Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Sat Apr 30 17:43:38 2016 +0000
Revision:
54:fd77a6b2f76c
Parent:
53:9b2611964afc
Child:
55:4db125cd11a0
TLC5940 with SPI DMA setup in interrupt handler (not quite working)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 38:091e511ce8a0 42 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 143 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 144 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 145 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 146 //
mjr 35:e959ffba78fd 147 //
mjr 35:e959ffba78fd 148 //
mjr 33:d832bcab089e 149 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 150 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 151 //
mjr 48:058ace2aed1d 152 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 153 //
mjr 48:058ace2aed1d 154 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 155 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 156 // has been established)
mjr 48:058ace2aed1d 157 //
mjr 48:058ace2aed1d 158 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 159 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 160 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 161 //
mjr 38:091e511ce8a0 162 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 163 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 164 // transmissions are failing.
mjr 38:091e511ce8a0 165 //
mjr 6:cc35eb643e8f 166 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 167 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 168 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 169 // no plunger sensor configured.
mjr 6:cc35eb643e8f 170 //
mjr 38:091e511ce8a0 171 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 172 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 173 //
mjr 48:058ace2aed1d 174 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 175 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 176 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 177 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 178 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 179 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 180 //
mjr 48:058ace2aed1d 181 //
mjr 48:058ace2aed1d 182 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 183 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 184 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 185 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 186 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 187 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 188 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 189 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 190
mjr 33:d832bcab089e 191
mjr 0:5acbbe3f4cf4 192 #include "mbed.h"
mjr 6:cc35eb643e8f 193 #include "math.h"
mjr 48:058ace2aed1d 194 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 195 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 196 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 197 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 198 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 199 #include "crc32.h"
mjr 26:cb71c4af2912 200 #include "TLC5940.h"
mjr 34:6b981a2afab7 201 #include "74HC595.h"
mjr 35:e959ffba78fd 202 #include "nvm.h"
mjr 35:e959ffba78fd 203 #include "plunger.h"
mjr 35:e959ffba78fd 204 #include "ccdSensor.h"
mjr 35:e959ffba78fd 205 #include "potSensor.h"
mjr 35:e959ffba78fd 206 #include "nullSensor.h"
mjr 48:058ace2aed1d 207 #include "TinyDigitalIn.h"
mjr 2:c174f9ee414a 208
mjr 21:5048e16cc9ef 209 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 210 #include "config.h"
mjr 17:ab3cec0c8bf4 211
mjr 53:9b2611964afc 212
mjr 53:9b2611964afc 213 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 214 //
mjr 53:9b2611964afc 215 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 216 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 217 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 218 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 219 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 220 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 221 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 222 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 223 // interface.
mjr 53:9b2611964afc 224 //
mjr 53:9b2611964afc 225 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 226 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 227 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 228 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 229 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 230 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 231 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 232 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 233 //
mjr 53:9b2611964afc 234 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 235 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 236 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 237 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 238 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 239 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 240 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 241 //
mjr 53:9b2611964afc 242 const char *getOpenSDAID()
mjr 53:9b2611964afc 243 {
mjr 53:9b2611964afc 244 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 245 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 246 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 247
mjr 53:9b2611964afc 248 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 249 }
mjr 53:9b2611964afc 250
mjr 53:9b2611964afc 251 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 252 //
mjr 53:9b2611964afc 253 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 254 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 255 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 256 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 257 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 258 // want from this.
mjr 53:9b2611964afc 259 //
mjr 53:9b2611964afc 260 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 261 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 262 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 263 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 264 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 265 // macros.
mjr 53:9b2611964afc 266 //
mjr 53:9b2611964afc 267 const char *getBuildID()
mjr 53:9b2611964afc 268 {
mjr 53:9b2611964afc 269 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 270 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 271 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 272
mjr 53:9b2611964afc 273 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 274 }
mjr 53:9b2611964afc 275
mjr 53:9b2611964afc 276
mjr 48:058ace2aed1d 277 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 278 //
mjr 48:058ace2aed1d 279 // Custom memory allocator. We use our own version of malloc() to provide
mjr 48:058ace2aed1d 280 // diagnostics if we run out of heap.
mjr 48:058ace2aed1d 281 //
mjr 48:058ace2aed1d 282 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 283 {
mjr 48:058ace2aed1d 284 // allocate through the normal library malloc; if that succeeds,
mjr 48:058ace2aed1d 285 // simply return the pointer we got from malloc
mjr 48:058ace2aed1d 286 void *ptr = malloc(siz);
mjr 48:058ace2aed1d 287 if (ptr != 0)
mjr 48:058ace2aed1d 288 return ptr;
mjr 48:058ace2aed1d 289
mjr 48:058ace2aed1d 290 // failed - display diagnostics
mjr 48:058ace2aed1d 291 for (;;)
mjr 48:058ace2aed1d 292 {
mjr 48:058ace2aed1d 293 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 294 wait_us(200000);
mjr 48:058ace2aed1d 295 diagLED(1, 0, 1);
mjr 54:fd77a6b2f76c 296 wait_us(200000);
mjr 48:058ace2aed1d 297 }
mjr 48:058ace2aed1d 298 }
mjr 48:058ace2aed1d 299
mjr 48:058ace2aed1d 300 // overload operator new to call our custom malloc
mjr 48:058ace2aed1d 301 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 302 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 303
mjr 5:a70c0bce770d 304 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 305 //
mjr 38:091e511ce8a0 306 // Forward declarations
mjr 38:091e511ce8a0 307 //
mjr 38:091e511ce8a0 308 void setNightMode(bool on);
mjr 38:091e511ce8a0 309 void toggleNightMode();
mjr 38:091e511ce8a0 310
mjr 38:091e511ce8a0 311 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 312 // utilities
mjr 17:ab3cec0c8bf4 313
mjr 26:cb71c4af2912 314 // floating point square of a number
mjr 26:cb71c4af2912 315 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 316
mjr 26:cb71c4af2912 317 // floating point rounding
mjr 26:cb71c4af2912 318 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 319
mjr 17:ab3cec0c8bf4 320
mjr 33:d832bcab089e 321 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 322 //
mjr 40:cc0d9814522b 323 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 324 // the running state.
mjr 40:cc0d9814522b 325 //
mjr 40:cc0d9814522b 326 class Timer2: public Timer
mjr 40:cc0d9814522b 327 {
mjr 40:cc0d9814522b 328 public:
mjr 40:cc0d9814522b 329 Timer2() : running(false) { }
mjr 40:cc0d9814522b 330
mjr 40:cc0d9814522b 331 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 332 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 333
mjr 40:cc0d9814522b 334 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 335
mjr 40:cc0d9814522b 336 private:
mjr 40:cc0d9814522b 337 bool running;
mjr 40:cc0d9814522b 338 };
mjr 40:cc0d9814522b 339
mjr 53:9b2611964afc 340
mjr 53:9b2611964afc 341 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 342 //
mjr 53:9b2611964afc 343 // Reboot timer. When we have a deferred reboot operation pending, we
mjr 53:9b2611964afc 344 // set the target time and start the timer.
mjr 53:9b2611964afc 345 Timer2 rebootTimer;
mjr 53:9b2611964afc 346 long rebootTime_us;
mjr 53:9b2611964afc 347
mjr 40:cc0d9814522b 348 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 349 //
mjr 33:d832bcab089e 350 // USB product version number
mjr 5:a70c0bce770d 351 //
mjr 47:df7a88cd249c 352 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 353
mjr 33:d832bcab089e 354 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 355 //
mjr 6:cc35eb643e8f 356 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 357 //
mjr 6:cc35eb643e8f 358 #define JOYMAX 4096
mjr 6:cc35eb643e8f 359
mjr 9:fd65b0a94720 360
mjr 17:ab3cec0c8bf4 361 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 362 //
mjr 40:cc0d9814522b 363 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 364 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 365 //
mjr 35:e959ffba78fd 366
mjr 35:e959ffba78fd 367 // unsigned 16-bit integer
mjr 35:e959ffba78fd 368 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 369 {
mjr 35:e959ffba78fd 370 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 371 }
mjr 40:cc0d9814522b 372 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 373 {
mjr 40:cc0d9814522b 374 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 375 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 376 }
mjr 35:e959ffba78fd 377
mjr 35:e959ffba78fd 378 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 379 {
mjr 35:e959ffba78fd 380 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 381 }
mjr 40:cc0d9814522b 382 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 383 {
mjr 40:cc0d9814522b 384 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 385 }
mjr 35:e959ffba78fd 386
mjr 35:e959ffba78fd 387 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 388 {
mjr 35:e959ffba78fd 389 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 390 }
mjr 40:cc0d9814522b 391 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 392 {
mjr 40:cc0d9814522b 393 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 394 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 395 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 396 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 397 }
mjr 35:e959ffba78fd 398
mjr 35:e959ffba78fd 399 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 400 {
mjr 35:e959ffba78fd 401 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 402 }
mjr 35:e959ffba78fd 403
mjr 53:9b2611964afc 404 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 405 //
mjr 53:9b2611964afc 406 // The internal mbed PinName format is
mjr 53:9b2611964afc 407 //
mjr 53:9b2611964afc 408 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 409 //
mjr 53:9b2611964afc 410 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 411 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 412 //
mjr 53:9b2611964afc 413 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 414 // pin name fits in 8 bits:
mjr 53:9b2611964afc 415 //
mjr 53:9b2611964afc 416 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 417 //
mjr 53:9b2611964afc 418 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 419 //
mjr 53:9b2611964afc 420 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 421 //
mjr 53:9b2611964afc 422 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 423 {
mjr 53:9b2611964afc 424 if (c == 0xFF)
mjr 53:9b2611964afc 425 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 426 else
mjr 53:9b2611964afc 427 return PinName(
mjr 53:9b2611964afc 428 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 429 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 430 }
mjr 40:cc0d9814522b 431 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 432 {
mjr 53:9b2611964afc 433 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 434 }
mjr 35:e959ffba78fd 435
mjr 35:e959ffba78fd 436
mjr 35:e959ffba78fd 437 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 438 //
mjr 38:091e511ce8a0 439 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 440 //
mjr 38:091e511ce8a0 441 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 442 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 443 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 444 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 445 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 446 // SPI capability.
mjr 38:091e511ce8a0 447 //
mjr 38:091e511ce8a0 448 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 449
mjr 38:091e511ce8a0 450 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 451 // on, and -1 is no change (leaves the current setting intact).
mjr 38:091e511ce8a0 452 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 453 {
mjr 38:091e511ce8a0 454 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 455 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 456 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 457 }
mjr 38:091e511ce8a0 458
mjr 38:091e511ce8a0 459 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 460 // an on-board LED segment
mjr 38:091e511ce8a0 461 struct LedSeg
mjr 38:091e511ce8a0 462 {
mjr 38:091e511ce8a0 463 bool r, g, b;
mjr 38:091e511ce8a0 464 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 465
mjr 38:091e511ce8a0 466 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 467 {
mjr 38:091e511ce8a0 468 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 469 // our on-board LED segments
mjr 38:091e511ce8a0 470 int t = pc.typ;
mjr 38:091e511ce8a0 471 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 472 {
mjr 38:091e511ce8a0 473 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 474 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 475 if (pin == LED1)
mjr 38:091e511ce8a0 476 r = true;
mjr 38:091e511ce8a0 477 else if (pin == LED2)
mjr 38:091e511ce8a0 478 g = true;
mjr 38:091e511ce8a0 479 else if (pin == LED3)
mjr 38:091e511ce8a0 480 b = true;
mjr 38:091e511ce8a0 481 }
mjr 38:091e511ce8a0 482 }
mjr 38:091e511ce8a0 483 };
mjr 38:091e511ce8a0 484
mjr 38:091e511ce8a0 485 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 486 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 487 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 488 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 489 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 490 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 491 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 492 {
mjr 38:091e511ce8a0 493 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 494 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 495 LedSeg l;
mjr 38:091e511ce8a0 496 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 497 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 498
mjr 38:091e511ce8a0 499 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 500 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 501 // LedWiz use.
mjr 38:091e511ce8a0 502 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 503 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 504 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 505 }
mjr 38:091e511ce8a0 506
mjr 38:091e511ce8a0 507
mjr 38:091e511ce8a0 508 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 509 //
mjr 29:582472d0bc57 510 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 511 //
mjr 26:cb71c4af2912 512 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 513 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 514 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 515 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 516 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 517 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 518 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 519 // other if both features are to be used.
mjr 26:cb71c4af2912 520 //
mjr 26:cb71c4af2912 521 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 522 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 523 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 524 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 525 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 526 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 527 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 528 //
mjr 5:a70c0bce770d 529
mjr 29:582472d0bc57 530
mjr 26:cb71c4af2912 531 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 532 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 533 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 534 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 535 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 536
mjr 26:cb71c4af2912 537 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 538 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 539 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 540 class LwOut
mjr 6:cc35eb643e8f 541 {
mjr 6:cc35eb643e8f 542 public:
mjr 40:cc0d9814522b 543 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 544 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 545 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 546 };
mjr 26:cb71c4af2912 547
mjr 35:e959ffba78fd 548 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 549 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 550 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 551 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 552 // numbering.
mjr 35:e959ffba78fd 553 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 554 {
mjr 33:d832bcab089e 555 public:
mjr 35:e959ffba78fd 556 LwVirtualOut() { }
mjr 40:cc0d9814522b 557 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 558 };
mjr 26:cb71c4af2912 559
mjr 34:6b981a2afab7 560 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 561 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 562 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 563 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 564 {
mjr 34:6b981a2afab7 565 public:
mjr 34:6b981a2afab7 566 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 567 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 568
mjr 34:6b981a2afab7 569 private:
mjr 53:9b2611964afc 570 // underlying physical output
mjr 34:6b981a2afab7 571 LwOut *out;
mjr 34:6b981a2afab7 572 };
mjr 34:6b981a2afab7 573
mjr 53:9b2611964afc 574 // Global ZB Launch Ball state
mjr 53:9b2611964afc 575 bool zbLaunchOn = false;
mjr 53:9b2611964afc 576
mjr 53:9b2611964afc 577 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 578 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 579 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 580 {
mjr 53:9b2611964afc 581 public:
mjr 53:9b2611964afc 582 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 583 virtual void set(uint8_t val)
mjr 53:9b2611964afc 584 {
mjr 53:9b2611964afc 585 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 586 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 587
mjr 53:9b2611964afc 588 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 589 out->set(val);
mjr 53:9b2611964afc 590 }
mjr 53:9b2611964afc 591
mjr 53:9b2611964afc 592 private:
mjr 53:9b2611964afc 593 // underlying physical or virtual output
mjr 53:9b2611964afc 594 LwOut *out;
mjr 53:9b2611964afc 595 };
mjr 53:9b2611964afc 596
mjr 53:9b2611964afc 597
mjr 40:cc0d9814522b 598 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 599 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 600 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 601 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 602 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 603 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 604 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 605 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 606 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 607 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 608 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 609 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 610 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 611 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 612 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 613 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 614 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 615 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 616 };
mjr 40:cc0d9814522b 617
mjr 40:cc0d9814522b 618 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 619 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 620 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 621 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 622 {
mjr 40:cc0d9814522b 623 public:
mjr 40:cc0d9814522b 624 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 625 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 626
mjr 40:cc0d9814522b 627 private:
mjr 40:cc0d9814522b 628 LwOut *out;
mjr 40:cc0d9814522b 629 };
mjr 40:cc0d9814522b 630
mjr 53:9b2611964afc 631 // global night mode flag
mjr 53:9b2611964afc 632 static bool nightMode = false;
mjr 53:9b2611964afc 633
mjr 40:cc0d9814522b 634 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 635 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 636 // mode is engaged.
mjr 40:cc0d9814522b 637 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 638 {
mjr 40:cc0d9814522b 639 public:
mjr 40:cc0d9814522b 640 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 641 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 642
mjr 53:9b2611964afc 643 private:
mjr 53:9b2611964afc 644 LwOut *out;
mjr 53:9b2611964afc 645 };
mjr 53:9b2611964afc 646
mjr 53:9b2611964afc 647 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 648 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 649 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 650 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 651 {
mjr 53:9b2611964afc 652 public:
mjr 53:9b2611964afc 653 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 654 virtual void set(uint8_t)
mjr 53:9b2611964afc 655 {
mjr 53:9b2611964afc 656 // ignore the host value and simply show the current
mjr 53:9b2611964afc 657 // night mode setting
mjr 53:9b2611964afc 658 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 659 }
mjr 40:cc0d9814522b 660
mjr 40:cc0d9814522b 661 private:
mjr 40:cc0d9814522b 662 LwOut *out;
mjr 40:cc0d9814522b 663 };
mjr 40:cc0d9814522b 664
mjr 26:cb71c4af2912 665
mjr 35:e959ffba78fd 666 //
mjr 35:e959ffba78fd 667 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 668 // assignments set in config.h.
mjr 33:d832bcab089e 669 //
mjr 35:e959ffba78fd 670 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 671 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 672 {
mjr 35:e959ffba78fd 673 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 674 {
mjr 53:9b2611964afc 675 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 676 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 677 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 678 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 679 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 680 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 681 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 682 }
mjr 35:e959ffba78fd 683 }
mjr 26:cb71c4af2912 684
mjr 40:cc0d9814522b 685 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 686 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 687 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 688 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 689 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 690 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 691 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 692 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 693 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 694 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 695 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 696 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 697 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 698 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 699 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 700 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 701 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 702 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 703 };
mjr 40:cc0d9814522b 704
mjr 40:cc0d9814522b 705 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 706 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 707 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 708 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 709 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 710 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 711 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 712 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 713 // are always 8 bits.
mjr 40:cc0d9814522b 714 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 715 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 716 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 717 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 718 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 719 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 720 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 721 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 722 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 723 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 724 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 725 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 726 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 727 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 728 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 729 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 730 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 731 };
mjr 40:cc0d9814522b 732
mjr 40:cc0d9814522b 733
mjr 26:cb71c4af2912 734 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 735 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 736 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 737 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 738 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 739 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 740 {
mjr 26:cb71c4af2912 741 public:
mjr 40:cc0d9814522b 742 Lw5940Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 743 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 744 {
mjr 26:cb71c4af2912 745 if (val != prv)
mjr 40:cc0d9814522b 746 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 747 }
mjr 26:cb71c4af2912 748 int idx;
mjr 40:cc0d9814522b 749 uint8_t prv;
mjr 26:cb71c4af2912 750 };
mjr 26:cb71c4af2912 751
mjr 40:cc0d9814522b 752 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 753 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 754 {
mjr 40:cc0d9814522b 755 public:
mjr 40:cc0d9814522b 756 Lw5940GammaOut(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 757 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 758 {
mjr 40:cc0d9814522b 759 if (val != prv)
mjr 40:cc0d9814522b 760 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 761 }
mjr 40:cc0d9814522b 762 int idx;
mjr 40:cc0d9814522b 763 uint8_t prv;
mjr 40:cc0d9814522b 764 };
mjr 40:cc0d9814522b 765
mjr 40:cc0d9814522b 766
mjr 33:d832bcab089e 767
mjr 34:6b981a2afab7 768 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 769 // config.h.
mjr 35:e959ffba78fd 770 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 771
mjr 35:e959ffba78fd 772 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 773 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 774 {
mjr 35:e959ffba78fd 775 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 776 {
mjr 53:9b2611964afc 777 hc595 = new HC595(
mjr 53:9b2611964afc 778 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 779 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 780 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 781 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 782 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 783 hc595->init();
mjr 35:e959ffba78fd 784 hc595->update();
mjr 35:e959ffba78fd 785 }
mjr 35:e959ffba78fd 786 }
mjr 34:6b981a2afab7 787
mjr 34:6b981a2afab7 788 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 789 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 790 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 791 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 792 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 793 class Lw595Out: public LwOut
mjr 33:d832bcab089e 794 {
mjr 33:d832bcab089e 795 public:
mjr 40:cc0d9814522b 796 Lw595Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 797 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 798 {
mjr 34:6b981a2afab7 799 if (val != prv)
mjr 40:cc0d9814522b 800 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 801 }
mjr 34:6b981a2afab7 802 int idx;
mjr 40:cc0d9814522b 803 uint8_t prv;
mjr 33:d832bcab089e 804 };
mjr 33:d832bcab089e 805
mjr 26:cb71c4af2912 806
mjr 40:cc0d9814522b 807
mjr 40:cc0d9814522b 808 // Conversion table - 8-bit DOF output level to PWM float level
mjr 40:cc0d9814522b 809 // (normalized to 0.0..1.0 scale)
mjr 40:cc0d9814522b 810 static const float pwm_level[] = {
mjr 40:cc0d9814522b 811 0.000000, 0.003922, 0.007843, 0.011765, 0.015686, 0.019608, 0.023529, 0.027451,
mjr 40:cc0d9814522b 812 0.031373, 0.035294, 0.039216, 0.043137, 0.047059, 0.050980, 0.054902, 0.058824,
mjr 40:cc0d9814522b 813 0.062745, 0.066667, 0.070588, 0.074510, 0.078431, 0.082353, 0.086275, 0.090196,
mjr 40:cc0d9814522b 814 0.094118, 0.098039, 0.101961, 0.105882, 0.109804, 0.113725, 0.117647, 0.121569,
mjr 40:cc0d9814522b 815 0.125490, 0.129412, 0.133333, 0.137255, 0.141176, 0.145098, 0.149020, 0.152941,
mjr 40:cc0d9814522b 816 0.156863, 0.160784, 0.164706, 0.168627, 0.172549, 0.176471, 0.180392, 0.184314,
mjr 40:cc0d9814522b 817 0.188235, 0.192157, 0.196078, 0.200000, 0.203922, 0.207843, 0.211765, 0.215686,
mjr 40:cc0d9814522b 818 0.219608, 0.223529, 0.227451, 0.231373, 0.235294, 0.239216, 0.243137, 0.247059,
mjr 40:cc0d9814522b 819 0.250980, 0.254902, 0.258824, 0.262745, 0.266667, 0.270588, 0.274510, 0.278431,
mjr 40:cc0d9814522b 820 0.282353, 0.286275, 0.290196, 0.294118, 0.298039, 0.301961, 0.305882, 0.309804,
mjr 40:cc0d9814522b 821 0.313725, 0.317647, 0.321569, 0.325490, 0.329412, 0.333333, 0.337255, 0.341176,
mjr 40:cc0d9814522b 822 0.345098, 0.349020, 0.352941, 0.356863, 0.360784, 0.364706, 0.368627, 0.372549,
mjr 40:cc0d9814522b 823 0.376471, 0.380392, 0.384314, 0.388235, 0.392157, 0.396078, 0.400000, 0.403922,
mjr 40:cc0d9814522b 824 0.407843, 0.411765, 0.415686, 0.419608, 0.423529, 0.427451, 0.431373, 0.435294,
mjr 40:cc0d9814522b 825 0.439216, 0.443137, 0.447059, 0.450980, 0.454902, 0.458824, 0.462745, 0.466667,
mjr 40:cc0d9814522b 826 0.470588, 0.474510, 0.478431, 0.482353, 0.486275, 0.490196, 0.494118, 0.498039,
mjr 40:cc0d9814522b 827 0.501961, 0.505882, 0.509804, 0.513725, 0.517647, 0.521569, 0.525490, 0.529412,
mjr 40:cc0d9814522b 828 0.533333, 0.537255, 0.541176, 0.545098, 0.549020, 0.552941, 0.556863, 0.560784,
mjr 40:cc0d9814522b 829 0.564706, 0.568627, 0.572549, 0.576471, 0.580392, 0.584314, 0.588235, 0.592157,
mjr 40:cc0d9814522b 830 0.596078, 0.600000, 0.603922, 0.607843, 0.611765, 0.615686, 0.619608, 0.623529,
mjr 40:cc0d9814522b 831 0.627451, 0.631373, 0.635294, 0.639216, 0.643137, 0.647059, 0.650980, 0.654902,
mjr 40:cc0d9814522b 832 0.658824, 0.662745, 0.666667, 0.670588, 0.674510, 0.678431, 0.682353, 0.686275,
mjr 40:cc0d9814522b 833 0.690196, 0.694118, 0.698039, 0.701961, 0.705882, 0.709804, 0.713725, 0.717647,
mjr 40:cc0d9814522b 834 0.721569, 0.725490, 0.729412, 0.733333, 0.737255, 0.741176, 0.745098, 0.749020,
mjr 40:cc0d9814522b 835 0.752941, 0.756863, 0.760784, 0.764706, 0.768627, 0.772549, 0.776471, 0.780392,
mjr 40:cc0d9814522b 836 0.784314, 0.788235, 0.792157, 0.796078, 0.800000, 0.803922, 0.807843, 0.811765,
mjr 40:cc0d9814522b 837 0.815686, 0.819608, 0.823529, 0.827451, 0.831373, 0.835294, 0.839216, 0.843137,
mjr 40:cc0d9814522b 838 0.847059, 0.850980, 0.854902, 0.858824, 0.862745, 0.866667, 0.870588, 0.874510,
mjr 40:cc0d9814522b 839 0.878431, 0.882353, 0.886275, 0.890196, 0.894118, 0.898039, 0.901961, 0.905882,
mjr 40:cc0d9814522b 840 0.909804, 0.913725, 0.917647, 0.921569, 0.925490, 0.929412, 0.933333, 0.937255,
mjr 40:cc0d9814522b 841 0.941176, 0.945098, 0.949020, 0.952941, 0.956863, 0.960784, 0.964706, 0.968627,
mjr 40:cc0d9814522b 842 0.972549, 0.976471, 0.980392, 0.984314, 0.988235, 0.992157, 0.996078, 1.000000
mjr 40:cc0d9814522b 843 };
mjr 26:cb71c4af2912 844
mjr 26:cb71c4af2912 845 // LwOut class for a PWM-capable GPIO port
mjr 6:cc35eb643e8f 846 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 847 {
mjr 6:cc35eb643e8f 848 public:
mjr 43:7a6364d82a41 849 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 850 {
mjr 43:7a6364d82a41 851 prv = initVal ^ 0xFF;
mjr 43:7a6364d82a41 852 set(initVal);
mjr 43:7a6364d82a41 853 }
mjr 40:cc0d9814522b 854 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 855 {
mjr 13:72dda449c3c0 856 if (val != prv)
mjr 40:cc0d9814522b 857 p.write(pwm_level[prv = val]);
mjr 13:72dda449c3c0 858 }
mjr 6:cc35eb643e8f 859 PwmOut p;
mjr 40:cc0d9814522b 860 uint8_t prv;
mjr 6:cc35eb643e8f 861 };
mjr 26:cb71c4af2912 862
mjr 26:cb71c4af2912 863 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 864 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 865 {
mjr 6:cc35eb643e8f 866 public:
mjr 43:7a6364d82a41 867 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 868 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 869 {
mjr 13:72dda449c3c0 870 if (val != prv)
mjr 40:cc0d9814522b 871 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 872 }
mjr 6:cc35eb643e8f 873 DigitalOut p;
mjr 40:cc0d9814522b 874 uint8_t prv;
mjr 6:cc35eb643e8f 875 };
mjr 26:cb71c4af2912 876
mjr 29:582472d0bc57 877 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 878 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 879 // port n (0-based).
mjr 35:e959ffba78fd 880 //
mjr 35:e959ffba78fd 881 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 882 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 883 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 884 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 885 // 74HC595 ports).
mjr 33:d832bcab089e 886 static int numOutputs;
mjr 33:d832bcab089e 887 static LwOut **lwPin;
mjr 33:d832bcab089e 888
mjr 38:091e511ce8a0 889
mjr 35:e959ffba78fd 890 // Number of LedWiz emulation outputs. This is the number of ports
mjr 35:e959ffba78fd 891 // accessible through the standard (non-extended) LedWiz protocol
mjr 35:e959ffba78fd 892 // messages. The protocol has a fixed set of 32 outputs, but we
mjr 35:e959ffba78fd 893 // might have fewer actual outputs. This is therefore set to the
mjr 35:e959ffba78fd 894 // lower of 32 or the actual number of outputs.
mjr 35:e959ffba78fd 895 static int numLwOutputs;
mjr 35:e959ffba78fd 896
mjr 40:cc0d9814522b 897 // Current absolute brightness level for an output. This is a DOF
mjr 40:cc0d9814522b 898 // brightness level value, from 0 for fully off to 255 for fully on.
mjr 40:cc0d9814522b 899 // This is used for all extended ports (33 and above), and for any
mjr 40:cc0d9814522b 900 // LedWiz port with wizVal == 255.
mjr 40:cc0d9814522b 901 static uint8_t *outLevel;
mjr 38:091e511ce8a0 902
mjr 38:091e511ce8a0 903 // create a single output pin
mjr 53:9b2611964afc 904 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 905 {
mjr 38:091e511ce8a0 906 // get this item's values
mjr 38:091e511ce8a0 907 int typ = pc.typ;
mjr 38:091e511ce8a0 908 int pin = pc.pin;
mjr 38:091e511ce8a0 909 int flags = pc.flags;
mjr 40:cc0d9814522b 910 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 911 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 912 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 913
mjr 38:091e511ce8a0 914 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 915 LwOut *lwp;
mjr 38:091e511ce8a0 916 switch (typ)
mjr 38:091e511ce8a0 917 {
mjr 38:091e511ce8a0 918 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 919 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 920 if (pin != 0)
mjr 48:058ace2aed1d 921 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 922 else
mjr 48:058ace2aed1d 923 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 924 break;
mjr 38:091e511ce8a0 925
mjr 38:091e511ce8a0 926 case PortTypeGPIODig:
mjr 38:091e511ce8a0 927 // Digital GPIO port
mjr 48:058ace2aed1d 928 if (pin != 0)
mjr 48:058ace2aed1d 929 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 930 else
mjr 48:058ace2aed1d 931 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 932 break;
mjr 38:091e511ce8a0 933
mjr 38:091e511ce8a0 934 case PortTypeTLC5940:
mjr 38:091e511ce8a0 935 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 936 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 937 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 938 {
mjr 40:cc0d9814522b 939 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 940 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 941 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 942 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 943 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 944 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 945 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 946 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 947 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 948 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 949 // for this unlikely case.
mjr 40:cc0d9814522b 950 if (gamma && !activeLow)
mjr 40:cc0d9814522b 951 {
mjr 40:cc0d9814522b 952 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 953 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 954
mjr 40:cc0d9814522b 955 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 956 gamma = false;
mjr 40:cc0d9814522b 957 }
mjr 40:cc0d9814522b 958 else
mjr 40:cc0d9814522b 959 {
mjr 40:cc0d9814522b 960 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 961 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 962 }
mjr 40:cc0d9814522b 963 }
mjr 38:091e511ce8a0 964 else
mjr 40:cc0d9814522b 965 {
mjr 40:cc0d9814522b 966 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 967 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 968 }
mjr 38:091e511ce8a0 969 break;
mjr 38:091e511ce8a0 970
mjr 38:091e511ce8a0 971 case PortType74HC595:
mjr 38:091e511ce8a0 972 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 973 // output number, create a virtual port)
mjr 38:091e511ce8a0 974 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 975 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 976 else
mjr 38:091e511ce8a0 977 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 978 break;
mjr 38:091e511ce8a0 979
mjr 38:091e511ce8a0 980 case PortTypeVirtual:
mjr 43:7a6364d82a41 981 case PortTypeDisabled:
mjr 38:091e511ce8a0 982 default:
mjr 38:091e511ce8a0 983 // virtual or unknown
mjr 38:091e511ce8a0 984 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 985 break;
mjr 38:091e511ce8a0 986 }
mjr 38:091e511ce8a0 987
mjr 40:cc0d9814522b 988 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 989 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 990 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 991 if (activeLow)
mjr 38:091e511ce8a0 992 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 993
mjr 40:cc0d9814522b 994 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 995 // needs to be
mjr 40:cc0d9814522b 996 if (noisy)
mjr 40:cc0d9814522b 997 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 998
mjr 40:cc0d9814522b 999 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1000 if (gamma)
mjr 40:cc0d9814522b 1001 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1002
mjr 53:9b2611964afc 1003 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 53:9b2611964afc 1004 // that the nominal port numbering in the cofnig starts at 1, but we're
mjr 53:9b2611964afc 1005 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1006 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1007 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1008
mjr 53:9b2611964afc 1009 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1010 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1011 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1012
mjr 38:091e511ce8a0 1013 // turn it off initially
mjr 38:091e511ce8a0 1014 lwp->set(0);
mjr 38:091e511ce8a0 1015
mjr 38:091e511ce8a0 1016 // return the pin
mjr 38:091e511ce8a0 1017 return lwp;
mjr 38:091e511ce8a0 1018 }
mjr 38:091e511ce8a0 1019
mjr 6:cc35eb643e8f 1020 // initialize the output pin array
mjr 35:e959ffba78fd 1021 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1022 {
mjr 35:e959ffba78fd 1023 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1024 // total number of ports.
mjr 35:e959ffba78fd 1025 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1026 int i;
mjr 35:e959ffba78fd 1027 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1028 {
mjr 35:e959ffba78fd 1029 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1030 {
mjr 35:e959ffba78fd 1031 numOutputs = i;
mjr 34:6b981a2afab7 1032 break;
mjr 34:6b981a2afab7 1033 }
mjr 33:d832bcab089e 1034 }
mjr 33:d832bcab089e 1035
mjr 35:e959ffba78fd 1036 // the real LedWiz protocol can access at most 32 ports, or the
mjr 35:e959ffba78fd 1037 // actual number of outputs, whichever is lower
mjr 35:e959ffba78fd 1038 numLwOutputs = (numOutputs < 32 ? numOutputs : 32);
mjr 35:e959ffba78fd 1039
mjr 33:d832bcab089e 1040 // allocate the pin array
mjr 33:d832bcab089e 1041 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 1042
mjr 38:091e511ce8a0 1043 // Allocate the current brightness array. For these, allocate at
mjr 38:091e511ce8a0 1044 // least 32, so that we have enough for all LedWiz messages, but
mjr 38:091e511ce8a0 1045 // allocate the full set of actual ports if we have more than the
mjr 38:091e511ce8a0 1046 // LedWiz complement.
mjr 38:091e511ce8a0 1047 int minOuts = numOutputs < 32 ? 32 : numOutputs;
mjr 40:cc0d9814522b 1048 outLevel = new uint8_t[minOuts];
mjr 33:d832bcab089e 1049
mjr 35:e959ffba78fd 1050 // create the pin interface object for each port
mjr 35:e959ffba78fd 1051 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1052 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1053 }
mjr 6:cc35eb643e8f 1054
mjr 29:582472d0bc57 1055 // LedWiz output states.
mjr 29:582472d0bc57 1056 //
mjr 29:582472d0bc57 1057 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 1058 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 1059 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 1060 // The two axes are independent.
mjr 29:582472d0bc57 1061 //
mjr 29:582472d0bc57 1062 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 1063 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 1064 // how many physical outputs we're using.
mjr 29:582472d0bc57 1065
mjr 0:5acbbe3f4cf4 1066 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 1067 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 1068
mjr 40:cc0d9814522b 1069 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 40:cc0d9814522b 1070 // for each LedWiz output. If the output was last updated through an
mjr 40:cc0d9814522b 1071 // LedWiz protocol message, it will have one of these values:
mjr 29:582472d0bc57 1072 //
mjr 29:582472d0bc57 1073 // 0-48 = fixed brightness 0% to 100%
mjr 40:cc0d9814522b 1074 // 49 = fixed brightness 100% (equivalent to 48)
mjr 29:582472d0bc57 1075 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 1076 // 130 = flash on / off
mjr 29:582472d0bc57 1077 // 131 = on / ramp down
mjr 29:582472d0bc57 1078 // 132 = ramp up / on
mjr 29:582472d0bc57 1079 //
mjr 40:cc0d9814522b 1080 // If the output was last updated through an extended protocol message,
mjr 40:cc0d9814522b 1081 // it will have the special value 255. This means that we use the
mjr 40:cc0d9814522b 1082 // outLevel[] value for the port instead of an LedWiz setting.
mjr 29:582472d0bc57 1083 //
mjr 40:cc0d9814522b 1084 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 40:cc0d9814522b 1085 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 40:cc0d9814522b 1086 // it, so we need to accept it for compatibility.)
mjr 1:d913e0afb2ac 1087 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 1088 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1089 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1090 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1091 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 1092 };
mjr 0:5acbbe3f4cf4 1093
mjr 29:582472d0bc57 1094 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 1095 // rate for lights in blinking states.
mjr 29:582472d0bc57 1096 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 1097
mjr 40:cc0d9814522b 1098 // Current LedWiz flash cycle counter. This runs from 0 to 255
mjr 40:cc0d9814522b 1099 // during each cycle.
mjr 29:582472d0bc57 1100 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 1101
mjr 40:cc0d9814522b 1102 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 1103 // level (0-255)
mjr 40:cc0d9814522b 1104 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1105 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1106 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1107 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1108 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1109 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1110 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1111 255, 255
mjr 40:cc0d9814522b 1112 };
mjr 40:cc0d9814522b 1113
mjr 40:cc0d9814522b 1114 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 40:cc0d9814522b 1115 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 1116 {
mjr 29:582472d0bc57 1117 // if the output was last set with an extended protocol message,
mjr 29:582472d0bc57 1118 // use the value set there, ignoring the output's LedWiz state
mjr 29:582472d0bc57 1119 if (wizVal[idx] == 255)
mjr 29:582472d0bc57 1120 return outLevel[idx];
mjr 29:582472d0bc57 1121
mjr 29:582472d0bc57 1122 // if it's off, show at zero intensity
mjr 29:582472d0bc57 1123 if (!wizOn[idx])
mjr 29:582472d0bc57 1124 return 0;
mjr 29:582472d0bc57 1125
mjr 29:582472d0bc57 1126 // check the state
mjr 29:582472d0bc57 1127 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 1128 if (val <= 49)
mjr 29:582472d0bc57 1129 {
mjr 29:582472d0bc57 1130 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 1131 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 1132 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 1133 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 1134 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 1135 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 1136 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 1137 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 1138 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 1139 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 1140 // err in this direction, because while the difference in
mjr 29:582472d0bc57 1141 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 1142 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 1143 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 1144 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 1145 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 1146 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 1147 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 1148 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 1149 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 1150 //
mjr 40:cc0d9814522b 1151 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 1152 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 1153 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 1154 // it the same way for compatibility.
mjr 40:cc0d9814522b 1155 return lw_to_dof[val];
mjr 29:582472d0bc57 1156 }
mjr 29:582472d0bc57 1157 else if (val == 129)
mjr 29:582472d0bc57 1158 {
mjr 40:cc0d9814522b 1159 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 1160 return wizFlashCounter < 128
mjr 40:cc0d9814522b 1161 ? wizFlashCounter*2 + 1
mjr 40:cc0d9814522b 1162 : (255 - wizFlashCounter)*2;
mjr 29:582472d0bc57 1163 }
mjr 29:582472d0bc57 1164 else if (val == 130)
mjr 29:582472d0bc57 1165 {
mjr 40:cc0d9814522b 1166 // 130 = flash on / off
mjr 40:cc0d9814522b 1167 return wizFlashCounter < 128 ? 255 : 0;
mjr 29:582472d0bc57 1168 }
mjr 29:582472d0bc57 1169 else if (val == 131)
mjr 29:582472d0bc57 1170 {
mjr 40:cc0d9814522b 1171 // 131 = on / ramp down
mjr 40:cc0d9814522b 1172 return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2;
mjr 0:5acbbe3f4cf4 1173 }
mjr 29:582472d0bc57 1174 else if (val == 132)
mjr 29:582472d0bc57 1175 {
mjr 40:cc0d9814522b 1176 // 132 = ramp up / on
mjr 40:cc0d9814522b 1177 return wizFlashCounter < 128 ? wizFlashCounter*2 : 255;
mjr 29:582472d0bc57 1178 }
mjr 29:582472d0bc57 1179 else
mjr 13:72dda449c3c0 1180 {
mjr 29:582472d0bc57 1181 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1182 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1183 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1184 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1185 // to 48 (fully on).
mjr 40:cc0d9814522b 1186 return 255;
mjr 0:5acbbe3f4cf4 1187 }
mjr 0:5acbbe3f4cf4 1188 }
mjr 0:5acbbe3f4cf4 1189
mjr 29:582472d0bc57 1190 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 1191 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 1192 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 1193 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 1194 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 1195 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 1196 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 1197 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 1198 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 1199 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 1200 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 1201 static void wizPulse()
mjr 29:582472d0bc57 1202 {
mjr 29:582472d0bc57 1203 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 1204 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 1205 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 1206
mjr 29:582472d0bc57 1207 // if we have any flashing lights, update them
mjr 29:582472d0bc57 1208 int ena = false;
mjr 35:e959ffba78fd 1209 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1210 {
mjr 29:582472d0bc57 1211 if (wizOn[i])
mjr 29:582472d0bc57 1212 {
mjr 29:582472d0bc57 1213 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 1214 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 1215 {
mjr 40:cc0d9814522b 1216 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1217 ena = true;
mjr 29:582472d0bc57 1218 }
mjr 29:582472d0bc57 1219 }
mjr 29:582472d0bc57 1220 }
mjr 29:582472d0bc57 1221
mjr 29:582472d0bc57 1222 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 1223 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 1224 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 1225 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 1226 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 1227 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 1228 if (ena)
mjr 29:582472d0bc57 1229 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 1230 }
mjr 29:582472d0bc57 1231
mjr 29:582472d0bc57 1232 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1233 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1234 static void updateWizOuts()
mjr 1:d913e0afb2ac 1235 {
mjr 29:582472d0bc57 1236 // update each output
mjr 29:582472d0bc57 1237 int pulse = false;
mjr 35:e959ffba78fd 1238 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1239 {
mjr 29:582472d0bc57 1240 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 40:cc0d9814522b 1241 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1242 }
mjr 29:582472d0bc57 1243
mjr 29:582472d0bc57 1244 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 1245 // isn't running, turn it on
mjr 29:582472d0bc57 1246 if (pulse)
mjr 29:582472d0bc57 1247 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 1248
mjr 34:6b981a2afab7 1249 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1250 if (hc595 != 0)
mjr 35:e959ffba78fd 1251 hc595->update();
mjr 1:d913e0afb2ac 1252 }
mjr 38:091e511ce8a0 1253
mjr 38:091e511ce8a0 1254 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1255 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1256 static void updateAllOuts()
mjr 38:091e511ce8a0 1257 {
mjr 38:091e511ce8a0 1258 // uddate each LedWiz output
mjr 38:091e511ce8a0 1259 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 40:cc0d9814522b 1260 lwPin[i]->set(wizState(i));
mjr 34:6b981a2afab7 1261
mjr 38:091e511ce8a0 1262 // update each extended output
mjr 38:091e511ce8a0 1263 for (int i = 33 ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1264 lwPin[i]->set(outLevel[i]);
mjr 38:091e511ce8a0 1265
mjr 38:091e511ce8a0 1266 // flush 74HC595 changes, if necessary
mjr 38:091e511ce8a0 1267 if (hc595 != 0)
mjr 38:091e511ce8a0 1268 hc595->update();
mjr 38:091e511ce8a0 1269 }
mjr 38:091e511ce8a0 1270
mjr 11:bd9da7088e6e 1271 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1272 //
mjr 11:bd9da7088e6e 1273 // Button input
mjr 11:bd9da7088e6e 1274 //
mjr 11:bd9da7088e6e 1275
mjr 18:5e890ebd0023 1276 // button state
mjr 18:5e890ebd0023 1277 struct ButtonState
mjr 18:5e890ebd0023 1278 {
mjr 38:091e511ce8a0 1279 ButtonState()
mjr 38:091e511ce8a0 1280 {
mjr 38:091e511ce8a0 1281 di = NULL;
mjr 53:9b2611964afc 1282 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 1283 virtState = 0;
mjr 53:9b2611964afc 1284 dbState = 0;
mjr 38:091e511ce8a0 1285 pulseState = 0;
mjr 53:9b2611964afc 1286 pulseTime = 0;
mjr 38:091e511ce8a0 1287 }
mjr 35:e959ffba78fd 1288
mjr 53:9b2611964afc 1289 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 1290 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 1291 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 1292 //
mjr 53:9b2611964afc 1293 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 1294 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 1295 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 1296 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 1297 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 1298 void virtPress(bool on)
mjr 53:9b2611964afc 1299 {
mjr 53:9b2611964afc 1300 // Increment or decrement the current state
mjr 53:9b2611964afc 1301 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 1302 }
mjr 53:9b2611964afc 1303
mjr 53:9b2611964afc 1304 // DigitalIn for the button, if connected to a physical input
mjr 48:058ace2aed1d 1305 TinyDigitalIn *di;
mjr 38:091e511ce8a0 1306
mjr 38:091e511ce8a0 1307 // current PHYSICAL on/off state, after debouncing
mjr 53:9b2611964afc 1308 uint8_t physState : 1;
mjr 18:5e890ebd0023 1309
mjr 38:091e511ce8a0 1310 // current LOGICAL on/off state as reported to the host.
mjr 53:9b2611964afc 1311 uint8_t logState : 1;
mjr 38:091e511ce8a0 1312
mjr 38:091e511ce8a0 1313 // previous logical on/off state, when keys were last processed for USB
mjr 38:091e511ce8a0 1314 // reports and local effects
mjr 53:9b2611964afc 1315 uint8_t prevLogState : 1;
mjr 53:9b2611964afc 1316
mjr 53:9b2611964afc 1317 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 1318 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 1319 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 1320 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 1321 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 1322 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 1323 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 1324 // and physical source states.
mjr 53:9b2611964afc 1325 uint8_t virtState;
mjr 38:091e511ce8a0 1326
mjr 38:091e511ce8a0 1327 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 1328 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 1329 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 1330 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 1331 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 1332 uint8_t dbState;
mjr 38:091e511ce8a0 1333
mjr 38:091e511ce8a0 1334 // Pulse mode: a button in pulse mode transmits a brief logical button press and
mjr 38:091e511ce8a0 1335 // release each time the attached physical switch changes state. This is useful
mjr 38:091e511ce8a0 1336 // for cases where the host expects a key press for each change in the state of
mjr 38:091e511ce8a0 1337 // the physical switch. The canonical example is the Coin Door switch in VPinMAME,
mjr 38:091e511ce8a0 1338 // which requires pressing the END key to toggle the open/closed state. This
mjr 38:091e511ce8a0 1339 // software design isn't easily implemented in a physical coin door, though -
mjr 38:091e511ce8a0 1340 // the easiest way to sense a physical coin door's state is with a simple on/off
mjr 38:091e511ce8a0 1341 // switch. Pulse mode bridges that divide by converting a physical switch state
mjr 38:091e511ce8a0 1342 // to on/off toggle key reports to the host.
mjr 38:091e511ce8a0 1343 //
mjr 38:091e511ce8a0 1344 // Pulse state:
mjr 38:091e511ce8a0 1345 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 1346 // 1 -> off
mjr 38:091e511ce8a0 1347 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 1348 // 3 -> on
mjr 38:091e511ce8a0 1349 // 4 -> transitioning on-off
mjr 38:091e511ce8a0 1350 //
mjr 38:091e511ce8a0 1351 // Each state change sticks for a minimum period; when the timer expires,
mjr 38:091e511ce8a0 1352 // if the underlying physical switch is in a different state, we switch
mjr 53:9b2611964afc 1353 // to the next state and restart the timer. pulseTime is the time remaining
mjr 53:9b2611964afc 1354 // remaining before we can make another state transition, in microseconds.
mjr 53:9b2611964afc 1355 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 53:9b2611964afc 1356 // this guarantees that the parity of the pulse count always matches the
mjr 38:091e511ce8a0 1357 // current physical switch state when the latter is stable, which makes
mjr 38:091e511ce8a0 1358 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 38:091e511ce8a0 1359 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 38:091e511ce8a0 1360 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 38:091e511ce8a0 1361 // This software system can't be fooled that way.)
mjr 38:091e511ce8a0 1362 uint8_t pulseState;
mjr 53:9b2611964afc 1363 uint32_t pulseTime;
mjr 38:091e511ce8a0 1364
mjr 48:058ace2aed1d 1365 } __attribute__((packed)) buttonState[MAX_BUTTONS];
mjr 18:5e890ebd0023 1366
mjr 38:091e511ce8a0 1367
mjr 38:091e511ce8a0 1368 // Button data
mjr 38:091e511ce8a0 1369 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 1370
mjr 38:091e511ce8a0 1371 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 1372 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 1373 // modifier keys.
mjr 38:091e511ce8a0 1374 struct
mjr 38:091e511ce8a0 1375 {
mjr 38:091e511ce8a0 1376 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 1377 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 1378 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 1379 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 1380 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 1381
mjr 38:091e511ce8a0 1382 // Media key state
mjr 38:091e511ce8a0 1383 struct
mjr 38:091e511ce8a0 1384 {
mjr 38:091e511ce8a0 1385 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 1386 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 1387 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 1388
mjr 38:091e511ce8a0 1389 // button scan interrupt ticker
mjr 38:091e511ce8a0 1390 Ticker buttonTicker;
mjr 38:091e511ce8a0 1391
mjr 38:091e511ce8a0 1392 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 1393 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 1394 void scanButtons()
mjr 38:091e511ce8a0 1395 {
mjr 38:091e511ce8a0 1396 // scan all button input pins
mjr 38:091e511ce8a0 1397 ButtonState *bs = buttonState;
mjr 38:091e511ce8a0 1398 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 38:091e511ce8a0 1399 {
mjr 53:9b2611964afc 1400 // if this logical button is connected to a physical input, check
mjr 53:9b2611964afc 1401 // the GPIO pin state
mjr 38:091e511ce8a0 1402 if (bs->di != NULL)
mjr 38:091e511ce8a0 1403 {
mjr 38:091e511ce8a0 1404 // Shift the new state into the debounce history. Note that
mjr 38:091e511ce8a0 1405 // the physical pin inputs are active low (0V/GND = ON), so invert
mjr 38:091e511ce8a0 1406 // the reading by XOR'ing the low bit with 1. And of course we
mjr 38:091e511ce8a0 1407 // only want the low bit (since the history is effectively a bit
mjr 38:091e511ce8a0 1408 // vector), so mask the whole thing with 0x01 as well.
mjr 53:9b2611964afc 1409 uint8_t db = bs->dbState;
mjr 38:091e511ce8a0 1410 db <<= 1;
mjr 38:091e511ce8a0 1411 db |= (bs->di->read() & 0x01) ^ 0x01;
mjr 53:9b2611964afc 1412 bs->dbState = db;
mjr 38:091e511ce8a0 1413
mjr 38:091e511ce8a0 1414 // if we have all 0's or 1's in the history for the required
mjr 38:091e511ce8a0 1415 // debounce period, the key state is stable - check for a change
mjr 38:091e511ce8a0 1416 // to the last stable state
mjr 38:091e511ce8a0 1417 const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings
mjr 38:091e511ce8a0 1418 db &= stable;
mjr 38:091e511ce8a0 1419 if (db == 0 || db == stable)
mjr 53:9b2611964afc 1420 bs->physState = db & 1;
mjr 38:091e511ce8a0 1421 }
mjr 38:091e511ce8a0 1422 }
mjr 38:091e511ce8a0 1423 }
mjr 38:091e511ce8a0 1424
mjr 38:091e511ce8a0 1425 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1426 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1427 // in the physical button state.
mjr 38:091e511ce8a0 1428 Timer buttonTimer;
mjr 12:669df364a565 1429
mjr 11:bd9da7088e6e 1430 // initialize the button inputs
mjr 35:e959ffba78fd 1431 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1432 {
mjr 35:e959ffba78fd 1433 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1434 kbKeys = false;
mjr 35:e959ffba78fd 1435
mjr 53:9b2611964afc 1436 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 1437 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 1438 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 1439 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 1440
mjr 53:9b2611964afc 1441 // ZB Launch Ball button
mjr 53:9b2611964afc 1442 cfg.button[ZBL_BUTTON].set(
mjr 53:9b2611964afc 1443 PINNAME_TO_WIRE(NC),
mjr 53:9b2611964afc 1444 cfg.plunger.zbLaunchBall.keytype,
mjr 53:9b2611964afc 1445 cfg.plunger.zbLaunchBall.keycode);
mjr 53:9b2611964afc 1446
mjr 11:bd9da7088e6e 1447 // create the digital inputs
mjr 35:e959ffba78fd 1448 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1449 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1450 {
mjr 35:e959ffba78fd 1451 PinName pin = wirePinName(cfg.button[i].pin);
mjr 35:e959ffba78fd 1452 if (pin != NC)
mjr 35:e959ffba78fd 1453 {
mjr 35:e959ffba78fd 1454 // set up the GPIO input pin for this button
mjr 48:058ace2aed1d 1455 bs->di = new TinyDigitalIn(pin);
mjr 35:e959ffba78fd 1456
mjr 38:091e511ce8a0 1457 // if it's a pulse mode button, set the initial pulse state to Off
mjr 38:091e511ce8a0 1458 if (cfg.button[i].flags & BtnFlagPulse)
mjr 38:091e511ce8a0 1459 bs->pulseState = 1;
mjr 38:091e511ce8a0 1460
mjr 53:9b2611964afc 1461 // Note if it's a keyboard key of some kind. If we find any keyboard
mjr 53:9b2611964afc 1462 // mappings, we'll declare a keyboard interface when we send our HID
mjr 53:9b2611964afc 1463 // configuration to the host during USB connection setup.
mjr 35:e959ffba78fd 1464 switch (cfg.button[i].typ)
mjr 35:e959ffba78fd 1465 {
mjr 35:e959ffba78fd 1466 case BtnTypeKey:
mjr 53:9b2611964afc 1467 // note that we have at least one keyboard key
mjr 35:e959ffba78fd 1468 kbKeys = true;
mjr 35:e959ffba78fd 1469 break;
mjr 35:e959ffba78fd 1470
mjr 53:9b2611964afc 1471 default:
mjr 53:9b2611964afc 1472 // not a keyboard key
mjr 39:b3815a1c3802 1473 break;
mjr 35:e959ffba78fd 1474 }
mjr 35:e959ffba78fd 1475 }
mjr 11:bd9da7088e6e 1476 }
mjr 12:669df364a565 1477
mjr 53:9b2611964afc 1478 // If the ZB Launch Ball feature is enabled, and it uses a keyboard
mjr 53:9b2611964afc 1479 // key, this requires setting up a USB keyboard interface.
mjr 53:9b2611964afc 1480 if (cfg.plunger.zbLaunchBall.port != 0
mjr 53:9b2611964afc 1481 && cfg.plunger.zbLaunchBall.keytype == BtnTypeKey)
mjr 53:9b2611964afc 1482 kbKeys = true;
mjr 53:9b2611964afc 1483
mjr 38:091e511ce8a0 1484 // start the button scan thread
mjr 38:091e511ce8a0 1485 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1486
mjr 38:091e511ce8a0 1487 // start the button state transition timer
mjr 12:669df364a565 1488 buttonTimer.start();
mjr 11:bd9da7088e6e 1489 }
mjr 11:bd9da7088e6e 1490
mjr 38:091e511ce8a0 1491 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1492 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1493 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1494 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 1495 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 1496 {
mjr 35:e959ffba78fd 1497 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1498 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1499 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1500 int nkeys = 0;
mjr 11:bd9da7088e6e 1501
mjr 35:e959ffba78fd 1502 // clear the joystick buttons
mjr 36:b9747461331e 1503 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1504
mjr 35:e959ffba78fd 1505 // start with no media keys pressed
mjr 35:e959ffba78fd 1506 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1507
mjr 38:091e511ce8a0 1508 // calculate the time since the last run
mjr 53:9b2611964afc 1509 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 1510 buttonTimer.reset();
mjr 38:091e511ce8a0 1511
mjr 11:bd9da7088e6e 1512 // scan the button list
mjr 18:5e890ebd0023 1513 ButtonState *bs = buttonState;
mjr 53:9b2611964afc 1514 ButtonCfg *bc = cfg.button;
mjr 53:9b2611964afc 1515 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs, ++bc)
mjr 11:bd9da7088e6e 1516 {
mjr 38:091e511ce8a0 1517 // if it's a pulse-mode switch, get the virtual pressed state
mjr 38:091e511ce8a0 1518 if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1519 {
mjr 38:091e511ce8a0 1520 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 1521 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 1522 {
mjr 53:9b2611964afc 1523 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 1524 bs->pulseTime -= dt;
mjr 53:9b2611964afc 1525 }
mjr 53:9b2611964afc 1526 else
mjr 53:9b2611964afc 1527 {
mjr 53:9b2611964afc 1528 // pulse time expired - check for a state change
mjr 53:9b2611964afc 1529 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 1530 switch (bs->pulseState)
mjr 18:5e890ebd0023 1531 {
mjr 38:091e511ce8a0 1532 case 1:
mjr 38:091e511ce8a0 1533 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 1534 if (bs->physState)
mjr 53:9b2611964afc 1535 {
mjr 38:091e511ce8a0 1536 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1537 bs->pulseState = 2;
mjr 53:9b2611964afc 1538 bs->logState = 1;
mjr 38:091e511ce8a0 1539 }
mjr 38:091e511ce8a0 1540 break;
mjr 18:5e890ebd0023 1541
mjr 38:091e511ce8a0 1542 case 2:
mjr 38:091e511ce8a0 1543 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1544 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1545 // change in state in the logical button
mjr 38:091e511ce8a0 1546 bs->pulseState = 3;
mjr 38:091e511ce8a0 1547 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 1548 bs->logState = 0;
mjr 38:091e511ce8a0 1549 break;
mjr 38:091e511ce8a0 1550
mjr 38:091e511ce8a0 1551 case 3:
mjr 38:091e511ce8a0 1552 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 1553 if (!bs->physState)
mjr 53:9b2611964afc 1554 {
mjr 38:091e511ce8a0 1555 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1556 bs->pulseState = 4;
mjr 53:9b2611964afc 1557 bs->logState = 1;
mjr 38:091e511ce8a0 1558 }
mjr 38:091e511ce8a0 1559 break;
mjr 38:091e511ce8a0 1560
mjr 38:091e511ce8a0 1561 case 4:
mjr 38:091e511ce8a0 1562 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 1563 bs->pulseState = 1;
mjr 38:091e511ce8a0 1564 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 1565 bs->logState = 0;
mjr 38:091e511ce8a0 1566 break;
mjr 18:5e890ebd0023 1567 }
mjr 18:5e890ebd0023 1568 }
mjr 38:091e511ce8a0 1569 }
mjr 38:091e511ce8a0 1570 else
mjr 38:091e511ce8a0 1571 {
mjr 38:091e511ce8a0 1572 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 1573 bs->logState = bs->physState;
mjr 38:091e511ce8a0 1574 }
mjr 35:e959ffba78fd 1575
mjr 38:091e511ce8a0 1576 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 1577 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 1578 {
mjr 38:091e511ce8a0 1579 // check for special key transitions
mjr 53:9b2611964afc 1580 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 1581 {
mjr 53:9b2611964afc 1582 // Check the switch type in the config flags. If flag 0x01 is set,
mjr 53:9b2611964afc 1583 // it's a persistent on/off switch, so the night mode state simply
mjr 53:9b2611964afc 1584 // follows the current state of the switch. Otherwise, it's a
mjr 53:9b2611964afc 1585 // momentary button, so each button push (i.e., each transition from
mjr 53:9b2611964afc 1586 // logical state OFF to ON) toggles the current night mode state.
mjr 53:9b2611964afc 1587 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 1588 {
mjr 53:9b2611964afc 1589 // toggle switch - when the button changes state, change
mjr 53:9b2611964afc 1590 // night mode to match the new state
mjr 53:9b2611964afc 1591 setNightMode(bs->logState);
mjr 53:9b2611964afc 1592 }
mjr 53:9b2611964afc 1593 else
mjr 53:9b2611964afc 1594 {
mjr 53:9b2611964afc 1595 // momentary switch - toggle the night mode state when the
mjr 53:9b2611964afc 1596 // physical button is pushed (i.e., when its logical state
mjr 53:9b2611964afc 1597 // transitions from OFF to ON)
mjr 53:9b2611964afc 1598 if (bs->logState)
mjr 53:9b2611964afc 1599 toggleNightMode();
mjr 53:9b2611964afc 1600 }
mjr 35:e959ffba78fd 1601 }
mjr 38:091e511ce8a0 1602
mjr 38:091e511ce8a0 1603 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 1604 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 1605 }
mjr 38:091e511ce8a0 1606
mjr 53:9b2611964afc 1607 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 1608 // key state list
mjr 53:9b2611964afc 1609 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 1610 {
mjr 38:091e511ce8a0 1611 // OR in the joystick button bit, mod key bits, and media key bits
mjr 53:9b2611964afc 1612 uint8_t val = bc->val;
mjr 53:9b2611964afc 1613 switch (bc->typ)
mjr 53:9b2611964afc 1614 {
mjr 53:9b2611964afc 1615 case BtnTypeJoystick:
mjr 53:9b2611964afc 1616 // joystick button
mjr 53:9b2611964afc 1617 newjs |= (1 << (val - 1));
mjr 53:9b2611964afc 1618 break;
mjr 53:9b2611964afc 1619
mjr 53:9b2611964afc 1620 case BtnTypeKey:
mjr 53:9b2611964afc 1621 // Keyboard key. This could be a modifier key (shift, control,
mjr 53:9b2611964afc 1622 // alt, GUI), a media key (mute, volume up, volume down), or a
mjr 53:9b2611964afc 1623 // regular key. Check which one.
mjr 53:9b2611964afc 1624 if (val >= 0x7F && val <= 0x81)
mjr 53:9b2611964afc 1625 {
mjr 53:9b2611964afc 1626 // It's a media key. OR the key into the media key mask.
mjr 53:9b2611964afc 1627 // The media mask bits are mapped in the HID report descriptor
mjr 53:9b2611964afc 1628 // in USBJoystick.cpp. For simplicity, we arrange the mask so
mjr 53:9b2611964afc 1629 // that the ones with regular keyboard equivalents that we catch
mjr 53:9b2611964afc 1630 // here are in the same order as the key scan codes:
mjr 53:9b2611964afc 1631 //
mjr 53:9b2611964afc 1632 // Mute = scan 0x7F = mask bit 0x01
mjr 53:9b2611964afc 1633 // Vol Up = scan 0x80 = mask bit 0x02
mjr 53:9b2611964afc 1634 // Vol Down = scan 0x81 = mask bit 0x04
mjr 53:9b2611964afc 1635 //
mjr 53:9b2611964afc 1636 // So we can translate from scan code to bit mask with some
mjr 53:9b2611964afc 1637 // simple bit shifting:
mjr 53:9b2611964afc 1638 mediakeys |= (1 << (val - 0x7f));
mjr 53:9b2611964afc 1639 }
mjr 53:9b2611964afc 1640 else if (val >= 0xE0 && val <= 0xE7)
mjr 53:9b2611964afc 1641 {
mjr 53:9b2611964afc 1642 // It's a modifier key. Like the media keys, these are represented
mjr 53:9b2611964afc 1643 // in the USB reports with a bit mask, and like the media keys, we
mjr 53:9b2611964afc 1644 // arrange the mask bits in the same order as the scan codes. This
mjr 53:9b2611964afc 1645 // makes figuring the mask a simple bit shift:
mjr 53:9b2611964afc 1646 modkeys |= (1 << (val - 0xE0));
mjr 53:9b2611964afc 1647 }
mjr 53:9b2611964afc 1648 else
mjr 53:9b2611964afc 1649 {
mjr 53:9b2611964afc 1650 // It's a regular key. Make sure it's not already in the list, and
mjr 53:9b2611964afc 1651 // that the list isn't full. If neither of these apply, add the key.
mjr 53:9b2611964afc 1652 if (nkeys < 7)
mjr 53:9b2611964afc 1653 {
mjr 53:9b2611964afc 1654 bool found;
mjr 53:9b2611964afc 1655 for (int j = 0 ; j < nkeys ; ++j)
mjr 53:9b2611964afc 1656 {
mjr 53:9b2611964afc 1657 if (keys[j] == val)
mjr 53:9b2611964afc 1658 {
mjr 53:9b2611964afc 1659 found = true;
mjr 53:9b2611964afc 1660 break;
mjr 53:9b2611964afc 1661 }
mjr 53:9b2611964afc 1662 }
mjr 53:9b2611964afc 1663 if (!found)
mjr 53:9b2611964afc 1664 keys[nkeys++] = val;
mjr 53:9b2611964afc 1665 }
mjr 53:9b2611964afc 1666 }
mjr 53:9b2611964afc 1667 break;
mjr 53:9b2611964afc 1668 }
mjr 18:5e890ebd0023 1669 }
mjr 11:bd9da7088e6e 1670 }
mjr 36:b9747461331e 1671
mjr 36:b9747461331e 1672 // check for joystick button changes
mjr 36:b9747461331e 1673 if (jsButtons != newjs)
mjr 36:b9747461331e 1674 jsButtons = newjs;
mjr 11:bd9da7088e6e 1675
mjr 35:e959ffba78fd 1676 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 1677 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 1678 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 1679 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 1680 {
mjr 35:e959ffba78fd 1681 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 1682 kbState.changed = true;
mjr 35:e959ffba78fd 1683 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 1684 if (nkeys <= 6) {
mjr 35:e959ffba78fd 1685 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 1686 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 1687 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 1688 }
mjr 35:e959ffba78fd 1689 else {
mjr 35:e959ffba78fd 1690 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 1691 kbState.nkeys = 6;
mjr 35:e959ffba78fd 1692 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 1693 }
mjr 35:e959ffba78fd 1694 }
mjr 35:e959ffba78fd 1695
mjr 35:e959ffba78fd 1696 // Check for changes to media keys
mjr 35:e959ffba78fd 1697 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 1698 {
mjr 35:e959ffba78fd 1699 mediaState.changed = true;
mjr 35:e959ffba78fd 1700 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 1701 }
mjr 11:bd9da7088e6e 1702 }
mjr 11:bd9da7088e6e 1703
mjr 5:a70c0bce770d 1704 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1705 //
mjr 5:a70c0bce770d 1706 // Customization joystick subbclass
mjr 5:a70c0bce770d 1707 //
mjr 5:a70c0bce770d 1708
mjr 5:a70c0bce770d 1709 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 1710 {
mjr 5:a70c0bce770d 1711 public:
mjr 35:e959ffba78fd 1712 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 1713 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 1714 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 1715 {
mjr 54:fd77a6b2f76c 1716 sleeping_ = false;
mjr 54:fd77a6b2f76c 1717 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 1718 timer_.start();
mjr 54:fd77a6b2f76c 1719 }
mjr 54:fd77a6b2f76c 1720
mjr 54:fd77a6b2f76c 1721 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 1722 void diagFlash()
mjr 54:fd77a6b2f76c 1723 {
mjr 54:fd77a6b2f76c 1724 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 1725 {
mjr 54:fd77a6b2f76c 1726 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 1727 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 1728 {
mjr 54:fd77a6b2f76c 1729 // short red flash
mjr 54:fd77a6b2f76c 1730 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 1731 wait_us(50000);
mjr 54:fd77a6b2f76c 1732 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 1733 wait_us(50000);
mjr 54:fd77a6b2f76c 1734 }
mjr 54:fd77a6b2f76c 1735 }
mjr 5:a70c0bce770d 1736 }
mjr 5:a70c0bce770d 1737
mjr 5:a70c0bce770d 1738 // are we connected?
mjr 5:a70c0bce770d 1739 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 1740
mjr 54:fd77a6b2f76c 1741 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 1742 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 1743 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 1744 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 1745 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 1746
mjr 54:fd77a6b2f76c 1747 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 1748 //
mjr 54:fd77a6b2f76c 1749 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 1750 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 1751 // other way.
mjr 54:fd77a6b2f76c 1752 //
mjr 54:fd77a6b2f76c 1753 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 1754 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 1755 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 1756 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 1757 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 1758 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 1759 //
mjr 54:fd77a6b2f76c 1760 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 1761 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 1762 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 1763 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 1764 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 1765 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 1766 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 1767 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 1768 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 1769 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 1770 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 1771 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 1772 // is effectively dead.
mjr 54:fd77a6b2f76c 1773 //
mjr 54:fd77a6b2f76c 1774 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 1775 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 1776 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 1777 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 1778 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 1779 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 1780 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 1781 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 1782 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 1783 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 1784 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 1785 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 1786 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 1787 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 1788 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 1789 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 1790 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 1791 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 1792 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 1793 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 1794 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 1795 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 1796 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 1797 // a disconnect.
mjr 54:fd77a6b2f76c 1798 //
mjr 54:fd77a6b2f76c 1799 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 1800 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 1801 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 1802 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 1803 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 1804 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 1805 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 1806 //
mjr 54:fd77a6b2f76c 1807 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 1808 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 1809 //
mjr 54:fd77a6b2f76c 1810 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 1811 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 1812 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 1813 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 1814 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 1815 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 1816 // has been plugged in and initiates the logical connection setup.
mjr 54:fd77a6b2f76c 1817 // We have to remain disconnected for a macroscopic interval for
mjr 54:fd77a6b2f76c 1818 // this to happen - 5ms seems to do the trick.
mjr 54:fd77a6b2f76c 1819 //
mjr 54:fd77a6b2f76c 1820 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 1821 //
mjr 54:fd77a6b2f76c 1822 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 1823 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 1824 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 1825 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 1826 // return.
mjr 54:fd77a6b2f76c 1827 //
mjr 54:fd77a6b2f76c 1828 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 1829 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 1830 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 1831 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 1832 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 1833 //
mjr 54:fd77a6b2f76c 1834 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 1835 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 1836 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 1837 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 1838 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 1839 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 1840 //
mjr 54:fd77a6b2f76c 1841 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 1842 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 1843 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 1844 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 1845 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 1846 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 1847 // freezes over.
mjr 54:fd77a6b2f76c 1848 //
mjr 54:fd77a6b2f76c 1849 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 1850 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 1851 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 1852 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 1853 // less than second with this code in place.
mjr 54:fd77a6b2f76c 1854 void recoverConnection()
mjr 54:fd77a6b2f76c 1855 {
mjr 54:fd77a6b2f76c 1856 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 1857 if (reconnectPending_)
mjr 54:fd77a6b2f76c 1858 {
mjr 54:fd77a6b2f76c 1859 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 1860 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 1861 {
mjr 54:fd77a6b2f76c 1862 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 1863 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 1864 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 1865 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 1866 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 1867 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 1868 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 1869 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 1870 __disable_irq();
mjr 54:fd77a6b2f76c 1871 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 1872 {
mjr 54:fd77a6b2f76c 1873 connect(false);
mjr 54:fd77a6b2f76c 1874 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 1875 done = true;
mjr 54:fd77a6b2f76c 1876 }
mjr 54:fd77a6b2f76c 1877 __enable_irq();
mjr 54:fd77a6b2f76c 1878 }
mjr 54:fd77a6b2f76c 1879 }
mjr 54:fd77a6b2f76c 1880 }
mjr 5:a70c0bce770d 1881
mjr 5:a70c0bce770d 1882 protected:
mjr 54:fd77a6b2f76c 1883 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 1884 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 1885 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 1886 //
mjr 54:fd77a6b2f76c 1887 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 1888 //
mjr 54:fd77a6b2f76c 1889 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 1890 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 1891 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 1892 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 1893 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 1894 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 1895 {
mjr 54:fd77a6b2f76c 1896 // note the new state
mjr 54:fd77a6b2f76c 1897 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 1898
mjr 54:fd77a6b2f76c 1899 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 1900 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 1901 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 1902 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 1903 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 1904 {
mjr 54:fd77a6b2f76c 1905 disconnect();
mjr 54:fd77a6b2f76c 1906 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 1907 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 1908 }
mjr 54:fd77a6b2f76c 1909 }
mjr 54:fd77a6b2f76c 1910
mjr 54:fd77a6b2f76c 1911 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 1912 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 1913
mjr 54:fd77a6b2f76c 1914 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 1915 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 1916
mjr 54:fd77a6b2f76c 1917 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 1918 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 1919
mjr 54:fd77a6b2f76c 1920 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 1921 Timer timer_;
mjr 5:a70c0bce770d 1922 };
mjr 5:a70c0bce770d 1923
mjr 5:a70c0bce770d 1924 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1925 //
mjr 5:a70c0bce770d 1926 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 1927 //
mjr 5:a70c0bce770d 1928
mjr 5:a70c0bce770d 1929 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 1930 //
mjr 5:a70c0bce770d 1931 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 1932 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 1933 // automatic calibration.
mjr 5:a70c0bce770d 1934 //
mjr 5:a70c0bce770d 1935 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 1936 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 1937 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 1938 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 1939 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 1940 // every sample.
mjr 5:a70c0bce770d 1941 //
mjr 6:cc35eb643e8f 1942 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 1943 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 1944 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 1945 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 1946 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 1947 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 1948 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 1949 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 1950 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 1951 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 1952 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 1953 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 1954 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 1955 // of nudging, say).
mjr 5:a70c0bce770d 1956 //
mjr 5:a70c0bce770d 1957
mjr 17:ab3cec0c8bf4 1958 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 1959 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 1960
mjr 17:ab3cec0c8bf4 1961 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 1962 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 1963 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 1964
mjr 17:ab3cec0c8bf4 1965 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 1966 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 1967 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 1968 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 1969
mjr 17:ab3cec0c8bf4 1970
mjr 6:cc35eb643e8f 1971 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 1972 struct AccHist
mjr 5:a70c0bce770d 1973 {
mjr 6:cc35eb643e8f 1974 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1975 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 1976 {
mjr 6:cc35eb643e8f 1977 // save the raw position
mjr 6:cc35eb643e8f 1978 this->x = x;
mjr 6:cc35eb643e8f 1979 this->y = y;
mjr 6:cc35eb643e8f 1980 this->d = distance(prv);
mjr 6:cc35eb643e8f 1981 }
mjr 6:cc35eb643e8f 1982
mjr 6:cc35eb643e8f 1983 // reading for this entry
mjr 5:a70c0bce770d 1984 float x, y;
mjr 5:a70c0bce770d 1985
mjr 6:cc35eb643e8f 1986 // distance from previous entry
mjr 6:cc35eb643e8f 1987 float d;
mjr 5:a70c0bce770d 1988
mjr 6:cc35eb643e8f 1989 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 1990 float xtot, ytot;
mjr 6:cc35eb643e8f 1991 int cnt;
mjr 6:cc35eb643e8f 1992
mjr 6:cc35eb643e8f 1993 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1994 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 1995 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 1996 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 1997
mjr 6:cc35eb643e8f 1998 float distance(AccHist *p)
mjr 6:cc35eb643e8f 1999 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 2000 };
mjr 5:a70c0bce770d 2001
mjr 5:a70c0bce770d 2002 // accelerometer wrapper class
mjr 3:3514575d4f86 2003 class Accel
mjr 3:3514575d4f86 2004 {
mjr 3:3514575d4f86 2005 public:
mjr 3:3514575d4f86 2006 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 2007 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 2008 {
mjr 5:a70c0bce770d 2009 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 2010 irqPin_ = irqPin;
mjr 5:a70c0bce770d 2011
mjr 5:a70c0bce770d 2012 // reset and initialize
mjr 5:a70c0bce770d 2013 reset();
mjr 5:a70c0bce770d 2014 }
mjr 5:a70c0bce770d 2015
mjr 5:a70c0bce770d 2016 void reset()
mjr 5:a70c0bce770d 2017 {
mjr 6:cc35eb643e8f 2018 // clear the center point
mjr 6:cc35eb643e8f 2019 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 2020
mjr 6:cc35eb643e8f 2021 // start the calibration timer
mjr 5:a70c0bce770d 2022 tCenter_.start();
mjr 5:a70c0bce770d 2023 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 2024
mjr 5:a70c0bce770d 2025 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 2026 mma_.init();
mjr 6:cc35eb643e8f 2027
mjr 6:cc35eb643e8f 2028 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 2029 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2030
mjr 6:cc35eb643e8f 2031 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 2032 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 2033 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 2034
mjr 3:3514575d4f86 2035 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 2036 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 2037
mjr 3:3514575d4f86 2038 // start our timers
mjr 3:3514575d4f86 2039 tGet_.start();
mjr 3:3514575d4f86 2040 tInt_.start();
mjr 3:3514575d4f86 2041 }
mjr 3:3514575d4f86 2042
mjr 9:fd65b0a94720 2043 void get(int &x, int &y)
mjr 3:3514575d4f86 2044 {
mjr 3:3514575d4f86 2045 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 2046 __disable_irq();
mjr 3:3514575d4f86 2047
mjr 3:3514575d4f86 2048 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 2049 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 2050 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 2051
mjr 6:cc35eb643e8f 2052 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 2053 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2054
mjr 3:3514575d4f86 2055 // get the time since the last get() sample
mjr 38:091e511ce8a0 2056 float dt = tGet_.read_us()/1.0e6f;
mjr 3:3514575d4f86 2057 tGet_.reset();
mjr 3:3514575d4f86 2058
mjr 3:3514575d4f86 2059 // done manipulating the shared data
mjr 3:3514575d4f86 2060 __enable_irq();
mjr 3:3514575d4f86 2061
mjr 6:cc35eb643e8f 2062 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 2063 vx /= dt;
mjr 6:cc35eb643e8f 2064 vy /= dt;
mjr 6:cc35eb643e8f 2065
mjr 6:cc35eb643e8f 2066 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 2067 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2068 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 2069
mjr 5:a70c0bce770d 2070 // check for auto-centering every so often
mjr 48:058ace2aed1d 2071 if (tCenter_.read_us() > 1000000)
mjr 5:a70c0bce770d 2072 {
mjr 5:a70c0bce770d 2073 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 2074 AccHist *prv = p;
mjr 5:a70c0bce770d 2075 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 2076 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2077 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 2078
mjr 5:a70c0bce770d 2079 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 2080 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 2081 {
mjr 5:a70c0bce770d 2082 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 2083 static const float accTol = .01;
mjr 6:cc35eb643e8f 2084 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 2085 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 2086 && p0[1].d < accTol
mjr 6:cc35eb643e8f 2087 && p0[2].d < accTol
mjr 6:cc35eb643e8f 2088 && p0[3].d < accTol
mjr 6:cc35eb643e8f 2089 && p0[4].d < accTol)
mjr 5:a70c0bce770d 2090 {
mjr 6:cc35eb643e8f 2091 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 2092 // the samples over the rest period
mjr 6:cc35eb643e8f 2093 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 2094 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 2095 }
mjr 5:a70c0bce770d 2096 }
mjr 5:a70c0bce770d 2097 else
mjr 5:a70c0bce770d 2098 {
mjr 5:a70c0bce770d 2099 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 2100 ++nAccPrv_;
mjr 5:a70c0bce770d 2101 }
mjr 6:cc35eb643e8f 2102
mjr 6:cc35eb643e8f 2103 // clear the new item's running totals
mjr 6:cc35eb643e8f 2104 p->clearAvg();
mjr 5:a70c0bce770d 2105
mjr 5:a70c0bce770d 2106 // reset the timer
mjr 5:a70c0bce770d 2107 tCenter_.reset();
mjr 39:b3815a1c3802 2108
mjr 39:b3815a1c3802 2109 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 2110 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 2111 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 2112 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 2113 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 2114 // generation to continue.
mjr 39:b3815a1c3802 2115 //
mjr 39:b3815a1c3802 2116 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 2117 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 2118 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 2119 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 2120 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 2121 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 2122 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 2123 {
mjr 39:b3815a1c3802 2124 float x, y, z;
mjr 39:b3815a1c3802 2125 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 2126 }
mjr 5:a70c0bce770d 2127 }
mjr 5:a70c0bce770d 2128
mjr 6:cc35eb643e8f 2129 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 2130 x = rawToReport(vx);
mjr 6:cc35eb643e8f 2131 y = rawToReport(vy);
mjr 5:a70c0bce770d 2132
mjr 6:cc35eb643e8f 2133 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 2134 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 2135 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 2136 #endif
mjr 3:3514575d4f86 2137 }
mjr 29:582472d0bc57 2138
mjr 3:3514575d4f86 2139 private:
mjr 6:cc35eb643e8f 2140 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 2141 int rawToReport(float v)
mjr 5:a70c0bce770d 2142 {
mjr 6:cc35eb643e8f 2143 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 2144 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 2145
mjr 6:cc35eb643e8f 2146 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 2147 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 2148 static const int filter[] = {
mjr 6:cc35eb643e8f 2149 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 2150 0,
mjr 6:cc35eb643e8f 2151 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 2152 };
mjr 6:cc35eb643e8f 2153 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 2154 }
mjr 5:a70c0bce770d 2155
mjr 3:3514575d4f86 2156 // interrupt handler
mjr 3:3514575d4f86 2157 void isr()
mjr 3:3514575d4f86 2158 {
mjr 3:3514575d4f86 2159 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 2160 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 2161 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 2162 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 2163 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 2164 float x, y, z;
mjr 5:a70c0bce770d 2165 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 2166
mjr 3:3514575d4f86 2167 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 2168 float dt = tInt_.read();
mjr 3:3514575d4f86 2169 tInt_.reset();
mjr 6:cc35eb643e8f 2170
mjr 6:cc35eb643e8f 2171 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 2172 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 2173 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 2174
mjr 6:cc35eb643e8f 2175 // store the updates
mjr 6:cc35eb643e8f 2176 ax_ = x;
mjr 6:cc35eb643e8f 2177 ay_ = y;
mjr 6:cc35eb643e8f 2178 az_ = z;
mjr 3:3514575d4f86 2179 }
mjr 3:3514575d4f86 2180
mjr 3:3514575d4f86 2181 // underlying accelerometer object
mjr 3:3514575d4f86 2182 MMA8451Q mma_;
mjr 3:3514575d4f86 2183
mjr 5:a70c0bce770d 2184 // last raw acceleration readings
mjr 6:cc35eb643e8f 2185 float ax_, ay_, az_;
mjr 5:a70c0bce770d 2186
mjr 6:cc35eb643e8f 2187 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 2188 float vx_, vy_;
mjr 6:cc35eb643e8f 2189
mjr 3:3514575d4f86 2190 // timer for measuring time between get() samples
mjr 3:3514575d4f86 2191 Timer tGet_;
mjr 3:3514575d4f86 2192
mjr 3:3514575d4f86 2193 // timer for measuring time between interrupts
mjr 3:3514575d4f86 2194 Timer tInt_;
mjr 5:a70c0bce770d 2195
mjr 6:cc35eb643e8f 2196 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 2197 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 2198 // at rest.
mjr 6:cc35eb643e8f 2199 float cx_, cy_;
mjr 5:a70c0bce770d 2200
mjr 5:a70c0bce770d 2201 // timer for atuo-centering
mjr 5:a70c0bce770d 2202 Timer tCenter_;
mjr 6:cc35eb643e8f 2203
mjr 6:cc35eb643e8f 2204 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 2205 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 2206 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 2207 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 2208 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 2209 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 2210 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 2211 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 2212 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 2213 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 2214 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 2215 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 2216 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 2217 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 2218 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 2219
mjr 5:a70c0bce770d 2220 // interurupt pin name
mjr 5:a70c0bce770d 2221 PinName irqPin_;
mjr 5:a70c0bce770d 2222
mjr 5:a70c0bce770d 2223 // interrupt router
mjr 5:a70c0bce770d 2224 InterruptIn intIn_;
mjr 3:3514575d4f86 2225 };
mjr 3:3514575d4f86 2226
mjr 5:a70c0bce770d 2227
mjr 5:a70c0bce770d 2228 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2229 //
mjr 14:df700b22ca08 2230 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 2231 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 2232 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 2233 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 2234 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 2235 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 2236 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 2237 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 2238 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 2239 //
mjr 14:df700b22ca08 2240 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 2241 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 2242 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 2243 //
mjr 5:a70c0bce770d 2244 void clear_i2c()
mjr 5:a70c0bce770d 2245 {
mjr 38:091e511ce8a0 2246 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 2247 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 2248 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 2249
mjr 5:a70c0bce770d 2250 // clock the SCL 9 times
mjr 5:a70c0bce770d 2251 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 2252 {
mjr 5:a70c0bce770d 2253 scl = 1;
mjr 5:a70c0bce770d 2254 wait_us(20);
mjr 5:a70c0bce770d 2255 scl = 0;
mjr 5:a70c0bce770d 2256 wait_us(20);
mjr 5:a70c0bce770d 2257 }
mjr 5:a70c0bce770d 2258 }
mjr 14:df700b22ca08 2259
mjr 14:df700b22ca08 2260 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 2261 //
mjr 33:d832bcab089e 2262 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 2263 // for a given interval before allowing an update.
mjr 33:d832bcab089e 2264 //
mjr 33:d832bcab089e 2265 class Debouncer
mjr 33:d832bcab089e 2266 {
mjr 33:d832bcab089e 2267 public:
mjr 33:d832bcab089e 2268 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 2269 {
mjr 33:d832bcab089e 2270 t.start();
mjr 33:d832bcab089e 2271 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 2272 this->tmin = tmin;
mjr 33:d832bcab089e 2273 }
mjr 33:d832bcab089e 2274
mjr 33:d832bcab089e 2275 // Get the current stable value
mjr 33:d832bcab089e 2276 bool val() const { return stable; }
mjr 33:d832bcab089e 2277
mjr 33:d832bcab089e 2278 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 2279 // input device.
mjr 33:d832bcab089e 2280 void sampleIn(bool val)
mjr 33:d832bcab089e 2281 {
mjr 33:d832bcab089e 2282 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 2283 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 2284 // on the sample reader.
mjr 33:d832bcab089e 2285 if (val != prv)
mjr 33:d832bcab089e 2286 {
mjr 33:d832bcab089e 2287 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 2288 t.reset();
mjr 33:d832bcab089e 2289
mjr 33:d832bcab089e 2290 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 2291 prv = val;
mjr 33:d832bcab089e 2292 }
mjr 33:d832bcab089e 2293 else if (val != stable)
mjr 33:d832bcab089e 2294 {
mjr 33:d832bcab089e 2295 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 2296 // and different from the stable value. This means that
mjr 33:d832bcab089e 2297 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 2298 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 2299 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 2300 if (t.read() > tmin)
mjr 33:d832bcab089e 2301 stable = val;
mjr 33:d832bcab089e 2302 }
mjr 33:d832bcab089e 2303 }
mjr 33:d832bcab089e 2304
mjr 33:d832bcab089e 2305 private:
mjr 33:d832bcab089e 2306 // current stable value
mjr 33:d832bcab089e 2307 bool stable;
mjr 33:d832bcab089e 2308
mjr 33:d832bcab089e 2309 // last raw sample value
mjr 33:d832bcab089e 2310 bool prv;
mjr 33:d832bcab089e 2311
mjr 33:d832bcab089e 2312 // elapsed time since last raw input change
mjr 33:d832bcab089e 2313 Timer t;
mjr 33:d832bcab089e 2314
mjr 33:d832bcab089e 2315 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 2316 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 2317 float tmin;
mjr 33:d832bcab089e 2318 };
mjr 33:d832bcab089e 2319
mjr 33:d832bcab089e 2320
mjr 33:d832bcab089e 2321 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2322 //
mjr 33:d832bcab089e 2323 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 2324 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 2325 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 2326 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 2327 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 2328 //
mjr 33:d832bcab089e 2329 void allOutputsOff()
mjr 33:d832bcab089e 2330 {
mjr 33:d832bcab089e 2331 // reset all LedWiz outputs to OFF/48
mjr 35:e959ffba78fd 2332 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 33:d832bcab089e 2333 {
mjr 33:d832bcab089e 2334 outLevel[i] = 0;
mjr 33:d832bcab089e 2335 wizOn[i] = 0;
mjr 33:d832bcab089e 2336 wizVal[i] = 48;
mjr 33:d832bcab089e 2337 lwPin[i]->set(0);
mjr 33:d832bcab089e 2338 }
mjr 33:d832bcab089e 2339
mjr 33:d832bcab089e 2340 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 40:cc0d9814522b 2341 for (int i = numLwOutputs ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 2342 {
mjr 33:d832bcab089e 2343 outLevel[i] = 0;
mjr 33:d832bcab089e 2344 lwPin[i]->set(0);
mjr 33:d832bcab089e 2345 }
mjr 33:d832bcab089e 2346
mjr 33:d832bcab089e 2347 // restore default LedWiz flash rate
mjr 33:d832bcab089e 2348 wizSpeed = 2;
mjr 34:6b981a2afab7 2349
mjr 34:6b981a2afab7 2350 // flush changes to hc595, if applicable
mjr 35:e959ffba78fd 2351 if (hc595 != 0)
mjr 35:e959ffba78fd 2352 hc595->update();
mjr 33:d832bcab089e 2353 }
mjr 33:d832bcab089e 2354
mjr 33:d832bcab089e 2355 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2356 //
mjr 33:d832bcab089e 2357 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 2358 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 2359 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 2360 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 2361 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 2362 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 2363 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 2364 //
mjr 33:d832bcab089e 2365 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 2366 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 2367 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 2368 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 2369 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 2370 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 2371 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 2372 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 2373 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 2374 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 2375 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 2376 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 2377 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 2378 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 2379 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 2380 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 2381 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 2382 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 2383 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 2384 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 2385 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 2386 //
mjr 40:cc0d9814522b 2387 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 2388 // of tricky but likely scenarios:
mjr 33:d832bcab089e 2389 //
mjr 33:d832bcab089e 2390 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 2391 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 2392 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 2393 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 2394 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 2395 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 2396 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 2397 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 2398 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 2399 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 2400 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 2401 //
mjr 33:d832bcab089e 2402 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 2403 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 2404 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 2405 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 2406 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 2407 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 2408 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 2409 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 2410 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 2411 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 2412 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 2413 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 2414 // first check.
mjr 33:d832bcab089e 2415 //
mjr 33:d832bcab089e 2416 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 2417 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 2418 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 2419 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 2420 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 2421 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 2422 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 2423 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 2424 //
mjr 33:d832bcab089e 2425
mjr 33:d832bcab089e 2426 // Current PSU2 state:
mjr 33:d832bcab089e 2427 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 2428 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 2429 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 2430 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 2431 // 5 -> TV relay on
mjr 33:d832bcab089e 2432 int psu2_state = 1;
mjr 35:e959ffba78fd 2433
mjr 35:e959ffba78fd 2434 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 2435 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 2436 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 2437
mjr 35:e959ffba78fd 2438 // TV ON switch relay control
mjr 35:e959ffba78fd 2439 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 2440
mjr 35:e959ffba78fd 2441 // Timer interrupt
mjr 35:e959ffba78fd 2442 Ticker tv_ticker;
mjr 35:e959ffba78fd 2443 float tv_delay_time;
mjr 33:d832bcab089e 2444 void TVTimerInt()
mjr 33:d832bcab089e 2445 {
mjr 35:e959ffba78fd 2446 // time since last state change
mjr 35:e959ffba78fd 2447 static Timer tv_timer;
mjr 35:e959ffba78fd 2448
mjr 33:d832bcab089e 2449 // Check our internal state
mjr 33:d832bcab089e 2450 switch (psu2_state)
mjr 33:d832bcab089e 2451 {
mjr 33:d832bcab089e 2452 case 1:
mjr 33:d832bcab089e 2453 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 2454 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 2455 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 2456 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 2457 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 2458 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 2459 {
mjr 33:d832bcab089e 2460 // switch to OFF state
mjr 33:d832bcab089e 2461 psu2_state = 2;
mjr 33:d832bcab089e 2462
mjr 33:d832bcab089e 2463 // try setting the latch
mjr 35:e959ffba78fd 2464 psu2_status_set->write(1);
mjr 33:d832bcab089e 2465 }
mjr 33:d832bcab089e 2466 break;
mjr 33:d832bcab089e 2467
mjr 33:d832bcab089e 2468 case 2:
mjr 33:d832bcab089e 2469 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 2470 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 2471 psu2_status_set->write(0);
mjr 33:d832bcab089e 2472 psu2_state = 3;
mjr 33:d832bcab089e 2473 break;
mjr 33:d832bcab089e 2474
mjr 33:d832bcab089e 2475 case 3:
mjr 33:d832bcab089e 2476 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 2477 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 2478 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 2479 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 2480 if (psu2_status_sense->read())
mjr 33:d832bcab089e 2481 {
mjr 33:d832bcab089e 2482 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 2483 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 2484 tv_timer.reset();
mjr 33:d832bcab089e 2485 tv_timer.start();
mjr 33:d832bcab089e 2486 psu2_state = 4;
mjr 33:d832bcab089e 2487 }
mjr 33:d832bcab089e 2488 else
mjr 33:d832bcab089e 2489 {
mjr 33:d832bcab089e 2490 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 2491 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 2492 // was turned on since the last check.
mjr 35:e959ffba78fd 2493 psu2_status_set->write(1);
mjr 33:d832bcab089e 2494 psu2_state = 2;
mjr 33:d832bcab089e 2495 }
mjr 33:d832bcab089e 2496 break;
mjr 33:d832bcab089e 2497
mjr 33:d832bcab089e 2498 case 4:
mjr 33:d832bcab089e 2499 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 2500 // delay time, pulse the relay.
mjr 35:e959ffba78fd 2501 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 2502 {
mjr 33:d832bcab089e 2503 // turn on the relay for one timer interval
mjr 35:e959ffba78fd 2504 tv_relay->write(1);
mjr 33:d832bcab089e 2505 psu2_state = 5;
mjr 33:d832bcab089e 2506 }
mjr 33:d832bcab089e 2507 break;
mjr 33:d832bcab089e 2508
mjr 33:d832bcab089e 2509 case 5:
mjr 33:d832bcab089e 2510 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 2511 // it's now time to turn it off and return to the default state.
mjr 35:e959ffba78fd 2512 tv_relay->write(0);
mjr 33:d832bcab089e 2513 psu2_state = 1;
mjr 33:d832bcab089e 2514 break;
mjr 33:d832bcab089e 2515 }
mjr 33:d832bcab089e 2516 }
mjr 33:d832bcab089e 2517
mjr 35:e959ffba78fd 2518 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 2519 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 2520 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 2521 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 2522 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 2523 {
mjr 35:e959ffba78fd 2524 // only start the timer if the status sense circuit pins are configured
mjr 53:9b2611964afc 2525 if (cfg.TVON.statusPin != 0xFF
mjr 53:9b2611964afc 2526 && cfg.TVON.latchPin != 0xFF
mjr 53:9b2611964afc 2527 && cfg.TVON.relayPin != 0xFF)
mjr 35:e959ffba78fd 2528 {
mjr 53:9b2611964afc 2529 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 2530 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 53:9b2611964afc 2531 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 40:cc0d9814522b 2532 tv_delay_time = cfg.TVON.delayTime/100.0;
mjr 35:e959ffba78fd 2533
mjr 35:e959ffba78fd 2534 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 2535 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 2536 }
mjr 35:e959ffba78fd 2537 }
mjr 35:e959ffba78fd 2538
mjr 35:e959ffba78fd 2539 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2540 //
mjr 35:e959ffba78fd 2541 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 2542 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 2543 //
mjr 35:e959ffba78fd 2544 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 2545 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 2546 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 2547 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 2548 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 2549 // again each time the firmware is updated.
mjr 35:e959ffba78fd 2550 //
mjr 35:e959ffba78fd 2551 NVM nvm;
mjr 35:e959ffba78fd 2552
mjr 35:e959ffba78fd 2553 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 2554 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 2555
mjr 35:e959ffba78fd 2556 // flash memory controller interface
mjr 35:e959ffba78fd 2557 FreescaleIAP iap;
mjr 35:e959ffba78fd 2558
mjr 35:e959ffba78fd 2559 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 2560 // required to store the structure
mjr 35:e959ffba78fd 2561 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 2562 {
mjr 35:e959ffba78fd 2563 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 2564 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 2565
mjr 35:e959ffba78fd 2566 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 2567 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 2568 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 2569
mjr 35:e959ffba78fd 2570 // return the address as a pointer
mjr 35:e959ffba78fd 2571 return (NVM *)addr;
mjr 35:e959ffba78fd 2572 }
mjr 35:e959ffba78fd 2573
mjr 35:e959ffba78fd 2574 // figure the flash address as a pointer
mjr 35:e959ffba78fd 2575 NVM *configFlashAddr()
mjr 35:e959ffba78fd 2576 {
mjr 35:e959ffba78fd 2577 int addr, numSectors;
mjr 35:e959ffba78fd 2578 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 2579 }
mjr 35:e959ffba78fd 2580
mjr 35:e959ffba78fd 2581 // Load the config from flash
mjr 35:e959ffba78fd 2582 void loadConfigFromFlash()
mjr 35:e959ffba78fd 2583 {
mjr 35:e959ffba78fd 2584 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 2585 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 2586 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 2587 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 2588 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 2589 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 2590 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 2591 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 2592 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 2593 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 2594 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 2595 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 2596 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 2597 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 2598 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 2599 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 2600
mjr 35:e959ffba78fd 2601 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 2602 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 2603
mjr 35:e959ffba78fd 2604 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 2605 if (flash->valid())
mjr 35:e959ffba78fd 2606 {
mjr 35:e959ffba78fd 2607 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 2608 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 2609 }
mjr 35:e959ffba78fd 2610 else
mjr 35:e959ffba78fd 2611 {
mjr 35:e959ffba78fd 2612 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 2613 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 2614 }
mjr 35:e959ffba78fd 2615 }
mjr 35:e959ffba78fd 2616
mjr 35:e959ffba78fd 2617 void saveConfigToFlash()
mjr 33:d832bcab089e 2618 {
mjr 35:e959ffba78fd 2619 int addr, sectors;
mjr 35:e959ffba78fd 2620 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 2621 nvm.save(iap, addr);
mjr 35:e959ffba78fd 2622 }
mjr 35:e959ffba78fd 2623
mjr 35:e959ffba78fd 2624 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2625 //
mjr 40:cc0d9814522b 2626 // Night mode setting updates
mjr 40:cc0d9814522b 2627 //
mjr 38:091e511ce8a0 2628
mjr 38:091e511ce8a0 2629 // Turn night mode on or off
mjr 38:091e511ce8a0 2630 static void setNightMode(bool on)
mjr 38:091e511ce8a0 2631 {
mjr 40:cc0d9814522b 2632 // set the new night mode flag in the noisy output class
mjr 53:9b2611964afc 2633 nightMode = on;
mjr 40:cc0d9814522b 2634
mjr 40:cc0d9814522b 2635 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 2636 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 2637 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 2638 lwPin[port]->set(nightMode ? 255 : 0);
mjr 40:cc0d9814522b 2639
mjr 40:cc0d9814522b 2640 // update all outputs for the mode change
mjr 40:cc0d9814522b 2641 updateAllOuts();
mjr 38:091e511ce8a0 2642 }
mjr 38:091e511ce8a0 2643
mjr 38:091e511ce8a0 2644 // Toggle night mode
mjr 38:091e511ce8a0 2645 static void toggleNightMode()
mjr 38:091e511ce8a0 2646 {
mjr 53:9b2611964afc 2647 setNightMode(!nightMode);
mjr 38:091e511ce8a0 2648 }
mjr 38:091e511ce8a0 2649
mjr 38:091e511ce8a0 2650
mjr 38:091e511ce8a0 2651 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2652 //
mjr 35:e959ffba78fd 2653 // Plunger Sensor
mjr 35:e959ffba78fd 2654 //
mjr 35:e959ffba78fd 2655
mjr 35:e959ffba78fd 2656 // the plunger sensor interface object
mjr 35:e959ffba78fd 2657 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 2658
mjr 35:e959ffba78fd 2659 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 2660 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 2661 void createPlunger()
mjr 35:e959ffba78fd 2662 {
mjr 35:e959ffba78fd 2663 // create the new sensor object according to the type
mjr 35:e959ffba78fd 2664 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 2665 {
mjr 35:e959ffba78fd 2666 case PlungerType_TSL1410RS:
mjr 35:e959ffba78fd 2667 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 2668 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 2669 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2670 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2671 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2672 NC);
mjr 35:e959ffba78fd 2673 break;
mjr 35:e959ffba78fd 2674
mjr 35:e959ffba78fd 2675 case PlungerType_TSL1410RP:
mjr 35:e959ffba78fd 2676 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 2677 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 2678 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2679 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2680 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2681 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 2682 break;
mjr 35:e959ffba78fd 2683
mjr 35:e959ffba78fd 2684 case PlungerType_TSL1412RS:
mjr 35:e959ffba78fd 2685 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 2686 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 2687 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2688 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2689 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2690 NC);
mjr 35:e959ffba78fd 2691 break;
mjr 35:e959ffba78fd 2692
mjr 35:e959ffba78fd 2693 case PlungerType_TSL1412RP:
mjr 35:e959ffba78fd 2694 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 2695 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 2696 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2697 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2698 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2699 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 2700 break;
mjr 35:e959ffba78fd 2701
mjr 35:e959ffba78fd 2702 case PlungerType_Pot:
mjr 35:e959ffba78fd 2703 // pins are: AO
mjr 53:9b2611964afc 2704 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 2705 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 2706 break;
mjr 35:e959ffba78fd 2707
mjr 35:e959ffba78fd 2708 case PlungerType_None:
mjr 35:e959ffba78fd 2709 default:
mjr 35:e959ffba78fd 2710 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 2711 break;
mjr 35:e959ffba78fd 2712 }
mjr 33:d832bcab089e 2713 }
mjr 33:d832bcab089e 2714
mjr 52:8298b2a73eb2 2715 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 2716 bool plungerCalMode;
mjr 52:8298b2a73eb2 2717
mjr 48:058ace2aed1d 2718 // Plunger reader
mjr 51:57eb311faafa 2719 //
mjr 51:57eb311faafa 2720 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 2721 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 2722 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 2723 //
mjr 51:57eb311faafa 2724 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 2725 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 2726 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 2727 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 2728 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 2729 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 2730 // firing motion.
mjr 51:57eb311faafa 2731 //
mjr 51:57eb311faafa 2732 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 2733 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 2734 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 2735 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 2736 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 2737 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 2738 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 2739 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 2740 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 2741 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 2742 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 2743 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 2744 // a classic digital aliasing effect.
mjr 51:57eb311faafa 2745 //
mjr 51:57eb311faafa 2746 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 2747 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 2748 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 2749 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 2750 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 2751 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 2752 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 2753 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 2754 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 2755 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 2756 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 2757 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 2758 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 2759 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 2760 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 2761 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 2762 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 2763 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 2764 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 2765 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 2766 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 2767 //
mjr 48:058ace2aed1d 2768 class PlungerReader
mjr 48:058ace2aed1d 2769 {
mjr 48:058ace2aed1d 2770 public:
mjr 48:058ace2aed1d 2771 PlungerReader()
mjr 48:058ace2aed1d 2772 {
mjr 48:058ace2aed1d 2773 // not in a firing event yet
mjr 48:058ace2aed1d 2774 firing = 0;
mjr 48:058ace2aed1d 2775
mjr 48:058ace2aed1d 2776 // no history yet
mjr 48:058ace2aed1d 2777 histIdx = 0;
mjr 48:058ace2aed1d 2778 }
mjr 48:058ace2aed1d 2779
mjr 48:058ace2aed1d 2780 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 2781 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 2782 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 2783 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 2784 void read()
mjr 48:058ace2aed1d 2785 {
mjr 48:058ace2aed1d 2786 // Read a sample from the sensor
mjr 48:058ace2aed1d 2787 PlungerReading r;
mjr 48:058ace2aed1d 2788 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 2789 {
mjr 51:57eb311faafa 2790 // Pull the previous reading from the history
mjr 50:40015764bbe6 2791 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 2792
mjr 48:058ace2aed1d 2793 // If the new reading is within 2ms of the previous reading,
mjr 48:058ace2aed1d 2794 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 2795 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 2796 // denominator (the time interval) for calculating the plunger
mjr 48:058ace2aed1d 2797 // velocity. (The CCD sensor can't take readings faster than
mjr 48:058ace2aed1d 2798 // this anyway, but other sensor types, such as potentiometers,
mjr 48:058ace2aed1d 2799 // can, so we have to throttle the rate artifically in case
mjr 48:058ace2aed1d 2800 // we're using a fast sensor like that.)
mjr 48:058ace2aed1d 2801 if (uint32_t(r.t - prv.t) < 2000UL)
mjr 48:058ace2aed1d 2802 return;
mjr 53:9b2611964afc 2803
mjr 53:9b2611964afc 2804 // check for calibration mode
mjr 53:9b2611964afc 2805 if (plungerCalMode)
mjr 53:9b2611964afc 2806 {
mjr 53:9b2611964afc 2807 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 2808 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 2809 // expand the envelope to include this new value.
mjr 53:9b2611964afc 2810 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 2811 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 2812 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 2813 cfg.plunger.cal.min = r.pos;
mjr 50:40015764bbe6 2814
mjr 53:9b2611964afc 2815 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 2816 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 2817 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 2818 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 2819 if (calState == 0)
mjr 53:9b2611964afc 2820 {
mjr 53:9b2611964afc 2821 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 2822 {
mjr 53:9b2611964afc 2823 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 2824 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 2825 {
mjr 53:9b2611964afc 2826 // we've been at rest long enough - count it
mjr 53:9b2611964afc 2827 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 2828 calZeroPosN += 1;
mjr 53:9b2611964afc 2829
mjr 53:9b2611964afc 2830 // update the zero position from the new average
mjr 53:9b2611964afc 2831 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 53:9b2611964afc 2832
mjr 53:9b2611964afc 2833 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 2834 calState = 1;
mjr 53:9b2611964afc 2835 }
mjr 53:9b2611964afc 2836 }
mjr 53:9b2611964afc 2837 else
mjr 53:9b2611964afc 2838 {
mjr 53:9b2611964afc 2839 // we're not close to the last position - start again here
mjr 53:9b2611964afc 2840 calZeroStart = r;
mjr 53:9b2611964afc 2841 }
mjr 53:9b2611964afc 2842 }
mjr 53:9b2611964afc 2843
mjr 53:9b2611964afc 2844 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 2845 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 2846 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 2847 r.pos = int(
mjr 53:9b2611964afc 2848 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 2849 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 2850 }
mjr 53:9b2611964afc 2851 else
mjr 53:9b2611964afc 2852 {
mjr 53:9b2611964afc 2853 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 2854 // rescale to the joystick range.
mjr 53:9b2611964afc 2855 r.pos = int(
mjr 53:9b2611964afc 2856 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 2857 / (cfg.plunger.cal.max - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 2858
mjr 53:9b2611964afc 2859 // limit the result to the valid joystick range
mjr 53:9b2611964afc 2860 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 2861 r.pos = JOYMAX;
mjr 53:9b2611964afc 2862 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 2863 r.pos = -JOYMAX;
mjr 53:9b2611964afc 2864 }
mjr 50:40015764bbe6 2865
mjr 50:40015764bbe6 2866 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 2867 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 2868 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 2869 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 2870 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 2871 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 2872 // large.
mjr 50:40015764bbe6 2873 //
mjr 50:40015764bbe6 2874 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 2875 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 2876 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 2877 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 2878 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 2879 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 2880 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 2881 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 2882 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 2883 //
mjr 50:40015764bbe6 2884 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 2885 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 2886 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 2887 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 2888 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 2889 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 2890 // a little CPU time by using the natural units of our inputs.
mjr 51:57eb311faafa 2891 const PlungerReading &prv2 = nthHist(1);
mjr 50:40015764bbe6 2892 float v = float(r.pos - prv2.pos)/float(r.t - prv2.t);
mjr 50:40015764bbe6 2893
mjr 50:40015764bbe6 2894 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 2895 z = r.pos;
mjr 50:40015764bbe6 2896 vz = v;
mjr 48:058ace2aed1d 2897
mjr 50:40015764bbe6 2898 // Check firing events
mjr 50:40015764bbe6 2899 switch (firing)
mjr 50:40015764bbe6 2900 {
mjr 50:40015764bbe6 2901 case 0:
mjr 50:40015764bbe6 2902 // Default state - not in a firing event.
mjr 50:40015764bbe6 2903
mjr 50:40015764bbe6 2904 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 2905 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 2906 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 2907 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 2908 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 2909 {
mjr 53:9b2611964afc 2910 // enter firing phase 1
mjr 50:40015764bbe6 2911 firingMode(1);
mjr 50:40015764bbe6 2912
mjr 53:9b2611964afc 2913 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 2914 // at rest)
mjr 53:9b2611964afc 2915 if (calState == 1)
mjr 53:9b2611964afc 2916 calState = 2;
mjr 53:9b2611964afc 2917
mjr 50:40015764bbe6 2918 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 2919 f1.pos = 0;
mjr 50:40015764bbe6 2920 f1.t = r.t;
mjr 50:40015764bbe6 2921
mjr 50:40015764bbe6 2922 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 2923 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 2924 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 2925 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 2926 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 2927 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 2928 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 2929 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 2930 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 2931 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 2932 }
mjr 50:40015764bbe6 2933 break;
mjr 50:40015764bbe6 2934
mjr 50:40015764bbe6 2935 case 1:
mjr 50:40015764bbe6 2936 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 2937 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 2938 // see acceleration in the forward direction.
mjr 50:40015764bbe6 2939 if (r.pos <= 0)
mjr 50:40015764bbe6 2940 {
mjr 50:40015764bbe6 2941 // switch to the synthetic firing mode
mjr 50:40015764bbe6 2942 firingMode(2);
mjr 50:40015764bbe6 2943 z = f2.pos;
mjr 50:40015764bbe6 2944
mjr 50:40015764bbe6 2945 // note the start time for the firing phase
mjr 50:40015764bbe6 2946 f2.t = r.t;
mjr 53:9b2611964afc 2947
mjr 53:9b2611964afc 2948 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 2949 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 2950 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 2951 {
mjr 53:9b2611964afc 2952 // collect a new zero point for the average when we
mjr 53:9b2611964afc 2953 // come to rest
mjr 53:9b2611964afc 2954 calState = 0;
mjr 53:9b2611964afc 2955
mjr 53:9b2611964afc 2956 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 2957 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 2958 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 2959 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 2960 {
mjr 53:9b2611964afc 2961 calRlsTimeSum += dt;
mjr 53:9b2611964afc 2962 calRlsTimeN += 1;
mjr 53:9b2611964afc 2963 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 2964 }
mjr 53:9b2611964afc 2965 }
mjr 50:40015764bbe6 2966 }
mjr 50:40015764bbe6 2967 else if (v < vprv2)
mjr 50:40015764bbe6 2968 {
mjr 50:40015764bbe6 2969 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 2970 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 2971 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 2972 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 2973 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 2974 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 2975
mjr 50:40015764bbe6 2976 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 2977 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 2978 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 2979 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 2980 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 2981 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 2982 if (f1.pos != 0)
mjr 50:40015764bbe6 2983 {
mjr 50:40015764bbe6 2984 // we have a reset point - freeze there
mjr 50:40015764bbe6 2985 z = f1.pos;
mjr 50:40015764bbe6 2986 }
mjr 50:40015764bbe6 2987 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 2988 {
mjr 50:40015764bbe6 2989 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 2990 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 2991 }
mjr 50:40015764bbe6 2992 }
mjr 50:40015764bbe6 2993 else
mjr 50:40015764bbe6 2994 {
mjr 50:40015764bbe6 2995 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 2996 firingMode(0);
mjr 53:9b2611964afc 2997 calState = 1;
mjr 50:40015764bbe6 2998 }
mjr 50:40015764bbe6 2999 break;
mjr 50:40015764bbe6 3000
mjr 50:40015764bbe6 3001 case 2:
mjr 50:40015764bbe6 3002 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 3003 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 3004 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 3005 // report at least once.
mjr 50:40015764bbe6 3006 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 3007 {
mjr 50:40015764bbe6 3008 // report the bounce position
mjr 50:40015764bbe6 3009 z = f2.pos;
mjr 50:40015764bbe6 3010 }
mjr 50:40015764bbe6 3011 else
mjr 50:40015764bbe6 3012 {
mjr 50:40015764bbe6 3013 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 3014 // report the park position until the real plunger comes
mjr 50:40015764bbe6 3015 // to rest
mjr 50:40015764bbe6 3016 firingMode(3);
mjr 50:40015764bbe6 3017 z = 0;
mjr 50:40015764bbe6 3018
mjr 50:40015764bbe6 3019 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 3020 f3s.t = r.t;
mjr 50:40015764bbe6 3021 f3s.pos = 0;
mjr 50:40015764bbe6 3022
mjr 50:40015764bbe6 3023 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 3024 f3r = r;
mjr 50:40015764bbe6 3025 }
mjr 50:40015764bbe6 3026 break;
mjr 50:40015764bbe6 3027
mjr 50:40015764bbe6 3028 case 3:
mjr 50:40015764bbe6 3029 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 3030 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 3031 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 3032 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 3033 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 3034 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 3035 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 3036 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 3037 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 3038 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 3039 // for longer.
mjr 50:40015764bbe6 3040 if (v >= 0)
mjr 50:40015764bbe6 3041 {
mjr 50:40015764bbe6 3042 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 3043 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 3044 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 3045 {
mjr 50:40015764bbe6 3046 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 3047 firingMode(0);
mjr 50:40015764bbe6 3048 break;
mjr 50:40015764bbe6 3049 }
mjr 50:40015764bbe6 3050 }
mjr 50:40015764bbe6 3051 else
mjr 50:40015764bbe6 3052 {
mjr 50:40015764bbe6 3053 // forward motion - reset retraction window
mjr 50:40015764bbe6 3054 f3r.t = r.t;
mjr 50:40015764bbe6 3055 }
mjr 50:40015764bbe6 3056
mjr 53:9b2611964afc 3057 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 3058 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 3059 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 3060 // about 100 units.
mjr 53:9b2611964afc 3061 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 3062 {
mjr 53:9b2611964afc 3063 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 3064 // Consider it stable if this has been true for 300ms.
mjr 50:40015764bbe6 3065 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 3066 {
mjr 50:40015764bbe6 3067 // we're done with the firing event
mjr 50:40015764bbe6 3068 firingMode(0);
mjr 50:40015764bbe6 3069 }
mjr 50:40015764bbe6 3070 else
mjr 50:40015764bbe6 3071 {
mjr 50:40015764bbe6 3072 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 3073 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 3074 // to report the park position
mjr 50:40015764bbe6 3075 z = 0;
mjr 50:40015764bbe6 3076 }
mjr 50:40015764bbe6 3077 }
mjr 50:40015764bbe6 3078 else
mjr 50:40015764bbe6 3079 {
mjr 50:40015764bbe6 3080 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 3081 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 3082 f3s = r;
mjr 50:40015764bbe6 3083 z = 0;
mjr 50:40015764bbe6 3084 }
mjr 50:40015764bbe6 3085 break;
mjr 50:40015764bbe6 3086 }
mjr 50:40015764bbe6 3087
mjr 50:40015764bbe6 3088 // save the velocity reading for next time
mjr 50:40015764bbe6 3089 vprv2 = vprv;
mjr 50:40015764bbe6 3090 vprv = v;
mjr 50:40015764bbe6 3091
mjr 50:40015764bbe6 3092 // add the new reading to the history
mjr 50:40015764bbe6 3093 hist[histIdx++] = r;
mjr 50:40015764bbe6 3094 histIdx %= countof(hist);
mjr 48:058ace2aed1d 3095 }
mjr 48:058ace2aed1d 3096 }
mjr 48:058ace2aed1d 3097
mjr 48:058ace2aed1d 3098 // Get the current value to report through the joystick interface
mjr 50:40015764bbe6 3099 int16_t getPosition() const { return z; }
mjr 48:058ace2aed1d 3100
mjr 48:058ace2aed1d 3101 // Get the current velocity (joystick distance units per microsecond)
mjr 48:058ace2aed1d 3102 float getVelocity() const { return vz; }
mjr 48:058ace2aed1d 3103
mjr 48:058ace2aed1d 3104 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 3105 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 3106
mjr 48:058ace2aed1d 3107 // Set calibration mode on or off
mjr 52:8298b2a73eb2 3108 void setCalMode(bool f)
mjr 48:058ace2aed1d 3109 {
mjr 52:8298b2a73eb2 3110 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 3111 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 3112 {
mjr 52:8298b2a73eb2 3113 // reset the calibration in the configuration
mjr 48:058ace2aed1d 3114 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 3115
mjr 52:8298b2a73eb2 3116 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 3117 calState = 0;
mjr 52:8298b2a73eb2 3118 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 3119 calZeroPosN = 0;
mjr 52:8298b2a73eb2 3120 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 3121 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 3122
mjr 52:8298b2a73eb2 3123 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 3124 PlungerReading r;
mjr 52:8298b2a73eb2 3125 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 3126 {
mjr 52:8298b2a73eb2 3127 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 3128 cfg.plunger.cal.zero = r.pos;
mjr 52:8298b2a73eb2 3129
mjr 52:8298b2a73eb2 3130 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 3131 calZeroStart = r;
mjr 52:8298b2a73eb2 3132 }
mjr 52:8298b2a73eb2 3133 else
mjr 52:8298b2a73eb2 3134 {
mjr 52:8298b2a73eb2 3135 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 3136 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 3137
mjr 52:8298b2a73eb2 3138 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 3139 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 3140 calZeroStart.t = 0;
mjr 53:9b2611964afc 3141 }
mjr 53:9b2611964afc 3142 }
mjr 53:9b2611964afc 3143 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 3144 {
mjr 53:9b2611964afc 3145 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 3146 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 3147 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 3148 // physically meaningless.
mjr 53:9b2611964afc 3149 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 3150 {
mjr 53:9b2611964afc 3151 // bad settings - reset to defaults
mjr 53:9b2611964afc 3152 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 3153 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 3154 }
mjr 52:8298b2a73eb2 3155 }
mjr 52:8298b2a73eb2 3156
mjr 48:058ace2aed1d 3157 // remember the new mode
mjr 52:8298b2a73eb2 3158 plungerCalMode = f;
mjr 48:058ace2aed1d 3159 }
mjr 48:058ace2aed1d 3160
mjr 48:058ace2aed1d 3161 // is a firing event in progress?
mjr 53:9b2611964afc 3162 bool isFiring() { return firing == 3; }
mjr 48:058ace2aed1d 3163
mjr 48:058ace2aed1d 3164 private:
mjr 52:8298b2a73eb2 3165
mjr 52:8298b2a73eb2 3166 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 3167 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 3168 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 3169 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 3170 // 0 = waiting to settle
mjr 52:8298b2a73eb2 3171 // 1 = at rest
mjr 52:8298b2a73eb2 3172 // 2 = retracting
mjr 52:8298b2a73eb2 3173 // 3 = possibly releasing
mjr 52:8298b2a73eb2 3174 uint8_t calState;
mjr 52:8298b2a73eb2 3175
mjr 52:8298b2a73eb2 3176 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 3177 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 3178 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 3179 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 3180 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 3181 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 3182 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 3183 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 3184 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 3185 long calZeroPosSum;
mjr 52:8298b2a73eb2 3186 int calZeroPosN;
mjr 52:8298b2a73eb2 3187
mjr 52:8298b2a73eb2 3188 // Calibration release time statistics.
mjr 52:8298b2a73eb2 3189 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 3190 long calRlsTimeSum;
mjr 52:8298b2a73eb2 3191 int calRlsTimeN;
mjr 52:8298b2a73eb2 3192
mjr 48:058ace2aed1d 3193 // set a firing mode
mjr 48:058ace2aed1d 3194 inline void firingMode(int m)
mjr 48:058ace2aed1d 3195 {
mjr 48:058ace2aed1d 3196 firing = m;
mjr 48:058ace2aed1d 3197 }
mjr 48:058ace2aed1d 3198
mjr 48:058ace2aed1d 3199 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 3200 // the given time limit.
mjr 48:058ace2aed1d 3201 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 3202 {
mjr 48:058ace2aed1d 3203 // start with the prior entry
mjr 48:058ace2aed1d 3204 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 3205 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 3206
mjr 48:058ace2aed1d 3207 // scan backwards for a local maximum
mjr 48:058ace2aed1d 3208 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 3209 {
mjr 48:058ace2aed1d 3210 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 3211 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 3212 break;
mjr 48:058ace2aed1d 3213
mjr 48:058ace2aed1d 3214 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 3215 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 3216 break;
mjr 48:058ace2aed1d 3217
mjr 48:058ace2aed1d 3218 // this is the new high
mjr 48:058ace2aed1d 3219 hi = hist[idx].pos;
mjr 48:058ace2aed1d 3220 }
mjr 48:058ace2aed1d 3221
mjr 48:058ace2aed1d 3222 // return the local maximum
mjr 48:058ace2aed1d 3223 return hi;
mjr 48:058ace2aed1d 3224 }
mjr 48:058ace2aed1d 3225
mjr 50:40015764bbe6 3226 // velocity at previous reading, and the one before that
mjr 50:40015764bbe6 3227 float vprv, vprv2;
mjr 48:058ace2aed1d 3228
mjr 48:058ace2aed1d 3229 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 3230 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 3231 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 3232 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 3233 // exactly when it started. We throttle our readings to no more
mjr 48:058ace2aed1d 3234 // than one every 2ms, so we have at least N*2ms of history in this
mjr 48:058ace2aed1d 3235 // array.
mjr 50:40015764bbe6 3236 PlungerReading hist[25];
mjr 48:058ace2aed1d 3237 int histIdx;
mjr 49:37bd97eb7688 3238
mjr 50:40015764bbe6 3239 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 50:40015764bbe6 3240 const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 3241 {
mjr 50:40015764bbe6 3242 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 3243 n = histIdx - 1 - n;
mjr 50:40015764bbe6 3244
mjr 50:40015764bbe6 3245 // adjust for wrapping
mjr 50:40015764bbe6 3246 if (n < 0)
mjr 50:40015764bbe6 3247 n += countof(hist);
mjr 50:40015764bbe6 3248
mjr 50:40015764bbe6 3249 // return the item
mjr 50:40015764bbe6 3250 return hist[n];
mjr 50:40015764bbe6 3251 }
mjr 48:058ace2aed1d 3252
mjr 48:058ace2aed1d 3253 // Firing event state.
mjr 48:058ace2aed1d 3254 //
mjr 48:058ace2aed1d 3255 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 3256 // position to the joystick interface.
mjr 48:058ace2aed1d 3257 //
mjr 53:9b2611964afc 3258 // 1 - Moving forward
mjr 48:058ace2aed1d 3259 //
mjr 53:9b2611964afc 3260 // 2 - Accelerating
mjr 48:058ace2aed1d 3261 //
mjr 53:9b2611964afc 3262 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 3263 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 3264 //
mjr 48:058ace2aed1d 3265 int firing;
mjr 48:058ace2aed1d 3266
mjr 51:57eb311faafa 3267 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 3268 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 3269 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 3270 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 3271 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 3272 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 3273 PlungerReading f1;
mjr 48:058ace2aed1d 3274
mjr 48:058ace2aed1d 3275 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 3276 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 3277 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 3278 // after enough time elapses.
mjr 48:058ace2aed1d 3279 PlungerReading f2;
mjr 48:058ace2aed1d 3280
mjr 48:058ace2aed1d 3281 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 3282 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 3283 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 3284 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 3285 PlungerReading f3s;
mjr 48:058ace2aed1d 3286
mjr 48:058ace2aed1d 3287 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 3288 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 3289 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 3290 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 3291 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 3292 // freely.
mjr 48:058ace2aed1d 3293 PlungerReading f3r;
mjr 48:058ace2aed1d 3294
mjr 48:058ace2aed1d 3295 // next Z value to report to the joystick interface (in joystick
mjr 48:058ace2aed1d 3296 // distance units)
mjr 48:058ace2aed1d 3297 int z;
mjr 48:058ace2aed1d 3298
mjr 48:058ace2aed1d 3299 // velocity of this reading (joystick distance units per microsecond)
mjr 48:058ace2aed1d 3300 float vz;
mjr 48:058ace2aed1d 3301 };
mjr 48:058ace2aed1d 3302
mjr 48:058ace2aed1d 3303 // plunger reader singleton
mjr 48:058ace2aed1d 3304 PlungerReader plungerReader;
mjr 48:058ace2aed1d 3305
mjr 48:058ace2aed1d 3306 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 3307 //
mjr 48:058ace2aed1d 3308 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 3309 //
mjr 48:058ace2aed1d 3310 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 3311 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 3312 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 3313 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 3314 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 3315 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 3316 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 3317 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 3318 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 3319 //
mjr 48:058ace2aed1d 3320 // This feature has two configuration components:
mjr 48:058ace2aed1d 3321 //
mjr 48:058ace2aed1d 3322 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 3323 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 3324 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 3325 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 3326 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 3327 // plunger/launch button connection.
mjr 48:058ace2aed1d 3328 //
mjr 48:058ace2aed1d 3329 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 3330 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 3331 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 3332 // position.
mjr 48:058ace2aed1d 3333 //
mjr 48:058ace2aed1d 3334 class ZBLaunchBall
mjr 48:058ace2aed1d 3335 {
mjr 48:058ace2aed1d 3336 public:
mjr 48:058ace2aed1d 3337 ZBLaunchBall()
mjr 48:058ace2aed1d 3338 {
mjr 48:058ace2aed1d 3339 // start in the default state
mjr 48:058ace2aed1d 3340 lbState = 0;
mjr 53:9b2611964afc 3341 btnState = false;
mjr 48:058ace2aed1d 3342 }
mjr 48:058ace2aed1d 3343
mjr 48:058ace2aed1d 3344 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 3345 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 3346 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 3347 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 3348 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 3349 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 3350 void update()
mjr 48:058ace2aed1d 3351 {
mjr 53:9b2611964afc 3352 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 3353 // plunger firing event
mjr 53:9b2611964afc 3354 if (zbLaunchOn)
mjr 48:058ace2aed1d 3355 {
mjr 53:9b2611964afc 3356 // note the new position
mjr 48:058ace2aed1d 3357 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 3358
mjr 53:9b2611964afc 3359 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 3360 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 3361
mjr 53:9b2611964afc 3362 // check the state
mjr 48:058ace2aed1d 3363 switch (lbState)
mjr 48:058ace2aed1d 3364 {
mjr 48:058ace2aed1d 3365 case 0:
mjr 53:9b2611964afc 3366 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 3367 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 3368 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 3369 // the button.
mjr 53:9b2611964afc 3370 if (plungerReader.isFiring())
mjr 53:9b2611964afc 3371 {
mjr 53:9b2611964afc 3372 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 3373 lbTimer.reset();
mjr 53:9b2611964afc 3374 lbTimer.start();
mjr 53:9b2611964afc 3375 setButton(true);
mjr 53:9b2611964afc 3376
mjr 53:9b2611964afc 3377 // switch to state 1
mjr 53:9b2611964afc 3378 lbState = 1;
mjr 53:9b2611964afc 3379 }
mjr 48:058ace2aed1d 3380 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 3381 {
mjr 53:9b2611964afc 3382 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 3383 // button as long as we're pushed forward
mjr 53:9b2611964afc 3384 setButton(true);
mjr 53:9b2611964afc 3385 }
mjr 53:9b2611964afc 3386 else
mjr 53:9b2611964afc 3387 {
mjr 53:9b2611964afc 3388 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 3389 setButton(false);
mjr 53:9b2611964afc 3390 }
mjr 48:058ace2aed1d 3391 break;
mjr 48:058ace2aed1d 3392
mjr 48:058ace2aed1d 3393 case 1:
mjr 53:9b2611964afc 3394 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 3395 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 3396 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 3397 {
mjr 53:9b2611964afc 3398 // timer expired - turn off the button
mjr 53:9b2611964afc 3399 setButton(false);
mjr 53:9b2611964afc 3400
mjr 53:9b2611964afc 3401 // switch to state 2
mjr 53:9b2611964afc 3402 lbState = 2;
mjr 53:9b2611964afc 3403 }
mjr 48:058ace2aed1d 3404 break;
mjr 48:058ace2aed1d 3405
mjr 48:058ace2aed1d 3406 case 2:
mjr 53:9b2611964afc 3407 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 3408 // plunger launch event to end.
mjr 53:9b2611964afc 3409 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 3410 {
mjr 53:9b2611964afc 3411 // firing event done - return to default state
mjr 53:9b2611964afc 3412 lbState = 0;
mjr 53:9b2611964afc 3413 }
mjr 48:058ace2aed1d 3414 break;
mjr 48:058ace2aed1d 3415 }
mjr 53:9b2611964afc 3416 }
mjr 53:9b2611964afc 3417 else
mjr 53:9b2611964afc 3418 {
mjr 53:9b2611964afc 3419 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 3420 setButton(false);
mjr 48:058ace2aed1d 3421
mjr 53:9b2611964afc 3422 // return to the default state
mjr 53:9b2611964afc 3423 lbState = 0;
mjr 48:058ace2aed1d 3424 }
mjr 48:058ace2aed1d 3425 }
mjr 53:9b2611964afc 3426
mjr 53:9b2611964afc 3427 // Set the button state
mjr 53:9b2611964afc 3428 void setButton(bool on)
mjr 53:9b2611964afc 3429 {
mjr 53:9b2611964afc 3430 if (btnState != on)
mjr 53:9b2611964afc 3431 {
mjr 53:9b2611964afc 3432 // remember the new state
mjr 53:9b2611964afc 3433 btnState = on;
mjr 53:9b2611964afc 3434
mjr 53:9b2611964afc 3435 // update the virtual button state
mjr 53:9b2611964afc 3436 buttonState[ZBL_BUTTON].virtPress(on);
mjr 53:9b2611964afc 3437 }
mjr 53:9b2611964afc 3438 }
mjr 53:9b2611964afc 3439
mjr 48:058ace2aed1d 3440 private:
mjr 48:058ace2aed1d 3441 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 3442 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 3443 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 3444 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 3445 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 3446 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 3447 //
mjr 48:058ace2aed1d 3448 // States:
mjr 48:058ace2aed1d 3449 // 0 = default
mjr 53:9b2611964afc 3450 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 3451 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 3452 // firing event to end)
mjr 53:9b2611964afc 3453 uint8_t lbState;
mjr 48:058ace2aed1d 3454
mjr 53:9b2611964afc 3455 // button state
mjr 53:9b2611964afc 3456 bool btnState;
mjr 48:058ace2aed1d 3457
mjr 48:058ace2aed1d 3458 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 3459 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 3460 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 3461 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 3462 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 3463 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 3464 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 3465 Timer lbTimer;
mjr 48:058ace2aed1d 3466 };
mjr 48:058ace2aed1d 3467
mjr 35:e959ffba78fd 3468 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3469 //
mjr 35:e959ffba78fd 3470 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 3471 //
mjr 54:fd77a6b2f76c 3472 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 3473 {
mjr 35:e959ffba78fd 3474 // disconnect from USB
mjr 54:fd77a6b2f76c 3475 if (disconnect)
mjr 54:fd77a6b2f76c 3476 js.disconnect();
mjr 35:e959ffba78fd 3477
mjr 35:e959ffba78fd 3478 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 3479 wait_us(pause_us);
mjr 35:e959ffba78fd 3480
mjr 35:e959ffba78fd 3481 // reset the device
mjr 35:e959ffba78fd 3482 NVIC_SystemReset();
mjr 35:e959ffba78fd 3483 while (true) { }
mjr 35:e959ffba78fd 3484 }
mjr 35:e959ffba78fd 3485
mjr 35:e959ffba78fd 3486 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3487 //
mjr 35:e959ffba78fd 3488 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 3489 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 3490 //
mjr 35:e959ffba78fd 3491 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 3492 {
mjr 35:e959ffba78fd 3493 int tmp;
mjr 35:e959ffba78fd 3494 switch (cfg.orientation)
mjr 35:e959ffba78fd 3495 {
mjr 35:e959ffba78fd 3496 case OrientationFront:
mjr 35:e959ffba78fd 3497 tmp = x;
mjr 35:e959ffba78fd 3498 x = y;
mjr 35:e959ffba78fd 3499 y = tmp;
mjr 35:e959ffba78fd 3500 break;
mjr 35:e959ffba78fd 3501
mjr 35:e959ffba78fd 3502 case OrientationLeft:
mjr 35:e959ffba78fd 3503 x = -x;
mjr 35:e959ffba78fd 3504 break;
mjr 35:e959ffba78fd 3505
mjr 35:e959ffba78fd 3506 case OrientationRight:
mjr 35:e959ffba78fd 3507 y = -y;
mjr 35:e959ffba78fd 3508 break;
mjr 35:e959ffba78fd 3509
mjr 35:e959ffba78fd 3510 case OrientationRear:
mjr 35:e959ffba78fd 3511 tmp = -x;
mjr 35:e959ffba78fd 3512 x = -y;
mjr 35:e959ffba78fd 3513 y = tmp;
mjr 35:e959ffba78fd 3514 break;
mjr 35:e959ffba78fd 3515 }
mjr 35:e959ffba78fd 3516 }
mjr 35:e959ffba78fd 3517
mjr 35:e959ffba78fd 3518 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3519 //
mjr 35:e959ffba78fd 3520 // Device status. We report this on each update so that the host config
mjr 35:e959ffba78fd 3521 // tool can detect our current settings. This is a bit mask consisting
mjr 35:e959ffba78fd 3522 // of these bits:
mjr 35:e959ffba78fd 3523 // 0x0001 -> plunger sensor enabled
mjr 35:e959ffba78fd 3524 // 0x8000 -> RESERVED - must always be zero
mjr 35:e959ffba78fd 3525 //
mjr 35:e959ffba78fd 3526 // Note that the high bit (0x8000) must always be 0, since we use that
mjr 35:e959ffba78fd 3527 // to distinguish special request reply packets.
mjr 35:e959ffba78fd 3528 uint16_t statusFlags;
mjr 35:e959ffba78fd 3529
mjr 45:c42166b2878c 3530 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 45:c42166b2878c 3531 // (helpful for installing and setting up the sensor and light source)
mjr 52:8298b2a73eb2 3532 bool reportPlungerStat = false;
mjr 53:9b2611964afc 3533 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 53:9b2611964afc 3534 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 35:e959ffba78fd 3535
mjr 33:d832bcab089e 3536
mjr 35:e959ffba78fd 3537 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3538 //
mjr 35:e959ffba78fd 3539 // Calibration button state:
mjr 35:e959ffba78fd 3540 // 0 = not pushed
mjr 35:e959ffba78fd 3541 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 3542 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 3543 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 3544 int calBtnState = 0;
mjr 35:e959ffba78fd 3545
mjr 35:e959ffba78fd 3546 // calibration button debounce timer
mjr 35:e959ffba78fd 3547 Timer calBtnTimer;
mjr 35:e959ffba78fd 3548
mjr 35:e959ffba78fd 3549 // calibration button light state
mjr 35:e959ffba78fd 3550 int calBtnLit = false;
mjr 35:e959ffba78fd 3551
mjr 35:e959ffba78fd 3552
mjr 35:e959ffba78fd 3553 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3554 //
mjr 40:cc0d9814522b 3555 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 3556 //
mjr 40:cc0d9814522b 3557
mjr 40:cc0d9814522b 3558 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 3559 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 3560 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 3561 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 53:9b2611964afc 3562 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 3563 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 40:cc0d9814522b 3564 #define v_func configVarSet
mjr 40:cc0d9814522b 3565 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 3566
mjr 40:cc0d9814522b 3567 // redefine everything for the SET messages
mjr 40:cc0d9814522b 3568 #undef if_msg_valid
mjr 40:cc0d9814522b 3569 #undef v_byte
mjr 40:cc0d9814522b 3570 #undef v_ui16
mjr 40:cc0d9814522b 3571 #undef v_pin
mjr 53:9b2611964afc 3572 #undef v_byte_ro
mjr 40:cc0d9814522b 3573 #undef v_func
mjr 38:091e511ce8a0 3574
mjr 40:cc0d9814522b 3575 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 3576 #define if_msg_valid(test)
mjr 53:9b2611964afc 3577 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 3578 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 3579 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 3580 #define v_byte_ro(val, ofs) data[ofs] = val
mjr 40:cc0d9814522b 3581 #define v_func configVarGet
mjr 40:cc0d9814522b 3582 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 3583
mjr 35:e959ffba78fd 3584
mjr 35:e959ffba78fd 3585 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3586 //
mjr 35:e959ffba78fd 3587 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 3588 // LedWiz protocol.
mjr 33:d832bcab089e 3589 //
mjr 48:058ace2aed1d 3590 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js)
mjr 35:e959ffba78fd 3591 {
mjr 38:091e511ce8a0 3592 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 3593 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 3594 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 3595 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 3596 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 3597 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 3598 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 3599 // So our full protocol is as follows:
mjr 38:091e511ce8a0 3600 //
mjr 38:091e511ce8a0 3601 // first byte =
mjr 38:091e511ce8a0 3602 // 0-48 -> LWZ-PBA
mjr 38:091e511ce8a0 3603 // 64 -> LWZ SBA
mjr 38:091e511ce8a0 3604 // 65 -> private control message; second byte specifies subtype
mjr 38:091e511ce8a0 3605 // 129-132 -> LWZ-PBA
mjr 38:091e511ce8a0 3606 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 3607 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 3608 // other -> reserved for future use
mjr 38:091e511ce8a0 3609 //
mjr 39:b3815a1c3802 3610 uint8_t *data = lwm.data;
mjr 38:091e511ce8a0 3611 if (data[0] == 64)
mjr 35:e959ffba78fd 3612 {
mjr 38:091e511ce8a0 3613 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 38:091e511ce8a0 3614 // for the outputs; 5th byte is the pulse speed (1-7)
mjr 38:091e511ce8a0 3615 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 38:091e511ce8a0 3616 // data[1], data[2], data[3], data[4], data[5]);
mjr 38:091e511ce8a0 3617
mjr 38:091e511ce8a0 3618 // update all on/off states
mjr 38:091e511ce8a0 3619 for (int i = 0, bit = 1, ri = 1 ; i < numLwOutputs ; ++i, bit <<= 1)
mjr 35:e959ffba78fd 3620 {
mjr 38:091e511ce8a0 3621 // figure the on/off state bit for this output
mjr 38:091e511ce8a0 3622 if (bit == 0x100) {
mjr 38:091e511ce8a0 3623 bit = 1;
mjr 38:091e511ce8a0 3624 ++ri;
mjr 35:e959ffba78fd 3625 }
mjr 35:e959ffba78fd 3626
mjr 38:091e511ce8a0 3627 // set the on/off state
mjr 38:091e511ce8a0 3628 wizOn[i] = ((data[ri] & bit) != 0);
mjr 38:091e511ce8a0 3629
mjr 38:091e511ce8a0 3630 // If the wizVal setting is 255, it means that this
mjr 38:091e511ce8a0 3631 // output was last set to a brightness value with the
mjr 38:091e511ce8a0 3632 // extended protocol. Return it to LedWiz control by
mjr 38:091e511ce8a0 3633 // rescaling the brightness setting to the LedWiz range
mjr 38:091e511ce8a0 3634 // and updating wizVal with the result. If it's any
mjr 38:091e511ce8a0 3635 // other value, it was previously set by a PBA message,
mjr 38:091e511ce8a0 3636 // so simply retain the last setting - in the normal
mjr 38:091e511ce8a0 3637 // LedWiz protocol, the "profile" (brightness) and on/off
mjr 38:091e511ce8a0 3638 // states are independent, so an SBA just turns an output
mjr 38:091e511ce8a0 3639 // on or off but retains its last brightness level.
mjr 38:091e511ce8a0 3640 if (wizVal[i] == 255)
mjr 40:cc0d9814522b 3641 wizVal[i] = (uint8_t)round(outLevel[i]/255.0 * 48.0);
mjr 38:091e511ce8a0 3642 }
mjr 38:091e511ce8a0 3643
mjr 38:091e511ce8a0 3644 // set the flash speed - enforce the value range 1-7
mjr 38:091e511ce8a0 3645 wizSpeed = data[5];
mjr 38:091e511ce8a0 3646 if (wizSpeed < 1)
mjr 38:091e511ce8a0 3647 wizSpeed = 1;
mjr 38:091e511ce8a0 3648 else if (wizSpeed > 7)
mjr 38:091e511ce8a0 3649 wizSpeed = 7;
mjr 38:091e511ce8a0 3650
mjr 38:091e511ce8a0 3651 // update the physical outputs
mjr 38:091e511ce8a0 3652 updateWizOuts();
mjr 38:091e511ce8a0 3653 if (hc595 != 0)
mjr 38:091e511ce8a0 3654 hc595->update();
mjr 38:091e511ce8a0 3655
mjr 38:091e511ce8a0 3656 // reset the PBA counter
mjr 38:091e511ce8a0 3657 pbaIdx = 0;
mjr 38:091e511ce8a0 3658 }
mjr 38:091e511ce8a0 3659 else if (data[0] == 65)
mjr 38:091e511ce8a0 3660 {
mjr 38:091e511ce8a0 3661 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 3662 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 3663 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 3664 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 3665 // message type.
mjr 39:b3815a1c3802 3666 switch (data[1])
mjr 38:091e511ce8a0 3667 {
mjr 39:b3815a1c3802 3668 case 0:
mjr 39:b3815a1c3802 3669 // No Op
mjr 39:b3815a1c3802 3670 break;
mjr 39:b3815a1c3802 3671
mjr 39:b3815a1c3802 3672 case 1:
mjr 38:091e511ce8a0 3673 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 3674 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 3675 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 3676 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 3677 {
mjr 39:b3815a1c3802 3678
mjr 39:b3815a1c3802 3679 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 3680 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 3681 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 3682
mjr 39:b3815a1c3802 3683 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 3684 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 3685
mjr 39:b3815a1c3802 3686 // set the configuration parameters from the message
mjr 39:b3815a1c3802 3687 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 3688 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 3689
mjr 39:b3815a1c3802 3690 // update the status flags
mjr 39:b3815a1c3802 3691 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 39:b3815a1c3802 3692
mjr 39:b3815a1c3802 3693 // save the configuration
mjr 39:b3815a1c3802 3694 saveConfigToFlash();
mjr 39:b3815a1c3802 3695
mjr 39:b3815a1c3802 3696 // reboot if necessary
mjr 39:b3815a1c3802 3697 if (needReset)
mjr 39:b3815a1c3802 3698 reboot(js);
mjr 39:b3815a1c3802 3699 }
mjr 39:b3815a1c3802 3700 break;
mjr 38:091e511ce8a0 3701
mjr 39:b3815a1c3802 3702 case 2:
mjr 38:091e511ce8a0 3703 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 3704 // (No parameters)
mjr 38:091e511ce8a0 3705
mjr 38:091e511ce8a0 3706 // enter calibration mode
mjr 38:091e511ce8a0 3707 calBtnState = 3;
mjr 52:8298b2a73eb2 3708 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 3709 calBtnTimer.reset();
mjr 39:b3815a1c3802 3710 break;
mjr 39:b3815a1c3802 3711
mjr 39:b3815a1c3802 3712 case 3:
mjr 52:8298b2a73eb2 3713 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 3714 // data[2] = flag bits
mjr 53:9b2611964afc 3715 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 3716 reportPlungerStat = true;
mjr 53:9b2611964afc 3717 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 3718 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 3719
mjr 38:091e511ce8a0 3720 // show purple until we finish sending the report
mjr 38:091e511ce8a0 3721 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 3722 break;
mjr 39:b3815a1c3802 3723
mjr 39:b3815a1c3802 3724 case 4:
mjr 38:091e511ce8a0 3725 // 4 = hardware configuration query
mjr 38:091e511ce8a0 3726 // (No parameters)
mjr 38:091e511ce8a0 3727 js.reportConfig(
mjr 38:091e511ce8a0 3728 numOutputs,
mjr 38:091e511ce8a0 3729 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 3730 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 40:cc0d9814522b 3731 nvm.valid());
mjr 39:b3815a1c3802 3732 break;
mjr 39:b3815a1c3802 3733
mjr 39:b3815a1c3802 3734 case 5:
mjr 38:091e511ce8a0 3735 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 3736 allOutputsOff();
mjr 39:b3815a1c3802 3737 break;
mjr 39:b3815a1c3802 3738
mjr 39:b3815a1c3802 3739 case 6:
mjr 38:091e511ce8a0 3740 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 3741 saveConfigToFlash();
mjr 38:091e511ce8a0 3742
mjr 53:9b2611964afc 3743 // before disconnecting, pause for the delay time specified in
mjr 53:9b2611964afc 3744 // the parameter byte (in seconds)
mjr 53:9b2611964afc 3745 rebootTime_us = data[2] * 1000000L;
mjr 53:9b2611964afc 3746 rebootTimer.start();
mjr 39:b3815a1c3802 3747 break;
mjr 40:cc0d9814522b 3748
mjr 40:cc0d9814522b 3749 case 7:
mjr 40:cc0d9814522b 3750 // 7 = Device ID report
mjr 53:9b2611964afc 3751 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 3752 js.reportID(data[2]);
mjr 40:cc0d9814522b 3753 break;
mjr 40:cc0d9814522b 3754
mjr 40:cc0d9814522b 3755 case 8:
mjr 40:cc0d9814522b 3756 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 3757 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 3758 setNightMode(data[2]);
mjr 40:cc0d9814522b 3759 break;
mjr 52:8298b2a73eb2 3760
mjr 52:8298b2a73eb2 3761 case 9:
mjr 52:8298b2a73eb2 3762 // 9 = Config variable query.
mjr 52:8298b2a73eb2 3763 // data[2] = config var ID
mjr 52:8298b2a73eb2 3764 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 3765 {
mjr 53:9b2611964afc 3766 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 3767 // the rest of the buffer
mjr 52:8298b2a73eb2 3768 uint8_t reply[8];
mjr 52:8298b2a73eb2 3769 reply[1] = data[2];
mjr 52:8298b2a73eb2 3770 reply[2] = data[3];
mjr 53:9b2611964afc 3771 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 3772
mjr 52:8298b2a73eb2 3773 // query the value
mjr 52:8298b2a73eb2 3774 configVarGet(reply);
mjr 52:8298b2a73eb2 3775
mjr 52:8298b2a73eb2 3776 // send the reply
mjr 52:8298b2a73eb2 3777 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 3778 }
mjr 52:8298b2a73eb2 3779 break;
mjr 53:9b2611964afc 3780
mjr 53:9b2611964afc 3781 case 10:
mjr 53:9b2611964afc 3782 // 10 = Build ID query.
mjr 53:9b2611964afc 3783 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 3784 break;
mjr 38:091e511ce8a0 3785 }
mjr 38:091e511ce8a0 3786 }
mjr 38:091e511ce8a0 3787 else if (data[0] == 66)
mjr 38:091e511ce8a0 3788 {
mjr 38:091e511ce8a0 3789 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 3790 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 3791 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 3792 // in a variable-dependent format.
mjr 40:cc0d9814522b 3793 configVarSet(data);
mjr 38:091e511ce8a0 3794 }
mjr 38:091e511ce8a0 3795 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 3796 {
mjr 38:091e511ce8a0 3797 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 3798 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 3799 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 3800 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 3801 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 3802 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 3803 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 3804 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 3805 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 3806 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 3807 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 3808 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 3809 //
mjr 38:091e511ce8a0 3810 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 3811 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 3812 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 3813 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 3814 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 3815 // address those ports anyway.
mjr 38:091e511ce8a0 3816 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 3817 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 38:091e511ce8a0 3818 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 3819 {
mjr 38:091e511ce8a0 3820 // set the brightness level for the output
mjr 40:cc0d9814522b 3821 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 3822 outLevel[i] = b;
mjr 38:091e511ce8a0 3823
mjr 38:091e511ce8a0 3824 // if it's in the basic LedWiz output set, set the LedWiz
mjr 38:091e511ce8a0 3825 // profile value to 255, which means "use outLevel"
mjr 38:091e511ce8a0 3826 if (i < 32)
mjr 38:091e511ce8a0 3827 wizVal[i] = 255;
mjr 38:091e511ce8a0 3828
mjr 38:091e511ce8a0 3829 // set the output
mjr 40:cc0d9814522b 3830 lwPin[i]->set(b);
mjr 38:091e511ce8a0 3831 }
mjr 38:091e511ce8a0 3832
mjr 38:091e511ce8a0 3833 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 3834 if (hc595 != 0)
mjr 38:091e511ce8a0 3835 hc595->update();
mjr 38:091e511ce8a0 3836 }
mjr 38:091e511ce8a0 3837 else
mjr 38:091e511ce8a0 3838 {
mjr 38:091e511ce8a0 3839 // Everything else is LWZ-PBA. This is a full "profile"
mjr 38:091e511ce8a0 3840 // dump from the host for one bank of 8 outputs. Each
mjr 38:091e511ce8a0 3841 // byte sets one output in the current bank. The current
mjr 38:091e511ce8a0 3842 // bank is implied; the bank starts at 0 and is reset to 0
mjr 38:091e511ce8a0 3843 // by any LWZ-SBA message, and is incremented to the next
mjr 38:091e511ce8a0 3844 // bank by each LWZ-PBA message. Our variable pbaIdx keeps
mjr 38:091e511ce8a0 3845 // track of our notion of the current bank. There's no direct
mjr 38:091e511ce8a0 3846 // way for the host to select the bank; it just has to count
mjr 38:091e511ce8a0 3847 // on us staying in sync. In practice, the host will always
mjr 38:091e511ce8a0 3848 // send a full set of 4 PBA messages in a row to set all 32
mjr 38:091e511ce8a0 3849 // outputs.
mjr 38:091e511ce8a0 3850 //
mjr 38:091e511ce8a0 3851 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 3852 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 3853 // wizVal[] entry for each output, and that takes precedence
mjr 38:091e511ce8a0 3854 // over the extended protocol settings.
mjr 38:091e511ce8a0 3855 //
mjr 38:091e511ce8a0 3856 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 3857 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 3858
mjr 38:091e511ce8a0 3859 // Update all output profile settings
mjr 38:091e511ce8a0 3860 for (int i = 0 ; i < 8 ; ++i)
mjr 38:091e511ce8a0 3861 wizVal[pbaIdx + i] = data[i];
mjr 38:091e511ce8a0 3862
mjr 38:091e511ce8a0 3863 // Update the physical LED state if this is the last bank.
mjr 38:091e511ce8a0 3864 // Note that hosts always send a full set of four PBA
mjr 38:091e511ce8a0 3865 // messages, so there's no need to do a physical update
mjr 38:091e511ce8a0 3866 // until we've received the last bank's PBA message.
mjr 38:091e511ce8a0 3867 if (pbaIdx == 24)
mjr 38:091e511ce8a0 3868 {
mjr 35:e959ffba78fd 3869 updateWizOuts();
mjr 35:e959ffba78fd 3870 if (hc595 != 0)
mjr 35:e959ffba78fd 3871 hc595->update();
mjr 35:e959ffba78fd 3872 pbaIdx = 0;
mjr 35:e959ffba78fd 3873 }
mjr 38:091e511ce8a0 3874 else
mjr 38:091e511ce8a0 3875 pbaIdx += 8;
mjr 38:091e511ce8a0 3876 }
mjr 38:091e511ce8a0 3877 }
mjr 35:e959ffba78fd 3878
mjr 33:d832bcab089e 3879
mjr 38:091e511ce8a0 3880 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 3881 //
mjr 5:a70c0bce770d 3882 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 3883 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 3884 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 3885 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 3886 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 3887 // port outputs.
mjr 5:a70c0bce770d 3888 //
mjr 0:5acbbe3f4cf4 3889 int main(void)
mjr 0:5acbbe3f4cf4 3890 {
mjr 39:b3815a1c3802 3891 printf("\r\nPinscape Controller starting\r\n");
mjr 39:b3815a1c3802 3892 // memory config debugging: {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 3893
mjr 39:b3815a1c3802 3894 // clear the I2C bus (for the accelerometer)
mjr 35:e959ffba78fd 3895 clear_i2c();
mjr 38:091e511ce8a0 3896
mjr 43:7a6364d82a41 3897 // load the saved configuration (or set factory defaults if no flash
mjr 43:7a6364d82a41 3898 // configuration has ever been saved)
mjr 35:e959ffba78fd 3899 loadConfigFromFlash();
mjr 35:e959ffba78fd 3900
mjr 38:091e511ce8a0 3901 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 3902 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 3903
mjr 33:d832bcab089e 3904 // we're not connected/awake yet
mjr 33:d832bcab089e 3905 bool connected = false;
mjr 40:cc0d9814522b 3906 Timer connectChangeTimer;
mjr 33:d832bcab089e 3907
mjr 35:e959ffba78fd 3908 // create the plunger sensor interface
mjr 35:e959ffba78fd 3909 createPlunger();
mjr 33:d832bcab089e 3910
mjr 35:e959ffba78fd 3911 // set up the TLC5940 interface and start the TLC5940 clock, if applicable
mjr 35:e959ffba78fd 3912 init_tlc5940(cfg);
mjr 34:6b981a2afab7 3913
mjr 34:6b981a2afab7 3914 // enable the 74HC595 chips, if present
mjr 35:e959ffba78fd 3915 init_hc595(cfg);
mjr 6:cc35eb643e8f 3916
mjr 54:fd77a6b2f76c 3917 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 3918 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 3919 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 3920 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 3921 initLwOut(cfg);
mjr 48:058ace2aed1d 3922
mjr 35:e959ffba78fd 3923 // start the TLC5940 clock
mjr 35:e959ffba78fd 3924 if (tlc5940 != 0)
mjr 35:e959ffba78fd 3925 tlc5940->start();
mjr 35:e959ffba78fd 3926
mjr 40:cc0d9814522b 3927 // start the TV timer, if applicable
mjr 40:cc0d9814522b 3928 startTVTimer(cfg);
mjr 48:058ace2aed1d 3929
mjr 35:e959ffba78fd 3930 // initialize the button input ports
mjr 35:e959ffba78fd 3931 bool kbKeys = false;
mjr 35:e959ffba78fd 3932 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 3933
mjr 6:cc35eb643e8f 3934 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 3935 // number from the saved configuration.
mjr 51:57eb311faafa 3936 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 3937 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 3938
mjr 51:57eb311faafa 3939 // Wait for the connection
mjr 51:57eb311faafa 3940 Timer connectTimer;
mjr 51:57eb311faafa 3941 connectTimer.start();
mjr 51:57eb311faafa 3942 while (!js.configured())
mjr 51:57eb311faafa 3943 {
mjr 51:57eb311faafa 3944 // show one short yellow flash at 2-second intervals
mjr 51:57eb311faafa 3945 if (connectTimer.read_us() > 2000000)
mjr 51:57eb311faafa 3946 {
mjr 51:57eb311faafa 3947 // short yellow flash
mjr 51:57eb311faafa 3948 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 3949 wait_us(50000);
mjr 51:57eb311faafa 3950 diagLED(0, 0, 0);
mjr 51:57eb311faafa 3951
mjr 51:57eb311faafa 3952 // reset the flash timer
mjr 51:57eb311faafa 3953 connectTimer.reset();
mjr 51:57eb311faafa 3954 }
mjr 51:57eb311faafa 3955 }
mjr 54:fd77a6b2f76c 3956 connected = true;
mjr 40:cc0d9814522b 3957
mjr 38:091e511ce8a0 3958 // Last report timer for the joytick interface. We use the joystick timer
mjr 38:091e511ce8a0 3959 // to throttle the report rate, because VP doesn't benefit from reports any
mjr 38:091e511ce8a0 3960 // faster than about every 10ms.
mjr 38:091e511ce8a0 3961 Timer jsReportTimer;
mjr 38:091e511ce8a0 3962 jsReportTimer.start();
mjr 38:091e511ce8a0 3963
mjr 38:091e511ce8a0 3964 // Time since we successfully sent a USB report. This is a hacky workaround
mjr 38:091e511ce8a0 3965 // for sporadic problems in the USB stack that I haven't been able to figure
mjr 38:091e511ce8a0 3966 // out. If we go too long without successfully sending a USB report, we'll
mjr 38:091e511ce8a0 3967 // try resetting the connection.
mjr 38:091e511ce8a0 3968 Timer jsOKTimer;
mjr 38:091e511ce8a0 3969 jsOKTimer.start();
mjr 35:e959ffba78fd 3970
mjr 35:e959ffba78fd 3971 // set the initial status flags
mjr 35:e959ffba78fd 3972 statusFlags = (cfg.plunger.enabled ? 0x01 : 0x00);
mjr 17:ab3cec0c8bf4 3973
mjr 17:ab3cec0c8bf4 3974 // initialize the calibration buttons, if present
mjr 53:9b2611964afc 3975 DigitalIn *calBtn = (cfg.plunger.cal.btn == 0xFF ? 0 :
mjr 53:9b2611964afc 3976 new DigitalIn(wirePinName(cfg.plunger.cal.btn)));
mjr 53:9b2611964afc 3977 DigitalOut *calBtnLed = (cfg.plunger.cal.led == 0xFF ? 0 :
mjr 53:9b2611964afc 3978 new DigitalOut(wirePinName(cfg.plunger.cal.led)));
mjr 6:cc35eb643e8f 3979
mjr 35:e959ffba78fd 3980 // initialize the calibration button
mjr 1:d913e0afb2ac 3981 calBtnTimer.start();
mjr 35:e959ffba78fd 3982 calBtnState = 0;
mjr 1:d913e0afb2ac 3983
mjr 1:d913e0afb2ac 3984 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 3985 Timer hbTimer;
mjr 1:d913e0afb2ac 3986 hbTimer.start();
mjr 1:d913e0afb2ac 3987 int hb = 0;
mjr 5:a70c0bce770d 3988 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 3989
mjr 1:d913e0afb2ac 3990 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 3991 Timer acTimer;
mjr 1:d913e0afb2ac 3992 acTimer.start();
mjr 1:d913e0afb2ac 3993
mjr 0:5acbbe3f4cf4 3994 // create the accelerometer object
mjr 5:a70c0bce770d 3995 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 48:058ace2aed1d 3996
mjr 17:ab3cec0c8bf4 3997 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 3998 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 3999 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 4000
mjr 48:058ace2aed1d 4001 // initialize the plunger sensor
mjr 35:e959ffba78fd 4002 plungerSensor->init();
mjr 10:976666ffa4ef 4003
mjr 48:058ace2aed1d 4004 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 4005 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 4006
mjr 54:fd77a6b2f76c 4007 // enable the peripheral chips
mjr 54:fd77a6b2f76c 4008 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 4009 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 4010 if (hc595 != 0)
mjr 54:fd77a6b2f76c 4011 hc595->enable(true);
mjr 43:7a6364d82a41 4012
mjr 1:d913e0afb2ac 4013 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 4014 // host requests
mjr 0:5acbbe3f4cf4 4015 for (;;)
mjr 0:5acbbe3f4cf4 4016 {
mjr 48:058ace2aed1d 4017 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 4018 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 4019 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 4020 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 4021 LedWizMsg lwm;
mjr 48:058ace2aed1d 4022 Timer lwt;
mjr 48:058ace2aed1d 4023 lwt.start();
mjr 48:058ace2aed1d 4024 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 48:058ace2aed1d 4025 handleInputMsg(lwm, js);
mjr 1:d913e0afb2ac 4026
mjr 1:d913e0afb2ac 4027 // check for plunger calibration
mjr 17:ab3cec0c8bf4 4028 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 4029 {
mjr 1:d913e0afb2ac 4030 // check the state
mjr 1:d913e0afb2ac 4031 switch (calBtnState)
mjr 0:5acbbe3f4cf4 4032 {
mjr 1:d913e0afb2ac 4033 case 0:
mjr 1:d913e0afb2ac 4034 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 4035 calBtnTimer.reset();
mjr 1:d913e0afb2ac 4036 calBtnState = 1;
mjr 1:d913e0afb2ac 4037 break;
mjr 1:d913e0afb2ac 4038
mjr 1:d913e0afb2ac 4039 case 1:
mjr 1:d913e0afb2ac 4040 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 4041 // passed, start the hold period
mjr 48:058ace2aed1d 4042 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 4043 calBtnState = 2;
mjr 1:d913e0afb2ac 4044 break;
mjr 1:d913e0afb2ac 4045
mjr 1:d913e0afb2ac 4046 case 2:
mjr 1:d913e0afb2ac 4047 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 4048 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 4049 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 4050 {
mjr 1:d913e0afb2ac 4051 // enter calibration mode
mjr 1:d913e0afb2ac 4052 calBtnState = 3;
mjr 9:fd65b0a94720 4053 calBtnTimer.reset();
mjr 35:e959ffba78fd 4054
mjr 44:b5ac89b9cd5d 4055 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 4056 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 4057 }
mjr 1:d913e0afb2ac 4058 break;
mjr 2:c174f9ee414a 4059
mjr 2:c174f9ee414a 4060 case 3:
mjr 9:fd65b0a94720 4061 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 4062 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 4063 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 4064 break;
mjr 0:5acbbe3f4cf4 4065 }
mjr 0:5acbbe3f4cf4 4066 }
mjr 1:d913e0afb2ac 4067 else
mjr 1:d913e0afb2ac 4068 {
mjr 2:c174f9ee414a 4069 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 4070 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 4071 // and save the results to flash.
mjr 2:c174f9ee414a 4072 //
mjr 2:c174f9ee414a 4073 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 4074 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 4075 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 4076 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 4077 {
mjr 2:c174f9ee414a 4078 // exit calibration mode
mjr 1:d913e0afb2ac 4079 calBtnState = 0;
mjr 52:8298b2a73eb2 4080 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 4081
mjr 6:cc35eb643e8f 4082 // save the updated configuration
mjr 35:e959ffba78fd 4083 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 4084 saveConfigToFlash();
mjr 2:c174f9ee414a 4085 }
mjr 2:c174f9ee414a 4086 else if (calBtnState != 3)
mjr 2:c174f9ee414a 4087 {
mjr 2:c174f9ee414a 4088 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 4089 calBtnState = 0;
mjr 2:c174f9ee414a 4090 }
mjr 1:d913e0afb2ac 4091 }
mjr 1:d913e0afb2ac 4092
mjr 1:d913e0afb2ac 4093 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 4094 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 4095 switch (calBtnState)
mjr 0:5acbbe3f4cf4 4096 {
mjr 1:d913e0afb2ac 4097 case 2:
mjr 1:d913e0afb2ac 4098 // in the hold period - flash the light
mjr 48:058ace2aed1d 4099 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 4100 break;
mjr 1:d913e0afb2ac 4101
mjr 1:d913e0afb2ac 4102 case 3:
mjr 1:d913e0afb2ac 4103 // calibration mode - show steady on
mjr 1:d913e0afb2ac 4104 newCalBtnLit = true;
mjr 1:d913e0afb2ac 4105 break;
mjr 1:d913e0afb2ac 4106
mjr 1:d913e0afb2ac 4107 default:
mjr 1:d913e0afb2ac 4108 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 4109 newCalBtnLit = false;
mjr 1:d913e0afb2ac 4110 break;
mjr 1:d913e0afb2ac 4111 }
mjr 3:3514575d4f86 4112
mjr 3:3514575d4f86 4113 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 4114 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 4115 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 4116 {
mjr 1:d913e0afb2ac 4117 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 4118 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 4119 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 4120 calBtnLed->write(1);
mjr 38:091e511ce8a0 4121 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 4122 }
mjr 2:c174f9ee414a 4123 else {
mjr 17:ab3cec0c8bf4 4124 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 4125 calBtnLed->write(0);
mjr 38:091e511ce8a0 4126 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 4127 }
mjr 1:d913e0afb2ac 4128 }
mjr 35:e959ffba78fd 4129
mjr 48:058ace2aed1d 4130 // read the plunger sensor
mjr 48:058ace2aed1d 4131 plungerReader.read();
mjr 48:058ace2aed1d 4132
mjr 53:9b2611964afc 4133 // update the ZB Launch Ball status
mjr 53:9b2611964afc 4134 zbLaunchBall.update();
mjr 37:ed52738445fc 4135
mjr 53:9b2611964afc 4136 // process button updates
mjr 53:9b2611964afc 4137 processButtons(cfg);
mjr 53:9b2611964afc 4138
mjr 38:091e511ce8a0 4139 // send a keyboard report if we have new data
mjr 37:ed52738445fc 4140 if (kbState.changed)
mjr 37:ed52738445fc 4141 {
mjr 38:091e511ce8a0 4142 // send a keyboard report
mjr 37:ed52738445fc 4143 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 4144 kbState.changed = false;
mjr 37:ed52738445fc 4145 }
mjr 38:091e511ce8a0 4146
mjr 38:091e511ce8a0 4147 // likewise for the media controller
mjr 37:ed52738445fc 4148 if (mediaState.changed)
mjr 37:ed52738445fc 4149 {
mjr 38:091e511ce8a0 4150 // send a media report
mjr 37:ed52738445fc 4151 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 4152 mediaState.changed = false;
mjr 37:ed52738445fc 4153 }
mjr 38:091e511ce8a0 4154
mjr 38:091e511ce8a0 4155 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 4156 bool jsOK = false;
mjr 17:ab3cec0c8bf4 4157
mjr 50:40015764bbe6 4158 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 4159 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 4160 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 4161 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 4162 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 4163 {
mjr 17:ab3cec0c8bf4 4164 // read the accelerometer
mjr 17:ab3cec0c8bf4 4165 int xa, ya;
mjr 17:ab3cec0c8bf4 4166 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 4167
mjr 17:ab3cec0c8bf4 4168 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 4169 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 4170 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 4171 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 4172 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 4173
mjr 17:ab3cec0c8bf4 4174 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 4175 x = xa;
mjr 17:ab3cec0c8bf4 4176 y = ya;
mjr 17:ab3cec0c8bf4 4177
mjr 48:058ace2aed1d 4178 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 4179 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 4180 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 4181 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 4182 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 4183 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 4184 // regular plunger inputs.
mjr 48:058ace2aed1d 4185 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 4186 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 4187
mjr 35:e959ffba78fd 4188 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 4189 accelRotate(x, y);
mjr 35:e959ffba78fd 4190
mjr 35:e959ffba78fd 4191 // send the joystick report
mjr 53:9b2611964afc 4192 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 4193
mjr 17:ab3cec0c8bf4 4194 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 4195 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 4196 }
mjr 21:5048e16cc9ef 4197
mjr 52:8298b2a73eb2 4198 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 4199 if (reportPlungerStat)
mjr 10:976666ffa4ef 4200 {
mjr 17:ab3cec0c8bf4 4201 // send the report
mjr 53:9b2611964afc 4202 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 4203
mjr 10:976666ffa4ef 4204 // we have satisfied this request
mjr 52:8298b2a73eb2 4205 reportPlungerStat = false;
mjr 10:976666ffa4ef 4206 }
mjr 10:976666ffa4ef 4207
mjr 35:e959ffba78fd 4208 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 4209 // periodically for the sake of the Windows config tool.
mjr 48:058ace2aed1d 4210 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 200000)
mjr 21:5048e16cc9ef 4211 {
mjr 38:091e511ce8a0 4212 jsOK = js.updateStatus(0);
mjr 38:091e511ce8a0 4213 jsReportTimer.reset();
mjr 38:091e511ce8a0 4214 }
mjr 38:091e511ce8a0 4215
mjr 38:091e511ce8a0 4216 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 4217 if (jsOK)
mjr 38:091e511ce8a0 4218 {
mjr 38:091e511ce8a0 4219 jsOKTimer.reset();
mjr 38:091e511ce8a0 4220 jsOKTimer.start();
mjr 21:5048e16cc9ef 4221 }
mjr 21:5048e16cc9ef 4222
mjr 6:cc35eb643e8f 4223 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 4224 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 4225 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 4226 #endif
mjr 6:cc35eb643e8f 4227
mjr 33:d832bcab089e 4228 // check for connection status changes
mjr 54:fd77a6b2f76c 4229 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 4230 if (newConnected != connected)
mjr 33:d832bcab089e 4231 {
mjr 54:fd77a6b2f76c 4232 // give it a moment to stabilize
mjr 40:cc0d9814522b 4233 connectChangeTimer.start();
mjr 54:fd77a6b2f76c 4234 if (connectChangeTimer.read_us() > 100000)
mjr 33:d832bcab089e 4235 {
mjr 33:d832bcab089e 4236 // note the new status
mjr 33:d832bcab089e 4237 connected = newConnected;
mjr 40:cc0d9814522b 4238
mjr 40:cc0d9814522b 4239 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 4240 connectChangeTimer.stop();
mjr 40:cc0d9814522b 4241 connectChangeTimer.reset();
mjr 33:d832bcab089e 4242
mjr 54:fd77a6b2f76c 4243 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 4244 if (!connected)
mjr 40:cc0d9814522b 4245 {
mjr 54:fd77a6b2f76c 4246 // turn off all outputs
mjr 33:d832bcab089e 4247 allOutputsOff();
mjr 40:cc0d9814522b 4248
mjr 40:cc0d9814522b 4249 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 4250 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 4251 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 4252 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 4253 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 4254 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 4255 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 4256 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 4257 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 4258 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 4259 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 4260 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 4261 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 4262 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 4263 // the power first comes on.
mjr 40:cc0d9814522b 4264 if (tlc5940 != 0)
mjr 40:cc0d9814522b 4265 tlc5940->enable(false);
mjr 40:cc0d9814522b 4266 if (hc595 != 0)
mjr 40:cc0d9814522b 4267 hc595->enable(false);
mjr 40:cc0d9814522b 4268 }
mjr 33:d832bcab089e 4269 }
mjr 33:d832bcab089e 4270 }
mjr 48:058ace2aed1d 4271
mjr 53:9b2611964afc 4272 // if we have a reboot timer pending, check for completion
mjr 53:9b2611964afc 4273 if (rebootTimer.isRunning() && rebootTimer.read_us() > rebootTime_us)
mjr 53:9b2611964afc 4274 reboot(js);
mjr 53:9b2611964afc 4275
mjr 48:058ace2aed1d 4276 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 4277 if (!connected)
mjr 48:058ace2aed1d 4278 {
mjr 54:fd77a6b2f76c 4279 // show USB HAL debug events
mjr 54:fd77a6b2f76c 4280 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 4281 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 4282
mjr 54:fd77a6b2f76c 4283 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 4284 js.diagFlash();
mjr 54:fd77a6b2f76c 4285
mjr 54:fd77a6b2f76c 4286 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 4287 diagLED(0, 0, 0);
mjr 51:57eb311faafa 4288
mjr 51:57eb311faafa 4289 // set up a timer to monitor the reboot timeout
mjr 51:57eb311faafa 4290 Timer rebootTimer;
mjr 51:57eb311faafa 4291 rebootTimer.start();
mjr 48:058ace2aed1d 4292
mjr 54:fd77a6b2f76c 4293 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 4294 Timer diagTimer;
mjr 54:fd77a6b2f76c 4295 diagTimer.reset();
mjr 54:fd77a6b2f76c 4296 diagTimer.start();
mjr 54:fd77a6b2f76c 4297
mjr 54:fd77a6b2f76c 4298 // loop until we get our connection back
mjr 54:fd77a6b2f76c 4299 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 4300 {
mjr 54:fd77a6b2f76c 4301 // try to recover the connection
mjr 54:fd77a6b2f76c 4302 js.recoverConnection();
mjr 54:fd77a6b2f76c 4303
mjr 54:fd77a6b2f76c 4304 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 4305 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 4306 {
mjr 54:fd77a6b2f76c 4307 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 4308 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 4309
mjr 54:fd77a6b2f76c 4310 // show diagnostic feedback
mjr 54:fd77a6b2f76c 4311 js.diagFlash();
mjr 51:57eb311faafa 4312
mjr 51:57eb311faafa 4313 // reset the flash timer
mjr 54:fd77a6b2f76c 4314 diagTimer.reset();
mjr 51:57eb311faafa 4315 }
mjr 51:57eb311faafa 4316
mjr 51:57eb311faafa 4317 // if the disconnect reboot timeout has expired, reboot
mjr 51:57eb311faafa 4318 if (cfg.disconnectRebootTimeout != 0
mjr 51:57eb311faafa 4319 && rebootTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 4320 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 4321 }
mjr 54:fd77a6b2f76c 4322
mjr 54:fd77a6b2f76c 4323 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 4324 connected = true;
mjr 54:fd77a6b2f76c 4325 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 4326
mjr 54:fd77a6b2f76c 4327 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 4328 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 4329 {
mjr 54:fd77a6b2f76c 4330 tlc5940->update(true);
mjr 54:fd77a6b2f76c 4331 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 4332 }
mjr 54:fd77a6b2f76c 4333 if (hc595 != 0)
mjr 54:fd77a6b2f76c 4334 {
mjr 54:fd77a6b2f76c 4335 hc595->update(true);
mjr 54:fd77a6b2f76c 4336 hc595->enable(true);
mjr 51:57eb311faafa 4337 }
mjr 48:058ace2aed1d 4338 }
mjr 43:7a6364d82a41 4339
mjr 6:cc35eb643e8f 4340 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 4341 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 4342 {
mjr 54:fd77a6b2f76c 4343 static int spiTimeUpdate = 0; // $$$
mjr 54:fd77a6b2f76c 4344 if (spiTimeUpdate++ > 10 && tlc5940 != 0) {
mjr 54:fd77a6b2f76c 4345 spiTimeUpdate = 0;
mjr 54:fd77a6b2f76c 4346 printf("Average SPI time: %lf us\r\n", double(tlc5940->spi_total_time) / tlc5940->spi_runs);
mjr 54:fd77a6b2f76c 4347 }
mjr 54:fd77a6b2f76c 4348
mjr 54:fd77a6b2f76c 4349 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 4350 {
mjr 39:b3815a1c3802 4351 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 4352 //
mjr 54:fd77a6b2f76c 4353 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 4354 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 4355 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 4356 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 4357 hb = !hb;
mjr 38:091e511ce8a0 4358 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 4359
mjr 54:fd77a6b2f76c 4360 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 4361 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 4362 // with the USB connection.
mjr 54:fd77a6b2f76c 4363 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 4364 {
mjr 54:fd77a6b2f76c 4365 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 4366 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 4367 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 4368 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 4369 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 4370 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 4371 }
mjr 54:fd77a6b2f76c 4372 else
mjr 54:fd77a6b2f76c 4373 {
mjr 54:fd77a6b2f76c 4374 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 4375 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 4376 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 4377 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 4378 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 4379 }
mjr 38:091e511ce8a0 4380 }
mjr 35:e959ffba78fd 4381 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 4382 {
mjr 6:cc35eb643e8f 4383 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 4384 hb = !hb;
mjr 38:091e511ce8a0 4385 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 4386 }
mjr 6:cc35eb643e8f 4387 else
mjr 6:cc35eb643e8f 4388 {
mjr 6:cc35eb643e8f 4389 // connected - flash blue/green
mjr 2:c174f9ee414a 4390 hb = !hb;
mjr 38:091e511ce8a0 4391 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 4392 }
mjr 1:d913e0afb2ac 4393
mjr 1:d913e0afb2ac 4394 // reset the heartbeat timer
mjr 1:d913e0afb2ac 4395 hbTimer.reset();
mjr 5:a70c0bce770d 4396 ++hbcnt;
mjr 1:d913e0afb2ac 4397 }
mjr 1:d913e0afb2ac 4398 }
mjr 0:5acbbe3f4cf4 4399 }