54:fd77a6b2f76c 2863 }
mjr 54:fd77a6b2f76c 2864
mjr 54:fd77a6b2f76c 2865 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 2866 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 2867
mjr 54:fd77a6b2f76c 2868 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 2869 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 2870
mjr 54:fd77a6b2f76c 2871 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 2872 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 2873
mjr 54:fd77a6b2f76c 2874 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 2875 Timer timer_;
mjr 5:a70c0bce770d 2876 };
mjr 5:a70c0bce770d 2877
mjr 5:a70c0bce770d 2878 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2879 //
mjr 5:a70c0bce770d 2880 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 2881 //
mjr 5:a70c0bce770d 2882
mjr 5:a70c0bce770d 2883 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 2884 //
mjr 5:a70c0bce770d 2885 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 2886 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 2887 // automatic calibration.
mjr 5:a70c0bce770d 2888 //
mjr 5:a70c0bce770d 2889 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 2890 // interrupt to ensure that we fetch each sample immediately when it
mjr 74:822a92bc11d2 2891 // becomes available. The accelerometer data rate is fairly high
mjr 6:cc35eb643e8f 2892 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 2893 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 2894 // every sample.
mjr 5:a70c0bce770d 2895 //
mjr 6:cc35eb643e8f 2896 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 2897 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 2898 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 2899 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 2900 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 2901 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 2902 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 2903 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 2904 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 2905 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 2906 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 2907 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 2908 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 2909 // of nudging, say).
mjr 5:a70c0bce770d 2910 //
mjr 5:a70c0bce770d 2911
mjr 17:ab3cec0c8bf4 2912 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 2913 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 2914
mjr 17:ab3cec0c8bf4 2915 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 2916 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 2917 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 2918
mjr 17:ab3cec0c8bf4 2919 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 2920 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 2921 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 2922 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 2923
mjr 17:ab3cec0c8bf4 2924
mjr 6:cc35eb643e8f 2925 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 2926 struct AccHist
mjr 5:a70c0bce770d 2927 {
mjr 6:cc35eb643e8f 2928 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2929 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 2930 {
mjr 6:cc35eb643e8f 2931 // save the raw position
mjr 6:cc35eb643e8f 2932 this->x = x;
mjr 6:cc35eb643e8f 2933 this->y = y;
mjr 6:cc35eb643e8f 2934 this->d = distance(prv);
mjr 6:cc35eb643e8f 2935 }
mjr 6:cc35eb643e8f 2936
mjr 6:cc35eb643e8f 2937 // reading for this entry
mjr 5:a70c0bce770d 2938 float x, y;
mjr 5:a70c0bce770d 2939
mjr 6:cc35eb643e8f 2940 // distance from previous entry
mjr 6:cc35eb643e8f 2941 float d;
mjr 5:a70c0bce770d 2942
mjr 6:cc35eb643e8f 2943 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 2944 float xtot, ytot;
mjr 6:cc35eb643e8f 2945 int cnt;
mjr 6:cc35eb643e8f 2946
mjr 6:cc35eb643e8f 2947 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2948 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 2949 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 2950 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 2951
mjr 6:cc35eb643e8f 2952 float distance(AccHist *p)
mjr 6:cc35eb643e8f 2953 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 2954 };
mjr 5:a70c0bce770d 2955
mjr 5:a70c0bce770d 2956 // accelerometer wrapper class
mjr 3:3514575d4f86 2957 class Accel
mjr 3:3514575d4f86 2958 {
mjr 3:3514575d4f86 2959 public:
mjr 3:3514575d4f86 2960 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 2961 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 2962 {
mjr 5:a70c0bce770d 2963 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 2964 irqPin_ = irqPin;
mjr 5:a70c0bce770d 2965
mjr 5:a70c0bce770d 2966 // reset and initialize
mjr 5:a70c0bce770d 2967 reset();
mjr 5:a70c0bce770d 2968 }
mjr 5:a70c0bce770d 2969
mjr 5:a70c0bce770d 2970 void reset()
mjr 5:a70c0bce770d 2971 {
mjr 6:cc35eb643e8f 2972 // clear the center point
mjr 6:cc35eb643e8f 2973 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 2974
mjr 6:cc35eb643e8f 2975 // start the calibration timer
mjr 5:a70c0bce770d 2976 tCenter_.start();
mjr 5:a70c0bce770d 2977 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 2978
mjr 5:a70c0bce770d 2979 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 2980 mma_.init();
mjr 6:cc35eb643e8f 2981
mjr 6:cc35eb643e8f 2982 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 2983 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2984
mjr 6:cc35eb643e8f 2985 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 2986 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 2987 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 2988
mjr 3:3514575d4f86 2989 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 2990 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 2991
mjr 3:3514575d4f86 2992 // start our timers
mjr 3:3514575d4f86 2993 tGet_.start();
mjr 3:3514575d4f86 2994 tInt_.start();
mjr 3:3514575d4f86 2995 }
mjr 3:3514575d4f86 2996
mjr 9:fd65b0a94720 2997 void get(int &x, int &y)
mjr 3:3514575d4f86 2998 {
mjr 3:3514575d4f86 2999 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 3000 __disable_irq();
mjr 3:3514575d4f86 3001
mjr 3:3514575d4f86 3002 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 3003 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 3004 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 3005
mjr 6:cc35eb643e8f 3006 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 3007 vx_ = vy_ = 0;
mjr 3:3514575d4f86 3008
mjr 3:3514575d4f86 3009 // get the time since the last get() sample
mjr 73:4e8ce0b18915 3010 int dtus = tGet_.read_us();
mjr 3:3514575d4f86 3011 tGet_.reset();
mjr 3:3514575d4f86 3012
mjr 3:3514575d4f86 3013 // done manipulating the shared data
mjr 3:3514575d4f86 3014 __enable_irq();
mjr 3:3514575d4f86 3015
mjr 6:cc35eb643e8f 3016 // adjust the readings for the integration time
mjr 73:4e8ce0b18915 3017 float dt = dtus/1000000.0f;
mjr 6:cc35eb643e8f 3018 vx /= dt;
mjr 6:cc35eb643e8f 3019 vy /= dt;
mjr 6:cc35eb643e8f 3020
mjr 6:cc35eb643e8f 3021 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 3022 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 3023 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 3024
mjr 5:a70c0bce770d 3025 // check for auto-centering every so often
mjr 48:058ace2aed1d 3026 if (tCenter_.read_us() > 1000000)
mjr 5:a70c0bce770d 3027 {
mjr 5:a70c0bce770d 3028 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 3029 AccHist *prv = p;
mjr 5:a70c0bce770d 3030 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 3031 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 3032 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 3033
mjr 5:a70c0bce770d 3034 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 3035 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 3036 {
mjr 5:a70c0bce770d 3037 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 3038 static const float accTol = .01;
mjr 6:cc35eb643e8f 3039 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 3040 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 3041 && p0[1].d < accTol
mjr 6:cc35eb643e8f 3042 && p0[2].d < accTol
mjr 6:cc35eb643e8f 3043 && p0[3].d < accTol
mjr 6:cc35eb643e8f 3044 && p0[4].d < accTol)
mjr 5:a70c0bce770d 3045 {
mjr 6:cc35eb643e8f 3046 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 3047 // the samples over the rest period
mjr 6:cc35eb643e8f 3048 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 3049 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 3050 }
mjr 5:a70c0bce770d 3051 }
mjr 5:a70c0bce770d 3052 else
mjr 5:a70c0bce770d 3053 {
mjr 5:a70c0bce770d 3054 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 3055 ++nAccPrv_;
mjr 5:a70c0bce770d 3056 }
mjr 6:cc35eb643e8f 3057
mjr 6:cc35eb643e8f 3058 // clear the new item's running totals
mjr 6:cc35eb643e8f 3059 p->clearAvg();
mjr 5:a70c0bce770d 3060
mjr 5:a70c0bce770d 3061 // reset the timer
mjr 5:a70c0bce770d 3062 tCenter_.reset();
mjr 39:b3815a1c3802 3063
mjr 39:b3815a1c3802 3064 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 3065 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 3066 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 3067 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 3068 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 3069 // generation to continue.
mjr 39:b3815a1c3802 3070 //
mjr 39:b3815a1c3802 3071 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 3072 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 3073 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 3074 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 3075 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 3076 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 3077 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 3078 {
mjr 39:b3815a1c3802 3079 float x, y, z;
mjr 39:b3815a1c3802 3080 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 3081 }
mjr 5:a70c0bce770d 3082 }
mjr 5:a70c0bce770d 3083
mjr 6:cc35eb643e8f 3084 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 3085 x = rawToReport(vx);
mjr 6:cc35eb643e8f 3086 y = rawToReport(vy);
mjr 5:a70c0bce770d 3087
mjr 6:cc35eb643e8f 3088 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 3089 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 3090 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3091 #endif
mjr 3:3514575d4f86 3092 }
mjr 29:582472d0bc57 3093
mjr 3:3514575d4f86 3094 private:
mjr 6:cc35eb643e8f 3095 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 3096 int rawToReport(float v)
mjr 5:a70c0bce770d 3097 {
mjr 6:cc35eb643e8f 3098 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 3099 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 3100
mjr 6:cc35eb643e8f 3101 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3102 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3103 static const int filter[] = {
mjr 6:cc35eb643e8f 3104 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3105 0,
mjr 6:cc35eb643e8f 3106 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3107 };
mjr 6:cc35eb643e8f 3108 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3109 }
mjr 5:a70c0bce770d 3110
mjr 3:3514575d4f86 3111 // interrupt handler
mjr 3:3514575d4f86 3112 void isr()
mjr 3:3514575d4f86 3113 {
mjr 3:3514575d4f86 3114 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 3115 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 3116 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 3117 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 3118 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 3119 float x, y, z;
mjr 5:a70c0bce770d 3120 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 3121
mjr 3:3514575d4f86 3122 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 3123 float dt = tInt_.read();
mjr 3:3514575d4f86 3124 tInt_.reset();
mjr 6:cc35eb643e8f 3125
mjr 6:cc35eb643e8f 3126 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 3127 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 3128 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 3129
mjr 6:cc35eb643e8f 3130 // store the updates
mjr 6:cc35eb643e8f 3131 ax_ = x;
mjr 6:cc35eb643e8f 3132 ay_ = y;
mjr 6:cc35eb643e8f 3133 az_ = z;
mjr 3:3514575d4f86 3134 }
mjr 3:3514575d4f86 3135
mjr 3:3514575d4f86 3136 // underlying accelerometer object
mjr 3:3514575d4f86 3137 MMA8451Q mma_;
mjr 3:3514575d4f86 3138
mjr 5:a70c0bce770d 3139 // last raw acceleration readings
mjr 6:cc35eb643e8f 3140 float ax_, ay_, az_;
mjr 5:a70c0bce770d 3141
mjr 6:cc35eb643e8f 3142 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 3143 float vx_, vy_;
mjr 6:cc35eb643e8f 3144
mjr 3:3514575d4f86 3145 // timer for measuring time between get() samples
mjr 3:3514575d4f86 3146 Timer tGet_;
mjr 3:3514575d4f86 3147
mjr 3:3514575d4f86 3148 // timer for measuring time between interrupts
mjr 3:3514575d4f86 3149 Timer tInt_;
mjr 5:a70c0bce770d 3150
mjr 6:cc35eb643e8f 3151 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3152 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3153 // at rest.
mjr 6:cc35eb643e8f 3154 float cx_, cy_;
mjr 5:a70c0bce770d 3155
mjr 5:a70c0bce770d 3156 // timer for atuo-centering
mjr 5:a70c0bce770d 3157 Timer tCenter_;
mjr 6:cc35eb643e8f 3158
mjr 6:cc35eb643e8f 3159 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 3160 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 3161 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3162 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3163 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3164 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3165 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3166 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3167 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3168 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3169 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3170 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 3171 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 3172 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 3173 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3174
mjr 5:a70c0bce770d 3175 // interurupt pin name
mjr 5:a70c0bce770d 3176 PinName irqPin_;
mjr 5:a70c0bce770d 3177
mjr 5:a70c0bce770d 3178 // interrupt router
mjr 5:a70c0bce770d 3179 InterruptIn intIn_;
mjr 3:3514575d4f86 3180 };
mjr 3:3514575d4f86 3181
mjr 5:a70c0bce770d 3182
mjr 5:a70c0bce770d 3183 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3184 //
mjr 14:df700b22ca08 3185 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3186 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3187 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3188 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3189 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3190 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3191 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3192 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3193 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3194 //
mjr 14:df700b22ca08 3195 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3196 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3197 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3198 //
mjr 5:a70c0bce770d 3199 void clear_i2c()
mjr 5:a70c0bce770d 3200 {
mjr 38:091e511ce8a0 3201 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3202 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3203 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3204
mjr 5:a70c0bce770d 3205 // clock the SCL 9 times
mjr 5:a70c0bce770d 3206 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3207 {
mjr 5:a70c0bce770d 3208 scl = 1;
mjr 5:a70c0bce770d 3209 wait_us(20);
mjr 5:a70c0bce770d 3210 scl = 0;
mjr 5:a70c0bce770d 3211 wait_us(20);
mjr 5:a70c0bce770d 3212 }
mjr 5:a70c0bce770d 3213 }
mjr 14:df700b22ca08 3214
mjr 14:df700b22ca08 3215 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3216 //
mjr 33:d832bcab089e 3217 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3218 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3219 //
mjr 33:d832bcab089e 3220 class Debouncer
mjr 33:d832bcab089e 3221 {
mjr 33:d832bcab089e 3222 public:
mjr 33:d832bcab089e 3223 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3224 {
mjr 33:d832bcab089e 3225 t.start();
mjr 33:d832bcab089e 3226 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3227 this->tmin = tmin;
mjr 33:d832bcab089e 3228 }
mjr 33:d832bcab089e 3229
mjr 33:d832bcab089e 3230 // Get the current stable value
mjr 33:d832bcab089e 3231 bool val() const { return stable; }
mjr 33:d832bcab089e 3232
mjr 33:d832bcab089e 3233 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3234 // input device.
mjr 33:d832bcab089e 3235 void sampleIn(bool val)
mjr 33:d832bcab089e 3236 {
mjr 33:d832bcab089e 3237 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 3238 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 3239 // on the sample reader.
mjr 33:d832bcab089e 3240 if (val != prv)
mjr 33:d832bcab089e 3241 {
mjr 33:d832bcab089e 3242 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 3243 t.reset();
mjr 33:d832bcab089e 3244
mjr 33:d832bcab089e 3245 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 3246 prv = val;
mjr 33:d832bcab089e 3247 }
mjr 33:d832bcab089e 3248 else if (val != stable)
mjr 33:d832bcab089e 3249 {
mjr 33:d832bcab089e 3250 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 3251 // and different from the stable value. This means that
mjr 33:d832bcab089e 3252 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 3253 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 3254 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 3255 if (t.read() > tmin)
mjr 33:d832bcab089e 3256 stable = val;
mjr 33:d832bcab089e 3257 }
mjr 33:d832bcab089e 3258 }
mjr 33:d832bcab089e 3259
mjr 33:d832bcab089e 3260 private:
mjr 33:d832bcab089e 3261 // current stable value
mjr 33:d832bcab089e 3262 bool stable;
mjr 33:d832bcab089e 3263
mjr 33:d832bcab089e 3264 // last raw sample value
mjr 33:d832bcab089e 3265 bool prv;
mjr 33:d832bcab089e 3266
mjr 33:d832bcab089e 3267 // elapsed time since last raw input change
mjr 33:d832bcab089e 3268 Timer t;
mjr 33:d832bcab089e 3269
mjr 33:d832bcab089e 3270 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 3271 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 3272 float tmin;
mjr 33:d832bcab089e 3273 };
mjr 33:d832bcab089e 3274
mjr 33:d832bcab089e 3275
mjr 33:d832bcab089e 3276 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 3277 //
mjr 33:d832bcab089e 3278 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 3279 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 3280 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 3281 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 3282 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 3283 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 3284 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 3285 //
mjr 33:d832bcab089e 3286 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 3287 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 3288 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 3289 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 3290 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 3291 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 3292 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 3293 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 3294 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 3295 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 3296 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 3297 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 3298 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 3299 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 3300 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 3301 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 3302 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 3303 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 3304 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 3305 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 3306 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 3307 //
mjr 40:cc0d9814522b 3308 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 3309 // of tricky but likely scenarios:
mjr 33:d832bcab089e 3310 //
mjr 33:d832bcab089e 3311 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 3312 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 3313 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 3314 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 3315 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 3316 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 3317 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 3318 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 3319 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 3320 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 3321 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 3322 //
mjr 33:d832bcab089e 3323 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 3324 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 3325 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 3326 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 3327 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 3328 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 3329 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 3330 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 3331 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 3332 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 3333 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 3334 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 3335 // first check.
mjr 33:d832bcab089e 3336 //
mjr 33:d832bcab089e 3337 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 3338 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 3339 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 3340 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 3341 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 3342 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 3343 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 3344 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 3345 //
mjr 33:d832bcab089e 3346
mjr 33:d832bcab089e 3347 // Current PSU2 state:
mjr 33:d832bcab089e 3348 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 3349 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 3350 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 3351 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 3352 // 5 -> TV relay on
mjr 73:4e8ce0b18915 3353 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 3354
mjr 73:4e8ce0b18915 3355 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 3356 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 3357 // separate state for each:
mjr 73:4e8ce0b18915 3358 //
mjr 73:4e8ce0b18915 3359 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 3360 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 3361 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 3362 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 3363 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 3364
mjr 73:4e8ce0b18915 3365 // TV ON switch relay control
mjr 73:4e8ce0b18915 3366 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 3367
mjr 35:e959ffba78fd 3368 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 3369 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 3370 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 3371
mjr 73:4e8ce0b18915 3372 // Apply the current TV relay state
mjr 73:4e8ce0b18915 3373 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 3374 {
mjr 73:4e8ce0b18915 3375 // update the state
mjr 73:4e8ce0b18915 3376 if (state)
mjr 73:4e8ce0b18915 3377 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 3378 else
mjr 73:4e8ce0b18915 3379 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 3380
mjr 73:4e8ce0b18915 3381 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 3382 if (tv_relay != 0)
mjr 73:4e8ce0b18915 3383 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 3384 }
mjr 35:e959ffba78fd 3385
mjr 35:e959ffba78fd 3386 // Timer interrupt
mjr 35:e959ffba78fd 3387 Ticker tv_ticker;
mjr 35:e959ffba78fd 3388 float tv_delay_time;
mjr 33:d832bcab089e 3389 void TVTimerInt()
mjr 33:d832bcab089e 3390 {
mjr 35:e959ffba78fd 3391 // time since last state change
mjr 35:e959ffba78fd 3392 static Timer tv_timer;
mjr 35:e959ffba78fd 3393
mjr 33:d832bcab089e 3394 // Check our internal state
mjr 33:d832bcab089e 3395 switch (psu2_state)
mjr 33:d832bcab089e 3396 {
mjr 33:d832bcab089e 3397 case 1:
mjr 33:d832bcab089e 3398 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 3399 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 3400 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 3401 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 3402 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 3403 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 3404 {
mjr 33:d832bcab089e 3405 // switch to OFF state
mjr 33:d832bcab089e 3406 psu2_state = 2;
mjr 33:d832bcab089e 3407
mjr 33:d832bcab089e 3408 // try setting the latch
mjr 35:e959ffba78fd 3409 psu2_status_set->write(1);
mjr 33:d832bcab089e 3410 }
mjr 33:d832bcab089e 3411 break;
mjr 33:d832bcab089e 3412
mjr 33:d832bcab089e 3413 case 2:
mjr 33:d832bcab089e 3414 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 3415 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 3416 psu2_status_set->write(0);
mjr 33:d832bcab089e 3417 psu2_state = 3;
mjr 33:d832bcab089e 3418 break;
mjr 33:d832bcab089e 3419
mjr 33:d832bcab089e 3420 case 3:
mjr 33:d832bcab089e 3421 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3422 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3423 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3424 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3425 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3426 {
mjr 33:d832bcab089e 3427 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3428 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3429 tv_timer.reset();
mjr 33:d832bcab089e 3430 tv_timer.start();
mjr 33:d832bcab089e 3431 psu2_state = 4;
mjr 73:4e8ce0b18915 3432
mjr 73:4e8ce0b18915 3433 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3434 powerTimerDiagState = 2;
mjr 73:4e8ce0b18915 3435 diagLED();
mjr 33:d832bcab089e 3436 }
mjr 33:d832bcab089e 3437 else
mjr 33:d832bcab089e 3438 {
mjr 33:d832bcab089e 3439 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 3440 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 3441 // was turned on since the last check.
mjr 35:e959ffba78fd 3442 psu2_status_set->write(1);
mjr 33:d832bcab089e 3443 psu2_state = 2;
mjr 33:d832bcab089e 3444 }
mjr 33:d832bcab089e 3445 break;
mjr 33:d832bcab089e 3446
mjr 33:d832bcab089e 3447 case 4:
mjr 33:d832bcab089e 3448 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 3449 // delay time, pulse the relay.
mjr 35:e959ffba78fd 3450 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 3451 {
mjr 33:d832bcab089e 3452 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 3453 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 3454 psu2_state = 5;
mjr 33:d832bcab089e 3455 }
mjr 73:4e8ce0b18915 3456
mjr 73:4e8ce0b18915 3457 // flash the power time diagnostic every two interrupts
mjr 73:4e8ce0b18915 3458 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 73:4e8ce0b18915 3459 diagLED();
mjr 33:d832bcab089e 3460 break;
mjr 33:d832bcab089e 3461
mjr 33:d832bcab089e 3462 case 5:
mjr 33:d832bcab089e 3463 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 3464 // it's now time to turn it off and return to the default state.
mjr 73:4e8ce0b18915 3465 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 33:d832bcab089e 3466 psu2_state = 1;
mjr 73:4e8ce0b18915 3467
mjr 73:4e8ce0b18915 3468 // done with the diagnostic flashes
mjr 73:4e8ce0b18915 3469 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 3470 diagLED();
mjr 33:d832bcab089e 3471 break;
mjr 33:d832bcab089e 3472 }
mjr 33:d832bcab089e 3473 }
mjr 33:d832bcab089e 3474
mjr 35:e959ffba78fd 3475 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 3476 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 3477 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 3478 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 3479 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 3480 {
mjr 55:4db125cd11a0 3481 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 3482 // time is nonzero
mjr 55:4db125cd11a0 3483 if (cfg.TVON.delayTime != 0
mjr 55:4db125cd11a0 3484 && cfg.TVON.statusPin != 0xFF
mjr 53:9b2611964afc 3485 && cfg.TVON.latchPin != 0xFF
mjr 53:9b2611964afc 3486 && cfg.TVON.relayPin != 0xFF)
mjr 35:e959ffba78fd 3487 {
mjr 53:9b2611964afc 3488 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 3489 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 53:9b2611964afc 3490 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 73:4e8ce0b18915 3491 tv_delay_time = cfg.TVON.delayTime/100.0f;
mjr 35:e959ffba78fd 3492
mjr 35:e959ffba78fd 3493 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 3494 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 3495 }
mjr 35:e959ffba78fd 3496 }
mjr 35:e959ffba78fd 3497
mjr 73:4e8ce0b18915 3498 // TV relay manual control timer. This lets us pulse the TV relay
mjr 73:4e8ce0b18915 3499 // under manual control, separately from the TV ON timer.
mjr 73:4e8ce0b18915 3500 Ticker tv_manualTicker;
mjr 73:4e8ce0b18915 3501 void TVManualInt()
mjr 73:4e8ce0b18915 3502 {
mjr 73:4e8ce0b18915 3503 tv_manualTicker.detach();
mjr 73:4e8ce0b18915 3504 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 3505 }
mjr 73:4e8ce0b18915 3506
mjr 73:4e8ce0b18915 3507 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 3508 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 3509 //
mjr 73:4e8ce0b18915 3510 // Mode:
mjr 73:4e8ce0b18915 3511 // 0 = turn relay off
mjr 73:4e8ce0b18915 3512 // 1 = turn relay on
mjr 73:4e8ce0b18915 3513 // 2 = pulse relay
mjr 73:4e8ce0b18915 3514 void TVRelay(int mode)
mjr 73:4e8ce0b18915 3515 {
mjr 73:4e8ce0b18915 3516 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 3517 if (tv_relay == 0)
mjr 73:4e8ce0b18915 3518 return;
mjr 73:4e8ce0b18915 3519
mjr 73:4e8ce0b18915 3520 switch (mode)
mjr 73:4e8ce0b18915 3521 {
mjr 73:4e8ce0b18915 3522 case 0:
mjr 73:4e8ce0b18915 3523 // relay off
mjr 73:4e8ce0b18915 3524 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 3525 break;
mjr 73:4e8ce0b18915 3526
mjr 73:4e8ce0b18915 3527 case 1:
mjr 73:4e8ce0b18915 3528 // relay on
mjr 73:4e8ce0b18915 3529 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 3530 break;
mjr 73:4e8ce0b18915 3531
mjr 73:4e8ce0b18915 3532 case 2:
mjr 73:4e8ce0b18915 3533 // Pulse the relay. Turn it on, then set our timer for 250ms.
mjr 73:4e8ce0b18915 3534 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 3535 tv_manualTicker.attach(&TVManualInt, 0.25);
mjr 73:4e8ce0b18915 3536 break;
mjr 73:4e8ce0b18915 3537 }
mjr 73:4e8ce0b18915 3538 }
mjr 73:4e8ce0b18915 3539
mjr 73:4e8ce0b18915 3540
mjr 35:e959ffba78fd 3541 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3542 //
mjr 35:e959ffba78fd 3543 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 3544 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 3545 //
mjr 35:e959ffba78fd 3546 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 3547 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 3548 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 3549 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 3550 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 3551 // again each time the firmware is updated.
mjr 35:e959ffba78fd 3552 //
mjr 35:e959ffba78fd 3553 NVM nvm;
mjr 35:e959ffba78fd 3554
mjr 35:e959ffba78fd 3555 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 3556 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 3557
mjr 35:e959ffba78fd 3558 // flash memory controller interface
mjr 35:e959ffba78fd 3559 FreescaleIAP iap;
mjr 35:e959ffba78fd 3560
mjr 35:e959ffba78fd 3561 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 3562 // required to store the structure
mjr 35:e959ffba78fd 3563 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 3564 {
mjr 35:e959ffba78fd 3565 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 3566 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 3567
mjr 35:e959ffba78fd 3568 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 3569 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 3570 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 3571
mjr 35:e959ffba78fd 3572 // return the address as a pointer
mjr 35:e959ffba78fd 3573 return (NVM *)addr;
mjr 35:e959ffba78fd 3574 }
mjr 35:e959ffba78fd 3575
mjr 35:e959ffba78fd 3576 // figure the flash address as a pointer
mjr 35:e959ffba78fd 3577 NVM *configFlashAddr()
mjr 35:e959ffba78fd 3578 {
mjr 35:e959ffba78fd 3579 int addr, numSectors;
mjr 35:e959ffba78fd 3580 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 3581 }
mjr 35:e959ffba78fd 3582
mjr 35:e959ffba78fd 3583 // Load the config from flash
mjr 35:e959ffba78fd 3584 void loadConfigFromFlash()
mjr 35:e959ffba78fd 3585 {
mjr 35:e959ffba78fd 3586 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 3587 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 3588 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 3589 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 3590 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 3591 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 3592 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 3593 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 3594 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 3595 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 3596 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 3597 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 3598 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 3599 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 3600 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 3601 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 3602
mjr 35:e959ffba78fd 3603 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 3604 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 3605
mjr 35:e959ffba78fd 3606 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 3607 if (flash->valid())
mjr 35:e959ffba78fd 3608 {
mjr 35:e959ffba78fd 3609 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 3610 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 3611 }
mjr 35:e959ffba78fd 3612 else
mjr 35:e959ffba78fd 3613 {
mjr 35:e959ffba78fd 3614 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 3615 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 3616 }
mjr 35:e959ffba78fd 3617 }
mjr 35:e959ffba78fd 3618
mjr 35:e959ffba78fd 3619 void saveConfigToFlash()
mjr 33:d832bcab089e 3620 {
mjr 35:e959ffba78fd 3621 int addr, sectors;
mjr 35:e959ffba78fd 3622 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 3623 nvm.save(iap, addr);
mjr 35:e959ffba78fd 3624 }
mjr 35:e959ffba78fd 3625
mjr 35:e959ffba78fd 3626 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3627 //
mjr 55:4db125cd11a0 3628 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 3629 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 3630 //
mjr 55:4db125cd11a0 3631 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 3632 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 3633 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 3634
mjr 55:4db125cd11a0 3635
mjr 55:4db125cd11a0 3636
mjr 55:4db125cd11a0 3637 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 3638 //
mjr 40:cc0d9814522b 3639 // Night mode setting updates
mjr 40:cc0d9814522b 3640 //
mjr 38:091e511ce8a0 3641
mjr 38:091e511ce8a0 3642 // Turn night mode on or off
mjr 38:091e511ce8a0 3643 static void setNightMode(bool on)
mjr 38:091e511ce8a0 3644 {
mjr 40:cc0d9814522b 3645 // set the new night mode flag in the noisy output class
mjr 53:9b2611964afc 3646 nightMode = on;
mjr 55:4db125cd11a0 3647
mjr 40:cc0d9814522b 3648 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 3649 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 3650 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 3651 lwPin[port]->set(nightMode ? 255 : 0);
mjr 40:cc0d9814522b 3652
mjr 40:cc0d9814522b 3653 // update all outputs for the mode change
mjr 40:cc0d9814522b 3654 updateAllOuts();
mjr 38:091e511ce8a0 3655 }
mjr 38:091e511ce8a0 3656
mjr 38:091e511ce8a0 3657 // Toggle night mode
mjr 38:091e511ce8a0 3658 static void toggleNightMode()
mjr 38:091e511ce8a0 3659 {
mjr 53:9b2611964afc 3660 setNightMode(!nightMode);
mjr 38:091e511ce8a0 3661 }
mjr 38:091e511ce8a0 3662
mjr 38:091e511ce8a0 3663
mjr 38:091e511ce8a0 3664 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 3665 //
mjr 35:e959ffba78fd 3666 // Plunger Sensor
mjr 35:e959ffba78fd 3667 //
mjr 35:e959ffba78fd 3668
mjr 35:e959ffba78fd 3669 // the plunger sensor interface object
mjr 35:e959ffba78fd 3670 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 3671
mjr 35:e959ffba78fd 3672 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 3673 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 3674 void createPlunger()
mjr 35:e959ffba78fd 3675 {
mjr 35:e959ffba78fd 3676 // create the new sensor object according to the type
mjr 35:e959ffba78fd 3677 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 3678 {
mjr 35:e959ffba78fd 3679 case PlungerType_TSL1410RS:
mjr 69:cc5039284fac 3680 // TSL1410R, serial mode (all pixels read in one file)
mjr 35:e959ffba78fd 3681 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 3682 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 3683 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3684 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3685 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3686 NC);
mjr 35:e959ffba78fd 3687 break;
mjr 35:e959ffba78fd 3688
mjr 35:e959ffba78fd 3689 case PlungerType_TSL1410RP:
mjr 69:cc5039284fac 3690 // TSL1410R, parallel mode (each half-sensor's pixels read separately)
mjr 35:e959ffba78fd 3691 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3692 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 3693 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3694 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3695 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3696 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 3697 break;
mjr 35:e959ffba78fd 3698
mjr 69:cc5039284fac 3699 case PlungerType_TSL1412SS:
mjr 69:cc5039284fac 3700 // TSL1412S, serial mode
mjr 35:e959ffba78fd 3701 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3702 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 3703 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3704 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3705 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3706 NC);
mjr 35:e959ffba78fd 3707 break;
mjr 35:e959ffba78fd 3708
mjr 69:cc5039284fac 3709 case PlungerType_TSL1412SP:
mjr 69:cc5039284fac 3710 // TSL1412S, parallel mode
mjr 35:e959ffba78fd 3711 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3712 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 3713 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3714 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3715 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3716 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 3717 break;
mjr 35:e959ffba78fd 3718
mjr 35:e959ffba78fd 3719 case PlungerType_Pot:
mjr 35:e959ffba78fd 3720 // pins are: AO
mjr 53:9b2611964afc 3721 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 3722 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 3723 break;
mjr 35:e959ffba78fd 3724
mjr 35:e959ffba78fd 3725 case PlungerType_None:
mjr 35:e959ffba78fd 3726 default:
mjr 35:e959ffba78fd 3727 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 3728 break;
mjr 35:e959ffba78fd 3729 }
mjr 33:d832bcab089e 3730 }
mjr 33:d832bcab089e 3731
mjr 52:8298b2a73eb2 3732 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 3733 bool plungerCalMode;
mjr 52:8298b2a73eb2 3734
mjr 48:058ace2aed1d 3735 // Plunger reader
mjr 51:57eb311faafa 3736 //
mjr 51:57eb311faafa 3737 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 3738 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 3739 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 3740 //
mjr 51:57eb311faafa 3741 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 3742 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 3743 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 3744 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 3745 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 3746 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 3747 // firing motion.
mjr 51:57eb311faafa 3748 //
mjr 51:57eb311faafa 3749 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 3750 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 3751 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 3752 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 3753 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 3754 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 3755 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 3756 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 3757 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 3758 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 3759 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 3760 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 3761 // a classic digital aliasing effect.
mjr 51:57eb311faafa 3762 //
mjr 51:57eb311faafa 3763 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 3764 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 3765 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 3766 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 3767 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 3768 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 3769 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 3770 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 3771 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 3772 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 3773 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 3774 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 3775 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 3776 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 3777 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 3778 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 3779 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 3780 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 3781 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 3782 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 3783 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 3784 //
mjr 48:058ace2aed1d 3785 class PlungerReader
mjr 48:058ace2aed1d 3786 {
mjr 48:058ace2aed1d 3787 public:
mjr 48:058ace2aed1d 3788 PlungerReader()
mjr 48:058ace2aed1d 3789 {
mjr 48:058ace2aed1d 3790 // not in a firing event yet
mjr 48:058ace2aed1d 3791 firing = 0;
mjr 48:058ace2aed1d 3792
mjr 48:058ace2aed1d 3793 // no history yet
mjr 48:058ace2aed1d 3794 histIdx = 0;
mjr 55:4db125cd11a0 3795
mjr 55:4db125cd11a0 3796 // initialize the filter
mjr 55:4db125cd11a0 3797 initFilter();
mjr 48:058ace2aed1d 3798 }
mjr 48:058ace2aed1d 3799
mjr 48:058ace2aed1d 3800 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 3801 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 3802 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 3803 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 3804 void read()
mjr 48:058ace2aed1d 3805 {
mjr 48:058ace2aed1d 3806 // Read a sample from the sensor
mjr 48:058ace2aed1d 3807 PlungerReading r;
mjr 48:058ace2aed1d 3808 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 3809 {
mjr 69:cc5039284fac 3810 // filter the raw sensor reading
mjr 69:cc5039284fac 3811 applyPreFilter(r);
mjr 69:cc5039284fac 3812
mjr 51:57eb311faafa 3813 // Pull the previous reading from the history
mjr 50:40015764bbe6 3814 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 3815
mjr 69:cc5039284fac 3816 // If the new reading is within 1ms of the previous reading,
mjr 48:058ace2aed1d 3817 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 3818 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 3819 // denominator (the time interval) for calculating the plunger
mjr 69:cc5039284fac 3820 // velocity. The CCD sensor hardware takes about 2.5ms to
mjr 69:cc5039284fac 3821 // read, so it will never be affected by this, but other sensor
mjr 69:cc5039284fac 3822 // types don't all have the same hardware cycle time, so we need
mjr 69:cc5039284fac 3823 // to throttle them artificially. E.g., the potentiometer only
mjr 69:cc5039284fac 3824 // needs one ADC sample per reading, which only takes about 15us.
mjr 69:cc5039284fac 3825 // We don't need to check which sensor type we have here; we
mjr 69:cc5039284fac 3826 // just ignore readings until the minimum interval has passed,
mjr 69:cc5039284fac 3827 // so if the sensor is already slower than this, we'll end up
mjr 69:cc5039284fac 3828 // using all of its readings.
mjr 69:cc5039284fac 3829 if (uint32_t(r.t - prv.t) < 1000UL)
mjr 48:058ace2aed1d 3830 return;
mjr 53:9b2611964afc 3831
mjr 53:9b2611964afc 3832 // check for calibration mode
mjr 53:9b2611964afc 3833 if (plungerCalMode)
mjr 53:9b2611964afc 3834 {
mjr 53:9b2611964afc 3835 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 3836 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 3837 // expand the envelope to include this new value.
mjr 53:9b2611964afc 3838 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 3839 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 3840 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 3841 cfg.plunger.cal.min = r.pos;
mjr 50:40015764bbe6 3842
mjr 53:9b2611964afc 3843 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 3844 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 3845 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 3846 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 3847 if (calState == 0)
mjr 53:9b2611964afc 3848 {
mjr 53:9b2611964afc 3849 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 3850 {
mjr 53:9b2611964afc 3851 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 3852 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 3853 {
mjr 53:9b2611964afc 3854 // we've been at rest long enough - count it
mjr 53:9b2611964afc 3855 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 3856 calZeroPosN += 1;
mjr 53:9b2611964afc 3857
mjr 53:9b2611964afc 3858 // update the zero position from the new average
mjr 53:9b2611964afc 3859 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 53:9b2611964afc 3860
mjr 53:9b2611964afc 3861 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 3862 calState = 1;
mjr 53:9b2611964afc 3863 }
mjr 53:9b2611964afc 3864 }
mjr 53:9b2611964afc 3865 else
mjr 53:9b2611964afc 3866 {
mjr 53:9b2611964afc 3867 // we're not close to the last position - start again here
mjr 53:9b2611964afc 3868 calZeroStart = r;
mjr 53:9b2611964afc 3869 }
mjr 53:9b2611964afc 3870 }
mjr 53:9b2611964afc 3871
mjr 53:9b2611964afc 3872 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 3873 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 3874 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 3875 r.pos = int(
mjr 53:9b2611964afc 3876 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 3877 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 3878 }
mjr 53:9b2611964afc 3879 else
mjr 53:9b2611964afc 3880 {
mjr 53:9b2611964afc 3881 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 3882 // rescale to the joystick range.
mjr 53:9b2611964afc 3883 r.pos = int(
mjr 53:9b2611964afc 3884 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 3885 / (cfg.plunger.cal.max - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 3886
mjr 53:9b2611964afc 3887 // limit the result to the valid joystick range
mjr 53:9b2611964afc 3888 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 3889 r.pos = JOYMAX;
mjr 53:9b2611964afc 3890 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 3891 r.pos = -JOYMAX;
mjr 53:9b2611964afc 3892 }
mjr 50:40015764bbe6 3893
mjr 50:40015764bbe6 3894 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 3895 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 3896 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 3897 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 3898 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 3899 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 3900 // large.
mjr 50:40015764bbe6 3901 //
mjr 50:40015764bbe6 3902 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 3903 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 3904 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 3905 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 3906 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 3907 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 3908 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 3909 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 3910 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 3911 //
mjr 50:40015764bbe6 3912 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 3913 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 3914 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 3915 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 3916 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 3917 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 3918 // a little CPU time by using the natural units of our inputs.
mjr 51:57eb311faafa 3919 const PlungerReading &prv2 = nthHist(1);
mjr 50:40015764bbe6 3920 float v = float(r.pos - prv2.pos)/float(r.t - prv2.t);
mjr 50:40015764bbe6 3921
mjr 50:40015764bbe6 3922 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 3923 z = r.pos;
mjr 50:40015764bbe6 3924 vz = v;
mjr 48:058ace2aed1d 3925
mjr 50:40015764bbe6 3926 // Check firing events
mjr 50:40015764bbe6 3927 switch (firing)
mjr 50:40015764bbe6 3928 {
mjr 50:40015764bbe6 3929 case 0:
mjr 50:40015764bbe6 3930 // Default state - not in a firing event.
mjr 50:40015764bbe6 3931
mjr 50:40015764bbe6 3932 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 3933 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 3934 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 3935 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 3936 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 3937 {
mjr 53:9b2611964afc 3938 // enter firing phase 1
mjr 50:40015764bbe6 3939 firingMode(1);
mjr 50:40015764bbe6 3940
mjr 53:9b2611964afc 3941 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 3942 // at rest)
mjr 53:9b2611964afc 3943 if (calState == 1)
mjr 53:9b2611964afc 3944 calState = 2;
mjr 53:9b2611964afc 3945
mjr 50:40015764bbe6 3946 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 3947 f1.pos = 0;
mjr 50:40015764bbe6 3948 f1.t = r.t;
mjr 50:40015764bbe6 3949
mjr 50:40015764bbe6 3950 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 3951 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 3952 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 3953 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 3954 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 3955 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 3956 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 3957 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 3958 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 3959 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 3960 }
mjr 50:40015764bbe6 3961 break;
mjr 50:40015764bbe6 3962
mjr 50:40015764bbe6 3963 case 1:
mjr 50:40015764bbe6 3964 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 3965 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 3966 // see acceleration in the forward direction.
mjr 50:40015764bbe6 3967 if (r.pos <= 0)
mjr 50:40015764bbe6 3968 {
mjr 50:40015764bbe6 3969 // switch to the synthetic firing mode
mjr 50:40015764bbe6 3970 firingMode(2);
mjr 50:40015764bbe6 3971 z = f2.pos;
mjr 50:40015764bbe6 3972
mjr 50:40015764bbe6 3973 // note the start time for the firing phase
mjr 50:40015764bbe6 3974 f2.t = r.t;
mjr 53:9b2611964afc 3975
mjr 53:9b2611964afc 3976 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 3977 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 3978 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 3979 {
mjr 53:9b2611964afc 3980 // collect a new zero point for the average when we
mjr 53:9b2611964afc 3981 // come to rest
mjr 53:9b2611964afc 3982 calState = 0;
mjr 53:9b2611964afc 3983
mjr 53:9b2611964afc 3984 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 3985 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 3986 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 3987 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 3988 {
mjr 53:9b2611964afc 3989 calRlsTimeSum += dt;
mjr 53:9b2611964afc 3990 calRlsTimeN += 1;
mjr 53:9b2611964afc 3991 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 3992 }
mjr 53:9b2611964afc 3993 }
mjr 50:40015764bbe6 3994 }
mjr 50:40015764bbe6 3995 else if (v < vprv2)
mjr 50:40015764bbe6 3996 {
mjr 50:40015764bbe6 3997 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 3998 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 3999 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 4000 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 4001 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 4002 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 4003
mjr 50:40015764bbe6 4004 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 4005 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 4006 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 4007 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 4008 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 4009 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 4010 if (f1.pos != 0)
mjr 50:40015764bbe6 4011 {
mjr 50:40015764bbe6 4012 // we have a reset point - freeze there
mjr 50:40015764bbe6 4013 z = f1.pos;
mjr 50:40015764bbe6 4014 }
mjr 50:40015764bbe6 4015 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 4016 {
mjr 50:40015764bbe6 4017 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 4018 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 4019 }
mjr 50:40015764bbe6 4020 }
mjr 50:40015764bbe6 4021 else
mjr 50:40015764bbe6 4022 {
mjr 50:40015764bbe6 4023 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 4024 firingMode(0);
mjr 53:9b2611964afc 4025 calState = 1;
mjr 50:40015764bbe6 4026 }
mjr 50:40015764bbe6 4027 break;
mjr 50:40015764bbe6 4028
mjr 50:40015764bbe6 4029 case 2:
mjr 50:40015764bbe6 4030 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 4031 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 4032 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 4033 // report at least once.
mjr 50:40015764bbe6 4034 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 4035 {
mjr 50:40015764bbe6 4036 // report the bounce position
mjr 50:40015764bbe6 4037 z = f2.pos;
mjr 50:40015764bbe6 4038 }
mjr 50:40015764bbe6 4039 else
mjr 50:40015764bbe6 4040 {
mjr 50:40015764bbe6 4041 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 4042 // report the park position until the real plunger comes
mjr 50:40015764bbe6 4043 // to rest
mjr 50:40015764bbe6 4044 firingMode(3);
mjr 50:40015764bbe6 4045 z = 0;
mjr 50:40015764bbe6 4046
mjr 50:40015764bbe6 4047 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 4048 f3s.t = r.t;
mjr 50:40015764bbe6 4049 f3s.pos = 0;
mjr 50:40015764bbe6 4050
mjr 50:40015764bbe6 4051 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 4052 f3r = r;
mjr 50:40015764bbe6 4053 }
mjr 50:40015764bbe6 4054 break;
mjr 50:40015764bbe6 4055
mjr 50:40015764bbe6 4056 case 3:
mjr 50:40015764bbe6 4057 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 4058 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 4059 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 4060 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 4061 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 4062 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 4063 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 4064 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 4065 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 4066 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 4067 // for longer.
mjr 50:40015764bbe6 4068 if (v >= 0)
mjr 50:40015764bbe6 4069 {
mjr 50:40015764bbe6 4070 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 4071 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 4072 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 4073 {
mjr 50:40015764bbe6 4074 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 4075 firingMode(0);
mjr 50:40015764bbe6 4076 break;
mjr 50:40015764bbe6 4077 }
mjr 50:40015764bbe6 4078 }
mjr 50:40015764bbe6 4079 else
mjr 50:40015764bbe6 4080 {
mjr 50:40015764bbe6 4081 // forward motion - reset retraction window
mjr 50:40015764bbe6 4082 f3r.t = r.t;
mjr 50:40015764bbe6 4083 }
mjr 50:40015764bbe6 4084
mjr 53:9b2611964afc 4085 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 4086 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 4087 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 4088 // about 100 units.
mjr 53:9b2611964afc 4089 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 4090 {
mjr 53:9b2611964afc 4091 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 4092 // Consider it stable if this has been true for 300ms.
mjr 50:40015764bbe6 4093 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 4094 {
mjr 50:40015764bbe6 4095 // we're done with the firing event
mjr 50:40015764bbe6 4096 firingMode(0);
mjr 50:40015764bbe6 4097 }
mjr 50:40015764bbe6 4098 else
mjr 50:40015764bbe6 4099 {
mjr 50:40015764bbe6 4100 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 4101 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 4102 // to report the park position
mjr 50:40015764bbe6 4103 z = 0;
mjr 50:40015764bbe6 4104 }
mjr 50:40015764bbe6 4105 }
mjr 50:40015764bbe6 4106 else
mjr 50:40015764bbe6 4107 {
mjr 50:40015764bbe6 4108 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 4109 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 4110 f3s = r;
mjr 50:40015764bbe6 4111 z = 0;
mjr 50:40015764bbe6 4112 }
mjr 50:40015764bbe6 4113 break;
mjr 50:40015764bbe6 4114 }
mjr 50:40015764bbe6 4115
mjr 50:40015764bbe6 4116 // save the velocity reading for next time
mjr 50:40015764bbe6 4117 vprv2 = vprv;
mjr 50:40015764bbe6 4118 vprv = v;
mjr 50:40015764bbe6 4119
mjr 50:40015764bbe6 4120 // add the new reading to the history
mjr 50:40015764bbe6 4121 hist[histIdx++] = r;
mjr 50:40015764bbe6 4122 histIdx %= countof(hist);
mjr 58:523fdcffbe6d 4123
mjr 69:cc5039284fac 4124 // apply the post-processing filter
mjr 69:cc5039284fac 4125 zf = applyPostFilter();
mjr 48:058ace2aed1d 4126 }
mjr 48:058ace2aed1d 4127 }
mjr 48:058ace2aed1d 4128
mjr 48:058ace2aed1d 4129 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 4130 int16_t getPosition()
mjr 58:523fdcffbe6d 4131 {
mjr 58:523fdcffbe6d 4132 // return the last filtered reading
mjr 58:523fdcffbe6d 4133 return zf;
mjr 55:4db125cd11a0 4134 }
mjr 58:523fdcffbe6d 4135
mjr 48:058ace2aed1d 4136 // Get the current velocity (joystick distance units per microsecond)
mjr 48:058ace2aed1d 4137 float getVelocity() const { return vz; }
mjr 48:058ace2aed1d 4138
mjr 48:058ace2aed1d 4139 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 4140 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 4141
mjr 48:058ace2aed1d 4142 // Set calibration mode on or off
mjr 52:8298b2a73eb2 4143 void setCalMode(bool f)
mjr 48:058ace2aed1d 4144 {
mjr 52:8298b2a73eb2 4145 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 4146 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 4147 {
mjr 52:8298b2a73eb2 4148 // reset the calibration in the configuration
mjr 48:058ace2aed1d 4149 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 4150
mjr 52:8298b2a73eb2 4151 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 4152 calState = 0;
mjr 52:8298b2a73eb2 4153 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 4154 calZeroPosN = 0;
mjr 52:8298b2a73eb2 4155 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 4156 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 4157
mjr 52:8298b2a73eb2 4158 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 4159 PlungerReading r;
mjr 52:8298b2a73eb2 4160 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 4161 {
mjr 52:8298b2a73eb2 4162 // got a reading - use it as the initial zero point
mjr 69:cc5039284fac 4163 applyPreFilter(r);
mjr 52:8298b2a73eb2 4164 cfg.plunger.cal.zero = r.pos;
mjr 52:8298b2a73eb2 4165
mjr 52:8298b2a73eb2 4166 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 4167 calZeroStart = r;
mjr 52:8298b2a73eb2 4168 }
mjr 52:8298b2a73eb2 4169 else
mjr 52:8298b2a73eb2 4170 {
mjr 52:8298b2a73eb2 4171 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 4172 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 4173
mjr 52:8298b2a73eb2 4174 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 4175 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 4176 calZeroStart.t = 0;
mjr 53:9b2611964afc 4177 }
mjr 53:9b2611964afc 4178 }
mjr 53:9b2611964afc 4179 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 4180 {
mjr 53:9b2611964afc 4181 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 4182 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 4183 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 4184 // physically meaningless.
mjr 53:9b2611964afc 4185 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 4186 {
mjr 53:9b2611964afc 4187 // bad settings - reset to defaults
mjr 53:9b2611964afc 4188 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 4189 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 4190 }
mjr 52:8298b2a73eb2 4191 }
mjr 52:8298b2a73eb2 4192
mjr 48:058ace2aed1d 4193 // remember the new mode
mjr 52:8298b2a73eb2 4194 plungerCalMode = f;
mjr 48:058ace2aed1d 4195 }
mjr 48:058ace2aed1d 4196
mjr 48:058ace2aed1d 4197 // is a firing event in progress?
mjr 53:9b2611964afc 4198 bool isFiring() { return firing == 3; }
mjr 48:058ace2aed1d 4199
mjr 48:058ace2aed1d 4200 private:
mjr 52:8298b2a73eb2 4201
mjr 74:822a92bc11d2 4202 // Plunger data filtering mode: optionally apply filtering to the raw
mjr 74:822a92bc11d2 4203 // plunger sensor readings to try to reduce noise in the signal. This
mjr 74:822a92bc11d2 4204 // is designed for the TSL1410/12 optical sensors, where essentially all
mjr 74:822a92bc11d2 4205 // of the noise in the signal comes from lack of sharpness in the shadow
mjr 74:822a92bc11d2 4206 // edge. When the shadow is blurry, the edge detector has to pick a pixel,
mjr 74:822a92bc11d2 4207 // even though the edge is actually a gradient spanning several pixels.
mjr 74:822a92bc11d2 4208 // The edge detection algorithm decides on the exact pixel, but whatever
mjr 74:822a92bc11d2 4209 // the algorithm, the choice is going to be somewhat arbitrary given that
mjr 74:822a92bc11d2 4210 // there's really no one pixel that's "the edge" when the edge actually
mjr 74:822a92bc11d2 4211 // covers multiple pixels. This can make the choice of pixel sensitive to
mjr 74:822a92bc11d2 4212 // small changes in exposure and pixel respose from frame to frame, which
mjr 74:822a92bc11d2 4213 // means that the reported edge position can move by a pixel or two from
mjr 74:822a92bc11d2 4214 // one frame to the next even when the physical plunger is perfectly still.
mjr 74:822a92bc11d2 4215 // That's the noise we're talking about.
mjr 74:822a92bc11d2 4216 //
mjr 74:822a92bc11d2 4217 // We previously applied a mild hysteresis filter to the signal to try to
mjr 74:822a92bc11d2 4218 // eliminate this noise. The filter tracked the average over the last
mjr 74:822a92bc11d2 4219 // several samples, and rejected readings that wandered within a few
mjr 74:822a92bc11d2 4220 // pixels of the average. If a certain number of readings moved away from
mjr 74:822a92bc11d2 4221 // the average in the same direction, even by small amounts, the filter
mjr 74:822a92bc11d2 4222 // accepted the changes, on the assumption that they represented actual
mjr 74:822a92bc11d2 4223 // slow movement of the plunger. This filter was applied after the firing
mjr 74:822a92bc11d2 4224 // detection.
mjr 74:822a92bc11d2 4225 //
mjr 74:822a92bc11d2 4226 // I also tried a simpler filter that rejected changes that were too fast
mjr 74:822a92bc11d2 4227 // to be physically possible, as well as changes that were very close to
mjr 74:822a92bc11d2 4228 // the last reported position (i.e., simple hysteresis). The "too fast"
mjr 74:822a92bc11d2 4229 // filter was there to reject spurious readings where the edge detector
mjr 74:822a92bc11d2 4230 // mistook a bad pixel value as an edge.
mjr 74:822a92bc11d2 4231 //
mjr 74:822a92bc11d2 4232 // The new "mode 2" edge detector (see ccdSensor.h) seems to do a better
mjr 74:822a92bc11d2 4233 // job of rejecting pixel-level noise by itself than the older "mode 0"
mjr 74:822a92bc11d2 4234 // algorithm did, so I removed the filtering entirely. Any filtering has
mjr 74:822a92bc11d2 4235 // some downsides, so it's better to reduce noise in the underlying signal
mjr 74:822a92bc11d2 4236 // as much as possible first. It seems possible to get a very stable signal
mjr 74:822a92bc11d2 4237 // now with a combination of the mode 2 edge detector and optimizing the
mjr 74:822a92bc11d2 4238 // physical sensor arrangement, especially optimizing the light source to
mjr 74:822a92bc11d2 4239 // cast as sharp as shadow as possible and adjusting the brightness to
mjr 74:822a92bc11d2 4240 // maximize bright/dark contrast in the image.
mjr 74:822a92bc11d2 4241 //
mjr 74:822a92bc11d2 4242 // 0 = No filtering (current default)
mjr 74:822a92bc11d2 4243 // 1 = Filter the data after firing detection using moving average
mjr 74:822a92bc11d2 4244 // hysteresis filter (old version, used in most 2016 releases)
mjr 74:822a92bc11d2 4245 // 2 = Filter the data before firing detection using simple hysteresis
mjr 74:822a92bc11d2 4246 // plus spurious "too fast" motion rejection
mjr 74:822a92bc11d2 4247 //
mjr 73:4e8ce0b18915 4248 #define PLUNGER_FILTERING_MODE 0
mjr 73:4e8ce0b18915 4249
mjr 73:4e8ce0b18915 4250 #if PLUNGER_FILTERING_MODE == 0
mjr 69:cc5039284fac 4251 // Disable all filtering
mjr 74:822a92bc11d2 4252 inline void applyPreFilter(PlungerReading &r) { }
mjr 74:822a92bc11d2 4253 inline int applyPostFilter() { return z; }
mjr 73:4e8ce0b18915 4254 #elif PLUNGER_FILTERING_MODE == 1
mjr 73:4e8ce0b18915 4255 // Apply pre-processing filter. This filter is applied to the raw
mjr 73:4e8ce0b18915 4256 // value coming off the sensor, before calibration or fire-event
mjr 73:4e8ce0b18915 4257 // processing.
mjr 73:4e8ce0b18915 4258 void applyPreFilter(PlungerReading &r)
mjr 73:4e8ce0b18915 4259 {
mjr 73:4e8ce0b18915 4260 }
mjr 73:4e8ce0b18915 4261
mjr 73:4e8ce0b18915 4262 // Figure the next post-processing filtered value. This applies a
mjr 73:4e8ce0b18915 4263 // hysteresis filter to the last raw z value and returns the
mjr 73:4e8ce0b18915 4264 // filtered result.
mjr 73:4e8ce0b18915 4265 int applyPostFilter()
mjr 73:4e8ce0b18915 4266 {
mjr 73:4e8ce0b18915 4267 if (firing <= 1)
mjr 73:4e8ce0b18915 4268 {
mjr 73:4e8ce0b18915 4269 // Filter limit - 5 samples. Once we've been moving
mjr 73:4e8ce0b18915 4270 // in the same direction for this many samples, we'll
mjr 73:4e8ce0b18915 4271 // clear the history and start over.
mjr 73:4e8ce0b18915 4272 const int filterMask = 0x1f;
mjr 73:4e8ce0b18915 4273
mjr 73:4e8ce0b18915 4274 // figure the last average
mjr 73:4e8ce0b18915 4275 int lastAvg = int(filterSum / filterN);
mjr 73:4e8ce0b18915 4276
mjr 73:4e8ce0b18915 4277 // figure the direction of this sample relative to the average,
mjr 73:4e8ce0b18915 4278 // and shift it in to our bit mask of recent direction data
mjr 73:4e8ce0b18915 4279 if (z != lastAvg)
mjr 73:4e8ce0b18915 4280 {
mjr 73:4e8ce0b18915 4281 // shift the new direction bit into the vector
mjr 73:4e8ce0b18915 4282 filterDir <<= 1;
mjr 73:4e8ce0b18915 4283 if (z > lastAvg) filterDir |= 1;
mjr 73:4e8ce0b18915 4284 }
mjr 73:4e8ce0b18915 4285
mjr 73:4e8ce0b18915 4286 // keep only the last N readings, up to the filter limit
mjr 73:4e8ce0b18915 4287 filterDir &= filterMask;
mjr 73:4e8ce0b18915 4288
mjr 73:4e8ce0b18915 4289 // if we've been moving consistently in one direction (all 1's
mjr 73:4e8ce0b18915 4290 // or all 0's in the direction history vector), reset the average
mjr 73:4e8ce0b18915 4291 if (filterDir == 0x00 || filterDir == filterMask)
mjr 73:4e8ce0b18915 4292 {
mjr 73:4e8ce0b18915 4293 // motion away from the average - reset the average
mjr 73:4e8ce0b18915 4294 filterDir = 0x5555;
mjr 73:4e8ce0b18915 4295 filterN = 1;
mjr 73:4e8ce0b18915 4296 filterSum = (lastAvg + z)/2;
mjr 73:4e8ce0b18915 4297 return int16_t(filterSum);
mjr 73:4e8ce0b18915 4298 }
mjr 73:4e8ce0b18915 4299 else
mjr 73:4e8ce0b18915 4300 {
mjr 73:4e8ce0b18915 4301 // we're directionless - return the new average, with the
mjr 73:4e8ce0b18915 4302 // new sample included
mjr 73:4e8ce0b18915 4303 filterSum += z;
mjr 73:4e8ce0b18915 4304 ++filterN;
mjr 73:4e8ce0b18915 4305 return int16_t(filterSum / filterN);
mjr 73:4e8ce0b18915 4306 }
mjr 73:4e8ce0b18915 4307 }
mjr 73:4e8ce0b18915 4308 else
mjr 73:4e8ce0b18915 4309 {
mjr 73:4e8ce0b18915 4310 // firing mode - skip the filter
mjr 73:4e8ce0b18915 4311 filterN = 1;
mjr 73:4e8ce0b18915 4312 filterSum = z;
mjr 73:4e8ce0b18915 4313 filterDir = 0x5555;
mjr 73:4e8ce0b18915 4314 return z;
mjr 73:4e8ce0b18915 4315 }
mjr 73:4e8ce0b18915 4316 }
mjr 73:4e8ce0b18915 4317 #elif PLUNGER_FILTERING_MODE == 2
mjr 69:cc5039284fac 4318 // Apply pre-processing filter. This filter is applied to the raw
mjr 69:cc5039284fac 4319 // value coming off the sensor, before calibration or fire-event
mjr 69:cc5039284fac 4320 // processing.
mjr 69:cc5039284fac 4321 void applyPreFilter(PlungerReading &r)
mjr 69:cc5039284fac 4322 {
mjr 69:cc5039284fac 4323 // get the previous raw reading
mjr 69:cc5039284fac 4324 PlungerReading prv = pre.raw;
mjr 69:cc5039284fac 4325
mjr 69:cc5039284fac 4326 // the new reading is the previous raw reading next time, no
mjr 69:cc5039284fac 4327 // matter how we end up filtering it
mjr 69:cc5039284fac 4328 pre.raw = r;
mjr 69:cc5039284fac 4329
mjr 69:cc5039284fac 4330 // If it's too big an excursion from the previous raw reading,
mjr 69:cc5039284fac 4331 // ignore it and repeat the previous reported reading. This
mjr 69:cc5039284fac 4332 // filters out anomalous spikes where we suddenly jump to a
mjr 69:cc5039284fac 4333 // level that's too far away to be possible. Real plungers
mjr 69:cc5039284fac 4334 // take about 60ms to travel the full distance when released,
mjr 69:cc5039284fac 4335 // so assuming constant acceleration, the maximum realistic
mjr 69:cc5039284fac 4336 // speed is about 2.200 distance units (on our 0..0xffff scale)
mjr 69:cc5039284fac 4337 // per microsecond.
mjr 69:cc5039284fac 4338 //
mjr 69:cc5039284fac 4339 // On the other hand, if the new reading is too *close* to the
mjr 69:cc5039284fac 4340 // previous reading, use the previous reported reading. This
mjr 69:cc5039284fac 4341 // filters out jitter around a stationary position.
mjr 69:cc5039284fac 4342 const float maxDist = 2.184f*uint32_t(r.t - prv.t);
mjr 69:cc5039284fac 4343 const int minDist = 256;
mjr 69:cc5039284fac 4344 const int delta = abs(r.pos - prv.pos);
mjr 69:cc5039284fac 4345 if (maxDist > minDist && delta > maxDist)
mjr 69:cc5039284fac 4346 {
mjr 69:cc5039284fac 4347 // too big an excursion - discard this reading by reporting
mjr 69:cc5039284fac 4348 // the last reported reading instead
mjr 69:cc5039284fac 4349 r.pos = pre.reported;
mjr 69:cc5039284fac 4350 }
mjr 69:cc5039284fac 4351 else if (delta < minDist)
mjr 69:cc5039284fac 4352 {
mjr 69:cc5039284fac 4353 // too close to the prior reading - apply hysteresis
mjr 69:cc5039284fac 4354 r.pos = pre.reported;
mjr 69:cc5039284fac 4355 }
mjr 69:cc5039284fac 4356 else
mjr 69:cc5039284fac 4357 {
mjr 69:cc5039284fac 4358 // the reading is in range - keep it, and remember it as
mjr 69:cc5039284fac 4359 // the last reported reading
mjr 69:cc5039284fac 4360 pre.reported = r.pos;
mjr 69:cc5039284fac 4361 }
mjr 69:cc5039284fac 4362 }
mjr 69:cc5039284fac 4363
mjr 69:cc5039284fac 4364 // pre-filter data
mjr 69:cc5039284fac 4365 struct PreFilterData {
mjr 69:cc5039284fac 4366 PreFilterData()
mjr 69:cc5039284fac 4367 : reported(0)
mjr 69:cc5039284fac 4368 {
mjr 69:cc5039284fac 4369 raw.t = 0;
mjr 69:cc5039284fac 4370 raw.pos = 0;
mjr 69:cc5039284fac 4371 }
mjr 69:cc5039284fac 4372 PlungerReading raw; // previous raw sensor reading
mjr 69:cc5039284fac 4373 int reported; // previous reported reading
mjr 69:cc5039284fac 4374 } pre;
mjr 69:cc5039284fac 4375
mjr 69:cc5039284fac 4376
mjr 69:cc5039284fac 4377 // Apply the post-processing filter. This filter is applied after
mjr 69:cc5039284fac 4378 // the fire-event processing. In the past, this used hysteresis to
mjr 69:cc5039284fac 4379 // try to smooth out jittering readings for a stationary plunger.
mjr 69:cc5039284fac 4380 // We've switched to a different approach that massages the readings
mjr 69:cc5039284fac 4381 // coming off the sensor before
mjr 69:cc5039284fac 4382 int applyPostFilter()
mjr 69:cc5039284fac 4383 {
mjr 69:cc5039284fac 4384 return z;
mjr 69:cc5039284fac 4385 }
mjr 69:cc5039284fac 4386 #endif
mjr 58:523fdcffbe6d 4387
mjr 58:523fdcffbe6d 4388 void initFilter()
mjr 58:523fdcffbe6d 4389 {
mjr 58:523fdcffbe6d 4390 filterSum = 0;
mjr 58:523fdcffbe6d 4391 filterN = 1;
mjr 58:523fdcffbe6d 4392 filterDir = 0x5555;
mjr 58:523fdcffbe6d 4393 }
mjr 58:523fdcffbe6d 4394 int64_t filterSum;
mjr 58:523fdcffbe6d 4395 int64_t filterN;
mjr 58:523fdcffbe6d 4396 uint16_t filterDir;
mjr 58:523fdcffbe6d 4397
mjr 58:523fdcffbe6d 4398
mjr 52:8298b2a73eb2 4399 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 4400 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 4401 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 4402 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 4403 // 0 = waiting to settle
mjr 52:8298b2a73eb2 4404 // 1 = at rest
mjr 52:8298b2a73eb2 4405 // 2 = retracting
mjr 52:8298b2a73eb2 4406 // 3 = possibly releasing
mjr 52:8298b2a73eb2 4407 uint8_t calState;
mjr 52:8298b2a73eb2 4408
mjr 52:8298b2a73eb2 4409 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 4410 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 4411 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 4412 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 4413 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 4414 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 4415 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 4416 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 4417 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 4418 long calZeroPosSum;
mjr 52:8298b2a73eb2 4419 int calZeroPosN;
mjr 52:8298b2a73eb2 4420
mjr 52:8298b2a73eb2 4421 // Calibration release time statistics.
mjr 52:8298b2a73eb2 4422 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 4423 long calRlsTimeSum;
mjr 52:8298b2a73eb2 4424 int calRlsTimeN;
mjr 52:8298b2a73eb2 4425
mjr 48:058ace2aed1d 4426 // set a firing mode
mjr 48:058ace2aed1d 4427 inline void firingMode(int m)
mjr 48:058ace2aed1d 4428 {
mjr 48:058ace2aed1d 4429 firing = m;
mjr 48:058ace2aed1d 4430 }
mjr 48:058ace2aed1d 4431
mjr 48:058ace2aed1d 4432 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 4433 // the given time limit.
mjr 48:058ace2aed1d 4434 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 4435 {
mjr 48:058ace2aed1d 4436 // start with the prior entry
mjr 48:058ace2aed1d 4437 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 4438 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 4439
mjr 48:058ace2aed1d 4440 // scan backwards for a local maximum
mjr 48:058ace2aed1d 4441 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 4442 {
mjr 48:058ace2aed1d 4443 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 4444 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 4445 break;
mjr 48:058ace2aed1d 4446
mjr 48:058ace2aed1d 4447 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 4448 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 4449 break;
mjr 48:058ace2aed1d 4450
mjr 48:058ace2aed1d 4451 // this is the new high
mjr 48:058ace2aed1d 4452 hi = hist[idx].pos;
mjr 48:058ace2aed1d 4453 }
mjr 48:058ace2aed1d 4454
mjr 48:058ace2aed1d 4455 // return the local maximum
mjr 48:058ace2aed1d 4456 return hi;
mjr 48:058ace2aed1d 4457 }
mjr 48:058ace2aed1d 4458
mjr 50:40015764bbe6 4459 // velocity at previous reading, and the one before that
mjr 50:40015764bbe6 4460 float vprv, vprv2;
mjr 48:058ace2aed1d 4461
mjr 48:058ace2aed1d 4462 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 4463 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 4464 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 4465 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 4466 // exactly when it started. We throttle our readings to no more
mjr 74:822a92bc11d2 4467 // than one every 1ms, so we have at least N*1ms of history in this
mjr 48:058ace2aed1d 4468 // array.
mjr 74:822a92bc11d2 4469 PlungerReading hist[32];
mjr 48:058ace2aed1d 4470 int histIdx;
mjr 49:37bd97eb7688 4471
mjr 50:40015764bbe6 4472 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 74:822a92bc11d2 4473 inline const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 4474 {
mjr 50:40015764bbe6 4475 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 4476 n = histIdx - 1 - n;
mjr 50:40015764bbe6 4477
mjr 50:40015764bbe6 4478 // adjust for wrapping
mjr 50:40015764bbe6 4479 if (n < 0)
mjr 50:40015764bbe6 4480 n += countof(hist);
mjr 50:40015764bbe6 4481
mjr 50:40015764bbe6 4482 // return the item
mjr 50:40015764bbe6 4483 return hist[n];
mjr 50:40015764bbe6 4484 }
mjr 48:058ace2aed1d 4485
mjr 48:058ace2aed1d 4486 // Firing event state.
mjr 48:058ace2aed1d 4487 //
mjr 48:058ace2aed1d 4488 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 4489 // position to the joystick interface.
mjr 48:058ace2aed1d 4490 //
mjr 53:9b2611964afc 4491 // 1 - Moving forward
mjr 48:058ace2aed1d 4492 //
mjr 53:9b2611964afc 4493 // 2 - Accelerating
mjr 48:058ace2aed1d 4494 //
mjr 53:9b2611964afc 4495 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 4496 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 4497 //
mjr 48:058ace2aed1d 4498 int firing;
mjr 48:058ace2aed1d 4499
mjr 51:57eb311faafa 4500 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 4501 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 4502 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 4503 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 4504 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 4505 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 4506 PlungerReading f1;
mjr 48:058ace2aed1d 4507
mjr 48:058ace2aed1d 4508 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 4509 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 4510 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 4511 // after enough time elapses.
mjr 48:058ace2aed1d 4512 PlungerReading f2;
mjr 48:058ace2aed1d 4513
mjr 48:058ace2aed1d 4514 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 4515 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 4516 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 4517 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 4518 PlungerReading f3s;
mjr 48:058ace2aed1d 4519
mjr 48:058ace2aed1d 4520 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 4521 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 4522 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 4523 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 4524 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 4525 // freely.
mjr 48:058ace2aed1d 4526 PlungerReading f3r;
mjr 48:058ace2aed1d 4527
mjr 58:523fdcffbe6d 4528 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 4529 // (in joystick distance units)
mjr 48:058ace2aed1d 4530 int z;
mjr 48:058ace2aed1d 4531
mjr 48:058ace2aed1d 4532 // velocity of this reading (joystick distance units per microsecond)
mjr 48:058ace2aed1d 4533 float vz;
mjr 58:523fdcffbe6d 4534
mjr 58:523fdcffbe6d 4535 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 4536 int zf;
mjr 48:058ace2aed1d 4537 };
mjr 48:058ace2aed1d 4538
mjr 48:058ace2aed1d 4539 // plunger reader singleton
mjr 48:058ace2aed1d 4540 PlungerReader plungerReader;
mjr 48:058ace2aed1d 4541
mjr 48:058ace2aed1d 4542 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 4543 //
mjr 48:058ace2aed1d 4544 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 4545 //
mjr 48:058ace2aed1d 4546 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 4547 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 4548 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 4549 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 4550 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 4551 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 4552 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 4553 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 4554 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 4555 //
mjr 48:058ace2aed1d 4556 // This feature has two configuration components:
mjr 48:058ace2aed1d 4557 //
mjr 48:058ace2aed1d 4558 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 4559 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 4560 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 4561 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 4562 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 4563 // plunger/launch button connection.
mjr 48:058ace2aed1d 4564 //
mjr 48:058ace2aed1d 4565 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 4566 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 4567 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 4568 // position.
mjr 48:058ace2aed1d 4569 //
mjr 48:058ace2aed1d 4570 class ZBLaunchBall
mjr 48:058ace2aed1d 4571 {
mjr 48:058ace2aed1d 4572 public:
mjr 48:058ace2aed1d 4573 ZBLaunchBall()
mjr 48:058ace2aed1d 4574 {
mjr 48:058ace2aed1d 4575 // start in the default state
mjr 48:058ace2aed1d 4576 lbState = 0;
mjr 53:9b2611964afc 4577 btnState = false;
mjr 48:058ace2aed1d 4578 }
mjr 48:058ace2aed1d 4579
mjr 48:058ace2aed1d 4580 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 4581 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 4582 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 4583 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 4584 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 4585 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 4586 void update()
mjr 48:058ace2aed1d 4587 {
mjr 53:9b2611964afc 4588 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 4589 // plunger firing event
mjr 53:9b2611964afc 4590 if (zbLaunchOn)
mjr 48:058ace2aed1d 4591 {
mjr 53:9b2611964afc 4592 // note the new position
mjr 48:058ace2aed1d 4593 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 4594
mjr 53:9b2611964afc 4595 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 4596 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 4597
mjr 53:9b2611964afc 4598 // check the state
mjr 48:058ace2aed1d 4599 switch (lbState)
mjr 48:058ace2aed1d 4600 {
mjr 48:058ace2aed1d 4601 case 0:
mjr 53:9b2611964afc 4602 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 4603 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 4604 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 4605 // the button.
mjr 53:9b2611964afc 4606 if (plungerReader.isFiring())
mjr 53:9b2611964afc 4607 {
mjr 53:9b2611964afc 4608 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 4609 lbTimer.reset();
mjr 53:9b2611964afc 4610 lbTimer.start();
mjr 53:9b2611964afc 4611 setButton(true);
mjr 53:9b2611964afc 4612
mjr 53:9b2611964afc 4613 // switch to state 1
mjr 53:9b2611964afc 4614 lbState = 1;
mjr 53:9b2611964afc 4615 }
mjr 48:058ace2aed1d 4616 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 4617 {
mjr 53:9b2611964afc 4618 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 4619 // button as long as we're pushed forward
mjr 53:9b2611964afc 4620 setButton(true);
mjr 53:9b2611964afc 4621 }
mjr 53:9b2611964afc 4622 else
mjr 53:9b2611964afc 4623 {
mjr 53:9b2611964afc 4624 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 4625 setButton(false);
mjr 53:9b2611964afc 4626 }
mjr 48:058ace2aed1d 4627 break;
mjr 48:058ace2aed1d 4628
mjr 48:058ace2aed1d 4629 case 1:
mjr 53:9b2611964afc 4630 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 4631 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 4632 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 4633 {
mjr 53:9b2611964afc 4634 // timer expired - turn off the button
mjr 53:9b2611964afc 4635 setButton(false);
mjr 53:9b2611964afc 4636
mjr 53:9b2611964afc 4637 // switch to state 2
mjr 53:9b2611964afc 4638 lbState = 2;
mjr 53:9b2611964afc 4639 }
mjr 48:058ace2aed1d 4640 break;
mjr 48:058ace2aed1d 4641
mjr 48:058ace2aed1d 4642 case 2:
mjr 53:9b2611964afc 4643 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 4644 // plunger launch event to end.
mjr 53:9b2611964afc 4645 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 4646 {
mjr 53:9b2611964afc 4647 // firing event done - return to default state
mjr 53:9b2611964afc 4648 lbState = 0;
mjr 53:9b2611964afc 4649 }
mjr 48:058ace2aed1d 4650 break;
mjr 48:058ace2aed1d 4651 }
mjr 53:9b2611964afc 4652 }
mjr 53:9b2611964afc 4653 else
mjr 53:9b2611964afc 4654 {
mjr 53:9b2611964afc 4655 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 4656 setButton(false);
mjr 48:058ace2aed1d 4657
mjr 53:9b2611964afc 4658 // return to the default state
mjr 53:9b2611964afc 4659 lbState = 0;
mjr 48:058ace2aed1d 4660 }
mjr 48:058ace2aed1d 4661 }
mjr 53:9b2611964afc 4662
mjr 53:9b2611964afc 4663 // Set the button state
mjr 53:9b2611964afc 4664 void setButton(bool on)
mjr 53:9b2611964afc 4665 {
mjr 53:9b2611964afc 4666 if (btnState != on)
mjr 53:9b2611964afc 4667 {
mjr 53:9b2611964afc 4668 // remember the new state
mjr 53:9b2611964afc 4669 btnState = on;
mjr 53:9b2611964afc 4670
mjr 53:9b2611964afc 4671 // update the virtual button state
mjr 65:739875521aae 4672 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 4673 }
mjr 53:9b2611964afc 4674 }
mjr 53:9b2611964afc 4675
mjr 48:058ace2aed1d 4676 private:
mjr 48:058ace2aed1d 4677 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 4678 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 4679 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 4680 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 4681 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 4682 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 4683 //
mjr 48:058ace2aed1d 4684 // States:
mjr 48:058ace2aed1d 4685 // 0 = default
mjr 53:9b2611964afc 4686 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 4687 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 4688 // firing event to end)
mjr 53:9b2611964afc 4689 uint8_t lbState;
mjr 48:058ace2aed1d 4690
mjr 53:9b2611964afc 4691 // button state
mjr 53:9b2611964afc 4692 bool btnState;
mjr 48:058ace2aed1d 4693
mjr 48:058ace2aed1d 4694 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 4695 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 4696 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 4697 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 4698 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 4699 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 4700 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 4701 Timer lbTimer;
mjr 48:058ace2aed1d 4702 };
mjr 48:058ace2aed1d 4703
mjr 35:e959ffba78fd 4704 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4705 //
mjr 35:e959ffba78fd 4706 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 4707 //
mjr 54:fd77a6b2f76c 4708 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 4709 {
mjr 35:e959ffba78fd 4710 // disconnect from USB
mjr 54:fd77a6b2f76c 4711 if (disconnect)
mjr 54:fd77a6b2f76c 4712 js.disconnect();
mjr 35:e959ffba78fd 4713
mjr 35:e959ffba78fd 4714 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 4715 wait_us(pause_us);
mjr 35:e959ffba78fd 4716
mjr 35:e959ffba78fd 4717 // reset the device
mjr 35:e959ffba78fd 4718 NVIC_SystemReset();
mjr 35:e959ffba78fd 4719 while (true) { }
mjr 35:e959ffba78fd 4720 }
mjr 35:e959ffba78fd 4721
mjr 35:e959ffba78fd 4722 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4723 //
mjr 35:e959ffba78fd 4724 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 4725 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 4726 //
mjr 35:e959ffba78fd 4727 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 4728 {
mjr 35:e959ffba78fd 4729 int tmp;
mjr 35:e959ffba78fd 4730 switch (cfg.orientation)
mjr 35:e959ffba78fd 4731 {
mjr 35:e959ffba78fd 4732 case OrientationFront:
mjr 35:e959ffba78fd 4733 tmp = x;
mjr 35:e959ffba78fd 4734 x = y;
mjr 35:e959ffba78fd 4735 y = tmp;
mjr 35:e959ffba78fd 4736 break;
mjr 35:e959ffba78fd 4737
mjr 35:e959ffba78fd 4738 case OrientationLeft:
mjr 35:e959ffba78fd 4739 x = -x;
mjr 35:e959ffba78fd 4740 break;
mjr 35:e959ffba78fd 4741
mjr 35:e959ffba78fd 4742 case OrientationRight:
mjr 35:e959ffba78fd 4743 y = -y;
mjr 35:e959ffba78fd 4744 break;
mjr 35:e959ffba78fd 4745
mjr 35:e959ffba78fd 4746 case OrientationRear:
mjr 35:e959ffba78fd 4747 tmp = -x;
mjr 35:e959ffba78fd 4748 x = -y;
mjr 35:e959ffba78fd 4749 y = tmp;
mjr 35:e959ffba78fd 4750 break;
mjr 35:e959ffba78fd 4751 }
mjr 35:e959ffba78fd 4752 }
mjr 35:e959ffba78fd 4753
mjr 35:e959ffba78fd 4754 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4755 //
mjr 35:e959ffba78fd 4756 // Calibration button state:
mjr 35:e959ffba78fd 4757 // 0 = not pushed
mjr 35:e959ffba78fd 4758 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 4759 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 4760 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 4761 int calBtnState = 0;
mjr 35:e959ffba78fd 4762
mjr 35:e959ffba78fd 4763 // calibration button debounce timer
mjr 35:e959ffba78fd 4764 Timer calBtnTimer;
mjr 35:e959ffba78fd 4765
mjr 35:e959ffba78fd 4766 // calibration button light state
mjr 35:e959ffba78fd 4767 int calBtnLit = false;
mjr 35:e959ffba78fd 4768
mjr 35:e959ffba78fd 4769
mjr 35:e959ffba78fd 4770 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4771 //
mjr 40:cc0d9814522b 4772 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 4773 //
mjr 40:cc0d9814522b 4774
mjr 40:cc0d9814522b 4775 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 4776 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 4777 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 4778 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 53:9b2611964afc 4779 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 4780 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 4781 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 4782 #define VAR_MODE_SET 1 // we're in SET mode
mjr 40:cc0d9814522b 4783 #define v_func configVarSet
mjr 40:cc0d9814522b 4784 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 4785
mjr 40:cc0d9814522b 4786 // redefine everything for the SET messages
mjr 40:cc0d9814522b 4787 #undef if_msg_valid
mjr 40:cc0d9814522b 4788 #undef v_byte
mjr 40:cc0d9814522b 4789 #undef v_ui16
mjr 40:cc0d9814522b 4790 #undef v_pin
mjr 53:9b2611964afc 4791 #undef v_byte_ro
mjr 74:822a92bc11d2 4792 #undef v_ui32_ro
mjr 74:822a92bc11d2 4793 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 4794 #undef v_func
mjr 38:091e511ce8a0 4795
mjr 40:cc0d9814522b 4796 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 4797 #define if_msg_valid(test)
mjr 53:9b2611964afc 4798 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 4799 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 4800 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 4801 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 4802 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 4803 #define VAR_MODE_SET 0 // we're in GET mode
mjr 40:cc0d9814522b 4804 #define v_func configVarGet
mjr 40:cc0d9814522b 4805 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 4806
mjr 35:e959ffba78fd 4807
mjr 35:e959ffba78fd 4808 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4809 //
mjr 35:e959ffba78fd 4810 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 4811 // LedWiz protocol.
mjr 33:d832bcab089e 4812 //
mjr 48:058ace2aed1d 4813 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js)
mjr 35:e959ffba78fd 4814 {
mjr 38:091e511ce8a0 4815 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 4816 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 4817 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 4818 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 4819 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 4820 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 4821 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 4822 // So our full protocol is as follows:
mjr 38:091e511ce8a0 4823 //
mjr 38:091e511ce8a0 4824 // first byte =
mjr 74:822a92bc11d2 4825 // 0-48 -> PBA
mjr 74:822a92bc11d2 4826 // 64 -> SBA
mjr 38:091e511ce8a0 4827 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 4828 // 129-132 -> PBA
mjr 38:091e511ce8a0 4829 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 4830 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 4831 // other -> reserved for future use
mjr 38:091e511ce8a0 4832 //
mjr 39:b3815a1c3802 4833 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 4834 if (data[0] == 64)
mjr 35:e959ffba78fd 4835 {
mjr 74:822a92bc11d2 4836 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 4837 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 4838 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 4839 sba_sbx(0, data);
mjr 74:822a92bc11d2 4840
mjr 74:822a92bc11d2 4841 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 4842 pbaIdx = 0;
mjr 38:091e511ce8a0 4843 }
mjr 38:091e511ce8a0 4844 else if (data[0] == 65)
mjr 38:091e511ce8a0 4845 {
mjr 38:091e511ce8a0 4846 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 4847 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 4848 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 4849 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 4850 // message type.
mjr 39:b3815a1c3802 4851 switch (data[1])
mjr 38:091e511ce8a0 4852 {
mjr 39:b3815a1c3802 4853 case 0:
mjr 39:b3815a1c3802 4854 // No Op
mjr 39:b3815a1c3802 4855 break;
mjr 39:b3815a1c3802 4856
mjr 39:b3815a1c3802 4857 case 1:
mjr 38:091e511ce8a0 4858 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 4859 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 4860 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 4861 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 4862 {
mjr 39:b3815a1c3802 4863
mjr 39:b3815a1c3802 4864 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 4865 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 4866 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 4867
mjr 39:b3815a1c3802 4868 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 4869 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 4870
mjr 39:b3815a1c3802 4871 // set the configuration parameters from the message
mjr 39:b3815a1c3802 4872 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 4873 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 4874
mjr 39:b3815a1c3802 4875 // save the configuration
mjr 39:b3815a1c3802 4876 saveConfigToFlash();
mjr 39:b3815a1c3802 4877
mjr 39:b3815a1c3802 4878 // reboot if necessary
mjr 39:b3815a1c3802 4879 if (needReset)
mjr 39:b3815a1c3802 4880 reboot(js);
mjr 39:b3815a1c3802 4881 }
mjr 39:b3815a1c3802 4882 break;
mjr 38:091e511ce8a0 4883
mjr 39:b3815a1c3802 4884 case 2:
mjr 38:091e511ce8a0 4885 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 4886 // (No parameters)
mjr 38:091e511ce8a0 4887
mjr 38:091e511ce8a0 4888 // enter calibration mode
mjr 38:091e511ce8a0 4889 calBtnState = 3;
mjr 52:8298b2a73eb2 4890 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 4891 calBtnTimer.reset();
mjr 39:b3815a1c3802 4892 break;
mjr 39:b3815a1c3802 4893
mjr 39:b3815a1c3802 4894 case 3:
mjr 52:8298b2a73eb2 4895 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 4896 // data[2] = flag bits
mjr 53:9b2611964afc 4897 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 4898 reportPlungerStat = true;
mjr 53:9b2611964afc 4899 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 4900 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 4901
mjr 38:091e511ce8a0 4902 // show purple until we finish sending the report
mjr 38:091e511ce8a0 4903 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 4904 break;
mjr 39:b3815a1c3802 4905
mjr 39:b3815a1c3802 4906 case 4:
mjr 38:091e511ce8a0 4907 // 4 = hardware configuration query
mjr 38:091e511ce8a0 4908 // (No parameters)
mjr 38:091e511ce8a0 4909 js.reportConfig(
mjr 38:091e511ce8a0 4910 numOutputs,
mjr 38:091e511ce8a0 4911 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 4912 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 73:4e8ce0b18915 4913 nvm.valid(), xmalloc_rem);
mjr 39:b3815a1c3802 4914 break;
mjr 39:b3815a1c3802 4915
mjr 39:b3815a1c3802 4916 case 5:
mjr 38:091e511ce8a0 4917 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 4918 allOutputsOff();
mjr 39:b3815a1c3802 4919 break;
mjr 39:b3815a1c3802 4920
mjr 39:b3815a1c3802 4921 case 6:
mjr 38:091e511ce8a0 4922 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 4923 saveConfigToFlash();
mjr 38:091e511ce8a0 4924
mjr 53:9b2611964afc 4925 // before disconnecting, pause for the delay time specified in
mjr 53:9b2611964afc 4926 // the parameter byte (in seconds)
mjr 53:9b2611964afc 4927 rebootTime_us = data[2] * 1000000L;
mjr 53:9b2611964afc 4928 rebootTimer.start();
mjr 39:b3815a1c3802 4929 break;
mjr 40:cc0d9814522b 4930
mjr 40:cc0d9814522b 4931 case 7:
mjr 40:cc0d9814522b 4932 // 7 = Device ID report
mjr 53:9b2611964afc 4933 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 4934 js.reportID(data[2]);
mjr 40:cc0d9814522b 4935 break;
mjr 40:cc0d9814522b 4936
mjr 40:cc0d9814522b 4937 case 8:
mjr 40:cc0d9814522b 4938 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 4939 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 4940 setNightMode(data[2]);
mjr 40:cc0d9814522b 4941 break;
mjr 52:8298b2a73eb2 4942
mjr 52:8298b2a73eb2 4943 case 9:
mjr 52:8298b2a73eb2 4944 // 9 = Config variable query.
mjr 52:8298b2a73eb2 4945 // data[2] = config var ID
mjr 52:8298b2a73eb2 4946 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 4947 {
mjr 53:9b2611964afc 4948 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 4949 // the rest of the buffer
mjr 52:8298b2a73eb2 4950 uint8_t reply[8];
mjr 52:8298b2a73eb2 4951 reply[1] = data[2];
mjr 52:8298b2a73eb2 4952 reply[2] = data[3];
mjr 53:9b2611964afc 4953 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 4954
mjr 52:8298b2a73eb2 4955 // query the value
mjr 52:8298b2a73eb2 4956 configVarGet(reply);
mjr 52:8298b2a73eb2 4957
mjr 52:8298b2a73eb2 4958 // send the reply
mjr 52:8298b2a73eb2 4959 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 4960 }
mjr 52:8298b2a73eb2 4961 break;
mjr 53:9b2611964afc 4962
mjr 53:9b2611964afc 4963 case 10:
mjr 53:9b2611964afc 4964 // 10 = Build ID query.
mjr 53:9b2611964afc 4965 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 4966 break;
mjr 73:4e8ce0b18915 4967
mjr 73:4e8ce0b18915 4968 case 11:
mjr 73:4e8ce0b18915 4969 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 4970 // data[2] = operation:
mjr 73:4e8ce0b18915 4971 // 0 = turn relay off
mjr 73:4e8ce0b18915 4972 // 1 = turn relay on
mjr 73:4e8ce0b18915 4973 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 4974 TVRelay(data[2]);
mjr 73:4e8ce0b18915 4975 break;
mjr 73:4e8ce0b18915 4976
mjr 73:4e8ce0b18915 4977 case 12:
mjr 74:822a92bc11d2 4978 // Unused
mjr 73:4e8ce0b18915 4979 break;
mjr 73:4e8ce0b18915 4980
mjr 73:4e8ce0b18915 4981 case 13:
mjr 73:4e8ce0b18915 4982 // 13 = Send button status report
mjr 73:4e8ce0b18915 4983 reportButtonStatus(js);
mjr 73:4e8ce0b18915 4984 break;
mjr 38:091e511ce8a0 4985 }
mjr 38:091e511ce8a0 4986 }
mjr 38:091e511ce8a0 4987 else if (data[0] == 66)
mjr 38:091e511ce8a0 4988 {
mjr 38:091e511ce8a0 4989 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 4990 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 4991 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 4992 // in a variable-dependent format.
mjr 40:cc0d9814522b 4993 configVarSet(data);
mjr 38:091e511ce8a0 4994 }
mjr 74:822a92bc11d2 4995 else if (data[0] == 67)
mjr 74:822a92bc11d2 4996 {
mjr 74:822a92bc11d2 4997 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 4998 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 4999 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5000 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5001 }
mjr 74:822a92bc11d2 5002 else if (data[0] == 68)
mjr 74:822a92bc11d2 5003 {
mjr 74:822a92bc11d2 5004 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5005 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5006 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5007
mjr 74:822a92bc11d2 5008 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5009 int portGroup = data[1];
mjr 74:822a92bc11d2 5010
mjr 74:822a92bc11d2 5011 // unpack the brightness values
mjr 74:822a92bc11d2 5012 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5013 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5014 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5015 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5016 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5017 };
mjr 74:822a92bc11d2 5018
mjr 74:822a92bc11d2 5019 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5020 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5021 {
mjr 74:822a92bc11d2 5022 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5023 bri[i] += 129-60;
mjr 74:822a92bc11d2 5024 }
mjr 74:822a92bc11d2 5025
mjr 74:822a92bc11d2 5026 // Carry out the PBA
mjr 74:822a92bc11d2 5027 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5028 }
mjr 38:091e511ce8a0 5029 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5030 {
mjr 38:091e511ce8a0 5031 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5032 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5033 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5034 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5035 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5036 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5037 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5038 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5039 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5040 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5041 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5042 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5043 //
mjr 38:091e511ce8a0 5044 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5045 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5046 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5047 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5048 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5049 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5050
mjr 63:5cd1a5f3a41b 5051 // flag that we're in extended protocol mode
mjr 74:822a92bc11d2 5052 ledWizMode = true;
mjr 63:5cd1a5f3a41b 5053
mjr 63:5cd1a5f3a41b 5054 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5055 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5056 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5057
mjr 63:5cd1a5f3a41b 5058 // update each port
mjr 38:091e511ce8a0 5059 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5060 {
mjr 38:091e511ce8a0 5061 // set the brightness level for the output
mjr 40:cc0d9814522b 5062 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5063 outLevel[i] = b;
mjr 38:091e511ce8a0 5064
mjr 74:822a92bc11d2 5065 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5066 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5067 // LedWiz mode on a future update
mjr 74:822a92bc11d2 5068 wizOn[i] = (b != 0);
mjr 74:822a92bc11d2 5069 wizVal[i] = (b*48)/255;
mjr 74:822a92bc11d2 5070
mjr 38:091e511ce8a0 5071 // set the output
mjr 40:cc0d9814522b 5072 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5073 }
mjr 38:091e511ce8a0 5074
mjr 38:091e511ce8a0 5075 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5076 if (hc595 != 0)
mjr 38:091e511ce8a0 5077 hc595->update();
mjr 38:091e511ce8a0 5078 }
mjr 38:091e511ce8a0 5079 else
mjr 38:091e511ce8a0 5080 {
mjr 74:822a92bc11d2 5081 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5082 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5083 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5084 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5085 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5086 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5087 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5088 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5089 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5090 //
mjr 38:091e511ce8a0 5091 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5092 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5093 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5094 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5095 // protocol mode.
mjr 38:091e511ce8a0 5096 //
mjr 38:091e511ce8a0 5097 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5098 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5099
mjr 74:822a92bc11d2 5100 // carry out the PBA
mjr 74:822a92bc11d2 5101 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5102
mjr 74:822a92bc11d2 5103 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5104 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5105 }
mjr 38:091e511ce8a0 5106 }
mjr 35:e959ffba78fd 5107
mjr 38:091e511ce8a0 5108 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5109 //
mjr 5:a70c0bce770d 5110 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5111 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5112 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5113 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5114 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5115 // port outputs.
mjr 5:a70c0bce770d 5116 //
mjr 0:5acbbe3f4cf4 5117 int main(void)
mjr 0:5acbbe3f4cf4 5118 {
mjr 60:f38da020aa13 5119 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5120 printf("\r\nPinscape Controller starting\r\n");
mjr 60:f38da020aa13 5121
mjr 60:f38da020aa13 5122 // debugging: print memory config info
mjr 59:94eb9265b6d7 5123 // -> no longer very useful, since we use our own custom malloc/new allocator (see xmalloc() above)
mjr 60:f38da020aa13 5124 // {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 5125
mjr 39:b3815a1c3802 5126 // clear the I2C bus (for the accelerometer)
mjr 35:e959ffba78fd 5127 clear_i2c();
mjr 38:091e511ce8a0 5128
mjr 43:7a6364d82a41 5129 // load the saved configuration (or set factory defaults if no flash
mjr 43:7a6364d82a41 5130 // configuration has ever been saved)
mjr 35:e959ffba78fd 5131 loadConfigFromFlash();
mjr 35:e959ffba78fd 5132
mjr 38:091e511ce8a0 5133 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 5134 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 5135
mjr 33:d832bcab089e 5136 // we're not connected/awake yet
mjr 33:d832bcab089e 5137 bool connected = false;
mjr 40:cc0d9814522b 5138 Timer connectChangeTimer;
mjr 33:d832bcab089e 5139
mjr 35:e959ffba78fd 5140 // create the plunger sensor interface
mjr 35:e959ffba78fd 5141 createPlunger();
mjr 33:d832bcab089e 5142
mjr 60:f38da020aa13 5143 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 5144 init_tlc5940(cfg);
mjr 34:6b981a2afab7 5145
mjr 60:f38da020aa13 5146 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 5147 init_hc595(cfg);
mjr 6:cc35eb643e8f 5148
mjr 54:fd77a6b2f76c 5149 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 5150 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 5151 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 5152 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 5153 initLwOut(cfg);
mjr 48:058ace2aed1d 5154
mjr 60:f38da020aa13 5155 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 5156 if (tlc5940 != 0)
mjr 35:e959ffba78fd 5157 tlc5940->start();
mjr 35:e959ffba78fd 5158
mjr 40:cc0d9814522b 5159 // start the TV timer, if applicable
mjr 40:cc0d9814522b 5160 startTVTimer(cfg);
mjr 48:058ace2aed1d 5161
mjr 35:e959ffba78fd 5162 // initialize the button input ports
mjr 35:e959ffba78fd 5163 bool kbKeys = false;
mjr 35:e959ffba78fd 5164 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 5165
mjr 60:f38da020aa13 5166 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 5167 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 5168 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 5169 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 5170 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 5171 // to the joystick interface.
mjr 51:57eb311faafa 5172 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 5173 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 5174
mjr 60:f38da020aa13 5175 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 5176 // flash pattern while waiting.
mjr 70:9f58735a1732 5177 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 5178 connTimeoutTimer.start();
mjr 70:9f58735a1732 5179 connFlashTimer.start();
mjr 51:57eb311faafa 5180 while (!js.configured())
mjr 51:57eb311faafa 5181 {
mjr 51:57eb311faafa 5182 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 5183 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5184 {
mjr 51:57eb311faafa 5185 // short yellow flash
mjr 51:57eb311faafa 5186 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 5187 wait_us(50000);
mjr 51:57eb311faafa 5188 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5189
mjr 51:57eb311faafa 5190 // reset the flash timer
mjr 70:9f58735a1732 5191 connFlashTimer.reset();
mjr 51:57eb311faafa 5192 }
mjr 70:9f58735a1732 5193
mjr 70:9f58735a1732 5194 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 5195 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 70:9f58735a1732 5196 reboot(js, false, 0);
mjr 51:57eb311faafa 5197 }
mjr 60:f38da020aa13 5198
mjr 60:f38da020aa13 5199 // we're now connected to the host
mjr 54:fd77a6b2f76c 5200 connected = true;
mjr 40:cc0d9814522b 5201
mjr 60:f38da020aa13 5202 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 5203 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 5204 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 5205 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 5206 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 5207 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 5208 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 5209 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 5210 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 5211 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 5212 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 5213 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 5214 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 5215 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 5216 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 5217 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 5218 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 5219 // around to polling.
mjr 38:091e511ce8a0 5220 Timer jsReportTimer;
mjr 38:091e511ce8a0 5221 jsReportTimer.start();
mjr 38:091e511ce8a0 5222
mjr 60:f38da020aa13 5223 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 5224 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 5225 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 5226 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 5227 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 5228 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 5229 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 5230 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 5231 Timer jsOKTimer;
mjr 38:091e511ce8a0 5232 jsOKTimer.start();
mjr 35:e959ffba78fd 5233
mjr 55:4db125cd11a0 5234 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 5235 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 5236 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 5237 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 5238 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 5239
mjr 55:4db125cd11a0 5240 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 5241 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 5242 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 5243
mjr 55:4db125cd11a0 5244 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 5245 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 5246 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 5247
mjr 35:e959ffba78fd 5248 // initialize the calibration button
mjr 1:d913e0afb2ac 5249 calBtnTimer.start();
mjr 35:e959ffba78fd 5250 calBtnState = 0;
mjr 1:d913e0afb2ac 5251
mjr 1:d913e0afb2ac 5252 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 5253 Timer hbTimer;
mjr 1:d913e0afb2ac 5254 hbTimer.start();
mjr 1:d913e0afb2ac 5255 int hb = 0;
mjr 5:a70c0bce770d 5256 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 5257
mjr 1:d913e0afb2ac 5258 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 5259 Timer acTimer;
mjr 1:d913e0afb2ac 5260 acTimer.start();
mjr 1:d913e0afb2ac 5261
mjr 0:5acbbe3f4cf4 5262 // create the accelerometer object
mjr 5:a70c0bce770d 5263 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 48:058ace2aed1d 5264
mjr 17:ab3cec0c8bf4 5265 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 5266 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 5267 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 5268
mjr 48:058ace2aed1d 5269 // initialize the plunger sensor
mjr 35:e959ffba78fd 5270 plungerSensor->init();
mjr 10:976666ffa4ef 5271
mjr 48:058ace2aed1d 5272 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 5273 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 5274
mjr 54:fd77a6b2f76c 5275 // enable the peripheral chips
mjr 54:fd77a6b2f76c 5276 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 5277 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 5278 if (hc595 != 0)
mjr 54:fd77a6b2f76c 5279 hc595->enable(true);
mjr 74:822a92bc11d2 5280
mjr 74:822a92bc11d2 5281 // start the LedWiz flash cycle timers
mjr 74:822a92bc11d2 5282 wizPulseTimer.start();
mjr 74:822a92bc11d2 5283 wizCycleTimer.start();
mjr 74:822a92bc11d2 5284
mjr 74:822a92bc11d2 5285 // start the PWM update polling timer
mjr 74:822a92bc11d2 5286 polledPwmTimer.start();
mjr 43:7a6364d82a41 5287
mjr 1:d913e0afb2ac 5288 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 5289 // host requests
mjr 0:5acbbe3f4cf4 5290 for (;;)
mjr 0:5acbbe3f4cf4 5291 {
mjr 74:822a92bc11d2 5292 // start the main loop timer for diagnostic data collection
mjr 74:822a92bc11d2 5293 IF_DIAG(
mjr 74:822a92bc11d2 5294 Timer mainLoopTimer;
mjr 74:822a92bc11d2 5295 mainLoopTimer.start();
mjr 74:822a92bc11d2 5296 )
mjr 74:822a92bc11d2 5297
mjr 48:058ace2aed1d 5298 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 5299 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 5300 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 5301 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 5302 LedWizMsg lwm;
mjr 48:058ace2aed1d 5303 Timer lwt;
mjr 48:058ace2aed1d 5304 lwt.start();
mjr 74:822a92bc11d2 5305 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 5306 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 5307 {
mjr 48:058ace2aed1d 5308 handleInputMsg(lwm, js);
mjr 74:822a92bc11d2 5309 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 5310 }
mjr 74:822a92bc11d2 5311
mjr 74:822a92bc11d2 5312 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 5313 IF_DIAG(
mjr 74:822a92bc11d2 5314 if (msgCount != 0)
mjr 74:822a92bc11d2 5315 {
mjr 74:822a92bc11d2 5316 mainLoopMsgTime += lwt.read();
mjr 74:822a92bc11d2 5317 mainLoopMsgCount++;
mjr 74:822a92bc11d2 5318 }
mjr 74:822a92bc11d2 5319 )
mjr 74:822a92bc11d2 5320
mjr 74:822a92bc11d2 5321 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 5322 wizPulse();
mjr 74:822a92bc11d2 5323
mjr 74:822a92bc11d2 5324 // update PWM outputs
mjr 74:822a92bc11d2 5325 pollPwmUpdates();
mjr 55:4db125cd11a0 5326
mjr 55:4db125cd11a0 5327 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 5328 if (tlc5940 != 0)
mjr 55:4db125cd11a0 5329 tlc5940->send();
mjr 1:d913e0afb2ac 5330
mjr 1:d913e0afb2ac 5331 // check for plunger calibration
mjr 17:ab3cec0c8bf4 5332 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 5333 {
mjr 1:d913e0afb2ac 5334 // check the state
mjr 1:d913e0afb2ac 5335 switch (calBtnState)
mjr 0:5acbbe3f4cf4 5336 {
mjr 1:d913e0afb2ac 5337 case 0:
mjr 1:d913e0afb2ac 5338 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 5339 calBtnTimer.reset();
mjr 1:d913e0afb2ac 5340 calBtnState = 1;
mjr 1:d913e0afb2ac 5341 break;
mjr 1:d913e0afb2ac 5342
mjr 1:d913e0afb2ac 5343 case 1:
mjr 1:d913e0afb2ac 5344 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 5345 // passed, start the hold period
mjr 48:058ace2aed1d 5346 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 5347 calBtnState = 2;
mjr 1:d913e0afb2ac 5348 break;
mjr 1:d913e0afb2ac 5349
mjr 1:d913e0afb2ac 5350 case 2:
mjr 1:d913e0afb2ac 5351 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 5352 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 5353 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 5354 {
mjr 1:d913e0afb2ac 5355 // enter calibration mode
mjr 1:d913e0afb2ac 5356 calBtnState = 3;
mjr 9:fd65b0a94720 5357 calBtnTimer.reset();
mjr 35:e959ffba78fd 5358
mjr 44:b5ac89b9cd5d 5359 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 5360 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 5361 }
mjr 1:d913e0afb2ac 5362 break;
mjr 2:c174f9ee414a 5363
mjr 2:c174f9ee414a 5364 case 3:
mjr 9:fd65b0a94720 5365 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 5366 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 5367 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 5368 break;
mjr 0:5acbbe3f4cf4 5369 }
mjr 0:5acbbe3f4cf4 5370 }
mjr 1:d913e0afb2ac 5371 else
mjr 1:d913e0afb2ac 5372 {
mjr 2:c174f9ee414a 5373 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 5374 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 5375 // and save the results to flash.
mjr 2:c174f9ee414a 5376 //
mjr 2:c174f9ee414a 5377 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 5378 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 5379 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 5380 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 5381 {
mjr 2:c174f9ee414a 5382 // exit calibration mode
mjr 1:d913e0afb2ac 5383 calBtnState = 0;
mjr 52:8298b2a73eb2 5384 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 5385
mjr 6:cc35eb643e8f 5386 // save the updated configuration
mjr 35:e959ffba78fd 5387 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 5388 saveConfigToFlash();
mjr 2:c174f9ee414a 5389 }
mjr 2:c174f9ee414a 5390 else if (calBtnState != 3)
mjr 2:c174f9ee414a 5391 {
mjr 2:c174f9ee414a 5392 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 5393 calBtnState = 0;
mjr 2:c174f9ee414a 5394 }
mjr 1:d913e0afb2ac 5395 }
mjr 1:d913e0afb2ac 5396
mjr 1:d913e0afb2ac 5397 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 5398 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 5399 switch (calBtnState)
mjr 0:5acbbe3f4cf4 5400 {
mjr 1:d913e0afb2ac 5401 case 2:
mjr 1:d913e0afb2ac 5402 // in the hold period - flash the light
mjr 48:058ace2aed1d 5403 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 5404 break;
mjr 1:d913e0afb2ac 5405
mjr 1:d913e0afb2ac 5406 case 3:
mjr 1:d913e0afb2ac 5407 // calibration mode - show steady on
mjr 1:d913e0afb2ac 5408 newCalBtnLit = true;
mjr 1:d913e0afb2ac 5409 break;
mjr 1:d913e0afb2ac 5410
mjr 1:d913e0afb2ac 5411 default:
mjr 1:d913e0afb2ac 5412 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 5413 newCalBtnLit = false;
mjr 1:d913e0afb2ac 5414 break;
mjr 1:d913e0afb2ac 5415 }
mjr 3:3514575d4f86 5416
mjr 3:3514575d4f86 5417 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 5418 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 5419 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 5420 {
mjr 1:d913e0afb2ac 5421 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 5422 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 5423 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 5424 calBtnLed->write(1);
mjr 38:091e511ce8a0 5425 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 5426 }
mjr 2:c174f9ee414a 5427 else {
mjr 17:ab3cec0c8bf4 5428 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 5429 calBtnLed->write(0);
mjr 38:091e511ce8a0 5430 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 5431 }
mjr 1:d913e0afb2ac 5432 }
mjr 35:e959ffba78fd 5433
mjr 48:058ace2aed1d 5434 // read the plunger sensor
mjr 48:058ace2aed1d 5435 plungerReader.read();
mjr 48:058ace2aed1d 5436
mjr 53:9b2611964afc 5437 // update the ZB Launch Ball status
mjr 53:9b2611964afc 5438 zbLaunchBall.update();
mjr 37:ed52738445fc 5439
mjr 53:9b2611964afc 5440 // process button updates
mjr 53:9b2611964afc 5441 processButtons(cfg);
mjr 53:9b2611964afc 5442
mjr 38:091e511ce8a0 5443 // send a keyboard report if we have new data
mjr 37:ed52738445fc 5444 if (kbState.changed)
mjr 37:ed52738445fc 5445 {
mjr 38:091e511ce8a0 5446 // send a keyboard report
mjr 37:ed52738445fc 5447 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 5448 kbState.changed = false;
mjr 37:ed52738445fc 5449 }
mjr 38:091e511ce8a0 5450
mjr 38:091e511ce8a0 5451 // likewise for the media controller
mjr 37:ed52738445fc 5452 if (mediaState.changed)
mjr 37:ed52738445fc 5453 {
mjr 38:091e511ce8a0 5454 // send a media report
mjr 37:ed52738445fc 5455 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 5456 mediaState.changed = false;
mjr 37:ed52738445fc 5457 }
mjr 38:091e511ce8a0 5458
mjr 38:091e511ce8a0 5459 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 5460 bool jsOK = false;
mjr 55:4db125cd11a0 5461
mjr 55:4db125cd11a0 5462 // figure the current status flags for joystick reports
mjr 55:4db125cd11a0 5463 uint16_t statusFlags =
mjr 55:4db125cd11a0 5464 (cfg.plunger.enabled ? 0x01 : 0x00)
mjr 73:4e8ce0b18915 5465 | (nightMode ? 0x02 : 0x00)
mjr 73:4e8ce0b18915 5466 | ((psu2_state & 0x07) << 2);
mjr 17:ab3cec0c8bf4 5467
mjr 50:40015764bbe6 5468 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 5469 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 5470 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 5471 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 5472 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 5473 {
mjr 17:ab3cec0c8bf4 5474 // read the accelerometer
mjr 17:ab3cec0c8bf4 5475 int xa, ya;
mjr 17:ab3cec0c8bf4 5476 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 5477
mjr 17:ab3cec0c8bf4 5478 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 5479 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 5480 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 5481 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 5482 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 5483
mjr 17:ab3cec0c8bf4 5484 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 5485 x = xa;
mjr 17:ab3cec0c8bf4 5486 y = ya;
mjr 17:ab3cec0c8bf4 5487
mjr 48:058ace2aed1d 5488 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 5489 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 5490 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 5491 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 5492 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 5493 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 5494 // regular plunger inputs.
mjr 48:058ace2aed1d 5495 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 5496 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 5497
mjr 35:e959ffba78fd 5498 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 5499 accelRotate(x, y);
mjr 35:e959ffba78fd 5500
mjr 35:e959ffba78fd 5501 // send the joystick report
mjr 53:9b2611964afc 5502 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 5503
mjr 17:ab3cec0c8bf4 5504 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 5505 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 5506 }
mjr 21:5048e16cc9ef 5507
mjr 52:8298b2a73eb2 5508 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 5509 if (reportPlungerStat)
mjr 10:976666ffa4ef 5510 {
mjr 17:ab3cec0c8bf4 5511 // send the report
mjr 53:9b2611964afc 5512 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 5513
mjr 10:976666ffa4ef 5514 // we have satisfied this request
mjr 52:8298b2a73eb2 5515 reportPlungerStat = false;
mjr 10:976666ffa4ef 5516 }
mjr 10:976666ffa4ef 5517
mjr 35:e959ffba78fd 5518 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 5519 // periodically for the sake of the Windows config tool.
mjr 55:4db125cd11a0 5520 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 5000)
mjr 21:5048e16cc9ef 5521 {
mjr 55:4db125cd11a0 5522 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 5523 jsReportTimer.reset();
mjr 38:091e511ce8a0 5524 }
mjr 38:091e511ce8a0 5525
mjr 38:091e511ce8a0 5526 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 5527 if (jsOK)
mjr 38:091e511ce8a0 5528 {
mjr 38:091e511ce8a0 5529 jsOKTimer.reset();
mjr 38:091e511ce8a0 5530 jsOKTimer.start();
mjr 21:5048e16cc9ef 5531 }
mjr 21:5048e16cc9ef 5532
mjr 6:cc35eb643e8f 5533 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 5534 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 5535 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 5536 #endif
mjr 6:cc35eb643e8f 5537
mjr 33:d832bcab089e 5538 // check for connection status changes
mjr 54:fd77a6b2f76c 5539 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 5540 if (newConnected != connected)
mjr 33:d832bcab089e 5541 {
mjr 54:fd77a6b2f76c 5542 // give it a moment to stabilize
mjr 40:cc0d9814522b 5543 connectChangeTimer.start();
mjr 55:4db125cd11a0 5544 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 5545 {
mjr 33:d832bcab089e 5546 // note the new status
mjr 33:d832bcab089e 5547 connected = newConnected;
mjr 40:cc0d9814522b 5548
mjr 40:cc0d9814522b 5549 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 5550 connectChangeTimer.stop();
mjr 40:cc0d9814522b 5551 connectChangeTimer.reset();
mjr 33:d832bcab089e 5552
mjr 54:fd77a6b2f76c 5553 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 5554 if (!connected)
mjr 40:cc0d9814522b 5555 {
mjr 54:fd77a6b2f76c 5556 // turn off all outputs
mjr 33:d832bcab089e 5557 allOutputsOff();
mjr 40:cc0d9814522b 5558
mjr 40:cc0d9814522b 5559 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 5560 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 5561 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 5562 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 5563 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 5564 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 5565 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 5566 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 5567 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 5568 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 5569 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 5570 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 5571 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 5572 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 5573 // the power first comes on.
mjr 40:cc0d9814522b 5574 if (tlc5940 != 0)
mjr 40:cc0d9814522b 5575 tlc5940->enable(false);
mjr 40:cc0d9814522b 5576 if (hc595 != 0)
mjr 40:cc0d9814522b 5577 hc595->enable(false);
mjr 40:cc0d9814522b 5578 }
mjr 33:d832bcab089e 5579 }
mjr 33:d832bcab089e 5580 }
mjr 48:058ace2aed1d 5581
mjr 53:9b2611964afc 5582 // if we have a reboot timer pending, check for completion
mjr 53:9b2611964afc 5583 if (rebootTimer.isRunning() && rebootTimer.read_us() > rebootTime_us)
mjr 53:9b2611964afc 5584 reboot(js);
mjr 53:9b2611964afc 5585
mjr 48:058ace2aed1d 5586 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 5587 if (!connected)
mjr 48:058ace2aed1d 5588 {
mjr 54:fd77a6b2f76c 5589 // show USB HAL debug events
mjr 54:fd77a6b2f76c 5590 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 5591 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 5592
mjr 54:fd77a6b2f76c 5593 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 5594 js.diagFlash();
mjr 54:fd77a6b2f76c 5595
mjr 54:fd77a6b2f76c 5596 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 5597 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5598
mjr 51:57eb311faafa 5599 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 5600 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 5601 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 5602
mjr 54:fd77a6b2f76c 5603 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 5604 Timer diagTimer;
mjr 54:fd77a6b2f76c 5605 diagTimer.reset();
mjr 54:fd77a6b2f76c 5606 diagTimer.start();
mjr 74:822a92bc11d2 5607
mjr 74:822a92bc11d2 5608 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 5609 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 5610
mjr 54:fd77a6b2f76c 5611 // loop until we get our connection back
mjr 54:fd77a6b2f76c 5612 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 5613 {
mjr 54:fd77a6b2f76c 5614 // try to recover the connection
mjr 54:fd77a6b2f76c 5615 js.recoverConnection();
mjr 54:fd77a6b2f76c 5616
mjr 55:4db125cd11a0 5617 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 5618 if (tlc5940 != 0)
mjr 55:4db125cd11a0 5619 tlc5940->send();
mjr 55:4db125cd11a0 5620
mjr 54:fd77a6b2f76c 5621 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 5622 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5623 {
mjr 54:fd77a6b2f76c 5624 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 5625 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 5626
mjr 54:fd77a6b2f76c 5627 // show diagnostic feedback
mjr 54:fd77a6b2f76c 5628 js.diagFlash();
mjr 51:57eb311faafa 5629
mjr 51:57eb311faafa 5630 // reset the flash timer
mjr 54:fd77a6b2f76c 5631 diagTimer.reset();
mjr 51:57eb311faafa 5632 }
mjr 51:57eb311faafa 5633
mjr 51:57eb311faafa 5634 // if the disconnect reboot timeout has expired, reboot
mjr 51:57eb311faafa 5635 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 5636 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 5637 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 5638 }
mjr 54:fd77a6b2f76c 5639
mjr 74:822a92bc11d2 5640 // resume the main loop timer
mjr 74:822a92bc11d2 5641 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 5642
mjr 54:fd77a6b2f76c 5643 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 5644 connected = true;
mjr 54:fd77a6b2f76c 5645 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 5646
mjr 54:fd77a6b2f76c 5647 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 5648 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 5649 {
mjr 55:4db125cd11a0 5650 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 5651 tlc5940->update(true);
mjr 54:fd77a6b2f76c 5652 }
mjr 54:fd77a6b2f76c 5653 if (hc595 != 0)
mjr 54:fd77a6b2f76c 5654 {
mjr 55:4db125cd11a0 5655 hc595->enable(true);
mjr 54:fd77a6b2f76c 5656 hc595->update(true);
mjr 51:57eb311faafa 5657 }
mjr 48:058ace2aed1d 5658 }
mjr 43:7a6364d82a41 5659
mjr 6:cc35eb643e8f 5660 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 5661 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 5662 {
mjr 54:fd77a6b2f76c 5663 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 5664 {
mjr 39:b3815a1c3802 5665 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 5666 //
mjr 54:fd77a6b2f76c 5667 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 5668 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 5669 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 5670 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 5671 hb = !hb;
mjr 38:091e511ce8a0 5672 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 5673
mjr 54:fd77a6b2f76c 5674 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 5675 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 5676 // with the USB connection.
mjr 54:fd77a6b2f76c 5677 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 5678 {
mjr 54:fd77a6b2f76c 5679 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 5680 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 5681 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 5682 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 5683 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 5684 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 5685 }
mjr 54:fd77a6b2f76c 5686 else
mjr 54:fd77a6b2f76c 5687 {
mjr 54:fd77a6b2f76c 5688 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 5689 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 5690 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 5691 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 5692 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 5693 }
mjr 38:091e511ce8a0 5694 }
mjr 73:4e8ce0b18915 5695 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 5696 {
mjr 73:4e8ce0b18915 5697 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 5698 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 5699 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 5700 }
mjr 35:e959ffba78fd 5701 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 5702 {
mjr 6:cc35eb643e8f 5703 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 5704 hb = !hb;
mjr 38:091e511ce8a0 5705 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 5706 }
mjr 6:cc35eb643e8f 5707 else
mjr 6:cc35eb643e8f 5708 {
mjr 6:cc35eb643e8f 5709 // connected - flash blue/green
mjr 2:c174f9ee414a 5710 hb = !hb;
mjr 38:091e511ce8a0 5711 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 5712 }
mjr 1:d913e0afb2ac 5713
mjr 1:d913e0afb2ac 5714 // reset the heartbeat timer
mjr 1:d913e0afb2ac 5715 hbTimer.reset();
mjr 5:a70c0bce770d 5716 ++hbcnt;
mjr 1:d913e0afb2ac 5717 }
mjr 74:822a92bc11d2 5718
mjr 74:822a92bc11d2 5719 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 5720 IF_DIAG(
mjr 74:822a92bc11d2 5721 mainLoopIterTime += mainLoopTimer.read();
mjr 74:822a92bc11d2 5722 mainLoopIterCount++;
mjr 74:822a92bc11d2 5723 )
mjr 1:d913e0afb2ac 5724 }
mjr 0:5acbbe3f4cf4 5725 }