Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Sat Jan 21 19:48:30 2017 +0000
Revision:
73:4e8ce0b18915
Parent:
72:884207c0aab0
Child:
74:822a92bc11d2
Add protocol commands for TV ON and button testers; add free memory status reporting; improve button scan interrupt speed; reduce button memory footprint slightly; further improve TSL1410R "scan mode 2" speed

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 38:091e511ce8a0 42 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 143 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 144 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 145 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 146 //
mjr 35:e959ffba78fd 147 //
mjr 35:e959ffba78fd 148 //
mjr 33:d832bcab089e 149 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 150 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 151 //
mjr 48:058ace2aed1d 152 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 153 //
mjr 48:058ace2aed1d 154 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 155 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 156 // has been established)
mjr 48:058ace2aed1d 157 //
mjr 48:058ace2aed1d 158 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 159 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 160 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 161 //
mjr 38:091e511ce8a0 162 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 163 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 164 // transmissions are failing.
mjr 38:091e511ce8a0 165 //
mjr 73:4e8ce0b18915 166 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 167 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 168 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 169 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 170 // enabled.
mjr 73:4e8ce0b18915 171 //
mjr 6:cc35eb643e8f 172 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 173 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 174 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 175 // no plunger sensor configured.
mjr 6:cc35eb643e8f 176 //
mjr 38:091e511ce8a0 177 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 178 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 179 //
mjr 48:058ace2aed1d 180 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 181 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 182 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 183 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 184 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 185 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 186 //
mjr 48:058ace2aed1d 187 //
mjr 48:058ace2aed1d 188 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 189 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 190 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 191 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 192 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 193 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 194 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 195 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 196
mjr 33:d832bcab089e 197
mjr 0:5acbbe3f4cf4 198 #include "mbed.h"
mjr 6:cc35eb643e8f 199 #include "math.h"
mjr 48:058ace2aed1d 200 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 201 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 202 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 203 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 204 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 205 #include "crc32.h"
mjr 26:cb71c4af2912 206 #include "TLC5940.h"
mjr 34:6b981a2afab7 207 #include "74HC595.h"
mjr 35:e959ffba78fd 208 #include "nvm.h"
mjr 35:e959ffba78fd 209 #include "plunger.h"
mjr 35:e959ffba78fd 210 #include "ccdSensor.h"
mjr 35:e959ffba78fd 211 #include "potSensor.h"
mjr 35:e959ffba78fd 212 #include "nullSensor.h"
mjr 48:058ace2aed1d 213 #include "TinyDigitalIn.h"
mjr 64:ef7ca92dff36 214 #include "FastPWM.h"
mjr 2:c174f9ee414a 215
mjr 21:5048e16cc9ef 216 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 217 #include "config.h"
mjr 17:ab3cec0c8bf4 218
mjr 53:9b2611964afc 219
mjr 53:9b2611964afc 220 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 221 //
mjr 53:9b2611964afc 222 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 223 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 224 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 225 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 226 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 227 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 228 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 229 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 230 // interface.
mjr 53:9b2611964afc 231 //
mjr 53:9b2611964afc 232 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 233 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 234 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 235 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 236 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 237 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 238 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 239 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 240 //
mjr 53:9b2611964afc 241 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 242 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 243 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 244 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 245 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 246 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 247 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 248 //
mjr 53:9b2611964afc 249 const char *getOpenSDAID()
mjr 53:9b2611964afc 250 {
mjr 53:9b2611964afc 251 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 252 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 253 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 254
mjr 53:9b2611964afc 255 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 256 }
mjr 53:9b2611964afc 257
mjr 53:9b2611964afc 258 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 259 //
mjr 53:9b2611964afc 260 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 261 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 262 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 263 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 264 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 265 // want from this.
mjr 53:9b2611964afc 266 //
mjr 53:9b2611964afc 267 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 268 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 269 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 270 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 271 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 272 // macros.
mjr 53:9b2611964afc 273 //
mjr 53:9b2611964afc 274 const char *getBuildID()
mjr 53:9b2611964afc 275 {
mjr 53:9b2611964afc 276 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 277 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 278 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 279
mjr 53:9b2611964afc 280 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 281 }
mjr 53:9b2611964afc 282
mjr 53:9b2611964afc 283
mjr 48:058ace2aed1d 284 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 285 //
mjr 59:94eb9265b6d7 286 // Custom memory allocator. We use our own version of malloc() for more
mjr 59:94eb9265b6d7 287 // efficient memory usage, and to provide diagnostics if we run out of heap.
mjr 48:058ace2aed1d 288 //
mjr 59:94eb9265b6d7 289 // We can implement a more efficient malloc than the library can because we
mjr 59:94eb9265b6d7 290 // can make an assumption that the library can't: allocations are permanent.
mjr 59:94eb9265b6d7 291 // The normal malloc has to assume that allocations can be freed, so it has
mjr 59:94eb9265b6d7 292 // to track blocks individually. For the purposes of this program, though,
mjr 59:94eb9265b6d7 293 // we don't have to do this because virtually all of our allocations are
mjr 59:94eb9265b6d7 294 // de facto permanent. We only allocate dyanmic memory during setup, and
mjr 59:94eb9265b6d7 295 // once we set things up, we never delete anything. This means that we can
mjr 59:94eb9265b6d7 296 // allocate memory in bare blocks without any bookkeeping overhead.
mjr 59:94eb9265b6d7 297 //
mjr 59:94eb9265b6d7 298 // In addition, we can make a much larger overall pool of memory available
mjr 59:94eb9265b6d7 299 // in a custom allocator. The mbed library malloc() seems to have a pool
mjr 59:94eb9265b6d7 300 // of about 3K to work with, even though there's really about 9K of RAM
mjr 59:94eb9265b6d7 301 // left over after counting the static writable data and reserving space
mjr 59:94eb9265b6d7 302 // for a reasonable stack. I haven't looked at the mbed malloc to see why
mjr 59:94eb9265b6d7 303 // they're so stingy, but it appears from empirical testing that we can
mjr 59:94eb9265b6d7 304 // create a static array up to about 9K before things get crashy.
mjr 59:94eb9265b6d7 305
mjr 73:4e8ce0b18915 306 // Dynamic memory pool. We'll reserve space for all dynamic
mjr 73:4e8ce0b18915 307 // allocations by creating a simple C array of bytes. The size
mjr 73:4e8ce0b18915 308 // of this array is the maximum number of bytes we can allocate
mjr 73:4e8ce0b18915 309 // with malloc or operator 'new'.
mjr 73:4e8ce0b18915 310 //
mjr 73:4e8ce0b18915 311 // The maximum safe size for this array is, in essence, the
mjr 73:4e8ce0b18915 312 // amount of physical KL25Z RAM left over after accounting for
mjr 73:4e8ce0b18915 313 // static data throughout the rest of the program, the run-time
mjr 73:4e8ce0b18915 314 // stack, and any other space reserved for compiler or MCU
mjr 73:4e8ce0b18915 315 // overhead. Unfortunately, it's not straightforward to
mjr 73:4e8ce0b18915 316 // determine this analytically. The big complication is that
mjr 73:4e8ce0b18915 317 // the minimum stack size isn't easily predictable, as the stack
mjr 73:4e8ce0b18915 318 // grows according to what the program does. In addition, the
mjr 73:4e8ce0b18915 319 // mbed platform tools don't give us detailed data on the
mjr 73:4e8ce0b18915 320 // compiler/linker memory map. All we get is a generic total
mjr 73:4e8ce0b18915 321 // RAM requirement, which doesn't necessarily account for all
mjr 73:4e8ce0b18915 322 // overhead (e.g., gaps inserted to get proper alignment for
mjr 73:4e8ce0b18915 323 // particular memory blocks).
mjr 73:4e8ce0b18915 324 //
mjr 73:4e8ce0b18915 325 // A very rough estimate: the total RAM size reported by the
mjr 73:4e8ce0b18915 326 // linker is about 3.5K (currently - that can obviously change
mjr 73:4e8ce0b18915 327 // as the project evolves) out of 16K total. Assuming about a
mjr 73:4e8ce0b18915 328 // 3K stack, that leaves in the ballpark of 10K. Empirically,
mjr 73:4e8ce0b18915 329 // that seems pretty close. In testing, we start to see some
mjr 73:4e8ce0b18915 330 // instability at 10K, while 9K seems safe. To be conservative,
mjr 73:4e8ce0b18915 331 // we'll reduce this to 8K.
mjr 73:4e8ce0b18915 332 //
mjr 73:4e8ce0b18915 333 // Our measured total usage in the base configuration (22 GPIO
mjr 73:4e8ce0b18915 334 // output ports, TSL1410R plunger sensor) is about 4000 bytes.
mjr 73:4e8ce0b18915 335 // A pretty fully decked-out configuration (121 output ports,
mjr 73:4e8ce0b18915 336 // with 8 TLC5940 chips and 3 74HC595 chips, plus the TSL1412R
mjr 73:4e8ce0b18915 337 // sensor with the higher pixel count, and all expansion board
mjr 73:4e8ce0b18915 338 // features enabled) comes to about 6700 bytes. That leaves
mjr 73:4e8ce0b18915 339 // us with about 1.5K free out of our 8K, so we still have a
mjr 73:4e8ce0b18915 340 // little more headroom for future expansion.
mjr 73:4e8ce0b18915 341 //
mjr 73:4e8ce0b18915 342 // For comparison, the standard mbed malloc() runs out of
mjr 73:4e8ce0b18915 343 // memory at about 6K. That's what led to this custom malloc:
mjr 73:4e8ce0b18915 344 // we can just fit the base configuration into that 4K, but
mjr 73:4e8ce0b18915 345 // it's not enough space for more complex setups. There's
mjr 73:4e8ce0b18915 346 // still a little room for squeezing out unnecessary space
mjr 73:4e8ce0b18915 347 // from the mbed library code, but at this point I'd prefer
mjr 73:4e8ce0b18915 348 // to treat that as a last resort, since it would mean having
mjr 73:4e8ce0b18915 349 // to fork private copies of the libraries.
mjr 73:4e8ce0b18915 350 static const size_t XMALLOC_POOL_SIZE = 8*1024;
mjr 73:4e8ce0b18915 351 static char xmalloc_pool[XMALLOC_POOL_SIZE];
mjr 73:4e8ce0b18915 352 static char *xmalloc_nxt = xmalloc_pool;
mjr 73:4e8ce0b18915 353 static size_t xmalloc_rem = XMALLOC_POOL_SIZE;
mjr 73:4e8ce0b18915 354
mjr 48:058ace2aed1d 355 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 356 {
mjr 59:94eb9265b6d7 357 // align to a 4-byte increment
mjr 59:94eb9265b6d7 358 siz = (siz + 3) & ~3;
mjr 59:94eb9265b6d7 359
mjr 59:94eb9265b6d7 360 // If insufficient memory is available, halt and show a fast red/purple
mjr 59:94eb9265b6d7 361 // diagnostic flash. We don't want to return, since we assume throughout
mjr 59:94eb9265b6d7 362 // the program that all memory allocations must succeed. Note that this
mjr 59:94eb9265b6d7 363 // is generally considered bad programming practice in applications on
mjr 59:94eb9265b6d7 364 // "real" computers, but for the purposes of this microcontroller app,
mjr 59:94eb9265b6d7 365 // there's no point in checking for failed allocations individually
mjr 59:94eb9265b6d7 366 // because there's no way to recover from them. It's better in this
mjr 59:94eb9265b6d7 367 // context to handle failed allocations as fatal errors centrally. We
mjr 59:94eb9265b6d7 368 // can't recover from these automatically, so we have to resort to user
mjr 59:94eb9265b6d7 369 // intervention, which we signal with the diagnostic LED flashes.
mjr 73:4e8ce0b18915 370 if (siz > xmalloc_rem)
mjr 59:94eb9265b6d7 371 {
mjr 59:94eb9265b6d7 372 // halt with the diagnostic display (by looping forever)
mjr 59:94eb9265b6d7 373 for (;;)
mjr 59:94eb9265b6d7 374 {
mjr 59:94eb9265b6d7 375 diagLED(1, 0, 0);
mjr 59:94eb9265b6d7 376 wait_us(200000);
mjr 59:94eb9265b6d7 377 diagLED(1, 0, 1);
mjr 59:94eb9265b6d7 378 wait_us(200000);
mjr 59:94eb9265b6d7 379 }
mjr 59:94eb9265b6d7 380 }
mjr 48:058ace2aed1d 381
mjr 59:94eb9265b6d7 382 // get the next free location from the pool to return
mjr 73:4e8ce0b18915 383 char *ret = xmalloc_nxt;
mjr 59:94eb9265b6d7 384
mjr 59:94eb9265b6d7 385 // advance the pool pointer and decrement the remaining size counter
mjr 73:4e8ce0b18915 386 xmalloc_nxt += siz;
mjr 73:4e8ce0b18915 387 xmalloc_rem -= siz;
mjr 59:94eb9265b6d7 388
mjr 59:94eb9265b6d7 389 // return the allocated block
mjr 59:94eb9265b6d7 390 return ret;
mjr 73:4e8ce0b18915 391 };
mjr 73:4e8ce0b18915 392
mjr 73:4e8ce0b18915 393 // our malloc() replacement
mjr 48:058ace2aed1d 394
mjr 59:94eb9265b6d7 395 // Overload operator new to call our custom malloc. This ensures that
mjr 59:94eb9265b6d7 396 // all 'new' allocations throughout the program (including library code)
mjr 59:94eb9265b6d7 397 // go through our private allocator.
mjr 48:058ace2aed1d 398 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 399 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 400
mjr 59:94eb9265b6d7 401 // Since we don't do bookkeeping to track released memory, 'delete' does
mjr 59:94eb9265b6d7 402 // nothing. In actual testing, this routine appears to never be called.
mjr 59:94eb9265b6d7 403 // If it *is* ever called, it will simply leave the block in place, which
mjr 59:94eb9265b6d7 404 // will make it unavailable for re-use but will otherwise be harmless.
mjr 59:94eb9265b6d7 405 void operator delete(void *ptr) { }
mjr 59:94eb9265b6d7 406
mjr 59:94eb9265b6d7 407
mjr 5:a70c0bce770d 408 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 409 //
mjr 38:091e511ce8a0 410 // Forward declarations
mjr 38:091e511ce8a0 411 //
mjr 38:091e511ce8a0 412 void setNightMode(bool on);
mjr 38:091e511ce8a0 413 void toggleNightMode();
mjr 38:091e511ce8a0 414
mjr 38:091e511ce8a0 415 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 416 // utilities
mjr 17:ab3cec0c8bf4 417
mjr 26:cb71c4af2912 418 // floating point square of a number
mjr 26:cb71c4af2912 419 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 420
mjr 26:cb71c4af2912 421 // floating point rounding
mjr 26:cb71c4af2912 422 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 423
mjr 17:ab3cec0c8bf4 424
mjr 33:d832bcab089e 425 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 426 //
mjr 40:cc0d9814522b 427 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 428 // the running state.
mjr 40:cc0d9814522b 429 //
mjr 40:cc0d9814522b 430 class Timer2: public Timer
mjr 40:cc0d9814522b 431 {
mjr 40:cc0d9814522b 432 public:
mjr 40:cc0d9814522b 433 Timer2() : running(false) { }
mjr 40:cc0d9814522b 434
mjr 40:cc0d9814522b 435 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 436 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 437
mjr 40:cc0d9814522b 438 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 439
mjr 40:cc0d9814522b 440 private:
mjr 40:cc0d9814522b 441 bool running;
mjr 40:cc0d9814522b 442 };
mjr 40:cc0d9814522b 443
mjr 53:9b2611964afc 444
mjr 53:9b2611964afc 445 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 446 //
mjr 53:9b2611964afc 447 // Reboot timer. When we have a deferred reboot operation pending, we
mjr 53:9b2611964afc 448 // set the target time and start the timer.
mjr 53:9b2611964afc 449 Timer2 rebootTimer;
mjr 53:9b2611964afc 450 long rebootTime_us;
mjr 53:9b2611964afc 451
mjr 40:cc0d9814522b 452 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 453 //
mjr 33:d832bcab089e 454 // USB product version number
mjr 5:a70c0bce770d 455 //
mjr 47:df7a88cd249c 456 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 457
mjr 33:d832bcab089e 458 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 459 //
mjr 6:cc35eb643e8f 460 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 461 //
mjr 6:cc35eb643e8f 462 #define JOYMAX 4096
mjr 6:cc35eb643e8f 463
mjr 9:fd65b0a94720 464
mjr 17:ab3cec0c8bf4 465 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 466 //
mjr 40:cc0d9814522b 467 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 468 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 469 //
mjr 35:e959ffba78fd 470
mjr 35:e959ffba78fd 471 // unsigned 16-bit integer
mjr 35:e959ffba78fd 472 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 473 {
mjr 35:e959ffba78fd 474 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 475 }
mjr 40:cc0d9814522b 476 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 477 {
mjr 40:cc0d9814522b 478 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 479 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 480 }
mjr 35:e959ffba78fd 481
mjr 35:e959ffba78fd 482 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 483 {
mjr 35:e959ffba78fd 484 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 485 }
mjr 40:cc0d9814522b 486 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 487 {
mjr 40:cc0d9814522b 488 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 489 }
mjr 35:e959ffba78fd 490
mjr 35:e959ffba78fd 491 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 492 {
mjr 35:e959ffba78fd 493 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 494 }
mjr 40:cc0d9814522b 495 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 496 {
mjr 40:cc0d9814522b 497 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 498 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 499 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 500 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 501 }
mjr 35:e959ffba78fd 502
mjr 35:e959ffba78fd 503 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 504 {
mjr 35:e959ffba78fd 505 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 506 }
mjr 35:e959ffba78fd 507
mjr 53:9b2611964afc 508 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 509 //
mjr 53:9b2611964afc 510 // The internal mbed PinName format is
mjr 53:9b2611964afc 511 //
mjr 53:9b2611964afc 512 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 513 //
mjr 53:9b2611964afc 514 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 515 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 516 //
mjr 53:9b2611964afc 517 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 518 // pin name fits in 8 bits:
mjr 53:9b2611964afc 519 //
mjr 53:9b2611964afc 520 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 521 //
mjr 53:9b2611964afc 522 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 523 //
mjr 53:9b2611964afc 524 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 525 //
mjr 53:9b2611964afc 526 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 527 {
mjr 53:9b2611964afc 528 if (c == 0xFF)
mjr 53:9b2611964afc 529 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 530 else
mjr 53:9b2611964afc 531 return PinName(
mjr 53:9b2611964afc 532 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 533 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 534 }
mjr 40:cc0d9814522b 535 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 536 {
mjr 53:9b2611964afc 537 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 538 }
mjr 35:e959ffba78fd 539
mjr 35:e959ffba78fd 540
mjr 35:e959ffba78fd 541 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 542 //
mjr 38:091e511ce8a0 543 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 544 //
mjr 38:091e511ce8a0 545 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 546 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 547 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 548 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 549 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 550 // SPI capability.
mjr 38:091e511ce8a0 551 //
mjr 38:091e511ce8a0 552 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 553
mjr 73:4e8ce0b18915 554 // Power on timer state for diagnostics. We flash the blue LED when
mjr 73:4e8ce0b18915 555 // nothing else is going on. State 0-1 = off, 2-3 = on
mjr 73:4e8ce0b18915 556 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 557
mjr 38:091e511ce8a0 558 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 559 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 560 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 561 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 562 {
mjr 73:4e8ce0b18915 563 // remember the new state
mjr 73:4e8ce0b18915 564 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 565
mjr 73:4e8ce0b18915 566 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 567 // applying it to the blue LED
mjr 73:4e8ce0b18915 568 if (diagLEDState == 0)
mjr 73:4e8ce0b18915 569 b = (powerTimerDiagState >= 2);
mjr 73:4e8ce0b18915 570
mjr 73:4e8ce0b18915 571 // set the new state
mjr 38:091e511ce8a0 572 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 573 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 574 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 575 }
mjr 38:091e511ce8a0 576
mjr 73:4e8ce0b18915 577 // update the LEDs with the current state
mjr 73:4e8ce0b18915 578 void diagLED(void)
mjr 73:4e8ce0b18915 579 {
mjr 73:4e8ce0b18915 580 diagLED(
mjr 73:4e8ce0b18915 581 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 582 (diagLEDState >> 1) & 0x01,
mjr 73:4e8ce0b18915 583 (diagLEDState >> 1) & 0x02);
mjr 73:4e8ce0b18915 584 }
mjr 73:4e8ce0b18915 585
mjr 38:091e511ce8a0 586 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 587 // an on-board LED segment
mjr 38:091e511ce8a0 588 struct LedSeg
mjr 38:091e511ce8a0 589 {
mjr 38:091e511ce8a0 590 bool r, g, b;
mjr 38:091e511ce8a0 591 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 592
mjr 38:091e511ce8a0 593 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 594 {
mjr 38:091e511ce8a0 595 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 596 // our on-board LED segments
mjr 38:091e511ce8a0 597 int t = pc.typ;
mjr 38:091e511ce8a0 598 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 599 {
mjr 38:091e511ce8a0 600 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 601 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 602 if (pin == LED1)
mjr 38:091e511ce8a0 603 r = true;
mjr 38:091e511ce8a0 604 else if (pin == LED2)
mjr 38:091e511ce8a0 605 g = true;
mjr 38:091e511ce8a0 606 else if (pin == LED3)
mjr 38:091e511ce8a0 607 b = true;
mjr 38:091e511ce8a0 608 }
mjr 38:091e511ce8a0 609 }
mjr 38:091e511ce8a0 610 };
mjr 38:091e511ce8a0 611
mjr 38:091e511ce8a0 612 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 613 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 614 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 615 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 616 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 617 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 618 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 619 {
mjr 38:091e511ce8a0 620 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 621 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 622 LedSeg l;
mjr 38:091e511ce8a0 623 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 624 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 625
mjr 38:091e511ce8a0 626 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 627 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 628 // LedWiz use.
mjr 38:091e511ce8a0 629 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 630 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 631 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 632 }
mjr 38:091e511ce8a0 633
mjr 38:091e511ce8a0 634
mjr 38:091e511ce8a0 635 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 636 //
mjr 29:582472d0bc57 637 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 638 //
mjr 26:cb71c4af2912 639 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 640 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 641 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 642 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 643 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 644 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 645 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 646 // other if both features are to be used.
mjr 26:cb71c4af2912 647 //
mjr 26:cb71c4af2912 648 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 649 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 650 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 651 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 652 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 653 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 654 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 655 //
mjr 5:a70c0bce770d 656
mjr 29:582472d0bc57 657
mjr 26:cb71c4af2912 658 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 659 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 660 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 661 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 662 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 663
mjr 26:cb71c4af2912 664 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 665 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 666 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 667 class LwOut
mjr 6:cc35eb643e8f 668 {
mjr 6:cc35eb643e8f 669 public:
mjr 40:cc0d9814522b 670 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 671 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 672 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 673 };
mjr 26:cb71c4af2912 674
mjr 35:e959ffba78fd 675 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 676 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 677 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 678 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 679 // numbering.
mjr 35:e959ffba78fd 680 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 681 {
mjr 33:d832bcab089e 682 public:
mjr 35:e959ffba78fd 683 LwVirtualOut() { }
mjr 40:cc0d9814522b 684 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 685 };
mjr 26:cb71c4af2912 686
mjr 34:6b981a2afab7 687 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 688 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 689 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 690 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 691 {
mjr 34:6b981a2afab7 692 public:
mjr 34:6b981a2afab7 693 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 694 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 695
mjr 34:6b981a2afab7 696 private:
mjr 53:9b2611964afc 697 // underlying physical output
mjr 34:6b981a2afab7 698 LwOut *out;
mjr 34:6b981a2afab7 699 };
mjr 34:6b981a2afab7 700
mjr 53:9b2611964afc 701 // Global ZB Launch Ball state
mjr 53:9b2611964afc 702 bool zbLaunchOn = false;
mjr 53:9b2611964afc 703
mjr 53:9b2611964afc 704 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 705 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 706 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 707 {
mjr 53:9b2611964afc 708 public:
mjr 53:9b2611964afc 709 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 710 virtual void set(uint8_t val)
mjr 53:9b2611964afc 711 {
mjr 53:9b2611964afc 712 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 713 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 714
mjr 53:9b2611964afc 715 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 716 out->set(val);
mjr 53:9b2611964afc 717 }
mjr 53:9b2611964afc 718
mjr 53:9b2611964afc 719 private:
mjr 53:9b2611964afc 720 // underlying physical or virtual output
mjr 53:9b2611964afc 721 LwOut *out;
mjr 53:9b2611964afc 722 };
mjr 53:9b2611964afc 723
mjr 53:9b2611964afc 724
mjr 40:cc0d9814522b 725 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 726 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 727 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 728 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 729 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 730 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 731 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 732 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 733 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 734 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 735 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 736 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 737 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 738 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 739 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 740 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 741 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 742 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 743 };
mjr 40:cc0d9814522b 744
mjr 40:cc0d9814522b 745 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 746 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 747 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 748 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 749 {
mjr 40:cc0d9814522b 750 public:
mjr 40:cc0d9814522b 751 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 752 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 753
mjr 40:cc0d9814522b 754 private:
mjr 40:cc0d9814522b 755 LwOut *out;
mjr 40:cc0d9814522b 756 };
mjr 40:cc0d9814522b 757
mjr 53:9b2611964afc 758 // global night mode flag
mjr 53:9b2611964afc 759 static bool nightMode = false;
mjr 53:9b2611964afc 760
mjr 40:cc0d9814522b 761 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 762 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 763 // mode is engaged.
mjr 40:cc0d9814522b 764 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 765 {
mjr 40:cc0d9814522b 766 public:
mjr 40:cc0d9814522b 767 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 768 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 769
mjr 53:9b2611964afc 770 private:
mjr 53:9b2611964afc 771 LwOut *out;
mjr 53:9b2611964afc 772 };
mjr 53:9b2611964afc 773
mjr 53:9b2611964afc 774 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 775 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 776 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 777 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 778 {
mjr 53:9b2611964afc 779 public:
mjr 53:9b2611964afc 780 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 781 virtual void set(uint8_t)
mjr 53:9b2611964afc 782 {
mjr 53:9b2611964afc 783 // ignore the host value and simply show the current
mjr 53:9b2611964afc 784 // night mode setting
mjr 53:9b2611964afc 785 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 786 }
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 private:
mjr 40:cc0d9814522b 789 LwOut *out;
mjr 40:cc0d9814522b 790 };
mjr 40:cc0d9814522b 791
mjr 26:cb71c4af2912 792
mjr 35:e959ffba78fd 793 //
mjr 35:e959ffba78fd 794 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 795 // assignments set in config.h.
mjr 33:d832bcab089e 796 //
mjr 35:e959ffba78fd 797 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 798 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 799 {
mjr 35:e959ffba78fd 800 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 801 {
mjr 53:9b2611964afc 802 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 803 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 804 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 805 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 806 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 807 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 808 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 809 }
mjr 35:e959ffba78fd 810 }
mjr 26:cb71c4af2912 811
mjr 40:cc0d9814522b 812 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 813 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 814 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 815 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 816 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 817 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 818 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 819 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 820 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 821 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 822 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 823 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 824 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 825 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 826 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 827 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 828 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 829 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 830 };
mjr 40:cc0d9814522b 831
mjr 40:cc0d9814522b 832 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 833 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 834 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 835 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 836 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 837 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 838 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 839 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 840 // are always 8 bits.
mjr 40:cc0d9814522b 841 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 842 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 843 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 844 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 845 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 846 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 847 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 848 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 849 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 850 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 851 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 852 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 853 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 854 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 855 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 856 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 857 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 858 };
mjr 40:cc0d9814522b 859
mjr 26:cb71c4af2912 860 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 861 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 862 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 863 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 864 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 865 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 866 {
mjr 26:cb71c4af2912 867 public:
mjr 60:f38da020aa13 868 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 869 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 870 {
mjr 26:cb71c4af2912 871 if (val != prv)
mjr 40:cc0d9814522b 872 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 873 }
mjr 60:f38da020aa13 874 uint8_t idx;
mjr 40:cc0d9814522b 875 uint8_t prv;
mjr 26:cb71c4af2912 876 };
mjr 26:cb71c4af2912 877
mjr 40:cc0d9814522b 878 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 879 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 880 {
mjr 40:cc0d9814522b 881 public:
mjr 60:f38da020aa13 882 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 883 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 884 {
mjr 40:cc0d9814522b 885 if (val != prv)
mjr 40:cc0d9814522b 886 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 887 }
mjr 60:f38da020aa13 888 uint8_t idx;
mjr 40:cc0d9814522b 889 uint8_t prv;
mjr 40:cc0d9814522b 890 };
mjr 40:cc0d9814522b 891
mjr 40:cc0d9814522b 892
mjr 33:d832bcab089e 893
mjr 34:6b981a2afab7 894 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 895 // config.h.
mjr 35:e959ffba78fd 896 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 897
mjr 35:e959ffba78fd 898 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 899 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 900 {
mjr 35:e959ffba78fd 901 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 902 {
mjr 53:9b2611964afc 903 hc595 = new HC595(
mjr 53:9b2611964afc 904 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 905 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 906 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 907 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 908 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 909 hc595->init();
mjr 35:e959ffba78fd 910 hc595->update();
mjr 35:e959ffba78fd 911 }
mjr 35:e959ffba78fd 912 }
mjr 34:6b981a2afab7 913
mjr 34:6b981a2afab7 914 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 915 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 916 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 917 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 918 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 919 class Lw595Out: public LwOut
mjr 33:d832bcab089e 920 {
mjr 33:d832bcab089e 921 public:
mjr 60:f38da020aa13 922 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 923 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 924 {
mjr 34:6b981a2afab7 925 if (val != prv)
mjr 40:cc0d9814522b 926 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 927 }
mjr 60:f38da020aa13 928 uint8_t idx;
mjr 40:cc0d9814522b 929 uint8_t prv;
mjr 33:d832bcab089e 930 };
mjr 33:d832bcab089e 931
mjr 26:cb71c4af2912 932
mjr 40:cc0d9814522b 933
mjr 64:ef7ca92dff36 934 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 935 // normalized to 0.0 to 1.0 scale.
mjr 40:cc0d9814522b 936 static const float pwm_level[] = {
mjr 64:ef7ca92dff36 937 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 938 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 939 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 940 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 941 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 942 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 943 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 944 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 945 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 946 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 947 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 948 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 949 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 950 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 951 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 952 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 953 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 954 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 955 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 956 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 957 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 958 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 959 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 960 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 961 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 962 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 963 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 964 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 965 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 966 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 967 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 968 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 969 };
mjr 26:cb71c4af2912 970
mjr 64:ef7ca92dff36 971
mjr 64:ef7ca92dff36 972 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 973 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 974 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 975 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 976 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 977 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 978 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 979 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 980 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 981 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 982 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 983 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 984 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 985 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 986 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 987 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 988 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 989 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 990 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 991 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 992 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 993 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 994 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 995 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 996 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 997 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 998 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 999 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1000 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1001 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1002 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1003 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1004 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1005 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1006 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1007 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1008 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1009 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1010 };
mjr 64:ef7ca92dff36 1011
mjr 64:ef7ca92dff36 1012 // LwOut class for a PWM-capable GPIO port. Note that we use FastPWM for
mjr 64:ef7ca92dff36 1013 // the underlying port interface. This isn't because we need the "fast"
mjr 64:ef7ca92dff36 1014 // part; it's because FastPWM fixes a bug in the base mbed PwmOut class
mjr 64:ef7ca92dff36 1015 // that makes it look ugly for fades. The base PwmOut class resets
mjr 64:ef7ca92dff36 1016 // the cycle counter when changing the duty cycle, which makes the output
mjr 64:ef7ca92dff36 1017 // reset immediately on every change. For an output connected to a lamp
mjr 64:ef7ca92dff36 1018 // or LED, this causes obvious flickering when performing a rapid series
mjr 64:ef7ca92dff36 1019 // of writes, such as during a fade. The KL25Z TPM hardware is specifically
mjr 64:ef7ca92dff36 1020 // designed to make it easy for software to avoid this kind of flickering
mjr 64:ef7ca92dff36 1021 // when used correctly: it has an internal staging register for the duty
mjr 64:ef7ca92dff36 1022 // cycle register that gets latched at the start of the next cycle, ensuring
mjr 64:ef7ca92dff36 1023 // that the duty cycle setting never changes mid-cycle. The mbed PwmOut
mjr 64:ef7ca92dff36 1024 // defeats this by resetting the cycle counter on every write, which aborts
mjr 64:ef7ca92dff36 1025 // the current cycle at the moment of the write, causing an effectively random
mjr 64:ef7ca92dff36 1026 // drop in brightness on each write (by artificially shortening a cycle).
mjr 64:ef7ca92dff36 1027 // Fortunately, we can fix this by switching to the API-compatible FastPWM
mjr 64:ef7ca92dff36 1028 // class, which does the write right (heh).
mjr 6:cc35eb643e8f 1029 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1030 {
mjr 6:cc35eb643e8f 1031 public:
mjr 43:7a6364d82a41 1032 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1033 {
mjr 43:7a6364d82a41 1034 prv = initVal ^ 0xFF;
mjr 43:7a6364d82a41 1035 set(initVal);
mjr 43:7a6364d82a41 1036 }
mjr 40:cc0d9814522b 1037 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1038 {
mjr 13:72dda449c3c0 1039 if (val != prv)
mjr 40:cc0d9814522b 1040 p.write(pwm_level[prv = val]);
mjr 13:72dda449c3c0 1041 }
mjr 64:ef7ca92dff36 1042 FastPWM p;
mjr 40:cc0d9814522b 1043 uint8_t prv;
mjr 6:cc35eb643e8f 1044 };
mjr 26:cb71c4af2912 1045
mjr 64:ef7ca92dff36 1046 // Gamma corrected PWM GPIO output
mjr 64:ef7ca92dff36 1047 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1048 {
mjr 64:ef7ca92dff36 1049 public:
mjr 64:ef7ca92dff36 1050 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1051 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1052 {
mjr 64:ef7ca92dff36 1053 }
mjr 64:ef7ca92dff36 1054 virtual void set(uint8_t val)
mjr 64:ef7ca92dff36 1055 {
mjr 64:ef7ca92dff36 1056 if (val != prv)
mjr 64:ef7ca92dff36 1057 p.write(dof_to_gamma_pwm[prv = val]);
mjr 64:ef7ca92dff36 1058 }
mjr 64:ef7ca92dff36 1059 };
mjr 64:ef7ca92dff36 1060
mjr 64:ef7ca92dff36 1061
mjr 26:cb71c4af2912 1062 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1063 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1064 {
mjr 6:cc35eb643e8f 1065 public:
mjr 43:7a6364d82a41 1066 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1067 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1068 {
mjr 13:72dda449c3c0 1069 if (val != prv)
mjr 40:cc0d9814522b 1070 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1071 }
mjr 6:cc35eb643e8f 1072 DigitalOut p;
mjr 40:cc0d9814522b 1073 uint8_t prv;
mjr 6:cc35eb643e8f 1074 };
mjr 26:cb71c4af2912 1075
mjr 29:582472d0bc57 1076 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1077 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1078 // port n (0-based).
mjr 35:e959ffba78fd 1079 //
mjr 35:e959ffba78fd 1080 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1081 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1082 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1083 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1084 // 74HC595 ports).
mjr 33:d832bcab089e 1085 static int numOutputs;
mjr 33:d832bcab089e 1086 static LwOut **lwPin;
mjr 33:d832bcab089e 1087
mjr 73:4e8ce0b18915 1088 // LedWiz output states.
mjr 73:4e8ce0b18915 1089 //
mjr 73:4e8ce0b18915 1090 // The LedWiz protocol has two separate control axes for each output.
mjr 73:4e8ce0b18915 1091 // One axis is its on/off state; the other is its "profile" state, which
mjr 73:4e8ce0b18915 1092 // is either a fixed brightness or a blinking pattern for the light.
mjr 73:4e8ce0b18915 1093 // The two axes are independent.
mjr 73:4e8ce0b18915 1094 //
mjr 73:4e8ce0b18915 1095 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 73:4e8ce0b18915 1096 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 73:4e8ce0b18915 1097 // extended protocol allows the client to select a bank of 32 outputs to
mjr 73:4e8ce0b18915 1098 // address via original protocol commands (SBA/PBA), which allows for one
mjr 73:4e8ce0b18915 1099 // Pinscape unit with more than 32 ports to be exposed on the client as
mjr 73:4e8ce0b18915 1100 // multiple virtual LedWiz units through a modified LEDWIZ.DLL interface
mjr 73:4e8ce0b18915 1101 // library.
mjr 73:4e8ce0b18915 1102
mjr 73:4e8ce0b18915 1103 // Current LedWiz virtual unit: 0 = ports 1-32, 1 = ports 33-64, etc.
mjr 73:4e8ce0b18915 1104 // SBA and PBA messages address the block of ports set by this unit.
mjr 73:4e8ce0b18915 1105 uint8_t ledWizBank = 0;
mjr 73:4e8ce0b18915 1106
mjr 73:4e8ce0b18915 1107 // on/off state for each LedWiz output
mjr 73:4e8ce0b18915 1108 static uint8_t *wizOn;
mjr 73:4e8ce0b18915 1109
mjr 73:4e8ce0b18915 1110 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 73:4e8ce0b18915 1111 // for each LedWiz output. If the output was last updated through an
mjr 73:4e8ce0b18915 1112 // LedWiz protocol message, it will have one of these values:
mjr 73:4e8ce0b18915 1113 //
mjr 73:4e8ce0b18915 1114 // 0-48 = fixed brightness 0% to 100%
mjr 73:4e8ce0b18915 1115 // 49 = fixed brightness 100% (equivalent to 48)
mjr 73:4e8ce0b18915 1116 // 129 = ramp up / ramp down
mjr 73:4e8ce0b18915 1117 // 130 = flash on / off
mjr 73:4e8ce0b18915 1118 // 131 = on / ramp down
mjr 73:4e8ce0b18915 1119 // 132 = ramp up / on
mjr 73:4e8ce0b18915 1120 //
mjr 73:4e8ce0b18915 1121 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 73:4e8ce0b18915 1122 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 73:4e8ce0b18915 1123 // it, so we need to accept it for compatibility.)
mjr 73:4e8ce0b18915 1124 static uint8_t *wizVal;
mjr 73:4e8ce0b18915 1125
mjr 73:4e8ce0b18915 1126 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 73:4e8ce0b18915 1127 // rate for lights in blinking states. Each bank of 32 lights has its
mjr 73:4e8ce0b18915 1128 // own pulse rate, so we need ceiling(number_of_physical_outputs/32)
mjr 73:4e8ce0b18915 1129 // entries here. Note that we could allocate this dynamically, but
mjr 73:4e8ce0b18915 1130 // the maximum size is so small that it's more efficient to preallocate
mjr 73:4e8ce0b18915 1131 // it at the maximum size.
mjr 73:4e8ce0b18915 1132 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 73:4e8ce0b18915 1133 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 73:4e8ce0b18915 1134
mjr 73:4e8ce0b18915 1135 // Current LedWiz flash cycle counter. This runs from 0 to 255
mjr 73:4e8ce0b18915 1136 // during each cycle.
mjr 73:4e8ce0b18915 1137 static uint8_t wizFlashCounter[MAX_LW_BANKS];
mjr 35:e959ffba78fd 1138
mjr 63:5cd1a5f3a41b 1139 // Current absolute brightness levels for all outputs. These are
mjr 63:5cd1a5f3a41b 1140 // DOF brightness level value, from 0 for fully off to 255 for fully
mjr 63:5cd1a5f3a41b 1141 // on. These are always used for extended ports (33 and above), and
mjr 63:5cd1a5f3a41b 1142 // are used for LedWiz ports (1-32) when we're in extended protocol
mjr 63:5cd1a5f3a41b 1143 // mode (i.e., ledWizMode == false).
mjr 40:cc0d9814522b 1144 static uint8_t *outLevel;
mjr 38:091e511ce8a0 1145
mjr 38:091e511ce8a0 1146 // create a single output pin
mjr 53:9b2611964afc 1147 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1148 {
mjr 38:091e511ce8a0 1149 // get this item's values
mjr 38:091e511ce8a0 1150 int typ = pc.typ;
mjr 38:091e511ce8a0 1151 int pin = pc.pin;
mjr 38:091e511ce8a0 1152 int flags = pc.flags;
mjr 40:cc0d9814522b 1153 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1154 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1155 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1156
mjr 38:091e511ce8a0 1157 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1158 LwOut *lwp;
mjr 38:091e511ce8a0 1159 switch (typ)
mjr 38:091e511ce8a0 1160 {
mjr 38:091e511ce8a0 1161 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1162 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1163 if (pin != 0)
mjr 64:ef7ca92dff36 1164 {
mjr 64:ef7ca92dff36 1165 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1166 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1167 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1168 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1169 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1170 {
mjr 64:ef7ca92dff36 1171 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1172 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1173
mjr 64:ef7ca92dff36 1174 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1175 gamma = false;
mjr 64:ef7ca92dff36 1176 }
mjr 64:ef7ca92dff36 1177 else
mjr 64:ef7ca92dff36 1178 {
mjr 64:ef7ca92dff36 1179 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1180 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1181 }
mjr 64:ef7ca92dff36 1182 }
mjr 48:058ace2aed1d 1183 else
mjr 48:058ace2aed1d 1184 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1185 break;
mjr 38:091e511ce8a0 1186
mjr 38:091e511ce8a0 1187 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1188 // Digital GPIO port
mjr 48:058ace2aed1d 1189 if (pin != 0)
mjr 48:058ace2aed1d 1190 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1191 else
mjr 48:058ace2aed1d 1192 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1193 break;
mjr 38:091e511ce8a0 1194
mjr 38:091e511ce8a0 1195 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1196 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1197 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1198 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1199 {
mjr 40:cc0d9814522b 1200 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1201 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1202 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1203 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1204 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1205 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1206 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1207 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1208 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1209 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1210 // for this unlikely case.
mjr 40:cc0d9814522b 1211 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1212 {
mjr 40:cc0d9814522b 1213 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1214 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1215
mjr 40:cc0d9814522b 1216 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1217 gamma = false;
mjr 40:cc0d9814522b 1218 }
mjr 40:cc0d9814522b 1219 else
mjr 40:cc0d9814522b 1220 {
mjr 40:cc0d9814522b 1221 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1222 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1223 }
mjr 40:cc0d9814522b 1224 }
mjr 38:091e511ce8a0 1225 else
mjr 40:cc0d9814522b 1226 {
mjr 40:cc0d9814522b 1227 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1228 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1229 }
mjr 38:091e511ce8a0 1230 break;
mjr 38:091e511ce8a0 1231
mjr 38:091e511ce8a0 1232 case PortType74HC595:
mjr 38:091e511ce8a0 1233 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1234 // output number, create a virtual port)
mjr 38:091e511ce8a0 1235 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1236 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1237 else
mjr 38:091e511ce8a0 1238 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1239 break;
mjr 38:091e511ce8a0 1240
mjr 38:091e511ce8a0 1241 case PortTypeVirtual:
mjr 43:7a6364d82a41 1242 case PortTypeDisabled:
mjr 38:091e511ce8a0 1243 default:
mjr 38:091e511ce8a0 1244 // virtual or unknown
mjr 38:091e511ce8a0 1245 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1246 break;
mjr 38:091e511ce8a0 1247 }
mjr 38:091e511ce8a0 1248
mjr 40:cc0d9814522b 1249 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1250 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1251 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1252 if (activeLow)
mjr 38:091e511ce8a0 1253 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1254
mjr 40:cc0d9814522b 1255 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1256 // needs to be
mjr 40:cc0d9814522b 1257 if (noisy)
mjr 40:cc0d9814522b 1258 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1259
mjr 40:cc0d9814522b 1260 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1261 if (gamma)
mjr 40:cc0d9814522b 1262 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1263
mjr 53:9b2611964afc 1264 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1265 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1266 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1267 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1268 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1269
mjr 53:9b2611964afc 1270 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1271 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1272 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1273
mjr 38:091e511ce8a0 1274 // turn it off initially
mjr 38:091e511ce8a0 1275 lwp->set(0);
mjr 38:091e511ce8a0 1276
mjr 38:091e511ce8a0 1277 // return the pin
mjr 38:091e511ce8a0 1278 return lwp;
mjr 38:091e511ce8a0 1279 }
mjr 38:091e511ce8a0 1280
mjr 6:cc35eb643e8f 1281 // initialize the output pin array
mjr 35:e959ffba78fd 1282 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1283 {
mjr 35:e959ffba78fd 1284 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1285 // total number of ports.
mjr 35:e959ffba78fd 1286 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1287 int i;
mjr 35:e959ffba78fd 1288 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1289 {
mjr 35:e959ffba78fd 1290 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1291 {
mjr 35:e959ffba78fd 1292 numOutputs = i;
mjr 34:6b981a2afab7 1293 break;
mjr 34:6b981a2afab7 1294 }
mjr 33:d832bcab089e 1295 }
mjr 33:d832bcab089e 1296
mjr 73:4e8ce0b18915 1297 // allocate the pin array
mjr 73:4e8ce0b18915 1298 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1299
mjr 73:4e8ce0b18915 1300 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1301 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1302
mjr 73:4e8ce0b18915 1303 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1304 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1305 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1306
mjr 73:4e8ce0b18915 1307 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1308 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1309 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1310
mjr 73:4e8ce0b18915 1311 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1312 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1313 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1314
mjr 35:e959ffba78fd 1315 // create the pin interface object for each port
mjr 35:e959ffba78fd 1316 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1317 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1318 }
mjr 6:cc35eb643e8f 1319
mjr 63:5cd1a5f3a41b 1320 // LedWiz/Extended protocol mode.
mjr 63:5cd1a5f3a41b 1321 //
mjr 63:5cd1a5f3a41b 1322 // We implement output port control using both the legacy LedWiz
mjr 63:5cd1a5f3a41b 1323 // protocol and a private extended protocol (which is 100% backwards
mjr 63:5cd1a5f3a41b 1324 // compatible with the LedWiz protocol: we recognize all valid legacy
mjr 63:5cd1a5f3a41b 1325 // protocol commands and handle them the same way a real LedWiz does).
mjr 63:5cd1a5f3a41b 1326 // The legacy protocol can access the first 32 ports; the extended
mjr 63:5cd1a5f3a41b 1327 // protocol can access all ports, including the first 32 as well as
mjr 63:5cd1a5f3a41b 1328 // the higher numbered ports. This means that the first 32 ports
mjr 63:5cd1a5f3a41b 1329 // can be addressed with either protocol, which muddies the waters
mjr 63:5cd1a5f3a41b 1330 // a bit because of the different approaches the two protocols take.
mjr 63:5cd1a5f3a41b 1331 // The legacy protocol separates the brightness/flash state of an
mjr 63:5cd1a5f3a41b 1332 // output (which it calls the "profile" state) from the on/off state.
mjr 63:5cd1a5f3a41b 1333 // The extended protocol doesn't; "off" is simply represented as
mjr 63:5cd1a5f3a41b 1334 // brightness 0.
mjr 63:5cd1a5f3a41b 1335 //
mjr 63:5cd1a5f3a41b 1336 // To deal with the different approaches, we use this flag to keep
mjr 63:5cd1a5f3a41b 1337 // track of the global protocol state. Each time we get an output
mjr 63:5cd1a5f3a41b 1338 // port command, we switch the protocol state to the protocol that
mjr 63:5cd1a5f3a41b 1339 // was used in the command. On a legacy SBA or PBA, we switch to
mjr 63:5cd1a5f3a41b 1340 // LedWiz mode; on an extended output set message, we switch to
mjr 63:5cd1a5f3a41b 1341 // extended mode. We remember the LedWiz and extended output state
mjr 73:4e8ce0b18915 1342 // for each LW port (1-32) separately. Any time the mode changes,
mjr 63:5cd1a5f3a41b 1343 // we set ports 1-32 back to the state for the new mode.
mjr 63:5cd1a5f3a41b 1344 //
mjr 63:5cd1a5f3a41b 1345 // The reasoning here is that any given client (on the PC) will use
mjr 63:5cd1a5f3a41b 1346 // one mode or the other, and won't mix the two. An older program
mjr 63:5cd1a5f3a41b 1347 // that only knows about the LedWiz protocol will use the legacy
mjr 63:5cd1a5f3a41b 1348 // protocol only, and never send us an extended command. A DOF-based
mjr 63:5cd1a5f3a41b 1349 // program might use one or the other, according to how the user has
mjr 63:5cd1a5f3a41b 1350 // configured DOF. We have to be able to switch seamlessly between
mjr 63:5cd1a5f3a41b 1351 // the protocols to accommodate switching from one type of program
mjr 63:5cd1a5f3a41b 1352 // on the PC to the other, but we shouldn't have to worry about one
mjr 63:5cd1a5f3a41b 1353 // program switching back and forth.
mjr 63:5cd1a5f3a41b 1354 static uint8_t ledWizMode = true;
mjr 63:5cd1a5f3a41b 1355
mjr 40:cc0d9814522b 1356 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 1357 // level (0-255)
mjr 40:cc0d9814522b 1358 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1359 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1360 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1361 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1362 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1363 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1364 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1365 255, 255
mjr 40:cc0d9814522b 1366 };
mjr 40:cc0d9814522b 1367
mjr 40:cc0d9814522b 1368 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 40:cc0d9814522b 1369 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 1370 {
mjr 63:5cd1a5f3a41b 1371 // If we're in extended protocol mode, ignore the LedWiz setting
mjr 63:5cd1a5f3a41b 1372 // for the port and use the new protocol setting instead.
mjr 63:5cd1a5f3a41b 1373 if (!ledWizMode)
mjr 29:582472d0bc57 1374 return outLevel[idx];
mjr 29:582472d0bc57 1375
mjr 29:582472d0bc57 1376 // if it's off, show at zero intensity
mjr 29:582472d0bc57 1377 if (!wizOn[idx])
mjr 29:582472d0bc57 1378 return 0;
mjr 29:582472d0bc57 1379
mjr 29:582472d0bc57 1380 // check the state
mjr 29:582472d0bc57 1381 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 1382 if (val <= 49)
mjr 29:582472d0bc57 1383 {
mjr 29:582472d0bc57 1384 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 1385 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 1386 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 1387 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 1388 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 1389 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 1390 // 100% on to match the documentation. This won't be perfectly
mjr 73:4e8ce0b18915 1391 // compatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 1392 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 1393 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 1394 // err in this direction, because while the difference in
mjr 29:582472d0bc57 1395 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 1396 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 1397 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 1398 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 1399 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 1400 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 1401 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 1402 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 1403 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 1404 //
mjr 40:cc0d9814522b 1405 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 1406 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 1407 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 1408 // it the same way for compatibility.
mjr 40:cc0d9814522b 1409 return lw_to_dof[val];
mjr 29:582472d0bc57 1410 }
mjr 29:582472d0bc57 1411 else if (val == 129)
mjr 29:582472d0bc57 1412 {
mjr 40:cc0d9814522b 1413 // 129 = ramp up / ramp down
mjr 73:4e8ce0b18915 1414 const int c = wizFlashCounter[idx/32];
mjr 73:4e8ce0b18915 1415 return c < 128 ? c*2 + 1 : (255 - c)*2;
mjr 29:582472d0bc57 1416 }
mjr 29:582472d0bc57 1417 else if (val == 130)
mjr 29:582472d0bc57 1418 {
mjr 40:cc0d9814522b 1419 // 130 = flash on / off
mjr 73:4e8ce0b18915 1420 const int c = wizFlashCounter[idx/32];
mjr 73:4e8ce0b18915 1421 return c < 128 ? 255 : 0;
mjr 29:582472d0bc57 1422 }
mjr 29:582472d0bc57 1423 else if (val == 131)
mjr 29:582472d0bc57 1424 {
mjr 40:cc0d9814522b 1425 // 131 = on / ramp down
mjr 73:4e8ce0b18915 1426 const int c = wizFlashCounter[idx/32];
mjr 73:4e8ce0b18915 1427 return c < 128 ? 255 : (255 - c)*2;
mjr 0:5acbbe3f4cf4 1428 }
mjr 29:582472d0bc57 1429 else if (val == 132)
mjr 29:582472d0bc57 1430 {
mjr 40:cc0d9814522b 1431 // 132 = ramp up / on
mjr 73:4e8ce0b18915 1432 const int c = wizFlashCounter[idx/32];
mjr 73:4e8ce0b18915 1433 return c < 128 ? c*2 : 255;
mjr 29:582472d0bc57 1434 }
mjr 29:582472d0bc57 1435 else
mjr 13:72dda449c3c0 1436 {
mjr 29:582472d0bc57 1437 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1438 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1439 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1440 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1441 // to 48 (fully on).
mjr 40:cc0d9814522b 1442 return 255;
mjr 0:5acbbe3f4cf4 1443 }
mjr 0:5acbbe3f4cf4 1444 }
mjr 0:5acbbe3f4cf4 1445
mjr 29:582472d0bc57 1446 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 1447 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 1448 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 1449 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 1450 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 1451 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 1452 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 1453 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 1454 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 1455 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 1456 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 1457 static void wizPulse()
mjr 29:582472d0bc57 1458 {
mjr 73:4e8ce0b18915 1459 // update the flash counter in each bank
mjr 73:4e8ce0b18915 1460 for (int bank = 0 ; bank < countof(wizFlashCounter) ; ++bank)
mjr 73:4e8ce0b18915 1461 {
mjr 73:4e8ce0b18915 1462 // increase the counter by the speed increment, and wrap at 256
mjr 73:4e8ce0b18915 1463 wizFlashCounter[bank] = (wizFlashCounter[bank] + wizSpeed[bank]) & 0xff;
mjr 73:4e8ce0b18915 1464 }
mjr 73:4e8ce0b18915 1465
mjr 73:4e8ce0b18915 1466 // look for outputs set to LedWiz flash modes
mjr 73:4e8ce0b18915 1467 int flashing = false;
mjr 73:4e8ce0b18915 1468 for (int i = 0 ; i < numOutputs ; ++i)
mjr 29:582472d0bc57 1469 {
mjr 29:582472d0bc57 1470 if (wizOn[i])
mjr 29:582472d0bc57 1471 {
mjr 29:582472d0bc57 1472 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 1473 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 1474 {
mjr 40:cc0d9814522b 1475 lwPin[i]->set(wizState(i));
mjr 73:4e8ce0b18915 1476 flashing = true;
mjr 29:582472d0bc57 1477 }
mjr 29:582472d0bc57 1478 }
mjr 29:582472d0bc57 1479 }
mjr 29:582472d0bc57 1480
mjr 29:582472d0bc57 1481 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 1482 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 1483 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 1484 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 1485 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 1486 // need for them when running Visual Pinball.
mjr 73:4e8ce0b18915 1487 if (flashing)
mjr 29:582472d0bc57 1488 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 1489 }
mjr 29:582472d0bc57 1490
mjr 29:582472d0bc57 1491 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1492 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1493 static void updateWizOuts()
mjr 1:d913e0afb2ac 1494 {
mjr 29:582472d0bc57 1495 // update each output
mjr 29:582472d0bc57 1496 int pulse = false;
mjr 73:4e8ce0b18915 1497 for (int i = 0 ; i < numOutputs ; ++i)
mjr 29:582472d0bc57 1498 {
mjr 29:582472d0bc57 1499 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 40:cc0d9814522b 1500 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1501 }
mjr 29:582472d0bc57 1502
mjr 29:582472d0bc57 1503 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 1504 // isn't running, turn it on
mjr 29:582472d0bc57 1505 if (pulse)
mjr 29:582472d0bc57 1506 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 1507
mjr 34:6b981a2afab7 1508 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1509 if (hc595 != 0)
mjr 35:e959ffba78fd 1510 hc595->update();
mjr 1:d913e0afb2ac 1511 }
mjr 38:091e511ce8a0 1512
mjr 38:091e511ce8a0 1513 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1514 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1515 static void updateAllOuts()
mjr 38:091e511ce8a0 1516 {
mjr 73:4e8ce0b18915 1517 // uddate each output
mjr 73:4e8ce0b18915 1518 for (int i = 0 ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1519 lwPin[i]->set(wizState(i));
mjr 34:6b981a2afab7 1520
mjr 73:4e8ce0b18915 1521 // flush 74HC595 changes, if necessary
mjr 73:4e8ce0b18915 1522 if (hc595 != 0)
mjr 73:4e8ce0b18915 1523 hc595->update();
mjr 73:4e8ce0b18915 1524 }
mjr 73:4e8ce0b18915 1525
mjr 73:4e8ce0b18915 1526 //
mjr 73:4e8ce0b18915 1527 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1528 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1529 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1530 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1531 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1532 //
mjr 73:4e8ce0b18915 1533 void allOutputsOff()
mjr 73:4e8ce0b18915 1534 {
mjr 73:4e8ce0b18915 1535 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1536 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1537 {
mjr 73:4e8ce0b18915 1538 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1539 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1540 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1541 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1542 }
mjr 73:4e8ce0b18915 1543
mjr 73:4e8ce0b18915 1544 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1545 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1546 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1547
mjr 73:4e8ce0b18915 1548 // set bank 0
mjr 73:4e8ce0b18915 1549 ledWizBank = 0;
mjr 73:4e8ce0b18915 1550
mjr 73:4e8ce0b18915 1551 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1552 if (hc595 != 0)
mjr 38:091e511ce8a0 1553 hc595->update();
mjr 38:091e511ce8a0 1554 }
mjr 38:091e511ce8a0 1555
mjr 11:bd9da7088e6e 1556 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1557 //
mjr 11:bd9da7088e6e 1558 // Button input
mjr 11:bd9da7088e6e 1559 //
mjr 11:bd9da7088e6e 1560
mjr 18:5e890ebd0023 1561 // button state
mjr 18:5e890ebd0023 1562 struct ButtonState
mjr 18:5e890ebd0023 1563 {
mjr 38:091e511ce8a0 1564 ButtonState()
mjr 38:091e511ce8a0 1565 {
mjr 53:9b2611964afc 1566 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 1567 virtState = 0;
mjr 53:9b2611964afc 1568 dbState = 0;
mjr 38:091e511ce8a0 1569 pulseState = 0;
mjr 53:9b2611964afc 1570 pulseTime = 0;
mjr 38:091e511ce8a0 1571 }
mjr 35:e959ffba78fd 1572
mjr 53:9b2611964afc 1573 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 1574 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 1575 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 1576 //
mjr 53:9b2611964afc 1577 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 1578 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 1579 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 1580 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 1581 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 1582 void virtPress(bool on)
mjr 53:9b2611964afc 1583 {
mjr 53:9b2611964afc 1584 // Increment or decrement the current state
mjr 53:9b2611964afc 1585 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 1586 }
mjr 53:9b2611964afc 1587
mjr 53:9b2611964afc 1588 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 1589 TinyDigitalIn di;
mjr 38:091e511ce8a0 1590
mjr 65:739875521aae 1591 // Time of last pulse state transition.
mjr 65:739875521aae 1592 //
mjr 65:739875521aae 1593 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 1594 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 1595 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 1596 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 1597 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 1598 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 1599 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 1600 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 1601 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 1602 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 1603 // This software system can't be fooled that way.)
mjr 65:739875521aae 1604 uint32_t pulseTime;
mjr 18:5e890ebd0023 1605
mjr 65:739875521aae 1606 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 1607 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 1608 uint8_t cfgIndex;
mjr 53:9b2611964afc 1609
mjr 53:9b2611964afc 1610 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 1611 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 1612 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 1613 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 1614 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 1615 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 1616 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 1617 // and physical source states.
mjr 53:9b2611964afc 1618 uint8_t virtState;
mjr 38:091e511ce8a0 1619
mjr 38:091e511ce8a0 1620 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 1621 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 1622 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 1623 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 1624 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 1625 uint8_t dbState;
mjr 38:091e511ce8a0 1626
mjr 65:739875521aae 1627 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 1628 uint8_t physState : 1;
mjr 65:739875521aae 1629
mjr 65:739875521aae 1630 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 1631 uint8_t logState : 1;
mjr 65:739875521aae 1632
mjr 65:739875521aae 1633 // previous logical on/off state, when keys were last processed for USB
mjr 65:739875521aae 1634 // reports and local effects
mjr 65:739875521aae 1635 uint8_t prevLogState : 1;
mjr 65:739875521aae 1636
mjr 65:739875521aae 1637 // Pulse state
mjr 65:739875521aae 1638 //
mjr 65:739875521aae 1639 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 1640 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 1641 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 1642 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 1643 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 1644 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 1645 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 1646 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 1647 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 1648 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 1649 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 65:739875521aae 1650 // option brdiges this gap by generating a toggle key event each time
mjr 65:739875521aae 1651 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 1652 //
mjr 38:091e511ce8a0 1653 // Pulse state:
mjr 38:091e511ce8a0 1654 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 1655 // 1 -> off
mjr 38:091e511ce8a0 1656 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 1657 // 3 -> on
mjr 38:091e511ce8a0 1658 // 4 -> transitioning on-off
mjr 65:739875521aae 1659 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 1660
mjr 65:739875521aae 1661 } __attribute__((packed));
mjr 65:739875521aae 1662
mjr 65:739875521aae 1663 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 1664 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 1665 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 1666
mjr 66:2e3583fbd2f4 1667 // Shift button state
mjr 66:2e3583fbd2f4 1668 struct
mjr 66:2e3583fbd2f4 1669 {
mjr 66:2e3583fbd2f4 1670 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 66:2e3583fbd2f4 1671 uint8_t state : 2; // current shift state:
mjr 66:2e3583fbd2f4 1672 // 0 = not shifted
mjr 66:2e3583fbd2f4 1673 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 1674 // 2 = shift button down, key pressed
mjr 66:2e3583fbd2f4 1675 uint8_t pulse : 1; // sending pulsed keystroke on release
mjr 66:2e3583fbd2f4 1676 uint32_t pulseTime; // time of start of pulsed keystroke
mjr 66:2e3583fbd2f4 1677 }
mjr 66:2e3583fbd2f4 1678 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 1679
mjr 38:091e511ce8a0 1680 // Button data
mjr 38:091e511ce8a0 1681 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 1682
mjr 38:091e511ce8a0 1683 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 1684 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 1685 // modifier keys.
mjr 38:091e511ce8a0 1686 struct
mjr 38:091e511ce8a0 1687 {
mjr 38:091e511ce8a0 1688 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 1689 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 1690 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 1691 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 1692 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 1693
mjr 38:091e511ce8a0 1694 // Media key state
mjr 38:091e511ce8a0 1695 struct
mjr 38:091e511ce8a0 1696 {
mjr 38:091e511ce8a0 1697 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 1698 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 1699 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 1700
mjr 38:091e511ce8a0 1701 // button scan interrupt ticker
mjr 38:091e511ce8a0 1702 Ticker buttonTicker;
mjr 38:091e511ce8a0 1703
mjr 38:091e511ce8a0 1704 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 1705 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 1706 void scanButtons()
mjr 38:091e511ce8a0 1707 {
mjr 38:091e511ce8a0 1708 // scan all button input pins
mjr 73:4e8ce0b18915 1709 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 1710 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 1711 {
mjr 73:4e8ce0b18915 1712 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 1713 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 1714 bs->dbState = db;
mjr 73:4e8ce0b18915 1715
mjr 73:4e8ce0b18915 1716 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 1717 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 1718 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 1719 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 1720 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 1721 db &= stable;
mjr 73:4e8ce0b18915 1722 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 1723 bs->physState = !db;
mjr 38:091e511ce8a0 1724 }
mjr 38:091e511ce8a0 1725 }
mjr 38:091e511ce8a0 1726
mjr 38:091e511ce8a0 1727 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1728 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1729 // in the physical button state.
mjr 38:091e511ce8a0 1730 Timer buttonTimer;
mjr 12:669df364a565 1731
mjr 65:739875521aae 1732 // Count a button during the initial setup scan
mjr 72:884207c0aab0 1733 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 1734 {
mjr 65:739875521aae 1735 // count it
mjr 65:739875521aae 1736 ++nButtons;
mjr 65:739875521aae 1737
mjr 67:c39e66c4e000 1738 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 1739 // keyboard interface
mjr 72:884207c0aab0 1740 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 1741 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 1742 kbKeys = true;
mjr 65:739875521aae 1743 }
mjr 65:739875521aae 1744
mjr 11:bd9da7088e6e 1745 // initialize the button inputs
mjr 35:e959ffba78fd 1746 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1747 {
mjr 35:e959ffba78fd 1748 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1749 kbKeys = false;
mjr 35:e959ffba78fd 1750
mjr 66:2e3583fbd2f4 1751 // presume no shift key
mjr 66:2e3583fbd2f4 1752 shiftButton.index = -1;
mjr 66:2e3583fbd2f4 1753
mjr 65:739875521aae 1754 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 1755 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 1756 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 1757 nButtons = 0;
mjr 65:739875521aae 1758 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 1759 {
mjr 65:739875521aae 1760 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 1761 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 1762 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 1763 }
mjr 65:739875521aae 1764
mjr 65:739875521aae 1765 // Count virtual buttons
mjr 65:739875521aae 1766
mjr 65:739875521aae 1767 // ZB Launch
mjr 65:739875521aae 1768 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 1769 {
mjr 65:739875521aae 1770 // valid - remember the live button index
mjr 65:739875521aae 1771 zblButtonIndex = nButtons;
mjr 65:739875521aae 1772
mjr 65:739875521aae 1773 // count it
mjr 72:884207c0aab0 1774 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 1775 }
mjr 65:739875521aae 1776
mjr 65:739875521aae 1777 // Allocate the live button slots
mjr 65:739875521aae 1778 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 1779
mjr 65:739875521aae 1780 // Configure the physical inputs
mjr 65:739875521aae 1781 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 1782 {
mjr 65:739875521aae 1783 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 1784 if (pin != NC)
mjr 65:739875521aae 1785 {
mjr 65:739875521aae 1786 // point back to the config slot for the keyboard data
mjr 65:739875521aae 1787 bs->cfgIndex = i;
mjr 65:739875521aae 1788
mjr 65:739875521aae 1789 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 1790 bs->di.assignPin(pin);
mjr 65:739875521aae 1791
mjr 65:739875521aae 1792 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 1793 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 1794 bs->pulseState = 1;
mjr 65:739875521aae 1795
mjr 66:2e3583fbd2f4 1796 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 1797 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 1798 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 1799 // config slots are left unused.
mjr 66:2e3583fbd2f4 1800 if (cfg.shiftButton == i+1)
mjr 66:2e3583fbd2f4 1801 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 1802
mjr 65:739875521aae 1803 // advance to the next button
mjr 65:739875521aae 1804 ++bs;
mjr 65:739875521aae 1805 }
mjr 65:739875521aae 1806 }
mjr 65:739875521aae 1807
mjr 53:9b2611964afc 1808 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 1809 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 1810 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 1811 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 1812
mjr 53:9b2611964afc 1813 // ZB Launch Ball button
mjr 65:739875521aae 1814 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 1815 {
mjr 65:739875521aae 1816 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 1817 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 1818 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 1819 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 1820 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 1821 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 1822 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 1823 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 1824
mjr 66:2e3583fbd2f4 1825 // advance to the next button
mjr 65:739875521aae 1826 ++bs;
mjr 11:bd9da7088e6e 1827 }
mjr 12:669df364a565 1828
mjr 38:091e511ce8a0 1829 // start the button scan thread
mjr 38:091e511ce8a0 1830 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1831
mjr 38:091e511ce8a0 1832 // start the button state transition timer
mjr 12:669df364a565 1833 buttonTimer.start();
mjr 11:bd9da7088e6e 1834 }
mjr 11:bd9da7088e6e 1835
mjr 67:c39e66c4e000 1836 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 1837 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 1838 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 1839 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 1840 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 1841 //
mjr 67:c39e66c4e000 1842 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 1843 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 1844 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 1845 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 1846 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 1847 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 1848 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 1849 //
mjr 67:c39e66c4e000 1850 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 1851 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 1852 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 1853 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 1854 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 1855 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 1856 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 1857 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 1858 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 1859 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 1860 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 1861 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 1862 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 1863 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 1864 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 1865 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 1866 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 67:c39e66c4e000 1867 };
mjr 67:c39e66c4e000 1868
mjr 67:c39e66c4e000 1869
mjr 38:091e511ce8a0 1870 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1871 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1872 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1873 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 1874 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 1875 {
mjr 35:e959ffba78fd 1876 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1877 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1878 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1879 int nkeys = 0;
mjr 11:bd9da7088e6e 1880
mjr 35:e959ffba78fd 1881 // clear the joystick buttons
mjr 36:b9747461331e 1882 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1883
mjr 35:e959ffba78fd 1884 // start with no media keys pressed
mjr 35:e959ffba78fd 1885 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1886
mjr 38:091e511ce8a0 1887 // calculate the time since the last run
mjr 53:9b2611964afc 1888 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 1889 buttonTimer.reset();
mjr 66:2e3583fbd2f4 1890
mjr 66:2e3583fbd2f4 1891 // check the shift button state
mjr 66:2e3583fbd2f4 1892 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 1893 {
mjr 66:2e3583fbd2f4 1894 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 66:2e3583fbd2f4 1895 switch (shiftButton.state)
mjr 66:2e3583fbd2f4 1896 {
mjr 66:2e3583fbd2f4 1897 case 0:
mjr 66:2e3583fbd2f4 1898 // Not shifted. Check if the button is now down: if so,
mjr 66:2e3583fbd2f4 1899 // switch to state 1 (shift button down, no key pressed yet).
mjr 66:2e3583fbd2f4 1900 if (sbs->physState)
mjr 66:2e3583fbd2f4 1901 shiftButton.state = 1;
mjr 66:2e3583fbd2f4 1902 break;
mjr 66:2e3583fbd2f4 1903
mjr 66:2e3583fbd2f4 1904 case 1:
mjr 66:2e3583fbd2f4 1905 // Shift button down, no key pressed yet. If the button is
mjr 66:2e3583fbd2f4 1906 // now up, it counts as an ordinary button press instead of
mjr 66:2e3583fbd2f4 1907 // a shift button press, since the shift function was never
mjr 66:2e3583fbd2f4 1908 // used. Return to unshifted state and start a timed key
mjr 66:2e3583fbd2f4 1909 // pulse event.
mjr 66:2e3583fbd2f4 1910 if (!sbs->physState)
mjr 66:2e3583fbd2f4 1911 {
mjr 66:2e3583fbd2f4 1912 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 1913 shiftButton.pulse = 1;
mjr 66:2e3583fbd2f4 1914 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 66:2e3583fbd2f4 1915 }
mjr 66:2e3583fbd2f4 1916 break;
mjr 66:2e3583fbd2f4 1917
mjr 66:2e3583fbd2f4 1918 case 2:
mjr 66:2e3583fbd2f4 1919 // Shift button down, other key was pressed. If the button is
mjr 66:2e3583fbd2f4 1920 // now up, simply clear the shift state without sending a key
mjr 66:2e3583fbd2f4 1921 // press for the shift button itself to the PC. The shift
mjr 66:2e3583fbd2f4 1922 // function was used, so its ordinary key press function is
mjr 66:2e3583fbd2f4 1923 // suppressed.
mjr 66:2e3583fbd2f4 1924 if (!sbs->physState)
mjr 66:2e3583fbd2f4 1925 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 1926 break;
mjr 66:2e3583fbd2f4 1927 }
mjr 66:2e3583fbd2f4 1928 }
mjr 38:091e511ce8a0 1929
mjr 11:bd9da7088e6e 1930 // scan the button list
mjr 18:5e890ebd0023 1931 ButtonState *bs = buttonState;
mjr 65:739875521aae 1932 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 1933 {
mjr 66:2e3583fbd2f4 1934 // Check the button type:
mjr 66:2e3583fbd2f4 1935 // - shift button
mjr 66:2e3583fbd2f4 1936 // - pulsed button
mjr 66:2e3583fbd2f4 1937 // - regular button
mjr 66:2e3583fbd2f4 1938 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 1939 {
mjr 66:2e3583fbd2f4 1940 // This is the shift button. Its logical state for key
mjr 66:2e3583fbd2f4 1941 // reporting purposes is controlled by the shift buttton
mjr 66:2e3583fbd2f4 1942 // pulse timer. If we're in a pulse, its logical state
mjr 66:2e3583fbd2f4 1943 // is pressed.
mjr 66:2e3583fbd2f4 1944 if (shiftButton.pulse)
mjr 66:2e3583fbd2f4 1945 {
mjr 66:2e3583fbd2f4 1946 // deduct the current interval from the pulse time, ending
mjr 66:2e3583fbd2f4 1947 // the pulse if the time has expired
mjr 66:2e3583fbd2f4 1948 if (shiftButton.pulseTime > dt)
mjr 66:2e3583fbd2f4 1949 shiftButton.pulseTime -= dt;
mjr 66:2e3583fbd2f4 1950 else
mjr 66:2e3583fbd2f4 1951 shiftButton.pulse = 0;
mjr 66:2e3583fbd2f4 1952 }
mjr 66:2e3583fbd2f4 1953
mjr 66:2e3583fbd2f4 1954 // the button is logically pressed if we're in a pulse
mjr 66:2e3583fbd2f4 1955 bs->logState = shiftButton.pulse;
mjr 66:2e3583fbd2f4 1956 }
mjr 66:2e3583fbd2f4 1957 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1958 {
mjr 38:091e511ce8a0 1959 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 1960 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 1961 {
mjr 53:9b2611964afc 1962 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 1963 bs->pulseTime -= dt;
mjr 53:9b2611964afc 1964 }
mjr 53:9b2611964afc 1965 else
mjr 53:9b2611964afc 1966 {
mjr 53:9b2611964afc 1967 // pulse time expired - check for a state change
mjr 53:9b2611964afc 1968 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 1969 switch (bs->pulseState)
mjr 18:5e890ebd0023 1970 {
mjr 38:091e511ce8a0 1971 case 1:
mjr 38:091e511ce8a0 1972 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 1973 if (bs->physState)
mjr 53:9b2611964afc 1974 {
mjr 38:091e511ce8a0 1975 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1976 bs->pulseState = 2;
mjr 53:9b2611964afc 1977 bs->logState = 1;
mjr 38:091e511ce8a0 1978 }
mjr 38:091e511ce8a0 1979 break;
mjr 18:5e890ebd0023 1980
mjr 38:091e511ce8a0 1981 case 2:
mjr 38:091e511ce8a0 1982 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1983 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1984 // change in state in the logical button
mjr 38:091e511ce8a0 1985 bs->pulseState = 3;
mjr 38:091e511ce8a0 1986 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 1987 bs->logState = 0;
mjr 38:091e511ce8a0 1988 break;
mjr 38:091e511ce8a0 1989
mjr 38:091e511ce8a0 1990 case 3:
mjr 38:091e511ce8a0 1991 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 1992 if (!bs->physState)
mjr 53:9b2611964afc 1993 {
mjr 38:091e511ce8a0 1994 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1995 bs->pulseState = 4;
mjr 53:9b2611964afc 1996 bs->logState = 1;
mjr 38:091e511ce8a0 1997 }
mjr 38:091e511ce8a0 1998 break;
mjr 38:091e511ce8a0 1999
mjr 38:091e511ce8a0 2000 case 4:
mjr 38:091e511ce8a0 2001 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2002 bs->pulseState = 1;
mjr 38:091e511ce8a0 2003 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2004 bs->logState = 0;
mjr 38:091e511ce8a0 2005 break;
mjr 18:5e890ebd0023 2006 }
mjr 18:5e890ebd0023 2007 }
mjr 38:091e511ce8a0 2008 }
mjr 38:091e511ce8a0 2009 else
mjr 38:091e511ce8a0 2010 {
mjr 38:091e511ce8a0 2011 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2012 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2013 }
mjr 35:e959ffba78fd 2014
mjr 38:091e511ce8a0 2015 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2016 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2017 {
mjr 38:091e511ce8a0 2018 // check for special key transitions
mjr 53:9b2611964afc 2019 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2020 {
mjr 53:9b2611964afc 2021 // Check the switch type in the config flags. If flag 0x01 is set,
mjr 53:9b2611964afc 2022 // it's a persistent on/off switch, so the night mode state simply
mjr 53:9b2611964afc 2023 // follows the current state of the switch. Otherwise, it's a
mjr 53:9b2611964afc 2024 // momentary button, so each button push (i.e., each transition from
mjr 53:9b2611964afc 2025 // logical state OFF to ON) toggles the current night mode state.
mjr 53:9b2611964afc 2026 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 2027 {
mjr 69:cc5039284fac 2028 // on/off switch - when the button changes state, change
mjr 53:9b2611964afc 2029 // night mode to match the new state
mjr 53:9b2611964afc 2030 setNightMode(bs->logState);
mjr 53:9b2611964afc 2031 }
mjr 53:9b2611964afc 2032 else
mjr 53:9b2611964afc 2033 {
mjr 66:2e3583fbd2f4 2034 // Momentary switch - toggle the night mode state when the
mjr 53:9b2611964afc 2035 // physical button is pushed (i.e., when its logical state
mjr 66:2e3583fbd2f4 2036 // transitions from OFF to ON).
mjr 66:2e3583fbd2f4 2037 //
mjr 66:2e3583fbd2f4 2038 // In momentary mode, night mode flag 0x02 makes it the
mjr 66:2e3583fbd2f4 2039 // shifted version of the button. In this case, only
mjr 66:2e3583fbd2f4 2040 // proceed if the shift button is pressed.
mjr 66:2e3583fbd2f4 2041 bool pressed = bs->logState;
mjr 66:2e3583fbd2f4 2042 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2043 {
mjr 66:2e3583fbd2f4 2044 // if the shift button is pressed but hasn't been used
mjr 66:2e3583fbd2f4 2045 // as a shift yet, mark it as used, so that it doesn't
mjr 66:2e3583fbd2f4 2046 // also generate its own key code on release
mjr 66:2e3583fbd2f4 2047 if (shiftButton.state == 1)
mjr 66:2e3583fbd2f4 2048 shiftButton.state = 2;
mjr 66:2e3583fbd2f4 2049
mjr 66:2e3583fbd2f4 2050 // if the shift button isn't even pressed
mjr 66:2e3583fbd2f4 2051 if (shiftButton.state == 0)
mjr 66:2e3583fbd2f4 2052 pressed = false;
mjr 66:2e3583fbd2f4 2053 }
mjr 66:2e3583fbd2f4 2054
mjr 66:2e3583fbd2f4 2055 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2056 // toggle night mode
mjr 66:2e3583fbd2f4 2057 if (pressed)
mjr 53:9b2611964afc 2058 toggleNightMode();
mjr 53:9b2611964afc 2059 }
mjr 35:e959ffba78fd 2060 }
mjr 38:091e511ce8a0 2061
mjr 38:091e511ce8a0 2062 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2063 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2064 }
mjr 38:091e511ce8a0 2065
mjr 53:9b2611964afc 2066 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2067 // key state list
mjr 53:9b2611964afc 2068 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2069 {
mjr 70:9f58735a1732 2070 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 2071 // going to use the normal unshifted meaning.
mjr 65:739875521aae 2072 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 70:9f58735a1732 2073 uint8_t typ = bc->typ;
mjr 70:9f58735a1732 2074 uint8_t val = bc->val;
mjr 70:9f58735a1732 2075
mjr 70:9f58735a1732 2076 // If the shift button is down, check for a shifted meaning.
mjr 70:9f58735a1732 2077 if (shiftButton.state)
mjr 66:2e3583fbd2f4 2078 {
mjr 70:9f58735a1732 2079 // assume there's no shifted meaning
mjr 70:9f58735a1732 2080 bool useShift = false;
mjr 66:2e3583fbd2f4 2081
mjr 70:9f58735a1732 2082 // If the button has a shifted meaning, use that. The
mjr 70:9f58735a1732 2083 // meaning might be a keyboard key or joystick button,
mjr 70:9f58735a1732 2084 // but it could also be as the Night Mode toggle.
mjr 70:9f58735a1732 2085 //
mjr 70:9f58735a1732 2086 // The condition to check if it's the Night Mode toggle
mjr 70:9f58735a1732 2087 // is a little complicated. First, the easy part: our
mjr 70:9f58735a1732 2088 // button index has to match the Night Mode button index.
mjr 70:9f58735a1732 2089 // Now the hard part: the Night Mode button flags have
mjr 70:9f58735a1732 2090 // to be set to 0x01 OFF and 0x02 ON: toggle mode (not
mjr 70:9f58735a1732 2091 // switch mode, 0x01), and shift mode, 0x02. So AND the
mjr 70:9f58735a1732 2092 // flags with 0x03 to get these two bits, and check that
mjr 70:9f58735a1732 2093 // the result is 0x02, meaning that only shift mode is on.
mjr 70:9f58735a1732 2094 if (bc->typ2 != BtnTypeNone)
mjr 70:9f58735a1732 2095 {
mjr 70:9f58735a1732 2096 // there's a shifted key assignment - use it
mjr 70:9f58735a1732 2097 typ = bc->typ2;
mjr 70:9f58735a1732 2098 val = bc->val2;
mjr 70:9f58735a1732 2099 useShift = true;
mjr 70:9f58735a1732 2100 }
mjr 70:9f58735a1732 2101 else if (cfg.nightMode.btn == i+1
mjr 70:9f58735a1732 2102 && (cfg.nightMode.flags & 0x03) == 0x02)
mjr 70:9f58735a1732 2103 {
mjr 70:9f58735a1732 2104 // shift+button = night mode toggle
mjr 70:9f58735a1732 2105 typ = BtnTypeNone;
mjr 70:9f58735a1732 2106 val = 0;
mjr 70:9f58735a1732 2107 useShift = true;
mjr 70:9f58735a1732 2108 }
mjr 70:9f58735a1732 2109
mjr 70:9f58735a1732 2110 // If there's a shifted meaning, advance the shift
mjr 70:9f58735a1732 2111 // button state from 1 to 2 if applicable. This signals
mjr 70:9f58735a1732 2112 // that we've "consumed" the shift button press as the
mjr 70:9f58735a1732 2113 // shift button, so it shouldn't generate its own key
mjr 70:9f58735a1732 2114 // code event when released.
mjr 70:9f58735a1732 2115 if (useShift && shiftButton.state == 1)
mjr 66:2e3583fbd2f4 2116 shiftButton.state = 2;
mjr 66:2e3583fbd2f4 2117 }
mjr 66:2e3583fbd2f4 2118
mjr 70:9f58735a1732 2119 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 2120 // the keyboard or joystick event.
mjr 66:2e3583fbd2f4 2121 switch (typ)
mjr 53:9b2611964afc 2122 {
mjr 53:9b2611964afc 2123 case BtnTypeJoystick:
mjr 53:9b2611964afc 2124 // joystick button
mjr 53:9b2611964afc 2125 newjs |= (1 << (val - 1));
mjr 53:9b2611964afc 2126 break;
mjr 53:9b2611964afc 2127
mjr 53:9b2611964afc 2128 case BtnTypeKey:
mjr 67:c39e66c4e000 2129 // Keyboard key. The USB keyboard report encodes regular
mjr 67:c39e66c4e000 2130 // keys and modifier keys separately, so we need to check
mjr 67:c39e66c4e000 2131 // which type we have. Note that past versions mapped the
mjr 67:c39e66c4e000 2132 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 67:c39e66c4e000 2133 // Mute keys to the corresponding Media keys. We no longer
mjr 67:c39e66c4e000 2134 // do this; instead, we have the separate BtnTypeMedia for
mjr 67:c39e66c4e000 2135 // explicitly using media keys if desired.
mjr 67:c39e66c4e000 2136 if (val >= 0xE0 && val <= 0xE7)
mjr 53:9b2611964afc 2137 {
mjr 67:c39e66c4e000 2138 // It's a modifier key. These are represented in the USB
mjr 67:c39e66c4e000 2139 // reports with a bit mask. We arrange the mask bits in
mjr 67:c39e66c4e000 2140 // the same order as the scan codes, so we can figure the
mjr 67:c39e66c4e000 2141 // appropriate bit with a simple shift.
mjr 53:9b2611964afc 2142 modkeys |= (1 << (val - 0xE0));
mjr 53:9b2611964afc 2143 }
mjr 53:9b2611964afc 2144 else
mjr 53:9b2611964afc 2145 {
mjr 67:c39e66c4e000 2146 // It's a regular key. Make sure it's not already in the
mjr 67:c39e66c4e000 2147 // list, and that the list isn't full. If neither of these
mjr 67:c39e66c4e000 2148 // apply, add the key to the key array.
mjr 53:9b2611964afc 2149 if (nkeys < 7)
mjr 53:9b2611964afc 2150 {
mjr 57:cc03231f676b 2151 bool found = false;
mjr 53:9b2611964afc 2152 for (int j = 0 ; j < nkeys ; ++j)
mjr 53:9b2611964afc 2153 {
mjr 53:9b2611964afc 2154 if (keys[j] == val)
mjr 53:9b2611964afc 2155 {
mjr 53:9b2611964afc 2156 found = true;
mjr 53:9b2611964afc 2157 break;
mjr 53:9b2611964afc 2158 }
mjr 53:9b2611964afc 2159 }
mjr 53:9b2611964afc 2160 if (!found)
mjr 53:9b2611964afc 2161 keys[nkeys++] = val;
mjr 53:9b2611964afc 2162 }
mjr 53:9b2611964afc 2163 }
mjr 53:9b2611964afc 2164 break;
mjr 67:c39e66c4e000 2165
mjr 67:c39e66c4e000 2166 case BtnTypeMedia:
mjr 67:c39e66c4e000 2167 // Media control key. The media keys are mapped in the USB
mjr 67:c39e66c4e000 2168 // report to bits, whereas the key codes are specified in the
mjr 67:c39e66c4e000 2169 // config with their USB usage numbers. E.g., the config val
mjr 67:c39e66c4e000 2170 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 67:c39e66c4e000 2171 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 67:c39e66c4e000 2172 // from the USB usage number to the mask bit. If the key isn't
mjr 67:c39e66c4e000 2173 // among the subset we support, the mapped bit will be zero, so
mjr 67:c39e66c4e000 2174 // the "|=" will have no effect and the key will be ignored.
mjr 67:c39e66c4e000 2175 mediakeys |= mediaKeyMap[val];
mjr 67:c39e66c4e000 2176 break;
mjr 53:9b2611964afc 2177 }
mjr 18:5e890ebd0023 2178 }
mjr 11:bd9da7088e6e 2179 }
mjr 36:b9747461331e 2180
mjr 36:b9747461331e 2181 // check for joystick button changes
mjr 36:b9747461331e 2182 if (jsButtons != newjs)
mjr 36:b9747461331e 2183 jsButtons = newjs;
mjr 11:bd9da7088e6e 2184
mjr 35:e959ffba78fd 2185 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 2186 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 2187 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 2188 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 2189 {
mjr 35:e959ffba78fd 2190 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2191 kbState.changed = true;
mjr 35:e959ffba78fd 2192 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 2193 if (nkeys <= 6) {
mjr 35:e959ffba78fd 2194 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 2195 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 2196 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 2197 }
mjr 35:e959ffba78fd 2198 else {
mjr 35:e959ffba78fd 2199 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 2200 kbState.nkeys = 6;
mjr 35:e959ffba78fd 2201 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 2202 }
mjr 35:e959ffba78fd 2203 }
mjr 35:e959ffba78fd 2204
mjr 35:e959ffba78fd 2205 // Check for changes to media keys
mjr 35:e959ffba78fd 2206 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 2207 {
mjr 35:e959ffba78fd 2208 mediaState.changed = true;
mjr 35:e959ffba78fd 2209 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 2210 }
mjr 11:bd9da7088e6e 2211 }
mjr 11:bd9da7088e6e 2212
mjr 73:4e8ce0b18915 2213 // Send a button status report
mjr 73:4e8ce0b18915 2214 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 2215 {
mjr 73:4e8ce0b18915 2216 // start with all buttons off
mjr 73:4e8ce0b18915 2217 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 2218 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 2219
mjr 73:4e8ce0b18915 2220 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 2221 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 2222 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 2223 {
mjr 73:4e8ce0b18915 2224 // get the physical state
mjr 73:4e8ce0b18915 2225 int b = bs->physState;
mjr 73:4e8ce0b18915 2226
mjr 73:4e8ce0b18915 2227 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 2228 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 2229 int si = idx / 8;
mjr 73:4e8ce0b18915 2230 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 2231 state[si] |= b << shift;
mjr 73:4e8ce0b18915 2232 }
mjr 73:4e8ce0b18915 2233
mjr 73:4e8ce0b18915 2234 // send the report
mjr 73:4e8ce0b18915 2235 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 2236 }
mjr 73:4e8ce0b18915 2237
mjr 5:a70c0bce770d 2238 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2239 //
mjr 5:a70c0bce770d 2240 // Customization joystick subbclass
mjr 5:a70c0bce770d 2241 //
mjr 5:a70c0bce770d 2242
mjr 5:a70c0bce770d 2243 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 2244 {
mjr 5:a70c0bce770d 2245 public:
mjr 35:e959ffba78fd 2246 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 2247 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 2248 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 2249 {
mjr 54:fd77a6b2f76c 2250 sleeping_ = false;
mjr 54:fd77a6b2f76c 2251 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 2252 timer_.start();
mjr 54:fd77a6b2f76c 2253 }
mjr 54:fd77a6b2f76c 2254
mjr 54:fd77a6b2f76c 2255 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 2256 void diagFlash()
mjr 54:fd77a6b2f76c 2257 {
mjr 54:fd77a6b2f76c 2258 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 2259 {
mjr 54:fd77a6b2f76c 2260 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 2261 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 2262 {
mjr 54:fd77a6b2f76c 2263 // short red flash
mjr 54:fd77a6b2f76c 2264 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 2265 wait_us(50000);
mjr 54:fd77a6b2f76c 2266 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 2267 wait_us(50000);
mjr 54:fd77a6b2f76c 2268 }
mjr 54:fd77a6b2f76c 2269 }
mjr 5:a70c0bce770d 2270 }
mjr 5:a70c0bce770d 2271
mjr 5:a70c0bce770d 2272 // are we connected?
mjr 5:a70c0bce770d 2273 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 2274
mjr 54:fd77a6b2f76c 2275 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 2276 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 2277 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 2278 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 2279 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 2280
mjr 54:fd77a6b2f76c 2281 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 2282 //
mjr 54:fd77a6b2f76c 2283 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 2284 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 2285 // other way.
mjr 54:fd77a6b2f76c 2286 //
mjr 54:fd77a6b2f76c 2287 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 2288 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 2289 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 2290 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 2291 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 2292 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 2293 //
mjr 54:fd77a6b2f76c 2294 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 2295 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 2296 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 2297 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 2298 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 2299 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 2300 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 2301 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 2302 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 2303 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 2304 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 2305 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 2306 // is effectively dead.
mjr 54:fd77a6b2f76c 2307 //
mjr 54:fd77a6b2f76c 2308 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 2309 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 2310 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 2311 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 2312 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 2313 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 2314 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 2315 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 2316 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 2317 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 2318 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 2319 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 2320 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 2321 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 2322 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 2323 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 2324 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 2325 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 2326 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 2327 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 2328 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 2329 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 2330 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 2331 // a disconnect.
mjr 54:fd77a6b2f76c 2332 //
mjr 54:fd77a6b2f76c 2333 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 2334 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 2335 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 2336 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 2337 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 2338 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 2339 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 2340 //
mjr 54:fd77a6b2f76c 2341 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 2342 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 2343 //
mjr 54:fd77a6b2f76c 2344 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 2345 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 2346 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 2347 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 2348 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 2349 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 2350 // has been plugged in and initiates the logical connection setup.
mjr 54:fd77a6b2f76c 2351 // We have to remain disconnected for a macroscopic interval for
mjr 54:fd77a6b2f76c 2352 // this to happen - 5ms seems to do the trick.
mjr 54:fd77a6b2f76c 2353 //
mjr 54:fd77a6b2f76c 2354 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 2355 //
mjr 54:fd77a6b2f76c 2356 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 2357 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 2358 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 2359 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 2360 // return.
mjr 54:fd77a6b2f76c 2361 //
mjr 54:fd77a6b2f76c 2362 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 2363 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 2364 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 2365 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 2366 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 2367 //
mjr 54:fd77a6b2f76c 2368 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 2369 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 2370 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 2371 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 2372 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 2373 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 2374 //
mjr 54:fd77a6b2f76c 2375 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 2376 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 2377 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 2378 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 2379 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 2380 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 2381 // freezes over.
mjr 54:fd77a6b2f76c 2382 //
mjr 54:fd77a6b2f76c 2383 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 2384 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 2385 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 2386 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 2387 // less than second with this code in place.
mjr 54:fd77a6b2f76c 2388 void recoverConnection()
mjr 54:fd77a6b2f76c 2389 {
mjr 54:fd77a6b2f76c 2390 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 2391 if (reconnectPending_)
mjr 54:fd77a6b2f76c 2392 {
mjr 54:fd77a6b2f76c 2393 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 2394 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 2395 {
mjr 54:fd77a6b2f76c 2396 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 2397 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 2398 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 2399 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 2400 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 2401 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 2402 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 2403 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 2404 __disable_irq();
mjr 54:fd77a6b2f76c 2405 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 2406 {
mjr 54:fd77a6b2f76c 2407 connect(false);
mjr 54:fd77a6b2f76c 2408 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 2409 done = true;
mjr 54:fd77a6b2f76c 2410 }
mjr 54:fd77a6b2f76c 2411 __enable_irq();
mjr 54:fd77a6b2f76c 2412 }
mjr 54:fd77a6b2f76c 2413 }
mjr 54:fd77a6b2f76c 2414 }
mjr 5:a70c0bce770d 2415
mjr 5:a70c0bce770d 2416 protected:
mjr 54:fd77a6b2f76c 2417 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 2418 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 2419 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 2420 //
mjr 54:fd77a6b2f76c 2421 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 2422 //
mjr 54:fd77a6b2f76c 2423 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 2424 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 2425 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 2426 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 2427 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 2428 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 2429 {
mjr 54:fd77a6b2f76c 2430 // note the new state
mjr 54:fd77a6b2f76c 2431 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 2432
mjr 54:fd77a6b2f76c 2433 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 2434 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 2435 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 2436 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 2437 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 2438 {
mjr 54:fd77a6b2f76c 2439 disconnect();
mjr 54:fd77a6b2f76c 2440 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 2441 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 2442 }
mjr 54:fd77a6b2f76c 2443 }
mjr 54:fd77a6b2f76c 2444
mjr 54:fd77a6b2f76c 2445 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 2446 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 2447
mjr 54:fd77a6b2f76c 2448 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 2449 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 2450
mjr 54:fd77a6b2f76c 2451 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 2452 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 2453
mjr 54:fd77a6b2f76c 2454 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 2455 Timer timer_;
mjr 5:a70c0bce770d 2456 };
mjr 5:a70c0bce770d 2457
mjr 5:a70c0bce770d 2458 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2459 //
mjr 5:a70c0bce770d 2460 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 2461 //
mjr 5:a70c0bce770d 2462
mjr 5:a70c0bce770d 2463 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 2464 //
mjr 5:a70c0bce770d 2465 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 2466 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 2467 // automatic calibration.
mjr 5:a70c0bce770d 2468 //
mjr 5:a70c0bce770d 2469 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 2470 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 2471 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 2472 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 2473 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 2474 // every sample.
mjr 5:a70c0bce770d 2475 //
mjr 6:cc35eb643e8f 2476 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 2477 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 2478 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 2479 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 2480 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 2481 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 2482 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 2483 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 2484 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 2485 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 2486 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 2487 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 2488 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 2489 // of nudging, say).
mjr 5:a70c0bce770d 2490 //
mjr 5:a70c0bce770d 2491
mjr 17:ab3cec0c8bf4 2492 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 2493 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 2494
mjr 17:ab3cec0c8bf4 2495 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 2496 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 2497 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 2498
mjr 17:ab3cec0c8bf4 2499 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 2500 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 2501 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 2502 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 2503
mjr 17:ab3cec0c8bf4 2504
mjr 6:cc35eb643e8f 2505 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 2506 struct AccHist
mjr 5:a70c0bce770d 2507 {
mjr 6:cc35eb643e8f 2508 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2509 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 2510 {
mjr 6:cc35eb643e8f 2511 // save the raw position
mjr 6:cc35eb643e8f 2512 this->x = x;
mjr 6:cc35eb643e8f 2513 this->y = y;
mjr 6:cc35eb643e8f 2514 this->d = distance(prv);
mjr 6:cc35eb643e8f 2515 }
mjr 6:cc35eb643e8f 2516
mjr 6:cc35eb643e8f 2517 // reading for this entry
mjr 5:a70c0bce770d 2518 float x, y;
mjr 5:a70c0bce770d 2519
mjr 6:cc35eb643e8f 2520 // distance from previous entry
mjr 6:cc35eb643e8f 2521 float d;
mjr 5:a70c0bce770d 2522
mjr 6:cc35eb643e8f 2523 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 2524 float xtot, ytot;
mjr 6:cc35eb643e8f 2525 int cnt;
mjr 6:cc35eb643e8f 2526
mjr 6:cc35eb643e8f 2527 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2528 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 2529 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 2530 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 2531
mjr 6:cc35eb643e8f 2532 float distance(AccHist *p)
mjr 6:cc35eb643e8f 2533 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 2534 };
mjr 5:a70c0bce770d 2535
mjr 5:a70c0bce770d 2536 // accelerometer wrapper class
mjr 3:3514575d4f86 2537 class Accel
mjr 3:3514575d4f86 2538 {
mjr 3:3514575d4f86 2539 public:
mjr 3:3514575d4f86 2540 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 2541 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 2542 {
mjr 5:a70c0bce770d 2543 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 2544 irqPin_ = irqPin;
mjr 5:a70c0bce770d 2545
mjr 5:a70c0bce770d 2546 // reset and initialize
mjr 5:a70c0bce770d 2547 reset();
mjr 5:a70c0bce770d 2548 }
mjr 5:a70c0bce770d 2549
mjr 5:a70c0bce770d 2550 void reset()
mjr 5:a70c0bce770d 2551 {
mjr 6:cc35eb643e8f 2552 // clear the center point
mjr 6:cc35eb643e8f 2553 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 2554
mjr 6:cc35eb643e8f 2555 // start the calibration timer
mjr 5:a70c0bce770d 2556 tCenter_.start();
mjr 5:a70c0bce770d 2557 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 2558
mjr 5:a70c0bce770d 2559 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 2560 mma_.init();
mjr 6:cc35eb643e8f 2561
mjr 6:cc35eb643e8f 2562 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 2563 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2564
mjr 6:cc35eb643e8f 2565 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 2566 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 2567 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 2568
mjr 3:3514575d4f86 2569 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 2570 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 2571
mjr 3:3514575d4f86 2572 // start our timers
mjr 3:3514575d4f86 2573 tGet_.start();
mjr 3:3514575d4f86 2574 tInt_.start();
mjr 3:3514575d4f86 2575 }
mjr 3:3514575d4f86 2576
mjr 9:fd65b0a94720 2577 void get(int &x, int &y)
mjr 3:3514575d4f86 2578 {
mjr 3:3514575d4f86 2579 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 2580 __disable_irq();
mjr 3:3514575d4f86 2581
mjr 3:3514575d4f86 2582 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 2583 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 2584 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 2585
mjr 6:cc35eb643e8f 2586 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 2587 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2588
mjr 3:3514575d4f86 2589 // get the time since the last get() sample
mjr 73:4e8ce0b18915 2590 int dtus = tGet_.read_us();
mjr 3:3514575d4f86 2591 tGet_.reset();
mjr 3:3514575d4f86 2592
mjr 3:3514575d4f86 2593 // done manipulating the shared data
mjr 3:3514575d4f86 2594 __enable_irq();
mjr 3:3514575d4f86 2595
mjr 6:cc35eb643e8f 2596 // adjust the readings for the integration time
mjr 73:4e8ce0b18915 2597 float dt = dtus/1000000.0f;
mjr 6:cc35eb643e8f 2598 vx /= dt;
mjr 6:cc35eb643e8f 2599 vy /= dt;
mjr 6:cc35eb643e8f 2600
mjr 6:cc35eb643e8f 2601 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 2602 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2603 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 2604
mjr 5:a70c0bce770d 2605 // check for auto-centering every so often
mjr 48:058ace2aed1d 2606 if (tCenter_.read_us() > 1000000)
mjr 5:a70c0bce770d 2607 {
mjr 5:a70c0bce770d 2608 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 2609 AccHist *prv = p;
mjr 5:a70c0bce770d 2610 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 2611 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2612 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 2613
mjr 5:a70c0bce770d 2614 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 2615 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 2616 {
mjr 5:a70c0bce770d 2617 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 2618 static const float accTol = .01;
mjr 6:cc35eb643e8f 2619 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 2620 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 2621 && p0[1].d < accTol
mjr 6:cc35eb643e8f 2622 && p0[2].d < accTol
mjr 6:cc35eb643e8f 2623 && p0[3].d < accTol
mjr 6:cc35eb643e8f 2624 && p0[4].d < accTol)
mjr 5:a70c0bce770d 2625 {
mjr 6:cc35eb643e8f 2626 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 2627 // the samples over the rest period
mjr 6:cc35eb643e8f 2628 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 2629 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 2630 }
mjr 5:a70c0bce770d 2631 }
mjr 5:a70c0bce770d 2632 else
mjr 5:a70c0bce770d 2633 {
mjr 5:a70c0bce770d 2634 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 2635 ++nAccPrv_;
mjr 5:a70c0bce770d 2636 }
mjr 6:cc35eb643e8f 2637
mjr 6:cc35eb643e8f 2638 // clear the new item's running totals
mjr 6:cc35eb643e8f 2639 p->clearAvg();
mjr 5:a70c0bce770d 2640
mjr 5:a70c0bce770d 2641 // reset the timer
mjr 5:a70c0bce770d 2642 tCenter_.reset();
mjr 39:b3815a1c3802 2643
mjr 39:b3815a1c3802 2644 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 2645 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 2646 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 2647 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 2648 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 2649 // generation to continue.
mjr 39:b3815a1c3802 2650 //
mjr 39:b3815a1c3802 2651 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 2652 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 2653 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 2654 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 2655 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 2656 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 2657 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 2658 {
mjr 39:b3815a1c3802 2659 float x, y, z;
mjr 39:b3815a1c3802 2660 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 2661 }
mjr 5:a70c0bce770d 2662 }
mjr 5:a70c0bce770d 2663
mjr 6:cc35eb643e8f 2664 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 2665 x = rawToReport(vx);
mjr 6:cc35eb643e8f 2666 y = rawToReport(vy);
mjr 5:a70c0bce770d 2667
mjr 6:cc35eb643e8f 2668 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 2669 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 2670 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 2671 #endif
mjr 3:3514575d4f86 2672 }
mjr 29:582472d0bc57 2673
mjr 3:3514575d4f86 2674 private:
mjr 6:cc35eb643e8f 2675 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 2676 int rawToReport(float v)
mjr 5:a70c0bce770d 2677 {
mjr 6:cc35eb643e8f 2678 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 2679 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 2680
mjr 6:cc35eb643e8f 2681 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 2682 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 2683 static const int filter[] = {
mjr 6:cc35eb643e8f 2684 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 2685 0,
mjr 6:cc35eb643e8f 2686 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 2687 };
mjr 6:cc35eb643e8f 2688 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 2689 }
mjr 5:a70c0bce770d 2690
mjr 3:3514575d4f86 2691 // interrupt handler
mjr 3:3514575d4f86 2692 void isr()
mjr 3:3514575d4f86 2693 {
mjr 3:3514575d4f86 2694 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 2695 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 2696 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 2697 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 2698 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 2699 float x, y, z;
mjr 5:a70c0bce770d 2700 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 2701
mjr 3:3514575d4f86 2702 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 2703 float dt = tInt_.read();
mjr 3:3514575d4f86 2704 tInt_.reset();
mjr 6:cc35eb643e8f 2705
mjr 6:cc35eb643e8f 2706 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 2707 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 2708 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 2709
mjr 6:cc35eb643e8f 2710 // store the updates
mjr 6:cc35eb643e8f 2711 ax_ = x;
mjr 6:cc35eb643e8f 2712 ay_ = y;
mjr 6:cc35eb643e8f 2713 az_ = z;
mjr 3:3514575d4f86 2714 }
mjr 3:3514575d4f86 2715
mjr 3:3514575d4f86 2716 // underlying accelerometer object
mjr 3:3514575d4f86 2717 MMA8451Q mma_;
mjr 3:3514575d4f86 2718
mjr 5:a70c0bce770d 2719 // last raw acceleration readings
mjr 6:cc35eb643e8f 2720 float ax_, ay_, az_;
mjr 5:a70c0bce770d 2721
mjr 6:cc35eb643e8f 2722 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 2723 float vx_, vy_;
mjr 6:cc35eb643e8f 2724
mjr 3:3514575d4f86 2725 // timer for measuring time between get() samples
mjr 3:3514575d4f86 2726 Timer tGet_;
mjr 3:3514575d4f86 2727
mjr 3:3514575d4f86 2728 // timer for measuring time between interrupts
mjr 3:3514575d4f86 2729 Timer tInt_;
mjr 5:a70c0bce770d 2730
mjr 6:cc35eb643e8f 2731 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 2732 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 2733 // at rest.
mjr 6:cc35eb643e8f 2734 float cx_, cy_;
mjr 5:a70c0bce770d 2735
mjr 5:a70c0bce770d 2736 // timer for atuo-centering
mjr 5:a70c0bce770d 2737 Timer tCenter_;
mjr 6:cc35eb643e8f 2738
mjr 6:cc35eb643e8f 2739 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 2740 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 2741 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 2742 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 2743 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 2744 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 2745 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 2746 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 2747 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 2748 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 2749 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 2750 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 2751 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 2752 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 2753 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 2754
mjr 5:a70c0bce770d 2755 // interurupt pin name
mjr 5:a70c0bce770d 2756 PinName irqPin_;
mjr 5:a70c0bce770d 2757
mjr 5:a70c0bce770d 2758 // interrupt router
mjr 5:a70c0bce770d 2759 InterruptIn intIn_;
mjr 3:3514575d4f86 2760 };
mjr 3:3514575d4f86 2761
mjr 5:a70c0bce770d 2762
mjr 5:a70c0bce770d 2763 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2764 //
mjr 14:df700b22ca08 2765 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 2766 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 2767 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 2768 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 2769 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 2770 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 2771 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 2772 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 2773 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 2774 //
mjr 14:df700b22ca08 2775 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 2776 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 2777 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 2778 //
mjr 5:a70c0bce770d 2779 void clear_i2c()
mjr 5:a70c0bce770d 2780 {
mjr 38:091e511ce8a0 2781 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 2782 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 2783 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 2784
mjr 5:a70c0bce770d 2785 // clock the SCL 9 times
mjr 5:a70c0bce770d 2786 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 2787 {
mjr 5:a70c0bce770d 2788 scl = 1;
mjr 5:a70c0bce770d 2789 wait_us(20);
mjr 5:a70c0bce770d 2790 scl = 0;
mjr 5:a70c0bce770d 2791 wait_us(20);
mjr 5:a70c0bce770d 2792 }
mjr 5:a70c0bce770d 2793 }
mjr 14:df700b22ca08 2794
mjr 14:df700b22ca08 2795 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 2796 //
mjr 33:d832bcab089e 2797 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 2798 // for a given interval before allowing an update.
mjr 33:d832bcab089e 2799 //
mjr 33:d832bcab089e 2800 class Debouncer
mjr 33:d832bcab089e 2801 {
mjr 33:d832bcab089e 2802 public:
mjr 33:d832bcab089e 2803 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 2804 {
mjr 33:d832bcab089e 2805 t.start();
mjr 33:d832bcab089e 2806 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 2807 this->tmin = tmin;
mjr 33:d832bcab089e 2808 }
mjr 33:d832bcab089e 2809
mjr 33:d832bcab089e 2810 // Get the current stable value
mjr 33:d832bcab089e 2811 bool val() const { return stable; }
mjr 33:d832bcab089e 2812
mjr 33:d832bcab089e 2813 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 2814 // input device.
mjr 33:d832bcab089e 2815 void sampleIn(bool val)
mjr 33:d832bcab089e 2816 {
mjr 33:d832bcab089e 2817 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 2818 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 2819 // on the sample reader.
mjr 33:d832bcab089e 2820 if (val != prv)
mjr 33:d832bcab089e 2821 {
mjr 33:d832bcab089e 2822 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 2823 t.reset();
mjr 33:d832bcab089e 2824
mjr 33:d832bcab089e 2825 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 2826 prv = val;
mjr 33:d832bcab089e 2827 }
mjr 33:d832bcab089e 2828 else if (val != stable)
mjr 33:d832bcab089e 2829 {
mjr 33:d832bcab089e 2830 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 2831 // and different from the stable value. This means that
mjr 33:d832bcab089e 2832 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 2833 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 2834 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 2835 if (t.read() > tmin)
mjr 33:d832bcab089e 2836 stable = val;
mjr 33:d832bcab089e 2837 }
mjr 33:d832bcab089e 2838 }
mjr 33:d832bcab089e 2839
mjr 33:d832bcab089e 2840 private:
mjr 33:d832bcab089e 2841 // current stable value
mjr 33:d832bcab089e 2842 bool stable;
mjr 33:d832bcab089e 2843
mjr 33:d832bcab089e 2844 // last raw sample value
mjr 33:d832bcab089e 2845 bool prv;
mjr 33:d832bcab089e 2846
mjr 33:d832bcab089e 2847 // elapsed time since last raw input change
mjr 33:d832bcab089e 2848 Timer t;
mjr 33:d832bcab089e 2849
mjr 33:d832bcab089e 2850 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 2851 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 2852 float tmin;
mjr 33:d832bcab089e 2853 };
mjr 33:d832bcab089e 2854
mjr 33:d832bcab089e 2855
mjr 33:d832bcab089e 2856 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2857 //
mjr 33:d832bcab089e 2858 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 2859 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 2860 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 2861 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 2862 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 2863 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 2864 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 2865 //
mjr 33:d832bcab089e 2866 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 2867 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 2868 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 2869 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 2870 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 2871 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 2872 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 2873 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 2874 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 2875 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 2876 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 2877 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 2878 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 2879 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 2880 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 2881 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 2882 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 2883 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 2884 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 2885 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 2886 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 2887 //
mjr 40:cc0d9814522b 2888 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 2889 // of tricky but likely scenarios:
mjr 33:d832bcab089e 2890 //
mjr 33:d832bcab089e 2891 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 2892 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 2893 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 2894 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 2895 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 2896 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 2897 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 2898 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 2899 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 2900 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 2901 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 2902 //
mjr 33:d832bcab089e 2903 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 2904 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 2905 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 2906 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 2907 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 2908 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 2909 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 2910 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 2911 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 2912 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 2913 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 2914 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 2915 // first check.
mjr 33:d832bcab089e 2916 //
mjr 33:d832bcab089e 2917 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 2918 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 2919 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 2920 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 2921 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 2922 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 2923 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 2924 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 2925 //
mjr 33:d832bcab089e 2926
mjr 33:d832bcab089e 2927 // Current PSU2 state:
mjr 33:d832bcab089e 2928 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 2929 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 2930 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 2931 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 2932 // 5 -> TV relay on
mjr 73:4e8ce0b18915 2933 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 2934
mjr 73:4e8ce0b18915 2935 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 2936 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 2937 // separate state for each:
mjr 73:4e8ce0b18915 2938 //
mjr 73:4e8ce0b18915 2939 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 2940 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 2941 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 2942 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 2943 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 2944
mjr 73:4e8ce0b18915 2945 // TV ON switch relay control
mjr 73:4e8ce0b18915 2946 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 2947
mjr 35:e959ffba78fd 2948 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 2949 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 2950 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 2951
mjr 73:4e8ce0b18915 2952 // Apply the current TV relay state
mjr 73:4e8ce0b18915 2953 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 2954 {
mjr 73:4e8ce0b18915 2955 // update the state
mjr 73:4e8ce0b18915 2956 if (state)
mjr 73:4e8ce0b18915 2957 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 2958 else
mjr 73:4e8ce0b18915 2959 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 2960
mjr 73:4e8ce0b18915 2961 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 2962 if (tv_relay != 0)
mjr 73:4e8ce0b18915 2963 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 2964 }
mjr 35:e959ffba78fd 2965
mjr 35:e959ffba78fd 2966 // Timer interrupt
mjr 35:e959ffba78fd 2967 Ticker tv_ticker;
mjr 35:e959ffba78fd 2968 float tv_delay_time;
mjr 33:d832bcab089e 2969 void TVTimerInt()
mjr 33:d832bcab089e 2970 {
mjr 35:e959ffba78fd 2971 // time since last state change
mjr 35:e959ffba78fd 2972 static Timer tv_timer;
mjr 35:e959ffba78fd 2973
mjr 33:d832bcab089e 2974 // Check our internal state
mjr 33:d832bcab089e 2975 switch (psu2_state)
mjr 33:d832bcab089e 2976 {
mjr 33:d832bcab089e 2977 case 1:
mjr 33:d832bcab089e 2978 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 2979 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 2980 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 2981 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 2982 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 2983 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 2984 {
mjr 33:d832bcab089e 2985 // switch to OFF state
mjr 33:d832bcab089e 2986 psu2_state = 2;
mjr 33:d832bcab089e 2987
mjr 33:d832bcab089e 2988 // try setting the latch
mjr 35:e959ffba78fd 2989 psu2_status_set->write(1);
mjr 33:d832bcab089e 2990 }
mjr 33:d832bcab089e 2991 break;
mjr 33:d832bcab089e 2992
mjr 33:d832bcab089e 2993 case 2:
mjr 33:d832bcab089e 2994 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 2995 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 2996 psu2_status_set->write(0);
mjr 33:d832bcab089e 2997 psu2_state = 3;
mjr 33:d832bcab089e 2998 break;
mjr 33:d832bcab089e 2999
mjr 33:d832bcab089e 3000 case 3:
mjr 33:d832bcab089e 3001 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3002 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3003 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3004 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3005 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3006 {
mjr 33:d832bcab089e 3007 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3008 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3009 tv_timer.reset();
mjr 33:d832bcab089e 3010 tv_timer.start();
mjr 33:d832bcab089e 3011 psu2_state = 4;
mjr 73:4e8ce0b18915 3012
mjr 73:4e8ce0b18915 3013 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3014 powerTimerDiagState = 2;
mjr 73:4e8ce0b18915 3015 diagLED();
mjr 33:d832bcab089e 3016 }
mjr 33:d832bcab089e 3017 else
mjr 33:d832bcab089e 3018 {
mjr 33:d832bcab089e 3019 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 3020 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 3021 // was turned on since the last check.
mjr 35:e959ffba78fd 3022 psu2_status_set->write(1);
mjr 33:d832bcab089e 3023 psu2_state = 2;
mjr 33:d832bcab089e 3024 }
mjr 33:d832bcab089e 3025 break;
mjr 33:d832bcab089e 3026
mjr 33:d832bcab089e 3027 case 4:
mjr 33:d832bcab089e 3028 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 3029 // delay time, pulse the relay.
mjr 35:e959ffba78fd 3030 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 3031 {
mjr 33:d832bcab089e 3032 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 3033 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 3034 psu2_state = 5;
mjr 33:d832bcab089e 3035 }
mjr 73:4e8ce0b18915 3036
mjr 73:4e8ce0b18915 3037 // flash the power time diagnostic every two interrupts
mjr 73:4e8ce0b18915 3038 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 73:4e8ce0b18915 3039 diagLED();
mjr 33:d832bcab089e 3040 break;
mjr 33:d832bcab089e 3041
mjr 33:d832bcab089e 3042 case 5:
mjr 33:d832bcab089e 3043 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 3044 // it's now time to turn it off and return to the default state.
mjr 73:4e8ce0b18915 3045 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 33:d832bcab089e 3046 psu2_state = 1;
mjr 73:4e8ce0b18915 3047
mjr 73:4e8ce0b18915 3048 // done with the diagnostic flashes
mjr 73:4e8ce0b18915 3049 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 3050 diagLED();
mjr 33:d832bcab089e 3051 break;
mjr 33:d832bcab089e 3052 }
mjr 33:d832bcab089e 3053 }
mjr 33:d832bcab089e 3054
mjr 35:e959ffba78fd 3055 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 3056 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 3057 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 3058 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 3059 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 3060 {
mjr 55:4db125cd11a0 3061 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 3062 // time is nonzero
mjr 55:4db125cd11a0 3063 if (cfg.TVON.delayTime != 0
mjr 55:4db125cd11a0 3064 && cfg.TVON.statusPin != 0xFF
mjr 53:9b2611964afc 3065 && cfg.TVON.latchPin != 0xFF
mjr 53:9b2611964afc 3066 && cfg.TVON.relayPin != 0xFF)
mjr 35:e959ffba78fd 3067 {
mjr 53:9b2611964afc 3068 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 3069 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 53:9b2611964afc 3070 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 73:4e8ce0b18915 3071 tv_delay_time = cfg.TVON.delayTime/100.0f;
mjr 35:e959ffba78fd 3072
mjr 35:e959ffba78fd 3073 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 3074 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 3075 }
mjr 35:e959ffba78fd 3076 }
mjr 35:e959ffba78fd 3077
mjr 73:4e8ce0b18915 3078 // TV relay manual control timer. This lets us pulse the TV relay
mjr 73:4e8ce0b18915 3079 // under manual control, separately from the TV ON timer.
mjr 73:4e8ce0b18915 3080 Ticker tv_manualTicker;
mjr 73:4e8ce0b18915 3081 void TVManualInt()
mjr 73:4e8ce0b18915 3082 {
mjr 73:4e8ce0b18915 3083 tv_manualTicker.detach();
mjr 73:4e8ce0b18915 3084 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 3085 }
mjr 73:4e8ce0b18915 3086
mjr 73:4e8ce0b18915 3087 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 3088 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 3089 //
mjr 73:4e8ce0b18915 3090 // Mode:
mjr 73:4e8ce0b18915 3091 // 0 = turn relay off
mjr 73:4e8ce0b18915 3092 // 1 = turn relay on
mjr 73:4e8ce0b18915 3093 // 2 = pulse relay
mjr 73:4e8ce0b18915 3094 void TVRelay(int mode)
mjr 73:4e8ce0b18915 3095 {
mjr 73:4e8ce0b18915 3096 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 3097 if (tv_relay == 0)
mjr 73:4e8ce0b18915 3098 return;
mjr 73:4e8ce0b18915 3099
mjr 73:4e8ce0b18915 3100 switch (mode)
mjr 73:4e8ce0b18915 3101 {
mjr 73:4e8ce0b18915 3102 case 0:
mjr 73:4e8ce0b18915 3103 // relay off
mjr 73:4e8ce0b18915 3104 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 3105 break;
mjr 73:4e8ce0b18915 3106
mjr 73:4e8ce0b18915 3107 case 1:
mjr 73:4e8ce0b18915 3108 // relay on
mjr 73:4e8ce0b18915 3109 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 3110 break;
mjr 73:4e8ce0b18915 3111
mjr 73:4e8ce0b18915 3112 case 2:
mjr 73:4e8ce0b18915 3113 // Pulse the relay. Turn it on, then set our timer for 250ms.
mjr 73:4e8ce0b18915 3114 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 3115 tv_manualTicker.attach(&TVManualInt, 0.25);
mjr 73:4e8ce0b18915 3116 break;
mjr 73:4e8ce0b18915 3117 }
mjr 73:4e8ce0b18915 3118 }
mjr 73:4e8ce0b18915 3119
mjr 73:4e8ce0b18915 3120
mjr 35:e959ffba78fd 3121 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3122 //
mjr 35:e959ffba78fd 3123 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 3124 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 3125 //
mjr 35:e959ffba78fd 3126 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 3127 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 3128 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 3129 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 3130 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 3131 // again each time the firmware is updated.
mjr 35:e959ffba78fd 3132 //
mjr 35:e959ffba78fd 3133 NVM nvm;
mjr 35:e959ffba78fd 3134
mjr 35:e959ffba78fd 3135 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 3136 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 3137
mjr 35:e959ffba78fd 3138 // flash memory controller interface
mjr 35:e959ffba78fd 3139 FreescaleIAP iap;
mjr 35:e959ffba78fd 3140
mjr 35:e959ffba78fd 3141 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 3142 // required to store the structure
mjr 35:e959ffba78fd 3143 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 3144 {
mjr 35:e959ffba78fd 3145 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 3146 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 3147
mjr 35:e959ffba78fd 3148 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 3149 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 3150 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 3151
mjr 35:e959ffba78fd 3152 // return the address as a pointer
mjr 35:e959ffba78fd 3153 return (NVM *)addr;
mjr 35:e959ffba78fd 3154 }
mjr 35:e959ffba78fd 3155
mjr 35:e959ffba78fd 3156 // figure the flash address as a pointer
mjr 35:e959ffba78fd 3157 NVM *configFlashAddr()
mjr 35:e959ffba78fd 3158 {
mjr 35:e959ffba78fd 3159 int addr, numSectors;
mjr 35:e959ffba78fd 3160 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 3161 }
mjr 35:e959ffba78fd 3162
mjr 35:e959ffba78fd 3163 // Load the config from flash
mjr 35:e959ffba78fd 3164 void loadConfigFromFlash()
mjr 35:e959ffba78fd 3165 {
mjr 35:e959ffba78fd 3166 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 3167 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 3168 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 3169 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 3170 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 3171 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 3172 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 3173 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 3174 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 3175 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 3176 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 3177 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 3178 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 3179 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 3180 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 3181 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 3182
mjr 35:e959ffba78fd 3183 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 3184 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 3185
mjr 35:e959ffba78fd 3186 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 3187 if (flash->valid())
mjr 35:e959ffba78fd 3188 {
mjr 35:e959ffba78fd 3189 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 3190 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 3191 }
mjr 35:e959ffba78fd 3192 else
mjr 35:e959ffba78fd 3193 {
mjr 35:e959ffba78fd 3194 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 3195 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 3196 }
mjr 35:e959ffba78fd 3197 }
mjr 35:e959ffba78fd 3198
mjr 35:e959ffba78fd 3199 void saveConfigToFlash()
mjr 33:d832bcab089e 3200 {
mjr 35:e959ffba78fd 3201 int addr, sectors;
mjr 35:e959ffba78fd 3202 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 3203 nvm.save(iap, addr);
mjr 35:e959ffba78fd 3204 }
mjr 35:e959ffba78fd 3205
mjr 35:e959ffba78fd 3206 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3207 //
mjr 55:4db125cd11a0 3208 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 3209 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 3210 //
mjr 55:4db125cd11a0 3211 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 3212 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 3213 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 3214
mjr 55:4db125cd11a0 3215
mjr 55:4db125cd11a0 3216
mjr 55:4db125cd11a0 3217 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 3218 //
mjr 40:cc0d9814522b 3219 // Night mode setting updates
mjr 40:cc0d9814522b 3220 //
mjr 38:091e511ce8a0 3221
mjr 38:091e511ce8a0 3222 // Turn night mode on or off
mjr 38:091e511ce8a0 3223 static void setNightMode(bool on)
mjr 38:091e511ce8a0 3224 {
mjr 40:cc0d9814522b 3225 // set the new night mode flag in the noisy output class
mjr 53:9b2611964afc 3226 nightMode = on;
mjr 55:4db125cd11a0 3227
mjr 40:cc0d9814522b 3228 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 3229 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 3230 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 3231 lwPin[port]->set(nightMode ? 255 : 0);
mjr 40:cc0d9814522b 3232
mjr 40:cc0d9814522b 3233 // update all outputs for the mode change
mjr 40:cc0d9814522b 3234 updateAllOuts();
mjr 38:091e511ce8a0 3235 }
mjr 38:091e511ce8a0 3236
mjr 38:091e511ce8a0 3237 // Toggle night mode
mjr 38:091e511ce8a0 3238 static void toggleNightMode()
mjr 38:091e511ce8a0 3239 {
mjr 53:9b2611964afc 3240 setNightMode(!nightMode);
mjr 38:091e511ce8a0 3241 }
mjr 38:091e511ce8a0 3242
mjr 38:091e511ce8a0 3243
mjr 38:091e511ce8a0 3244 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 3245 //
mjr 35:e959ffba78fd 3246 // Plunger Sensor
mjr 35:e959ffba78fd 3247 //
mjr 35:e959ffba78fd 3248
mjr 35:e959ffba78fd 3249 // the plunger sensor interface object
mjr 35:e959ffba78fd 3250 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 3251
mjr 35:e959ffba78fd 3252 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 3253 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 3254 void createPlunger()
mjr 35:e959ffba78fd 3255 {
mjr 35:e959ffba78fd 3256 // create the new sensor object according to the type
mjr 35:e959ffba78fd 3257 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 3258 {
mjr 35:e959ffba78fd 3259 case PlungerType_TSL1410RS:
mjr 69:cc5039284fac 3260 // TSL1410R, serial mode (all pixels read in one file)
mjr 35:e959ffba78fd 3261 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 3262 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 3263 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3264 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3265 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3266 NC);
mjr 35:e959ffba78fd 3267 break;
mjr 35:e959ffba78fd 3268
mjr 35:e959ffba78fd 3269 case PlungerType_TSL1410RP:
mjr 69:cc5039284fac 3270 // TSL1410R, parallel mode (each half-sensor's pixels read separately)
mjr 35:e959ffba78fd 3271 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3272 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 3273 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3274 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3275 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3276 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 3277 break;
mjr 35:e959ffba78fd 3278
mjr 69:cc5039284fac 3279 case PlungerType_TSL1412SS:
mjr 69:cc5039284fac 3280 // TSL1412S, serial mode
mjr 35:e959ffba78fd 3281 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3282 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 3283 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3284 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3285 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3286 NC);
mjr 35:e959ffba78fd 3287 break;
mjr 35:e959ffba78fd 3288
mjr 69:cc5039284fac 3289 case PlungerType_TSL1412SP:
mjr 69:cc5039284fac 3290 // TSL1412S, parallel mode
mjr 35:e959ffba78fd 3291 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 3292 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 3293 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 3294 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 3295 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 3296 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 3297 break;
mjr 35:e959ffba78fd 3298
mjr 35:e959ffba78fd 3299 case PlungerType_Pot:
mjr 35:e959ffba78fd 3300 // pins are: AO
mjr 53:9b2611964afc 3301 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 3302 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 3303 break;
mjr 35:e959ffba78fd 3304
mjr 35:e959ffba78fd 3305 case PlungerType_None:
mjr 35:e959ffba78fd 3306 default:
mjr 35:e959ffba78fd 3307 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 3308 break;
mjr 35:e959ffba78fd 3309 }
mjr 33:d832bcab089e 3310 }
mjr 33:d832bcab089e 3311
mjr 52:8298b2a73eb2 3312 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 3313 bool plungerCalMode;
mjr 52:8298b2a73eb2 3314
mjr 48:058ace2aed1d 3315 // Plunger reader
mjr 51:57eb311faafa 3316 //
mjr 51:57eb311faafa 3317 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 3318 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 3319 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 3320 //
mjr 51:57eb311faafa 3321 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 3322 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 3323 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 3324 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 3325 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 3326 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 3327 // firing motion.
mjr 51:57eb311faafa 3328 //
mjr 51:57eb311faafa 3329 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 3330 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 3331 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 3332 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 3333 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 3334 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 3335 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 3336 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 3337 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 3338 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 3339 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 3340 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 3341 // a classic digital aliasing effect.
mjr 51:57eb311faafa 3342 //
mjr 51:57eb311faafa 3343 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 3344 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 3345 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 3346 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 3347 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 3348 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 3349 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 3350 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 3351 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 3352 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 3353 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 3354 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 3355 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 3356 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 3357 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 3358 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 3359 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 3360 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 3361 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 3362 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 3363 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 3364 //
mjr 48:058ace2aed1d 3365 class PlungerReader
mjr 48:058ace2aed1d 3366 {
mjr 48:058ace2aed1d 3367 public:
mjr 48:058ace2aed1d 3368 PlungerReader()
mjr 48:058ace2aed1d 3369 {
mjr 48:058ace2aed1d 3370 // not in a firing event yet
mjr 48:058ace2aed1d 3371 firing = 0;
mjr 48:058ace2aed1d 3372
mjr 48:058ace2aed1d 3373 // no history yet
mjr 48:058ace2aed1d 3374 histIdx = 0;
mjr 55:4db125cd11a0 3375
mjr 55:4db125cd11a0 3376 // initialize the filter
mjr 55:4db125cd11a0 3377 initFilter();
mjr 48:058ace2aed1d 3378 }
mjr 48:058ace2aed1d 3379
mjr 48:058ace2aed1d 3380 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 3381 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 3382 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 3383 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 3384 void read()
mjr 48:058ace2aed1d 3385 {
mjr 48:058ace2aed1d 3386 // Read a sample from the sensor
mjr 48:058ace2aed1d 3387 PlungerReading r;
mjr 48:058ace2aed1d 3388 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 3389 {
mjr 69:cc5039284fac 3390 // filter the raw sensor reading
mjr 69:cc5039284fac 3391 applyPreFilter(r);
mjr 69:cc5039284fac 3392
mjr 51:57eb311faafa 3393 // Pull the previous reading from the history
mjr 50:40015764bbe6 3394 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 3395
mjr 69:cc5039284fac 3396 // If the new reading is within 1ms of the previous reading,
mjr 48:058ace2aed1d 3397 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 3398 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 3399 // denominator (the time interval) for calculating the plunger
mjr 69:cc5039284fac 3400 // velocity. The CCD sensor hardware takes about 2.5ms to
mjr 69:cc5039284fac 3401 // read, so it will never be affected by this, but other sensor
mjr 69:cc5039284fac 3402 // types don't all have the same hardware cycle time, so we need
mjr 69:cc5039284fac 3403 // to throttle them artificially. E.g., the potentiometer only
mjr 69:cc5039284fac 3404 // needs one ADC sample per reading, which only takes about 15us.
mjr 69:cc5039284fac 3405 // We don't need to check which sensor type we have here; we
mjr 69:cc5039284fac 3406 // just ignore readings until the minimum interval has passed,
mjr 69:cc5039284fac 3407 // so if the sensor is already slower than this, we'll end up
mjr 69:cc5039284fac 3408 // using all of its readings.
mjr 69:cc5039284fac 3409 if (uint32_t(r.t - prv.t) < 1000UL)
mjr 48:058ace2aed1d 3410 return;
mjr 53:9b2611964afc 3411
mjr 53:9b2611964afc 3412 // check for calibration mode
mjr 53:9b2611964afc 3413 if (plungerCalMode)
mjr 53:9b2611964afc 3414 {
mjr 53:9b2611964afc 3415 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 3416 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 3417 // expand the envelope to include this new value.
mjr 53:9b2611964afc 3418 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 3419 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 3420 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 3421 cfg.plunger.cal.min = r.pos;
mjr 50:40015764bbe6 3422
mjr 53:9b2611964afc 3423 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 3424 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 3425 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 3426 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 3427 if (calState == 0)
mjr 53:9b2611964afc 3428 {
mjr 53:9b2611964afc 3429 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 3430 {
mjr 53:9b2611964afc 3431 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 3432 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 3433 {
mjr 53:9b2611964afc 3434 // we've been at rest long enough - count it
mjr 53:9b2611964afc 3435 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 3436 calZeroPosN += 1;
mjr 53:9b2611964afc 3437
mjr 53:9b2611964afc 3438 // update the zero position from the new average
mjr 53:9b2611964afc 3439 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 53:9b2611964afc 3440
mjr 53:9b2611964afc 3441 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 3442 calState = 1;
mjr 53:9b2611964afc 3443 }
mjr 53:9b2611964afc 3444 }
mjr 53:9b2611964afc 3445 else
mjr 53:9b2611964afc 3446 {
mjr 53:9b2611964afc 3447 // we're not close to the last position - start again here
mjr 53:9b2611964afc 3448 calZeroStart = r;
mjr 53:9b2611964afc 3449 }
mjr 53:9b2611964afc 3450 }
mjr 53:9b2611964afc 3451
mjr 53:9b2611964afc 3452 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 3453 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 3454 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 3455 r.pos = int(
mjr 53:9b2611964afc 3456 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 3457 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 3458 }
mjr 53:9b2611964afc 3459 else
mjr 53:9b2611964afc 3460 {
mjr 53:9b2611964afc 3461 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 3462 // rescale to the joystick range.
mjr 53:9b2611964afc 3463 r.pos = int(
mjr 53:9b2611964afc 3464 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 3465 / (cfg.plunger.cal.max - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 3466
mjr 53:9b2611964afc 3467 // limit the result to the valid joystick range
mjr 53:9b2611964afc 3468 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 3469 r.pos = JOYMAX;
mjr 53:9b2611964afc 3470 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 3471 r.pos = -JOYMAX;
mjr 53:9b2611964afc 3472 }
mjr 50:40015764bbe6 3473
mjr 50:40015764bbe6 3474 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 3475 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 3476 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 3477 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 3478 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 3479 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 3480 // large.
mjr 50:40015764bbe6 3481 //
mjr 50:40015764bbe6 3482 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 3483 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 3484 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 3485 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 3486 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 3487 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 3488 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 3489 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 3490 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 3491 //
mjr 50:40015764bbe6 3492 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 3493 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 3494 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 3495 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 3496 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 3497 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 3498 // a little CPU time by using the natural units of our inputs.
mjr 51:57eb311faafa 3499 const PlungerReading &prv2 = nthHist(1);
mjr 50:40015764bbe6 3500 float v = float(r.pos - prv2.pos)/float(r.t - prv2.t);
mjr 50:40015764bbe6 3501
mjr 50:40015764bbe6 3502 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 3503 z = r.pos;
mjr 50:40015764bbe6 3504 vz = v;
mjr 48:058ace2aed1d 3505
mjr 50:40015764bbe6 3506 // Check firing events
mjr 50:40015764bbe6 3507 switch (firing)
mjr 50:40015764bbe6 3508 {
mjr 50:40015764bbe6 3509 case 0:
mjr 50:40015764bbe6 3510 // Default state - not in a firing event.
mjr 50:40015764bbe6 3511
mjr 50:40015764bbe6 3512 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 3513 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 3514 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 3515 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 3516 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 3517 {
mjr 53:9b2611964afc 3518 // enter firing phase 1
mjr 50:40015764bbe6 3519 firingMode(1);
mjr 50:40015764bbe6 3520
mjr 53:9b2611964afc 3521 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 3522 // at rest)
mjr 53:9b2611964afc 3523 if (calState == 1)
mjr 53:9b2611964afc 3524 calState = 2;
mjr 53:9b2611964afc 3525
mjr 50:40015764bbe6 3526 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 3527 f1.pos = 0;
mjr 50:40015764bbe6 3528 f1.t = r.t;
mjr 50:40015764bbe6 3529
mjr 50:40015764bbe6 3530 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 3531 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 3532 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 3533 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 3534 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 3535 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 3536 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 3537 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 3538 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 3539 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 3540 }
mjr 50:40015764bbe6 3541 break;
mjr 50:40015764bbe6 3542
mjr 50:40015764bbe6 3543 case 1:
mjr 50:40015764bbe6 3544 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 3545 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 3546 // see acceleration in the forward direction.
mjr 50:40015764bbe6 3547 if (r.pos <= 0)
mjr 50:40015764bbe6 3548 {
mjr 50:40015764bbe6 3549 // switch to the synthetic firing mode
mjr 50:40015764bbe6 3550 firingMode(2);
mjr 50:40015764bbe6 3551 z = f2.pos;
mjr 50:40015764bbe6 3552
mjr 50:40015764bbe6 3553 // note the start time for the firing phase
mjr 50:40015764bbe6 3554 f2.t = r.t;
mjr 53:9b2611964afc 3555
mjr 53:9b2611964afc 3556 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 3557 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 3558 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 3559 {
mjr 53:9b2611964afc 3560 // collect a new zero point for the average when we
mjr 53:9b2611964afc 3561 // come to rest
mjr 53:9b2611964afc 3562 calState = 0;
mjr 53:9b2611964afc 3563
mjr 53:9b2611964afc 3564 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 3565 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 3566 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 3567 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 3568 {
mjr 53:9b2611964afc 3569 calRlsTimeSum += dt;
mjr 53:9b2611964afc 3570 calRlsTimeN += 1;
mjr 53:9b2611964afc 3571 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 3572 }
mjr 53:9b2611964afc 3573 }
mjr 50:40015764bbe6 3574 }
mjr 50:40015764bbe6 3575 else if (v < vprv2)
mjr 50:40015764bbe6 3576 {
mjr 50:40015764bbe6 3577 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 3578 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 3579 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 3580 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 3581 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 3582 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 3583
mjr 50:40015764bbe6 3584 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 3585 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 3586 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 3587 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 3588 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 3589 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 3590 if (f1.pos != 0)
mjr 50:40015764bbe6 3591 {
mjr 50:40015764bbe6 3592 // we have a reset point - freeze there
mjr 50:40015764bbe6 3593 z = f1.pos;
mjr 50:40015764bbe6 3594 }
mjr 50:40015764bbe6 3595 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 3596 {
mjr 50:40015764bbe6 3597 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 3598 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 3599 }
mjr 50:40015764bbe6 3600 }
mjr 50:40015764bbe6 3601 else
mjr 50:40015764bbe6 3602 {
mjr 50:40015764bbe6 3603 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 3604 firingMode(0);
mjr 53:9b2611964afc 3605 calState = 1;
mjr 50:40015764bbe6 3606 }
mjr 50:40015764bbe6 3607 break;
mjr 50:40015764bbe6 3608
mjr 50:40015764bbe6 3609 case 2:
mjr 50:40015764bbe6 3610 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 3611 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 3612 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 3613 // report at least once.
mjr 50:40015764bbe6 3614 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 3615 {
mjr 50:40015764bbe6 3616 // report the bounce position
mjr 50:40015764bbe6 3617 z = f2.pos;
mjr 50:40015764bbe6 3618 }
mjr 50:40015764bbe6 3619 else
mjr 50:40015764bbe6 3620 {
mjr 50:40015764bbe6 3621 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 3622 // report the park position until the real plunger comes
mjr 50:40015764bbe6 3623 // to rest
mjr 50:40015764bbe6 3624 firingMode(3);
mjr 50:40015764bbe6 3625 z = 0;
mjr 50:40015764bbe6 3626
mjr 50:40015764bbe6 3627 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 3628 f3s.t = r.t;
mjr 50:40015764bbe6 3629 f3s.pos = 0;
mjr 50:40015764bbe6 3630
mjr 50:40015764bbe6 3631 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 3632 f3r = r;
mjr 50:40015764bbe6 3633 }
mjr 50:40015764bbe6 3634 break;
mjr 50:40015764bbe6 3635
mjr 50:40015764bbe6 3636 case 3:
mjr 50:40015764bbe6 3637 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 3638 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 3639 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 3640 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 3641 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 3642 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 3643 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 3644 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 3645 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 3646 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 3647 // for longer.
mjr 50:40015764bbe6 3648 if (v >= 0)
mjr 50:40015764bbe6 3649 {
mjr 50:40015764bbe6 3650 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 3651 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 3652 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 3653 {
mjr 50:40015764bbe6 3654 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 3655 firingMode(0);
mjr 50:40015764bbe6 3656 break;
mjr 50:40015764bbe6 3657 }
mjr 50:40015764bbe6 3658 }
mjr 50:40015764bbe6 3659 else
mjr 50:40015764bbe6 3660 {
mjr 50:40015764bbe6 3661 // forward motion - reset retraction window
mjr 50:40015764bbe6 3662 f3r.t = r.t;
mjr 50:40015764bbe6 3663 }
mjr 50:40015764bbe6 3664
mjr 53:9b2611964afc 3665 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 3666 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 3667 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 3668 // about 100 units.
mjr 53:9b2611964afc 3669 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 3670 {
mjr 53:9b2611964afc 3671 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 3672 // Consider it stable if this has been true for 300ms.
mjr 50:40015764bbe6 3673 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 3674 {
mjr 50:40015764bbe6 3675 // we're done with the firing event
mjr 50:40015764bbe6 3676 firingMode(0);
mjr 50:40015764bbe6 3677 }
mjr 50:40015764bbe6 3678 else
mjr 50:40015764bbe6 3679 {
mjr 50:40015764bbe6 3680 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 3681 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 3682 // to report the park position
mjr 50:40015764bbe6 3683 z = 0;
mjr 50:40015764bbe6 3684 }
mjr 50:40015764bbe6 3685 }
mjr 50:40015764bbe6 3686 else
mjr 50:40015764bbe6 3687 {
mjr 50:40015764bbe6 3688 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 3689 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 3690 f3s = r;
mjr 50:40015764bbe6 3691 z = 0;
mjr 50:40015764bbe6 3692 }
mjr 50:40015764bbe6 3693 break;
mjr 50:40015764bbe6 3694 }
mjr 50:40015764bbe6 3695
mjr 50:40015764bbe6 3696 // save the velocity reading for next time
mjr 50:40015764bbe6 3697 vprv2 = vprv;
mjr 50:40015764bbe6 3698 vprv = v;
mjr 50:40015764bbe6 3699
mjr 50:40015764bbe6 3700 // add the new reading to the history
mjr 50:40015764bbe6 3701 hist[histIdx++] = r;
mjr 50:40015764bbe6 3702 histIdx %= countof(hist);
mjr 58:523fdcffbe6d 3703
mjr 69:cc5039284fac 3704 // apply the post-processing filter
mjr 69:cc5039284fac 3705 zf = applyPostFilter();
mjr 48:058ace2aed1d 3706 }
mjr 48:058ace2aed1d 3707 }
mjr 48:058ace2aed1d 3708
mjr 48:058ace2aed1d 3709 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 3710 int16_t getPosition()
mjr 58:523fdcffbe6d 3711 {
mjr 58:523fdcffbe6d 3712 // return the last filtered reading
mjr 58:523fdcffbe6d 3713 return zf;
mjr 55:4db125cd11a0 3714 }
mjr 58:523fdcffbe6d 3715
mjr 48:058ace2aed1d 3716 // Get the current velocity (joystick distance units per microsecond)
mjr 48:058ace2aed1d 3717 float getVelocity() const { return vz; }
mjr 48:058ace2aed1d 3718
mjr 48:058ace2aed1d 3719 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 3720 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 3721
mjr 48:058ace2aed1d 3722 // Set calibration mode on or off
mjr 52:8298b2a73eb2 3723 void setCalMode(bool f)
mjr 48:058ace2aed1d 3724 {
mjr 52:8298b2a73eb2 3725 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 3726 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 3727 {
mjr 52:8298b2a73eb2 3728 // reset the calibration in the configuration
mjr 48:058ace2aed1d 3729 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 3730
mjr 52:8298b2a73eb2 3731 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 3732 calState = 0;
mjr 52:8298b2a73eb2 3733 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 3734 calZeroPosN = 0;
mjr 52:8298b2a73eb2 3735 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 3736 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 3737
mjr 52:8298b2a73eb2 3738 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 3739 PlungerReading r;
mjr 52:8298b2a73eb2 3740 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 3741 {
mjr 52:8298b2a73eb2 3742 // got a reading - use it as the initial zero point
mjr 69:cc5039284fac 3743 applyPreFilter(r);
mjr 52:8298b2a73eb2 3744 cfg.plunger.cal.zero = r.pos;
mjr 52:8298b2a73eb2 3745
mjr 52:8298b2a73eb2 3746 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 3747 calZeroStart = r;
mjr 52:8298b2a73eb2 3748 }
mjr 52:8298b2a73eb2 3749 else
mjr 52:8298b2a73eb2 3750 {
mjr 52:8298b2a73eb2 3751 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 3752 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 3753
mjr 52:8298b2a73eb2 3754 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 3755 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 3756 calZeroStart.t = 0;
mjr 53:9b2611964afc 3757 }
mjr 53:9b2611964afc 3758 }
mjr 53:9b2611964afc 3759 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 3760 {
mjr 53:9b2611964afc 3761 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 3762 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 3763 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 3764 // physically meaningless.
mjr 53:9b2611964afc 3765 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 3766 {
mjr 53:9b2611964afc 3767 // bad settings - reset to defaults
mjr 53:9b2611964afc 3768 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 3769 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 3770 }
mjr 52:8298b2a73eb2 3771 }
mjr 52:8298b2a73eb2 3772
mjr 48:058ace2aed1d 3773 // remember the new mode
mjr 52:8298b2a73eb2 3774 plungerCalMode = f;
mjr 48:058ace2aed1d 3775 }
mjr 48:058ace2aed1d 3776
mjr 48:058ace2aed1d 3777 // is a firing event in progress?
mjr 53:9b2611964afc 3778 bool isFiring() { return firing == 3; }
mjr 48:058ace2aed1d 3779
mjr 48:058ace2aed1d 3780 private:
mjr 52:8298b2a73eb2 3781
mjr 73:4e8ce0b18915 3782 // Plunger data filtering mode: optionally apply filtering to the raw
mjr 73:4e8ce0b18915 3783 // plunger sensor readings to try to reduce noise in the signal. This
mjr 73:4e8ce0b18915 3784 // is designed for the TSL1410/12 optical sensors, where essentially all
mjr 73:4e8ce0b18915 3785 // of the noise in the signal comes from lack of sharpness in the shadow
mjr 73:4e8ce0b18915 3786 // edge. When the shadow is blurry, the edge detector has to pick a pixel,
mjr 73:4e8ce0b18915 3787 // even though the edge is actually a gradient spanning several pixels.
mjr 73:4e8ce0b18915 3788 // The edge detection algorithm decides on the exact pixel, but whatever
mjr 73:4e8ce0b18915 3789 // the algorithm, the choice is going to be somewhat arbitrary given that
mjr 73:4e8ce0b18915 3790 // there's really no one pixel that's "the edge" when the edge actually
mjr 73:4e8ce0b18915 3791 // covers multiple pixels. This can make the choice of pixel sensitive to
mjr 73:4e8ce0b18915 3792 // small changes in exposure and pixel respose from frame to frame, which
mjr 73:4e8ce0b18915 3793 // means that the reported edge position can move by a pixel or two from
mjr 73:4e8ce0b18915 3794 // one frame to the next even when the physical plunger is perfectly still.
mjr 73:4e8ce0b18915 3795 // That's the noise we're talking about.
mjr 73:4e8ce0b18915 3796 //
mjr 73:4e8ce0b18915 3797 // We previously applied a mild hysteresis filter to the signal to try to
mjr 73:4e8ce0b18915 3798 // eliminate this noise. The filter tracked the average over the last
mjr 73:4e8ce0b18915 3799 // several samples, and rejected readings that wandered within a few
mjr 73:4e8ce0b18915 3800 // pixels of the average. If a certain number of readings moved away from
mjr 73:4e8ce0b18915 3801 // the average in the same direction, even by small amounts, the filter
mjr 73:4e8ce0b18915 3802 // accepted the changes, on the assumption that they represented actual
mjr 73:4e8ce0b18915 3803 // slow movement of the plunger. This filter was applied after the firing
mjr 73:4e8ce0b18915 3804 // detection.
mjr 73:4e8ce0b18915 3805 //
mjr 73:4e8ce0b18915 3806 // I also tried a simpler filter that rejected changes that were too fast
mjr 73:4e8ce0b18915 3807 // to be physically possible, as well as changes that were very close to
mjr 73:4e8ce0b18915 3808 // the last reported position (i.e., simple hysteresis). The "too fast"
mjr 73:4e8ce0b18915 3809 // filter was there to reject spurious readings where the edge detector
mjr 73:4e8ce0b18915 3810 // mistook a bad pixel value as an edge.
mjr 73:4e8ce0b18915 3811 //
mjr 73:4e8ce0b18915 3812 // The new "mode 2" edge detector (see ccdSensor.h) seems to do a better
mjr 73:4e8ce0b18915 3813 // job of rejecting pixel-level noise by itself than the older "mode 0"
mjr 73:4e8ce0b18915 3814 // algorithm did, so I removed the filtering entirely. Any filtering has
mjr 73:4e8ce0b18915 3815 // some downsides, so it's better to reduce noise in the underlying signal
mjr 73:4e8ce0b18915 3816 // as much as possible first. It seems possible to get a very stable signal
mjr 73:4e8ce0b18915 3817 // now with a combination of the mode 2 edge detector and optimizing the
mjr 73:4e8ce0b18915 3818 // physical sensor arrangement, especially optimizing the light source to
mjr 73:4e8ce0b18915 3819 // cast as sharp as shadow as possible and adjusting the brightness to
mjr 73:4e8ce0b18915 3820 // maximize bright/dark contrast in the image.
mjr 73:4e8ce0b18915 3821 //
mjr 73:4e8ce0b18915 3822 // 0 = No filtering (current default)
mjr 73:4e8ce0b18915 3823 // 1 = Filter the data after firing detection using moving average
mjr 73:4e8ce0b18915 3824 // hysteresis filter (old version, used in most 2016 releases)
mjr 73:4e8ce0b18915 3825 // 2 = Filter the data before firing detection using simple hysteresis
mjr 73:4e8ce0b18915 3826 // plus spurious "too fast" motion rejection
mjr 73:4e8ce0b18915 3827 //
mjr 73:4e8ce0b18915 3828 #define PLUNGER_FILTERING_MODE 0
mjr 73:4e8ce0b18915 3829
mjr 73:4e8ce0b18915 3830 #if PLUNGER_FILTERING_MODE == 0
mjr 69:cc5039284fac 3831 // Disable all filtering
mjr 69:cc5039284fac 3832 void applyPreFilter(PlungerReading &r) { }
mjr 69:cc5039284fac 3833 int applyPostFilter() { return z; }
mjr 73:4e8ce0b18915 3834 #elif PLUNGER_FILTERING_MODE == 1
mjr 73:4e8ce0b18915 3835 // Apply pre-processing filter. This filter is applied to the raw
mjr 73:4e8ce0b18915 3836 // value coming off the sensor, before calibration or fire-event
mjr 73:4e8ce0b18915 3837 // processing.
mjr 73:4e8ce0b18915 3838 void applyPreFilter(PlungerReading &r)
mjr 73:4e8ce0b18915 3839 {
mjr 73:4e8ce0b18915 3840 }
mjr 73:4e8ce0b18915 3841
mjr 73:4e8ce0b18915 3842 // Figure the next post-processing filtered value. This applies a
mjr 73:4e8ce0b18915 3843 // hysteresis filter to the last raw z value and returns the
mjr 73:4e8ce0b18915 3844 // filtered result.
mjr 73:4e8ce0b18915 3845 int applyPostFilter()
mjr 73:4e8ce0b18915 3846 {
mjr 73:4e8ce0b18915 3847 if (firing <= 1)
mjr 73:4e8ce0b18915 3848 {
mjr 73:4e8ce0b18915 3849 // Filter limit - 5 samples. Once we've been moving
mjr 73:4e8ce0b18915 3850 // in the same direction for this many samples, we'll
mjr 73:4e8ce0b18915 3851 // clear the history and start over.
mjr 73:4e8ce0b18915 3852 const int filterMask = 0x1f;
mjr 73:4e8ce0b18915 3853
mjr 73:4e8ce0b18915 3854 // figure the last average
mjr 73:4e8ce0b18915 3855 int lastAvg = int(filterSum / filterN);
mjr 73:4e8ce0b18915 3856
mjr 73:4e8ce0b18915 3857 // figure the direction of this sample relative to the average,
mjr 73:4e8ce0b18915 3858 // and shift it in to our bit mask of recent direction data
mjr 73:4e8ce0b18915 3859 if (z != lastAvg)
mjr 73:4e8ce0b18915 3860 {
mjr 73:4e8ce0b18915 3861 // shift the new direction bit into the vector
mjr 73:4e8ce0b18915 3862 filterDir <<= 1;
mjr 73:4e8ce0b18915 3863 if (z > lastAvg) filterDir |= 1;
mjr 73:4e8ce0b18915 3864 }
mjr 73:4e8ce0b18915 3865
mjr 73:4e8ce0b18915 3866 // keep only the last N readings, up to the filter limit
mjr 73:4e8ce0b18915 3867 filterDir &= filterMask;
mjr 73:4e8ce0b18915 3868
mjr 73:4e8ce0b18915 3869 // if we've been moving consistently in one direction (all 1's
mjr 73:4e8ce0b18915 3870 // or all 0's in the direction history vector), reset the average
mjr 73:4e8ce0b18915 3871 if (filterDir == 0x00 || filterDir == filterMask)
mjr 73:4e8ce0b18915 3872 {
mjr 73:4e8ce0b18915 3873 // motion away from the average - reset the average
mjr 73:4e8ce0b18915 3874 filterDir = 0x5555;
mjr 73:4e8ce0b18915 3875 filterN = 1;
mjr 73:4e8ce0b18915 3876 filterSum = (lastAvg + z)/2;
mjr 73:4e8ce0b18915 3877 return int16_t(filterSum);
mjr 73:4e8ce0b18915 3878 }
mjr 73:4e8ce0b18915 3879 else
mjr 73:4e8ce0b18915 3880 {
mjr 73:4e8ce0b18915 3881 // we're directionless - return the new average, with the
mjr 73:4e8ce0b18915 3882 // new sample included
mjr 73:4e8ce0b18915 3883 filterSum += z;
mjr 73:4e8ce0b18915 3884 ++filterN;
mjr 73:4e8ce0b18915 3885 return int16_t(filterSum / filterN);
mjr 73:4e8ce0b18915 3886 }
mjr 73:4e8ce0b18915 3887 }
mjr 73:4e8ce0b18915 3888 else
mjr 73:4e8ce0b18915 3889 {
mjr 73:4e8ce0b18915 3890 // firing mode - skip the filter
mjr 73:4e8ce0b18915 3891 filterN = 1;
mjr 73:4e8ce0b18915 3892 filterSum = z;
mjr 73:4e8ce0b18915 3893 filterDir = 0x5555;
mjr 73:4e8ce0b18915 3894 return z;
mjr 73:4e8ce0b18915 3895 }
mjr 73:4e8ce0b18915 3896 }
mjr 73:4e8ce0b18915 3897 #elif PLUNGER_FILTERING_MODE == 2
mjr 69:cc5039284fac 3898 // Apply pre-processing filter. This filter is applied to the raw
mjr 69:cc5039284fac 3899 // value coming off the sensor, before calibration or fire-event
mjr 69:cc5039284fac 3900 // processing.
mjr 69:cc5039284fac 3901 void applyPreFilter(PlungerReading &r)
mjr 69:cc5039284fac 3902 {
mjr 69:cc5039284fac 3903 // get the previous raw reading
mjr 69:cc5039284fac 3904 PlungerReading prv = pre.raw;
mjr 69:cc5039284fac 3905
mjr 69:cc5039284fac 3906 // the new reading is the previous raw reading next time, no
mjr 69:cc5039284fac 3907 // matter how we end up filtering it
mjr 69:cc5039284fac 3908 pre.raw = r;
mjr 69:cc5039284fac 3909
mjr 69:cc5039284fac 3910 // If it's too big an excursion from the previous raw reading,
mjr 69:cc5039284fac 3911 // ignore it and repeat the previous reported reading. This
mjr 69:cc5039284fac 3912 // filters out anomalous spikes where we suddenly jump to a
mjr 69:cc5039284fac 3913 // level that's too far away to be possible. Real plungers
mjr 69:cc5039284fac 3914 // take about 60ms to travel the full distance when released,
mjr 69:cc5039284fac 3915 // so assuming constant acceleration, the maximum realistic
mjr 69:cc5039284fac 3916 // speed is about 2.200 distance units (on our 0..0xffff scale)
mjr 69:cc5039284fac 3917 // per microsecond.
mjr 69:cc5039284fac 3918 //
mjr 69:cc5039284fac 3919 // On the other hand, if the new reading is too *close* to the
mjr 69:cc5039284fac 3920 // previous reading, use the previous reported reading. This
mjr 69:cc5039284fac 3921 // filters out jitter around a stationary position.
mjr 69:cc5039284fac 3922 const float maxDist = 2.184f*uint32_t(r.t - prv.t);
mjr 69:cc5039284fac 3923 const int minDist = 256;
mjr 69:cc5039284fac 3924 const int delta = abs(r.pos - prv.pos);
mjr 69:cc5039284fac 3925 if (maxDist > minDist && delta > maxDist)
mjr 69:cc5039284fac 3926 {
mjr 69:cc5039284fac 3927 // too big an excursion - discard this reading by reporting
mjr 69:cc5039284fac 3928 // the last reported reading instead
mjr 69:cc5039284fac 3929 r.pos = pre.reported;
mjr 69:cc5039284fac 3930 }
mjr 69:cc5039284fac 3931 else if (delta < minDist)
mjr 69:cc5039284fac 3932 {
mjr 69:cc5039284fac 3933 // too close to the prior reading - apply hysteresis
mjr 69:cc5039284fac 3934 r.pos = pre.reported;
mjr 69:cc5039284fac 3935 }
mjr 69:cc5039284fac 3936 else
mjr 69:cc5039284fac 3937 {
mjr 69:cc5039284fac 3938 // the reading is in range - keep it, and remember it as
mjr 69:cc5039284fac 3939 // the last reported reading
mjr 69:cc5039284fac 3940 pre.reported = r.pos;
mjr 69:cc5039284fac 3941 }
mjr 69:cc5039284fac 3942 }
mjr 69:cc5039284fac 3943
mjr 69:cc5039284fac 3944 // pre-filter data
mjr 69:cc5039284fac 3945 struct PreFilterData {
mjr 69:cc5039284fac 3946 PreFilterData()
mjr 69:cc5039284fac 3947 : reported(0)
mjr 69:cc5039284fac 3948 {
mjr 69:cc5039284fac 3949 raw.t = 0;
mjr 69:cc5039284fac 3950 raw.pos = 0;
mjr 69:cc5039284fac 3951 }
mjr 69:cc5039284fac 3952 PlungerReading raw; // previous raw sensor reading
mjr 69:cc5039284fac 3953 int reported; // previous reported reading
mjr 69:cc5039284fac 3954 } pre;
mjr 69:cc5039284fac 3955
mjr 69:cc5039284fac 3956
mjr 69:cc5039284fac 3957 // Apply the post-processing filter. This filter is applied after
mjr 69:cc5039284fac 3958 // the fire-event processing. In the past, this used hysteresis to
mjr 69:cc5039284fac 3959 // try to smooth out jittering readings for a stationary plunger.
mjr 69:cc5039284fac 3960 // We've switched to a different approach that massages the readings
mjr 69:cc5039284fac 3961 // coming off the sensor before
mjr 69:cc5039284fac 3962 int applyPostFilter()
mjr 69:cc5039284fac 3963 {
mjr 69:cc5039284fac 3964 return z;
mjr 69:cc5039284fac 3965 }
mjr 69:cc5039284fac 3966 #endif
mjr 58:523fdcffbe6d 3967
mjr 58:523fdcffbe6d 3968 void initFilter()
mjr 58:523fdcffbe6d 3969 {
mjr 58:523fdcffbe6d 3970 filterSum = 0;
mjr 58:523fdcffbe6d 3971 filterN = 1;
mjr 58:523fdcffbe6d 3972 filterDir = 0x5555;
mjr 58:523fdcffbe6d 3973 }
mjr 58:523fdcffbe6d 3974 int64_t filterSum;
mjr 58:523fdcffbe6d 3975 int64_t filterN;
mjr 58:523fdcffbe6d 3976 uint16_t filterDir;
mjr 58:523fdcffbe6d 3977
mjr 58:523fdcffbe6d 3978
mjr 52:8298b2a73eb2 3979 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 3980 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 3981 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 3982 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 3983 // 0 = waiting to settle
mjr 52:8298b2a73eb2 3984 // 1 = at rest
mjr 52:8298b2a73eb2 3985 // 2 = retracting
mjr 52:8298b2a73eb2 3986 // 3 = possibly releasing
mjr 52:8298b2a73eb2 3987 uint8_t calState;
mjr 52:8298b2a73eb2 3988
mjr 52:8298b2a73eb2 3989 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 3990 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 3991 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 3992 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 3993 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 3994 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 3995 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 3996 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 3997 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 3998 long calZeroPosSum;
mjr 52:8298b2a73eb2 3999 int calZeroPosN;
mjr 52:8298b2a73eb2 4000
mjr 52:8298b2a73eb2 4001 // Calibration release time statistics.
mjr 52:8298b2a73eb2 4002 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 4003 long calRlsTimeSum;
mjr 52:8298b2a73eb2 4004 int calRlsTimeN;
mjr 52:8298b2a73eb2 4005
mjr 48:058ace2aed1d 4006 // set a firing mode
mjr 48:058ace2aed1d 4007 inline void firingMode(int m)
mjr 48:058ace2aed1d 4008 {
mjr 48:058ace2aed1d 4009 firing = m;
mjr 48:058ace2aed1d 4010 }
mjr 48:058ace2aed1d 4011
mjr 48:058ace2aed1d 4012 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 4013 // the given time limit.
mjr 48:058ace2aed1d 4014 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 4015 {
mjr 48:058ace2aed1d 4016 // start with the prior entry
mjr 48:058ace2aed1d 4017 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 4018 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 4019
mjr 48:058ace2aed1d 4020 // scan backwards for a local maximum
mjr 48:058ace2aed1d 4021 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 4022 {
mjr 48:058ace2aed1d 4023 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 4024 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 4025 break;
mjr 48:058ace2aed1d 4026
mjr 48:058ace2aed1d 4027 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 4028 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 4029 break;
mjr 48:058ace2aed1d 4030
mjr 48:058ace2aed1d 4031 // this is the new high
mjr 48:058ace2aed1d 4032 hi = hist[idx].pos;
mjr 48:058ace2aed1d 4033 }
mjr 48:058ace2aed1d 4034
mjr 48:058ace2aed1d 4035 // return the local maximum
mjr 48:058ace2aed1d 4036 return hi;
mjr 48:058ace2aed1d 4037 }
mjr 48:058ace2aed1d 4038
mjr 50:40015764bbe6 4039 // velocity at previous reading, and the one before that
mjr 50:40015764bbe6 4040 float vprv, vprv2;
mjr 48:058ace2aed1d 4041
mjr 48:058ace2aed1d 4042 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 4043 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 4044 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 4045 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 4046 // exactly when it started. We throttle our readings to no more
mjr 48:058ace2aed1d 4047 // than one every 2ms, so we have at least N*2ms of history in this
mjr 48:058ace2aed1d 4048 // array.
mjr 50:40015764bbe6 4049 PlungerReading hist[25];
mjr 48:058ace2aed1d 4050 int histIdx;
mjr 49:37bd97eb7688 4051
mjr 50:40015764bbe6 4052 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 50:40015764bbe6 4053 const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 4054 {
mjr 50:40015764bbe6 4055 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 4056 n = histIdx - 1 - n;
mjr 50:40015764bbe6 4057
mjr 50:40015764bbe6 4058 // adjust for wrapping
mjr 50:40015764bbe6 4059 if (n < 0)
mjr 50:40015764bbe6 4060 n += countof(hist);
mjr 50:40015764bbe6 4061
mjr 50:40015764bbe6 4062 // return the item
mjr 50:40015764bbe6 4063 return hist[n];
mjr 50:40015764bbe6 4064 }
mjr 48:058ace2aed1d 4065
mjr 48:058ace2aed1d 4066 // Firing event state.
mjr 48:058ace2aed1d 4067 //
mjr 48:058ace2aed1d 4068 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 4069 // position to the joystick interface.
mjr 48:058ace2aed1d 4070 //
mjr 53:9b2611964afc 4071 // 1 - Moving forward
mjr 48:058ace2aed1d 4072 //
mjr 53:9b2611964afc 4073 // 2 - Accelerating
mjr 48:058ace2aed1d 4074 //
mjr 53:9b2611964afc 4075 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 4076 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 4077 //
mjr 48:058ace2aed1d 4078 int firing;
mjr 48:058ace2aed1d 4079
mjr 51:57eb311faafa 4080 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 4081 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 4082 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 4083 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 4084 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 4085 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 4086 PlungerReading f1;
mjr 48:058ace2aed1d 4087
mjr 48:058ace2aed1d 4088 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 4089 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 4090 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 4091 // after enough time elapses.
mjr 48:058ace2aed1d 4092 PlungerReading f2;
mjr 48:058ace2aed1d 4093
mjr 48:058ace2aed1d 4094 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 4095 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 4096 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 4097 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 4098 PlungerReading f3s;
mjr 48:058ace2aed1d 4099
mjr 48:058ace2aed1d 4100 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 4101 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 4102 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 4103 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 4104 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 4105 // freely.
mjr 48:058ace2aed1d 4106 PlungerReading f3r;
mjr 48:058ace2aed1d 4107
mjr 58:523fdcffbe6d 4108 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 4109 // (in joystick distance units)
mjr 48:058ace2aed1d 4110 int z;
mjr 48:058ace2aed1d 4111
mjr 48:058ace2aed1d 4112 // velocity of this reading (joystick distance units per microsecond)
mjr 48:058ace2aed1d 4113 float vz;
mjr 58:523fdcffbe6d 4114
mjr 58:523fdcffbe6d 4115 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 4116 int zf;
mjr 48:058ace2aed1d 4117 };
mjr 48:058ace2aed1d 4118
mjr 48:058ace2aed1d 4119 // plunger reader singleton
mjr 48:058ace2aed1d 4120 PlungerReader plungerReader;
mjr 48:058ace2aed1d 4121
mjr 48:058ace2aed1d 4122 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 4123 //
mjr 48:058ace2aed1d 4124 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 4125 //
mjr 48:058ace2aed1d 4126 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 4127 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 4128 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 4129 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 4130 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 4131 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 4132 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 4133 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 4134 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 4135 //
mjr 48:058ace2aed1d 4136 // This feature has two configuration components:
mjr 48:058ace2aed1d 4137 //
mjr 48:058ace2aed1d 4138 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 4139 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 4140 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 4141 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 4142 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 4143 // plunger/launch button connection.
mjr 48:058ace2aed1d 4144 //
mjr 48:058ace2aed1d 4145 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 4146 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 4147 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 4148 // position.
mjr 48:058ace2aed1d 4149 //
mjr 48:058ace2aed1d 4150 class ZBLaunchBall
mjr 48:058ace2aed1d 4151 {
mjr 48:058ace2aed1d 4152 public:
mjr 48:058ace2aed1d 4153 ZBLaunchBall()
mjr 48:058ace2aed1d 4154 {
mjr 48:058ace2aed1d 4155 // start in the default state
mjr 48:058ace2aed1d 4156 lbState = 0;
mjr 53:9b2611964afc 4157 btnState = false;
mjr 48:058ace2aed1d 4158 }
mjr 48:058ace2aed1d 4159
mjr 48:058ace2aed1d 4160 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 4161 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 4162 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 4163 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 4164 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 4165 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 4166 void update()
mjr 48:058ace2aed1d 4167 {
mjr 53:9b2611964afc 4168 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 4169 // plunger firing event
mjr 53:9b2611964afc 4170 if (zbLaunchOn)
mjr 48:058ace2aed1d 4171 {
mjr 53:9b2611964afc 4172 // note the new position
mjr 48:058ace2aed1d 4173 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 4174
mjr 53:9b2611964afc 4175 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 4176 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 4177
mjr 53:9b2611964afc 4178 // check the state
mjr 48:058ace2aed1d 4179 switch (lbState)
mjr 48:058ace2aed1d 4180 {
mjr 48:058ace2aed1d 4181 case 0:
mjr 53:9b2611964afc 4182 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 4183 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 4184 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 4185 // the button.
mjr 53:9b2611964afc 4186 if (plungerReader.isFiring())
mjr 53:9b2611964afc 4187 {
mjr 53:9b2611964afc 4188 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 4189 lbTimer.reset();
mjr 53:9b2611964afc 4190 lbTimer.start();
mjr 53:9b2611964afc 4191 setButton(true);
mjr 53:9b2611964afc 4192
mjr 53:9b2611964afc 4193 // switch to state 1
mjr 53:9b2611964afc 4194 lbState = 1;
mjr 53:9b2611964afc 4195 }
mjr 48:058ace2aed1d 4196 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 4197 {
mjr 53:9b2611964afc 4198 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 4199 // button as long as we're pushed forward
mjr 53:9b2611964afc 4200 setButton(true);
mjr 53:9b2611964afc 4201 }
mjr 53:9b2611964afc 4202 else
mjr 53:9b2611964afc 4203 {
mjr 53:9b2611964afc 4204 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 4205 setButton(false);
mjr 53:9b2611964afc 4206 }
mjr 48:058ace2aed1d 4207 break;
mjr 48:058ace2aed1d 4208
mjr 48:058ace2aed1d 4209 case 1:
mjr 53:9b2611964afc 4210 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 4211 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 4212 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 4213 {
mjr 53:9b2611964afc 4214 // timer expired - turn off the button
mjr 53:9b2611964afc 4215 setButton(false);
mjr 53:9b2611964afc 4216
mjr 53:9b2611964afc 4217 // switch to state 2
mjr 53:9b2611964afc 4218 lbState = 2;
mjr 53:9b2611964afc 4219 }
mjr 48:058ace2aed1d 4220 break;
mjr 48:058ace2aed1d 4221
mjr 48:058ace2aed1d 4222 case 2:
mjr 53:9b2611964afc 4223 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 4224 // plunger launch event to end.
mjr 53:9b2611964afc 4225 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 4226 {
mjr 53:9b2611964afc 4227 // firing event done - return to default state
mjr 53:9b2611964afc 4228 lbState = 0;
mjr 53:9b2611964afc 4229 }
mjr 48:058ace2aed1d 4230 break;
mjr 48:058ace2aed1d 4231 }
mjr 53:9b2611964afc 4232 }
mjr 53:9b2611964afc 4233 else
mjr 53:9b2611964afc 4234 {
mjr 53:9b2611964afc 4235 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 4236 setButton(false);
mjr 48:058ace2aed1d 4237
mjr 53:9b2611964afc 4238 // return to the default state
mjr 53:9b2611964afc 4239 lbState = 0;
mjr 48:058ace2aed1d 4240 }
mjr 48:058ace2aed1d 4241 }
mjr 53:9b2611964afc 4242
mjr 53:9b2611964afc 4243 // Set the button state
mjr 53:9b2611964afc 4244 void setButton(bool on)
mjr 53:9b2611964afc 4245 {
mjr 53:9b2611964afc 4246 if (btnState != on)
mjr 53:9b2611964afc 4247 {
mjr 53:9b2611964afc 4248 // remember the new state
mjr 53:9b2611964afc 4249 btnState = on;
mjr 53:9b2611964afc 4250
mjr 53:9b2611964afc 4251 // update the virtual button state
mjr 65:739875521aae 4252 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 4253 }
mjr 53:9b2611964afc 4254 }
mjr 53:9b2611964afc 4255
mjr 48:058ace2aed1d 4256 private:
mjr 48:058ace2aed1d 4257 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 4258 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 4259 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 4260 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 4261 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 4262 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 4263 //
mjr 48:058ace2aed1d 4264 // States:
mjr 48:058ace2aed1d 4265 // 0 = default
mjr 53:9b2611964afc 4266 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 4267 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 4268 // firing event to end)
mjr 53:9b2611964afc 4269 uint8_t lbState;
mjr 48:058ace2aed1d 4270
mjr 53:9b2611964afc 4271 // button state
mjr 53:9b2611964afc 4272 bool btnState;
mjr 48:058ace2aed1d 4273
mjr 48:058ace2aed1d 4274 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 4275 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 4276 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 4277 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 4278 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 4279 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 4280 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 4281 Timer lbTimer;
mjr 48:058ace2aed1d 4282 };
mjr 48:058ace2aed1d 4283
mjr 35:e959ffba78fd 4284 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4285 //
mjr 35:e959ffba78fd 4286 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 4287 //
mjr 54:fd77a6b2f76c 4288 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 4289 {
mjr 35:e959ffba78fd 4290 // disconnect from USB
mjr 54:fd77a6b2f76c 4291 if (disconnect)
mjr 54:fd77a6b2f76c 4292 js.disconnect();
mjr 35:e959ffba78fd 4293
mjr 35:e959ffba78fd 4294 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 4295 wait_us(pause_us);
mjr 35:e959ffba78fd 4296
mjr 35:e959ffba78fd 4297 // reset the device
mjr 35:e959ffba78fd 4298 NVIC_SystemReset();
mjr 35:e959ffba78fd 4299 while (true) { }
mjr 35:e959ffba78fd 4300 }
mjr 35:e959ffba78fd 4301
mjr 35:e959ffba78fd 4302 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4303 //
mjr 35:e959ffba78fd 4304 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 4305 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 4306 //
mjr 35:e959ffba78fd 4307 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 4308 {
mjr 35:e959ffba78fd 4309 int tmp;
mjr 35:e959ffba78fd 4310 switch (cfg.orientation)
mjr 35:e959ffba78fd 4311 {
mjr 35:e959ffba78fd 4312 case OrientationFront:
mjr 35:e959ffba78fd 4313 tmp = x;
mjr 35:e959ffba78fd 4314 x = y;
mjr 35:e959ffba78fd 4315 y = tmp;
mjr 35:e959ffba78fd 4316 break;
mjr 35:e959ffba78fd 4317
mjr 35:e959ffba78fd 4318 case OrientationLeft:
mjr 35:e959ffba78fd 4319 x = -x;
mjr 35:e959ffba78fd 4320 break;
mjr 35:e959ffba78fd 4321
mjr 35:e959ffba78fd 4322 case OrientationRight:
mjr 35:e959ffba78fd 4323 y = -y;
mjr 35:e959ffba78fd 4324 break;
mjr 35:e959ffba78fd 4325
mjr 35:e959ffba78fd 4326 case OrientationRear:
mjr 35:e959ffba78fd 4327 tmp = -x;
mjr 35:e959ffba78fd 4328 x = -y;
mjr 35:e959ffba78fd 4329 y = tmp;
mjr 35:e959ffba78fd 4330 break;
mjr 35:e959ffba78fd 4331 }
mjr 35:e959ffba78fd 4332 }
mjr 35:e959ffba78fd 4333
mjr 35:e959ffba78fd 4334 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4335 //
mjr 35:e959ffba78fd 4336 // Calibration button state:
mjr 35:e959ffba78fd 4337 // 0 = not pushed
mjr 35:e959ffba78fd 4338 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 4339 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 4340 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 4341 int calBtnState = 0;
mjr 35:e959ffba78fd 4342
mjr 35:e959ffba78fd 4343 // calibration button debounce timer
mjr 35:e959ffba78fd 4344 Timer calBtnTimer;
mjr 35:e959ffba78fd 4345
mjr 35:e959ffba78fd 4346 // calibration button light state
mjr 35:e959ffba78fd 4347 int calBtnLit = false;
mjr 35:e959ffba78fd 4348
mjr 35:e959ffba78fd 4349
mjr 35:e959ffba78fd 4350 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4351 //
mjr 40:cc0d9814522b 4352 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 4353 //
mjr 40:cc0d9814522b 4354
mjr 40:cc0d9814522b 4355 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 4356 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 4357 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 4358 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 53:9b2611964afc 4359 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 4360 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 40:cc0d9814522b 4361 #define v_func configVarSet
mjr 40:cc0d9814522b 4362 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 4363
mjr 40:cc0d9814522b 4364 // redefine everything for the SET messages
mjr 40:cc0d9814522b 4365 #undef if_msg_valid
mjr 40:cc0d9814522b 4366 #undef v_byte
mjr 40:cc0d9814522b 4367 #undef v_ui16
mjr 40:cc0d9814522b 4368 #undef v_pin
mjr 53:9b2611964afc 4369 #undef v_byte_ro
mjr 40:cc0d9814522b 4370 #undef v_func
mjr 38:091e511ce8a0 4371
mjr 40:cc0d9814522b 4372 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 4373 #define if_msg_valid(test)
mjr 53:9b2611964afc 4374 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 4375 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 4376 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 4377 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 40:cc0d9814522b 4378 #define v_func configVarGet
mjr 40:cc0d9814522b 4379 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 4380
mjr 35:e959ffba78fd 4381
mjr 35:e959ffba78fd 4382 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4383 //
mjr 35:e959ffba78fd 4384 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 4385 // LedWiz protocol.
mjr 33:d832bcab089e 4386 //
mjr 48:058ace2aed1d 4387 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js)
mjr 35:e959ffba78fd 4388 {
mjr 38:091e511ce8a0 4389 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 4390 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 4391 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 4392 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 4393 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 4394 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 4395 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 4396 // So our full protocol is as follows:
mjr 38:091e511ce8a0 4397 //
mjr 38:091e511ce8a0 4398 // first byte =
mjr 38:091e511ce8a0 4399 // 0-48 -> LWZ-PBA
mjr 38:091e511ce8a0 4400 // 64 -> LWZ SBA
mjr 38:091e511ce8a0 4401 // 65 -> private control message; second byte specifies subtype
mjr 38:091e511ce8a0 4402 // 129-132 -> LWZ-PBA
mjr 38:091e511ce8a0 4403 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 4404 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 4405 // other -> reserved for future use
mjr 38:091e511ce8a0 4406 //
mjr 39:b3815a1c3802 4407 uint8_t *data = lwm.data;
mjr 38:091e511ce8a0 4408 if (data[0] == 64)
mjr 35:e959ffba78fd 4409 {
mjr 38:091e511ce8a0 4410 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 38:091e511ce8a0 4411 // for the outputs; 5th byte is the pulse speed (1-7)
mjr 38:091e511ce8a0 4412 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 38:091e511ce8a0 4413 // data[1], data[2], data[3], data[4], data[5]);
mjr 38:091e511ce8a0 4414
mjr 63:5cd1a5f3a41b 4415 // switch to LedWiz protocol mode
mjr 63:5cd1a5f3a41b 4416 ledWizMode = true;
mjr 63:5cd1a5f3a41b 4417
mjr 38:091e511ce8a0 4418 // update all on/off states
mjr 73:4e8ce0b18915 4419 for (int i = 0, bit = 1, imsg = 1, iwiz = ledWizBank*32 ;
mjr 73:4e8ce0b18915 4420 i < 32 && iwiz < numOutputs ;
mjr 73:4e8ce0b18915 4421 ++i, ++iwiz, bit <<= 1)
mjr 35:e959ffba78fd 4422 {
mjr 38:091e511ce8a0 4423 // figure the on/off state bit for this output
mjr 38:091e511ce8a0 4424 if (bit == 0x100) {
mjr 38:091e511ce8a0 4425 bit = 1;
mjr 73:4e8ce0b18915 4426 ++imsg;
mjr 35:e959ffba78fd 4427 }
mjr 35:e959ffba78fd 4428
mjr 38:091e511ce8a0 4429 // set the on/off state
mjr 73:4e8ce0b18915 4430 wizOn[iwiz] = ((data[imsg] & bit) != 0);
mjr 38:091e511ce8a0 4431 }
mjr 38:091e511ce8a0 4432
mjr 38:091e511ce8a0 4433 // set the flash speed - enforce the value range 1-7
mjr 73:4e8ce0b18915 4434 if (ledWizBank < countof(wizSpeed))
mjr 73:4e8ce0b18915 4435 wizSpeed[ledWizBank] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 38:091e511ce8a0 4436
mjr 38:091e511ce8a0 4437 // update the physical outputs
mjr 38:091e511ce8a0 4438 updateWizOuts();
mjr 38:091e511ce8a0 4439 if (hc595 != 0)
mjr 38:091e511ce8a0 4440 hc595->update();
mjr 38:091e511ce8a0 4441
mjr 38:091e511ce8a0 4442 // reset the PBA counter
mjr 38:091e511ce8a0 4443 pbaIdx = 0;
mjr 38:091e511ce8a0 4444 }
mjr 38:091e511ce8a0 4445 else if (data[0] == 65)
mjr 38:091e511ce8a0 4446 {
mjr 38:091e511ce8a0 4447 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 4448 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 4449 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 4450 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 4451 // message type.
mjr 39:b3815a1c3802 4452 switch (data[1])
mjr 38:091e511ce8a0 4453 {
mjr 39:b3815a1c3802 4454 case 0:
mjr 39:b3815a1c3802 4455 // No Op
mjr 39:b3815a1c3802 4456 break;
mjr 39:b3815a1c3802 4457
mjr 39:b3815a1c3802 4458 case 1:
mjr 38:091e511ce8a0 4459 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 4460 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 4461 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 4462 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 4463 {
mjr 39:b3815a1c3802 4464
mjr 39:b3815a1c3802 4465 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 4466 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 4467 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 4468
mjr 39:b3815a1c3802 4469 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 4470 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 4471
mjr 39:b3815a1c3802 4472 // set the configuration parameters from the message
mjr 39:b3815a1c3802 4473 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 4474 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 4475
mjr 39:b3815a1c3802 4476 // save the configuration
mjr 39:b3815a1c3802 4477 saveConfigToFlash();
mjr 39:b3815a1c3802 4478
mjr 39:b3815a1c3802 4479 // reboot if necessary
mjr 39:b3815a1c3802 4480 if (needReset)
mjr 39:b3815a1c3802 4481 reboot(js);
mjr 39:b3815a1c3802 4482 }
mjr 39:b3815a1c3802 4483 break;
mjr 38:091e511ce8a0 4484
mjr 39:b3815a1c3802 4485 case 2:
mjr 38:091e511ce8a0 4486 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 4487 // (No parameters)
mjr 38:091e511ce8a0 4488
mjr 38:091e511ce8a0 4489 // enter calibration mode
mjr 38:091e511ce8a0 4490 calBtnState = 3;
mjr 52:8298b2a73eb2 4491 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 4492 calBtnTimer.reset();
mjr 39:b3815a1c3802 4493 break;
mjr 39:b3815a1c3802 4494
mjr 39:b3815a1c3802 4495 case 3:
mjr 52:8298b2a73eb2 4496 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 4497 // data[2] = flag bits
mjr 53:9b2611964afc 4498 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 4499 reportPlungerStat = true;
mjr 53:9b2611964afc 4500 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 4501 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 4502
mjr 38:091e511ce8a0 4503 // show purple until we finish sending the report
mjr 38:091e511ce8a0 4504 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 4505 break;
mjr 39:b3815a1c3802 4506
mjr 39:b3815a1c3802 4507 case 4:
mjr 38:091e511ce8a0 4508 // 4 = hardware configuration query
mjr 38:091e511ce8a0 4509 // (No parameters)
mjr 38:091e511ce8a0 4510 js.reportConfig(
mjr 38:091e511ce8a0 4511 numOutputs,
mjr 38:091e511ce8a0 4512 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 4513 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 73:4e8ce0b18915 4514 nvm.valid(), xmalloc_rem);
mjr 39:b3815a1c3802 4515 break;
mjr 39:b3815a1c3802 4516
mjr 39:b3815a1c3802 4517 case 5:
mjr 38:091e511ce8a0 4518 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 4519 allOutputsOff();
mjr 39:b3815a1c3802 4520 break;
mjr 39:b3815a1c3802 4521
mjr 39:b3815a1c3802 4522 case 6:
mjr 38:091e511ce8a0 4523 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 4524 saveConfigToFlash();
mjr 38:091e511ce8a0 4525
mjr 53:9b2611964afc 4526 // before disconnecting, pause for the delay time specified in
mjr 53:9b2611964afc 4527 // the parameter byte (in seconds)
mjr 53:9b2611964afc 4528 rebootTime_us = data[2] * 1000000L;
mjr 53:9b2611964afc 4529 rebootTimer.start();
mjr 39:b3815a1c3802 4530 break;
mjr 40:cc0d9814522b 4531
mjr 40:cc0d9814522b 4532 case 7:
mjr 40:cc0d9814522b 4533 // 7 = Device ID report
mjr 53:9b2611964afc 4534 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 4535 js.reportID(data[2]);
mjr 40:cc0d9814522b 4536 break;
mjr 40:cc0d9814522b 4537
mjr 40:cc0d9814522b 4538 case 8:
mjr 40:cc0d9814522b 4539 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 4540 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 4541 setNightMode(data[2]);
mjr 40:cc0d9814522b 4542 break;
mjr 52:8298b2a73eb2 4543
mjr 52:8298b2a73eb2 4544 case 9:
mjr 52:8298b2a73eb2 4545 // 9 = Config variable query.
mjr 52:8298b2a73eb2 4546 // data[2] = config var ID
mjr 52:8298b2a73eb2 4547 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 4548 {
mjr 53:9b2611964afc 4549 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 4550 // the rest of the buffer
mjr 52:8298b2a73eb2 4551 uint8_t reply[8];
mjr 52:8298b2a73eb2 4552 reply[1] = data[2];
mjr 52:8298b2a73eb2 4553 reply[2] = data[3];
mjr 53:9b2611964afc 4554 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 4555
mjr 52:8298b2a73eb2 4556 // query the value
mjr 52:8298b2a73eb2 4557 configVarGet(reply);
mjr 52:8298b2a73eb2 4558
mjr 52:8298b2a73eb2 4559 // send the reply
mjr 52:8298b2a73eb2 4560 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 4561 }
mjr 52:8298b2a73eb2 4562 break;
mjr 53:9b2611964afc 4563
mjr 53:9b2611964afc 4564 case 10:
mjr 53:9b2611964afc 4565 // 10 = Build ID query.
mjr 53:9b2611964afc 4566 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 4567 break;
mjr 73:4e8ce0b18915 4568
mjr 73:4e8ce0b18915 4569 case 11:
mjr 73:4e8ce0b18915 4570 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 4571 // data[2] = operation:
mjr 73:4e8ce0b18915 4572 // 0 = turn relay off
mjr 73:4e8ce0b18915 4573 // 1 = turn relay on
mjr 73:4e8ce0b18915 4574 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 4575 TVRelay(data[2]);
mjr 73:4e8ce0b18915 4576 break;
mjr 73:4e8ce0b18915 4577
mjr 73:4e8ce0b18915 4578 case 12:
mjr 73:4e8ce0b18915 4579 // 12 = Select virtual LedWiz unit. This selects a bank of 32
mjr 73:4e8ce0b18915 4580 // outputs for subsequent SBA and PBA messages.
mjr 73:4e8ce0b18915 4581 ledWizBank = data[2];
mjr 73:4e8ce0b18915 4582 break;
mjr 73:4e8ce0b18915 4583
mjr 73:4e8ce0b18915 4584 case 13:
mjr 73:4e8ce0b18915 4585 // 13 = Send button status report
mjr 73:4e8ce0b18915 4586 reportButtonStatus(js);
mjr 73:4e8ce0b18915 4587 break;
mjr 38:091e511ce8a0 4588 }
mjr 38:091e511ce8a0 4589 }
mjr 38:091e511ce8a0 4590 else if (data[0] == 66)
mjr 38:091e511ce8a0 4591 {
mjr 38:091e511ce8a0 4592 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 4593 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 4594 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 4595 // in a variable-dependent format.
mjr 40:cc0d9814522b 4596 configVarSet(data);
mjr 38:091e511ce8a0 4597 }
mjr 38:091e511ce8a0 4598 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 4599 {
mjr 38:091e511ce8a0 4600 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 4601 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 4602 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 4603 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 4604 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 4605 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 4606 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 4607 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 4608 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 4609 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 4610 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 4611 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 4612 //
mjr 38:091e511ce8a0 4613 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 4614 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 4615 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 4616 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 4617 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 4618 // address those ports anyway.
mjr 63:5cd1a5f3a41b 4619
mjr 63:5cd1a5f3a41b 4620 // flag that we're in extended protocol mode
mjr 63:5cd1a5f3a41b 4621 ledWizMode = false;
mjr 63:5cd1a5f3a41b 4622
mjr 63:5cd1a5f3a41b 4623 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 4624 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 4625 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 4626
mjr 63:5cd1a5f3a41b 4627 // update each port
mjr 38:091e511ce8a0 4628 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 4629 {
mjr 38:091e511ce8a0 4630 // set the brightness level for the output
mjr 40:cc0d9814522b 4631 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 4632 outLevel[i] = b;
mjr 38:091e511ce8a0 4633
mjr 38:091e511ce8a0 4634 // set the output
mjr 40:cc0d9814522b 4635 lwPin[i]->set(b);
mjr 38:091e511ce8a0 4636 }
mjr 38:091e511ce8a0 4637
mjr 38:091e511ce8a0 4638 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 4639 if (hc595 != 0)
mjr 38:091e511ce8a0 4640 hc595->update();
mjr 38:091e511ce8a0 4641 }
mjr 38:091e511ce8a0 4642 else
mjr 38:091e511ce8a0 4643 {
mjr 38:091e511ce8a0 4644 // Everything else is LWZ-PBA. This is a full "profile"
mjr 38:091e511ce8a0 4645 // dump from the host for one bank of 8 outputs. Each
mjr 38:091e511ce8a0 4646 // byte sets one output in the current bank. The current
mjr 38:091e511ce8a0 4647 // bank is implied; the bank starts at 0 and is reset to 0
mjr 38:091e511ce8a0 4648 // by any LWZ-SBA message, and is incremented to the next
mjr 38:091e511ce8a0 4649 // bank by each LWZ-PBA message. Our variable pbaIdx keeps
mjr 38:091e511ce8a0 4650 // track of our notion of the current bank. There's no direct
mjr 38:091e511ce8a0 4651 // way for the host to select the bank; it just has to count
mjr 38:091e511ce8a0 4652 // on us staying in sync. In practice, the host will always
mjr 38:091e511ce8a0 4653 // send a full set of 4 PBA messages in a row to set all 32
mjr 38:091e511ce8a0 4654 // outputs.
mjr 38:091e511ce8a0 4655 //
mjr 38:091e511ce8a0 4656 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 4657 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 4658 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 4659 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 4660 // protocol mode.
mjr 38:091e511ce8a0 4661 //
mjr 38:091e511ce8a0 4662 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 4663 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 4664
mjr 63:5cd1a5f3a41b 4665 // flag that we received an LedWiz message
mjr 63:5cd1a5f3a41b 4666 ledWizMode = true;
mjr 63:5cd1a5f3a41b 4667
mjr 73:4e8ce0b18915 4668 // Update all output profile settings for the current bank
mjr 73:4e8ce0b18915 4669 for (int i = 0, iwiz = ledWizBank*32 + pbaIdx ;
mjr 73:4e8ce0b18915 4670 i < 8 && iwiz < numOutputs ;
mjr 73:4e8ce0b18915 4671 ++i, ++iwiz)
mjr 73:4e8ce0b18915 4672 wizVal[iwiz] = data[i];
mjr 38:091e511ce8a0 4673
mjr 38:091e511ce8a0 4674 // Update the physical LED state if this is the last bank.
mjr 38:091e511ce8a0 4675 // Note that hosts always send a full set of four PBA
mjr 38:091e511ce8a0 4676 // messages, so there's no need to do a physical update
mjr 38:091e511ce8a0 4677 // until we've received the last bank's PBA message.
mjr 73:4e8ce0b18915 4678 if (pbaIdx >= 24)
mjr 38:091e511ce8a0 4679 {
mjr 35:e959ffba78fd 4680 updateWizOuts();
mjr 35:e959ffba78fd 4681 if (hc595 != 0)
mjr 35:e959ffba78fd 4682 hc595->update();
mjr 35:e959ffba78fd 4683 pbaIdx = 0;
mjr 35:e959ffba78fd 4684 }
mjr 38:091e511ce8a0 4685 else
mjr 38:091e511ce8a0 4686 pbaIdx += 8;
mjr 38:091e511ce8a0 4687 }
mjr 38:091e511ce8a0 4688 }
mjr 35:e959ffba78fd 4689
mjr 33:d832bcab089e 4690
mjr 38:091e511ce8a0 4691 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4692 //
mjr 5:a70c0bce770d 4693 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 4694 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 4695 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 4696 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 4697 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 4698 // port outputs.
mjr 5:a70c0bce770d 4699 //
mjr 0:5acbbe3f4cf4 4700 int main(void)
mjr 0:5acbbe3f4cf4 4701 {
mjr 60:f38da020aa13 4702 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 4703 printf("\r\nPinscape Controller starting\r\n");
mjr 60:f38da020aa13 4704
mjr 60:f38da020aa13 4705 // debugging: print memory config info
mjr 59:94eb9265b6d7 4706 // -> no longer very useful, since we use our own custom malloc/new allocator (see xmalloc() above)
mjr 60:f38da020aa13 4707 // {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 4708
mjr 39:b3815a1c3802 4709 // clear the I2C bus (for the accelerometer)
mjr 35:e959ffba78fd 4710 clear_i2c();
mjr 38:091e511ce8a0 4711
mjr 43:7a6364d82a41 4712 // load the saved configuration (or set factory defaults if no flash
mjr 43:7a6364d82a41 4713 // configuration has ever been saved)
mjr 35:e959ffba78fd 4714 loadConfigFromFlash();
mjr 35:e959ffba78fd 4715
mjr 38:091e511ce8a0 4716 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 4717 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 4718
mjr 33:d832bcab089e 4719 // we're not connected/awake yet
mjr 33:d832bcab089e 4720 bool connected = false;
mjr 40:cc0d9814522b 4721 Timer connectChangeTimer;
mjr 33:d832bcab089e 4722
mjr 35:e959ffba78fd 4723 // create the plunger sensor interface
mjr 35:e959ffba78fd 4724 createPlunger();
mjr 33:d832bcab089e 4725
mjr 60:f38da020aa13 4726 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 4727 init_tlc5940(cfg);
mjr 34:6b981a2afab7 4728
mjr 60:f38da020aa13 4729 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 4730 init_hc595(cfg);
mjr 6:cc35eb643e8f 4731
mjr 54:fd77a6b2f76c 4732 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 4733 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 4734 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 4735 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 4736 initLwOut(cfg);
mjr 48:058ace2aed1d 4737
mjr 60:f38da020aa13 4738 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 4739 if (tlc5940 != 0)
mjr 35:e959ffba78fd 4740 tlc5940->start();
mjr 35:e959ffba78fd 4741
mjr 40:cc0d9814522b 4742 // start the TV timer, if applicable
mjr 40:cc0d9814522b 4743 startTVTimer(cfg);
mjr 48:058ace2aed1d 4744
mjr 35:e959ffba78fd 4745 // initialize the button input ports
mjr 35:e959ffba78fd 4746 bool kbKeys = false;
mjr 35:e959ffba78fd 4747 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 4748
mjr 60:f38da020aa13 4749 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 4750 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 4751 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 4752 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 4753 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 4754 // to the joystick interface.
mjr 51:57eb311faafa 4755 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 4756 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 4757
mjr 60:f38da020aa13 4758 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 4759 // flash pattern while waiting.
mjr 70:9f58735a1732 4760 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 4761 connTimeoutTimer.start();
mjr 70:9f58735a1732 4762 connFlashTimer.start();
mjr 51:57eb311faafa 4763 while (!js.configured())
mjr 51:57eb311faafa 4764 {
mjr 51:57eb311faafa 4765 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 4766 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 4767 {
mjr 51:57eb311faafa 4768 // short yellow flash
mjr 51:57eb311faafa 4769 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 4770 wait_us(50000);
mjr 51:57eb311faafa 4771 diagLED(0, 0, 0);
mjr 51:57eb311faafa 4772
mjr 51:57eb311faafa 4773 // reset the flash timer
mjr 70:9f58735a1732 4774 connFlashTimer.reset();
mjr 51:57eb311faafa 4775 }
mjr 70:9f58735a1732 4776
mjr 70:9f58735a1732 4777 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 4778 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 70:9f58735a1732 4779 reboot(js, false, 0);
mjr 51:57eb311faafa 4780 }
mjr 60:f38da020aa13 4781
mjr 60:f38da020aa13 4782 // we're now connected to the host
mjr 54:fd77a6b2f76c 4783 connected = true;
mjr 40:cc0d9814522b 4784
mjr 60:f38da020aa13 4785 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 4786 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 4787 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 4788 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 4789 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 4790 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 4791 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 4792 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 4793 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 4794 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 4795 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 4796 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 4797 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 4798 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 4799 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 4800 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 4801 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 4802 // around to polling.
mjr 38:091e511ce8a0 4803 Timer jsReportTimer;
mjr 38:091e511ce8a0 4804 jsReportTimer.start();
mjr 38:091e511ce8a0 4805
mjr 60:f38da020aa13 4806 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 4807 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 4808 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 4809 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 4810 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 4811 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 4812 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 4813 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 4814 Timer jsOKTimer;
mjr 38:091e511ce8a0 4815 jsOKTimer.start();
mjr 35:e959ffba78fd 4816
mjr 55:4db125cd11a0 4817 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 4818 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 4819 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 4820 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 4821 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 4822
mjr 55:4db125cd11a0 4823 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 4824 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 4825 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 4826
mjr 55:4db125cd11a0 4827 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 4828 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 4829 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 4830
mjr 35:e959ffba78fd 4831 // initialize the calibration button
mjr 1:d913e0afb2ac 4832 calBtnTimer.start();
mjr 35:e959ffba78fd 4833 calBtnState = 0;
mjr 1:d913e0afb2ac 4834
mjr 1:d913e0afb2ac 4835 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 4836 Timer hbTimer;
mjr 1:d913e0afb2ac 4837 hbTimer.start();
mjr 1:d913e0afb2ac 4838 int hb = 0;
mjr 5:a70c0bce770d 4839 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 4840
mjr 1:d913e0afb2ac 4841 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 4842 Timer acTimer;
mjr 1:d913e0afb2ac 4843 acTimer.start();
mjr 1:d913e0afb2ac 4844
mjr 0:5acbbe3f4cf4 4845 // create the accelerometer object
mjr 5:a70c0bce770d 4846 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 48:058ace2aed1d 4847
mjr 17:ab3cec0c8bf4 4848 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 4849 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 4850 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 4851
mjr 48:058ace2aed1d 4852 // initialize the plunger sensor
mjr 35:e959ffba78fd 4853 plungerSensor->init();
mjr 10:976666ffa4ef 4854
mjr 48:058ace2aed1d 4855 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 4856 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 4857
mjr 54:fd77a6b2f76c 4858 // enable the peripheral chips
mjr 54:fd77a6b2f76c 4859 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 4860 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 4861 if (hc595 != 0)
mjr 54:fd77a6b2f76c 4862 hc595->enable(true);
mjr 43:7a6364d82a41 4863
mjr 1:d913e0afb2ac 4864 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 4865 // host requests
mjr 0:5acbbe3f4cf4 4866 for (;;)
mjr 0:5acbbe3f4cf4 4867 {
mjr 48:058ace2aed1d 4868 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 4869 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 4870 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 4871 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 4872 LedWizMsg lwm;
mjr 48:058ace2aed1d 4873 Timer lwt;
mjr 48:058ace2aed1d 4874 lwt.start();
mjr 48:058ace2aed1d 4875 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 48:058ace2aed1d 4876 handleInputMsg(lwm, js);
mjr 55:4db125cd11a0 4877
mjr 55:4db125cd11a0 4878 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 4879 if (tlc5940 != 0)
mjr 55:4db125cd11a0 4880 tlc5940->send();
mjr 1:d913e0afb2ac 4881
mjr 1:d913e0afb2ac 4882 // check for plunger calibration
mjr 17:ab3cec0c8bf4 4883 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 4884 {
mjr 1:d913e0afb2ac 4885 // check the state
mjr 1:d913e0afb2ac 4886 switch (calBtnState)
mjr 0:5acbbe3f4cf4 4887 {
mjr 1:d913e0afb2ac 4888 case 0:
mjr 1:d913e0afb2ac 4889 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 4890 calBtnTimer.reset();
mjr 1:d913e0afb2ac 4891 calBtnState = 1;
mjr 1:d913e0afb2ac 4892 break;
mjr 1:d913e0afb2ac 4893
mjr 1:d913e0afb2ac 4894 case 1:
mjr 1:d913e0afb2ac 4895 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 4896 // passed, start the hold period
mjr 48:058ace2aed1d 4897 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 4898 calBtnState = 2;
mjr 1:d913e0afb2ac 4899 break;
mjr 1:d913e0afb2ac 4900
mjr 1:d913e0afb2ac 4901 case 2:
mjr 1:d913e0afb2ac 4902 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 4903 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 4904 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 4905 {
mjr 1:d913e0afb2ac 4906 // enter calibration mode
mjr 1:d913e0afb2ac 4907 calBtnState = 3;
mjr 9:fd65b0a94720 4908 calBtnTimer.reset();
mjr 35:e959ffba78fd 4909
mjr 44:b5ac89b9cd5d 4910 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 4911 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 4912 }
mjr 1:d913e0afb2ac 4913 break;
mjr 2:c174f9ee414a 4914
mjr 2:c174f9ee414a 4915 case 3:
mjr 9:fd65b0a94720 4916 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 4917 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 4918 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 4919 break;
mjr 0:5acbbe3f4cf4 4920 }
mjr 0:5acbbe3f4cf4 4921 }
mjr 1:d913e0afb2ac 4922 else
mjr 1:d913e0afb2ac 4923 {
mjr 2:c174f9ee414a 4924 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 4925 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 4926 // and save the results to flash.
mjr 2:c174f9ee414a 4927 //
mjr 2:c174f9ee414a 4928 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 4929 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 4930 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 4931 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 4932 {
mjr 2:c174f9ee414a 4933 // exit calibration mode
mjr 1:d913e0afb2ac 4934 calBtnState = 0;
mjr 52:8298b2a73eb2 4935 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 4936
mjr 6:cc35eb643e8f 4937 // save the updated configuration
mjr 35:e959ffba78fd 4938 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 4939 saveConfigToFlash();
mjr 2:c174f9ee414a 4940 }
mjr 2:c174f9ee414a 4941 else if (calBtnState != 3)
mjr 2:c174f9ee414a 4942 {
mjr 2:c174f9ee414a 4943 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 4944 calBtnState = 0;
mjr 2:c174f9ee414a 4945 }
mjr 1:d913e0afb2ac 4946 }
mjr 1:d913e0afb2ac 4947
mjr 1:d913e0afb2ac 4948 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 4949 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 4950 switch (calBtnState)
mjr 0:5acbbe3f4cf4 4951 {
mjr 1:d913e0afb2ac 4952 case 2:
mjr 1:d913e0afb2ac 4953 // in the hold period - flash the light
mjr 48:058ace2aed1d 4954 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 4955 break;
mjr 1:d913e0afb2ac 4956
mjr 1:d913e0afb2ac 4957 case 3:
mjr 1:d913e0afb2ac 4958 // calibration mode - show steady on
mjr 1:d913e0afb2ac 4959 newCalBtnLit = true;
mjr 1:d913e0afb2ac 4960 break;
mjr 1:d913e0afb2ac 4961
mjr 1:d913e0afb2ac 4962 default:
mjr 1:d913e0afb2ac 4963 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 4964 newCalBtnLit = false;
mjr 1:d913e0afb2ac 4965 break;
mjr 1:d913e0afb2ac 4966 }
mjr 3:3514575d4f86 4967
mjr 3:3514575d4f86 4968 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 4969 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 4970 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 4971 {
mjr 1:d913e0afb2ac 4972 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 4973 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 4974 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 4975 calBtnLed->write(1);
mjr 38:091e511ce8a0 4976 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 4977 }
mjr 2:c174f9ee414a 4978 else {
mjr 17:ab3cec0c8bf4 4979 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 4980 calBtnLed->write(0);
mjr 38:091e511ce8a0 4981 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 4982 }
mjr 1:d913e0afb2ac 4983 }
mjr 35:e959ffba78fd 4984
mjr 48:058ace2aed1d 4985 // read the plunger sensor
mjr 48:058ace2aed1d 4986 plungerReader.read();
mjr 48:058ace2aed1d 4987
mjr 53:9b2611964afc 4988 // update the ZB Launch Ball status
mjr 53:9b2611964afc 4989 zbLaunchBall.update();
mjr 37:ed52738445fc 4990
mjr 53:9b2611964afc 4991 // process button updates
mjr 53:9b2611964afc 4992 processButtons(cfg);
mjr 53:9b2611964afc 4993
mjr 38:091e511ce8a0 4994 // send a keyboard report if we have new data
mjr 37:ed52738445fc 4995 if (kbState.changed)
mjr 37:ed52738445fc 4996 {
mjr 38:091e511ce8a0 4997 // send a keyboard report
mjr 37:ed52738445fc 4998 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 4999 kbState.changed = false;
mjr 37:ed52738445fc 5000 }
mjr 38:091e511ce8a0 5001
mjr 38:091e511ce8a0 5002 // likewise for the media controller
mjr 37:ed52738445fc 5003 if (mediaState.changed)
mjr 37:ed52738445fc 5004 {
mjr 38:091e511ce8a0 5005 // send a media report
mjr 37:ed52738445fc 5006 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 5007 mediaState.changed = false;
mjr 37:ed52738445fc 5008 }
mjr 38:091e511ce8a0 5009
mjr 38:091e511ce8a0 5010 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 5011 bool jsOK = false;
mjr 55:4db125cd11a0 5012
mjr 55:4db125cd11a0 5013 // figure the current status flags for joystick reports
mjr 55:4db125cd11a0 5014 uint16_t statusFlags =
mjr 55:4db125cd11a0 5015 (cfg.plunger.enabled ? 0x01 : 0x00)
mjr 73:4e8ce0b18915 5016 | (nightMode ? 0x02 : 0x00)
mjr 73:4e8ce0b18915 5017 | ((psu2_state & 0x07) << 2);
mjr 17:ab3cec0c8bf4 5018
mjr 50:40015764bbe6 5019 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 5020 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 5021 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 5022 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 5023 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 5024 {
mjr 17:ab3cec0c8bf4 5025 // read the accelerometer
mjr 17:ab3cec0c8bf4 5026 int xa, ya;
mjr 17:ab3cec0c8bf4 5027 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 5028
mjr 17:ab3cec0c8bf4 5029 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 5030 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 5031 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 5032 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 5033 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 5034
mjr 17:ab3cec0c8bf4 5035 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 5036 x = xa;
mjr 17:ab3cec0c8bf4 5037 y = ya;
mjr 17:ab3cec0c8bf4 5038
mjr 48:058ace2aed1d 5039 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 5040 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 5041 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 5042 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 5043 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 5044 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 5045 // regular plunger inputs.
mjr 48:058ace2aed1d 5046 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 5047 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 5048
mjr 35:e959ffba78fd 5049 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 5050 accelRotate(x, y);
mjr 35:e959ffba78fd 5051
mjr 35:e959ffba78fd 5052 // send the joystick report
mjr 53:9b2611964afc 5053 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 5054
mjr 17:ab3cec0c8bf4 5055 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 5056 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 5057 }
mjr 21:5048e16cc9ef 5058
mjr 52:8298b2a73eb2 5059 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 5060 if (reportPlungerStat)
mjr 10:976666ffa4ef 5061 {
mjr 17:ab3cec0c8bf4 5062 // send the report
mjr 53:9b2611964afc 5063 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 5064
mjr 10:976666ffa4ef 5065 // we have satisfied this request
mjr 52:8298b2a73eb2 5066 reportPlungerStat = false;
mjr 10:976666ffa4ef 5067 }
mjr 10:976666ffa4ef 5068
mjr 35:e959ffba78fd 5069 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 5070 // periodically for the sake of the Windows config tool.
mjr 55:4db125cd11a0 5071 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 5000)
mjr 21:5048e16cc9ef 5072 {
mjr 55:4db125cd11a0 5073 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 5074 jsReportTimer.reset();
mjr 38:091e511ce8a0 5075 }
mjr 38:091e511ce8a0 5076
mjr 38:091e511ce8a0 5077 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 5078 if (jsOK)
mjr 38:091e511ce8a0 5079 {
mjr 38:091e511ce8a0 5080 jsOKTimer.reset();
mjr 38:091e511ce8a0 5081 jsOKTimer.start();
mjr 21:5048e16cc9ef 5082 }
mjr 21:5048e16cc9ef 5083
mjr 6:cc35eb643e8f 5084 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 5085 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 5086 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 5087 #endif
mjr 6:cc35eb643e8f 5088
mjr 33:d832bcab089e 5089 // check for connection status changes
mjr 54:fd77a6b2f76c 5090 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 5091 if (newConnected != connected)
mjr 33:d832bcab089e 5092 {
mjr 54:fd77a6b2f76c 5093 // give it a moment to stabilize
mjr 40:cc0d9814522b 5094 connectChangeTimer.start();
mjr 55:4db125cd11a0 5095 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 5096 {
mjr 33:d832bcab089e 5097 // note the new status
mjr 33:d832bcab089e 5098 connected = newConnected;
mjr 40:cc0d9814522b 5099
mjr 40:cc0d9814522b 5100 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 5101 connectChangeTimer.stop();
mjr 40:cc0d9814522b 5102 connectChangeTimer.reset();
mjr 33:d832bcab089e 5103
mjr 54:fd77a6b2f76c 5104 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 5105 if (!connected)
mjr 40:cc0d9814522b 5106 {
mjr 54:fd77a6b2f76c 5107 // turn off all outputs
mjr 33:d832bcab089e 5108 allOutputsOff();
mjr 40:cc0d9814522b 5109
mjr 40:cc0d9814522b 5110 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 5111 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 5112 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 5113 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 5114 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 5115 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 5116 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 5117 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 5118 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 5119 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 5120 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 5121 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 5122 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 5123 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 5124 // the power first comes on.
mjr 40:cc0d9814522b 5125 if (tlc5940 != 0)
mjr 40:cc0d9814522b 5126 tlc5940->enable(false);
mjr 40:cc0d9814522b 5127 if (hc595 != 0)
mjr 40:cc0d9814522b 5128 hc595->enable(false);
mjr 40:cc0d9814522b 5129 }
mjr 33:d832bcab089e 5130 }
mjr 33:d832bcab089e 5131 }
mjr 48:058ace2aed1d 5132
mjr 53:9b2611964afc 5133 // if we have a reboot timer pending, check for completion
mjr 53:9b2611964afc 5134 if (rebootTimer.isRunning() && rebootTimer.read_us() > rebootTime_us)
mjr 53:9b2611964afc 5135 reboot(js);
mjr 53:9b2611964afc 5136
mjr 48:058ace2aed1d 5137 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 5138 if (!connected)
mjr 48:058ace2aed1d 5139 {
mjr 54:fd77a6b2f76c 5140 // show USB HAL debug events
mjr 54:fd77a6b2f76c 5141 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 5142 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 5143
mjr 54:fd77a6b2f76c 5144 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 5145 js.diagFlash();
mjr 54:fd77a6b2f76c 5146
mjr 54:fd77a6b2f76c 5147 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 5148 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5149
mjr 51:57eb311faafa 5150 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 5151 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 5152 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 5153
mjr 54:fd77a6b2f76c 5154 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 5155 Timer diagTimer;
mjr 54:fd77a6b2f76c 5156 diagTimer.reset();
mjr 54:fd77a6b2f76c 5157 diagTimer.start();
mjr 54:fd77a6b2f76c 5158
mjr 54:fd77a6b2f76c 5159 // loop until we get our connection back
mjr 54:fd77a6b2f76c 5160 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 5161 {
mjr 54:fd77a6b2f76c 5162 // try to recover the connection
mjr 54:fd77a6b2f76c 5163 js.recoverConnection();
mjr 54:fd77a6b2f76c 5164
mjr 55:4db125cd11a0 5165 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 5166 if (tlc5940 != 0)
mjr 55:4db125cd11a0 5167 tlc5940->send();
mjr 55:4db125cd11a0 5168
mjr 54:fd77a6b2f76c 5169 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 5170 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5171 {
mjr 54:fd77a6b2f76c 5172 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 5173 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 5174
mjr 54:fd77a6b2f76c 5175 // show diagnostic feedback
mjr 54:fd77a6b2f76c 5176 js.diagFlash();
mjr 51:57eb311faafa 5177
mjr 51:57eb311faafa 5178 // reset the flash timer
mjr 54:fd77a6b2f76c 5179 diagTimer.reset();
mjr 51:57eb311faafa 5180 }
mjr 51:57eb311faafa 5181
mjr 51:57eb311faafa 5182 // if the disconnect reboot timeout has expired, reboot
mjr 51:57eb311faafa 5183 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 5184 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 5185 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 5186 }
mjr 54:fd77a6b2f76c 5187
mjr 54:fd77a6b2f76c 5188 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 5189 connected = true;
mjr 54:fd77a6b2f76c 5190 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 5191
mjr 54:fd77a6b2f76c 5192 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 5193 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 5194 {
mjr 55:4db125cd11a0 5195 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 5196 tlc5940->update(true);
mjr 54:fd77a6b2f76c 5197 }
mjr 54:fd77a6b2f76c 5198 if (hc595 != 0)
mjr 54:fd77a6b2f76c 5199 {
mjr 55:4db125cd11a0 5200 hc595->enable(true);
mjr 54:fd77a6b2f76c 5201 hc595->update(true);
mjr 51:57eb311faafa 5202 }
mjr 48:058ace2aed1d 5203 }
mjr 43:7a6364d82a41 5204
mjr 6:cc35eb643e8f 5205 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 5206 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 5207 {
mjr 54:fd77a6b2f76c 5208 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 5209 {
mjr 39:b3815a1c3802 5210 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 5211 //
mjr 54:fd77a6b2f76c 5212 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 5213 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 5214 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 5215 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 5216 hb = !hb;
mjr 38:091e511ce8a0 5217 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 5218
mjr 54:fd77a6b2f76c 5219 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 5220 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 5221 // with the USB connection.
mjr 54:fd77a6b2f76c 5222 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 5223 {
mjr 54:fd77a6b2f76c 5224 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 5225 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 5226 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 5227 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 5228 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 5229 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 5230 }
mjr 54:fd77a6b2f76c 5231 else
mjr 54:fd77a6b2f76c 5232 {
mjr 54:fd77a6b2f76c 5233 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 5234 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 5235 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 5236 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 5237 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 5238 }
mjr 38:091e511ce8a0 5239 }
mjr 73:4e8ce0b18915 5240 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 5241 {
mjr 73:4e8ce0b18915 5242 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 5243 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 5244 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 5245 }
mjr 35:e959ffba78fd 5246 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 5247 {
mjr 6:cc35eb643e8f 5248 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 5249 hb = !hb;
mjr 38:091e511ce8a0 5250 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 5251 }
mjr 6:cc35eb643e8f 5252 else
mjr 6:cc35eb643e8f 5253 {
mjr 6:cc35eb643e8f 5254 // connected - flash blue/green
mjr 2:c174f9ee414a 5255 hb = !hb;
mjr 38:091e511ce8a0 5256 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 5257 }
mjr 1:d913e0afb2ac 5258
mjr 1:d913e0afb2ac 5259 // reset the heartbeat timer
mjr 1:d913e0afb2ac 5260 hbTimer.reset();
mjr 5:a70c0bce770d 5261 ++hbcnt;
mjr 1:d913e0afb2ac 5262 }
mjr 1:d913e0afb2ac 5263 }
mjr 0:5acbbe3f4cf4 5264 }