Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Mon Feb 03 21:27:55 2020 +0000
Revision:
106:e9e3b46132c1
Parent:
101:755f44622abc
Child:
107:8f3c7aeae7e0
Check diagnostic LEDs against all configured pins (not just output ports)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 262 #include "rotarySensor.h"
mjr 100:1ff35c07217c 263 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 264
mjr 2:c174f9ee414a 265
mjr 21:5048e16cc9ef 266 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 267 #include "config.h"
mjr 17:ab3cec0c8bf4 268
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 106:e9e3b46132c1 519 // check an output port or pin assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 106:e9e3b46132c1 526 // check an output port to see if it conflicts with one of the LED ports
mjr 38:091e511ce8a0 527 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 528 {
mjr 38:091e511ce8a0 529 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 530 // our on-board LED segments
mjr 38:091e511ce8a0 531 int t = pc.typ;
mjr 38:091e511ce8a0 532 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 106:e9e3b46132c1 533 check(pc.pin);
mjr 106:e9e3b46132c1 534 }
mjr 106:e9e3b46132c1 535
mjr 106:e9e3b46132c1 536 // check a pin to see if it conflicts with one of the diagnostic LED ports
mjr 106:e9e3b46132c1 537 void check(uint8_t pinId)
mjr 106:e9e3b46132c1 538 {
mjr 106:e9e3b46132c1 539 PinName pin = wirePinName(pinId);
mjr 106:e9e3b46132c1 540 if (pin == LED1)
mjr 106:e9e3b46132c1 541 r = true;
mjr 106:e9e3b46132c1 542 else if (pin == LED2)
mjr 106:e9e3b46132c1 543 g = true;
mjr 106:e9e3b46132c1 544 else if (pin == LED3)
mjr 106:e9e3b46132c1 545 b = true;
mjr 38:091e511ce8a0 546 }
mjr 38:091e511ce8a0 547 };
mjr 38:091e511ce8a0 548
mjr 38:091e511ce8a0 549 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 550 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 551 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 552 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 553 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 554 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 555 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 556 {
mjr 38:091e511ce8a0 557 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 558 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 559 LedSeg l;
mjr 38:091e511ce8a0 560 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 561 l.check(cfg.outPort[i]);
mjr 106:e9e3b46132c1 562
mjr 106:e9e3b46132c1 563 // check the button inputs
mjr 106:e9e3b46132c1 564 for (int i = 0 ; i < countof(cfg.button) ; ++i)
mjr 106:e9e3b46132c1 565 l.check(cfg.button[i].pin);
mjr 106:e9e3b46132c1 566
mjr 106:e9e3b46132c1 567 // check plunger inputs
mjr 106:e9e3b46132c1 568 if (cfg.plunger.enabled && cfg.plunger.sensorType != PlungerType_None)
mjr 106:e9e3b46132c1 569 {
mjr 106:e9e3b46132c1 570 for (int i = 0 ; i < countof(cfg.plunger.sensorPin) ; ++i)
mjr 106:e9e3b46132c1 571 l.check(cfg.plunger.sensorPin[i]);
mjr 106:e9e3b46132c1 572 }
mjr 106:e9e3b46132c1 573
mjr 106:e9e3b46132c1 574 // check the TV ON pin assignments
mjr 106:e9e3b46132c1 575 l.check(cfg.TVON.statusPin);
mjr 106:e9e3b46132c1 576 l.check(cfg.TVON.latchPin);
mjr 106:e9e3b46132c1 577 l.check(cfg.TVON.relayPin);
mjr 106:e9e3b46132c1 578
mjr 106:e9e3b46132c1 579 // check the TLC5940 pins
mjr 106:e9e3b46132c1 580 if (cfg.tlc5940.nchips != 0)
mjr 106:e9e3b46132c1 581 {
mjr 106:e9e3b46132c1 582 l.check(cfg.tlc5940.sin);
mjr 106:e9e3b46132c1 583 l.check(cfg.tlc5940.sclk);
mjr 106:e9e3b46132c1 584 l.check(cfg.tlc5940.xlat);
mjr 106:e9e3b46132c1 585 l.check(cfg.tlc5940.blank);
mjr 106:e9e3b46132c1 586 l.check(cfg.tlc5940.gsclk);
mjr 106:e9e3b46132c1 587 }
mjr 106:e9e3b46132c1 588
mjr 106:e9e3b46132c1 589 // check 74HC595 pin assignments
mjr 106:e9e3b46132c1 590 if (cfg.hc595.nchips != 0)
mjr 106:e9e3b46132c1 591 {
mjr 106:e9e3b46132c1 592 l.check(cfg.hc595.sin);
mjr 106:e9e3b46132c1 593 l.check(cfg.hc595.sclk);
mjr 106:e9e3b46132c1 594 l.check(cfg.hc595.latch);
mjr 106:e9e3b46132c1 595 l.check(cfg.hc595.ena);
mjr 106:e9e3b46132c1 596 }
mjr 106:e9e3b46132c1 597
mjr 106:e9e3b46132c1 598 // check TLC59116 pin assignments
mjr 106:e9e3b46132c1 599 if (cfg.tlc59116.chipMask != 0)
mjr 106:e9e3b46132c1 600 {
mjr 106:e9e3b46132c1 601 l.check(cfg.tlc59116.sda);
mjr 106:e9e3b46132c1 602 l.check(cfg.tlc59116.scl);
mjr 106:e9e3b46132c1 603 l.check(cfg.tlc59116.reset);
mjr 106:e9e3b46132c1 604 }
mjr 106:e9e3b46132c1 605
mjr 106:e9e3b46132c1 606 // check the IR remove control hardware
mjr 106:e9e3b46132c1 607 l.check(cfg.IR.sensor);
mjr 106:e9e3b46132c1 608 l.check(cfg.IR.emitter);
mjr 106:e9e3b46132c1 609
mjr 106:e9e3b46132c1 610 // We now know which segments are taken for other uses and which
mjr 38:091e511ce8a0 611 // are free. Create diagnostic ports for the ones not claimed for
mjr 106:e9e3b46132c1 612 // other purposes.
mjr 38:091e511ce8a0 613 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 614 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 615 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 616 }
mjr 38:091e511ce8a0 617
mjr 38:091e511ce8a0 618
mjr 38:091e511ce8a0 619 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 620 //
mjr 76:7f5912b6340e 621 // LedWiz emulation
mjr 76:7f5912b6340e 622 //
mjr 76:7f5912b6340e 623
mjr 76:7f5912b6340e 624 // LedWiz output states.
mjr 76:7f5912b6340e 625 //
mjr 76:7f5912b6340e 626 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 627 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 628 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 629 // The two axes are independent.
mjr 76:7f5912b6340e 630 //
mjr 76:7f5912b6340e 631 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 632 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 633 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 634 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 635 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 636 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 637 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 638 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 639
mjr 76:7f5912b6340e 640 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 641 static uint8_t *wizOn;
mjr 76:7f5912b6340e 642
mjr 76:7f5912b6340e 643 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 644 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 645 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 646 //
mjr 76:7f5912b6340e 647 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 648 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 649 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 650 // 130 = flash on / off
mjr 76:7f5912b6340e 651 // 131 = on / ramp down
mjr 76:7f5912b6340e 652 // 132 = ramp up / on
mjr 5:a70c0bce770d 653 //
mjr 76:7f5912b6340e 654 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 655 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 656 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 657 static uint8_t *wizVal;
mjr 76:7f5912b6340e 658
mjr 76:7f5912b6340e 659 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 660 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 661 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 662 // by the extended protocol:
mjr 76:7f5912b6340e 663 //
mjr 76:7f5912b6340e 664 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 665 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 666 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 667 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 668 // if the brightness is non-zero.
mjr 76:7f5912b6340e 669 //
mjr 76:7f5912b6340e 670 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 671 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 672 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 673 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 674 // 0..255 range.
mjr 26:cb71c4af2912 675 //
mjr 76:7f5912b6340e 676 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 677 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 678 // level.
mjr 26:cb71c4af2912 679 //
mjr 76:7f5912b6340e 680 static uint8_t *outLevel;
mjr 76:7f5912b6340e 681
mjr 76:7f5912b6340e 682
mjr 76:7f5912b6340e 683 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 684 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 685 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 686 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 687 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 688 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 689 //
mjr 76:7f5912b6340e 690 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 691 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 692 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 693 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 694 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 695 // at the maximum size.
mjr 76:7f5912b6340e 696 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 697 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 698
mjr 26:cb71c4af2912 699 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 700 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 701 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 702 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 703 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 704
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 707 //
mjr 76:7f5912b6340e 708 // Output Ports
mjr 76:7f5912b6340e 709 //
mjr 76:7f5912b6340e 710 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 711 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 712 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 713 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 714 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 715 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 716 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 717 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 718 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 719 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 720 // you have to ration pins among features.
mjr 76:7f5912b6340e 721 //
mjr 87:8d35c74403af 722 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 723 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 724 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 725 //
mjr 87:8d35c74403af 726 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 727 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 728 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 729 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 730 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 731 //
mjr 87:8d35c74403af 732 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 733 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 734 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 735 //
mjr 87:8d35c74403af 736 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 737 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 738 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 739 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 740 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 741 // for the chime board outputs.
mjr 76:7f5912b6340e 742 //
mjr 76:7f5912b6340e 743 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 744 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 745 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 746 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 747 //
mjr 76:7f5912b6340e 748 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 749 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 750 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 751 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 752 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 753 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 754 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 755 // of physical devices they're connected to.
mjr 76:7f5912b6340e 756
mjr 76:7f5912b6340e 757
mjr 26:cb71c4af2912 758 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 759 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 760 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 761 class LwOut
mjr 6:cc35eb643e8f 762 {
mjr 6:cc35eb643e8f 763 public:
mjr 40:cc0d9814522b 764 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 765 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 766 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 767 };
mjr 26:cb71c4af2912 768
mjr 35:e959ffba78fd 769 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 770 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 771 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 772 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 773 // numbering.
mjr 35:e959ffba78fd 774 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 775 {
mjr 33:d832bcab089e 776 public:
mjr 35:e959ffba78fd 777 LwVirtualOut() { }
mjr 40:cc0d9814522b 778 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 779 };
mjr 26:cb71c4af2912 780
mjr 34:6b981a2afab7 781 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 782 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 783 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 784 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 785 {
mjr 34:6b981a2afab7 786 public:
mjr 34:6b981a2afab7 787 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 788 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 789
mjr 34:6b981a2afab7 790 private:
mjr 53:9b2611964afc 791 // underlying physical output
mjr 34:6b981a2afab7 792 LwOut *out;
mjr 34:6b981a2afab7 793 };
mjr 34:6b981a2afab7 794
mjr 53:9b2611964afc 795 // Global ZB Launch Ball state
mjr 53:9b2611964afc 796 bool zbLaunchOn = false;
mjr 53:9b2611964afc 797
mjr 53:9b2611964afc 798 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 799 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 800 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 801 {
mjr 53:9b2611964afc 802 public:
mjr 53:9b2611964afc 803 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 804 virtual void set(uint8_t val)
mjr 53:9b2611964afc 805 {
mjr 53:9b2611964afc 806 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 807 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 808
mjr 53:9b2611964afc 809 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 810 out->set(val);
mjr 53:9b2611964afc 811 }
mjr 53:9b2611964afc 812
mjr 53:9b2611964afc 813 private:
mjr 53:9b2611964afc 814 // underlying physical or virtual output
mjr 53:9b2611964afc 815 LwOut *out;
mjr 53:9b2611964afc 816 };
mjr 53:9b2611964afc 817
mjr 53:9b2611964afc 818
mjr 40:cc0d9814522b 819 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 820 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 821 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 822 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 823 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 824 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 825 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 826 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 827 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 828 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 829 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 830 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 831 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 832 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 833 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 834 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 835 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 836 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 837 };
mjr 40:cc0d9814522b 838
mjr 40:cc0d9814522b 839 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 840 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 841 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 842 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 843 {
mjr 40:cc0d9814522b 844 public:
mjr 40:cc0d9814522b 845 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 846 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 847
mjr 40:cc0d9814522b 848 private:
mjr 40:cc0d9814522b 849 LwOut *out;
mjr 40:cc0d9814522b 850 };
mjr 40:cc0d9814522b 851
mjr 77:0b96f6867312 852 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 853 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 854 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 855 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 856
mjr 40:cc0d9814522b 857 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 858 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 859 // mode is engaged.
mjr 40:cc0d9814522b 860 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 861 {
mjr 40:cc0d9814522b 862 public:
mjr 40:cc0d9814522b 863 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 864 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 865
mjr 53:9b2611964afc 866 private:
mjr 53:9b2611964afc 867 LwOut *out;
mjr 53:9b2611964afc 868 };
mjr 53:9b2611964afc 869
mjr 53:9b2611964afc 870 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 871 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 872 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 873 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 874 {
mjr 53:9b2611964afc 875 public:
mjr 53:9b2611964afc 876 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 877 virtual void set(uint8_t)
mjr 53:9b2611964afc 878 {
mjr 53:9b2611964afc 879 // ignore the host value and simply show the current
mjr 53:9b2611964afc 880 // night mode setting
mjr 53:9b2611964afc 881 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 882 }
mjr 40:cc0d9814522b 883
mjr 40:cc0d9814522b 884 private:
mjr 40:cc0d9814522b 885 LwOut *out;
mjr 40:cc0d9814522b 886 };
mjr 40:cc0d9814522b 887
mjr 26:cb71c4af2912 888
mjr 89:c43cd923401c 889 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 890 // top of a physical pin output.
mjr 89:c43cd923401c 891 //
mjr 89:c43cd923401c 892 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 893 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 894 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 895 // level is ON.
mjr 89:c43cd923401c 896 //
mjr 89:c43cd923401c 897 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 898 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 899 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 900 //
mjr 89:c43cd923401c 901 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 902 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 903 // power and start a timer.
mjr 89:c43cd923401c 904 //
mjr 89:c43cd923401c 905 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 906 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 907 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 908 //
mjr 89:c43cd923401c 909 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 910 {
mjr 89:c43cd923401c 911 public:
mjr 89:c43cd923401c 912 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 913 // the configuration.
mjr 89:c43cd923401c 914 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 915 : out(o), params(params)
mjr 89:c43cd923401c 916 {
mjr 89:c43cd923401c 917 // initially OFF
mjr 89:c43cd923401c 918 state = 0;
mjr 89:c43cd923401c 919 }
mjr 89:c43cd923401c 920
mjr 89:c43cd923401c 921 virtual void set(uint8_t level)
mjr 89:c43cd923401c 922 {
mjr 98:4df3c0f7e707 923 // remember the new nominal level set by the client
mjr 89:c43cd923401c 924 val = level;
mjr 89:c43cd923401c 925
mjr 89:c43cd923401c 926 // update the physical output according to our current timing state
mjr 89:c43cd923401c 927 switch (state)
mjr 89:c43cd923401c 928 {
mjr 89:c43cd923401c 929 case 0:
mjr 89:c43cd923401c 930 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 931 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 932 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 933 // off, so there's no change.
mjr 89:c43cd923401c 934 if (level != 0)
mjr 89:c43cd923401c 935 {
mjr 89:c43cd923401c 936 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 937 state = 1;
mjr 89:c43cd923401c 938
mjr 89:c43cd923401c 939 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 940 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 941 // requested
mjr 89:c43cd923401c 942 out->set(level);
mjr 89:c43cd923401c 943
mjr 89:c43cd923401c 944 // add myself to the pending timer list
mjr 89:c43cd923401c 945 pending[nPending++] = this;
mjr 89:c43cd923401c 946
mjr 89:c43cd923401c 947 // note the starting time
mjr 89:c43cd923401c 948 t0 = timer.read_us();
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951
mjr 89:c43cd923401c 952 case 1:
mjr 89:c43cd923401c 953 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 954 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 955 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 956 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 957 out->set(level);
mjr 89:c43cd923401c 958 if (level == 0)
mjr 89:c43cd923401c 959 {
mjr 89:c43cd923401c 960 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 961 // so we need to remove it from the list.
mjr 89:c43cd923401c 962 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 963 {
mjr 89:c43cd923401c 964 // is this us?
mjr 89:c43cd923401c 965 if (pending[i] == this)
mjr 89:c43cd923401c 966 {
mjr 89:c43cd923401c 967 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 968 // last list entry
mjr 89:c43cd923401c 969 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 970
mjr 89:c43cd923401c 971 // no need to look any further
mjr 89:c43cd923401c 972 break;
mjr 89:c43cd923401c 973 }
mjr 89:c43cd923401c 974 }
mjr 89:c43cd923401c 975
mjr 89:c43cd923401c 976 // switch to state 0 (off)
mjr 89:c43cd923401c 977 state = 0;
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979 break;
mjr 89:c43cd923401c 980
mjr 89:c43cd923401c 981 case 2:
mjr 89:c43cd923401c 982 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 983 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 984 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 985 // as the upper bound.
mjr 89:c43cd923401c 986 if (level == 0)
mjr 89:c43cd923401c 987 {
mjr 89:c43cd923401c 988 // switching off - turn off the physical output
mjr 89:c43cd923401c 989 out->set(0);
mjr 89:c43cd923401c 990
mjr 89:c43cd923401c 991 // go to state 0 (off)
mjr 89:c43cd923401c 992 state = 0;
mjr 89:c43cd923401c 993 }
mjr 89:c43cd923401c 994 else
mjr 89:c43cd923401c 995 {
mjr 89:c43cd923401c 996 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 997 // lower of the requested power and the hold power
mjr 89:c43cd923401c 998 uint8_t hold = holdPower();
mjr 89:c43cd923401c 999 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 1000 }
mjr 89:c43cd923401c 1001 break;
mjr 89:c43cd923401c 1002 }
mjr 89:c43cd923401c 1003 }
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // Class initialization
mjr 89:c43cd923401c 1006 static void classInit(Config &cfg)
mjr 89:c43cd923401c 1007 {
mjr 89:c43cd923401c 1008 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 1009 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 1010 // all of these outputs.
mjr 89:c43cd923401c 1011 int n = 0;
mjr 89:c43cd923401c 1012 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 1013 {
mjr 89:c43cd923401c 1014 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 1015 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 1016 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 1017 ++n;
mjr 89:c43cd923401c 1018 }
mjr 89:c43cd923401c 1019
mjr 89:c43cd923401c 1020 // allocate space for the pending timer list
mjr 89:c43cd923401c 1021 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 1022
mjr 89:c43cd923401c 1023 // there's nothing in the pending list yet
mjr 89:c43cd923401c 1024 nPending = 0;
mjr 89:c43cd923401c 1025
mjr 89:c43cd923401c 1026 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 1027 // use it to figure elapsed times.
mjr 89:c43cd923401c 1028 timer.start();
mjr 89:c43cd923401c 1029 }
mjr 89:c43cd923401c 1030
mjr 89:c43cd923401c 1031 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 1032 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 1033 static void poll()
mjr 89:c43cd923401c 1034 {
mjr 89:c43cd923401c 1035 // note the current time
mjr 89:c43cd923401c 1036 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 1037
mjr 89:c43cd923401c 1038 // go through the timer list
mjr 89:c43cd923401c 1039 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 1040 {
mjr 89:c43cd923401c 1041 // get the port
mjr 89:c43cd923401c 1042 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // assume we'll keep it
mjr 89:c43cd923401c 1045 bool remove = false;
mjr 89:c43cd923401c 1046
mjr 89:c43cd923401c 1047 // check if the port is still on
mjr 89:c43cd923401c 1048 if (port->state != 0)
mjr 89:c43cd923401c 1049 {
mjr 89:c43cd923401c 1050 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1051 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1052 {
mjr 89:c43cd923401c 1053 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1054 port->state = 2;
mjr 89:c43cd923401c 1055
mjr 89:c43cd923401c 1056 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1057 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1058 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1059 uint8_t val = port->val;
mjr 89:c43cd923401c 1060 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // we're done with the timer
mjr 89:c43cd923401c 1063 remove = true;
mjr 89:c43cd923401c 1064 }
mjr 89:c43cd923401c 1065 }
mjr 89:c43cd923401c 1066 else
mjr 89:c43cd923401c 1067 {
mjr 89:c43cd923401c 1068 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1069 // it from the timer list
mjr 89:c43cd923401c 1070 remove = true;
mjr 89:c43cd923401c 1071 }
mjr 89:c43cd923401c 1072
mjr 89:c43cd923401c 1073 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1074 if (remove)
mjr 89:c43cd923401c 1075 {
mjr 89:c43cd923401c 1076 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1077 // the last entry in the list.
mjr 89:c43cd923401c 1078 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1079
mjr 89:c43cd923401c 1080 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1081 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1082 }
mjr 89:c43cd923401c 1083 else
mjr 89:c43cd923401c 1084 {
mjr 89:c43cd923401c 1085 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1086 ++i;
mjr 89:c43cd923401c 1087 }
mjr 89:c43cd923401c 1088 }
mjr 89:c43cd923401c 1089 }
mjr 89:c43cd923401c 1090
mjr 89:c43cd923401c 1091 protected:
mjr 89:c43cd923401c 1092 // underlying physical output
mjr 89:c43cd923401c 1093 LwOut *out;
mjr 89:c43cd923401c 1094
mjr 89:c43cd923401c 1095 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1096 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1097 uint32_t t0;
mjr 89:c43cd923401c 1098
mjr 89:c43cd923401c 1099 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1100 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1101 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1102 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1103 // if it's lower.
mjr 89:c43cd923401c 1104 uint8_t val;
mjr 89:c43cd923401c 1105
mjr 89:c43cd923401c 1106 // Current port state:
mjr 89:c43cd923401c 1107 //
mjr 89:c43cd923401c 1108 // 0 = off
mjr 89:c43cd923401c 1109 // 1 = on at initial full power
mjr 89:c43cd923401c 1110 // 2 = on at hold power
mjr 89:c43cd923401c 1111 uint8_t state;
mjr 89:c43cd923401c 1112
mjr 89:c43cd923401c 1113 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1114 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1115 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1116 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1117 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1118 uint8_t params;
mjr 89:c43cd923401c 1119
mjr 99:8139b0c274f4 1120 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1121 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1122 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1123
mjr 89:c43cd923401c 1124 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1125 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1126
mjr 89:c43cd923401c 1127 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1128 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1129 // (which runs continuously).
mjr 89:c43cd923401c 1130 static Timer timer;
mjr 89:c43cd923401c 1131
mjr 89:c43cd923401c 1132 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1133 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1134 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1135 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1136 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1137 static uint8_t nPending;
mjr 89:c43cd923401c 1138 };
mjr 89:c43cd923401c 1139
mjr 89:c43cd923401c 1140 // Flipper Logic statics
mjr 89:c43cd923401c 1141 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1142 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1143 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1144
mjr 99:8139b0c274f4 1145 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1146 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1147 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1148 {
mjr 98:4df3c0f7e707 1149 public:
mjr 99:8139b0c274f4 1150 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1151 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1152 : out(o), params(params)
mjr 98:4df3c0f7e707 1153 {
mjr 98:4df3c0f7e707 1154 // initially OFF
mjr 98:4df3c0f7e707 1155 state = 0;
mjr 98:4df3c0f7e707 1156 }
mjr 98:4df3c0f7e707 1157
mjr 98:4df3c0f7e707 1158 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1159 {
mjr 98:4df3c0f7e707 1160 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1161 switch (state)
mjr 98:4df3c0f7e707 1162 {
mjr 98:4df3c0f7e707 1163 case 0:
mjr 98:4df3c0f7e707 1164 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1165 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1166 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1167 // off, so there's no change.
mjr 98:4df3c0f7e707 1168 if (level != 0)
mjr 98:4df3c0f7e707 1169 {
mjr 98:4df3c0f7e707 1170 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1171 // logically on)
mjr 98:4df3c0f7e707 1172 state = 1;
mjr 98:4df3c0f7e707 1173
mjr 98:4df3c0f7e707 1174 // set the requested output level
mjr 98:4df3c0f7e707 1175 out->set(level);
mjr 98:4df3c0f7e707 1176
mjr 98:4df3c0f7e707 1177 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1178 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1179
mjr 98:4df3c0f7e707 1180 // note the starting time
mjr 98:4df3c0f7e707 1181 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1182 }
mjr 98:4df3c0f7e707 1183 break;
mjr 98:4df3c0f7e707 1184
mjr 98:4df3c0f7e707 1185 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1186 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1187 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1188 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1189 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1190 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1191 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1192 //
mjr 98:4df3c0f7e707 1193 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1194 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1195 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1196 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1197 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1198 if (level != 0)
mjr 98:4df3c0f7e707 1199 {
mjr 98:4df3c0f7e707 1200 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1201 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1202 out->set(level);
mjr 98:4df3c0f7e707 1203 state = 1;
mjr 98:4df3c0f7e707 1204 }
mjr 98:4df3c0f7e707 1205 else
mjr 98:4df3c0f7e707 1206 {
mjr 98:4df3c0f7e707 1207 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1208 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1209 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1210 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1211 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1212 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1213 // time requirement.
mjr 98:4df3c0f7e707 1214 state = 2;
mjr 98:4df3c0f7e707 1215 }
mjr 98:4df3c0f7e707 1216 break;
mjr 98:4df3c0f7e707 1217
mjr 98:4df3c0f7e707 1218 case 3:
mjr 99:8139b0c274f4 1219 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1220 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1221 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1222 out->set(level);
mjr 98:4df3c0f7e707 1223
mjr 98:4df3c0f7e707 1224 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1225 if (level == 0)
mjr 99:8139b0c274f4 1226 {
mjr 99:8139b0c274f4 1227 // return to the OFF state
mjr 99:8139b0c274f4 1228 state = 0;
mjr 99:8139b0c274f4 1229
mjr 99:8139b0c274f4 1230 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1231 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1232 // port.
mjr 99:8139b0c274f4 1233 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1234 {
mjr 99:8139b0c274f4 1235 // is this us?
mjr 99:8139b0c274f4 1236 if (pending[i] == this)
mjr 99:8139b0c274f4 1237 {
mjr 99:8139b0c274f4 1238 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1239 // last list entry
mjr 99:8139b0c274f4 1240 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1241
mjr 99:8139b0c274f4 1242 // no need to look any further
mjr 99:8139b0c274f4 1243 break;
mjr 99:8139b0c274f4 1244 }
mjr 99:8139b0c274f4 1245 }
mjr 99:8139b0c274f4 1246 }
mjr 99:8139b0c274f4 1247 break;
mjr 99:8139b0c274f4 1248
mjr 99:8139b0c274f4 1249 case 4:
mjr 99:8139b0c274f4 1250 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1251 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1252 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1253 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1254 if (level == 0)
mjr 98:4df3c0f7e707 1255 state = 0;
mjr 98:4df3c0f7e707 1256 break;
mjr 98:4df3c0f7e707 1257 }
mjr 98:4df3c0f7e707 1258 }
mjr 98:4df3c0f7e707 1259
mjr 98:4df3c0f7e707 1260 // Class initialization
mjr 98:4df3c0f7e707 1261 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1262 {
mjr 98:4df3c0f7e707 1263 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1264 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1265 // all of these outputs.
mjr 98:4df3c0f7e707 1266 int n = 0;
mjr 98:4df3c0f7e707 1267 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1268 {
mjr 98:4df3c0f7e707 1269 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1270 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1271 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1272 ++n;
mjr 98:4df3c0f7e707 1273 }
mjr 98:4df3c0f7e707 1274
mjr 98:4df3c0f7e707 1275 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1276 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1277
mjr 98:4df3c0f7e707 1278 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1279 nPending = 0;
mjr 98:4df3c0f7e707 1280
mjr 98:4df3c0f7e707 1281 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1282 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1283 timer.start();
mjr 98:4df3c0f7e707 1284 }
mjr 98:4df3c0f7e707 1285
mjr 98:4df3c0f7e707 1286 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1287 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1288 static void poll()
mjr 98:4df3c0f7e707 1289 {
mjr 98:4df3c0f7e707 1290 // note the current time
mjr 98:4df3c0f7e707 1291 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1292
mjr 98:4df3c0f7e707 1293 // go through the timer list
mjr 98:4df3c0f7e707 1294 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1295 {
mjr 98:4df3c0f7e707 1296 // get the port
mjr 99:8139b0c274f4 1297 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1298
mjr 98:4df3c0f7e707 1299 // assume we'll keep it
mjr 98:4df3c0f7e707 1300 bool remove = false;
mjr 98:4df3c0f7e707 1301
mjr 99:8139b0c274f4 1302 // check our state
mjr 99:8139b0c274f4 1303 switch (port->state)
mjr 98:4df3c0f7e707 1304 {
mjr 99:8139b0c274f4 1305 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1306 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1307 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1308 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1309 {
mjr 98:4df3c0f7e707 1310 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1311 // it advances to the next state.
mjr 98:4df3c0f7e707 1312 if (port->state == 1)
mjr 98:4df3c0f7e707 1313 {
mjr 99:8139b0c274f4 1314 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1315 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1316 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1317 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1318 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1319 port->state = 3;
mjr 99:8139b0c274f4 1320
mjr 99:8139b0c274f4 1321 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1322 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1323 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1324 // port off.
mjr 99:8139b0c274f4 1325 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1326 remove = true;
mjr 98:4df3c0f7e707 1327 }
mjr 98:4df3c0f7e707 1328 else
mjr 98:4df3c0f7e707 1329 {
mjr 98:4df3c0f7e707 1330 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1331 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1332 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1333 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1334 // the port off now.
mjr 98:4df3c0f7e707 1335 port->out->set(0);
mjr 98:4df3c0f7e707 1336
mjr 98:4df3c0f7e707 1337 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1338 port->state = 0;
mjr 99:8139b0c274f4 1339
mjr 99:8139b0c274f4 1340 // we're done with the timer
mjr 99:8139b0c274f4 1341 remove = true;
mjr 98:4df3c0f7e707 1342 }
mjr 99:8139b0c274f4 1343 }
mjr 99:8139b0c274f4 1344 break;
mjr 99:8139b0c274f4 1345
mjr 99:8139b0c274f4 1346 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1347 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1348 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1349 {
mjr 99:8139b0c274f4 1350 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1351 // port.
mjr 99:8139b0c274f4 1352 port->out->set(0);
mjr 98:4df3c0f7e707 1353
mjr 99:8139b0c274f4 1354 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1355 port->state = 4;
mjr 99:8139b0c274f4 1356
mjr 99:8139b0c274f4 1357 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1358 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1359 remove = true;
mjr 98:4df3c0f7e707 1360 }
mjr 99:8139b0c274f4 1361 break;
mjr 98:4df3c0f7e707 1362 }
mjr 98:4df3c0f7e707 1363
mjr 98:4df3c0f7e707 1364 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1365 if (remove)
mjr 98:4df3c0f7e707 1366 {
mjr 98:4df3c0f7e707 1367 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1368 // the last entry in the list.
mjr 98:4df3c0f7e707 1369 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1370
mjr 98:4df3c0f7e707 1371 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1372 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1373 }
mjr 98:4df3c0f7e707 1374 else
mjr 98:4df3c0f7e707 1375 {
mjr 98:4df3c0f7e707 1376 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1377 ++i;
mjr 98:4df3c0f7e707 1378 }
mjr 98:4df3c0f7e707 1379 }
mjr 98:4df3c0f7e707 1380 }
mjr 98:4df3c0f7e707 1381
mjr 98:4df3c0f7e707 1382 protected:
mjr 98:4df3c0f7e707 1383 // underlying physical output
mjr 98:4df3c0f7e707 1384 LwOut *out;
mjr 98:4df3c0f7e707 1385
mjr 98:4df3c0f7e707 1386 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1387 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1388 uint32_t t0;
mjr 98:4df3c0f7e707 1389
mjr 98:4df3c0f7e707 1390 // Current port state:
mjr 98:4df3c0f7e707 1391 //
mjr 98:4df3c0f7e707 1392 // 0 = off
mjr 99:8139b0c274f4 1393 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1394 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1395 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1396 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1397 //
mjr 99:8139b0c274f4 1398 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1399 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1400 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1401 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1402 //
mjr 99:8139b0c274f4 1403 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1404 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1405 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1406 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1407 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1408 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1409 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1410 //
mjr 99:8139b0c274f4 1411 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1412 // time limit expires:
mjr 99:8139b0c274f4 1413 //
mjr 99:8139b0c274f4 1414 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1415 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1416 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1417 //
mjr 98:4df3c0f7e707 1418 uint8_t state;
mjr 98:4df3c0f7e707 1419
mjr 99:8139b0c274f4 1420 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1421 // ON times.
mjr 99:8139b0c274f4 1422 uint8_t params;
mjr 98:4df3c0f7e707 1423
mjr 98:4df3c0f7e707 1424 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1425 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1426 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1427 static Timer timer;
mjr 98:4df3c0f7e707 1428
mjr 98:4df3c0f7e707 1429 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1430 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1431
mjr 99:8139b0c274f4 1432 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1433 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1434 // into our time table.
mjr 99:8139b0c274f4 1435 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1436
mjr 99:8139b0c274f4 1437 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1438 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1439 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1440 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1441
mjr 98:4df3c0f7e707 1442 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1443 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1444 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1445 // ON intervals.
mjr 99:8139b0c274f4 1446 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1447 static uint8_t nPending;
mjr 98:4df3c0f7e707 1448 };
mjr 98:4df3c0f7e707 1449
mjr 98:4df3c0f7e707 1450 // Min Time Out statics
mjr 99:8139b0c274f4 1451 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1452 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1453 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1454 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1455 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1456 1000,
mjr 98:4df3c0f7e707 1457 2000,
mjr 98:4df3c0f7e707 1458 5000,
mjr 98:4df3c0f7e707 1459 10000,
mjr 98:4df3c0f7e707 1460 20000,
mjr 98:4df3c0f7e707 1461 40000,
mjr 98:4df3c0f7e707 1462 80000,
mjr 98:4df3c0f7e707 1463 100000,
mjr 98:4df3c0f7e707 1464 200000,
mjr 98:4df3c0f7e707 1465 300000,
mjr 98:4df3c0f7e707 1466 400000,
mjr 98:4df3c0f7e707 1467 500000,
mjr 98:4df3c0f7e707 1468 600000,
mjr 98:4df3c0f7e707 1469 700000,
mjr 98:4df3c0f7e707 1470 800000
mjr 98:4df3c0f7e707 1471 };
mjr 89:c43cd923401c 1472
mjr 35:e959ffba78fd 1473 //
mjr 35:e959ffba78fd 1474 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1475 // assignments set in config.h.
mjr 33:d832bcab089e 1476 //
mjr 35:e959ffba78fd 1477 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1478 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1479 {
mjr 35:e959ffba78fd 1480 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1481 {
mjr 53:9b2611964afc 1482 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1483 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1484 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1485 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1486 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1487 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1488 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1489 }
mjr 35:e959ffba78fd 1490 }
mjr 26:cb71c4af2912 1491
mjr 40:cc0d9814522b 1492 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1493 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1494 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1495 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1496 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1497 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1498 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1499 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1500 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1501 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1502 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1503 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1504 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1505 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1506 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1507 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1508 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1509 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1510 };
mjr 40:cc0d9814522b 1511
mjr 40:cc0d9814522b 1512 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1513 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1514 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1515 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1516 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1517 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1518 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1519 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1520 // are always 8 bits.
mjr 40:cc0d9814522b 1521 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1522 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1523 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1524 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1525 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1526 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1527 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1528 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1529 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1530 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1531 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1532 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1533 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1534 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1535 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1536 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1537 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1538 };
mjr 40:cc0d9814522b 1539
mjr 26:cb71c4af2912 1540 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1541 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1542 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1543 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1544 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1545 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1546 {
mjr 26:cb71c4af2912 1547 public:
mjr 60:f38da020aa13 1548 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1549 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1550 {
mjr 26:cb71c4af2912 1551 if (val != prv)
mjr 40:cc0d9814522b 1552 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1553 }
mjr 60:f38da020aa13 1554 uint8_t idx;
mjr 40:cc0d9814522b 1555 uint8_t prv;
mjr 26:cb71c4af2912 1556 };
mjr 26:cb71c4af2912 1557
mjr 40:cc0d9814522b 1558 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1559 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1560 {
mjr 40:cc0d9814522b 1561 public:
mjr 60:f38da020aa13 1562 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1563 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1564 {
mjr 40:cc0d9814522b 1565 if (val != prv)
mjr 40:cc0d9814522b 1566 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1567 }
mjr 60:f38da020aa13 1568 uint8_t idx;
mjr 40:cc0d9814522b 1569 uint8_t prv;
mjr 40:cc0d9814522b 1570 };
mjr 40:cc0d9814522b 1571
mjr 87:8d35c74403af 1572 //
mjr 87:8d35c74403af 1573 // TLC59116 interface object
mjr 87:8d35c74403af 1574 //
mjr 87:8d35c74403af 1575 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1576 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1577 {
mjr 87:8d35c74403af 1578 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1579 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1580 {
mjr 87:8d35c74403af 1581 // set up the interface
mjr 87:8d35c74403af 1582 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1583 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1584 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1585 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1586
mjr 87:8d35c74403af 1587 // initialize the chips
mjr 87:8d35c74403af 1588 tlc59116->init();
mjr 87:8d35c74403af 1589 }
mjr 87:8d35c74403af 1590 }
mjr 87:8d35c74403af 1591
mjr 87:8d35c74403af 1592 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1593 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1594 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1595 // (0-15).
mjr 87:8d35c74403af 1596 //
mjr 87:8d35c74403af 1597 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1598 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1599 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1600 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1601 {
mjr 87:8d35c74403af 1602 public:
mjr 87:8d35c74403af 1603 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1604 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1605 {
mjr 87:8d35c74403af 1606 if (val != prv)
mjr 87:8d35c74403af 1607 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1608 }
mjr 87:8d35c74403af 1609
mjr 87:8d35c74403af 1610 protected:
mjr 87:8d35c74403af 1611 uint8_t addr;
mjr 87:8d35c74403af 1612 uint8_t port;
mjr 87:8d35c74403af 1613 uint8_t prv;
mjr 87:8d35c74403af 1614 };
mjr 87:8d35c74403af 1615
mjr 87:8d35c74403af 1616
mjr 87:8d35c74403af 1617 //
mjr 34:6b981a2afab7 1618 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1619 // config.h.
mjr 87:8d35c74403af 1620 //
mjr 35:e959ffba78fd 1621 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1622
mjr 35:e959ffba78fd 1623 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1624 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1625 {
mjr 35:e959ffba78fd 1626 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1627 {
mjr 53:9b2611964afc 1628 hc595 = new HC595(
mjr 53:9b2611964afc 1629 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1630 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1631 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1632 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1633 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1634 hc595->init();
mjr 35:e959ffba78fd 1635 hc595->update();
mjr 35:e959ffba78fd 1636 }
mjr 35:e959ffba78fd 1637 }
mjr 34:6b981a2afab7 1638
mjr 34:6b981a2afab7 1639 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1640 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1641 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1642 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1643 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1644 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1645 {
mjr 33:d832bcab089e 1646 public:
mjr 60:f38da020aa13 1647 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1648 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1649 {
mjr 34:6b981a2afab7 1650 if (val != prv)
mjr 40:cc0d9814522b 1651 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1652 }
mjr 60:f38da020aa13 1653 uint8_t idx;
mjr 40:cc0d9814522b 1654 uint8_t prv;
mjr 33:d832bcab089e 1655 };
mjr 33:d832bcab089e 1656
mjr 26:cb71c4af2912 1657
mjr 40:cc0d9814522b 1658
mjr 64:ef7ca92dff36 1659 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1660 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1661 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1662 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1663 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1664 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1665 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1666 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1667 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1668 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1669 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1670 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1671 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1672 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1673 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1674 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1675 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1676 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1677 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1678 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1679 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1680 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1681 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1682 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1683 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1684 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1685 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1686 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1687 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1688 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1689 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1690 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1691 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1692 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1693 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1694 };
mjr 26:cb71c4af2912 1695
mjr 64:ef7ca92dff36 1696
mjr 92:f264fbaa1be5 1697 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1698 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1699 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1700 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1701 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1702 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1703 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1704 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1705 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1706 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1707 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1708 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1709 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1710 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1711 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1712 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1713 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1714 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1715 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1716 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1717 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1718 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1719 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1720 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1721 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1722 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1723 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1724 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1725 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1726 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1727 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1728 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1729 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1730 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1731 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1732 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1733 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1734 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1735 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1736 };
mjr 64:ef7ca92dff36 1737
mjr 77:0b96f6867312 1738 // Polled-update PWM output list
mjr 74:822a92bc11d2 1739 //
mjr 77:0b96f6867312 1740 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1741 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1742 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1743 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1744 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1745 //
mjr 92:f264fbaa1be5 1746 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1747 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1748 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1749 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1750 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1751 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1752 //
mjr 92:f264fbaa1be5 1753 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1754 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1755 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1756 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1757 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1758 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1759 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1760 // enough to become noticeable.
mjr 92:f264fbaa1be5 1761 //
mjr 92:f264fbaa1be5 1762 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1763 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1764 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1765 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1766 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1767 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1768 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1769 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1770 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1771 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1772 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1773 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1774 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1775 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1776 //
mjr 92:f264fbaa1be5 1777 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1778 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1779 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1780 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1781 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1782 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1783 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1784 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1785 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1786 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1787 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1788 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1789 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1790 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1791 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1792 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1793 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1794 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1795 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1796 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1797 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1798 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1799 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1800 //
mjr 77:0b96f6867312 1801 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1802 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1803 // of polled items.
mjr 74:822a92bc11d2 1804 static int numPolledPwm;
mjr 74:822a92bc11d2 1805 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1806
mjr 74:822a92bc11d2 1807 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1808 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1809 {
mjr 6:cc35eb643e8f 1810 public:
mjr 43:7a6364d82a41 1811 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1812 {
mjr 77:0b96f6867312 1813 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1814 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1815 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1816
mjr 94:0476b3e2b996 1817 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1818 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1819 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1820 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1821 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1822 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1823 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1824 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1825 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1826 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1827 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1828 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1829 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1830 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1831 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1832 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1833
mjr 94:0476b3e2b996 1834 // set the initial brightness value
mjr 77:0b96f6867312 1835 set(initVal);
mjr 43:7a6364d82a41 1836 }
mjr 74:822a92bc11d2 1837
mjr 40:cc0d9814522b 1838 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1839 {
mjr 77:0b96f6867312 1840 // save the new value
mjr 74:822a92bc11d2 1841 this->val = val;
mjr 77:0b96f6867312 1842
mjr 77:0b96f6867312 1843 // commit it to the hardware
mjr 77:0b96f6867312 1844 commit();
mjr 13:72dda449c3c0 1845 }
mjr 74:822a92bc11d2 1846
mjr 74:822a92bc11d2 1847 // handle periodic update polling
mjr 74:822a92bc11d2 1848 void poll()
mjr 74:822a92bc11d2 1849 {
mjr 77:0b96f6867312 1850 commit();
mjr 74:822a92bc11d2 1851 }
mjr 74:822a92bc11d2 1852
mjr 74:822a92bc11d2 1853 protected:
mjr 77:0b96f6867312 1854 virtual void commit()
mjr 74:822a92bc11d2 1855 {
mjr 74:822a92bc11d2 1856 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1857 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1858 }
mjr 74:822a92bc11d2 1859
mjr 77:0b96f6867312 1860 NewPwmOut p;
mjr 77:0b96f6867312 1861 uint8_t val;
mjr 6:cc35eb643e8f 1862 };
mjr 26:cb71c4af2912 1863
mjr 74:822a92bc11d2 1864 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1865 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1866 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1867 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1868 {
mjr 64:ef7ca92dff36 1869 public:
mjr 64:ef7ca92dff36 1870 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1871 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1872 {
mjr 64:ef7ca92dff36 1873 }
mjr 74:822a92bc11d2 1874
mjr 74:822a92bc11d2 1875 protected:
mjr 77:0b96f6867312 1876 virtual void commit()
mjr 64:ef7ca92dff36 1877 {
mjr 74:822a92bc11d2 1878 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1879 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1880 }
mjr 64:ef7ca92dff36 1881 };
mjr 64:ef7ca92dff36 1882
mjr 74:822a92bc11d2 1883 // poll the PWM outputs
mjr 74:822a92bc11d2 1884 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1885 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1886 void pollPwmUpdates()
mjr 74:822a92bc11d2 1887 {
mjr 94:0476b3e2b996 1888 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1889 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1890 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1891 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1892 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1893 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1894 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1895 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1896 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1897 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1898 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1899 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1900 // viewer.
mjr 94:0476b3e2b996 1901 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1902 {
mjr 74:822a92bc11d2 1903 // time the run for statistics collection
mjr 74:822a92bc11d2 1904 IF_DIAG(
mjr 74:822a92bc11d2 1905 Timer t;
mjr 74:822a92bc11d2 1906 t.start();
mjr 74:822a92bc11d2 1907 )
mjr 74:822a92bc11d2 1908
mjr 74:822a92bc11d2 1909 // poll each output
mjr 74:822a92bc11d2 1910 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1911 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1912
mjr 74:822a92bc11d2 1913 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1914 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1915
mjr 74:822a92bc11d2 1916 // collect statistics
mjr 74:822a92bc11d2 1917 IF_DIAG(
mjr 76:7f5912b6340e 1918 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1919 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1920 )
mjr 74:822a92bc11d2 1921 }
mjr 74:822a92bc11d2 1922 }
mjr 64:ef7ca92dff36 1923
mjr 26:cb71c4af2912 1924 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1925 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1926 {
mjr 6:cc35eb643e8f 1927 public:
mjr 43:7a6364d82a41 1928 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1929 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1930 {
mjr 13:72dda449c3c0 1931 if (val != prv)
mjr 40:cc0d9814522b 1932 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1933 }
mjr 6:cc35eb643e8f 1934 DigitalOut p;
mjr 40:cc0d9814522b 1935 uint8_t prv;
mjr 6:cc35eb643e8f 1936 };
mjr 26:cb71c4af2912 1937
mjr 29:582472d0bc57 1938 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1939 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1940 // port n (0-based).
mjr 35:e959ffba78fd 1941 //
mjr 35:e959ffba78fd 1942 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1943 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1944 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1945 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1946 // 74HC595 ports).
mjr 33:d832bcab089e 1947 static int numOutputs;
mjr 33:d832bcab089e 1948 static LwOut **lwPin;
mjr 33:d832bcab089e 1949
mjr 38:091e511ce8a0 1950 // create a single output pin
mjr 53:9b2611964afc 1951 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1952 {
mjr 38:091e511ce8a0 1953 // get this item's values
mjr 38:091e511ce8a0 1954 int typ = pc.typ;
mjr 38:091e511ce8a0 1955 int pin = pc.pin;
mjr 38:091e511ce8a0 1956 int flags = pc.flags;
mjr 40:cc0d9814522b 1957 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1958 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1959 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1960 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 1961 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 1962
mjr 89:c43cd923401c 1963 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1964 if (flipperLogic)
mjr 89:c43cd923401c 1965 gamma = false;
mjr 38:091e511ce8a0 1966
mjr 38:091e511ce8a0 1967 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1968 LwOut *lwp;
mjr 38:091e511ce8a0 1969 switch (typ)
mjr 38:091e511ce8a0 1970 {
mjr 38:091e511ce8a0 1971 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1972 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1973 if (pin != 0)
mjr 64:ef7ca92dff36 1974 {
mjr 64:ef7ca92dff36 1975 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1976 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1977 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1978 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1979 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1980 {
mjr 64:ef7ca92dff36 1981 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1982 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1983
mjr 64:ef7ca92dff36 1984 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1985 gamma = false;
mjr 64:ef7ca92dff36 1986 }
mjr 64:ef7ca92dff36 1987 else
mjr 64:ef7ca92dff36 1988 {
mjr 64:ef7ca92dff36 1989 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1990 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1991 }
mjr 64:ef7ca92dff36 1992 }
mjr 48:058ace2aed1d 1993 else
mjr 48:058ace2aed1d 1994 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1995 break;
mjr 38:091e511ce8a0 1996
mjr 38:091e511ce8a0 1997 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1998 // Digital GPIO port
mjr 48:058ace2aed1d 1999 if (pin != 0)
mjr 48:058ace2aed1d 2000 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 2001 else
mjr 48:058ace2aed1d 2002 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2003 break;
mjr 38:091e511ce8a0 2004
mjr 38:091e511ce8a0 2005 case PortTypeTLC5940:
mjr 38:091e511ce8a0 2006 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 2007 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 2008 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 2009 {
mjr 40:cc0d9814522b 2010 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 2011 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 2012 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 2013 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 2014 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 2015 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 2016 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 2017 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 2018 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 2019 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 2020 // for this unlikely case.
mjr 40:cc0d9814522b 2021 if (gamma && !activeLow)
mjr 40:cc0d9814522b 2022 {
mjr 40:cc0d9814522b 2023 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 2024 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 2025
mjr 40:cc0d9814522b 2026 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 2027 gamma = false;
mjr 40:cc0d9814522b 2028 }
mjr 40:cc0d9814522b 2029 else
mjr 40:cc0d9814522b 2030 {
mjr 40:cc0d9814522b 2031 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 2032 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 2033 }
mjr 40:cc0d9814522b 2034 }
mjr 38:091e511ce8a0 2035 else
mjr 40:cc0d9814522b 2036 {
mjr 40:cc0d9814522b 2037 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 2038 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 2039 }
mjr 38:091e511ce8a0 2040 break;
mjr 38:091e511ce8a0 2041
mjr 38:091e511ce8a0 2042 case PortType74HC595:
mjr 87:8d35c74403af 2043 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 2044 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 2045 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 2046 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 2047 else
mjr 38:091e511ce8a0 2048 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2049 break;
mjr 87:8d35c74403af 2050
mjr 87:8d35c74403af 2051 case PortTypeTLC59116:
mjr 87:8d35c74403af 2052 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2053 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2054 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2055 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2056 if (tlc59116 != 0)
mjr 87:8d35c74403af 2057 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2058 break;
mjr 38:091e511ce8a0 2059
mjr 38:091e511ce8a0 2060 case PortTypeVirtual:
mjr 43:7a6364d82a41 2061 case PortTypeDisabled:
mjr 38:091e511ce8a0 2062 default:
mjr 38:091e511ce8a0 2063 // virtual or unknown
mjr 38:091e511ce8a0 2064 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2065 break;
mjr 38:091e511ce8a0 2066 }
mjr 38:091e511ce8a0 2067
mjr 40:cc0d9814522b 2068 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2069 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2070 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2071 if (activeLow)
mjr 38:091e511ce8a0 2072 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2073
mjr 89:c43cd923401c 2074 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2075 if (flipperLogic)
mjr 89:c43cd923401c 2076 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2077
mjr 99:8139b0c274f4 2078 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2079 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2080 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2081 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2082 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2083
mjr 89:c43cd923401c 2084 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2085 if (noisy)
mjr 40:cc0d9814522b 2086 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2087
mjr 40:cc0d9814522b 2088 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2089 if (gamma)
mjr 40:cc0d9814522b 2090 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2091
mjr 53:9b2611964afc 2092 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2093 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2094 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2095 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2096 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2097
mjr 53:9b2611964afc 2098 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2099 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2100 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2101
mjr 38:091e511ce8a0 2102 // turn it off initially
mjr 38:091e511ce8a0 2103 lwp->set(0);
mjr 38:091e511ce8a0 2104
mjr 38:091e511ce8a0 2105 // return the pin
mjr 38:091e511ce8a0 2106 return lwp;
mjr 38:091e511ce8a0 2107 }
mjr 38:091e511ce8a0 2108
mjr 6:cc35eb643e8f 2109 // initialize the output pin array
mjr 35:e959ffba78fd 2110 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2111 {
mjr 99:8139b0c274f4 2112 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2113 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2114 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2115
mjr 35:e959ffba78fd 2116 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2117 // total number of ports.
mjr 35:e959ffba78fd 2118 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2119 int i;
mjr 35:e959ffba78fd 2120 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2121 {
mjr 35:e959ffba78fd 2122 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2123 {
mjr 35:e959ffba78fd 2124 numOutputs = i;
mjr 34:6b981a2afab7 2125 break;
mjr 34:6b981a2afab7 2126 }
mjr 33:d832bcab089e 2127 }
mjr 33:d832bcab089e 2128
mjr 73:4e8ce0b18915 2129 // allocate the pin array
mjr 73:4e8ce0b18915 2130 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2131
mjr 73:4e8ce0b18915 2132 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2133 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2134
mjr 73:4e8ce0b18915 2135 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2136 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2137 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2138
mjr 73:4e8ce0b18915 2139 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2140 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2141 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2142
mjr 73:4e8ce0b18915 2143 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2144 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2145 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2146
mjr 35:e959ffba78fd 2147 // create the pin interface object for each port
mjr 35:e959ffba78fd 2148 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2149 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2150 }
mjr 6:cc35eb643e8f 2151
mjr 76:7f5912b6340e 2152 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2153 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2154 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2155 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2156 // equivalent to 48.
mjr 40:cc0d9814522b 2157 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2158 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2159 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2160 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2161 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2162 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2163 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2164 255, 255
mjr 40:cc0d9814522b 2165 };
mjr 40:cc0d9814522b 2166
mjr 76:7f5912b6340e 2167 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2168 // level (1..48)
mjr 76:7f5912b6340e 2169 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2170 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2171 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2172 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2173 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2174 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2175 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2176 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2177 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2178 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2179 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2180 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2181 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2182 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2183 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2184 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2185 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2186 };
mjr 76:7f5912b6340e 2187
mjr 74:822a92bc11d2 2188 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2189 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2190 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2191 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2192 //
mjr 74:822a92bc11d2 2193 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2194 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2195 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2196 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2197 //
mjr 74:822a92bc11d2 2198 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2199 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2200 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2201 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2202 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2203 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2204 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2205 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2206 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2207 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2208 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2209 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2210 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2211 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2212 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2213 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2214 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2215 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2216 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2217 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2218
mjr 74:822a92bc11d2 2219 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2220 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2221 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2222 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2223 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2224 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2225 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2226 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2227 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2228 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2229 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2230 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2231 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2232 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2233 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2234 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2235 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2236
mjr 74:822a92bc11d2 2237 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2238 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2239 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2240 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2241 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2242 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2243 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2244 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2245 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2246 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2247 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2248 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2249 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2250 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2251 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2252 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2253 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2254
mjr 74:822a92bc11d2 2255 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2256 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2257 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2258 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2259 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2260 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2261 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2262 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2263 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2264 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2265 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2266 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2267 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2268 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2269 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2270 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2272 };
mjr 74:822a92bc11d2 2273
mjr 74:822a92bc11d2 2274 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2275 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2276 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2277
mjr 76:7f5912b6340e 2278 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2279 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2280
mjr 76:7f5912b6340e 2281 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2282 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2283 // outputs on each cycle.
mjr 29:582472d0bc57 2284 static void wizPulse()
mjr 29:582472d0bc57 2285 {
mjr 76:7f5912b6340e 2286 // current bank
mjr 76:7f5912b6340e 2287 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2288
mjr 76:7f5912b6340e 2289 // start a timer for statistics collection
mjr 76:7f5912b6340e 2290 IF_DIAG(
mjr 76:7f5912b6340e 2291 Timer t;
mjr 76:7f5912b6340e 2292 t.start();
mjr 76:7f5912b6340e 2293 )
mjr 76:7f5912b6340e 2294
mjr 76:7f5912b6340e 2295 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2296 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2297 //
mjr 76:7f5912b6340e 2298 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2299 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2300 //
mjr 76:7f5912b6340e 2301 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2302 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2303 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2304 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2305 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2306 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2307 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2308 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2309 // current cycle.
mjr 76:7f5912b6340e 2310 //
mjr 76:7f5912b6340e 2311 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2312 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2313 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2314 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2315 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2316 //
mjr 76:7f5912b6340e 2317 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2318 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2319 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2320 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2321 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2322 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2323 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2324 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2325 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2326 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2327 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2328 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2329 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2330 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2331 // bit counts.
mjr 76:7f5912b6340e 2332 //
mjr 76:7f5912b6340e 2333 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2334 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2335 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2336 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2337 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2338 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2339 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2340 // one division for another!
mjr 76:7f5912b6340e 2341 //
mjr 76:7f5912b6340e 2342 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2343 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2344 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2345 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2346 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2347 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2348 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2349 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2350 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2351 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2352 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2353 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2354 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2355 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2356 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2357 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2358 // remainder calculation anyway.
mjr 76:7f5912b6340e 2359 //
mjr 76:7f5912b6340e 2360 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2361 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2362 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2363 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2364 //
mjr 76:7f5912b6340e 2365 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2366 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2367 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2368 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2369 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2370 // the result, since we started with 32.
mjr 76:7f5912b6340e 2371 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2372 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2373 };
mjr 76:7f5912b6340e 2374 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2375
mjr 76:7f5912b6340e 2376 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2377 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2378 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2379 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2380 toPort = numOutputs;
mjr 76:7f5912b6340e 2381
mjr 76:7f5912b6340e 2382 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2383 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2384 {
mjr 76:7f5912b6340e 2385 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2386 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2387 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2388 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2389 if (wizOn[i])
mjr 29:582472d0bc57 2390 {
mjr 76:7f5912b6340e 2391 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2392 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2393 {
mjr 76:7f5912b6340e 2394 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2395 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2396 }
mjr 29:582472d0bc57 2397 }
mjr 76:7f5912b6340e 2398 }
mjr 76:7f5912b6340e 2399
mjr 34:6b981a2afab7 2400 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2401 if (hc595 != 0)
mjr 35:e959ffba78fd 2402 hc595->update();
mjr 76:7f5912b6340e 2403
mjr 76:7f5912b6340e 2404 // switch to the next bank
mjr 76:7f5912b6340e 2405 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2406 wizPulseBank = 0;
mjr 76:7f5912b6340e 2407
mjr 76:7f5912b6340e 2408 // collect timing statistics
mjr 76:7f5912b6340e 2409 IF_DIAG(
mjr 76:7f5912b6340e 2410 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2411 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2412 )
mjr 1:d913e0afb2ac 2413 }
mjr 38:091e511ce8a0 2414
mjr 76:7f5912b6340e 2415 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2416 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2417 {
mjr 76:7f5912b6340e 2418 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2419 if (wizOn[port])
mjr 76:7f5912b6340e 2420 {
mjr 76:7f5912b6340e 2421 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2422 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2423 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2424 // it on the next cycle.
mjr 76:7f5912b6340e 2425 int val = wizVal[port];
mjr 76:7f5912b6340e 2426 if (val <= 49)
mjr 76:7f5912b6340e 2427 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2428 }
mjr 76:7f5912b6340e 2429 else
mjr 76:7f5912b6340e 2430 {
mjr 76:7f5912b6340e 2431 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2432 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2433 }
mjr 73:4e8ce0b18915 2434 }
mjr 73:4e8ce0b18915 2435
mjr 73:4e8ce0b18915 2436 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2437 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2438 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2439 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2440 //
mjr 73:4e8ce0b18915 2441 void allOutputsOff()
mjr 73:4e8ce0b18915 2442 {
mjr 92:f264fbaa1be5 2443 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2444 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2445 {
mjr 73:4e8ce0b18915 2446 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2447 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2448 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2449 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2450 }
mjr 73:4e8ce0b18915 2451
mjr 73:4e8ce0b18915 2452 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2453 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2454 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2455
mjr 73:4e8ce0b18915 2456 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2457 if (hc595 != 0)
mjr 38:091e511ce8a0 2458 hc595->update();
mjr 38:091e511ce8a0 2459 }
mjr 38:091e511ce8a0 2460
mjr 74:822a92bc11d2 2461 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2462 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2463 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2464 // address any port group.
mjr 74:822a92bc11d2 2465 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2466 {
mjr 76:7f5912b6340e 2467 // update all on/off states in the group
mjr 74:822a92bc11d2 2468 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2469 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2470 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2471 {
mjr 74:822a92bc11d2 2472 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2473 if (bit == 0x100) {
mjr 74:822a92bc11d2 2474 bit = 1;
mjr 74:822a92bc11d2 2475 ++imsg;
mjr 74:822a92bc11d2 2476 }
mjr 74:822a92bc11d2 2477
mjr 74:822a92bc11d2 2478 // set the on/off state
mjr 76:7f5912b6340e 2479 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2480
mjr 76:7f5912b6340e 2481 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2482 updateLwPort(port);
mjr 74:822a92bc11d2 2483 }
mjr 74:822a92bc11d2 2484
mjr 74:822a92bc11d2 2485 // set the flash speed for the port group
mjr 74:822a92bc11d2 2486 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2487 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2488
mjr 76:7f5912b6340e 2489 // update 74HC959 outputs
mjr 76:7f5912b6340e 2490 if (hc595 != 0)
mjr 76:7f5912b6340e 2491 hc595->update();
mjr 74:822a92bc11d2 2492 }
mjr 74:822a92bc11d2 2493
mjr 74:822a92bc11d2 2494 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2495 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2496 {
mjr 74:822a92bc11d2 2497 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2498 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2499 {
mjr 74:822a92bc11d2 2500 // get the value
mjr 74:822a92bc11d2 2501 uint8_t v = data[i];
mjr 74:822a92bc11d2 2502
mjr 74:822a92bc11d2 2503 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2504 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2505 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2506 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2507 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2508 // as such.
mjr 74:822a92bc11d2 2509 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2510 v = 48;
mjr 74:822a92bc11d2 2511
mjr 74:822a92bc11d2 2512 // store it
mjr 76:7f5912b6340e 2513 wizVal[port] = v;
mjr 76:7f5912b6340e 2514
mjr 76:7f5912b6340e 2515 // update the port
mjr 76:7f5912b6340e 2516 updateLwPort(port);
mjr 74:822a92bc11d2 2517 }
mjr 74:822a92bc11d2 2518
mjr 76:7f5912b6340e 2519 // update 74HC595 outputs
mjr 76:7f5912b6340e 2520 if (hc595 != 0)
mjr 76:7f5912b6340e 2521 hc595->update();
mjr 74:822a92bc11d2 2522 }
mjr 74:822a92bc11d2 2523
mjr 77:0b96f6867312 2524 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2525 //
mjr 77:0b96f6867312 2526 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2527 //
mjr 77:0b96f6867312 2528
mjr 77:0b96f6867312 2529 // receiver
mjr 77:0b96f6867312 2530 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2531
mjr 77:0b96f6867312 2532 // transmitter
mjr 77:0b96f6867312 2533 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2534
mjr 77:0b96f6867312 2535 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2536 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2537 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2538 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2539 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2540 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2541 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2542 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2543 // configuration slot n
mjr 77:0b96f6867312 2544 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2545
mjr 78:1e00b3fa11af 2546 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2547 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2548 // protocol.
mjr 78:1e00b3fa11af 2549 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2550
mjr 78:1e00b3fa11af 2551 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2552 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2553 // while waiting for the rest.
mjr 78:1e00b3fa11af 2554 static struct
mjr 78:1e00b3fa11af 2555 {
mjr 78:1e00b3fa11af 2556 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2557 uint64_t code; // code
mjr 78:1e00b3fa11af 2558 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2559 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2560 } IRAdHocCmd;
mjr 88:98bce687e6c0 2561
mjr 77:0b96f6867312 2562
mjr 77:0b96f6867312 2563 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2564 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2565 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2566 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2567 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2568 // amount of time.
mjr 77:0b96f6867312 2569 Timer IRTimer;
mjr 77:0b96f6867312 2570
mjr 77:0b96f6867312 2571 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2572 // The states are:
mjr 77:0b96f6867312 2573 //
mjr 77:0b96f6867312 2574 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2575 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2576 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2577 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2578 //
mjr 77:0b96f6867312 2579 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2580 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2581 // received within a reasonable time.
mjr 77:0b96f6867312 2582 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2583
mjr 77:0b96f6867312 2584 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2585 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2586 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2587 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2588 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2589 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2590 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2591 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2592 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2593
mjr 78:1e00b3fa11af 2594 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2595 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2596 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2597 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2598 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2599 // index; 0 represents no command.
mjr 77:0b96f6867312 2600 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2601
mjr 77:0b96f6867312 2602 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2603 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2604 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2605 // command we received.
mjr 77:0b96f6867312 2606 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2607
mjr 77:0b96f6867312 2608 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2609 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2610 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2611 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2612 // distinct key press.
mjr 77:0b96f6867312 2613 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2614
mjr 78:1e00b3fa11af 2615
mjr 77:0b96f6867312 2616 // initialize
mjr 77:0b96f6867312 2617 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2618 {
mjr 77:0b96f6867312 2619 PinName pin;
mjr 77:0b96f6867312 2620
mjr 77:0b96f6867312 2621 // start the IR timer
mjr 77:0b96f6867312 2622 IRTimer.start();
mjr 77:0b96f6867312 2623
mjr 77:0b96f6867312 2624 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2625 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2626 {
mjr 77:0b96f6867312 2627 // no virtual buttons yet
mjr 77:0b96f6867312 2628 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2629 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2630
mjr 77:0b96f6867312 2631 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2632 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2633 {
mjr 77:0b96f6867312 2634 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2635 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2636 }
mjr 77:0b96f6867312 2637
mjr 77:0b96f6867312 2638 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2639 // real button inputs
mjr 77:0b96f6867312 2640 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2641 {
mjr 77:0b96f6867312 2642 // get the button
mjr 77:0b96f6867312 2643 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2644
mjr 77:0b96f6867312 2645 // check the unshifted button
mjr 77:0b96f6867312 2646 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2647 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2648 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2649 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2650
mjr 77:0b96f6867312 2651 // check the shifted button
mjr 77:0b96f6867312 2652 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2653 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2654 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2655 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2656 }
mjr 77:0b96f6867312 2657
mjr 77:0b96f6867312 2658 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2659 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2660 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2661
mjr 77:0b96f6867312 2662 // create the transmitter
mjr 77:0b96f6867312 2663 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2664
mjr 77:0b96f6867312 2665 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2666 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2667 {
mjr 77:0b96f6867312 2668 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2669 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2670 if (vb != 0xFF)
mjr 77:0b96f6867312 2671 {
mjr 77:0b96f6867312 2672 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2673 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2674 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2675 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2676 }
mjr 77:0b96f6867312 2677 }
mjr 77:0b96f6867312 2678 }
mjr 77:0b96f6867312 2679
mjr 77:0b96f6867312 2680 // if there's a receiver, set it up
mjr 77:0b96f6867312 2681 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2682 {
mjr 77:0b96f6867312 2683 // create the receiver
mjr 77:0b96f6867312 2684 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2685
mjr 77:0b96f6867312 2686 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2687 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2688 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2689
mjr 77:0b96f6867312 2690 // enable it
mjr 77:0b96f6867312 2691 ir_rx->enable();
mjr 77:0b96f6867312 2692
mjr 77:0b96f6867312 2693 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2694 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2695 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2696 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2697 {
mjr 77:0b96f6867312 2698 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2699 if (cb.protocol != 0
mjr 77:0b96f6867312 2700 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2701 {
mjr 77:0b96f6867312 2702 kbKeys = true;
mjr 77:0b96f6867312 2703 break;
mjr 77:0b96f6867312 2704 }
mjr 77:0b96f6867312 2705 }
mjr 77:0b96f6867312 2706 }
mjr 77:0b96f6867312 2707 }
mjr 77:0b96f6867312 2708
mjr 77:0b96f6867312 2709 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2710 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2711 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2712 {
mjr 77:0b96f6867312 2713 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2714 if (ir_tx != 0)
mjr 77:0b96f6867312 2715 {
mjr 77:0b96f6867312 2716 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2717 int slot = cmd - 1;
mjr 77:0b96f6867312 2718
mjr 77:0b96f6867312 2719 // press or release the virtual button
mjr 77:0b96f6867312 2720 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2721 }
mjr 77:0b96f6867312 2722 }
mjr 77:0b96f6867312 2723
mjr 78:1e00b3fa11af 2724 // Process IR input and output
mjr 77:0b96f6867312 2725 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2726 {
mjr 78:1e00b3fa11af 2727 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2728 if (ir_tx != 0)
mjr 77:0b96f6867312 2729 {
mjr 78:1e00b3fa11af 2730 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2731 // is ready to send, send it.
mjr 78:1e00b3fa11af 2732 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2733 {
mjr 78:1e00b3fa11af 2734 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2735 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2736 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2737 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2738
mjr 78:1e00b3fa11af 2739 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2740 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2741 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2742
mjr 78:1e00b3fa11af 2743 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2744 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2745 }
mjr 77:0b96f6867312 2746 }
mjr 78:1e00b3fa11af 2747
mjr 78:1e00b3fa11af 2748 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2749 if (ir_rx != 0)
mjr 77:0b96f6867312 2750 {
mjr 78:1e00b3fa11af 2751 // Time out any received command
mjr 78:1e00b3fa11af 2752 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2753 {
mjr 80:94dc2946871b 2754 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2755 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2756 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2757 if (t > 200000)
mjr 78:1e00b3fa11af 2758 IRCommandIn = 0;
mjr 80:94dc2946871b 2759 else if (t > 50000)
mjr 78:1e00b3fa11af 2760 IRKeyGap = false;
mjr 78:1e00b3fa11af 2761 }
mjr 78:1e00b3fa11af 2762
mjr 78:1e00b3fa11af 2763 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2764 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2765 {
mjr 78:1e00b3fa11af 2766 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2767 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2768 // limit.
mjr 78:1e00b3fa11af 2769 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2770 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2771 int n;
mjr 78:1e00b3fa11af 2772 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2773
mjr 78:1e00b3fa11af 2774 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2775 if (n != 0)
mjr 78:1e00b3fa11af 2776 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2777
mjr 78:1e00b3fa11af 2778 // check for a command
mjr 78:1e00b3fa11af 2779 IRCommand c;
mjr 78:1e00b3fa11af 2780 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2781 {
mjr 78:1e00b3fa11af 2782 // check the current learning state
mjr 78:1e00b3fa11af 2783 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2784 {
mjr 78:1e00b3fa11af 2785 case 1:
mjr 78:1e00b3fa11af 2786 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2787 // This is it.
mjr 78:1e00b3fa11af 2788 learnedIRCode = c;
mjr 78:1e00b3fa11af 2789
mjr 78:1e00b3fa11af 2790 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2791 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2792 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2793 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2794 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2795 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2796 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2797 break;
mjr 78:1e00b3fa11af 2798
mjr 78:1e00b3fa11af 2799 case 2:
mjr 78:1e00b3fa11af 2800 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2801 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2802 //
mjr 78:1e00b3fa11af 2803 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2804 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2805 //
mjr 78:1e00b3fa11af 2806 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2807 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2808 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2809 // them.
mjr 78:1e00b3fa11af 2810 //
mjr 78:1e00b3fa11af 2811 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2812 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2813 // over.
mjr 78:1e00b3fa11af 2814 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2815 && c.hasDittos
mjr 78:1e00b3fa11af 2816 && c.ditto)
mjr 78:1e00b3fa11af 2817 {
mjr 78:1e00b3fa11af 2818 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2819 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2820 }
mjr 78:1e00b3fa11af 2821 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2822 && c.hasDittos
mjr 78:1e00b3fa11af 2823 && !c.ditto
mjr 78:1e00b3fa11af 2824 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2825 {
mjr 78:1e00b3fa11af 2826 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2827 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2828 // protocol supports them
mjr 78:1e00b3fa11af 2829 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2830 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2831 }
mjr 78:1e00b3fa11af 2832 else
mjr 78:1e00b3fa11af 2833 {
mjr 78:1e00b3fa11af 2834 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2835 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2836 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2837 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2838 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2839 }
mjr 78:1e00b3fa11af 2840 break;
mjr 78:1e00b3fa11af 2841 }
mjr 77:0b96f6867312 2842
mjr 78:1e00b3fa11af 2843 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2844 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2845 // learning mode.
mjr 78:1e00b3fa11af 2846 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2847 {
mjr 78:1e00b3fa11af 2848 // figure the flags:
mjr 78:1e00b3fa11af 2849 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2850 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2851 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2852 flags |= 0x02;
mjr 78:1e00b3fa11af 2853
mjr 78:1e00b3fa11af 2854 // report the code
mjr 78:1e00b3fa11af 2855 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2856
mjr 78:1e00b3fa11af 2857 // exit learning mode
mjr 78:1e00b3fa11af 2858 IRLearningMode = 0;
mjr 77:0b96f6867312 2859 }
mjr 77:0b96f6867312 2860 }
mjr 77:0b96f6867312 2861
mjr 78:1e00b3fa11af 2862 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2863 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2864 {
mjr 78:1e00b3fa11af 2865 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2866 // zero data elements
mjr 78:1e00b3fa11af 2867 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2868
mjr 78:1e00b3fa11af 2869
mjr 78:1e00b3fa11af 2870 // cancel learning mode
mjr 77:0b96f6867312 2871 IRLearningMode = 0;
mjr 77:0b96f6867312 2872 }
mjr 77:0b96f6867312 2873 }
mjr 78:1e00b3fa11af 2874 else
mjr 77:0b96f6867312 2875 {
mjr 78:1e00b3fa11af 2876 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2877 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2878 ir_rx->process();
mjr 78:1e00b3fa11af 2879
mjr 78:1e00b3fa11af 2880 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2881 // have been read.
mjr 78:1e00b3fa11af 2882 IRCommand c;
mjr 78:1e00b3fa11af 2883 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2884 {
mjr 78:1e00b3fa11af 2885 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2886 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2887 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2888 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2889 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2890 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2891 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2892 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2893 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2894 //
mjr 78:1e00b3fa11af 2895 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2896 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2897 // command.
mjr 78:1e00b3fa11af 2898 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2899 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2900 {
mjr 78:1e00b3fa11af 2901 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2902 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2903 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2904 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2905 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2906 if (c.ditto)
mjr 78:1e00b3fa11af 2907 {
mjr 78:1e00b3fa11af 2908 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2909 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2910 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2911 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2912 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2913 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2914 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2915 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2916 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2917 }
mjr 78:1e00b3fa11af 2918 else
mjr 78:1e00b3fa11af 2919 {
mjr 78:1e00b3fa11af 2920 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2921 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2922 // prior command.
mjr 78:1e00b3fa11af 2923 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2924 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2925 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2926
mjr 78:1e00b3fa11af 2927 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2928 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2929 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2930 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2931 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2932 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2933 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2934 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2935 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2936 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2937 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2938 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2939 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2940 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2941 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2942 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2943 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2944 autoRepeat =
mjr 78:1e00b3fa11af 2945 repeat
mjr 78:1e00b3fa11af 2946 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2947 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2948 }
mjr 78:1e00b3fa11af 2949 }
mjr 78:1e00b3fa11af 2950
mjr 78:1e00b3fa11af 2951 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2952 if (repeat)
mjr 78:1e00b3fa11af 2953 {
mjr 78:1e00b3fa11af 2954 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2955 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2956 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2957 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2958 // key press event.
mjr 78:1e00b3fa11af 2959 if (!autoRepeat)
mjr 78:1e00b3fa11af 2960 IRKeyGap = true;
mjr 78:1e00b3fa11af 2961
mjr 78:1e00b3fa11af 2962 // restart the key-up timer
mjr 78:1e00b3fa11af 2963 IRTimer.reset();
mjr 78:1e00b3fa11af 2964 }
mjr 78:1e00b3fa11af 2965 else if (c.ditto)
mjr 78:1e00b3fa11af 2966 {
mjr 78:1e00b3fa11af 2967 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2968 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2969 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2970 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2971 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2972 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2973 // a full command for a new key press.
mjr 78:1e00b3fa11af 2974 IRCommandIn = 0;
mjr 77:0b96f6867312 2975 }
mjr 77:0b96f6867312 2976 else
mjr 77:0b96f6867312 2977 {
mjr 78:1e00b3fa11af 2978 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2979 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2980 // the new command).
mjr 78:1e00b3fa11af 2981 IRCommandIn = 0;
mjr 77:0b96f6867312 2982
mjr 78:1e00b3fa11af 2983 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2984 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2985 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2986 {
mjr 78:1e00b3fa11af 2987 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2988 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2989 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2990 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2991 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2992 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2993 {
mjr 78:1e00b3fa11af 2994 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2995 // remember the starting time.
mjr 78:1e00b3fa11af 2996 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2997 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2998 IRTimer.reset();
mjr 78:1e00b3fa11af 2999
mjr 78:1e00b3fa11af 3000 // no need to keep searching
mjr 78:1e00b3fa11af 3001 break;
mjr 78:1e00b3fa11af 3002 }
mjr 77:0b96f6867312 3003 }
mjr 77:0b96f6867312 3004 }
mjr 77:0b96f6867312 3005 }
mjr 77:0b96f6867312 3006 }
mjr 77:0b96f6867312 3007 }
mjr 77:0b96f6867312 3008 }
mjr 77:0b96f6867312 3009
mjr 74:822a92bc11d2 3010
mjr 11:bd9da7088e6e 3011 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 3012 //
mjr 11:bd9da7088e6e 3013 // Button input
mjr 11:bd9da7088e6e 3014 //
mjr 11:bd9da7088e6e 3015
mjr 18:5e890ebd0023 3016 // button state
mjr 18:5e890ebd0023 3017 struct ButtonState
mjr 18:5e890ebd0023 3018 {
mjr 38:091e511ce8a0 3019 ButtonState()
mjr 38:091e511ce8a0 3020 {
mjr 53:9b2611964afc 3021 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 3022 virtState = 0;
mjr 53:9b2611964afc 3023 dbState = 0;
mjr 38:091e511ce8a0 3024 pulseState = 0;
mjr 53:9b2611964afc 3025 pulseTime = 0;
mjr 38:091e511ce8a0 3026 }
mjr 35:e959ffba78fd 3027
mjr 53:9b2611964afc 3028 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 3029 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 3030 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 3031 //
mjr 53:9b2611964afc 3032 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 3033 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 3034 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 3035 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 3036 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 3037 void virtPress(bool on)
mjr 53:9b2611964afc 3038 {
mjr 53:9b2611964afc 3039 // Increment or decrement the current state
mjr 53:9b2611964afc 3040 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 3041 }
mjr 53:9b2611964afc 3042
mjr 53:9b2611964afc 3043 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 3044 TinyDigitalIn di;
mjr 38:091e511ce8a0 3045
mjr 65:739875521aae 3046 // Time of last pulse state transition.
mjr 65:739875521aae 3047 //
mjr 65:739875521aae 3048 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 3049 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 3050 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 3051 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 3052 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 3053 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 3054 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 3055 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 3056 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 3057 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 3058 // This software system can't be fooled that way.)
mjr 65:739875521aae 3059 uint32_t pulseTime;
mjr 18:5e890ebd0023 3060
mjr 65:739875521aae 3061 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 3062 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 3063 uint8_t cfgIndex;
mjr 53:9b2611964afc 3064
mjr 53:9b2611964afc 3065 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 3066 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 3067 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 3068 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 3069 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 3070 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 3071 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 3072 // and physical source states.
mjr 53:9b2611964afc 3073 uint8_t virtState;
mjr 38:091e511ce8a0 3074
mjr 38:091e511ce8a0 3075 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 3076 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 3077 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 3078 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 3079 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 3080 uint8_t dbState;
mjr 38:091e511ce8a0 3081
mjr 65:739875521aae 3082 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 3083 uint8_t physState : 1;
mjr 65:739875521aae 3084
mjr 65:739875521aae 3085 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 3086 uint8_t logState : 1;
mjr 65:739875521aae 3087
mjr 79:682ae3171a08 3088 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 3089 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 3090 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 3091 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 3092 uint8_t prevLogState : 1;
mjr 65:739875521aae 3093
mjr 65:739875521aae 3094 // Pulse state
mjr 65:739875521aae 3095 //
mjr 65:739875521aae 3096 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 3097 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 3098 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 3099 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 3100 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 3101 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 3102 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 3103 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 3104 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 3105 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 3106 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 3107 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 3108 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 3109 //
mjr 38:091e511ce8a0 3110 // Pulse state:
mjr 38:091e511ce8a0 3111 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 3112 // 1 -> off
mjr 38:091e511ce8a0 3113 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 3114 // 3 -> on
mjr 38:091e511ce8a0 3115 // 4 -> transitioning on-off
mjr 65:739875521aae 3116 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 3117
mjr 65:739875521aae 3118 } __attribute__((packed));
mjr 65:739875521aae 3119
mjr 65:739875521aae 3120 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 3121 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 3122 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 3123
mjr 66:2e3583fbd2f4 3124 // Shift button state
mjr 66:2e3583fbd2f4 3125 struct
mjr 66:2e3583fbd2f4 3126 {
mjr 66:2e3583fbd2f4 3127 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 3128 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 3129 // 0 = not shifted
mjr 66:2e3583fbd2f4 3130 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 3131 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 3132 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 3133 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 3134 }
mjr 66:2e3583fbd2f4 3135 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 3136
mjr 38:091e511ce8a0 3137 // Button data
mjr 38:091e511ce8a0 3138 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 3139
mjr 38:091e511ce8a0 3140 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 3141 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 3142 // modifier keys.
mjr 38:091e511ce8a0 3143 struct
mjr 38:091e511ce8a0 3144 {
mjr 38:091e511ce8a0 3145 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 3146 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 3147 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 3148 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 3149 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 3150
mjr 38:091e511ce8a0 3151 // Media key state
mjr 38:091e511ce8a0 3152 struct
mjr 38:091e511ce8a0 3153 {
mjr 38:091e511ce8a0 3154 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 3155 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 3156 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 3157
mjr 79:682ae3171a08 3158 // button scan interrupt timer
mjr 79:682ae3171a08 3159 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 3160
mjr 38:091e511ce8a0 3161 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 3162 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 3163 void scanButtons()
mjr 38:091e511ce8a0 3164 {
mjr 79:682ae3171a08 3165 // schedule the next interrupt
mjr 79:682ae3171a08 3166 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 3167
mjr 38:091e511ce8a0 3168 // scan all button input pins
mjr 73:4e8ce0b18915 3169 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 3170 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 3171 {
mjr 73:4e8ce0b18915 3172 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 3173 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 3174 bs->dbState = db;
mjr 73:4e8ce0b18915 3175
mjr 73:4e8ce0b18915 3176 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 3177 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 3178 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 3179 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 3180 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 3181 db &= stable;
mjr 73:4e8ce0b18915 3182 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 3183 bs->physState = !db;
mjr 38:091e511ce8a0 3184 }
mjr 38:091e511ce8a0 3185 }
mjr 38:091e511ce8a0 3186
mjr 38:091e511ce8a0 3187 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 3188 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 3189 // in the physical button state.
mjr 38:091e511ce8a0 3190 Timer buttonTimer;
mjr 12:669df364a565 3191
mjr 65:739875521aae 3192 // Count a button during the initial setup scan
mjr 72:884207c0aab0 3193 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 3194 {
mjr 65:739875521aae 3195 // count it
mjr 65:739875521aae 3196 ++nButtons;
mjr 65:739875521aae 3197
mjr 67:c39e66c4e000 3198 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 3199 // keyboard interface
mjr 72:884207c0aab0 3200 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 3201 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 3202 kbKeys = true;
mjr 65:739875521aae 3203 }
mjr 65:739875521aae 3204
mjr 11:bd9da7088e6e 3205 // initialize the button inputs
mjr 35:e959ffba78fd 3206 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 3207 {
mjr 66:2e3583fbd2f4 3208 // presume no shift key
mjr 66:2e3583fbd2f4 3209 shiftButton.index = -1;
mjr 82:4f6209cb5c33 3210 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 3211
mjr 65:739875521aae 3212 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 3213 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 3214 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 3215 nButtons = 0;
mjr 65:739875521aae 3216 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3217 {
mjr 65:739875521aae 3218 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 3219 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 3220 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 3221 }
mjr 65:739875521aae 3222
mjr 65:739875521aae 3223 // Count virtual buttons
mjr 65:739875521aae 3224
mjr 65:739875521aae 3225 // ZB Launch
mjr 65:739875521aae 3226 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 3227 {
mjr 65:739875521aae 3228 // valid - remember the live button index
mjr 65:739875521aae 3229 zblButtonIndex = nButtons;
mjr 65:739875521aae 3230
mjr 65:739875521aae 3231 // count it
mjr 72:884207c0aab0 3232 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 3233 }
mjr 65:739875521aae 3234
mjr 65:739875521aae 3235 // Allocate the live button slots
mjr 65:739875521aae 3236 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 3237
mjr 65:739875521aae 3238 // Configure the physical inputs
mjr 65:739875521aae 3239 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3240 {
mjr 65:739875521aae 3241 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 3242 if (pin != NC)
mjr 65:739875521aae 3243 {
mjr 65:739875521aae 3244 // point back to the config slot for the keyboard data
mjr 65:739875521aae 3245 bs->cfgIndex = i;
mjr 65:739875521aae 3246
mjr 65:739875521aae 3247 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 3248 bs->di.assignPin(pin);
mjr 65:739875521aae 3249
mjr 65:739875521aae 3250 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 3251 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 3252 bs->pulseState = 1;
mjr 65:739875521aae 3253
mjr 66:2e3583fbd2f4 3254 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 3255 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 3256 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 3257 // config slots are left unused.
mjr 78:1e00b3fa11af 3258 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 3259 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 3260
mjr 65:739875521aae 3261 // advance to the next button
mjr 65:739875521aae 3262 ++bs;
mjr 65:739875521aae 3263 }
mjr 65:739875521aae 3264 }
mjr 65:739875521aae 3265
mjr 53:9b2611964afc 3266 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 3267 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 3268 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 3269 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 3270
mjr 53:9b2611964afc 3271 // ZB Launch Ball button
mjr 65:739875521aae 3272 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 3273 {
mjr 65:739875521aae 3274 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 3275 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 3276 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 3277 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 3278 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 3279 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 3280 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 3281 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 3282
mjr 66:2e3583fbd2f4 3283 // advance to the next button
mjr 65:739875521aae 3284 ++bs;
mjr 11:bd9da7088e6e 3285 }
mjr 12:669df364a565 3286
mjr 38:091e511ce8a0 3287 // start the button scan thread
mjr 79:682ae3171a08 3288 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 3289
mjr 38:091e511ce8a0 3290 // start the button state transition timer
mjr 12:669df364a565 3291 buttonTimer.start();
mjr 11:bd9da7088e6e 3292 }
mjr 11:bd9da7088e6e 3293
mjr 67:c39e66c4e000 3294 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 3295 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 3296 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 3297 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 3298 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 3299 //
mjr 67:c39e66c4e000 3300 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 3301 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 3302 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 3303 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 3304 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 3305 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 3306 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 3307 //
mjr 67:c39e66c4e000 3308 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 3309 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 3310 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 3311 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 3312 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 3313 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 3314 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 3315 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 3316 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 3317 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 3318 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 3319 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 3320 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 3321 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 3322 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 3323 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 3324 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 3325 };
mjr 77:0b96f6867312 3326
mjr 77:0b96f6867312 3327 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 3328 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 3329 // states of the button iputs.
mjr 77:0b96f6867312 3330 struct KeyState
mjr 77:0b96f6867312 3331 {
mjr 77:0b96f6867312 3332 KeyState()
mjr 77:0b96f6867312 3333 {
mjr 77:0b96f6867312 3334 // zero all members
mjr 77:0b96f6867312 3335 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 3336 }
mjr 77:0b96f6867312 3337
mjr 77:0b96f6867312 3338 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 3339 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 3340 uint8_t mediakeys;
mjr 77:0b96f6867312 3341
mjr 77:0b96f6867312 3342 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 3343 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 3344 // USBJoystick.cpp).
mjr 77:0b96f6867312 3345 uint8_t modkeys;
mjr 77:0b96f6867312 3346
mjr 77:0b96f6867312 3347 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 3348 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 3349 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 3350 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 3351 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 3352 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 3353 uint8_t keys[7];
mjr 77:0b96f6867312 3354
mjr 77:0b96f6867312 3355 // number of valid entries in keys[] array
mjr 77:0b96f6867312 3356 int nkeys;
mjr 77:0b96f6867312 3357
mjr 77:0b96f6867312 3358 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 3359 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 3360 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 3361 uint32_t js;
mjr 77:0b96f6867312 3362
mjr 77:0b96f6867312 3363
mjr 77:0b96f6867312 3364 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 3365 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 3366 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 3367 {
mjr 77:0b96f6867312 3368 // add the key according to the type
mjr 77:0b96f6867312 3369 switch (typ)
mjr 77:0b96f6867312 3370 {
mjr 77:0b96f6867312 3371 case BtnTypeJoystick:
mjr 77:0b96f6867312 3372 // joystick button
mjr 77:0b96f6867312 3373 js |= (1 << (val - 1));
mjr 77:0b96f6867312 3374 break;
mjr 77:0b96f6867312 3375
mjr 77:0b96f6867312 3376 case BtnTypeKey:
mjr 77:0b96f6867312 3377 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 3378 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 3379 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 3380 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 3381 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 3382 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 3383 // explicitly using media keys if desired.
mjr 77:0b96f6867312 3384 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 3385 {
mjr 77:0b96f6867312 3386 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 3387 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 3388 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 3389 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3390 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3391 }
mjr 77:0b96f6867312 3392 else
mjr 77:0b96f6867312 3393 {
mjr 77:0b96f6867312 3394 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3395 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3396 // apply, add the key to the key array.
mjr 77:0b96f6867312 3397 if (nkeys < 7)
mjr 77:0b96f6867312 3398 {
mjr 77:0b96f6867312 3399 bool found = false;
mjr 77:0b96f6867312 3400 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3401 {
mjr 77:0b96f6867312 3402 if (keys[i] == val)
mjr 77:0b96f6867312 3403 {
mjr 77:0b96f6867312 3404 found = true;
mjr 77:0b96f6867312 3405 break;
mjr 77:0b96f6867312 3406 }
mjr 77:0b96f6867312 3407 }
mjr 77:0b96f6867312 3408 if (!found)
mjr 77:0b96f6867312 3409 keys[nkeys++] = val;
mjr 77:0b96f6867312 3410 }
mjr 77:0b96f6867312 3411 }
mjr 77:0b96f6867312 3412 break;
mjr 77:0b96f6867312 3413
mjr 77:0b96f6867312 3414 case BtnTypeMedia:
mjr 77:0b96f6867312 3415 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3416 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3417 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3418 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3419 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3420 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3421 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3422 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3423 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3424 break;
mjr 77:0b96f6867312 3425 }
mjr 77:0b96f6867312 3426 }
mjr 77:0b96f6867312 3427 };
mjr 67:c39e66c4e000 3428
mjr 67:c39e66c4e000 3429
mjr 38:091e511ce8a0 3430 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3431 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3432 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3433 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3434 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3435 {
mjr 77:0b96f6867312 3436 // key state
mjr 77:0b96f6867312 3437 KeyState ks;
mjr 38:091e511ce8a0 3438
mjr 38:091e511ce8a0 3439 // calculate the time since the last run
mjr 53:9b2611964afc 3440 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3441 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3442
mjr 66:2e3583fbd2f4 3443 // check the shift button state
mjr 66:2e3583fbd2f4 3444 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3445 {
mjr 78:1e00b3fa11af 3446 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3447 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3448
mjr 78:1e00b3fa11af 3449 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3450 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3451 {
mjr 66:2e3583fbd2f4 3452 case 0:
mjr 78:1e00b3fa11af 3453 default:
mjr 78:1e00b3fa11af 3454 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3455 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3456 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3457 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3458 {
mjr 78:1e00b3fa11af 3459 case 0:
mjr 78:1e00b3fa11af 3460 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3461 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3462 if (sbs->physState)
mjr 78:1e00b3fa11af 3463 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3464 break;
mjr 78:1e00b3fa11af 3465
mjr 78:1e00b3fa11af 3466 case 1:
mjr 78:1e00b3fa11af 3467 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3468 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3469 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3470 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3471 // pulse event.
mjr 78:1e00b3fa11af 3472 if (!sbs->physState)
mjr 78:1e00b3fa11af 3473 {
mjr 78:1e00b3fa11af 3474 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3475 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3476 }
mjr 78:1e00b3fa11af 3477 break;
mjr 78:1e00b3fa11af 3478
mjr 78:1e00b3fa11af 3479 case 2:
mjr 78:1e00b3fa11af 3480 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3481 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3482 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3483 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3484 // suppressed.
mjr 78:1e00b3fa11af 3485 if (!sbs->physState)
mjr 78:1e00b3fa11af 3486 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3487 break;
mjr 78:1e00b3fa11af 3488
mjr 78:1e00b3fa11af 3489 case 3:
mjr 78:1e00b3fa11af 3490 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3491 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3492 // has expired.
mjr 78:1e00b3fa11af 3493 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3494 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3495 else
mjr 78:1e00b3fa11af 3496 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3497 break;
mjr 78:1e00b3fa11af 3498 }
mjr 66:2e3583fbd2f4 3499 break;
mjr 66:2e3583fbd2f4 3500
mjr 66:2e3583fbd2f4 3501 case 1:
mjr 78:1e00b3fa11af 3502 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3503 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3504 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3505 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3506 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3507 break;
mjr 66:2e3583fbd2f4 3508 }
mjr 66:2e3583fbd2f4 3509 }
mjr 38:091e511ce8a0 3510
mjr 11:bd9da7088e6e 3511 // scan the button list
mjr 18:5e890ebd0023 3512 ButtonState *bs = buttonState;
mjr 65:739875521aae 3513 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3514 {
mjr 77:0b96f6867312 3515 // get the config entry for the button
mjr 77:0b96f6867312 3516 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3517
mjr 66:2e3583fbd2f4 3518 // Check the button type:
mjr 66:2e3583fbd2f4 3519 // - shift button
mjr 66:2e3583fbd2f4 3520 // - pulsed button
mjr 66:2e3583fbd2f4 3521 // - regular button
mjr 66:2e3583fbd2f4 3522 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3523 {
mjr 78:1e00b3fa11af 3524 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3525 // depends on the mode.
mjr 78:1e00b3fa11af 3526 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3527 {
mjr 78:1e00b3fa11af 3528 case 0:
mjr 78:1e00b3fa11af 3529 default:
mjr 78:1e00b3fa11af 3530 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3531 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3532 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3533 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3534 break;
mjr 78:1e00b3fa11af 3535
mjr 78:1e00b3fa11af 3536 case 1:
mjr 78:1e00b3fa11af 3537 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3538 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3539 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3540 break;
mjr 66:2e3583fbd2f4 3541 }
mjr 66:2e3583fbd2f4 3542 }
mjr 66:2e3583fbd2f4 3543 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3544 {
mjr 38:091e511ce8a0 3545 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3546 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3547 {
mjr 53:9b2611964afc 3548 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3549 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3550 }
mjr 53:9b2611964afc 3551 else
mjr 53:9b2611964afc 3552 {
mjr 53:9b2611964afc 3553 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3554 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3555 switch (bs->pulseState)
mjr 18:5e890ebd0023 3556 {
mjr 38:091e511ce8a0 3557 case 1:
mjr 38:091e511ce8a0 3558 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3559 if (bs->physState)
mjr 53:9b2611964afc 3560 {
mjr 38:091e511ce8a0 3561 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3562 bs->pulseState = 2;
mjr 53:9b2611964afc 3563 bs->logState = 1;
mjr 38:091e511ce8a0 3564 }
mjr 38:091e511ce8a0 3565 break;
mjr 18:5e890ebd0023 3566
mjr 38:091e511ce8a0 3567 case 2:
mjr 38:091e511ce8a0 3568 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3569 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3570 // change in state in the logical button
mjr 38:091e511ce8a0 3571 bs->pulseState = 3;
mjr 38:091e511ce8a0 3572 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3573 bs->logState = 0;
mjr 38:091e511ce8a0 3574 break;
mjr 38:091e511ce8a0 3575
mjr 38:091e511ce8a0 3576 case 3:
mjr 38:091e511ce8a0 3577 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3578 if (!bs->physState)
mjr 53:9b2611964afc 3579 {
mjr 38:091e511ce8a0 3580 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3581 bs->pulseState = 4;
mjr 53:9b2611964afc 3582 bs->logState = 1;
mjr 38:091e511ce8a0 3583 }
mjr 38:091e511ce8a0 3584 break;
mjr 38:091e511ce8a0 3585
mjr 38:091e511ce8a0 3586 case 4:
mjr 38:091e511ce8a0 3587 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3588 bs->pulseState = 1;
mjr 38:091e511ce8a0 3589 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3590 bs->logState = 0;
mjr 38:091e511ce8a0 3591 break;
mjr 18:5e890ebd0023 3592 }
mjr 18:5e890ebd0023 3593 }
mjr 38:091e511ce8a0 3594 }
mjr 38:091e511ce8a0 3595 else
mjr 38:091e511ce8a0 3596 {
mjr 38:091e511ce8a0 3597 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3598 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3599 }
mjr 77:0b96f6867312 3600
mjr 77:0b96f6867312 3601 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3602 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3603 //
mjr 78:1e00b3fa11af 3604 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3605 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3606 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3607 //
mjr 78:1e00b3fa11af 3608 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3609 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3610 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3611 //
mjr 78:1e00b3fa11af 3612 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3613 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3614 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3615 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3616 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3617 bool useShift =
mjr 77:0b96f6867312 3618 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3619 && shiftButton.index != i
mjr 77:0b96f6867312 3620 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3621 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3622 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3623
mjr 77:0b96f6867312 3624 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3625 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3626 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3627 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3628 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3629 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3630 shiftButton.state = 2;
mjr 35:e959ffba78fd 3631
mjr 38:091e511ce8a0 3632 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3633 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3634 {
mjr 77:0b96f6867312 3635 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3636 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3637 {
mjr 77:0b96f6867312 3638 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3639 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3640 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3641 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3642 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3643 // the night mode state.
mjr 77:0b96f6867312 3644 //
mjr 77:0b96f6867312 3645 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3646 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3647 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3648 {
mjr 77:0b96f6867312 3649 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3650 // current switch state.
mjr 53:9b2611964afc 3651 setNightMode(bs->logState);
mjr 53:9b2611964afc 3652 }
mjr 82:4f6209cb5c33 3653 else if (bs->logState)
mjr 53:9b2611964afc 3654 {
mjr 77:0b96f6867312 3655 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3656 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3657 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3658 // OFF to ON.
mjr 66:2e3583fbd2f4 3659 //
mjr 77:0b96f6867312 3660 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3661 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3662 // button.
mjr 77:0b96f6867312 3663 bool pressed;
mjr 98:4df3c0f7e707 3664 if (shiftButton.index == i)
mjr 98:4df3c0f7e707 3665 {
mjr 98:4df3c0f7e707 3666 // This button is both the Shift button AND the Night
mjr 98:4df3c0f7e707 3667 // Mode button. This is a special case in that the
mjr 98:4df3c0f7e707 3668 // Shift status is irrelevant, because it's obviously
mjr 98:4df3c0f7e707 3669 // identical to the Night Mode status. So it doesn't
mjr 98:4df3c0f7e707 3670 // matter whether or not the Night Mode button has the
mjr 98:4df3c0f7e707 3671 // shifted flags; the raw button state is all that
mjr 98:4df3c0f7e707 3672 // counts in this case.
mjr 98:4df3c0f7e707 3673 pressed = true;
mjr 98:4df3c0f7e707 3674 }
mjr 98:4df3c0f7e707 3675 else if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3676 {
mjr 77:0b96f6867312 3677 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3678 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3679 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3680 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3681 }
mjr 77:0b96f6867312 3682 else
mjr 77:0b96f6867312 3683 {
mjr 77:0b96f6867312 3684 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3685 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3686 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3687 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3688 }
mjr 66:2e3583fbd2f4 3689
mjr 66:2e3583fbd2f4 3690 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3691 // toggle night mode
mjr 66:2e3583fbd2f4 3692 if (pressed)
mjr 53:9b2611964afc 3693 toggleNightMode();
mjr 53:9b2611964afc 3694 }
mjr 35:e959ffba78fd 3695 }
mjr 38:091e511ce8a0 3696
mjr 77:0b96f6867312 3697 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3698 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3699 if (irc != 0)
mjr 77:0b96f6867312 3700 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3701
mjr 38:091e511ce8a0 3702 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3703 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3704 }
mjr 38:091e511ce8a0 3705
mjr 53:9b2611964afc 3706 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3707 // key state list
mjr 53:9b2611964afc 3708 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3709 {
mjr 70:9f58735a1732 3710 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3711 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3712 uint8_t typ, val;
mjr 77:0b96f6867312 3713 if (useShift)
mjr 66:2e3583fbd2f4 3714 {
mjr 77:0b96f6867312 3715 typ = bc->typ2;
mjr 77:0b96f6867312 3716 val = bc->val2;
mjr 66:2e3583fbd2f4 3717 }
mjr 77:0b96f6867312 3718 else
mjr 77:0b96f6867312 3719 {
mjr 77:0b96f6867312 3720 typ = bc->typ;
mjr 77:0b96f6867312 3721 val = bc->val;
mjr 77:0b96f6867312 3722 }
mjr 77:0b96f6867312 3723
mjr 70:9f58735a1732 3724 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3725 // the keyboard or joystick event.
mjr 77:0b96f6867312 3726 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3727 }
mjr 11:bd9da7088e6e 3728 }
mjr 77:0b96f6867312 3729
mjr 77:0b96f6867312 3730 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3731 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3732 // the IR key.
mjr 77:0b96f6867312 3733 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3734 {
mjr 77:0b96f6867312 3735 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3736 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3737 }
mjr 77:0b96f6867312 3738
mjr 77:0b96f6867312 3739 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3740 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3741
mjr 77:0b96f6867312 3742 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3743 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3744 jsButtons = ks.js;
mjr 77:0b96f6867312 3745
mjr 77:0b96f6867312 3746 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3747 // something changes)
mjr 77:0b96f6867312 3748 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3749 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3750 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3751 {
mjr 35:e959ffba78fd 3752 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3753 kbState.changed = true;
mjr 77:0b96f6867312 3754 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3755 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3756 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3757 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3758 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3759 }
mjr 35:e959ffba78fd 3760 else {
mjr 35:e959ffba78fd 3761 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3762 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3763 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3764 }
mjr 35:e959ffba78fd 3765 }
mjr 35:e959ffba78fd 3766
mjr 77:0b96f6867312 3767 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3768 // something changes)
mjr 77:0b96f6867312 3769 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3770 {
mjr 77:0b96f6867312 3771 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3772 mediaState.changed = true;
mjr 77:0b96f6867312 3773 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3774 }
mjr 11:bd9da7088e6e 3775 }
mjr 11:bd9da7088e6e 3776
mjr 73:4e8ce0b18915 3777 // Send a button status report
mjr 73:4e8ce0b18915 3778 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3779 {
mjr 73:4e8ce0b18915 3780 // start with all buttons off
mjr 73:4e8ce0b18915 3781 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3782 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3783
mjr 73:4e8ce0b18915 3784 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3785 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3786 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3787 {
mjr 73:4e8ce0b18915 3788 // get the physical state
mjr 73:4e8ce0b18915 3789 int b = bs->physState;
mjr 73:4e8ce0b18915 3790
mjr 73:4e8ce0b18915 3791 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3792 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3793 int si = idx / 8;
mjr 73:4e8ce0b18915 3794 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3795 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3796 }
mjr 73:4e8ce0b18915 3797
mjr 73:4e8ce0b18915 3798 // send the report
mjr 73:4e8ce0b18915 3799 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3800 }
mjr 73:4e8ce0b18915 3801
mjr 5:a70c0bce770d 3802 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3803 //
mjr 5:a70c0bce770d 3804 // Customization joystick subbclass
mjr 5:a70c0bce770d 3805 //
mjr 5:a70c0bce770d 3806
mjr 5:a70c0bce770d 3807 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3808 {
mjr 5:a70c0bce770d 3809 public:
mjr 35:e959ffba78fd 3810 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3811 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3812 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3813 {
mjr 54:fd77a6b2f76c 3814 sleeping_ = false;
mjr 54:fd77a6b2f76c 3815 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3816 timer_.start();
mjr 54:fd77a6b2f76c 3817 }
mjr 54:fd77a6b2f76c 3818
mjr 54:fd77a6b2f76c 3819 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3820 void diagFlash()
mjr 54:fd77a6b2f76c 3821 {
mjr 54:fd77a6b2f76c 3822 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3823 {
mjr 54:fd77a6b2f76c 3824 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3825 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3826 {
mjr 54:fd77a6b2f76c 3827 // short red flash
mjr 54:fd77a6b2f76c 3828 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3829 wait_us(50000);
mjr 54:fd77a6b2f76c 3830 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3831 wait_us(50000);
mjr 54:fd77a6b2f76c 3832 }
mjr 54:fd77a6b2f76c 3833 }
mjr 5:a70c0bce770d 3834 }
mjr 5:a70c0bce770d 3835
mjr 5:a70c0bce770d 3836 // are we connected?
mjr 5:a70c0bce770d 3837 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3838
mjr 54:fd77a6b2f76c 3839 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3840 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3841 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3842 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3843 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3844
mjr 54:fd77a6b2f76c 3845 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3846 //
mjr 54:fd77a6b2f76c 3847 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3848 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3849 // other way.
mjr 54:fd77a6b2f76c 3850 //
mjr 54:fd77a6b2f76c 3851 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3852 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3853 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3854 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3855 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3856 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3857 //
mjr 54:fd77a6b2f76c 3858 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3859 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3860 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3861 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3862 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3863 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3864 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3865 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3866 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3867 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3868 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3869 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3870 // is effectively dead.
mjr 54:fd77a6b2f76c 3871 //
mjr 54:fd77a6b2f76c 3872 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3873 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3874 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3875 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3876 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3877 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3878 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3879 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3880 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3881 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3882 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3883 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3884 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3885 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3886 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3887 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3888 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3889 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3890 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3891 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3892 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3893 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3894 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3895 // a disconnect.
mjr 54:fd77a6b2f76c 3896 //
mjr 54:fd77a6b2f76c 3897 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3898 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3899 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3900 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3901 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3902 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3903 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3904 //
mjr 54:fd77a6b2f76c 3905 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3906 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3907 //
mjr 54:fd77a6b2f76c 3908 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3909 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3910 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3911 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3912 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3913 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3914 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3915 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3916 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3917 // reliable in practice.
mjr 54:fd77a6b2f76c 3918 //
mjr 54:fd77a6b2f76c 3919 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3920 //
mjr 54:fd77a6b2f76c 3921 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3922 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3923 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3924 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3925 // return.
mjr 54:fd77a6b2f76c 3926 //
mjr 54:fd77a6b2f76c 3927 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3928 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3929 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3930 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3931 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3932 //
mjr 54:fd77a6b2f76c 3933 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3934 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3935 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3936 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3937 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3938 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3939 //
mjr 54:fd77a6b2f76c 3940 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3941 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3942 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3943 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3944 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3945 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3946 // freezes over.
mjr 54:fd77a6b2f76c 3947 //
mjr 54:fd77a6b2f76c 3948 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3949 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3950 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3951 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3952 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3953 void recoverConnection()
mjr 54:fd77a6b2f76c 3954 {
mjr 54:fd77a6b2f76c 3955 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3956 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3957 {
mjr 54:fd77a6b2f76c 3958 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3959 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3960 {
mjr 54:fd77a6b2f76c 3961 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3962 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3963 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3964 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3965 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3966 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3967 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3968 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3969 __disable_irq();
mjr 54:fd77a6b2f76c 3970 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3971 {
mjr 54:fd77a6b2f76c 3972 connect(false);
mjr 54:fd77a6b2f76c 3973 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3974 done = true;
mjr 54:fd77a6b2f76c 3975 }
mjr 54:fd77a6b2f76c 3976 __enable_irq();
mjr 54:fd77a6b2f76c 3977 }
mjr 54:fd77a6b2f76c 3978 }
mjr 54:fd77a6b2f76c 3979 }
mjr 5:a70c0bce770d 3980
mjr 5:a70c0bce770d 3981 protected:
mjr 54:fd77a6b2f76c 3982 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3983 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3984 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3985 //
mjr 54:fd77a6b2f76c 3986 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3987 //
mjr 54:fd77a6b2f76c 3988 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3989 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3990 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3991 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3992 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3993 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3994 {
mjr 54:fd77a6b2f76c 3995 // note the new state
mjr 54:fd77a6b2f76c 3996 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3997
mjr 54:fd77a6b2f76c 3998 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3999 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 4000 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 4001 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 4002 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 4003 {
mjr 54:fd77a6b2f76c 4004 disconnect();
mjr 54:fd77a6b2f76c 4005 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 4006 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 4007 }
mjr 54:fd77a6b2f76c 4008 }
mjr 54:fd77a6b2f76c 4009
mjr 54:fd77a6b2f76c 4010 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 4011 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 4012
mjr 54:fd77a6b2f76c 4013 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 4014 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 4015
mjr 54:fd77a6b2f76c 4016 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 4017 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 4018
mjr 54:fd77a6b2f76c 4019 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 4020 Timer timer_;
mjr 5:a70c0bce770d 4021 };
mjr 5:a70c0bce770d 4022
mjr 5:a70c0bce770d 4023 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4024 //
mjr 5:a70c0bce770d 4025 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 4026 //
mjr 5:a70c0bce770d 4027
mjr 5:a70c0bce770d 4028 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 4029 //
mjr 5:a70c0bce770d 4030 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 4031 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 4032 // automatic calibration.
mjr 5:a70c0bce770d 4033 //
mjr 77:0b96f6867312 4034 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 4035 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 4036 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 4037 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 4038 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 4039 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 4040 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 4041 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 4042 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 4043 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 4044 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 4045 //
mjr 77:0b96f6867312 4046 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 4047 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 4048 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 4049 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 4050 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 4051 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 4052 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 4053 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 4054 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 4055 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 4056 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 4057 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 4058 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 4059 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 4060 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 4061 // rather than change it across the board.
mjr 5:a70c0bce770d 4062 //
mjr 6:cc35eb643e8f 4063 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 4064 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 4065 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 4066 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 4067 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 4068 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 4069 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 4070 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 4071 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 4072 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 4073 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 4074 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 4075 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 4076 // of nudging, say).
mjr 5:a70c0bce770d 4077 //
mjr 5:a70c0bce770d 4078
mjr 17:ab3cec0c8bf4 4079 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 4080 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 4081
mjr 17:ab3cec0c8bf4 4082 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 4083 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 4084 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 4085
mjr 17:ab3cec0c8bf4 4086 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 4087 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 4088 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 4089 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 4090
mjr 17:ab3cec0c8bf4 4091
mjr 6:cc35eb643e8f 4092 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 4093 struct AccHist
mjr 5:a70c0bce770d 4094 {
mjr 77:0b96f6867312 4095 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4096 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 4097 {
mjr 6:cc35eb643e8f 4098 // save the raw position
mjr 6:cc35eb643e8f 4099 this->x = x;
mjr 6:cc35eb643e8f 4100 this->y = y;
mjr 77:0b96f6867312 4101 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 4102 }
mjr 6:cc35eb643e8f 4103
mjr 6:cc35eb643e8f 4104 // reading for this entry
mjr 77:0b96f6867312 4105 int x, y;
mjr 77:0b96f6867312 4106
mjr 77:0b96f6867312 4107 // (distance from previous entry) squared
mjr 77:0b96f6867312 4108 int dsq;
mjr 5:a70c0bce770d 4109
mjr 6:cc35eb643e8f 4110 // total and count of samples averaged over this period
mjr 77:0b96f6867312 4111 int xtot, ytot;
mjr 6:cc35eb643e8f 4112 int cnt;
mjr 6:cc35eb643e8f 4113
mjr 77:0b96f6867312 4114 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4115 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 4116 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 4117 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 4118
mjr 77:0b96f6867312 4119 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 4120 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 4121 };
mjr 5:a70c0bce770d 4122
mjr 5:a70c0bce770d 4123 // accelerometer wrapper class
mjr 3:3514575d4f86 4124 class Accel
mjr 3:3514575d4f86 4125 {
mjr 3:3514575d4f86 4126 public:
mjr 78:1e00b3fa11af 4127 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 4128 int range, int autoCenterMode)
mjr 77:0b96f6867312 4129 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 4130 {
mjr 5:a70c0bce770d 4131 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 4132 irqPin_ = irqPin;
mjr 77:0b96f6867312 4133
mjr 77:0b96f6867312 4134 // remember the range
mjr 77:0b96f6867312 4135 range_ = range;
mjr 78:1e00b3fa11af 4136
mjr 78:1e00b3fa11af 4137 // set the auto-centering mode
mjr 78:1e00b3fa11af 4138 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 4139
mjr 78:1e00b3fa11af 4140 // no manual centering request has been received
mjr 78:1e00b3fa11af 4141 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 4142
mjr 5:a70c0bce770d 4143 // reset and initialize
mjr 5:a70c0bce770d 4144 reset();
mjr 5:a70c0bce770d 4145 }
mjr 5:a70c0bce770d 4146
mjr 78:1e00b3fa11af 4147 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 4148 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 4149 // as soon as we have enough data.
mjr 78:1e00b3fa11af 4150 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 4151
mjr 78:1e00b3fa11af 4152 // set the auto-centering mode
mjr 78:1e00b3fa11af 4153 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 4154 {
mjr 78:1e00b3fa11af 4155 // remember the mode
mjr 78:1e00b3fa11af 4156 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 4157
mjr 78:1e00b3fa11af 4158 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 4159 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 4160 if (mode == 0)
mjr 78:1e00b3fa11af 4161 {
mjr 78:1e00b3fa11af 4162 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 4163 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 4164 }
mjr 78:1e00b3fa11af 4165 else if (mode <= 60)
mjr 78:1e00b3fa11af 4166 {
mjr 78:1e00b3fa11af 4167 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 4168 // interval is 1/5 of this
mjr 78:1e00b3fa11af 4169 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 4170 }
mjr 78:1e00b3fa11af 4171 else
mjr 78:1e00b3fa11af 4172 {
mjr 78:1e00b3fa11af 4173 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 4174 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 4175 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 4176 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 4177 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 4178 // includes recent data.
mjr 78:1e00b3fa11af 4179 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 4180 }
mjr 78:1e00b3fa11af 4181 }
mjr 78:1e00b3fa11af 4182
mjr 5:a70c0bce770d 4183 void reset()
mjr 5:a70c0bce770d 4184 {
mjr 6:cc35eb643e8f 4185 // clear the center point
mjr 77:0b96f6867312 4186 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 4187
mjr 77:0b96f6867312 4188 // start the auto-centering timer
mjr 5:a70c0bce770d 4189 tCenter_.start();
mjr 5:a70c0bce770d 4190 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 4191
mjr 5:a70c0bce770d 4192 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 4193 mma_.init();
mjr 77:0b96f6867312 4194
mjr 77:0b96f6867312 4195 // set the range
mjr 77:0b96f6867312 4196 mma_.setRange(
mjr 77:0b96f6867312 4197 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 4198 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 4199 2);
mjr 6:cc35eb643e8f 4200
mjr 77:0b96f6867312 4201 // set the average accumulators to zero
mjr 77:0b96f6867312 4202 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4203 nSum_ = 0;
mjr 3:3514575d4f86 4204
mjr 3:3514575d4f86 4205 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 4206 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 4207 }
mjr 3:3514575d4f86 4208
mjr 77:0b96f6867312 4209 void poll()
mjr 76:7f5912b6340e 4210 {
mjr 77:0b96f6867312 4211 // read samples until we clear the FIFO
mjr 77:0b96f6867312 4212 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 4213 {
mjr 77:0b96f6867312 4214 int x, y, z;
mjr 77:0b96f6867312 4215 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 4216
mjr 77:0b96f6867312 4217 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 4218 xSum_ += (x - cx_);
mjr 77:0b96f6867312 4219 ySum_ += (y - cy_);
mjr 77:0b96f6867312 4220 ++nSum_;
mjr 77:0b96f6867312 4221
mjr 77:0b96f6867312 4222 // store the updates
mjr 77:0b96f6867312 4223 ax_ = x;
mjr 77:0b96f6867312 4224 ay_ = y;
mjr 77:0b96f6867312 4225 az_ = z;
mjr 77:0b96f6867312 4226 }
mjr 76:7f5912b6340e 4227 }
mjr 77:0b96f6867312 4228
mjr 9:fd65b0a94720 4229 void get(int &x, int &y)
mjr 3:3514575d4f86 4230 {
mjr 77:0b96f6867312 4231 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 4232 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 4233 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 4234 int nSum = nSum_;
mjr 6:cc35eb643e8f 4235
mjr 77:0b96f6867312 4236 // reset the average accumulators for the next run
mjr 77:0b96f6867312 4237 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4238 nSum_ = 0;
mjr 77:0b96f6867312 4239
mjr 77:0b96f6867312 4240 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 4241 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4242 p->addAvg(ax, ay);
mjr 77:0b96f6867312 4243
mjr 78:1e00b3fa11af 4244 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 4245 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 4246 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 4247 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 4248 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 4249 {
mjr 77:0b96f6867312 4250 // add the latest raw sample to the history list
mjr 77:0b96f6867312 4251 AccHist *prv = p;
mjr 77:0b96f6867312 4252 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 4253 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4254 iAccPrv_ = 0;
mjr 77:0b96f6867312 4255 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4256 p->set(ax, ay, prv);
mjr 77:0b96f6867312 4257
mjr 78:1e00b3fa11af 4258 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 4259 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4260 {
mjr 78:1e00b3fa11af 4261 // Center if:
mjr 78:1e00b3fa11af 4262 //
mjr 78:1e00b3fa11af 4263 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 4264 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 4265 //
mjr 78:1e00b3fa11af 4266 // - A manual centering request is pending
mjr 78:1e00b3fa11af 4267 //
mjr 77:0b96f6867312 4268 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 4269 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 4270 if (manualCenterRequest_
mjr 78:1e00b3fa11af 4271 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 4272 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 4273 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 4274 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 4275 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 4276 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 4277 {
mjr 77:0b96f6867312 4278 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 4279 // the samples over the rest period
mjr 77:0b96f6867312 4280 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 4281 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 4282
mjr 78:1e00b3fa11af 4283 // clear any pending manual centering request
mjr 78:1e00b3fa11af 4284 manualCenterRequest_ = false;
mjr 77:0b96f6867312 4285 }
mjr 77:0b96f6867312 4286 }
mjr 77:0b96f6867312 4287 else
mjr 77:0b96f6867312 4288 {
mjr 77:0b96f6867312 4289 // not enough samples yet; just up the count
mjr 77:0b96f6867312 4290 ++nAccPrv_;
mjr 77:0b96f6867312 4291 }
mjr 6:cc35eb643e8f 4292
mjr 77:0b96f6867312 4293 // clear the new item's running totals
mjr 77:0b96f6867312 4294 p->clearAvg();
mjr 5:a70c0bce770d 4295
mjr 77:0b96f6867312 4296 // reset the timer
mjr 77:0b96f6867312 4297 tCenter_.reset();
mjr 77:0b96f6867312 4298 }
mjr 5:a70c0bce770d 4299
mjr 77:0b96f6867312 4300 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 4301 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 4302 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 4303
mjr 6:cc35eb643e8f 4304 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 4305 if (x != 0 || y != 0)
mjr 77:0b96f6867312 4306 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 4307 #endif
mjr 77:0b96f6867312 4308 }
mjr 29:582472d0bc57 4309
mjr 3:3514575d4f86 4310 private:
mjr 6:cc35eb643e8f 4311 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 4312 int rawToReport(int v)
mjr 5:a70c0bce770d 4313 {
mjr 77:0b96f6867312 4314 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 4315 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 4316 // so their scale is 2^13.
mjr 77:0b96f6867312 4317 //
mjr 77:0b96f6867312 4318 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 4319 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 4320 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 4321 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 4322 int i = v*JOYMAX;
mjr 77:0b96f6867312 4323 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 4324
mjr 6:cc35eb643e8f 4325 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 4326 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 4327 static const int filter[] = {
mjr 6:cc35eb643e8f 4328 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 4329 0,
mjr 6:cc35eb643e8f 4330 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 4331 };
mjr 6:cc35eb643e8f 4332 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 4333 }
mjr 5:a70c0bce770d 4334
mjr 3:3514575d4f86 4335 // underlying accelerometer object
mjr 3:3514575d4f86 4336 MMA8451Q mma_;
mjr 3:3514575d4f86 4337
mjr 77:0b96f6867312 4338 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 4339 // scale -8192..+8191
mjr 77:0b96f6867312 4340 int ax_, ay_, az_;
mjr 77:0b96f6867312 4341
mjr 77:0b96f6867312 4342 // running sum of readings since last get()
mjr 77:0b96f6867312 4343 int xSum_, ySum_;
mjr 77:0b96f6867312 4344
mjr 77:0b96f6867312 4345 // number of readings since last get()
mjr 77:0b96f6867312 4346 int nSum_;
mjr 6:cc35eb643e8f 4347
mjr 6:cc35eb643e8f 4348 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 4349 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 4350 // at rest.
mjr 77:0b96f6867312 4351 int cx_, cy_;
mjr 77:0b96f6867312 4352
mjr 77:0b96f6867312 4353 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 4354 uint8_t range_;
mjr 78:1e00b3fa11af 4355
mjr 78:1e00b3fa11af 4356 // auto-center mode:
mjr 78:1e00b3fa11af 4357 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 4358 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 4359 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 4360 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 4361
mjr 78:1e00b3fa11af 4362 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 4363 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 4364
mjr 78:1e00b3fa11af 4365 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 4366 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 4367
mjr 77:0b96f6867312 4368 // atuo-centering timer
mjr 5:a70c0bce770d 4369 Timer tCenter_;
mjr 6:cc35eb643e8f 4370
mjr 6:cc35eb643e8f 4371 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 4372 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 4373 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 4374 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 4375 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 4376 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 4377 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 4378 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 4379 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 4380 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 4381 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 4382 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 4383 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 4384 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 4385 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 4386
mjr 5:a70c0bce770d 4387 // interurupt pin name
mjr 5:a70c0bce770d 4388 PinName irqPin_;
mjr 3:3514575d4f86 4389 };
mjr 3:3514575d4f86 4390
mjr 5:a70c0bce770d 4391 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4392 //
mjr 14:df700b22ca08 4393 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 4394 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 4395 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 4396 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 4397 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 4398 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 4399 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 4400 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 4401 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 4402 //
mjr 14:df700b22ca08 4403 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 4404 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 4405 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 4406 //
mjr 5:a70c0bce770d 4407 void clear_i2c()
mjr 5:a70c0bce770d 4408 {
mjr 38:091e511ce8a0 4409 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 4410 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 4411 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 4412
mjr 5:a70c0bce770d 4413 // clock the SCL 9 times
mjr 5:a70c0bce770d 4414 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 4415 {
mjr 5:a70c0bce770d 4416 scl = 1;
mjr 5:a70c0bce770d 4417 wait_us(20);
mjr 5:a70c0bce770d 4418 scl = 0;
mjr 5:a70c0bce770d 4419 wait_us(20);
mjr 5:a70c0bce770d 4420 }
mjr 5:a70c0bce770d 4421 }
mjr 76:7f5912b6340e 4422
mjr 76:7f5912b6340e 4423
mjr 14:df700b22ca08 4424 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4425 //
mjr 33:d832bcab089e 4426 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4427 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4428 //
mjr 33:d832bcab089e 4429 class Debouncer
mjr 33:d832bcab089e 4430 {
mjr 33:d832bcab089e 4431 public:
mjr 33:d832bcab089e 4432 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4433 {
mjr 33:d832bcab089e 4434 t.start();
mjr 33:d832bcab089e 4435 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4436 this->tmin = tmin;
mjr 33:d832bcab089e 4437 }
mjr 33:d832bcab089e 4438
mjr 33:d832bcab089e 4439 // Get the current stable value
mjr 33:d832bcab089e 4440 bool val() const { return stable; }
mjr 33:d832bcab089e 4441
mjr 33:d832bcab089e 4442 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4443 // input device.
mjr 33:d832bcab089e 4444 void sampleIn(bool val)
mjr 33:d832bcab089e 4445 {
mjr 33:d832bcab089e 4446 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4447 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4448 // on the sample reader.
mjr 33:d832bcab089e 4449 if (val != prv)
mjr 33:d832bcab089e 4450 {
mjr 33:d832bcab089e 4451 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4452 t.reset();
mjr 33:d832bcab089e 4453
mjr 33:d832bcab089e 4454 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4455 prv = val;
mjr 33:d832bcab089e 4456 }
mjr 33:d832bcab089e 4457 else if (val != stable)
mjr 33:d832bcab089e 4458 {
mjr 33:d832bcab089e 4459 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4460 // and different from the stable value. This means that
mjr 33:d832bcab089e 4461 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4462 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4463 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4464 if (t.read() > tmin)
mjr 33:d832bcab089e 4465 stable = val;
mjr 33:d832bcab089e 4466 }
mjr 33:d832bcab089e 4467 }
mjr 33:d832bcab089e 4468
mjr 33:d832bcab089e 4469 private:
mjr 33:d832bcab089e 4470 // current stable value
mjr 33:d832bcab089e 4471 bool stable;
mjr 33:d832bcab089e 4472
mjr 33:d832bcab089e 4473 // last raw sample value
mjr 33:d832bcab089e 4474 bool prv;
mjr 33:d832bcab089e 4475
mjr 33:d832bcab089e 4476 // elapsed time since last raw input change
mjr 33:d832bcab089e 4477 Timer t;
mjr 33:d832bcab089e 4478
mjr 33:d832bcab089e 4479 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4480 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4481 float tmin;
mjr 33:d832bcab089e 4482 };
mjr 33:d832bcab089e 4483
mjr 33:d832bcab089e 4484
mjr 33:d832bcab089e 4485 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4486 //
mjr 33:d832bcab089e 4487 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4488 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4489 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4490 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4491 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4492 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4493 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4494 //
mjr 33:d832bcab089e 4495 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4496 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4497 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4498 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4499 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4500 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4501 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4502 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4503 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4504 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4505 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4506 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4507 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4508 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4509 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4510 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4511 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4512 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4513 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4514 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4515 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4516 //
mjr 40:cc0d9814522b 4517 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4518 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4519 //
mjr 33:d832bcab089e 4520 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4521 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4522 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4523 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4524 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4525 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4526 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4527 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4528 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4529 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4530 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4531 //
mjr 33:d832bcab089e 4532 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4533 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4534 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4535 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4536 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4537 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4538 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4539 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4540 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4541 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4542 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4543 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4544 // first check.
mjr 33:d832bcab089e 4545 //
mjr 33:d832bcab089e 4546 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4547 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4548 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4549 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4550 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4551 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4552 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4553 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4554 //
mjr 33:d832bcab089e 4555
mjr 77:0b96f6867312 4556 // Current PSU2 power state:
mjr 33:d832bcab089e 4557 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4558 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4559 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4560 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4561 // 5 -> TV relay on
mjr 77:0b96f6867312 4562 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4563 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4564
mjr 73:4e8ce0b18915 4565 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4566 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4567 // separate state for each:
mjr 73:4e8ce0b18915 4568 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4569 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4570 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4571 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4572 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4573
mjr 79:682ae3171a08 4574 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4575 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4576
mjr 77:0b96f6867312 4577 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4578 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4579 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4580 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4581 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4582 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4583 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4584 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4585 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4586 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4587 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4588
mjr 77:0b96f6867312 4589 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4590 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4591
mjr 35:e959ffba78fd 4592 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4593 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4594 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4595
mjr 73:4e8ce0b18915 4596 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4597 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4598 {
mjr 73:4e8ce0b18915 4599 // update the state
mjr 73:4e8ce0b18915 4600 if (state)
mjr 73:4e8ce0b18915 4601 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4602 else
mjr 73:4e8ce0b18915 4603 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4604
mjr 73:4e8ce0b18915 4605 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4606 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4607 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4608 }
mjr 35:e959ffba78fd 4609
mjr 86:e30a1f60f783 4610 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4611 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4612 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4613 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4614 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4615 // we say it's okay.
mjr 86:e30a1f60f783 4616 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4617 {
mjr 86:e30a1f60f783 4618 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4619 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4620 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4621 // to the same state later.
mjr 86:e30a1f60f783 4622 return psu2_state == 1;
mjr 86:e30a1f60f783 4623 }
mjr 86:e30a1f60f783 4624
mjr 77:0b96f6867312 4625 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4626 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4627 // functions.
mjr 77:0b96f6867312 4628 Timer powerStatusTimer;
mjr 77:0b96f6867312 4629 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4630 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4631 {
mjr 79:682ae3171a08 4632 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4633 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4634 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4635 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4636 {
mjr 79:682ae3171a08 4637 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4638 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4639 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4640 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4641 }
mjr 79:682ae3171a08 4642
mjr 77:0b96f6867312 4643 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4644 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4645 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4646 // skip this whole routine.
mjr 77:0b96f6867312 4647 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4648 return;
mjr 77:0b96f6867312 4649
mjr 77:0b96f6867312 4650 // reset the update timer for next time
mjr 77:0b96f6867312 4651 powerStatusTimer.reset();
mjr 77:0b96f6867312 4652
mjr 77:0b96f6867312 4653 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4654 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4655 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4656 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4657 static Timer tv_timer;
mjr 35:e959ffba78fd 4658
mjr 33:d832bcab089e 4659 // Check our internal state
mjr 33:d832bcab089e 4660 switch (psu2_state)
mjr 33:d832bcab089e 4661 {
mjr 33:d832bcab089e 4662 case 1:
mjr 33:d832bcab089e 4663 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4664 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4665 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4666 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4667 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4668 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4669 {
mjr 33:d832bcab089e 4670 // switch to OFF state
mjr 33:d832bcab089e 4671 psu2_state = 2;
mjr 33:d832bcab089e 4672
mjr 33:d832bcab089e 4673 // try setting the latch
mjr 35:e959ffba78fd 4674 psu2_status_set->write(1);
mjr 33:d832bcab089e 4675 }
mjr 77:0b96f6867312 4676 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4677 break;
mjr 33:d832bcab089e 4678
mjr 33:d832bcab089e 4679 case 2:
mjr 33:d832bcab089e 4680 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4681 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4682 psu2_status_set->write(0);
mjr 33:d832bcab089e 4683 psu2_state = 3;
mjr 77:0b96f6867312 4684 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4685 break;
mjr 33:d832bcab089e 4686
mjr 33:d832bcab089e 4687 case 3:
mjr 33:d832bcab089e 4688 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4689 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4690 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4691 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4692 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4693 {
mjr 33:d832bcab089e 4694 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4695 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4696 tv_timer.reset();
mjr 33:d832bcab089e 4697 tv_timer.start();
mjr 33:d832bcab089e 4698 psu2_state = 4;
mjr 73:4e8ce0b18915 4699
mjr 73:4e8ce0b18915 4700 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4701 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4702 }
mjr 33:d832bcab089e 4703 else
mjr 33:d832bcab089e 4704 {
mjr 33:d832bcab089e 4705 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4706 // our last check. Return to idle state.
mjr 87:8d35c74403af 4707 psu2_state = 1;
mjr 33:d832bcab089e 4708 }
mjr 33:d832bcab089e 4709 break;
mjr 33:d832bcab089e 4710
mjr 33:d832bcab089e 4711 case 4:
mjr 77:0b96f6867312 4712 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4713 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4714 // off again before the countdown finished.
mjr 77:0b96f6867312 4715 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4716 {
mjr 77:0b96f6867312 4717 // power is off - start a new check cycle
mjr 77:0b96f6867312 4718 psu2_status_set->write(1);
mjr 77:0b96f6867312 4719 psu2_state = 2;
mjr 77:0b96f6867312 4720 break;
mjr 77:0b96f6867312 4721 }
mjr 77:0b96f6867312 4722
mjr 77:0b96f6867312 4723 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4724 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4725
mjr 77:0b96f6867312 4726 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4727 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4728 {
mjr 33:d832bcab089e 4729 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4730 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4731 psu2_state = 5;
mjr 77:0b96f6867312 4732
mjr 77:0b96f6867312 4733 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4734 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4735 }
mjr 33:d832bcab089e 4736 break;
mjr 33:d832bcab089e 4737
mjr 33:d832bcab089e 4738 case 5:
mjr 33:d832bcab089e 4739 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4740 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4741 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4742
mjr 77:0b96f6867312 4743 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4744 psu2_state = 6;
mjr 77:0b96f6867312 4745 tvon_ir_state = 0;
mjr 77:0b96f6867312 4746
mjr 77:0b96f6867312 4747 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4748 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4749 break;
mjr 77:0b96f6867312 4750
mjr 77:0b96f6867312 4751 case 6:
mjr 77:0b96f6867312 4752 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4753 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4754 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4755 psu2_state = 1;
mjr 77:0b96f6867312 4756 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4757
mjr 77:0b96f6867312 4758 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4759 if (ir_tx != 0)
mjr 77:0b96f6867312 4760 {
mjr 77:0b96f6867312 4761 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4762 if (ir_tx->isSending())
mjr 77:0b96f6867312 4763 {
mjr 77:0b96f6867312 4764 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4765 // state 6.
mjr 77:0b96f6867312 4766 psu2_state = 6;
mjr 77:0b96f6867312 4767 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4768 break;
mjr 77:0b96f6867312 4769 }
mjr 77:0b96f6867312 4770
mjr 77:0b96f6867312 4771 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4772 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4773 // number.
mjr 77:0b96f6867312 4774 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4775 {
mjr 77:0b96f6867312 4776 // is this a TV ON command?
mjr 77:0b96f6867312 4777 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4778 {
mjr 77:0b96f6867312 4779 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4780 // looking for.
mjr 77:0b96f6867312 4781 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4782 {
mjr 77:0b96f6867312 4783 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4784 // pushing its virtual button.
mjr 77:0b96f6867312 4785 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4786 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4787
mjr 77:0b96f6867312 4788 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4789 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4790 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4791 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4792 // to send the code once.
mjr 77:0b96f6867312 4793 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4794
mjr 77:0b96f6867312 4795 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4796 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4797 // the next one.
mjr 77:0b96f6867312 4798 psu2_state = 6;
mjr 77:0b96f6867312 4799 tvon_ir_state++;
mjr 77:0b96f6867312 4800 break;
mjr 77:0b96f6867312 4801 }
mjr 77:0b96f6867312 4802
mjr 77:0b96f6867312 4803 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4804 ++n;
mjr 77:0b96f6867312 4805 }
mjr 77:0b96f6867312 4806 }
mjr 77:0b96f6867312 4807 }
mjr 33:d832bcab089e 4808 break;
mjr 33:d832bcab089e 4809 }
mjr 77:0b96f6867312 4810
mjr 77:0b96f6867312 4811 // update the diagnostic LEDs
mjr 77:0b96f6867312 4812 diagLED();
mjr 33:d832bcab089e 4813 }
mjr 33:d832bcab089e 4814
mjr 77:0b96f6867312 4815 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4816 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4817 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4818 // are configured as NC.
mjr 77:0b96f6867312 4819 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4820 {
mjr 55:4db125cd11a0 4821 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4822 // time is nonzero
mjr 77:0b96f6867312 4823 powerStatusTimer.reset();
mjr 77:0b96f6867312 4824 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4825 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4826 {
mjr 77:0b96f6867312 4827 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4828 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4829 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4830
mjr 77:0b96f6867312 4831 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4832 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4833 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4834
mjr 77:0b96f6867312 4835 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4836 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4837 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4838 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4839
mjr 77:0b96f6867312 4840 // Start the TV timer
mjr 77:0b96f6867312 4841 powerStatusTimer.start();
mjr 35:e959ffba78fd 4842 }
mjr 35:e959ffba78fd 4843 }
mjr 35:e959ffba78fd 4844
mjr 73:4e8ce0b18915 4845 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4846 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4847 //
mjr 73:4e8ce0b18915 4848 // Mode:
mjr 73:4e8ce0b18915 4849 // 0 = turn relay off
mjr 73:4e8ce0b18915 4850 // 1 = turn relay on
mjr 73:4e8ce0b18915 4851 // 2 = pulse relay
mjr 73:4e8ce0b18915 4852 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4853 {
mjr 73:4e8ce0b18915 4854 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4855 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4856 return;
mjr 73:4e8ce0b18915 4857
mjr 73:4e8ce0b18915 4858 switch (mode)
mjr 73:4e8ce0b18915 4859 {
mjr 73:4e8ce0b18915 4860 case 0:
mjr 73:4e8ce0b18915 4861 // relay off
mjr 73:4e8ce0b18915 4862 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4863 break;
mjr 73:4e8ce0b18915 4864
mjr 73:4e8ce0b18915 4865 case 1:
mjr 73:4e8ce0b18915 4866 // relay on
mjr 73:4e8ce0b18915 4867 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4868 break;
mjr 73:4e8ce0b18915 4869
mjr 73:4e8ce0b18915 4870 case 2:
mjr 79:682ae3171a08 4871 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4872 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4873 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4874 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4875 break;
mjr 73:4e8ce0b18915 4876 }
mjr 73:4e8ce0b18915 4877 }
mjr 73:4e8ce0b18915 4878
mjr 73:4e8ce0b18915 4879
mjr 35:e959ffba78fd 4880 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4881 //
mjr 35:e959ffba78fd 4882 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4883 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4884 //
mjr 35:e959ffba78fd 4885 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4886 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4887 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4888 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4889 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4890 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4891 //
mjr 35:e959ffba78fd 4892 NVM nvm;
mjr 35:e959ffba78fd 4893
mjr 86:e30a1f60f783 4894 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4895 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4896 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4897 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4898
mjr 86:e30a1f60f783 4899 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4900 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4901
mjr 79:682ae3171a08 4902 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4903 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4904
mjr 86:e30a1f60f783 4905 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4906 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4907
mjr 86:e30a1f60f783 4908
mjr 35:e959ffba78fd 4909 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4910 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4911
mjr 35:e959ffba78fd 4912 // flash memory controller interface
mjr 35:e959ffba78fd 4913 FreescaleIAP iap;
mjr 35:e959ffba78fd 4914
mjr 79:682ae3171a08 4915 // figure the flash address for the config data
mjr 79:682ae3171a08 4916 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4917 {
mjr 79:682ae3171a08 4918 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4919 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4920
mjr 79:682ae3171a08 4921 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4922 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4923
mjr 79:682ae3171a08 4924 // locate it at the top of memory
mjr 79:682ae3171a08 4925 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4926
mjr 79:682ae3171a08 4927 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4928 return (const NVM *)addr;
mjr 35:e959ffba78fd 4929 }
mjr 35:e959ffba78fd 4930
mjr 76:7f5912b6340e 4931 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4932 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4933 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4934 // in either case.
mjr 76:7f5912b6340e 4935 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4936 {
mjr 35:e959ffba78fd 4937 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4938 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4939 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4940 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4941 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4942 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4943 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4944 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4945 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4946 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4947 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4948 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4949 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4950 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4951 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4952 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4953
mjr 35:e959ffba78fd 4954 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4955 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4956
mjr 35:e959ffba78fd 4957 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4958 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4959 if (nvm_valid)
mjr 35:e959ffba78fd 4960 {
mjr 35:e959ffba78fd 4961 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4962 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4963 }
mjr 35:e959ffba78fd 4964 else
mjr 35:e959ffba78fd 4965 {
mjr 76:7f5912b6340e 4966 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4967 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4968 }
mjr 76:7f5912b6340e 4969
mjr 76:7f5912b6340e 4970 // tell the caller what happened
mjr 76:7f5912b6340e 4971 return nvm_valid;
mjr 35:e959ffba78fd 4972 }
mjr 35:e959ffba78fd 4973
mjr 86:e30a1f60f783 4974 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4975 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4976 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4977 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4978 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4979 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4980 {
mjr 76:7f5912b6340e 4981 // get the config block location in the flash memory
mjr 77:0b96f6867312 4982 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4983
mjr 101:755f44622abc 4984 // save the data
mjr 101:755f44622abc 4985 bool ok = nvm.save(iap, addr);
mjr 101:755f44622abc 4986
mjr 101:755f44622abc 4987 // if the save succeeded, do post-save work
mjr 101:755f44622abc 4988 if (ok)
mjr 86:e30a1f60f783 4989 {
mjr 86:e30a1f60f783 4990 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4991 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4992
mjr 86:e30a1f60f783 4993 // start the followup timer
mjr 87:8d35c74403af 4994 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4995 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4996 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4997
mjr 86:e30a1f60f783 4998 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4999 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 5000 }
mjr 101:755f44622abc 5001
mjr 101:755f44622abc 5002 // return the success indication
mjr 101:755f44622abc 5003 return ok;
mjr 76:7f5912b6340e 5004 }
mjr 76:7f5912b6340e 5005
mjr 76:7f5912b6340e 5006 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 5007 //
mjr 76:7f5912b6340e 5008 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 5009 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 5010 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 5011 // downloading it to the device.
mjr 76:7f5912b6340e 5012 //
mjr 100:1ff35c07217c 5013 // Ideally, we'd use the host-loaded memory for all configuration updates
mjr 100:1ff35c07217c 5014 // from the host - that is, any time the host wants to update config settings,
mjr 100:1ff35c07217c 5015 // such as via user input in the config tool. In the past, I wanted to do
mjr 100:1ff35c07217c 5016 // it this way because it seemed to be unreliable to write flash memory via
mjr 100:1ff35c07217c 5017 // the device. But that turned out to be due to a bug in the mbed Ticker
mjr 100:1ff35c07217c 5018 // code (of all things!), which we've fixed - since then, flash writing on
mjr 100:1ff35c07217c 5019 // the device has been bulletproof. Even so, doing host-to-device flash
mjr 100:1ff35c07217c 5020 // writing for config updates would be nice just for the sake of speed, as
mjr 100:1ff35c07217c 5021 // the alternative is that we send the variables one at a time by USB, which
mjr 100:1ff35c07217c 5022 // takes noticeable time when reprogramming the whole config set. But
mjr 100:1ff35c07217c 5023 // there's no way to accomplish a single-sector flash write via OpenSDA; you
mjr 100:1ff35c07217c 5024 // can only rewrite the entire flash memory as a unit.
mjr 100:1ff35c07217c 5025 //
mjr 100:1ff35c07217c 5026 // We can at least use this approach to do a fast configuration restore
mjr 100:1ff35c07217c 5027 // when downloading new firmware. In that case, we're rewriting all of
mjr 100:1ff35c07217c 5028 // flash memory anyway, so we might as well include the config data.
mjr 76:7f5912b6340e 5029 //
mjr 76:7f5912b6340e 5030 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 5031 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 5032 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 5033 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 5034 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 5035 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 5036 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 5037 //
mjr 76:7f5912b6340e 5038 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 5039 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 5040 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 5041 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 5042 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 5043 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 5044 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 5045 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 5046 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 5047 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 5048
mjr 76:7f5912b6340e 5049 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 5050 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 5051 {
mjr 76:7f5912b6340e 5052 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 5053 // 32-byte signature header
mjr 76:7f5912b6340e 5054 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 5055 };
mjr 76:7f5912b6340e 5056
mjr 76:7f5912b6340e 5057 // forward reference to config var store function
mjr 76:7f5912b6340e 5058 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 5059
mjr 76:7f5912b6340e 5060 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 5061 // configuration object.
mjr 76:7f5912b6340e 5062 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 5063 {
mjr 76:7f5912b6340e 5064 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 5065 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 5066 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 5067 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 5068 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 5069 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 5070 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 5071 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 5072 {
mjr 76:7f5912b6340e 5073 // load this variable
mjr 76:7f5912b6340e 5074 configVarSet(p);
mjr 76:7f5912b6340e 5075 }
mjr 35:e959ffba78fd 5076 }
mjr 35:e959ffba78fd 5077
mjr 35:e959ffba78fd 5078 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5079 //
mjr 55:4db125cd11a0 5080 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 5081 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 5082 //
mjr 55:4db125cd11a0 5083 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 5084 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 5085 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 101:755f44622abc 5086 uint8_t tReportPlungerStat; // timestamp of most recent plunger status request
mjr 55:4db125cd11a0 5087
mjr 55:4db125cd11a0 5088
mjr 55:4db125cd11a0 5089 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 5090 //
mjr 40:cc0d9814522b 5091 // Night mode setting updates
mjr 40:cc0d9814522b 5092 //
mjr 38:091e511ce8a0 5093
mjr 38:091e511ce8a0 5094 // Turn night mode on or off
mjr 38:091e511ce8a0 5095 static void setNightMode(bool on)
mjr 38:091e511ce8a0 5096 {
mjr 77:0b96f6867312 5097 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 5098 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 5099 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 5100 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 5101
mjr 40:cc0d9814522b 5102 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 5103 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 5104 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 5105 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 5106
mjr 76:7f5912b6340e 5107 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 5108 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 5109 // mode change.
mjr 76:7f5912b6340e 5110 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 5111 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 5112
mjr 76:7f5912b6340e 5113 // update 74HC595 outputs
mjr 76:7f5912b6340e 5114 if (hc595 != 0)
mjr 76:7f5912b6340e 5115 hc595->update();
mjr 38:091e511ce8a0 5116 }
mjr 38:091e511ce8a0 5117
mjr 38:091e511ce8a0 5118 // Toggle night mode
mjr 38:091e511ce8a0 5119 static void toggleNightMode()
mjr 38:091e511ce8a0 5120 {
mjr 53:9b2611964afc 5121 setNightMode(!nightMode);
mjr 38:091e511ce8a0 5122 }
mjr 38:091e511ce8a0 5123
mjr 38:091e511ce8a0 5124
mjr 38:091e511ce8a0 5125 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5126 //
mjr 35:e959ffba78fd 5127 // Plunger Sensor
mjr 35:e959ffba78fd 5128 //
mjr 35:e959ffba78fd 5129
mjr 35:e959ffba78fd 5130 // the plunger sensor interface object
mjr 35:e959ffba78fd 5131 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 5132
mjr 76:7f5912b6340e 5133
mjr 35:e959ffba78fd 5134 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 5135 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 5136 void createPlunger()
mjr 35:e959ffba78fd 5137 {
mjr 35:e959ffba78fd 5138 // create the new sensor object according to the type
mjr 35:e959ffba78fd 5139 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 5140 {
mjr 82:4f6209cb5c33 5141 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 5142 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 5143 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5144 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 5145 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5146 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5147 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5148 break;
mjr 35:e959ffba78fd 5149
mjr 82:4f6209cb5c33 5150 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 5151 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 5152 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5153 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 5154 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5155 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5156 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5157 break;
mjr 35:e959ffba78fd 5158
mjr 35:e959ffba78fd 5159 case PlungerType_Pot:
mjr 82:4f6209cb5c33 5160 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 5161 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 5162 // pins are: AO (analog in)
mjr 53:9b2611964afc 5163 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 5164 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 5165 break;
mjr 82:4f6209cb5c33 5166
mjr 82:4f6209cb5c33 5167 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 5168 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 5169 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 5170 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 5171 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 5172 300,
mjr 82:4f6209cb5c33 5173 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5174 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 5175 break;
mjr 82:4f6209cb5c33 5176
mjr 82:4f6209cb5c33 5177 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 5178 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 5179 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 5180 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 5181 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5182 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5183 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5184 break;
mjr 82:4f6209cb5c33 5185
mjr 82:4f6209cb5c33 5186 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 5187 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 5188 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 5189 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 5190 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5191 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5192 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5193 break;
mjr 82:4f6209cb5c33 5194
mjr 100:1ff35c07217c 5195 case PlungerType_AEAT6012:
mjr 100:1ff35c07217c 5196 // Broadcom AEAT-6012-A06 magnetic rotary encoder
mjr 100:1ff35c07217c 5197 // pins are: CS (chip select, dig out), CLK (dig out), DO (data, dig in)
mjr 100:1ff35c07217c 5198 plungerSensor = new PlungerSensorAEAT601X<12>(
mjr 100:1ff35c07217c 5199 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5200 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5201 wirePinName(cfg.plunger.sensorPin[2]));
mjr 100:1ff35c07217c 5202 break;
mjr 100:1ff35c07217c 5203
mjr 100:1ff35c07217c 5204 case PlungerType_TCD1103:
mjr 100:1ff35c07217c 5205 // Toshiba TCD1103GFG linear CCD, optical edge detection, with
mjr 100:1ff35c07217c 5206 // inverted logic gates.
mjr 100:1ff35c07217c 5207 //
mjr 100:1ff35c07217c 5208 // Pins are: fM (master clock, PWM), OS (sample data, analog in),
mjr 100:1ff35c07217c 5209 // ICG (integration clear gate, dig out), SH (shift gate, dig out)
mjr 100:1ff35c07217c 5210 plungerSensor = new PlungerSensorTCD1103<true>(
mjr 100:1ff35c07217c 5211 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5212 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5213 wirePinName(cfg.plunger.sensorPin[2]),
mjr 100:1ff35c07217c 5214 wirePinName(cfg.plunger.sensorPin[3]));
mjr 100:1ff35c07217c 5215 break;
mjr 100:1ff35c07217c 5216
mjr 35:e959ffba78fd 5217 case PlungerType_None:
mjr 35:e959ffba78fd 5218 default:
mjr 35:e959ffba78fd 5219 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 5220 break;
mjr 35:e959ffba78fd 5221 }
mjr 100:1ff35c07217c 5222
mjr 100:1ff35c07217c 5223 // initialize the plunger from the saved configuration
mjr 100:1ff35c07217c 5224 plungerSensor->restoreCalibration(cfg);
mjr 86:e30a1f60f783 5225
mjr 87:8d35c74403af 5226 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 5227 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 5228 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 5229 }
mjr 33:d832bcab089e 5230
mjr 52:8298b2a73eb2 5231 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 5232 bool plungerCalMode;
mjr 52:8298b2a73eb2 5233
mjr 48:058ace2aed1d 5234 // Plunger reader
mjr 51:57eb311faafa 5235 //
mjr 51:57eb311faafa 5236 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 5237 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 5238 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 5239 //
mjr 51:57eb311faafa 5240 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 5241 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 5242 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 5243 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 5244 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 5245 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 5246 // firing motion.
mjr 51:57eb311faafa 5247 //
mjr 51:57eb311faafa 5248 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 5249 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 5250 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 5251 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 5252 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 5253 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 5254 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 5255 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 5256 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 5257 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 5258 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 5259 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 5260 // a classic digital aliasing effect.
mjr 51:57eb311faafa 5261 //
mjr 51:57eb311faafa 5262 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 5263 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 5264 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 5265 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 5266 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 5267 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 5268 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 5269 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 5270 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 5271 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 5272 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 5273 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 5274 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 5275 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 5276 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 5277 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 5278 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 5279 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 5280 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 5281 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 5282 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 5283 //
mjr 48:058ace2aed1d 5284 class PlungerReader
mjr 48:058ace2aed1d 5285 {
mjr 48:058ace2aed1d 5286 public:
mjr 48:058ace2aed1d 5287 PlungerReader()
mjr 48:058ace2aed1d 5288 {
mjr 48:058ace2aed1d 5289 // not in a firing event yet
mjr 48:058ace2aed1d 5290 firing = 0;
mjr 48:058ace2aed1d 5291 }
mjr 76:7f5912b6340e 5292
mjr 48:058ace2aed1d 5293 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 5294 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 5295 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 5296 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 5297 void read()
mjr 48:058ace2aed1d 5298 {
mjr 76:7f5912b6340e 5299 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 5300 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 5301 return;
mjr 76:7f5912b6340e 5302
mjr 48:058ace2aed1d 5303 // Read a sample from the sensor
mjr 48:058ace2aed1d 5304 PlungerReading r;
mjr 48:058ace2aed1d 5305 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 5306 {
mjr 53:9b2611964afc 5307 // check for calibration mode
mjr 53:9b2611964afc 5308 if (plungerCalMode)
mjr 53:9b2611964afc 5309 {
mjr 53:9b2611964afc 5310 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 5311 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 5312 // expand the envelope to include this new value.
mjr 53:9b2611964afc 5313 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 5314 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 5315 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 5316 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 5317
mjr 76:7f5912b6340e 5318 // update our cached calibration data
mjr 76:7f5912b6340e 5319 onUpdateCal();
mjr 50:40015764bbe6 5320
mjr 53:9b2611964afc 5321 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 5322 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 5323 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 5324 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 5325 if (calState == 0)
mjr 53:9b2611964afc 5326 {
mjr 53:9b2611964afc 5327 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 5328 {
mjr 53:9b2611964afc 5329 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 5330 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 5331 {
mjr 53:9b2611964afc 5332 // we've been at rest long enough - count it
mjr 53:9b2611964afc 5333 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 5334 calZeroPosN += 1;
mjr 53:9b2611964afc 5335
mjr 53:9b2611964afc 5336 // update the zero position from the new average
mjr 53:9b2611964afc 5337 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 5338 onUpdateCal();
mjr 53:9b2611964afc 5339
mjr 53:9b2611964afc 5340 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 5341 calState = 1;
mjr 53:9b2611964afc 5342 }
mjr 53:9b2611964afc 5343 }
mjr 53:9b2611964afc 5344 else
mjr 53:9b2611964afc 5345 {
mjr 53:9b2611964afc 5346 // we're not close to the last position - start again here
mjr 53:9b2611964afc 5347 calZeroStart = r;
mjr 53:9b2611964afc 5348 }
mjr 53:9b2611964afc 5349 }
mjr 53:9b2611964afc 5350
mjr 53:9b2611964afc 5351 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 5352 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 5353 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 5354 r.pos = int(
mjr 53:9b2611964afc 5355 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 5356 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 5357 }
mjr 53:9b2611964afc 5358 else
mjr 53:9b2611964afc 5359 {
mjr 53:9b2611964afc 5360 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 5361 // rescale to the joystick range.
mjr 76:7f5912b6340e 5362 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 5363
mjr 53:9b2611964afc 5364 // limit the result to the valid joystick range
mjr 53:9b2611964afc 5365 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 5366 r.pos = JOYMAX;
mjr 53:9b2611964afc 5367 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 5368 r.pos = -JOYMAX;
mjr 53:9b2611964afc 5369 }
mjr 50:40015764bbe6 5370
mjr 87:8d35c74403af 5371 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 5372 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 5373 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 5374 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 5375 //
mjr 87:8d35c74403af 5376 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 5377 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 5378 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 5379 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 5380 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 5381 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 5382 // 25-50ms.
mjr 87:8d35c74403af 5383 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 5384 return;
mjr 87:8d35c74403af 5385
mjr 87:8d35c74403af 5386 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 5387 z = r.pos;
mjr 87:8d35c74403af 5388
mjr 87:8d35c74403af 5389 // Firing event detection.
mjr 87:8d35c74403af 5390 //
mjr 87:8d35c74403af 5391 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 5392 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 5393 // spring tension.
mjr 50:40015764bbe6 5394 //
mjr 87:8d35c74403af 5395 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 5396 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 5397 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 5398 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 5399 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 5400 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 5401 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 5402 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 5403 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 5404 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 5405 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 5406 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 5407 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 5408 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 5409 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 5410 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 5411 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 5412 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 5413 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 5414 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 5415 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 5416 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 5417 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 5418 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5419 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5420 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5421 // forward position for a short time.
mjr 76:7f5912b6340e 5422 //
mjr 87:8d35c74403af 5423 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5424 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5425 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5426 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5427 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5428 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5429 //
mjr 87:8d35c74403af 5430 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5431 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5432 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5433 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5434 // to the park position.
mjr 87:8d35c74403af 5435 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5436 switch (firing)
mjr 50:40015764bbe6 5437 {
mjr 50:40015764bbe6 5438 case 0:
mjr 87:8d35c74403af 5439 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5440 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5441 // release, enter firing mode.
mjr 87:8d35c74403af 5442 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5443 {
mjr 87:8d35c74403af 5444 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5445 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5446 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5447 {
mjr 87:8d35c74403af 5448 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5449 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5450 firingMode(1);
mjr 87:8d35c74403af 5451 f0 = prv;
mjr 87:8d35c74403af 5452 z = f0.pos;
mjr 87:8d35c74403af 5453
mjr 87:8d35c74403af 5454 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5455 // state 2 (not at rest)
mjr 87:8d35c74403af 5456 if (calState == 1)
mjr 87:8d35c74403af 5457 calState = 2;
mjr 87:8d35c74403af 5458 }
mjr 50:40015764bbe6 5459 }
mjr 50:40015764bbe6 5460 break;
mjr 50:40015764bbe6 5461
mjr 50:40015764bbe6 5462 case 1:
mjr 87:8d35c74403af 5463 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5464 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5465 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5466 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5467 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5468 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5469 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5470 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5471 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5472 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5473 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5474 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5475 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5476 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5477 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5478 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5479 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5480 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5481 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5482 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5483 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5484 if (r.pos <= 0)
mjr 50:40015764bbe6 5485 {
mjr 87:8d35c74403af 5486 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5487 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5488 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5489 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5490 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5491 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5492 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5493 // physics.
mjr 50:40015764bbe6 5494 firingMode(2);
mjr 53:9b2611964afc 5495
mjr 53:9b2611964afc 5496 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5497 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5498 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5499 {
mjr 53:9b2611964afc 5500 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5501 // come to rest
mjr 53:9b2611964afc 5502 calState = 0;
mjr 53:9b2611964afc 5503
mjr 87:8d35c74403af 5504 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5505 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5506 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5507 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5508 {
mjr 53:9b2611964afc 5509 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5510 calRlsTimeN += 1;
mjr 53:9b2611964afc 5511 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5512 }
mjr 53:9b2611964afc 5513 }
mjr 87:8d35c74403af 5514
mjr 87:8d35c74403af 5515 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5516 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5517 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5518 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5519 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5520 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5521 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5522 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5523 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5524 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5525 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5526 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5527 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5528 // small in any case.)
mjr 87:8d35c74403af 5529 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5530
mjr 87:8d35c74403af 5531 // reset the starting time for this phase
mjr 87:8d35c74403af 5532 f0.t = r.t;
mjr 50:40015764bbe6 5533 }
mjr 50:40015764bbe6 5534 else
mjr 50:40015764bbe6 5535 {
mjr 87:8d35c74403af 5536 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5537 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5538 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5539 if (dt < 50000
mjr 87:8d35c74403af 5540 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5541 {
mjr 87:8d35c74403af 5542 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5543 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5544 // stay in the first release phase.
mjr 87:8d35c74403af 5545 z = f0.pos;
mjr 87:8d35c74403af 5546 }
mjr 87:8d35c74403af 5547 else
mjr 87:8d35c74403af 5548 {
mjr 87:8d35c74403af 5549 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5550 // motion. Return to the default state.
mjr 87:8d35c74403af 5551 firingMode(0);
mjr 87:8d35c74403af 5552 calState = 1;
mjr 87:8d35c74403af 5553 }
mjr 50:40015764bbe6 5554 }
mjr 50:40015764bbe6 5555 break;
mjr 50:40015764bbe6 5556
mjr 50:40015764bbe6 5557 case 2:
mjr 87:8d35c74403af 5558 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5559 // Hold here for 25ms.
mjr 87:8d35c74403af 5560 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5561 {
mjr 87:8d35c74403af 5562 // stay here for now
mjr 87:8d35c74403af 5563 z = f0.pos;
mjr 50:40015764bbe6 5564 }
mjr 50:40015764bbe6 5565 else
mjr 50:40015764bbe6 5566 {
mjr 87:8d35c74403af 5567 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5568 // position until the plunger comes to rest
mjr 50:40015764bbe6 5569 firingMode(3);
mjr 50:40015764bbe6 5570 z = 0;
mjr 87:8d35c74403af 5571
mjr 87:8d35c74403af 5572 // remember when we started
mjr 87:8d35c74403af 5573 f0.t = r.t;
mjr 50:40015764bbe6 5574 }
mjr 50:40015764bbe6 5575 break;
mjr 50:40015764bbe6 5576
mjr 50:40015764bbe6 5577 case 3:
mjr 87:8d35c74403af 5578 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5579 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5580 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5581 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5582 {
mjr 87:8d35c74403af 5583 // stay here a while longer
mjr 87:8d35c74403af 5584 z = 0;
mjr 50:40015764bbe6 5585 }
mjr 50:40015764bbe6 5586 else
mjr 50:40015764bbe6 5587 {
mjr 87:8d35c74403af 5588 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5589 firingMode(0);
mjr 50:40015764bbe6 5590 }
mjr 50:40015764bbe6 5591 break;
mjr 50:40015764bbe6 5592 }
mjr 50:40015764bbe6 5593
mjr 82:4f6209cb5c33 5594 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5595 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5596 {
mjr 82:4f6209cb5c33 5597 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5598 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5599 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5600 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5601 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5602 {
mjr 82:4f6209cb5c33 5603 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5604 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5605 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5606 }
mjr 82:4f6209cb5c33 5607 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5608 {
mjr 82:4f6209cb5c33 5609 // auto-zero now
mjr 82:4f6209cb5c33 5610 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5611
mjr 82:4f6209cb5c33 5612 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5613 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5614 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5615 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5616 }
mjr 82:4f6209cb5c33 5617 }
mjr 82:4f6209cb5c33 5618
mjr 87:8d35c74403af 5619 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5620 prv = r;
mjr 48:058ace2aed1d 5621 }
mjr 48:058ace2aed1d 5622 }
mjr 48:058ace2aed1d 5623
mjr 48:058ace2aed1d 5624 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5625 int16_t getPosition()
mjr 58:523fdcffbe6d 5626 {
mjr 86:e30a1f60f783 5627 // return the last reading
mjr 86:e30a1f60f783 5628 return z;
mjr 55:4db125cd11a0 5629 }
mjr 58:523fdcffbe6d 5630
mjr 48:058ace2aed1d 5631 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5632 void setCalMode(bool f)
mjr 48:058ace2aed1d 5633 {
mjr 52:8298b2a73eb2 5634 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5635 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5636 {
mjr 52:8298b2a73eb2 5637 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5638 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5639
mjr 52:8298b2a73eb2 5640 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5641 calState = 0;
mjr 52:8298b2a73eb2 5642 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5643 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5644 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5645 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5646
mjr 82:4f6209cb5c33 5647 // tell the plunger we're starting calibration
mjr 100:1ff35c07217c 5648 plungerSensor->beginCalibration(cfg);
mjr 82:4f6209cb5c33 5649
mjr 52:8298b2a73eb2 5650 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5651 PlungerReading r;
mjr 52:8298b2a73eb2 5652 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5653 {
mjr 52:8298b2a73eb2 5654 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5655 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5656 onUpdateCal();
mjr 52:8298b2a73eb2 5657
mjr 52:8298b2a73eb2 5658 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5659 calZeroStart = r;
mjr 52:8298b2a73eb2 5660 }
mjr 52:8298b2a73eb2 5661 else
mjr 52:8298b2a73eb2 5662 {
mjr 52:8298b2a73eb2 5663 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5664 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5665 onUpdateCal();
mjr 52:8298b2a73eb2 5666
mjr 52:8298b2a73eb2 5667 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5668 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5669 calZeroStart.t = 0;
mjr 53:9b2611964afc 5670 }
mjr 53:9b2611964afc 5671 }
mjr 53:9b2611964afc 5672 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5673 {
mjr 53:9b2611964afc 5674 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5675 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5676 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5677 // physically meaningless.
mjr 53:9b2611964afc 5678 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5679 {
mjr 53:9b2611964afc 5680 // bad settings - reset to defaults
mjr 53:9b2611964afc 5681 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5682 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 5683 }
mjr 100:1ff35c07217c 5684
mjr 100:1ff35c07217c 5685 // finalize the configuration in the plunger object
mjr 100:1ff35c07217c 5686 plungerSensor->endCalibration(cfg);
mjr 100:1ff35c07217c 5687
mjr 100:1ff35c07217c 5688 // update our internal cached information for the new calibration
mjr 100:1ff35c07217c 5689 onUpdateCal();
mjr 52:8298b2a73eb2 5690 }
mjr 52:8298b2a73eb2 5691
mjr 48:058ace2aed1d 5692 // remember the new mode
mjr 52:8298b2a73eb2 5693 plungerCalMode = f;
mjr 48:058ace2aed1d 5694 }
mjr 48:058ace2aed1d 5695
mjr 76:7f5912b6340e 5696 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5697 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5698 // cached inverse is calculated as
mjr 76:7f5912b6340e 5699 //
mjr 76:7f5912b6340e 5700 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5701 //
mjr 76:7f5912b6340e 5702 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5703 //
mjr 76:7f5912b6340e 5704 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5705 //
mjr 76:7f5912b6340e 5706 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5707 int invCalRange;
mjr 76:7f5912b6340e 5708
mjr 76:7f5912b6340e 5709 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5710 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5711 {
mjr 76:7f5912b6340e 5712 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5713 }
mjr 76:7f5912b6340e 5714
mjr 76:7f5912b6340e 5715 void onUpdateCal()
mjr 76:7f5912b6340e 5716 {
mjr 76:7f5912b6340e 5717 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5718 }
mjr 76:7f5912b6340e 5719
mjr 48:058ace2aed1d 5720 // is a firing event in progress?
mjr 53:9b2611964afc 5721 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5722
mjr 48:058ace2aed1d 5723 private:
mjr 87:8d35c74403af 5724 // current reported joystick reading
mjr 87:8d35c74403af 5725 int z;
mjr 87:8d35c74403af 5726
mjr 87:8d35c74403af 5727 // previous reading
mjr 87:8d35c74403af 5728 PlungerReading prv;
mjr 87:8d35c74403af 5729
mjr 52:8298b2a73eb2 5730 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5731 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5732 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5733 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5734 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5735 // 1 = at rest
mjr 52:8298b2a73eb2 5736 // 2 = retracting
mjr 52:8298b2a73eb2 5737 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5738 uint8_t calState;
mjr 52:8298b2a73eb2 5739
mjr 52:8298b2a73eb2 5740 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5741 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5742 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5743 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5744 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5745 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5746 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5747 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5748 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5749 long calZeroPosSum;
mjr 52:8298b2a73eb2 5750 int calZeroPosN;
mjr 52:8298b2a73eb2 5751
mjr 52:8298b2a73eb2 5752 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5753 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5754 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5755 int calRlsTimeN;
mjr 52:8298b2a73eb2 5756
mjr 85:3c28aee81cde 5757 // Auto-zeroing timer
mjr 85:3c28aee81cde 5758 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5759
mjr 48:058ace2aed1d 5760 // set a firing mode
mjr 48:058ace2aed1d 5761 inline void firingMode(int m)
mjr 48:058ace2aed1d 5762 {
mjr 48:058ace2aed1d 5763 firing = m;
mjr 48:058ace2aed1d 5764 }
mjr 48:058ace2aed1d 5765
mjr 48:058ace2aed1d 5766 // Firing event state.
mjr 48:058ace2aed1d 5767 //
mjr 87:8d35c74403af 5768 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5769 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5770 //
mjr 87:8d35c74403af 5771 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5772 //
mjr 87:8d35c74403af 5773 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5774 //
mjr 87:8d35c74403af 5775 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5776 //
mjr 48:058ace2aed1d 5777 int firing;
mjr 48:058ace2aed1d 5778
mjr 87:8d35c74403af 5779 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5780 PlungerReading f0;
mjr 48:058ace2aed1d 5781 };
mjr 48:058ace2aed1d 5782
mjr 48:058ace2aed1d 5783 // plunger reader singleton
mjr 48:058ace2aed1d 5784 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5785
mjr 48:058ace2aed1d 5786 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5787 //
mjr 48:058ace2aed1d 5788 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5789 //
mjr 48:058ace2aed1d 5790 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5791 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5792 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5793 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5794 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5795 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5796 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5797 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5798 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5799 //
mjr 48:058ace2aed1d 5800 // This feature has two configuration components:
mjr 48:058ace2aed1d 5801 //
mjr 48:058ace2aed1d 5802 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5803 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5804 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5805 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5806 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5807 // plunger/launch button connection.
mjr 48:058ace2aed1d 5808 //
mjr 48:058ace2aed1d 5809 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5810 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5811 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5812 // position.
mjr 48:058ace2aed1d 5813 //
mjr 48:058ace2aed1d 5814 class ZBLaunchBall
mjr 48:058ace2aed1d 5815 {
mjr 48:058ace2aed1d 5816 public:
mjr 48:058ace2aed1d 5817 ZBLaunchBall()
mjr 48:058ace2aed1d 5818 {
mjr 48:058ace2aed1d 5819 // start in the default state
mjr 48:058ace2aed1d 5820 lbState = 0;
mjr 53:9b2611964afc 5821 btnState = false;
mjr 48:058ace2aed1d 5822 }
mjr 48:058ace2aed1d 5823
mjr 48:058ace2aed1d 5824 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5825 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5826 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5827 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5828 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5829 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5830 void update()
mjr 48:058ace2aed1d 5831 {
mjr 53:9b2611964afc 5832 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5833 // plunger firing event
mjr 53:9b2611964afc 5834 if (zbLaunchOn)
mjr 48:058ace2aed1d 5835 {
mjr 53:9b2611964afc 5836 // note the new position
mjr 48:058ace2aed1d 5837 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5838
mjr 53:9b2611964afc 5839 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5840 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5841
mjr 53:9b2611964afc 5842 // check the state
mjr 48:058ace2aed1d 5843 switch (lbState)
mjr 48:058ace2aed1d 5844 {
mjr 48:058ace2aed1d 5845 case 0:
mjr 53:9b2611964afc 5846 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5847 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5848 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5849 // the button.
mjr 53:9b2611964afc 5850 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5851 {
mjr 53:9b2611964afc 5852 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5853 lbTimer.reset();
mjr 53:9b2611964afc 5854 lbTimer.start();
mjr 53:9b2611964afc 5855 setButton(true);
mjr 53:9b2611964afc 5856
mjr 53:9b2611964afc 5857 // switch to state 1
mjr 53:9b2611964afc 5858 lbState = 1;
mjr 53:9b2611964afc 5859 }
mjr 48:058ace2aed1d 5860 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5861 {
mjr 53:9b2611964afc 5862 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5863 // button as long as we're pushed forward
mjr 53:9b2611964afc 5864 setButton(true);
mjr 53:9b2611964afc 5865 }
mjr 53:9b2611964afc 5866 else
mjr 53:9b2611964afc 5867 {
mjr 53:9b2611964afc 5868 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5869 setButton(false);
mjr 53:9b2611964afc 5870 }
mjr 48:058ace2aed1d 5871 break;
mjr 48:058ace2aed1d 5872
mjr 48:058ace2aed1d 5873 case 1:
mjr 53:9b2611964afc 5874 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5875 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5876 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5877 {
mjr 53:9b2611964afc 5878 // timer expired - turn off the button
mjr 53:9b2611964afc 5879 setButton(false);
mjr 53:9b2611964afc 5880
mjr 53:9b2611964afc 5881 // switch to state 2
mjr 53:9b2611964afc 5882 lbState = 2;
mjr 53:9b2611964afc 5883 }
mjr 48:058ace2aed1d 5884 break;
mjr 48:058ace2aed1d 5885
mjr 48:058ace2aed1d 5886 case 2:
mjr 53:9b2611964afc 5887 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5888 // plunger launch event to end.
mjr 53:9b2611964afc 5889 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5890 {
mjr 53:9b2611964afc 5891 // firing event done - return to default state
mjr 53:9b2611964afc 5892 lbState = 0;
mjr 53:9b2611964afc 5893 }
mjr 48:058ace2aed1d 5894 break;
mjr 48:058ace2aed1d 5895 }
mjr 53:9b2611964afc 5896 }
mjr 53:9b2611964afc 5897 else
mjr 53:9b2611964afc 5898 {
mjr 53:9b2611964afc 5899 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5900 setButton(false);
mjr 48:058ace2aed1d 5901
mjr 53:9b2611964afc 5902 // return to the default state
mjr 53:9b2611964afc 5903 lbState = 0;
mjr 48:058ace2aed1d 5904 }
mjr 48:058ace2aed1d 5905 }
mjr 53:9b2611964afc 5906
mjr 53:9b2611964afc 5907 // Set the button state
mjr 53:9b2611964afc 5908 void setButton(bool on)
mjr 53:9b2611964afc 5909 {
mjr 53:9b2611964afc 5910 if (btnState != on)
mjr 53:9b2611964afc 5911 {
mjr 53:9b2611964afc 5912 // remember the new state
mjr 53:9b2611964afc 5913 btnState = on;
mjr 53:9b2611964afc 5914
mjr 53:9b2611964afc 5915 // update the virtual button state
mjr 65:739875521aae 5916 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5917 }
mjr 53:9b2611964afc 5918 }
mjr 53:9b2611964afc 5919
mjr 48:058ace2aed1d 5920 private:
mjr 48:058ace2aed1d 5921 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5922 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5923 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5924 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5925 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5926 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5927 //
mjr 48:058ace2aed1d 5928 // States:
mjr 48:058ace2aed1d 5929 // 0 = default
mjr 53:9b2611964afc 5930 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5931 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5932 // firing event to end)
mjr 53:9b2611964afc 5933 uint8_t lbState;
mjr 48:058ace2aed1d 5934
mjr 53:9b2611964afc 5935 // button state
mjr 53:9b2611964afc 5936 bool btnState;
mjr 48:058ace2aed1d 5937
mjr 48:058ace2aed1d 5938 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5939 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5940 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5941 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5942 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5943 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5944 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5945 Timer lbTimer;
mjr 48:058ace2aed1d 5946 };
mjr 48:058ace2aed1d 5947
mjr 35:e959ffba78fd 5948 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5949 //
mjr 35:e959ffba78fd 5950 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5951 //
mjr 54:fd77a6b2f76c 5952 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5953 {
mjr 35:e959ffba78fd 5954 // disconnect from USB
mjr 54:fd77a6b2f76c 5955 if (disconnect)
mjr 54:fd77a6b2f76c 5956 js.disconnect();
mjr 35:e959ffba78fd 5957
mjr 35:e959ffba78fd 5958 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5959 wait_us(pause_us);
mjr 35:e959ffba78fd 5960
mjr 35:e959ffba78fd 5961 // reset the device
mjr 35:e959ffba78fd 5962 NVIC_SystemReset();
mjr 35:e959ffba78fd 5963 while (true) { }
mjr 35:e959ffba78fd 5964 }
mjr 35:e959ffba78fd 5965
mjr 35:e959ffba78fd 5966 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5967 //
mjr 35:e959ffba78fd 5968 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5969 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5970 //
mjr 35:e959ffba78fd 5971 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5972 {
mjr 35:e959ffba78fd 5973 int tmp;
mjr 78:1e00b3fa11af 5974 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5975 {
mjr 35:e959ffba78fd 5976 case OrientationFront:
mjr 35:e959ffba78fd 5977 tmp = x;
mjr 35:e959ffba78fd 5978 x = y;
mjr 35:e959ffba78fd 5979 y = tmp;
mjr 35:e959ffba78fd 5980 break;
mjr 35:e959ffba78fd 5981
mjr 35:e959ffba78fd 5982 case OrientationLeft:
mjr 35:e959ffba78fd 5983 x = -x;
mjr 35:e959ffba78fd 5984 break;
mjr 35:e959ffba78fd 5985
mjr 35:e959ffba78fd 5986 case OrientationRight:
mjr 35:e959ffba78fd 5987 y = -y;
mjr 35:e959ffba78fd 5988 break;
mjr 35:e959ffba78fd 5989
mjr 35:e959ffba78fd 5990 case OrientationRear:
mjr 35:e959ffba78fd 5991 tmp = -x;
mjr 35:e959ffba78fd 5992 x = -y;
mjr 35:e959ffba78fd 5993 y = tmp;
mjr 35:e959ffba78fd 5994 break;
mjr 35:e959ffba78fd 5995 }
mjr 35:e959ffba78fd 5996 }
mjr 35:e959ffba78fd 5997
mjr 35:e959ffba78fd 5998 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5999 //
mjr 35:e959ffba78fd 6000 // Calibration button state:
mjr 35:e959ffba78fd 6001 // 0 = not pushed
mjr 35:e959ffba78fd 6002 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 6003 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 6004 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 6005 int calBtnState = 0;
mjr 35:e959ffba78fd 6006
mjr 35:e959ffba78fd 6007 // calibration button debounce timer
mjr 35:e959ffba78fd 6008 Timer calBtnTimer;
mjr 35:e959ffba78fd 6009
mjr 35:e959ffba78fd 6010 // calibration button light state
mjr 35:e959ffba78fd 6011 int calBtnLit = false;
mjr 35:e959ffba78fd 6012
mjr 35:e959ffba78fd 6013
mjr 35:e959ffba78fd 6014 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6015 //
mjr 40:cc0d9814522b 6016 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 6017 //
mjr 40:cc0d9814522b 6018
mjr 40:cc0d9814522b 6019 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 6020 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 6021 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 6022 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 6023 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 6024 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 6025 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 6026 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6027 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6028 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 6029 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 6030 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 6031
mjr 40:cc0d9814522b 6032 // redefine everything for the SET messages
mjr 40:cc0d9814522b 6033 #undef if_msg_valid
mjr 40:cc0d9814522b 6034 #undef v_byte
mjr 40:cc0d9814522b 6035 #undef v_ui16
mjr 77:0b96f6867312 6036 #undef v_ui32
mjr 40:cc0d9814522b 6037 #undef v_pin
mjr 53:9b2611964afc 6038 #undef v_byte_ro
mjr 91:ae9be42652bf 6039 #undef v_byte_wo
mjr 74:822a92bc11d2 6040 #undef v_ui32_ro
mjr 74:822a92bc11d2 6041 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 6042 #undef v_func
mjr 38:091e511ce8a0 6043
mjr 91:ae9be42652bf 6044 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 6045 #define if_msg_valid(test)
mjr 53:9b2611964afc 6046 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 6047 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 6048 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 6049 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 6050 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 6051 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 6052 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 6053 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 6054 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 6055 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 6056
mjr 35:e959ffba78fd 6057
mjr 35:e959ffba78fd 6058 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6059 //
mjr 101:755f44622abc 6060 // Timer for timestamping input requests
mjr 101:755f44622abc 6061 //
mjr 101:755f44622abc 6062 Timer requestTimestamper;
mjr 101:755f44622abc 6063
mjr 101:755f44622abc 6064 // ---------------------------------------------------------------------------
mjr 101:755f44622abc 6065 //
mjr 35:e959ffba78fd 6066 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 6067 // LedWiz protocol.
mjr 33:d832bcab089e 6068 //
mjr 78:1e00b3fa11af 6069 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 6070 {
mjr 38:091e511ce8a0 6071 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 6072 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 6073 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 6074 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 6075 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 6076 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 6077 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 6078 // So our full protocol is as follows:
mjr 38:091e511ce8a0 6079 //
mjr 38:091e511ce8a0 6080 // first byte =
mjr 74:822a92bc11d2 6081 // 0-48 -> PBA
mjr 74:822a92bc11d2 6082 // 64 -> SBA
mjr 38:091e511ce8a0 6083 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 6084 // 129-132 -> PBA
mjr 38:091e511ce8a0 6085 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 6086 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 6087 // other -> reserved for future use
mjr 38:091e511ce8a0 6088 //
mjr 39:b3815a1c3802 6089 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 6090 if (data[0] == 64)
mjr 35:e959ffba78fd 6091 {
mjr 74:822a92bc11d2 6092 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 6093 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 6094 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 6095 sba_sbx(0, data);
mjr 74:822a92bc11d2 6096
mjr 74:822a92bc11d2 6097 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 6098 pbaIdx = 0;
mjr 38:091e511ce8a0 6099 }
mjr 38:091e511ce8a0 6100 else if (data[0] == 65)
mjr 38:091e511ce8a0 6101 {
mjr 38:091e511ce8a0 6102 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 6103 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 6104 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 6105 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 6106 // message type.
mjr 39:b3815a1c3802 6107 switch (data[1])
mjr 38:091e511ce8a0 6108 {
mjr 39:b3815a1c3802 6109 case 0:
mjr 39:b3815a1c3802 6110 // No Op
mjr 39:b3815a1c3802 6111 break;
mjr 39:b3815a1c3802 6112
mjr 39:b3815a1c3802 6113 case 1:
mjr 38:091e511ce8a0 6114 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 6115 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 6116 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 6117 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 6118 {
mjr 39:b3815a1c3802 6119
mjr 39:b3815a1c3802 6120 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 6121 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 6122 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 6123
mjr 86:e30a1f60f783 6124 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 6125 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 6126
mjr 39:b3815a1c3802 6127 // set the configuration parameters from the message
mjr 39:b3815a1c3802 6128 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 6129 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 6130
mjr 77:0b96f6867312 6131 // set the flag to do the save
mjr 86:e30a1f60f783 6132 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 6133 }
mjr 39:b3815a1c3802 6134 break;
mjr 38:091e511ce8a0 6135
mjr 39:b3815a1c3802 6136 case 2:
mjr 38:091e511ce8a0 6137 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 6138 // (No parameters)
mjr 38:091e511ce8a0 6139
mjr 38:091e511ce8a0 6140 // enter calibration mode
mjr 38:091e511ce8a0 6141 calBtnState = 3;
mjr 52:8298b2a73eb2 6142 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 6143 calBtnTimer.reset();
mjr 39:b3815a1c3802 6144 break;
mjr 39:b3815a1c3802 6145
mjr 39:b3815a1c3802 6146 case 3:
mjr 52:8298b2a73eb2 6147 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 6148 // data[2] = flag bits
mjr 53:9b2611964afc 6149 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 6150 reportPlungerStat = true;
mjr 53:9b2611964afc 6151 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 6152 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 6153
mjr 101:755f44622abc 6154 // set the extra integration time in the sensor
mjr 101:755f44622abc 6155 plungerSensor->setExtraIntegrationTime(reportPlungerStatTime * 100);
mjr 101:755f44622abc 6156
mjr 101:755f44622abc 6157 // make a note of the request timestamp
mjr 101:755f44622abc 6158 tReportPlungerStat = requestTimestamper.read_us();
mjr 101:755f44622abc 6159
mjr 38:091e511ce8a0 6160 // show purple until we finish sending the report
mjr 38:091e511ce8a0 6161 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 6162 break;
mjr 39:b3815a1c3802 6163
mjr 39:b3815a1c3802 6164 case 4:
mjr 38:091e511ce8a0 6165 // 4 = hardware configuration query
mjr 38:091e511ce8a0 6166 // (No parameters)
mjr 38:091e511ce8a0 6167 js.reportConfig(
mjr 38:091e511ce8a0 6168 numOutputs,
mjr 38:091e511ce8a0 6169 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 6170 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 6171 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 6172 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 6173 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 6174 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 6175 true, // we support the configurable joystick report timing features
mjr 99:8139b0c274f4 6176 true, // chime logic is supported
mjr 79:682ae3171a08 6177 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 6178 break;
mjr 39:b3815a1c3802 6179
mjr 39:b3815a1c3802 6180 case 5:
mjr 38:091e511ce8a0 6181 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 6182 allOutputsOff();
mjr 39:b3815a1c3802 6183 break;
mjr 39:b3815a1c3802 6184
mjr 39:b3815a1c3802 6185 case 6:
mjr 85:3c28aee81cde 6186 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 6187 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 6188 //
mjr 85:3c28aee81cde 6189 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 6190 // data[3] = flags:
mjr 85:3c28aee81cde 6191 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 6192 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 6193 break;
mjr 40:cc0d9814522b 6194
mjr 40:cc0d9814522b 6195 case 7:
mjr 40:cc0d9814522b 6196 // 7 = Device ID report
mjr 53:9b2611964afc 6197 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 6198 js.reportID(data[2]);
mjr 40:cc0d9814522b 6199 break;
mjr 40:cc0d9814522b 6200
mjr 40:cc0d9814522b 6201 case 8:
mjr 40:cc0d9814522b 6202 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 6203 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 6204 setNightMode(data[2]);
mjr 40:cc0d9814522b 6205 break;
mjr 52:8298b2a73eb2 6206
mjr 52:8298b2a73eb2 6207 case 9:
mjr 52:8298b2a73eb2 6208 // 9 = Config variable query.
mjr 52:8298b2a73eb2 6209 // data[2] = config var ID
mjr 52:8298b2a73eb2 6210 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 6211 {
mjr 53:9b2611964afc 6212 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 6213 // the rest of the buffer
mjr 52:8298b2a73eb2 6214 uint8_t reply[8];
mjr 52:8298b2a73eb2 6215 reply[1] = data[2];
mjr 52:8298b2a73eb2 6216 reply[2] = data[3];
mjr 53:9b2611964afc 6217 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 6218
mjr 52:8298b2a73eb2 6219 // query the value
mjr 52:8298b2a73eb2 6220 configVarGet(reply);
mjr 52:8298b2a73eb2 6221
mjr 52:8298b2a73eb2 6222 // send the reply
mjr 52:8298b2a73eb2 6223 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 6224 }
mjr 52:8298b2a73eb2 6225 break;
mjr 53:9b2611964afc 6226
mjr 53:9b2611964afc 6227 case 10:
mjr 53:9b2611964afc 6228 // 10 = Build ID query.
mjr 53:9b2611964afc 6229 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 6230 break;
mjr 73:4e8ce0b18915 6231
mjr 73:4e8ce0b18915 6232 case 11:
mjr 73:4e8ce0b18915 6233 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 6234 // data[2] = operation:
mjr 73:4e8ce0b18915 6235 // 0 = turn relay off
mjr 73:4e8ce0b18915 6236 // 1 = turn relay on
mjr 73:4e8ce0b18915 6237 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 6238 TVRelay(data[2]);
mjr 73:4e8ce0b18915 6239 break;
mjr 73:4e8ce0b18915 6240
mjr 73:4e8ce0b18915 6241 case 12:
mjr 77:0b96f6867312 6242 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 6243 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 6244 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 6245 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 6246 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 6247
mjr 77:0b96f6867312 6248 // enter IR learning mode
mjr 77:0b96f6867312 6249 IRLearningMode = 1;
mjr 77:0b96f6867312 6250
mjr 77:0b96f6867312 6251 // cancel any regular IR input in progress
mjr 77:0b96f6867312 6252 IRCommandIn = 0;
mjr 77:0b96f6867312 6253
mjr 77:0b96f6867312 6254 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 6255 IRTimer.reset();
mjr 73:4e8ce0b18915 6256 break;
mjr 73:4e8ce0b18915 6257
mjr 73:4e8ce0b18915 6258 case 13:
mjr 73:4e8ce0b18915 6259 // 13 = Send button status report
mjr 73:4e8ce0b18915 6260 reportButtonStatus(js);
mjr 73:4e8ce0b18915 6261 break;
mjr 78:1e00b3fa11af 6262
mjr 78:1e00b3fa11af 6263 case 14:
mjr 78:1e00b3fa11af 6264 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 6265 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 6266 break;
mjr 78:1e00b3fa11af 6267
mjr 78:1e00b3fa11af 6268 case 15:
mjr 78:1e00b3fa11af 6269 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 6270 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 6271 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 6272 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 6273 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 6274 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 6275 break;
mjr 78:1e00b3fa11af 6276
mjr 78:1e00b3fa11af 6277 case 16:
mjr 78:1e00b3fa11af 6278 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 6279 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 6280 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 6281 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 6282 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 6283 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 6284 break;
mjr 88:98bce687e6c0 6285
mjr 88:98bce687e6c0 6286 case 17:
mjr 88:98bce687e6c0 6287 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 6288 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 6289 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 6290 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 6291 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 6292 {
mjr 88:98bce687e6c0 6293 // get the IR command slot in the config
mjr 88:98bce687e6c0 6294 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 6295
mjr 88:98bce687e6c0 6296 // copy the IR command data from the config
mjr 88:98bce687e6c0 6297 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 6298 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 6299 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 6300
mjr 88:98bce687e6c0 6301 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 6302 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 6303 // is free
mjr 88:98bce687e6c0 6304 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 6305 }
mjr 88:98bce687e6c0 6306 break;
mjr 38:091e511ce8a0 6307 }
mjr 38:091e511ce8a0 6308 }
mjr 38:091e511ce8a0 6309 else if (data[0] == 66)
mjr 38:091e511ce8a0 6310 {
mjr 38:091e511ce8a0 6311 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 6312 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 6313 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 6314 // in a variable-dependent format.
mjr 40:cc0d9814522b 6315 configVarSet(data);
mjr 86:e30a1f60f783 6316
mjr 87:8d35c74403af 6317 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 6318 // dynamically
mjr 87:8d35c74403af 6319 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 6320 }
mjr 74:822a92bc11d2 6321 else if (data[0] == 67)
mjr 74:822a92bc11d2 6322 {
mjr 74:822a92bc11d2 6323 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 6324 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 6325 // to ports beyond the first 32.
mjr 74:822a92bc11d2 6326 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 6327 }
mjr 74:822a92bc11d2 6328 else if (data[0] == 68)
mjr 74:822a92bc11d2 6329 {
mjr 74:822a92bc11d2 6330 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 6331 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 6332 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 6333
mjr 74:822a92bc11d2 6334 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 6335 int portGroup = data[1];
mjr 74:822a92bc11d2 6336
mjr 74:822a92bc11d2 6337 // unpack the brightness values
mjr 74:822a92bc11d2 6338 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 6339 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 6340 uint8_t bri[8] = {
mjr 74:822a92bc11d2 6341 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 6342 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 6343 };
mjr 74:822a92bc11d2 6344
mjr 74:822a92bc11d2 6345 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 6346 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 6347 {
mjr 74:822a92bc11d2 6348 if (bri[i] >= 60)
mjr 74:822a92bc11d2 6349 bri[i] += 129-60;
mjr 74:822a92bc11d2 6350 }
mjr 74:822a92bc11d2 6351
mjr 74:822a92bc11d2 6352 // Carry out the PBA
mjr 74:822a92bc11d2 6353 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 6354 }
mjr 38:091e511ce8a0 6355 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 6356 {
mjr 38:091e511ce8a0 6357 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 6358 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 6359 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 6360 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 6361 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 6362 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 6363 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 6364 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 6365 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 6366 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 6367 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 6368 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 6369 //
mjr 38:091e511ce8a0 6370 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 6371 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 6372 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 6373 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 6374 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 6375 // address those ports anyway.
mjr 63:5cd1a5f3a41b 6376
mjr 63:5cd1a5f3a41b 6377 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 6378 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 6379 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 6380
mjr 63:5cd1a5f3a41b 6381 // update each port
mjr 38:091e511ce8a0 6382 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 6383 {
mjr 38:091e511ce8a0 6384 // set the brightness level for the output
mjr 40:cc0d9814522b 6385 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 6386 outLevel[i] = b;
mjr 38:091e511ce8a0 6387
mjr 74:822a92bc11d2 6388 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 6389 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 6390 // LedWiz mode on a future update
mjr 76:7f5912b6340e 6391 if (b != 0)
mjr 76:7f5912b6340e 6392 {
mjr 76:7f5912b6340e 6393 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 6394 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 6395 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 6396 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 6397 // forward unchanged.
mjr 76:7f5912b6340e 6398 wizOn[i] = 1;
mjr 76:7f5912b6340e 6399 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 6400 }
mjr 76:7f5912b6340e 6401 else
mjr 76:7f5912b6340e 6402 {
mjr 76:7f5912b6340e 6403 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 6404 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 6405 wizOn[i] = 0;
mjr 76:7f5912b6340e 6406 }
mjr 74:822a92bc11d2 6407
mjr 38:091e511ce8a0 6408 // set the output
mjr 40:cc0d9814522b 6409 lwPin[i]->set(b);
mjr 38:091e511ce8a0 6410 }
mjr 38:091e511ce8a0 6411
mjr 38:091e511ce8a0 6412 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 6413 if (hc595 != 0)
mjr 38:091e511ce8a0 6414 hc595->update();
mjr 38:091e511ce8a0 6415 }
mjr 38:091e511ce8a0 6416 else
mjr 38:091e511ce8a0 6417 {
mjr 74:822a92bc11d2 6418 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 6419 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 6420 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 6421 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 6422 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 6423 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 6424 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 6425 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 6426 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 6427 //
mjr 38:091e511ce8a0 6428 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 6429 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 6430 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 6431 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 6432 // protocol mode.
mjr 38:091e511ce8a0 6433 //
mjr 38:091e511ce8a0 6434 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 6435 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 6436
mjr 74:822a92bc11d2 6437 // carry out the PBA
mjr 74:822a92bc11d2 6438 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6439
mjr 74:822a92bc11d2 6440 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6441 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6442 }
mjr 38:091e511ce8a0 6443 }
mjr 35:e959ffba78fd 6444
mjr 38:091e511ce8a0 6445 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6446 //
mjr 5:a70c0bce770d 6447 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6448 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6449 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6450 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6451 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6452 // port outputs.
mjr 5:a70c0bce770d 6453 //
mjr 0:5acbbe3f4cf4 6454 int main(void)
mjr 0:5acbbe3f4cf4 6455 {
mjr 60:f38da020aa13 6456 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6457 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6458
mjr 98:4df3c0f7e707 6459 // Set the default PWM period to 0.5ms = 2 kHz. This will be used
mjr 98:4df3c0f7e707 6460 // for PWM channels on PWM units whose periods aren't changed
mjr 98:4df3c0f7e707 6461 // explicitly, so it'll apply to LW outputs assigned to GPIO pins.
mjr 98:4df3c0f7e707 6462 // The KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6463 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6464 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6465 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6466 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6467 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6468 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6469 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6470 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6471 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6472 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6473 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6474 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6475 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6476 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6477 //
mjr 94:0476b3e2b996 6478 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6479 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6480 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6481 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6482 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6483 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6484 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6485
mjr 76:7f5912b6340e 6486 // clear the I2C connection
mjr 35:e959ffba78fd 6487 clear_i2c();
mjr 82:4f6209cb5c33 6488
mjr 82:4f6209cb5c33 6489 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6490 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6491 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6492 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6493 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6494 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6495
mjr 76:7f5912b6340e 6496 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6497 // configuration data:
mjr 76:7f5912b6340e 6498 //
mjr 76:7f5912b6340e 6499 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6500 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6501 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6502 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6503 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6504 // to store user settings updates.
mjr 76:7f5912b6340e 6505 //
mjr 76:7f5912b6340e 6506 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6507 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6508 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6509 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6510 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6511 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6512 // without a separate download of the config data.
mjr 76:7f5912b6340e 6513 //
mjr 76:7f5912b6340e 6514 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6515 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6516 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6517 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6518 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6519 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6520 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6521 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6522 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6523 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6524 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6525 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6526 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6527
mjr 38:091e511ce8a0 6528 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6529 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6530
mjr 33:d832bcab089e 6531 // we're not connected/awake yet
mjr 33:d832bcab089e 6532 bool connected = false;
mjr 40:cc0d9814522b 6533 Timer connectChangeTimer;
mjr 33:d832bcab089e 6534
mjr 35:e959ffba78fd 6535 // create the plunger sensor interface
mjr 35:e959ffba78fd 6536 createPlunger();
mjr 76:7f5912b6340e 6537
mjr 76:7f5912b6340e 6538 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6539 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6540
mjr 60:f38da020aa13 6541 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6542 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6543
mjr 87:8d35c74403af 6544 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6545 init_tlc59116(cfg);
mjr 87:8d35c74403af 6546
mjr 60:f38da020aa13 6547 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6548 init_hc595(cfg);
mjr 6:cc35eb643e8f 6549
mjr 54:fd77a6b2f76c 6550 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6551 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6552 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6553 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6554 initLwOut(cfg);
mjr 48:058ace2aed1d 6555
mjr 60:f38da020aa13 6556 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6557 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6558 tlc5940->start();
mjr 87:8d35c74403af 6559
mjr 77:0b96f6867312 6560 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6561 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6562 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6563 // USB keyboard interface.
mjr 77:0b96f6867312 6564 bool kbKeys = false;
mjr 77:0b96f6867312 6565
mjr 77:0b96f6867312 6566 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6567 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6568
mjr 77:0b96f6867312 6569 // start the power status time, if applicable
mjr 77:0b96f6867312 6570 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6571
mjr 35:e959ffba78fd 6572 // initialize the button input ports
mjr 35:e959ffba78fd 6573 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6574
mjr 60:f38da020aa13 6575 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6576 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6577 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6578 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6579 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6580 // to the joystick interface.
mjr 51:57eb311faafa 6581 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6582 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6583
mjr 101:755f44622abc 6584 // start the request timestamp timer
mjr 101:755f44622abc 6585 requestTimestamper.start();
mjr 101:755f44622abc 6586
mjr 60:f38da020aa13 6587 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6588 // flash pattern while waiting.
mjr 70:9f58735a1732 6589 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6590 connTimeoutTimer.start();
mjr 70:9f58735a1732 6591 connFlashTimer.start();
mjr 51:57eb311faafa 6592 while (!js.configured())
mjr 51:57eb311faafa 6593 {
mjr 51:57eb311faafa 6594 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6595 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6596 {
mjr 51:57eb311faafa 6597 // short yellow flash
mjr 51:57eb311faafa 6598 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6599 wait_us(50000);
mjr 51:57eb311faafa 6600 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6601
mjr 51:57eb311faafa 6602 // reset the flash timer
mjr 70:9f58735a1732 6603 connFlashTimer.reset();
mjr 51:57eb311faafa 6604 }
mjr 70:9f58735a1732 6605
mjr 77:0b96f6867312 6606 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6607 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6608 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6609 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6610 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6611 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6612 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6613 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6614 reboot(js, false, 0);
mjr 77:0b96f6867312 6615
mjr 77:0b96f6867312 6616 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6617 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6618 }
mjr 60:f38da020aa13 6619
mjr 60:f38da020aa13 6620 // we're now connected to the host
mjr 54:fd77a6b2f76c 6621 connected = true;
mjr 40:cc0d9814522b 6622
mjr 92:f264fbaa1be5 6623 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6624 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6625 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6626 //
mjr 92:f264fbaa1be5 6627 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6628 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6629 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6630 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6631 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6632 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6633 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6634 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6635 // sampling rate as best we can.
mjr 38:091e511ce8a0 6636 Timer jsReportTimer;
mjr 38:091e511ce8a0 6637 jsReportTimer.start();
mjr 38:091e511ce8a0 6638
mjr 92:f264fbaa1be5 6639 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6640 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6641 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6642 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6643 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6644 //
mjr 92:f264fbaa1be5 6645 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6646 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6647 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6648 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6649 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6650 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6651
mjr 92:f264fbaa1be5 6652 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6653 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6654 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6655 // can be set in the configuration.
mjr 92:f264fbaa1be5 6656 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6657
mjr 60:f38da020aa13 6658 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6659 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6660 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6661 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6662 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6663 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6664 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6665 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6666 Timer jsOKTimer;
mjr 38:091e511ce8a0 6667 jsOKTimer.start();
mjr 35:e959ffba78fd 6668
mjr 55:4db125cd11a0 6669 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6670 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6671 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6672 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6673 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6674
mjr 55:4db125cd11a0 6675 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6676 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6677 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6678
mjr 55:4db125cd11a0 6679 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6680 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6681 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6682
mjr 35:e959ffba78fd 6683 // initialize the calibration button
mjr 1:d913e0afb2ac 6684 calBtnTimer.start();
mjr 35:e959ffba78fd 6685 calBtnState = 0;
mjr 1:d913e0afb2ac 6686
mjr 1:d913e0afb2ac 6687 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6688 Timer hbTimer;
mjr 1:d913e0afb2ac 6689 hbTimer.start();
mjr 1:d913e0afb2ac 6690 int hb = 0;
mjr 5:a70c0bce770d 6691 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6692
mjr 1:d913e0afb2ac 6693 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6694 Timer acTimer;
mjr 1:d913e0afb2ac 6695 acTimer.start();
mjr 1:d913e0afb2ac 6696
mjr 0:5acbbe3f4cf4 6697 // create the accelerometer object
mjr 77:0b96f6867312 6698 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6699 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6700
mjr 48:058ace2aed1d 6701 // initialize the plunger sensor
mjr 35:e959ffba78fd 6702 plungerSensor->init();
mjr 10:976666ffa4ef 6703
mjr 48:058ace2aed1d 6704 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6705 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6706
mjr 54:fd77a6b2f76c 6707 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6708 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6709 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6710 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6711 hc595->enable(true);
mjr 87:8d35c74403af 6712 if (tlc59116 != 0)
mjr 87:8d35c74403af 6713 tlc59116->enable(true);
mjr 74:822a92bc11d2 6714
mjr 76:7f5912b6340e 6715 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6716 wizCycleTimer.start();
mjr 74:822a92bc11d2 6717
mjr 74:822a92bc11d2 6718 // start the PWM update polling timer
mjr 74:822a92bc11d2 6719 polledPwmTimer.start();
mjr 43:7a6364d82a41 6720
mjr 1:d913e0afb2ac 6721 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6722 // host requests
mjr 0:5acbbe3f4cf4 6723 for (;;)
mjr 0:5acbbe3f4cf4 6724 {
mjr 74:822a92bc11d2 6725 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6726 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 96:68d5621ff49f 6727
mjr 48:058ace2aed1d 6728 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6729 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6730 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6731 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6732 LedWizMsg lwm;
mjr 48:058ace2aed1d 6733 Timer lwt;
mjr 48:058ace2aed1d 6734 lwt.start();
mjr 77:0b96f6867312 6735 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6736 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6737 {
mjr 78:1e00b3fa11af 6738 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6739 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6740 }
mjr 74:822a92bc11d2 6741
mjr 74:822a92bc11d2 6742 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6743 IF_DIAG(
mjr 74:822a92bc11d2 6744 if (msgCount != 0)
mjr 74:822a92bc11d2 6745 {
mjr 76:7f5912b6340e 6746 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6747 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6748 }
mjr 74:822a92bc11d2 6749 )
mjr 74:822a92bc11d2 6750
mjr 77:0b96f6867312 6751 // process IR input
mjr 77:0b96f6867312 6752 process_IR(cfg, js);
mjr 77:0b96f6867312 6753
mjr 77:0b96f6867312 6754 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6755 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6756
mjr 74:822a92bc11d2 6757 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6758 wizPulse();
mjr 74:822a92bc11d2 6759
mjr 74:822a92bc11d2 6760 // update PWM outputs
mjr 74:822a92bc11d2 6761 pollPwmUpdates();
mjr 77:0b96f6867312 6762
mjr 99:8139b0c274f4 6763 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 6764 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 6765 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 6766
mjr 77:0b96f6867312 6767 // poll the accelerometer
mjr 77:0b96f6867312 6768 accel.poll();
mjr 55:4db125cd11a0 6769
mjr 96:68d5621ff49f 6770 // Note the "effective" plunger enabled status. This has two
mjr 96:68d5621ff49f 6771 // components: the explicit "enabled" bit, and the plunger sensor
mjr 96:68d5621ff49f 6772 // type setting. For most purposes, a plunger type of NONE is
mjr 96:68d5621ff49f 6773 // equivalent to disabled. Set this to explicit 0x01 or 0x00
mjr 96:68d5621ff49f 6774 // so that we can OR the bit into status reports.
mjr 96:68d5621ff49f 6775 uint8_t effectivePlungerEnabled = (cfg.plunger.enabled
mjr 96:68d5621ff49f 6776 && cfg.plunger.sensorType != PlungerType_None) ? 0x01 : 0x00;
mjr 96:68d5621ff49f 6777
mjr 76:7f5912b6340e 6778 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6779 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6780
mjr 55:4db125cd11a0 6781 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6782 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6783 tlc5940->send();
mjr 87:8d35c74403af 6784
mjr 87:8d35c74403af 6785 // send TLC59116 data updates
mjr 87:8d35c74403af 6786 if (tlc59116 != 0)
mjr 87:8d35c74403af 6787 tlc59116->send();
mjr 1:d913e0afb2ac 6788
mjr 76:7f5912b6340e 6789 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6790 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6791
mjr 1:d913e0afb2ac 6792 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6793 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6794 {
mjr 1:d913e0afb2ac 6795 // check the state
mjr 1:d913e0afb2ac 6796 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6797 {
mjr 1:d913e0afb2ac 6798 case 0:
mjr 1:d913e0afb2ac 6799 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6800 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6801 calBtnState = 1;
mjr 1:d913e0afb2ac 6802 break;
mjr 1:d913e0afb2ac 6803
mjr 1:d913e0afb2ac 6804 case 1:
mjr 1:d913e0afb2ac 6805 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6806 // passed, start the hold period
mjr 48:058ace2aed1d 6807 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6808 calBtnState = 2;
mjr 1:d913e0afb2ac 6809 break;
mjr 1:d913e0afb2ac 6810
mjr 1:d913e0afb2ac 6811 case 2:
mjr 1:d913e0afb2ac 6812 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6813 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6814 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6815 {
mjr 1:d913e0afb2ac 6816 // enter calibration mode
mjr 1:d913e0afb2ac 6817 calBtnState = 3;
mjr 9:fd65b0a94720 6818 calBtnTimer.reset();
mjr 35:e959ffba78fd 6819
mjr 44:b5ac89b9cd5d 6820 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6821 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6822 }
mjr 1:d913e0afb2ac 6823 break;
mjr 2:c174f9ee414a 6824
mjr 2:c174f9ee414a 6825 case 3:
mjr 9:fd65b0a94720 6826 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6827 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6828 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6829 break;
mjr 0:5acbbe3f4cf4 6830 }
mjr 0:5acbbe3f4cf4 6831 }
mjr 1:d913e0afb2ac 6832 else
mjr 1:d913e0afb2ac 6833 {
mjr 2:c174f9ee414a 6834 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6835 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6836 // and save the results to flash.
mjr 2:c174f9ee414a 6837 //
mjr 2:c174f9ee414a 6838 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6839 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6840 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6841 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6842 {
mjr 2:c174f9ee414a 6843 // exit calibration mode
mjr 1:d913e0afb2ac 6844 calBtnState = 0;
mjr 52:8298b2a73eb2 6845 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6846
mjr 6:cc35eb643e8f 6847 // save the updated configuration
mjr 35:e959ffba78fd 6848 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6849 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6850 }
mjr 2:c174f9ee414a 6851 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6852 {
mjr 2:c174f9ee414a 6853 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6854 calBtnState = 0;
mjr 2:c174f9ee414a 6855 }
mjr 1:d913e0afb2ac 6856 }
mjr 1:d913e0afb2ac 6857
mjr 1:d913e0afb2ac 6858 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6859 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6860 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6861 {
mjr 1:d913e0afb2ac 6862 case 2:
mjr 1:d913e0afb2ac 6863 // in the hold period - flash the light
mjr 48:058ace2aed1d 6864 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6865 break;
mjr 1:d913e0afb2ac 6866
mjr 1:d913e0afb2ac 6867 case 3:
mjr 1:d913e0afb2ac 6868 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6869 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6870 break;
mjr 1:d913e0afb2ac 6871
mjr 1:d913e0afb2ac 6872 default:
mjr 1:d913e0afb2ac 6873 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6874 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6875 break;
mjr 1:d913e0afb2ac 6876 }
mjr 3:3514575d4f86 6877
mjr 3:3514575d4f86 6878 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6879 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6880 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6881 {
mjr 1:d913e0afb2ac 6882 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6883 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6884 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6885 calBtnLed->write(1);
mjr 38:091e511ce8a0 6886 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6887 }
mjr 2:c174f9ee414a 6888 else {
mjr 17:ab3cec0c8bf4 6889 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6890 calBtnLed->write(0);
mjr 38:091e511ce8a0 6891 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6892 }
mjr 1:d913e0afb2ac 6893 }
mjr 35:e959ffba78fd 6894
mjr 76:7f5912b6340e 6895 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6896 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6897
mjr 48:058ace2aed1d 6898 // read the plunger sensor
mjr 48:058ace2aed1d 6899 plungerReader.read();
mjr 48:058ace2aed1d 6900
mjr 76:7f5912b6340e 6901 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6902 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6903
mjr 53:9b2611964afc 6904 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6905 zbLaunchBall.update();
mjr 37:ed52738445fc 6906
mjr 76:7f5912b6340e 6907 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6908 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6909
mjr 53:9b2611964afc 6910 // process button updates
mjr 53:9b2611964afc 6911 processButtons(cfg);
mjr 53:9b2611964afc 6912
mjr 76:7f5912b6340e 6913 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6914 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6915
mjr 38:091e511ce8a0 6916 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6917 if (kbState.changed)
mjr 37:ed52738445fc 6918 {
mjr 38:091e511ce8a0 6919 // send a keyboard report
mjr 37:ed52738445fc 6920 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6921 kbState.changed = false;
mjr 37:ed52738445fc 6922 }
mjr 38:091e511ce8a0 6923
mjr 38:091e511ce8a0 6924 // likewise for the media controller
mjr 37:ed52738445fc 6925 if (mediaState.changed)
mjr 37:ed52738445fc 6926 {
mjr 38:091e511ce8a0 6927 // send a media report
mjr 37:ed52738445fc 6928 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6929 mediaState.changed = false;
mjr 37:ed52738445fc 6930 }
mjr 38:091e511ce8a0 6931
mjr 76:7f5912b6340e 6932 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6933 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6934
mjr 38:091e511ce8a0 6935 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6936 bool jsOK = false;
mjr 55:4db125cd11a0 6937
mjr 55:4db125cd11a0 6938 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6939 uint16_t statusFlags =
mjr 96:68d5621ff49f 6940 effectivePlungerEnabled // 0x01
mjr 77:0b96f6867312 6941 | nightMode // 0x02
mjr 79:682ae3171a08 6942 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6943 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6944 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6945 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6946
mjr 50:40015764bbe6 6947 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6948 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6949 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6950 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 6951 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 6952 {
mjr 92:f264fbaa1be5 6953 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 6954 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 6955 // not, repeat the last sample.
mjr 92:f264fbaa1be5 6956 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 6957 {
mjr 92:f264fbaa1be5 6958 // read the accelerometer
mjr 92:f264fbaa1be5 6959 int xa, ya;
mjr 92:f264fbaa1be5 6960 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6961
mjr 92:f264fbaa1be5 6962 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 6963 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 6964 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 6965 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 6966 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 6967
mjr 92:f264fbaa1be5 6968 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 6969 x = xa;
mjr 92:f264fbaa1be5 6970 y = ya;
mjr 92:f264fbaa1be5 6971
mjr 95:8eca8acbb82c 6972 // rotate X and Y according to the device orientation in the cabinet
mjr 95:8eca8acbb82c 6973 accelRotate(x, y);
mjr 95:8eca8acbb82c 6974
mjr 92:f264fbaa1be5 6975 // reset the stutter counter
mjr 92:f264fbaa1be5 6976 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6977 }
mjr 17:ab3cec0c8bf4 6978
mjr 48:058ace2aed1d 6979 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6980 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6981 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6982 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6983 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6984 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6985 // regular plunger inputs.
mjr 92:f264fbaa1be5 6986 int zActual = plungerReader.getPosition();
mjr 96:68d5621ff49f 6987 int zReported = (!effectivePlungerEnabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 6988
mjr 35:e959ffba78fd 6989 // send the joystick report
mjr 92:f264fbaa1be5 6990 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6991
mjr 17:ab3cec0c8bf4 6992 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6993 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6994 }
mjr 21:5048e16cc9ef 6995
mjr 52:8298b2a73eb2 6996 // If we're in sensor status mode, report all pixel exposure values
mjr 101:755f44622abc 6997 if (reportPlungerStat && plungerSensor->ready())
mjr 10:976666ffa4ef 6998 {
mjr 17:ab3cec0c8bf4 6999 // send the report
mjr 101:755f44622abc 7000 plungerSensor->sendStatusReport(js, reportPlungerStatFlags);
mjr 17:ab3cec0c8bf4 7001
mjr 10:976666ffa4ef 7002 // we have satisfied this request
mjr 52:8298b2a73eb2 7003 reportPlungerStat = false;
mjr 10:976666ffa4ef 7004 }
mjr 10:976666ffa4ef 7005
mjr 101:755f44622abc 7006 // Reset the plunger status report extra timer after enough time has
mjr 101:755f44622abc 7007 // elapsed to satisfy the request. We don't just do this immediately
mjr 101:755f44622abc 7008 // because of the complexities of the pixel frame buffer pipelines in
mjr 101:755f44622abc 7009 // most of the image sensors. The pipelines delay the effect of the
mjr 101:755f44622abc 7010 // exposure time request by a couple of frames, so we can't be sure
mjr 101:755f44622abc 7011 // exactly when they're applied - meaning we can't consider the
mjr 101:755f44622abc 7012 // delay time to be consumed after a fixed number of frames. Instead,
mjr 101:755f44622abc 7013 // we'll consider it consumed after a long enough time to be sure
mjr 101:755f44622abc 7014 // we've sent a few frames. The extra time value is meant to be an
mjr 101:755f44622abc 7015 // interactive tool for debugging, so it's not important to reset it
mjr 101:755f44622abc 7016 // immediately - the user will probably want to see the effect over
mjr 101:755f44622abc 7017 // many frames, so they're likely to keep sending requests with the
mjr 101:755f44622abc 7018 // time value over and over. They'll eventually shut down the frame
mjr 101:755f44622abc 7019 // viewer and return to normal operation, at which point the requests
mjr 101:755f44622abc 7020 // will stop. So we just have to clear things out after we haven't
mjr 101:755f44622abc 7021 // seen a request with extra time for a little while.
mjr 101:755f44622abc 7022 if (reportPlungerStatTime != 0
mjr 101:755f44622abc 7023 && static_cast<uint32_t>(requestTimestamper.read_us() - tReportPlungerStat) > 1000000)
mjr 101:755f44622abc 7024 {
mjr 101:755f44622abc 7025 reportPlungerStatTime = 0;
mjr 101:755f44622abc 7026 plungerSensor->setExtraIntegrationTime(0);
mjr 101:755f44622abc 7027 }
mjr 101:755f44622abc 7028
mjr 35:e959ffba78fd 7029 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 7030 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 7031 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 7032 {
mjr 55:4db125cd11a0 7033 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 7034 jsReportTimer.reset();
mjr 38:091e511ce8a0 7035 }
mjr 38:091e511ce8a0 7036
mjr 38:091e511ce8a0 7037 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 7038 if (jsOK)
mjr 38:091e511ce8a0 7039 {
mjr 38:091e511ce8a0 7040 jsOKTimer.reset();
mjr 38:091e511ce8a0 7041 jsOKTimer.start();
mjr 21:5048e16cc9ef 7042 }
mjr 21:5048e16cc9ef 7043
mjr 76:7f5912b6340e 7044 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 7045 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7046
mjr 6:cc35eb643e8f 7047 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 7048 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 7049 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 7050 #endif
mjr 6:cc35eb643e8f 7051
mjr 33:d832bcab089e 7052 // check for connection status changes
mjr 54:fd77a6b2f76c 7053 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 7054 if (newConnected != connected)
mjr 33:d832bcab089e 7055 {
mjr 54:fd77a6b2f76c 7056 // give it a moment to stabilize
mjr 40:cc0d9814522b 7057 connectChangeTimer.start();
mjr 55:4db125cd11a0 7058 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 7059 {
mjr 33:d832bcab089e 7060 // note the new status
mjr 33:d832bcab089e 7061 connected = newConnected;
mjr 40:cc0d9814522b 7062
mjr 40:cc0d9814522b 7063 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 7064 connectChangeTimer.stop();
mjr 40:cc0d9814522b 7065 connectChangeTimer.reset();
mjr 33:d832bcab089e 7066
mjr 54:fd77a6b2f76c 7067 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 7068 if (!connected)
mjr 40:cc0d9814522b 7069 {
mjr 54:fd77a6b2f76c 7070 // turn off all outputs
mjr 33:d832bcab089e 7071 allOutputsOff();
mjr 40:cc0d9814522b 7072
mjr 40:cc0d9814522b 7073 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 7074 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 7075 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 7076 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 7077 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 7078 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 7079 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 7080 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 7081 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 7082 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 7083 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 7084 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 7085 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 7086 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 7087 // the power first comes on.
mjr 40:cc0d9814522b 7088 if (tlc5940 != 0)
mjr 40:cc0d9814522b 7089 tlc5940->enable(false);
mjr 87:8d35c74403af 7090 if (tlc59116 != 0)
mjr 87:8d35c74403af 7091 tlc59116->enable(false);
mjr 40:cc0d9814522b 7092 if (hc595 != 0)
mjr 40:cc0d9814522b 7093 hc595->enable(false);
mjr 40:cc0d9814522b 7094 }
mjr 33:d832bcab089e 7095 }
mjr 33:d832bcab089e 7096 }
mjr 48:058ace2aed1d 7097
mjr 53:9b2611964afc 7098 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 7099 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 7100 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 7101 {
mjr 85:3c28aee81cde 7102 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 7103 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 7104 {
mjr 86:e30a1f60f783 7105 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 7106 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 7107 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 7108 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 7109 // status allows it.
mjr 86:e30a1f60f783 7110 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 7111 reboot(js);
mjr 82:4f6209cb5c33 7112 }
mjr 85:3c28aee81cde 7113 else
mjr 85:3c28aee81cde 7114 {
mjr 86:e30a1f60f783 7115 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 7116
mjr 86:e30a1f60f783 7117 // stop and reset the post-save timer
mjr 86:e30a1f60f783 7118 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 7119 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 7120
mjr 86:e30a1f60f783 7121 // clear the post-save success flag
mjr 86:e30a1f60f783 7122 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 7123 }
mjr 77:0b96f6867312 7124 }
mjr 86:e30a1f60f783 7125
mjr 48:058ace2aed1d 7126 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 7127 if (!connected)
mjr 48:058ace2aed1d 7128 {
mjr 54:fd77a6b2f76c 7129 // show USB HAL debug events
mjr 54:fd77a6b2f76c 7130 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 7131 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 7132
mjr 54:fd77a6b2f76c 7133 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 7134 js.diagFlash();
mjr 54:fd77a6b2f76c 7135
mjr 54:fd77a6b2f76c 7136 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 7137 diagLED(0, 0, 0);
mjr 51:57eb311faafa 7138
mjr 51:57eb311faafa 7139 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 7140 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 7141 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 7142
mjr 54:fd77a6b2f76c 7143 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 7144 Timer diagTimer;
mjr 54:fd77a6b2f76c 7145 diagTimer.reset();
mjr 54:fd77a6b2f76c 7146 diagTimer.start();
mjr 74:822a92bc11d2 7147
mjr 74:822a92bc11d2 7148 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 7149 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 7150
mjr 54:fd77a6b2f76c 7151 // loop until we get our connection back
mjr 54:fd77a6b2f76c 7152 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 7153 {
mjr 54:fd77a6b2f76c 7154 // try to recover the connection
mjr 54:fd77a6b2f76c 7155 js.recoverConnection();
mjr 54:fd77a6b2f76c 7156
mjr 99:8139b0c274f4 7157 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 7158 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 7159 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 7160
mjr 55:4db125cd11a0 7161 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 7162 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7163 tlc5940->send();
mjr 87:8d35c74403af 7164
mjr 87:8d35c74403af 7165 // update TLC59116 outputs
mjr 87:8d35c74403af 7166 if (tlc59116 != 0)
mjr 87:8d35c74403af 7167 tlc59116->send();
mjr 55:4db125cd11a0 7168
mjr 54:fd77a6b2f76c 7169 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 7170 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 7171 {
mjr 54:fd77a6b2f76c 7172 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 7173 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 7174
mjr 54:fd77a6b2f76c 7175 // show diagnostic feedback
mjr 54:fd77a6b2f76c 7176 js.diagFlash();
mjr 51:57eb311faafa 7177
mjr 51:57eb311faafa 7178 // reset the flash timer
mjr 54:fd77a6b2f76c 7179 diagTimer.reset();
mjr 51:57eb311faafa 7180 }
mjr 51:57eb311faafa 7181
mjr 77:0b96f6867312 7182 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 7183 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 7184 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 7185 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 7186 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 7187 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 7188 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 7189 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 7190 // round and keep waiting.
mjr 51:57eb311faafa 7191 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 7192 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7193 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7194 reboot(js, false, 0);
mjr 77:0b96f6867312 7195
mjr 77:0b96f6867312 7196 // update the PSU2 power sensing status
mjr 77:0b96f6867312 7197 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 7198 }
mjr 54:fd77a6b2f76c 7199
mjr 74:822a92bc11d2 7200 // resume the main loop timer
mjr 74:822a92bc11d2 7201 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 7202
mjr 54:fd77a6b2f76c 7203 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 7204 connected = true;
mjr 54:fd77a6b2f76c 7205 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 7206
mjr 54:fd77a6b2f76c 7207 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 7208 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7209 tlc5940->enable(true);
mjr 87:8d35c74403af 7210 if (tlc59116 != 0)
mjr 87:8d35c74403af 7211 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 7212 if (hc595 != 0)
mjr 54:fd77a6b2f76c 7213 {
mjr 55:4db125cd11a0 7214 hc595->enable(true);
mjr 54:fd77a6b2f76c 7215 hc595->update(true);
mjr 51:57eb311faafa 7216 }
mjr 48:058ace2aed1d 7217 }
mjr 43:7a6364d82a41 7218
mjr 6:cc35eb643e8f 7219 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 7220 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 7221 {
mjr 54:fd77a6b2f76c 7222 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 7223 {
mjr 39:b3815a1c3802 7224 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 7225 //
mjr 54:fd77a6b2f76c 7226 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 7227 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 7228 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 7229 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 7230 hb = !hb;
mjr 38:091e511ce8a0 7231 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 7232
mjr 54:fd77a6b2f76c 7233 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 7234 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 7235 // with the USB connection.
mjr 54:fd77a6b2f76c 7236 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 7237 {
mjr 54:fd77a6b2f76c 7238 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 7239 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 7240 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 7241 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 7242 // power status allows it.
mjr 86:e30a1f60f783 7243 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7244 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7245 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 7246 }
mjr 54:fd77a6b2f76c 7247 else
mjr 54:fd77a6b2f76c 7248 {
mjr 54:fd77a6b2f76c 7249 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 7250 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 7251 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 7252 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 7253 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 7254 }
mjr 38:091e511ce8a0 7255 }
mjr 73:4e8ce0b18915 7256 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 7257 {
mjr 73:4e8ce0b18915 7258 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 7259 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 7260 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 7261 }
mjr 96:68d5621ff49f 7262 else if (effectivePlungerEnabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 7263 {
mjr 6:cc35eb643e8f 7264 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 7265 hb = !hb;
mjr 38:091e511ce8a0 7266 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 7267 }
mjr 6:cc35eb643e8f 7268 else
mjr 6:cc35eb643e8f 7269 {
mjr 6:cc35eb643e8f 7270 // connected - flash blue/green
mjr 2:c174f9ee414a 7271 hb = !hb;
mjr 38:091e511ce8a0 7272 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 7273 }
mjr 1:d913e0afb2ac 7274
mjr 1:d913e0afb2ac 7275 // reset the heartbeat timer
mjr 1:d913e0afb2ac 7276 hbTimer.reset();
mjr 5:a70c0bce770d 7277 ++hbcnt;
mjr 1:d913e0afb2ac 7278 }
mjr 74:822a92bc11d2 7279
mjr 74:822a92bc11d2 7280 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 7281 IF_DIAG(
mjr 76:7f5912b6340e 7282 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 7283 mainLoopIterCount++;
mjr 74:822a92bc11d2 7284 )
mjr 1:d913e0afb2ac 7285 }
mjr 0:5acbbe3f4cf4 7286 }