Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Tue May 09 05:48:37 2017 +0000
Revision:
87:8d35c74403af
Parent:
86:e30a1f60f783
Child:
88:98bce687e6c0
AEDR-8300, VL6180X, TLC59116; new plunger firing detection

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 35:e959ffba78fd 838 //
mjr 35:e959ffba78fd 839 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 840 // assignments set in config.h.
mjr 33:d832bcab089e 841 //
mjr 35:e959ffba78fd 842 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 843 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 844 {
mjr 35:e959ffba78fd 845 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 846 {
mjr 53:9b2611964afc 847 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 848 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 849 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 850 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 851 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 852 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 853 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 854 }
mjr 35:e959ffba78fd 855 }
mjr 26:cb71c4af2912 856
mjr 40:cc0d9814522b 857 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 858 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 859 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 860 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 861 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 862 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 863 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 864 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 865 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 866 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 867 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 868 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 869 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 870 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 871 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 872 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 873 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 874 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 875 };
mjr 40:cc0d9814522b 876
mjr 40:cc0d9814522b 877 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 878 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 879 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 880 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 881 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 882 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 883 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 884 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 885 // are always 8 bits.
mjr 40:cc0d9814522b 886 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 887 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 888 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 889 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 890 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 891 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 892 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 893 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 894 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 895 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 896 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 897 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 898 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 899 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 900 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 901 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 902 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 903 };
mjr 40:cc0d9814522b 904
mjr 26:cb71c4af2912 905 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 906 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 907 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 908 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 909 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 910 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 911 {
mjr 26:cb71c4af2912 912 public:
mjr 60:f38da020aa13 913 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 914 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 915 {
mjr 26:cb71c4af2912 916 if (val != prv)
mjr 40:cc0d9814522b 917 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 918 }
mjr 60:f38da020aa13 919 uint8_t idx;
mjr 40:cc0d9814522b 920 uint8_t prv;
mjr 26:cb71c4af2912 921 };
mjr 26:cb71c4af2912 922
mjr 40:cc0d9814522b 923 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 924 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 925 {
mjr 40:cc0d9814522b 926 public:
mjr 60:f38da020aa13 927 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 928 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 929 {
mjr 40:cc0d9814522b 930 if (val != prv)
mjr 40:cc0d9814522b 931 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 932 }
mjr 60:f38da020aa13 933 uint8_t idx;
mjr 40:cc0d9814522b 934 uint8_t prv;
mjr 40:cc0d9814522b 935 };
mjr 40:cc0d9814522b 936
mjr 87:8d35c74403af 937 //
mjr 87:8d35c74403af 938 // TLC59116 interface object
mjr 87:8d35c74403af 939 //
mjr 87:8d35c74403af 940 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 941 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 942 {
mjr 87:8d35c74403af 943 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 944 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 945 {
mjr 87:8d35c74403af 946 // set up the interface
mjr 87:8d35c74403af 947 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 948 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 949 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 950 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 951
mjr 87:8d35c74403af 952 // initialize the chips
mjr 87:8d35c74403af 953 tlc59116->init();
mjr 87:8d35c74403af 954 }
mjr 87:8d35c74403af 955 }
mjr 87:8d35c74403af 956
mjr 87:8d35c74403af 957 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 958 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 959 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 960 // (0-15).
mjr 87:8d35c74403af 961 //
mjr 87:8d35c74403af 962 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 963 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 964 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 965 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 966 {
mjr 87:8d35c74403af 967 public:
mjr 87:8d35c74403af 968 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 969 virtual void set(uint8_t val)
mjr 87:8d35c74403af 970 {
mjr 87:8d35c74403af 971 if (val != prv)
mjr 87:8d35c74403af 972 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 973 }
mjr 87:8d35c74403af 974
mjr 87:8d35c74403af 975 protected:
mjr 87:8d35c74403af 976 uint8_t addr;
mjr 87:8d35c74403af 977 uint8_t port;
mjr 87:8d35c74403af 978 uint8_t prv;
mjr 87:8d35c74403af 979 };
mjr 87:8d35c74403af 980
mjr 87:8d35c74403af 981
mjr 87:8d35c74403af 982 //
mjr 34:6b981a2afab7 983 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 984 // config.h.
mjr 87:8d35c74403af 985 //
mjr 35:e959ffba78fd 986 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 987
mjr 35:e959ffba78fd 988 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 989 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 990 {
mjr 35:e959ffba78fd 991 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 992 {
mjr 53:9b2611964afc 993 hc595 = new HC595(
mjr 53:9b2611964afc 994 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 995 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 996 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 997 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 998 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 999 hc595->init();
mjr 35:e959ffba78fd 1000 hc595->update();
mjr 35:e959ffba78fd 1001 }
mjr 35:e959ffba78fd 1002 }
mjr 34:6b981a2afab7 1003
mjr 34:6b981a2afab7 1004 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1005 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1006 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1007 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1008 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1009 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1010 {
mjr 33:d832bcab089e 1011 public:
mjr 60:f38da020aa13 1012 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1013 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1014 {
mjr 34:6b981a2afab7 1015 if (val != prv)
mjr 40:cc0d9814522b 1016 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1017 }
mjr 60:f38da020aa13 1018 uint8_t idx;
mjr 40:cc0d9814522b 1019 uint8_t prv;
mjr 33:d832bcab089e 1020 };
mjr 33:d832bcab089e 1021
mjr 26:cb71c4af2912 1022
mjr 40:cc0d9814522b 1023
mjr 64:ef7ca92dff36 1024 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1025 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1026 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1027 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1028 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1029 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1030 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1031 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1032 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1033 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1034 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1035 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1036 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1037 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1038 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1039 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1040 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1041 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1042 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1043 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1044 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1045 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1046 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1047 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1048 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1049 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1050 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1051 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1052 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1053 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1054 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1055 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1056 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1057 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1058 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1059 };
mjr 26:cb71c4af2912 1060
mjr 64:ef7ca92dff36 1061
mjr 64:ef7ca92dff36 1062 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 1063 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 1064 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 1065 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 1066 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 1067 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1068 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1069 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1070 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1071 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1072 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1073 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1074 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1075 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1076 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1077 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1078 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1079 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1080 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1081 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1082 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1083 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1084 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1085 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1086 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1087 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1088 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1089 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1090 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1091 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1092 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1093 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1094 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1095 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1096 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1097 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1098 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1099 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1100 };
mjr 64:ef7ca92dff36 1101
mjr 77:0b96f6867312 1102 // Polled-update PWM output list
mjr 74:822a92bc11d2 1103 //
mjr 77:0b96f6867312 1104 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1105 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1106 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1107 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1108 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1109 //
mjr 77:0b96f6867312 1110 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1111 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1112 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1113 // the main loop.
mjr 74:822a92bc11d2 1114 //
mjr 77:0b96f6867312 1115 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1116 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1117 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1118 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1119 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1120 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1121 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1122 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1123 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1124 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1125 //
mjr 77:0b96f6867312 1126 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1127 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1128 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1129 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1130 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1131 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1132 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1133 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1134 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1135 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1136 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1137 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1138 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1139 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1140 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1141 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1142 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1143 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1144 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1145 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1146 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1147 //
mjr 77:0b96f6867312 1148 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1149 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1150 // of polled items.
mjr 74:822a92bc11d2 1151 static int numPolledPwm;
mjr 74:822a92bc11d2 1152 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1153
mjr 74:822a92bc11d2 1154 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1155 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1156 {
mjr 6:cc35eb643e8f 1157 public:
mjr 43:7a6364d82a41 1158 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1159 {
mjr 77:0b96f6867312 1160 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1161 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1162 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1163
mjr 77:0b96f6867312 1164 // set the initial value
mjr 77:0b96f6867312 1165 set(initVal);
mjr 43:7a6364d82a41 1166 }
mjr 74:822a92bc11d2 1167
mjr 40:cc0d9814522b 1168 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1169 {
mjr 77:0b96f6867312 1170 // save the new value
mjr 74:822a92bc11d2 1171 this->val = val;
mjr 77:0b96f6867312 1172
mjr 77:0b96f6867312 1173 // commit it to the hardware
mjr 77:0b96f6867312 1174 commit();
mjr 13:72dda449c3c0 1175 }
mjr 74:822a92bc11d2 1176
mjr 74:822a92bc11d2 1177 // handle periodic update polling
mjr 74:822a92bc11d2 1178 void poll()
mjr 74:822a92bc11d2 1179 {
mjr 77:0b96f6867312 1180 commit();
mjr 74:822a92bc11d2 1181 }
mjr 74:822a92bc11d2 1182
mjr 74:822a92bc11d2 1183 protected:
mjr 77:0b96f6867312 1184 virtual void commit()
mjr 74:822a92bc11d2 1185 {
mjr 74:822a92bc11d2 1186 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1187 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1188 }
mjr 74:822a92bc11d2 1189
mjr 77:0b96f6867312 1190 NewPwmOut p;
mjr 77:0b96f6867312 1191 uint8_t val;
mjr 6:cc35eb643e8f 1192 };
mjr 26:cb71c4af2912 1193
mjr 74:822a92bc11d2 1194 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1195 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1196 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1197 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1198 {
mjr 64:ef7ca92dff36 1199 public:
mjr 64:ef7ca92dff36 1200 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1201 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1202 {
mjr 64:ef7ca92dff36 1203 }
mjr 74:822a92bc11d2 1204
mjr 74:822a92bc11d2 1205 protected:
mjr 77:0b96f6867312 1206 virtual void commit()
mjr 64:ef7ca92dff36 1207 {
mjr 74:822a92bc11d2 1208 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1209 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1210 }
mjr 64:ef7ca92dff36 1211 };
mjr 64:ef7ca92dff36 1212
mjr 74:822a92bc11d2 1213 // poll the PWM outputs
mjr 74:822a92bc11d2 1214 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1215 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1216 void pollPwmUpdates()
mjr 74:822a92bc11d2 1217 {
mjr 74:822a92bc11d2 1218 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1219 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1220 {
mjr 74:822a92bc11d2 1221 // time the run for statistics collection
mjr 74:822a92bc11d2 1222 IF_DIAG(
mjr 74:822a92bc11d2 1223 Timer t;
mjr 74:822a92bc11d2 1224 t.start();
mjr 74:822a92bc11d2 1225 )
mjr 74:822a92bc11d2 1226
mjr 74:822a92bc11d2 1227 // poll each output
mjr 74:822a92bc11d2 1228 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1229 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1230
mjr 74:822a92bc11d2 1231 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1232 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1233
mjr 74:822a92bc11d2 1234 // collect statistics
mjr 74:822a92bc11d2 1235 IF_DIAG(
mjr 76:7f5912b6340e 1236 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1237 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1238 )
mjr 74:822a92bc11d2 1239 }
mjr 74:822a92bc11d2 1240 }
mjr 64:ef7ca92dff36 1241
mjr 26:cb71c4af2912 1242 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1243 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1244 {
mjr 6:cc35eb643e8f 1245 public:
mjr 43:7a6364d82a41 1246 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1247 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1248 {
mjr 13:72dda449c3c0 1249 if (val != prv)
mjr 40:cc0d9814522b 1250 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1251 }
mjr 6:cc35eb643e8f 1252 DigitalOut p;
mjr 40:cc0d9814522b 1253 uint8_t prv;
mjr 6:cc35eb643e8f 1254 };
mjr 26:cb71c4af2912 1255
mjr 29:582472d0bc57 1256 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1257 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1258 // port n (0-based).
mjr 35:e959ffba78fd 1259 //
mjr 35:e959ffba78fd 1260 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1261 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1262 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1263 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1264 // 74HC595 ports).
mjr 33:d832bcab089e 1265 static int numOutputs;
mjr 33:d832bcab089e 1266 static LwOut **lwPin;
mjr 33:d832bcab089e 1267
mjr 38:091e511ce8a0 1268 // create a single output pin
mjr 53:9b2611964afc 1269 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1270 {
mjr 38:091e511ce8a0 1271 // get this item's values
mjr 38:091e511ce8a0 1272 int typ = pc.typ;
mjr 38:091e511ce8a0 1273 int pin = pc.pin;
mjr 38:091e511ce8a0 1274 int flags = pc.flags;
mjr 40:cc0d9814522b 1275 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1276 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1277 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1278
mjr 38:091e511ce8a0 1279 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1280 LwOut *lwp;
mjr 38:091e511ce8a0 1281 switch (typ)
mjr 38:091e511ce8a0 1282 {
mjr 38:091e511ce8a0 1283 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1284 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1285 if (pin != 0)
mjr 64:ef7ca92dff36 1286 {
mjr 64:ef7ca92dff36 1287 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1288 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1289 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1290 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1291 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1292 {
mjr 64:ef7ca92dff36 1293 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1294 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1295
mjr 64:ef7ca92dff36 1296 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1297 gamma = false;
mjr 64:ef7ca92dff36 1298 }
mjr 64:ef7ca92dff36 1299 else
mjr 64:ef7ca92dff36 1300 {
mjr 64:ef7ca92dff36 1301 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1302 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1303 }
mjr 64:ef7ca92dff36 1304 }
mjr 48:058ace2aed1d 1305 else
mjr 48:058ace2aed1d 1306 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1307 break;
mjr 38:091e511ce8a0 1308
mjr 38:091e511ce8a0 1309 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1310 // Digital GPIO port
mjr 48:058ace2aed1d 1311 if (pin != 0)
mjr 48:058ace2aed1d 1312 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1313 else
mjr 48:058ace2aed1d 1314 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1315 break;
mjr 38:091e511ce8a0 1316
mjr 38:091e511ce8a0 1317 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1318 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1319 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1320 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1321 {
mjr 40:cc0d9814522b 1322 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1323 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1324 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1325 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1326 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1327 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1328 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1329 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1330 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1331 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1332 // for this unlikely case.
mjr 40:cc0d9814522b 1333 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1334 {
mjr 40:cc0d9814522b 1335 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1336 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1337
mjr 40:cc0d9814522b 1338 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1339 gamma = false;
mjr 40:cc0d9814522b 1340 }
mjr 40:cc0d9814522b 1341 else
mjr 40:cc0d9814522b 1342 {
mjr 40:cc0d9814522b 1343 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1344 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1345 }
mjr 40:cc0d9814522b 1346 }
mjr 38:091e511ce8a0 1347 else
mjr 40:cc0d9814522b 1348 {
mjr 40:cc0d9814522b 1349 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1350 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1351 }
mjr 38:091e511ce8a0 1352 break;
mjr 38:091e511ce8a0 1353
mjr 38:091e511ce8a0 1354 case PortType74HC595:
mjr 87:8d35c74403af 1355 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1356 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1357 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1358 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1359 else
mjr 38:091e511ce8a0 1360 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1361 break;
mjr 87:8d35c74403af 1362
mjr 87:8d35c74403af 1363 case PortTypeTLC59116:
mjr 87:8d35c74403af 1364 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1365 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1366 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1367 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1368 if (tlc59116 != 0)
mjr 87:8d35c74403af 1369 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1370 break;
mjr 38:091e511ce8a0 1371
mjr 38:091e511ce8a0 1372 case PortTypeVirtual:
mjr 43:7a6364d82a41 1373 case PortTypeDisabled:
mjr 38:091e511ce8a0 1374 default:
mjr 38:091e511ce8a0 1375 // virtual or unknown
mjr 38:091e511ce8a0 1376 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1377 break;
mjr 38:091e511ce8a0 1378 }
mjr 38:091e511ce8a0 1379
mjr 40:cc0d9814522b 1380 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1381 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1382 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1383 if (activeLow)
mjr 38:091e511ce8a0 1384 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1385
mjr 40:cc0d9814522b 1386 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1387 // needs to be
mjr 40:cc0d9814522b 1388 if (noisy)
mjr 40:cc0d9814522b 1389 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1390
mjr 40:cc0d9814522b 1391 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1392 if (gamma)
mjr 40:cc0d9814522b 1393 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1394
mjr 53:9b2611964afc 1395 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1396 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1397 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1398 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1399 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1400
mjr 53:9b2611964afc 1401 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1402 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1403 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1404
mjr 38:091e511ce8a0 1405 // turn it off initially
mjr 38:091e511ce8a0 1406 lwp->set(0);
mjr 38:091e511ce8a0 1407
mjr 38:091e511ce8a0 1408 // return the pin
mjr 38:091e511ce8a0 1409 return lwp;
mjr 38:091e511ce8a0 1410 }
mjr 38:091e511ce8a0 1411
mjr 6:cc35eb643e8f 1412 // initialize the output pin array
mjr 35:e959ffba78fd 1413 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1414 {
mjr 35:e959ffba78fd 1415 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1416 // total number of ports.
mjr 35:e959ffba78fd 1417 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1418 int i;
mjr 35:e959ffba78fd 1419 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1420 {
mjr 35:e959ffba78fd 1421 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1422 {
mjr 35:e959ffba78fd 1423 numOutputs = i;
mjr 34:6b981a2afab7 1424 break;
mjr 34:6b981a2afab7 1425 }
mjr 33:d832bcab089e 1426 }
mjr 33:d832bcab089e 1427
mjr 73:4e8ce0b18915 1428 // allocate the pin array
mjr 73:4e8ce0b18915 1429 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1430
mjr 73:4e8ce0b18915 1431 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1432 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1433
mjr 73:4e8ce0b18915 1434 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1435 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1436 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1437
mjr 73:4e8ce0b18915 1438 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1439 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1440 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1441
mjr 73:4e8ce0b18915 1442 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1443 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1444 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1445
mjr 35:e959ffba78fd 1446 // create the pin interface object for each port
mjr 35:e959ffba78fd 1447 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1448 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1449 }
mjr 6:cc35eb643e8f 1450
mjr 76:7f5912b6340e 1451 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1452 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1453 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1454 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1455 // equivalent to 48.
mjr 40:cc0d9814522b 1456 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1457 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1458 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1459 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1460 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1461 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1462 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1463 255, 255
mjr 40:cc0d9814522b 1464 };
mjr 40:cc0d9814522b 1465
mjr 76:7f5912b6340e 1466 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1467 // level (1..48)
mjr 76:7f5912b6340e 1468 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1469 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1470 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1471 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1472 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1473 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1474 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1475 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1476 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1477 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1478 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1479 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1480 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1481 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1482 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1483 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1484 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1485 };
mjr 76:7f5912b6340e 1486
mjr 74:822a92bc11d2 1487 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1488 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1489 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1490 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1491 //
mjr 74:822a92bc11d2 1492 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1493 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1494 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1495 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1496 //
mjr 74:822a92bc11d2 1497 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1498 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1499 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1500 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1501 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1502 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1503 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1504 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1505 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1506 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1507 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1508 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1509 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1510 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1511 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1512 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1513 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1514 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1515 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1516 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1517
mjr 74:822a92bc11d2 1518 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1519 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1520 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1521 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1522 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1523 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1524 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1525 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1526 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1527 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1528 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1529 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1530 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1531 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1532 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1533 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1534 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1535
mjr 74:822a92bc11d2 1536 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1537 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1538 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1539 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1540 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1541 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1542 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1543 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1544 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1545 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1546 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1547 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1548 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1549 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1550 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1551 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1552 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1553
mjr 74:822a92bc11d2 1554 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1555 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1556 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1557 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1558 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1559 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1560 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1561 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1562 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1563 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1564 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1565 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1566 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1567 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1568 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1569 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1570 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1571 };
mjr 74:822a92bc11d2 1572
mjr 74:822a92bc11d2 1573 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1574 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1575 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1576
mjr 76:7f5912b6340e 1577 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1578 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1579
mjr 76:7f5912b6340e 1580 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1581 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1582 // outputs on each cycle.
mjr 29:582472d0bc57 1583 static void wizPulse()
mjr 29:582472d0bc57 1584 {
mjr 76:7f5912b6340e 1585 // current bank
mjr 76:7f5912b6340e 1586 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1587
mjr 76:7f5912b6340e 1588 // start a timer for statistics collection
mjr 76:7f5912b6340e 1589 IF_DIAG(
mjr 76:7f5912b6340e 1590 Timer t;
mjr 76:7f5912b6340e 1591 t.start();
mjr 76:7f5912b6340e 1592 )
mjr 76:7f5912b6340e 1593
mjr 76:7f5912b6340e 1594 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1595 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1596 //
mjr 76:7f5912b6340e 1597 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1598 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1599 //
mjr 76:7f5912b6340e 1600 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1601 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1602 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1603 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1604 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1605 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1606 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1607 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1608 // current cycle.
mjr 76:7f5912b6340e 1609 //
mjr 76:7f5912b6340e 1610 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1611 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1612 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1613 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1614 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1615 //
mjr 76:7f5912b6340e 1616 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1617 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1618 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1619 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1620 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1621 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1622 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1623 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1624 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1625 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1626 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1627 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1628 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1629 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1630 // bit counts.
mjr 76:7f5912b6340e 1631 //
mjr 76:7f5912b6340e 1632 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1633 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1634 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1635 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1636 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1637 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1638 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1639 // one division for another!
mjr 76:7f5912b6340e 1640 //
mjr 76:7f5912b6340e 1641 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1642 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1643 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1644 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1645 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1646 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1647 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1648 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1649 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1650 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1651 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1652 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1653 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1654 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1655 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1656 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1657 // remainder calculation anyway.
mjr 76:7f5912b6340e 1658 //
mjr 76:7f5912b6340e 1659 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1660 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1661 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1662 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1663 //
mjr 76:7f5912b6340e 1664 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1665 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1666 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1667 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1668 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1669 // the result, since we started with 32.
mjr 76:7f5912b6340e 1670 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1671 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1672 };
mjr 76:7f5912b6340e 1673 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1674
mjr 76:7f5912b6340e 1675 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1676 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1677 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1678 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1679 toPort = numOutputs;
mjr 76:7f5912b6340e 1680
mjr 76:7f5912b6340e 1681 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1682 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1683 {
mjr 76:7f5912b6340e 1684 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1685 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1686 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1687 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1688 if (wizOn[i])
mjr 29:582472d0bc57 1689 {
mjr 76:7f5912b6340e 1690 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1691 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1692 {
mjr 76:7f5912b6340e 1693 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1694 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1695 }
mjr 29:582472d0bc57 1696 }
mjr 76:7f5912b6340e 1697 }
mjr 76:7f5912b6340e 1698
mjr 34:6b981a2afab7 1699 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1700 if (hc595 != 0)
mjr 35:e959ffba78fd 1701 hc595->update();
mjr 76:7f5912b6340e 1702
mjr 76:7f5912b6340e 1703 // switch to the next bank
mjr 76:7f5912b6340e 1704 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1705 wizPulseBank = 0;
mjr 76:7f5912b6340e 1706
mjr 76:7f5912b6340e 1707 // collect timing statistics
mjr 76:7f5912b6340e 1708 IF_DIAG(
mjr 76:7f5912b6340e 1709 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1710 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1711 )
mjr 1:d913e0afb2ac 1712 }
mjr 38:091e511ce8a0 1713
mjr 76:7f5912b6340e 1714 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1715 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1716 {
mjr 76:7f5912b6340e 1717 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1718 if (wizOn[port])
mjr 76:7f5912b6340e 1719 {
mjr 76:7f5912b6340e 1720 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1721 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1722 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1723 // it on the next cycle.
mjr 76:7f5912b6340e 1724 int val = wizVal[port];
mjr 76:7f5912b6340e 1725 if (val <= 49)
mjr 76:7f5912b6340e 1726 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1727 }
mjr 76:7f5912b6340e 1728 else
mjr 76:7f5912b6340e 1729 {
mjr 76:7f5912b6340e 1730 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1731 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1732 }
mjr 73:4e8ce0b18915 1733 }
mjr 73:4e8ce0b18915 1734
mjr 73:4e8ce0b18915 1735 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1736 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1737 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1738 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1739 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1740 //
mjr 73:4e8ce0b18915 1741 void allOutputsOff()
mjr 73:4e8ce0b18915 1742 {
mjr 73:4e8ce0b18915 1743 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1744 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1745 {
mjr 73:4e8ce0b18915 1746 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1747 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1748 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1749 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1750 }
mjr 73:4e8ce0b18915 1751
mjr 73:4e8ce0b18915 1752 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1753 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1754 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1755
mjr 73:4e8ce0b18915 1756 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1757 if (hc595 != 0)
mjr 38:091e511ce8a0 1758 hc595->update();
mjr 38:091e511ce8a0 1759 }
mjr 38:091e511ce8a0 1760
mjr 74:822a92bc11d2 1761 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1762 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1763 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1764 // address any port group.
mjr 74:822a92bc11d2 1765 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1766 {
mjr 76:7f5912b6340e 1767 // update all on/off states in the group
mjr 74:822a92bc11d2 1768 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1769 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1770 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1771 {
mjr 74:822a92bc11d2 1772 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1773 if (bit == 0x100) {
mjr 74:822a92bc11d2 1774 bit = 1;
mjr 74:822a92bc11d2 1775 ++imsg;
mjr 74:822a92bc11d2 1776 }
mjr 74:822a92bc11d2 1777
mjr 74:822a92bc11d2 1778 // set the on/off state
mjr 76:7f5912b6340e 1779 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1780
mjr 76:7f5912b6340e 1781 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1782 updateLwPort(port);
mjr 74:822a92bc11d2 1783 }
mjr 74:822a92bc11d2 1784
mjr 74:822a92bc11d2 1785 // set the flash speed for the port group
mjr 74:822a92bc11d2 1786 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1787 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1788
mjr 76:7f5912b6340e 1789 // update 74HC959 outputs
mjr 76:7f5912b6340e 1790 if (hc595 != 0)
mjr 76:7f5912b6340e 1791 hc595->update();
mjr 74:822a92bc11d2 1792 }
mjr 74:822a92bc11d2 1793
mjr 74:822a92bc11d2 1794 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1795 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1796 {
mjr 74:822a92bc11d2 1797 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1798 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1799 {
mjr 74:822a92bc11d2 1800 // get the value
mjr 74:822a92bc11d2 1801 uint8_t v = data[i];
mjr 74:822a92bc11d2 1802
mjr 74:822a92bc11d2 1803 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1804 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1805 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1806 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1807 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1808 // as such.
mjr 74:822a92bc11d2 1809 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1810 v = 48;
mjr 74:822a92bc11d2 1811
mjr 74:822a92bc11d2 1812 // store it
mjr 76:7f5912b6340e 1813 wizVal[port] = v;
mjr 76:7f5912b6340e 1814
mjr 76:7f5912b6340e 1815 // update the port
mjr 76:7f5912b6340e 1816 updateLwPort(port);
mjr 74:822a92bc11d2 1817 }
mjr 74:822a92bc11d2 1818
mjr 76:7f5912b6340e 1819 // update 74HC595 outputs
mjr 76:7f5912b6340e 1820 if (hc595 != 0)
mjr 76:7f5912b6340e 1821 hc595->update();
mjr 74:822a92bc11d2 1822 }
mjr 74:822a92bc11d2 1823
mjr 77:0b96f6867312 1824 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1825 //
mjr 77:0b96f6867312 1826 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1827 //
mjr 77:0b96f6867312 1828
mjr 77:0b96f6867312 1829 // receiver
mjr 77:0b96f6867312 1830 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1831
mjr 77:0b96f6867312 1832 // transmitter
mjr 77:0b96f6867312 1833 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1834
mjr 77:0b96f6867312 1835 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1836 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1837 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1838 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1839 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1840 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1841 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1842 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1843 // configuration slot n
mjr 77:0b96f6867312 1844 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1845
mjr 78:1e00b3fa11af 1846 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1847 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1848 // protocol.
mjr 78:1e00b3fa11af 1849 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1850
mjr 78:1e00b3fa11af 1851 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1852 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1853 // while waiting for the rest.
mjr 78:1e00b3fa11af 1854 static struct
mjr 78:1e00b3fa11af 1855 {
mjr 78:1e00b3fa11af 1856 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1857 uint64_t code; // code
mjr 78:1e00b3fa11af 1858 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1859 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1860 } IRAdHocCmd;
mjr 78:1e00b3fa11af 1861
mjr 77:0b96f6867312 1862
mjr 77:0b96f6867312 1863 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1864 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1865 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1866 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1867 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1868 // amount of time.
mjr 77:0b96f6867312 1869 Timer IRTimer;
mjr 77:0b96f6867312 1870
mjr 77:0b96f6867312 1871 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1872 // The states are:
mjr 77:0b96f6867312 1873 //
mjr 77:0b96f6867312 1874 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1875 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1876 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1877 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1878 //
mjr 77:0b96f6867312 1879 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1880 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1881 // received within a reasonable time.
mjr 77:0b96f6867312 1882 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1883
mjr 77:0b96f6867312 1884 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1885 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1886 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1887 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1888 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1889 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1890 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1891 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1892 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1893
mjr 78:1e00b3fa11af 1894 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1895 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1896 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1897 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1898 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1899 // index; 0 represents no command.
mjr 77:0b96f6867312 1900 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1901
mjr 77:0b96f6867312 1902 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1903 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1904 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1905 // command we received.
mjr 77:0b96f6867312 1906 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1907
mjr 77:0b96f6867312 1908 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1909 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1910 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1911 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1912 // distinct key press.
mjr 77:0b96f6867312 1913 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1914
mjr 78:1e00b3fa11af 1915
mjr 77:0b96f6867312 1916 // initialize
mjr 77:0b96f6867312 1917 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1918 {
mjr 77:0b96f6867312 1919 PinName pin;
mjr 77:0b96f6867312 1920
mjr 77:0b96f6867312 1921 // start the IR timer
mjr 77:0b96f6867312 1922 IRTimer.start();
mjr 77:0b96f6867312 1923
mjr 77:0b96f6867312 1924 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1925 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1926 {
mjr 77:0b96f6867312 1927 // no virtual buttons yet
mjr 77:0b96f6867312 1928 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1929 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1930
mjr 77:0b96f6867312 1931 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1932 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1933 {
mjr 77:0b96f6867312 1934 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1935 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1936 }
mjr 77:0b96f6867312 1937
mjr 77:0b96f6867312 1938 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1939 // real button inputs
mjr 77:0b96f6867312 1940 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1941 {
mjr 77:0b96f6867312 1942 // get the button
mjr 77:0b96f6867312 1943 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1944
mjr 77:0b96f6867312 1945 // check the unshifted button
mjr 77:0b96f6867312 1946 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1947 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1948 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1949 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1950
mjr 77:0b96f6867312 1951 // check the shifted button
mjr 77:0b96f6867312 1952 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1953 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1954 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1955 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1956 }
mjr 77:0b96f6867312 1957
mjr 77:0b96f6867312 1958 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1959 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1960 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1961
mjr 77:0b96f6867312 1962 // create the transmitter
mjr 77:0b96f6867312 1963 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1964
mjr 77:0b96f6867312 1965 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1966 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1967 {
mjr 77:0b96f6867312 1968 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1969 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1970 if (vb != 0xFF)
mjr 77:0b96f6867312 1971 {
mjr 77:0b96f6867312 1972 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1973 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1974 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1975 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1976 }
mjr 77:0b96f6867312 1977 }
mjr 77:0b96f6867312 1978 }
mjr 77:0b96f6867312 1979
mjr 77:0b96f6867312 1980 // if there's a receiver, set it up
mjr 77:0b96f6867312 1981 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1982 {
mjr 77:0b96f6867312 1983 // create the receiver
mjr 77:0b96f6867312 1984 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1985
mjr 77:0b96f6867312 1986 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1987 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 1988 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 1989
mjr 77:0b96f6867312 1990 // enable it
mjr 77:0b96f6867312 1991 ir_rx->enable();
mjr 77:0b96f6867312 1992
mjr 77:0b96f6867312 1993 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 1994 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 1995 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 1996 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1997 {
mjr 77:0b96f6867312 1998 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1999 if (cb.protocol != 0
mjr 77:0b96f6867312 2000 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2001 {
mjr 77:0b96f6867312 2002 kbKeys = true;
mjr 77:0b96f6867312 2003 break;
mjr 77:0b96f6867312 2004 }
mjr 77:0b96f6867312 2005 }
mjr 77:0b96f6867312 2006 }
mjr 77:0b96f6867312 2007 }
mjr 77:0b96f6867312 2008
mjr 77:0b96f6867312 2009 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2010 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2011 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2012 {
mjr 77:0b96f6867312 2013 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2014 if (ir_tx != 0)
mjr 77:0b96f6867312 2015 {
mjr 77:0b96f6867312 2016 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2017 int slot = cmd - 1;
mjr 77:0b96f6867312 2018
mjr 77:0b96f6867312 2019 // press or release the virtual button
mjr 77:0b96f6867312 2020 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2021 }
mjr 77:0b96f6867312 2022 }
mjr 77:0b96f6867312 2023
mjr 78:1e00b3fa11af 2024 // Process IR input and output
mjr 77:0b96f6867312 2025 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2026 {
mjr 78:1e00b3fa11af 2027 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2028 if (ir_tx != 0)
mjr 77:0b96f6867312 2029 {
mjr 78:1e00b3fa11af 2030 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2031 // is ready to send, send it.
mjr 78:1e00b3fa11af 2032 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2033 {
mjr 78:1e00b3fa11af 2034 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2035 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2036 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2037 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2038
mjr 78:1e00b3fa11af 2039 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2040 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2041 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2042
mjr 78:1e00b3fa11af 2043 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2044 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2045 }
mjr 77:0b96f6867312 2046 }
mjr 78:1e00b3fa11af 2047
mjr 78:1e00b3fa11af 2048 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2049 if (ir_rx != 0)
mjr 77:0b96f6867312 2050 {
mjr 78:1e00b3fa11af 2051 // Time out any received command
mjr 78:1e00b3fa11af 2052 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2053 {
mjr 80:94dc2946871b 2054 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2055 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2056 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2057 if (t > 200000)
mjr 78:1e00b3fa11af 2058 IRCommandIn = 0;
mjr 80:94dc2946871b 2059 else if (t > 50000)
mjr 78:1e00b3fa11af 2060 IRKeyGap = false;
mjr 78:1e00b3fa11af 2061 }
mjr 78:1e00b3fa11af 2062
mjr 78:1e00b3fa11af 2063 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2064 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2065 {
mjr 78:1e00b3fa11af 2066 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2067 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2068 // limit.
mjr 78:1e00b3fa11af 2069 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2070 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2071 int n;
mjr 78:1e00b3fa11af 2072 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2073
mjr 78:1e00b3fa11af 2074 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2075 if (n != 0)
mjr 78:1e00b3fa11af 2076 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2077
mjr 78:1e00b3fa11af 2078 // check for a command
mjr 78:1e00b3fa11af 2079 IRCommand c;
mjr 78:1e00b3fa11af 2080 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2081 {
mjr 78:1e00b3fa11af 2082 // check the current learning state
mjr 78:1e00b3fa11af 2083 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2084 {
mjr 78:1e00b3fa11af 2085 case 1:
mjr 78:1e00b3fa11af 2086 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2087 // This is it.
mjr 78:1e00b3fa11af 2088 learnedIRCode = c;
mjr 78:1e00b3fa11af 2089
mjr 78:1e00b3fa11af 2090 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2091 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2092 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2093 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2094 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2095 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2096 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2097 break;
mjr 78:1e00b3fa11af 2098
mjr 78:1e00b3fa11af 2099 case 2:
mjr 78:1e00b3fa11af 2100 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2101 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2102 //
mjr 78:1e00b3fa11af 2103 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2104 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2105 //
mjr 78:1e00b3fa11af 2106 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2107 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2108 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2109 // them.
mjr 78:1e00b3fa11af 2110 //
mjr 78:1e00b3fa11af 2111 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2112 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2113 // over.
mjr 78:1e00b3fa11af 2114 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2115 && c.hasDittos
mjr 78:1e00b3fa11af 2116 && c.ditto)
mjr 78:1e00b3fa11af 2117 {
mjr 78:1e00b3fa11af 2118 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2119 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2120 }
mjr 78:1e00b3fa11af 2121 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2122 && c.hasDittos
mjr 78:1e00b3fa11af 2123 && !c.ditto
mjr 78:1e00b3fa11af 2124 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2125 {
mjr 78:1e00b3fa11af 2126 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2127 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2128 // protocol supports them
mjr 78:1e00b3fa11af 2129 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2130 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2131 }
mjr 78:1e00b3fa11af 2132 else
mjr 78:1e00b3fa11af 2133 {
mjr 78:1e00b3fa11af 2134 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2135 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2136 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2137 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2138 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2139 }
mjr 78:1e00b3fa11af 2140 break;
mjr 78:1e00b3fa11af 2141 }
mjr 77:0b96f6867312 2142
mjr 78:1e00b3fa11af 2143 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2144 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2145 // learning mode.
mjr 78:1e00b3fa11af 2146 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2147 {
mjr 78:1e00b3fa11af 2148 // figure the flags:
mjr 78:1e00b3fa11af 2149 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2150 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2151 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2152 flags |= 0x02;
mjr 78:1e00b3fa11af 2153
mjr 78:1e00b3fa11af 2154 // report the code
mjr 78:1e00b3fa11af 2155 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2156
mjr 78:1e00b3fa11af 2157 // exit learning mode
mjr 78:1e00b3fa11af 2158 IRLearningMode = 0;
mjr 77:0b96f6867312 2159 }
mjr 77:0b96f6867312 2160 }
mjr 77:0b96f6867312 2161
mjr 78:1e00b3fa11af 2162 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2163 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2164 {
mjr 78:1e00b3fa11af 2165 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2166 // zero data elements
mjr 78:1e00b3fa11af 2167 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2168
mjr 78:1e00b3fa11af 2169
mjr 78:1e00b3fa11af 2170 // cancel learning mode
mjr 77:0b96f6867312 2171 IRLearningMode = 0;
mjr 77:0b96f6867312 2172 }
mjr 77:0b96f6867312 2173 }
mjr 78:1e00b3fa11af 2174 else
mjr 77:0b96f6867312 2175 {
mjr 78:1e00b3fa11af 2176 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2177 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2178 ir_rx->process();
mjr 78:1e00b3fa11af 2179
mjr 78:1e00b3fa11af 2180 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2181 // have been read.
mjr 78:1e00b3fa11af 2182 IRCommand c;
mjr 78:1e00b3fa11af 2183 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2184 {
mjr 78:1e00b3fa11af 2185 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2186 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2187 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2188 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2189 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2190 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2191 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2192 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2193 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2194 //
mjr 78:1e00b3fa11af 2195 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2196 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2197 // command.
mjr 78:1e00b3fa11af 2198 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2199 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2200 {
mjr 78:1e00b3fa11af 2201 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2202 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2203 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2204 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2205 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2206 if (c.ditto)
mjr 78:1e00b3fa11af 2207 {
mjr 78:1e00b3fa11af 2208 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2209 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2210 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2211 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2212 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2213 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2214 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2215 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2216 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2217 }
mjr 78:1e00b3fa11af 2218 else
mjr 78:1e00b3fa11af 2219 {
mjr 78:1e00b3fa11af 2220 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2221 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2222 // prior command.
mjr 78:1e00b3fa11af 2223 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2224 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2225 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2226
mjr 78:1e00b3fa11af 2227 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2228 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2229 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2230 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2231 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2232 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2233 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2234 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2235 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2236 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2237 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2238 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2239 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2240 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2241 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2242 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2243 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2244 autoRepeat =
mjr 78:1e00b3fa11af 2245 repeat
mjr 78:1e00b3fa11af 2246 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2247 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2248 }
mjr 78:1e00b3fa11af 2249 }
mjr 78:1e00b3fa11af 2250
mjr 78:1e00b3fa11af 2251 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2252 if (repeat)
mjr 78:1e00b3fa11af 2253 {
mjr 78:1e00b3fa11af 2254 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2255 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2256 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2257 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2258 // key press event.
mjr 78:1e00b3fa11af 2259 if (!autoRepeat)
mjr 78:1e00b3fa11af 2260 IRKeyGap = true;
mjr 78:1e00b3fa11af 2261
mjr 78:1e00b3fa11af 2262 // restart the key-up timer
mjr 78:1e00b3fa11af 2263 IRTimer.reset();
mjr 78:1e00b3fa11af 2264 }
mjr 78:1e00b3fa11af 2265 else if (c.ditto)
mjr 78:1e00b3fa11af 2266 {
mjr 78:1e00b3fa11af 2267 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2268 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2269 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2270 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2271 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2272 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2273 // a full command for a new key press.
mjr 78:1e00b3fa11af 2274 IRCommandIn = 0;
mjr 77:0b96f6867312 2275 }
mjr 77:0b96f6867312 2276 else
mjr 77:0b96f6867312 2277 {
mjr 78:1e00b3fa11af 2278 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2279 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2280 // the new command).
mjr 78:1e00b3fa11af 2281 IRCommandIn = 0;
mjr 77:0b96f6867312 2282
mjr 78:1e00b3fa11af 2283 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2284 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2285 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2286 {
mjr 78:1e00b3fa11af 2287 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2288 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2289 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2290 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2291 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2292 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2293 {
mjr 78:1e00b3fa11af 2294 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2295 // remember the starting time.
mjr 78:1e00b3fa11af 2296 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2297 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2298 IRTimer.reset();
mjr 78:1e00b3fa11af 2299
mjr 78:1e00b3fa11af 2300 // no need to keep searching
mjr 78:1e00b3fa11af 2301 break;
mjr 78:1e00b3fa11af 2302 }
mjr 77:0b96f6867312 2303 }
mjr 77:0b96f6867312 2304 }
mjr 77:0b96f6867312 2305 }
mjr 77:0b96f6867312 2306 }
mjr 77:0b96f6867312 2307 }
mjr 77:0b96f6867312 2308 }
mjr 77:0b96f6867312 2309
mjr 74:822a92bc11d2 2310
mjr 11:bd9da7088e6e 2311 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2312 //
mjr 11:bd9da7088e6e 2313 // Button input
mjr 11:bd9da7088e6e 2314 //
mjr 11:bd9da7088e6e 2315
mjr 18:5e890ebd0023 2316 // button state
mjr 18:5e890ebd0023 2317 struct ButtonState
mjr 18:5e890ebd0023 2318 {
mjr 38:091e511ce8a0 2319 ButtonState()
mjr 38:091e511ce8a0 2320 {
mjr 53:9b2611964afc 2321 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2322 virtState = 0;
mjr 53:9b2611964afc 2323 dbState = 0;
mjr 38:091e511ce8a0 2324 pulseState = 0;
mjr 53:9b2611964afc 2325 pulseTime = 0;
mjr 38:091e511ce8a0 2326 }
mjr 35:e959ffba78fd 2327
mjr 53:9b2611964afc 2328 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2329 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2330 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2331 //
mjr 53:9b2611964afc 2332 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2333 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2334 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2335 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2336 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2337 void virtPress(bool on)
mjr 53:9b2611964afc 2338 {
mjr 53:9b2611964afc 2339 // Increment or decrement the current state
mjr 53:9b2611964afc 2340 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2341 }
mjr 53:9b2611964afc 2342
mjr 53:9b2611964afc 2343 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2344 TinyDigitalIn di;
mjr 38:091e511ce8a0 2345
mjr 65:739875521aae 2346 // Time of last pulse state transition.
mjr 65:739875521aae 2347 //
mjr 65:739875521aae 2348 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2349 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2350 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2351 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2352 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2353 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2354 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2355 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2356 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2357 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2358 // This software system can't be fooled that way.)
mjr 65:739875521aae 2359 uint32_t pulseTime;
mjr 18:5e890ebd0023 2360
mjr 65:739875521aae 2361 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2362 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2363 uint8_t cfgIndex;
mjr 53:9b2611964afc 2364
mjr 53:9b2611964afc 2365 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2366 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2367 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2368 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2369 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2370 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2371 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2372 // and physical source states.
mjr 53:9b2611964afc 2373 uint8_t virtState;
mjr 38:091e511ce8a0 2374
mjr 38:091e511ce8a0 2375 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2376 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2377 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2378 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2379 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2380 uint8_t dbState;
mjr 38:091e511ce8a0 2381
mjr 65:739875521aae 2382 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2383 uint8_t physState : 1;
mjr 65:739875521aae 2384
mjr 65:739875521aae 2385 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2386 uint8_t logState : 1;
mjr 65:739875521aae 2387
mjr 79:682ae3171a08 2388 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2389 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2390 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2391 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2392 uint8_t prevLogState : 1;
mjr 65:739875521aae 2393
mjr 65:739875521aae 2394 // Pulse state
mjr 65:739875521aae 2395 //
mjr 65:739875521aae 2396 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2397 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2398 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2399 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2400 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2401 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2402 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2403 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2404 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2405 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2406 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2407 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2408 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2409 //
mjr 38:091e511ce8a0 2410 // Pulse state:
mjr 38:091e511ce8a0 2411 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2412 // 1 -> off
mjr 38:091e511ce8a0 2413 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2414 // 3 -> on
mjr 38:091e511ce8a0 2415 // 4 -> transitioning on-off
mjr 65:739875521aae 2416 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2417
mjr 65:739875521aae 2418 } __attribute__((packed));
mjr 65:739875521aae 2419
mjr 65:739875521aae 2420 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2421 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2422 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2423
mjr 66:2e3583fbd2f4 2424 // Shift button state
mjr 66:2e3583fbd2f4 2425 struct
mjr 66:2e3583fbd2f4 2426 {
mjr 66:2e3583fbd2f4 2427 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2428 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2429 // 0 = not shifted
mjr 66:2e3583fbd2f4 2430 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2431 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2432 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2433 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2434 }
mjr 66:2e3583fbd2f4 2435 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2436
mjr 38:091e511ce8a0 2437 // Button data
mjr 38:091e511ce8a0 2438 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2439
mjr 38:091e511ce8a0 2440 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2441 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2442 // modifier keys.
mjr 38:091e511ce8a0 2443 struct
mjr 38:091e511ce8a0 2444 {
mjr 38:091e511ce8a0 2445 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2446 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2447 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2448 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2449 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2450
mjr 38:091e511ce8a0 2451 // Media key state
mjr 38:091e511ce8a0 2452 struct
mjr 38:091e511ce8a0 2453 {
mjr 38:091e511ce8a0 2454 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2455 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2456 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2457
mjr 79:682ae3171a08 2458 // button scan interrupt timer
mjr 79:682ae3171a08 2459 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2460
mjr 38:091e511ce8a0 2461 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2462 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2463 void scanButtons()
mjr 38:091e511ce8a0 2464 {
mjr 79:682ae3171a08 2465 // schedule the next interrupt
mjr 79:682ae3171a08 2466 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2467
mjr 38:091e511ce8a0 2468 // scan all button input pins
mjr 73:4e8ce0b18915 2469 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2470 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2471 {
mjr 73:4e8ce0b18915 2472 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2473 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2474 bs->dbState = db;
mjr 73:4e8ce0b18915 2475
mjr 73:4e8ce0b18915 2476 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2477 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2478 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2479 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2480 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2481 db &= stable;
mjr 73:4e8ce0b18915 2482 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2483 bs->physState = !db;
mjr 38:091e511ce8a0 2484 }
mjr 38:091e511ce8a0 2485 }
mjr 38:091e511ce8a0 2486
mjr 38:091e511ce8a0 2487 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2488 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2489 // in the physical button state.
mjr 38:091e511ce8a0 2490 Timer buttonTimer;
mjr 12:669df364a565 2491
mjr 65:739875521aae 2492 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2493 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2494 {
mjr 65:739875521aae 2495 // count it
mjr 65:739875521aae 2496 ++nButtons;
mjr 65:739875521aae 2497
mjr 67:c39e66c4e000 2498 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2499 // keyboard interface
mjr 72:884207c0aab0 2500 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2501 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2502 kbKeys = true;
mjr 65:739875521aae 2503 }
mjr 65:739875521aae 2504
mjr 11:bd9da7088e6e 2505 // initialize the button inputs
mjr 35:e959ffba78fd 2506 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2507 {
mjr 66:2e3583fbd2f4 2508 // presume no shift key
mjr 66:2e3583fbd2f4 2509 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2510 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2511
mjr 65:739875521aae 2512 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2513 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2514 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2515 nButtons = 0;
mjr 65:739875521aae 2516 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2517 {
mjr 65:739875521aae 2518 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2519 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2520 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2521 }
mjr 65:739875521aae 2522
mjr 65:739875521aae 2523 // Count virtual buttons
mjr 65:739875521aae 2524
mjr 65:739875521aae 2525 // ZB Launch
mjr 65:739875521aae 2526 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2527 {
mjr 65:739875521aae 2528 // valid - remember the live button index
mjr 65:739875521aae 2529 zblButtonIndex = nButtons;
mjr 65:739875521aae 2530
mjr 65:739875521aae 2531 // count it
mjr 72:884207c0aab0 2532 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2533 }
mjr 65:739875521aae 2534
mjr 65:739875521aae 2535 // Allocate the live button slots
mjr 65:739875521aae 2536 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2537
mjr 65:739875521aae 2538 // Configure the physical inputs
mjr 65:739875521aae 2539 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2540 {
mjr 65:739875521aae 2541 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2542 if (pin != NC)
mjr 65:739875521aae 2543 {
mjr 65:739875521aae 2544 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2545 bs->cfgIndex = i;
mjr 65:739875521aae 2546
mjr 65:739875521aae 2547 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2548 bs->di.assignPin(pin);
mjr 65:739875521aae 2549
mjr 65:739875521aae 2550 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2551 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2552 bs->pulseState = 1;
mjr 65:739875521aae 2553
mjr 66:2e3583fbd2f4 2554 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2555 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2556 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2557 // config slots are left unused.
mjr 78:1e00b3fa11af 2558 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2559 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2560
mjr 65:739875521aae 2561 // advance to the next button
mjr 65:739875521aae 2562 ++bs;
mjr 65:739875521aae 2563 }
mjr 65:739875521aae 2564 }
mjr 65:739875521aae 2565
mjr 53:9b2611964afc 2566 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2567 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2568 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2569 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2570
mjr 53:9b2611964afc 2571 // ZB Launch Ball button
mjr 65:739875521aae 2572 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2573 {
mjr 65:739875521aae 2574 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2575 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2576 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2577 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2578 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2579 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2580 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2581 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2582
mjr 66:2e3583fbd2f4 2583 // advance to the next button
mjr 65:739875521aae 2584 ++bs;
mjr 11:bd9da7088e6e 2585 }
mjr 12:669df364a565 2586
mjr 38:091e511ce8a0 2587 // start the button scan thread
mjr 79:682ae3171a08 2588 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2589
mjr 38:091e511ce8a0 2590 // start the button state transition timer
mjr 12:669df364a565 2591 buttonTimer.start();
mjr 11:bd9da7088e6e 2592 }
mjr 11:bd9da7088e6e 2593
mjr 67:c39e66c4e000 2594 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2595 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2596 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2597 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2598 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2599 //
mjr 67:c39e66c4e000 2600 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2601 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2602 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2603 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2604 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2605 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2606 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2607 //
mjr 67:c39e66c4e000 2608 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2609 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2610 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2611 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2612 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2613 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2614 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2615 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2616 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2617 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2618 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2619 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2620 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2621 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2622 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2623 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2624 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2625 };
mjr 77:0b96f6867312 2626
mjr 77:0b96f6867312 2627 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2628 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2629 // states of the button iputs.
mjr 77:0b96f6867312 2630 struct KeyState
mjr 77:0b96f6867312 2631 {
mjr 77:0b96f6867312 2632 KeyState()
mjr 77:0b96f6867312 2633 {
mjr 77:0b96f6867312 2634 // zero all members
mjr 77:0b96f6867312 2635 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2636 }
mjr 77:0b96f6867312 2637
mjr 77:0b96f6867312 2638 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2639 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2640 uint8_t mediakeys;
mjr 77:0b96f6867312 2641
mjr 77:0b96f6867312 2642 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2643 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2644 // USBJoystick.cpp).
mjr 77:0b96f6867312 2645 uint8_t modkeys;
mjr 77:0b96f6867312 2646
mjr 77:0b96f6867312 2647 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2648 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2649 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2650 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2651 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2652 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2653 uint8_t keys[7];
mjr 77:0b96f6867312 2654
mjr 77:0b96f6867312 2655 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2656 int nkeys;
mjr 77:0b96f6867312 2657
mjr 77:0b96f6867312 2658 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2659 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2660 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2661 uint32_t js;
mjr 77:0b96f6867312 2662
mjr 77:0b96f6867312 2663
mjr 77:0b96f6867312 2664 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2665 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2666 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2667 {
mjr 77:0b96f6867312 2668 // add the key according to the type
mjr 77:0b96f6867312 2669 switch (typ)
mjr 77:0b96f6867312 2670 {
mjr 77:0b96f6867312 2671 case BtnTypeJoystick:
mjr 77:0b96f6867312 2672 // joystick button
mjr 77:0b96f6867312 2673 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2674 break;
mjr 77:0b96f6867312 2675
mjr 77:0b96f6867312 2676 case BtnTypeKey:
mjr 77:0b96f6867312 2677 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2678 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2679 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2680 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2681 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2682 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2683 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2684 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2685 {
mjr 77:0b96f6867312 2686 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2687 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2688 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2689 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 2690 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 2691 }
mjr 77:0b96f6867312 2692 else
mjr 77:0b96f6867312 2693 {
mjr 77:0b96f6867312 2694 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 2695 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 2696 // apply, add the key to the key array.
mjr 77:0b96f6867312 2697 if (nkeys < 7)
mjr 77:0b96f6867312 2698 {
mjr 77:0b96f6867312 2699 bool found = false;
mjr 77:0b96f6867312 2700 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 2701 {
mjr 77:0b96f6867312 2702 if (keys[i] == val)
mjr 77:0b96f6867312 2703 {
mjr 77:0b96f6867312 2704 found = true;
mjr 77:0b96f6867312 2705 break;
mjr 77:0b96f6867312 2706 }
mjr 77:0b96f6867312 2707 }
mjr 77:0b96f6867312 2708 if (!found)
mjr 77:0b96f6867312 2709 keys[nkeys++] = val;
mjr 77:0b96f6867312 2710 }
mjr 77:0b96f6867312 2711 }
mjr 77:0b96f6867312 2712 break;
mjr 77:0b96f6867312 2713
mjr 77:0b96f6867312 2714 case BtnTypeMedia:
mjr 77:0b96f6867312 2715 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 2716 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 2717 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 2718 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 2719 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 2720 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 2721 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 2722 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 2723 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 2724 break;
mjr 77:0b96f6867312 2725 }
mjr 77:0b96f6867312 2726 }
mjr 77:0b96f6867312 2727 };
mjr 67:c39e66c4e000 2728
mjr 67:c39e66c4e000 2729
mjr 38:091e511ce8a0 2730 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2731 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2732 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2733 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2734 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2735 {
mjr 77:0b96f6867312 2736 // key state
mjr 77:0b96f6867312 2737 KeyState ks;
mjr 38:091e511ce8a0 2738
mjr 38:091e511ce8a0 2739 // calculate the time since the last run
mjr 53:9b2611964afc 2740 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2741 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2742
mjr 66:2e3583fbd2f4 2743 // check the shift button state
mjr 66:2e3583fbd2f4 2744 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2745 {
mjr 78:1e00b3fa11af 2746 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 2747 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 2748
mjr 78:1e00b3fa11af 2749 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 2750 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2751 {
mjr 66:2e3583fbd2f4 2752 case 0:
mjr 78:1e00b3fa11af 2753 default:
mjr 78:1e00b3fa11af 2754 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 2755 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 2756 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 2757 switch (shiftButton.state)
mjr 78:1e00b3fa11af 2758 {
mjr 78:1e00b3fa11af 2759 case 0:
mjr 78:1e00b3fa11af 2760 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 2761 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 2762 if (sbs->physState)
mjr 78:1e00b3fa11af 2763 shiftButton.state = 1;
mjr 78:1e00b3fa11af 2764 break;
mjr 78:1e00b3fa11af 2765
mjr 78:1e00b3fa11af 2766 case 1:
mjr 78:1e00b3fa11af 2767 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 2768 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 2769 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 2770 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 2771 // pulse event.
mjr 78:1e00b3fa11af 2772 if (!sbs->physState)
mjr 78:1e00b3fa11af 2773 {
mjr 78:1e00b3fa11af 2774 shiftButton.state = 3;
mjr 78:1e00b3fa11af 2775 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 2776 }
mjr 78:1e00b3fa11af 2777 break;
mjr 78:1e00b3fa11af 2778
mjr 78:1e00b3fa11af 2779 case 2:
mjr 78:1e00b3fa11af 2780 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 2781 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 2782 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 2783 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 2784 // suppressed.
mjr 78:1e00b3fa11af 2785 if (!sbs->physState)
mjr 78:1e00b3fa11af 2786 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2787 break;
mjr 78:1e00b3fa11af 2788
mjr 78:1e00b3fa11af 2789 case 3:
mjr 78:1e00b3fa11af 2790 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 2791 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 2792 // has expired.
mjr 78:1e00b3fa11af 2793 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 2794 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 2795 else
mjr 78:1e00b3fa11af 2796 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2797 break;
mjr 78:1e00b3fa11af 2798 }
mjr 66:2e3583fbd2f4 2799 break;
mjr 66:2e3583fbd2f4 2800
mjr 66:2e3583fbd2f4 2801 case 1:
mjr 78:1e00b3fa11af 2802 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 2803 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 2804 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 2805 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 2806 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 2807 break;
mjr 66:2e3583fbd2f4 2808 }
mjr 66:2e3583fbd2f4 2809 }
mjr 38:091e511ce8a0 2810
mjr 11:bd9da7088e6e 2811 // scan the button list
mjr 18:5e890ebd0023 2812 ButtonState *bs = buttonState;
mjr 65:739875521aae 2813 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2814 {
mjr 77:0b96f6867312 2815 // get the config entry for the button
mjr 77:0b96f6867312 2816 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 2817
mjr 66:2e3583fbd2f4 2818 // Check the button type:
mjr 66:2e3583fbd2f4 2819 // - shift button
mjr 66:2e3583fbd2f4 2820 // - pulsed button
mjr 66:2e3583fbd2f4 2821 // - regular button
mjr 66:2e3583fbd2f4 2822 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2823 {
mjr 78:1e00b3fa11af 2824 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 2825 // depends on the mode.
mjr 78:1e00b3fa11af 2826 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2827 {
mjr 78:1e00b3fa11af 2828 case 0:
mjr 78:1e00b3fa11af 2829 default:
mjr 78:1e00b3fa11af 2830 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 2831 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 2832 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 2833 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 2834 break;
mjr 78:1e00b3fa11af 2835
mjr 78:1e00b3fa11af 2836 case 1:
mjr 78:1e00b3fa11af 2837 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 2838 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 2839 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 2840 break;
mjr 66:2e3583fbd2f4 2841 }
mjr 66:2e3583fbd2f4 2842 }
mjr 66:2e3583fbd2f4 2843 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2844 {
mjr 38:091e511ce8a0 2845 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2846 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2847 {
mjr 53:9b2611964afc 2848 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2849 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2850 }
mjr 53:9b2611964afc 2851 else
mjr 53:9b2611964afc 2852 {
mjr 53:9b2611964afc 2853 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2854 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2855 switch (bs->pulseState)
mjr 18:5e890ebd0023 2856 {
mjr 38:091e511ce8a0 2857 case 1:
mjr 38:091e511ce8a0 2858 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2859 if (bs->physState)
mjr 53:9b2611964afc 2860 {
mjr 38:091e511ce8a0 2861 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2862 bs->pulseState = 2;
mjr 53:9b2611964afc 2863 bs->logState = 1;
mjr 38:091e511ce8a0 2864 }
mjr 38:091e511ce8a0 2865 break;
mjr 18:5e890ebd0023 2866
mjr 38:091e511ce8a0 2867 case 2:
mjr 38:091e511ce8a0 2868 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2869 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2870 // change in state in the logical button
mjr 38:091e511ce8a0 2871 bs->pulseState = 3;
mjr 38:091e511ce8a0 2872 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2873 bs->logState = 0;
mjr 38:091e511ce8a0 2874 break;
mjr 38:091e511ce8a0 2875
mjr 38:091e511ce8a0 2876 case 3:
mjr 38:091e511ce8a0 2877 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2878 if (!bs->physState)
mjr 53:9b2611964afc 2879 {
mjr 38:091e511ce8a0 2880 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2881 bs->pulseState = 4;
mjr 53:9b2611964afc 2882 bs->logState = 1;
mjr 38:091e511ce8a0 2883 }
mjr 38:091e511ce8a0 2884 break;
mjr 38:091e511ce8a0 2885
mjr 38:091e511ce8a0 2886 case 4:
mjr 38:091e511ce8a0 2887 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2888 bs->pulseState = 1;
mjr 38:091e511ce8a0 2889 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2890 bs->logState = 0;
mjr 38:091e511ce8a0 2891 break;
mjr 18:5e890ebd0023 2892 }
mjr 18:5e890ebd0023 2893 }
mjr 38:091e511ce8a0 2894 }
mjr 38:091e511ce8a0 2895 else
mjr 38:091e511ce8a0 2896 {
mjr 38:091e511ce8a0 2897 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2898 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2899 }
mjr 77:0b96f6867312 2900
mjr 77:0b96f6867312 2901 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 2902 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 2903 //
mjr 78:1e00b3fa11af 2904 // - the shift button is down, AND
mjr 78:1e00b3fa11af 2905 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 2906 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 2907 //
mjr 78:1e00b3fa11af 2908 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 2909 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 2910 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 2911 //
mjr 78:1e00b3fa11af 2912 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 2913 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 2914 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 2915 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 2916 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 2917 bool useShift =
mjr 77:0b96f6867312 2918 (shiftButton.state != 0
mjr 78:1e00b3fa11af 2919 && shiftButton.index != i
mjr 77:0b96f6867312 2920 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 2921 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 2922 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 2923
mjr 77:0b96f6867312 2924 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 2925 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 2926 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 2927 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 2928 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 2929 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 2930 shiftButton.state = 2;
mjr 35:e959ffba78fd 2931
mjr 38:091e511ce8a0 2932 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2933 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2934 {
mjr 77:0b96f6867312 2935 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 2936 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2937 {
mjr 77:0b96f6867312 2938 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 2939 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 2940 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 2941 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 2942 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 2943 // the night mode state.
mjr 77:0b96f6867312 2944 //
mjr 77:0b96f6867312 2945 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 2946 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 2947 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 2948 {
mjr 77:0b96f6867312 2949 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 2950 // current switch state.
mjr 53:9b2611964afc 2951 setNightMode(bs->logState);
mjr 53:9b2611964afc 2952 }
mjr 82:4f6209cb5c33 2953 else if (bs->logState)
mjr 53:9b2611964afc 2954 {
mjr 77:0b96f6867312 2955 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 2956 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 2957 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 2958 // OFF to ON.
mjr 66:2e3583fbd2f4 2959 //
mjr 77:0b96f6867312 2960 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 2961 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 2962 // button.
mjr 77:0b96f6867312 2963 bool pressed;
mjr 66:2e3583fbd2f4 2964 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2965 {
mjr 77:0b96f6867312 2966 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 2967 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 2968 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 2969 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 2970 }
mjr 77:0b96f6867312 2971 else
mjr 77:0b96f6867312 2972 {
mjr 77:0b96f6867312 2973 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 2974 // regular unshifted button. The button press only
mjr 77:0b96f6867312 2975 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 2976 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 2977 }
mjr 66:2e3583fbd2f4 2978
mjr 66:2e3583fbd2f4 2979 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2980 // toggle night mode
mjr 66:2e3583fbd2f4 2981 if (pressed)
mjr 53:9b2611964afc 2982 toggleNightMode();
mjr 53:9b2611964afc 2983 }
mjr 35:e959ffba78fd 2984 }
mjr 38:091e511ce8a0 2985
mjr 77:0b96f6867312 2986 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 2987 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 2988 if (irc != 0)
mjr 77:0b96f6867312 2989 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 2990
mjr 38:091e511ce8a0 2991 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2992 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2993 }
mjr 38:091e511ce8a0 2994
mjr 53:9b2611964afc 2995 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2996 // key state list
mjr 53:9b2611964afc 2997 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2998 {
mjr 70:9f58735a1732 2999 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3000 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3001 uint8_t typ, val;
mjr 77:0b96f6867312 3002 if (useShift)
mjr 66:2e3583fbd2f4 3003 {
mjr 77:0b96f6867312 3004 typ = bc->typ2;
mjr 77:0b96f6867312 3005 val = bc->val2;
mjr 66:2e3583fbd2f4 3006 }
mjr 77:0b96f6867312 3007 else
mjr 77:0b96f6867312 3008 {
mjr 77:0b96f6867312 3009 typ = bc->typ;
mjr 77:0b96f6867312 3010 val = bc->val;
mjr 77:0b96f6867312 3011 }
mjr 77:0b96f6867312 3012
mjr 70:9f58735a1732 3013 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3014 // the keyboard or joystick event.
mjr 77:0b96f6867312 3015 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3016 }
mjr 11:bd9da7088e6e 3017 }
mjr 77:0b96f6867312 3018
mjr 77:0b96f6867312 3019 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3020 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3021 // the IR key.
mjr 77:0b96f6867312 3022 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3023 {
mjr 77:0b96f6867312 3024 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3025 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3026 }
mjr 77:0b96f6867312 3027
mjr 77:0b96f6867312 3028 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3029 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3030
mjr 77:0b96f6867312 3031 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3032 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3033 jsButtons = ks.js;
mjr 77:0b96f6867312 3034
mjr 77:0b96f6867312 3035 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3036 // something changes)
mjr 77:0b96f6867312 3037 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3038 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3039 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3040 {
mjr 35:e959ffba78fd 3041 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3042 kbState.changed = true;
mjr 77:0b96f6867312 3043 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3044 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3045 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3046 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3047 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3048 }
mjr 35:e959ffba78fd 3049 else {
mjr 35:e959ffba78fd 3050 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3051 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3052 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3053 }
mjr 35:e959ffba78fd 3054 }
mjr 35:e959ffba78fd 3055
mjr 77:0b96f6867312 3056 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3057 // something changes)
mjr 77:0b96f6867312 3058 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3059 {
mjr 77:0b96f6867312 3060 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3061 mediaState.changed = true;
mjr 77:0b96f6867312 3062 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3063 }
mjr 11:bd9da7088e6e 3064 }
mjr 11:bd9da7088e6e 3065
mjr 73:4e8ce0b18915 3066 // Send a button status report
mjr 73:4e8ce0b18915 3067 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3068 {
mjr 73:4e8ce0b18915 3069 // start with all buttons off
mjr 73:4e8ce0b18915 3070 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3071 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3072
mjr 73:4e8ce0b18915 3073 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3074 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3075 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3076 {
mjr 73:4e8ce0b18915 3077 // get the physical state
mjr 73:4e8ce0b18915 3078 int b = bs->physState;
mjr 73:4e8ce0b18915 3079
mjr 73:4e8ce0b18915 3080 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3081 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3082 int si = idx / 8;
mjr 73:4e8ce0b18915 3083 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3084 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3085 }
mjr 73:4e8ce0b18915 3086
mjr 73:4e8ce0b18915 3087 // send the report
mjr 73:4e8ce0b18915 3088 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3089 }
mjr 73:4e8ce0b18915 3090
mjr 5:a70c0bce770d 3091 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3092 //
mjr 5:a70c0bce770d 3093 // Customization joystick subbclass
mjr 5:a70c0bce770d 3094 //
mjr 5:a70c0bce770d 3095
mjr 5:a70c0bce770d 3096 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3097 {
mjr 5:a70c0bce770d 3098 public:
mjr 35:e959ffba78fd 3099 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 3100 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 3101 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 3102 {
mjr 54:fd77a6b2f76c 3103 sleeping_ = false;
mjr 54:fd77a6b2f76c 3104 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3105 timer_.start();
mjr 54:fd77a6b2f76c 3106 }
mjr 54:fd77a6b2f76c 3107
mjr 54:fd77a6b2f76c 3108 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3109 void diagFlash()
mjr 54:fd77a6b2f76c 3110 {
mjr 54:fd77a6b2f76c 3111 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3112 {
mjr 54:fd77a6b2f76c 3113 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3114 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3115 {
mjr 54:fd77a6b2f76c 3116 // short red flash
mjr 54:fd77a6b2f76c 3117 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3118 wait_us(50000);
mjr 54:fd77a6b2f76c 3119 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3120 wait_us(50000);
mjr 54:fd77a6b2f76c 3121 }
mjr 54:fd77a6b2f76c 3122 }
mjr 5:a70c0bce770d 3123 }
mjr 5:a70c0bce770d 3124
mjr 5:a70c0bce770d 3125 // are we connected?
mjr 5:a70c0bce770d 3126 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3127
mjr 54:fd77a6b2f76c 3128 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3129 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3130 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3131 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3132 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3133
mjr 54:fd77a6b2f76c 3134 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3135 //
mjr 54:fd77a6b2f76c 3136 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3137 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3138 // other way.
mjr 54:fd77a6b2f76c 3139 //
mjr 54:fd77a6b2f76c 3140 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3141 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3142 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3143 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3144 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3145 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3146 //
mjr 54:fd77a6b2f76c 3147 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3148 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3149 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3150 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3151 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3152 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3153 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3154 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3155 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3156 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3157 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3158 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3159 // is effectively dead.
mjr 54:fd77a6b2f76c 3160 //
mjr 54:fd77a6b2f76c 3161 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3162 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3163 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3164 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3165 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3166 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3167 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3168 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3169 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3170 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3171 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3172 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3173 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3174 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3175 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3176 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3177 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3178 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3179 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3180 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3181 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3182 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3183 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3184 // a disconnect.
mjr 54:fd77a6b2f76c 3185 //
mjr 54:fd77a6b2f76c 3186 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3187 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3188 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3189 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3190 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3191 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3192 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3193 //
mjr 54:fd77a6b2f76c 3194 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3195 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3196 //
mjr 54:fd77a6b2f76c 3197 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3198 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3199 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3200 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3201 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3202 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3203 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3204 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3205 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3206 // reliable in practice.
mjr 54:fd77a6b2f76c 3207 //
mjr 54:fd77a6b2f76c 3208 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3209 //
mjr 54:fd77a6b2f76c 3210 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3211 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3212 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3213 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3214 // return.
mjr 54:fd77a6b2f76c 3215 //
mjr 54:fd77a6b2f76c 3216 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3217 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3218 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3219 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3220 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3221 //
mjr 54:fd77a6b2f76c 3222 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3223 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3224 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3225 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3226 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3227 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3228 //
mjr 54:fd77a6b2f76c 3229 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3230 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3231 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3232 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3233 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3234 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3235 // freezes over.
mjr 54:fd77a6b2f76c 3236 //
mjr 54:fd77a6b2f76c 3237 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3238 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3239 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3240 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3241 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3242 void recoverConnection()
mjr 54:fd77a6b2f76c 3243 {
mjr 54:fd77a6b2f76c 3244 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3245 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3246 {
mjr 54:fd77a6b2f76c 3247 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3248 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3249 {
mjr 54:fd77a6b2f76c 3250 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3251 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3252 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3253 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3254 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3255 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3256 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3257 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3258 __disable_irq();
mjr 54:fd77a6b2f76c 3259 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3260 {
mjr 54:fd77a6b2f76c 3261 connect(false);
mjr 54:fd77a6b2f76c 3262 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3263 done = true;
mjr 54:fd77a6b2f76c 3264 }
mjr 54:fd77a6b2f76c 3265 __enable_irq();
mjr 54:fd77a6b2f76c 3266 }
mjr 54:fd77a6b2f76c 3267 }
mjr 54:fd77a6b2f76c 3268 }
mjr 5:a70c0bce770d 3269
mjr 5:a70c0bce770d 3270 protected:
mjr 54:fd77a6b2f76c 3271 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3272 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3273 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3274 //
mjr 54:fd77a6b2f76c 3275 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3276 //
mjr 54:fd77a6b2f76c 3277 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3278 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3279 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3280 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3281 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3282 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3283 {
mjr 54:fd77a6b2f76c 3284 // note the new state
mjr 54:fd77a6b2f76c 3285 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3286
mjr 54:fd77a6b2f76c 3287 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3288 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3289 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3290 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3291 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3292 {
mjr 54:fd77a6b2f76c 3293 disconnect();
mjr 54:fd77a6b2f76c 3294 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3295 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3296 }
mjr 54:fd77a6b2f76c 3297 }
mjr 54:fd77a6b2f76c 3298
mjr 54:fd77a6b2f76c 3299 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3300 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3301
mjr 54:fd77a6b2f76c 3302 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3303 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3304
mjr 54:fd77a6b2f76c 3305 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3306 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3307
mjr 54:fd77a6b2f76c 3308 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3309 Timer timer_;
mjr 5:a70c0bce770d 3310 };
mjr 5:a70c0bce770d 3311
mjr 5:a70c0bce770d 3312 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3313 //
mjr 5:a70c0bce770d 3314 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3315 //
mjr 5:a70c0bce770d 3316
mjr 5:a70c0bce770d 3317 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3318 //
mjr 5:a70c0bce770d 3319 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3320 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3321 // automatic calibration.
mjr 5:a70c0bce770d 3322 //
mjr 77:0b96f6867312 3323 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3324 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3325 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3326 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3327 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3328 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3329 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3330 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3331 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3332 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3333 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3334 //
mjr 77:0b96f6867312 3335 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3336 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3337 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3338 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3339 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3340 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3341 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3342 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3343 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3344 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3345 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3346 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3347 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3348 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3349 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3350 // rather than change it across the board.
mjr 5:a70c0bce770d 3351 //
mjr 6:cc35eb643e8f 3352 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3353 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3354 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3355 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3356 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3357 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3358 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3359 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3360 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3361 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3362 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3363 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3364 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3365 // of nudging, say).
mjr 5:a70c0bce770d 3366 //
mjr 5:a70c0bce770d 3367
mjr 17:ab3cec0c8bf4 3368 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3369 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3370
mjr 17:ab3cec0c8bf4 3371 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3372 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3373 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3374
mjr 17:ab3cec0c8bf4 3375 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3376 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3377 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3378 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3379
mjr 17:ab3cec0c8bf4 3380
mjr 6:cc35eb643e8f 3381 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3382 struct AccHist
mjr 5:a70c0bce770d 3383 {
mjr 77:0b96f6867312 3384 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3385 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3386 {
mjr 6:cc35eb643e8f 3387 // save the raw position
mjr 6:cc35eb643e8f 3388 this->x = x;
mjr 6:cc35eb643e8f 3389 this->y = y;
mjr 77:0b96f6867312 3390 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3391 }
mjr 6:cc35eb643e8f 3392
mjr 6:cc35eb643e8f 3393 // reading for this entry
mjr 77:0b96f6867312 3394 int x, y;
mjr 77:0b96f6867312 3395
mjr 77:0b96f6867312 3396 // (distance from previous entry) squared
mjr 77:0b96f6867312 3397 int dsq;
mjr 5:a70c0bce770d 3398
mjr 6:cc35eb643e8f 3399 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3400 int xtot, ytot;
mjr 6:cc35eb643e8f 3401 int cnt;
mjr 6:cc35eb643e8f 3402
mjr 77:0b96f6867312 3403 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3404 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3405 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3406 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3407
mjr 77:0b96f6867312 3408 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3409 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3410 };
mjr 5:a70c0bce770d 3411
mjr 5:a70c0bce770d 3412 // accelerometer wrapper class
mjr 3:3514575d4f86 3413 class Accel
mjr 3:3514575d4f86 3414 {
mjr 3:3514575d4f86 3415 public:
mjr 78:1e00b3fa11af 3416 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3417 int range, int autoCenterMode)
mjr 77:0b96f6867312 3418 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3419 {
mjr 5:a70c0bce770d 3420 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3421 irqPin_ = irqPin;
mjr 77:0b96f6867312 3422
mjr 77:0b96f6867312 3423 // remember the range
mjr 77:0b96f6867312 3424 range_ = range;
mjr 78:1e00b3fa11af 3425
mjr 78:1e00b3fa11af 3426 // set the auto-centering mode
mjr 78:1e00b3fa11af 3427 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3428
mjr 78:1e00b3fa11af 3429 // no manual centering request has been received
mjr 78:1e00b3fa11af 3430 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3431
mjr 5:a70c0bce770d 3432 // reset and initialize
mjr 5:a70c0bce770d 3433 reset();
mjr 5:a70c0bce770d 3434 }
mjr 5:a70c0bce770d 3435
mjr 78:1e00b3fa11af 3436 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3437 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3438 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3439 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3440
mjr 78:1e00b3fa11af 3441 // set the auto-centering mode
mjr 78:1e00b3fa11af 3442 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3443 {
mjr 78:1e00b3fa11af 3444 // remember the mode
mjr 78:1e00b3fa11af 3445 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3446
mjr 78:1e00b3fa11af 3447 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3448 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3449 if (mode == 0)
mjr 78:1e00b3fa11af 3450 {
mjr 78:1e00b3fa11af 3451 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3452 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3453 }
mjr 78:1e00b3fa11af 3454 else if (mode <= 60)
mjr 78:1e00b3fa11af 3455 {
mjr 78:1e00b3fa11af 3456 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3457 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3458 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3459 }
mjr 78:1e00b3fa11af 3460 else
mjr 78:1e00b3fa11af 3461 {
mjr 78:1e00b3fa11af 3462 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3463 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3464 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3465 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3466 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3467 // includes recent data.
mjr 78:1e00b3fa11af 3468 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3469 }
mjr 78:1e00b3fa11af 3470 }
mjr 78:1e00b3fa11af 3471
mjr 5:a70c0bce770d 3472 void reset()
mjr 5:a70c0bce770d 3473 {
mjr 6:cc35eb643e8f 3474 // clear the center point
mjr 77:0b96f6867312 3475 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3476
mjr 77:0b96f6867312 3477 // start the auto-centering timer
mjr 5:a70c0bce770d 3478 tCenter_.start();
mjr 5:a70c0bce770d 3479 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3480
mjr 5:a70c0bce770d 3481 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3482 mma_.init();
mjr 77:0b96f6867312 3483
mjr 77:0b96f6867312 3484 // set the range
mjr 77:0b96f6867312 3485 mma_.setRange(
mjr 77:0b96f6867312 3486 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3487 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3488 2);
mjr 6:cc35eb643e8f 3489
mjr 77:0b96f6867312 3490 // set the average accumulators to zero
mjr 77:0b96f6867312 3491 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3492 nSum_ = 0;
mjr 3:3514575d4f86 3493
mjr 3:3514575d4f86 3494 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3495 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3496 }
mjr 3:3514575d4f86 3497
mjr 77:0b96f6867312 3498 void poll()
mjr 76:7f5912b6340e 3499 {
mjr 77:0b96f6867312 3500 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3501 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3502 {
mjr 77:0b96f6867312 3503 int x, y, z;
mjr 77:0b96f6867312 3504 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3505
mjr 77:0b96f6867312 3506 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3507 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3508 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3509 ++nSum_;
mjr 77:0b96f6867312 3510
mjr 77:0b96f6867312 3511 // store the updates
mjr 77:0b96f6867312 3512 ax_ = x;
mjr 77:0b96f6867312 3513 ay_ = y;
mjr 77:0b96f6867312 3514 az_ = z;
mjr 77:0b96f6867312 3515 }
mjr 76:7f5912b6340e 3516 }
mjr 77:0b96f6867312 3517
mjr 9:fd65b0a94720 3518 void get(int &x, int &y)
mjr 3:3514575d4f86 3519 {
mjr 77:0b96f6867312 3520 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3521 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3522 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3523 int nSum = nSum_;
mjr 6:cc35eb643e8f 3524
mjr 77:0b96f6867312 3525 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3526 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3527 nSum_ = 0;
mjr 77:0b96f6867312 3528
mjr 77:0b96f6867312 3529 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3530 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3531 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3532
mjr 78:1e00b3fa11af 3533 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3534 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3535 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3536 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3537 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3538 {
mjr 77:0b96f6867312 3539 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3540 AccHist *prv = p;
mjr 77:0b96f6867312 3541 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3542 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3543 iAccPrv_ = 0;
mjr 77:0b96f6867312 3544 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3545 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3546
mjr 78:1e00b3fa11af 3547 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3548 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3549 {
mjr 78:1e00b3fa11af 3550 // Center if:
mjr 78:1e00b3fa11af 3551 //
mjr 78:1e00b3fa11af 3552 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3553 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3554 //
mjr 78:1e00b3fa11af 3555 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3556 //
mjr 77:0b96f6867312 3557 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3558 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3559 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3560 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3561 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3562 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3563 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3564 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3565 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3566 {
mjr 77:0b96f6867312 3567 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3568 // the samples over the rest period
mjr 77:0b96f6867312 3569 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3570 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3571
mjr 78:1e00b3fa11af 3572 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3573 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3574 }
mjr 77:0b96f6867312 3575 }
mjr 77:0b96f6867312 3576 else
mjr 77:0b96f6867312 3577 {
mjr 77:0b96f6867312 3578 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3579 ++nAccPrv_;
mjr 77:0b96f6867312 3580 }
mjr 6:cc35eb643e8f 3581
mjr 77:0b96f6867312 3582 // clear the new item's running totals
mjr 77:0b96f6867312 3583 p->clearAvg();
mjr 5:a70c0bce770d 3584
mjr 77:0b96f6867312 3585 // reset the timer
mjr 77:0b96f6867312 3586 tCenter_.reset();
mjr 77:0b96f6867312 3587 }
mjr 5:a70c0bce770d 3588
mjr 77:0b96f6867312 3589 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3590 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3591 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3592
mjr 6:cc35eb643e8f 3593 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3594 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3595 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3596 #endif
mjr 77:0b96f6867312 3597 }
mjr 29:582472d0bc57 3598
mjr 3:3514575d4f86 3599 private:
mjr 6:cc35eb643e8f 3600 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3601 int rawToReport(int v)
mjr 5:a70c0bce770d 3602 {
mjr 77:0b96f6867312 3603 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3604 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3605 // so their scale is 2^13.
mjr 77:0b96f6867312 3606 //
mjr 77:0b96f6867312 3607 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3608 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3609 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3610 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3611 int i = v*JOYMAX;
mjr 77:0b96f6867312 3612 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3613
mjr 6:cc35eb643e8f 3614 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3615 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3616 static const int filter[] = {
mjr 6:cc35eb643e8f 3617 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3618 0,
mjr 6:cc35eb643e8f 3619 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3620 };
mjr 6:cc35eb643e8f 3621 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3622 }
mjr 5:a70c0bce770d 3623
mjr 3:3514575d4f86 3624 // underlying accelerometer object
mjr 3:3514575d4f86 3625 MMA8451Q mma_;
mjr 3:3514575d4f86 3626
mjr 77:0b96f6867312 3627 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3628 // scale -8192..+8191
mjr 77:0b96f6867312 3629 int ax_, ay_, az_;
mjr 77:0b96f6867312 3630
mjr 77:0b96f6867312 3631 // running sum of readings since last get()
mjr 77:0b96f6867312 3632 int xSum_, ySum_;
mjr 77:0b96f6867312 3633
mjr 77:0b96f6867312 3634 // number of readings since last get()
mjr 77:0b96f6867312 3635 int nSum_;
mjr 6:cc35eb643e8f 3636
mjr 6:cc35eb643e8f 3637 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3638 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3639 // at rest.
mjr 77:0b96f6867312 3640 int cx_, cy_;
mjr 77:0b96f6867312 3641
mjr 77:0b96f6867312 3642 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3643 uint8_t range_;
mjr 78:1e00b3fa11af 3644
mjr 78:1e00b3fa11af 3645 // auto-center mode:
mjr 78:1e00b3fa11af 3646 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3647 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3648 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3649 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3650
mjr 78:1e00b3fa11af 3651 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3652 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3653
mjr 78:1e00b3fa11af 3654 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3655 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3656
mjr 77:0b96f6867312 3657 // atuo-centering timer
mjr 5:a70c0bce770d 3658 Timer tCenter_;
mjr 6:cc35eb643e8f 3659
mjr 6:cc35eb643e8f 3660 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3661 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3662 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3663 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3664 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3665 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3666 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3667 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3668 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3669 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3670 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3671 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3672 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3673 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3674 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3675
mjr 5:a70c0bce770d 3676 // interurupt pin name
mjr 5:a70c0bce770d 3677 PinName irqPin_;
mjr 3:3514575d4f86 3678 };
mjr 3:3514575d4f86 3679
mjr 5:a70c0bce770d 3680 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3681 //
mjr 14:df700b22ca08 3682 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3683 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3684 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3685 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3686 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3687 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3688 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3689 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3690 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3691 //
mjr 14:df700b22ca08 3692 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3693 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3694 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3695 //
mjr 5:a70c0bce770d 3696 void clear_i2c()
mjr 5:a70c0bce770d 3697 {
mjr 38:091e511ce8a0 3698 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3699 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3700 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3701
mjr 5:a70c0bce770d 3702 // clock the SCL 9 times
mjr 5:a70c0bce770d 3703 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3704 {
mjr 5:a70c0bce770d 3705 scl = 1;
mjr 5:a70c0bce770d 3706 wait_us(20);
mjr 5:a70c0bce770d 3707 scl = 0;
mjr 5:a70c0bce770d 3708 wait_us(20);
mjr 5:a70c0bce770d 3709 }
mjr 5:a70c0bce770d 3710 }
mjr 76:7f5912b6340e 3711
mjr 76:7f5912b6340e 3712
mjr 14:df700b22ca08 3713 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3714 //
mjr 33:d832bcab089e 3715 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3716 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3717 //
mjr 33:d832bcab089e 3718 class Debouncer
mjr 33:d832bcab089e 3719 {
mjr 33:d832bcab089e 3720 public:
mjr 33:d832bcab089e 3721 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3722 {
mjr 33:d832bcab089e 3723 t.start();
mjr 33:d832bcab089e 3724 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3725 this->tmin = tmin;
mjr 33:d832bcab089e 3726 }
mjr 33:d832bcab089e 3727
mjr 33:d832bcab089e 3728 // Get the current stable value
mjr 33:d832bcab089e 3729 bool val() const { return stable; }
mjr 33:d832bcab089e 3730
mjr 33:d832bcab089e 3731 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3732 // input device.
mjr 33:d832bcab089e 3733 void sampleIn(bool val)
mjr 33:d832bcab089e 3734 {
mjr 33:d832bcab089e 3735 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 3736 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 3737 // on the sample reader.
mjr 33:d832bcab089e 3738 if (val != prv)
mjr 33:d832bcab089e 3739 {
mjr 33:d832bcab089e 3740 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 3741 t.reset();
mjr 33:d832bcab089e 3742
mjr 33:d832bcab089e 3743 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 3744 prv = val;
mjr 33:d832bcab089e 3745 }
mjr 33:d832bcab089e 3746 else if (val != stable)
mjr 33:d832bcab089e 3747 {
mjr 33:d832bcab089e 3748 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 3749 // and different from the stable value. This means that
mjr 33:d832bcab089e 3750 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 3751 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 3752 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 3753 if (t.read() > tmin)
mjr 33:d832bcab089e 3754 stable = val;
mjr 33:d832bcab089e 3755 }
mjr 33:d832bcab089e 3756 }
mjr 33:d832bcab089e 3757
mjr 33:d832bcab089e 3758 private:
mjr 33:d832bcab089e 3759 // current stable value
mjr 33:d832bcab089e 3760 bool stable;
mjr 33:d832bcab089e 3761
mjr 33:d832bcab089e 3762 // last raw sample value
mjr 33:d832bcab089e 3763 bool prv;
mjr 33:d832bcab089e 3764
mjr 33:d832bcab089e 3765 // elapsed time since last raw input change
mjr 33:d832bcab089e 3766 Timer t;
mjr 33:d832bcab089e 3767
mjr 33:d832bcab089e 3768 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 3769 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 3770 float tmin;
mjr 33:d832bcab089e 3771 };
mjr 33:d832bcab089e 3772
mjr 33:d832bcab089e 3773
mjr 33:d832bcab089e 3774 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 3775 //
mjr 33:d832bcab089e 3776 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 3777 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 3778 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 3779 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 3780 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 3781 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 3782 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 3783 //
mjr 33:d832bcab089e 3784 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 3785 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 3786 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 3787 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 3788 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 3789 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 3790 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 3791 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 3792 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 3793 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 3794 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 3795 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 3796 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 3797 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 3798 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 3799 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 3800 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 3801 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 3802 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 3803 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 3804 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 3805 //
mjr 40:cc0d9814522b 3806 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 3807 // of tricky but likely scenarios:
mjr 33:d832bcab089e 3808 //
mjr 33:d832bcab089e 3809 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 3810 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 3811 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 3812 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 3813 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 3814 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 3815 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 3816 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 3817 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 3818 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 3819 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 3820 //
mjr 33:d832bcab089e 3821 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 3822 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 3823 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 3824 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 3825 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 3826 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 3827 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 3828 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 3829 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 3830 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 3831 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 3832 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 3833 // first check.
mjr 33:d832bcab089e 3834 //
mjr 33:d832bcab089e 3835 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 3836 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 3837 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 3838 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 3839 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 3840 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 3841 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 3842 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 3843 //
mjr 33:d832bcab089e 3844
mjr 77:0b96f6867312 3845 // Current PSU2 power state:
mjr 33:d832bcab089e 3846 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 3847 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 3848 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 3849 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 3850 // 5 -> TV relay on
mjr 77:0b96f6867312 3851 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 3852 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 3853
mjr 73:4e8ce0b18915 3854 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 3855 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 3856 // separate state for each:
mjr 73:4e8ce0b18915 3857 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 3858 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 3859 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 3860 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 3861 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 3862
mjr 79:682ae3171a08 3863 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 3864 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 3865
mjr 77:0b96f6867312 3866 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 3867 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 3868 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 3869 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 3870 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 3871 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 3872 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 3873 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 3874 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 3875 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 3876 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 3877
mjr 77:0b96f6867312 3878 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 3879 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 3880
mjr 35:e959ffba78fd 3881 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 3882 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 3883 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 3884
mjr 73:4e8ce0b18915 3885 // Apply the current TV relay state
mjr 73:4e8ce0b18915 3886 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 3887 {
mjr 73:4e8ce0b18915 3888 // update the state
mjr 73:4e8ce0b18915 3889 if (state)
mjr 73:4e8ce0b18915 3890 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 3891 else
mjr 73:4e8ce0b18915 3892 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 3893
mjr 73:4e8ce0b18915 3894 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 3895 if (tv_relay != 0)
mjr 73:4e8ce0b18915 3896 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 3897 }
mjr 35:e959ffba78fd 3898
mjr 86:e30a1f60f783 3899 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 3900 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 3901 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 3902 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 3903 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 3904 // we say it's okay.
mjr 86:e30a1f60f783 3905 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 3906 {
mjr 86:e30a1f60f783 3907 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 3908 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 3909 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 3910 // to the same state later.
mjr 86:e30a1f60f783 3911 return psu2_state == 1;
mjr 86:e30a1f60f783 3912 }
mjr 86:e30a1f60f783 3913
mjr 77:0b96f6867312 3914 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 3915 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 3916 // functions.
mjr 77:0b96f6867312 3917 Timer powerStatusTimer;
mjr 77:0b96f6867312 3918 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 3919 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 3920 {
mjr 79:682ae3171a08 3921 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 3922 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 3923 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 3924 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 3925 {
mjr 79:682ae3171a08 3926 // turn off the relay and disable the timer
mjr 79:682ae3171a08 3927 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 3928 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 3929 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 3930 }
mjr 79:682ae3171a08 3931
mjr 77:0b96f6867312 3932 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 3933 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 3934 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 3935 // skip this whole routine.
mjr 77:0b96f6867312 3936 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 3937 return;
mjr 77:0b96f6867312 3938
mjr 77:0b96f6867312 3939 // reset the update timer for next time
mjr 77:0b96f6867312 3940 powerStatusTimer.reset();
mjr 77:0b96f6867312 3941
mjr 77:0b96f6867312 3942 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 3943 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 3944 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 3945 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 3946 static Timer tv_timer;
mjr 35:e959ffba78fd 3947
mjr 33:d832bcab089e 3948 // Check our internal state
mjr 33:d832bcab089e 3949 switch (psu2_state)
mjr 33:d832bcab089e 3950 {
mjr 33:d832bcab089e 3951 case 1:
mjr 33:d832bcab089e 3952 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 3953 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 3954 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 3955 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 3956 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 3957 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 3958 {
mjr 33:d832bcab089e 3959 // switch to OFF state
mjr 33:d832bcab089e 3960 psu2_state = 2;
mjr 33:d832bcab089e 3961
mjr 33:d832bcab089e 3962 // try setting the latch
mjr 35:e959ffba78fd 3963 psu2_status_set->write(1);
mjr 33:d832bcab089e 3964 }
mjr 77:0b96f6867312 3965 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3966 break;
mjr 33:d832bcab089e 3967
mjr 33:d832bcab089e 3968 case 2:
mjr 33:d832bcab089e 3969 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 3970 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 3971 psu2_status_set->write(0);
mjr 33:d832bcab089e 3972 psu2_state = 3;
mjr 77:0b96f6867312 3973 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3974 break;
mjr 33:d832bcab089e 3975
mjr 33:d832bcab089e 3976 case 3:
mjr 33:d832bcab089e 3977 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3978 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3979 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3980 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3981 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3982 {
mjr 33:d832bcab089e 3983 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3984 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3985 tv_timer.reset();
mjr 33:d832bcab089e 3986 tv_timer.start();
mjr 33:d832bcab089e 3987 psu2_state = 4;
mjr 73:4e8ce0b18915 3988
mjr 73:4e8ce0b18915 3989 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3990 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3991 }
mjr 33:d832bcab089e 3992 else
mjr 33:d832bcab089e 3993 {
mjr 33:d832bcab089e 3994 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 3995 // our last check. Return to idle state.
mjr 87:8d35c74403af 3996 psu2_state = 1;
mjr 33:d832bcab089e 3997 }
mjr 33:d832bcab089e 3998 break;
mjr 33:d832bcab089e 3999
mjr 33:d832bcab089e 4000 case 4:
mjr 77:0b96f6867312 4001 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4002 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4003 // off again before the countdown finished.
mjr 77:0b96f6867312 4004 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4005 {
mjr 77:0b96f6867312 4006 // power is off - start a new check cycle
mjr 77:0b96f6867312 4007 psu2_status_set->write(1);
mjr 77:0b96f6867312 4008 psu2_state = 2;
mjr 77:0b96f6867312 4009 break;
mjr 77:0b96f6867312 4010 }
mjr 77:0b96f6867312 4011
mjr 77:0b96f6867312 4012 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4013 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4014
mjr 77:0b96f6867312 4015 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4016 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4017 {
mjr 33:d832bcab089e 4018 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4019 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4020 psu2_state = 5;
mjr 77:0b96f6867312 4021
mjr 77:0b96f6867312 4022 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4023 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4024 }
mjr 33:d832bcab089e 4025 break;
mjr 33:d832bcab089e 4026
mjr 33:d832bcab089e 4027 case 5:
mjr 33:d832bcab089e 4028 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4029 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4030 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4031
mjr 77:0b96f6867312 4032 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4033 psu2_state = 6;
mjr 77:0b96f6867312 4034 tvon_ir_state = 0;
mjr 77:0b96f6867312 4035
mjr 77:0b96f6867312 4036 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4037 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4038 break;
mjr 77:0b96f6867312 4039
mjr 77:0b96f6867312 4040 case 6:
mjr 77:0b96f6867312 4041 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4042 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4043 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4044 psu2_state = 1;
mjr 77:0b96f6867312 4045 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4046
mjr 77:0b96f6867312 4047 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4048 if (ir_tx != 0)
mjr 77:0b96f6867312 4049 {
mjr 77:0b96f6867312 4050 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4051 if (ir_tx->isSending())
mjr 77:0b96f6867312 4052 {
mjr 77:0b96f6867312 4053 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4054 // state 6.
mjr 77:0b96f6867312 4055 psu2_state = 6;
mjr 77:0b96f6867312 4056 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4057 break;
mjr 77:0b96f6867312 4058 }
mjr 77:0b96f6867312 4059
mjr 77:0b96f6867312 4060 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4061 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4062 // number.
mjr 77:0b96f6867312 4063 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4064 {
mjr 77:0b96f6867312 4065 // is this a TV ON command?
mjr 77:0b96f6867312 4066 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4067 {
mjr 77:0b96f6867312 4068 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4069 // looking for.
mjr 77:0b96f6867312 4070 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4071 {
mjr 77:0b96f6867312 4072 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4073 // pushing its virtual button.
mjr 77:0b96f6867312 4074 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4075 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4076
mjr 77:0b96f6867312 4077 // Pushing the button starts transmission, and once
mjr 77:0b96f6867312 4078 // started, the transmission will run to completion
mjr 77:0b96f6867312 4079 // even if the button is no longer pushed. So we
mjr 77:0b96f6867312 4080 // can immediately un-push the button, since we only
mjr 77:0b96f6867312 4081 // need to send the code once.
mjr 77:0b96f6867312 4082 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4083
mjr 77:0b96f6867312 4084 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4085 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4086 // the next one.
mjr 77:0b96f6867312 4087 psu2_state = 6;
mjr 77:0b96f6867312 4088 tvon_ir_state++;
mjr 77:0b96f6867312 4089 break;
mjr 77:0b96f6867312 4090 }
mjr 77:0b96f6867312 4091
mjr 77:0b96f6867312 4092 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4093 ++n;
mjr 77:0b96f6867312 4094 }
mjr 77:0b96f6867312 4095 }
mjr 77:0b96f6867312 4096 }
mjr 33:d832bcab089e 4097 break;
mjr 33:d832bcab089e 4098 }
mjr 77:0b96f6867312 4099
mjr 77:0b96f6867312 4100 // update the diagnostic LEDs
mjr 77:0b96f6867312 4101 diagLED();
mjr 33:d832bcab089e 4102 }
mjr 33:d832bcab089e 4103
mjr 77:0b96f6867312 4104 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4105 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4106 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4107 // are configured as NC.
mjr 77:0b96f6867312 4108 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4109 {
mjr 55:4db125cd11a0 4110 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4111 // time is nonzero
mjr 77:0b96f6867312 4112 powerStatusTimer.reset();
mjr 77:0b96f6867312 4113 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4114 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4115 {
mjr 77:0b96f6867312 4116 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4117 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4118 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4119
mjr 77:0b96f6867312 4120 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4121 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4122 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4123
mjr 77:0b96f6867312 4124 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4125 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4126 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4127 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4128
mjr 77:0b96f6867312 4129 // Start the TV timer
mjr 77:0b96f6867312 4130 powerStatusTimer.start();
mjr 35:e959ffba78fd 4131 }
mjr 35:e959ffba78fd 4132 }
mjr 35:e959ffba78fd 4133
mjr 73:4e8ce0b18915 4134 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4135 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4136 //
mjr 73:4e8ce0b18915 4137 // Mode:
mjr 73:4e8ce0b18915 4138 // 0 = turn relay off
mjr 73:4e8ce0b18915 4139 // 1 = turn relay on
mjr 73:4e8ce0b18915 4140 // 2 = pulse relay
mjr 73:4e8ce0b18915 4141 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4142 {
mjr 73:4e8ce0b18915 4143 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4144 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4145 return;
mjr 73:4e8ce0b18915 4146
mjr 73:4e8ce0b18915 4147 switch (mode)
mjr 73:4e8ce0b18915 4148 {
mjr 73:4e8ce0b18915 4149 case 0:
mjr 73:4e8ce0b18915 4150 // relay off
mjr 73:4e8ce0b18915 4151 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4152 break;
mjr 73:4e8ce0b18915 4153
mjr 73:4e8ce0b18915 4154 case 1:
mjr 73:4e8ce0b18915 4155 // relay on
mjr 73:4e8ce0b18915 4156 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4157 break;
mjr 73:4e8ce0b18915 4158
mjr 73:4e8ce0b18915 4159 case 2:
mjr 79:682ae3171a08 4160 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4161 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4162 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4163 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4164 break;
mjr 73:4e8ce0b18915 4165 }
mjr 73:4e8ce0b18915 4166 }
mjr 73:4e8ce0b18915 4167
mjr 73:4e8ce0b18915 4168
mjr 35:e959ffba78fd 4169 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4170 //
mjr 35:e959ffba78fd 4171 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4172 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4173 //
mjr 35:e959ffba78fd 4174 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4175 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4176 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4177 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4178 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4179 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4180 //
mjr 35:e959ffba78fd 4181 NVM nvm;
mjr 35:e959ffba78fd 4182
mjr 86:e30a1f60f783 4183 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4184 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4185 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4186 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4187
mjr 86:e30a1f60f783 4188 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4189 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4190
mjr 79:682ae3171a08 4191 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4192 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4193
mjr 86:e30a1f60f783 4194 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4195 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4196
mjr 86:e30a1f60f783 4197
mjr 35:e959ffba78fd 4198 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4199 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4200
mjr 35:e959ffba78fd 4201 // flash memory controller interface
mjr 35:e959ffba78fd 4202 FreescaleIAP iap;
mjr 35:e959ffba78fd 4203
mjr 79:682ae3171a08 4204 // figure the flash address for the config data
mjr 79:682ae3171a08 4205 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4206 {
mjr 79:682ae3171a08 4207 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4208 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4209
mjr 79:682ae3171a08 4210 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4211 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4212
mjr 79:682ae3171a08 4213 // locate it at the top of memory
mjr 79:682ae3171a08 4214 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4215
mjr 79:682ae3171a08 4216 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4217 return (const NVM *)addr;
mjr 35:e959ffba78fd 4218 }
mjr 35:e959ffba78fd 4219
mjr 76:7f5912b6340e 4220 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4221 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4222 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4223 // in either case.
mjr 76:7f5912b6340e 4224 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4225 {
mjr 35:e959ffba78fd 4226 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4227 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4228 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4229 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4230 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4231 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4232 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4233 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4234 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4235 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4236 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4237 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4238 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4239 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4240 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4241 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4242
mjr 35:e959ffba78fd 4243 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4244 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4245
mjr 35:e959ffba78fd 4246 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4247 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4248 if (nvm_valid)
mjr 35:e959ffba78fd 4249 {
mjr 35:e959ffba78fd 4250 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4251 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4252 }
mjr 35:e959ffba78fd 4253 else
mjr 35:e959ffba78fd 4254 {
mjr 76:7f5912b6340e 4255 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4256 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4257 }
mjr 76:7f5912b6340e 4258
mjr 76:7f5912b6340e 4259 // tell the caller what happened
mjr 76:7f5912b6340e 4260 return nvm_valid;
mjr 35:e959ffba78fd 4261 }
mjr 35:e959ffba78fd 4262
mjr 86:e30a1f60f783 4263 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4264 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4265 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4266 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4267 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4268 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4269 {
mjr 76:7f5912b6340e 4270 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4271 waitPlungerIdle();
mjr 76:7f5912b6340e 4272
mjr 76:7f5912b6340e 4273 // get the config block location in the flash memory
mjr 77:0b96f6867312 4274 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4275
mjr 79:682ae3171a08 4276 // save the data
mjr 86:e30a1f60f783 4277 if (nvm.save(iap, addr))
mjr 86:e30a1f60f783 4278 {
mjr 86:e30a1f60f783 4279 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4280 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4281
mjr 86:e30a1f60f783 4282 // start the followup timer
mjr 87:8d35c74403af 4283 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4284 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4285 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4286
mjr 86:e30a1f60f783 4287 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4288 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 4289
mjr 86:e30a1f60f783 4290 // return success
mjr 86:e30a1f60f783 4291 return true;
mjr 86:e30a1f60f783 4292 }
mjr 86:e30a1f60f783 4293 else
mjr 86:e30a1f60f783 4294 {
mjr 86:e30a1f60f783 4295 // return failure
mjr 86:e30a1f60f783 4296 return false;
mjr 86:e30a1f60f783 4297 }
mjr 76:7f5912b6340e 4298 }
mjr 76:7f5912b6340e 4299
mjr 76:7f5912b6340e 4300 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4301 //
mjr 76:7f5912b6340e 4302 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4303 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4304 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4305 // downloading it to the device.
mjr 76:7f5912b6340e 4306 //
mjr 76:7f5912b6340e 4307 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4308 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4309 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4310 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4311 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4312 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4313 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4314 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4315 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4316 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4317 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4318 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4319 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4320 //
mjr 76:7f5912b6340e 4321 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4322 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4323 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4324 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4325 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4326 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4327 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4328 //
mjr 76:7f5912b6340e 4329 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4330 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4331 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4332 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4333 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4334 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4335 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4336 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4337 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4338 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4339
mjr 76:7f5912b6340e 4340 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4341 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4342 {
mjr 76:7f5912b6340e 4343 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4344 // 32-byte signature header
mjr 76:7f5912b6340e 4345 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4346 };
mjr 76:7f5912b6340e 4347
mjr 76:7f5912b6340e 4348 // forward reference to config var store function
mjr 76:7f5912b6340e 4349 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4350
mjr 76:7f5912b6340e 4351 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4352 // configuration object.
mjr 76:7f5912b6340e 4353 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4354 {
mjr 76:7f5912b6340e 4355 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4356 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4357 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4358 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4359 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4360 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4361 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4362 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4363 {
mjr 76:7f5912b6340e 4364 // load this variable
mjr 76:7f5912b6340e 4365 configVarSet(p);
mjr 76:7f5912b6340e 4366 }
mjr 35:e959ffba78fd 4367 }
mjr 35:e959ffba78fd 4368
mjr 35:e959ffba78fd 4369 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4370 //
mjr 55:4db125cd11a0 4371 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4372 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4373 //
mjr 55:4db125cd11a0 4374 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4375 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4376 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4377
mjr 55:4db125cd11a0 4378
mjr 55:4db125cd11a0 4379
mjr 55:4db125cd11a0 4380 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4381 //
mjr 40:cc0d9814522b 4382 // Night mode setting updates
mjr 40:cc0d9814522b 4383 //
mjr 38:091e511ce8a0 4384
mjr 38:091e511ce8a0 4385 // Turn night mode on or off
mjr 38:091e511ce8a0 4386 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4387 {
mjr 77:0b96f6867312 4388 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4389 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4390 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4391 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4392
mjr 40:cc0d9814522b 4393 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4394 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4395 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4396 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4397
mjr 76:7f5912b6340e 4398 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4399 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4400 // mode change.
mjr 76:7f5912b6340e 4401 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4402 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4403
mjr 76:7f5912b6340e 4404 // update 74HC595 outputs
mjr 76:7f5912b6340e 4405 if (hc595 != 0)
mjr 76:7f5912b6340e 4406 hc595->update();
mjr 38:091e511ce8a0 4407 }
mjr 38:091e511ce8a0 4408
mjr 38:091e511ce8a0 4409 // Toggle night mode
mjr 38:091e511ce8a0 4410 static void toggleNightMode()
mjr 38:091e511ce8a0 4411 {
mjr 53:9b2611964afc 4412 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4413 }
mjr 38:091e511ce8a0 4414
mjr 38:091e511ce8a0 4415
mjr 38:091e511ce8a0 4416 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4417 //
mjr 35:e959ffba78fd 4418 // Plunger Sensor
mjr 35:e959ffba78fd 4419 //
mjr 35:e959ffba78fd 4420
mjr 35:e959ffba78fd 4421 // the plunger sensor interface object
mjr 35:e959ffba78fd 4422 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4423
mjr 87:8d35c74403af 4424 // wait for the plunger sensor to complete any outstanding DMA transfer
mjr 76:7f5912b6340e 4425 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4426 {
mjr 87:8d35c74403af 4427 while (plungerSensor->dmaBusy()) { }
mjr 76:7f5912b6340e 4428 }
mjr 76:7f5912b6340e 4429
mjr 35:e959ffba78fd 4430 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4431 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4432 void createPlunger()
mjr 35:e959ffba78fd 4433 {
mjr 35:e959ffba78fd 4434 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4435 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4436 {
mjr 82:4f6209cb5c33 4437 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 4438 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 4439 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4440 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4441 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4442 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4443 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4444 break;
mjr 35:e959ffba78fd 4445
mjr 82:4f6209cb5c33 4446 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 4447 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 4448 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4449 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4450 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4451 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4452 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4453 break;
mjr 35:e959ffba78fd 4454
mjr 35:e959ffba78fd 4455 case PlungerType_Pot:
mjr 82:4f6209cb5c33 4456 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 4457 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 4458 // pins are: AO (analog in)
mjr 53:9b2611964afc 4459 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4460 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4461 break;
mjr 82:4f6209cb5c33 4462
mjr 82:4f6209cb5c33 4463 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 4464 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 4465 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 4466 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 4467 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 4468 300,
mjr 82:4f6209cb5c33 4469 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4470 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 4471 break;
mjr 82:4f6209cb5c33 4472
mjr 82:4f6209cb5c33 4473 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 4474 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 4475 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 4476 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 4477 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4478 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4479 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4480 break;
mjr 82:4f6209cb5c33 4481
mjr 82:4f6209cb5c33 4482 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 4483 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 4484 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 4485 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 4486 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4487 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4488 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4489 break;
mjr 82:4f6209cb5c33 4490
mjr 35:e959ffba78fd 4491 case PlungerType_None:
mjr 35:e959ffba78fd 4492 default:
mjr 35:e959ffba78fd 4493 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4494 break;
mjr 35:e959ffba78fd 4495 }
mjr 86:e30a1f60f783 4496
mjr 87:8d35c74403af 4497 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 4498 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 4499 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 4500 }
mjr 33:d832bcab089e 4501
mjr 52:8298b2a73eb2 4502 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4503 bool plungerCalMode;
mjr 52:8298b2a73eb2 4504
mjr 48:058ace2aed1d 4505 // Plunger reader
mjr 51:57eb311faafa 4506 //
mjr 51:57eb311faafa 4507 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4508 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4509 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4510 //
mjr 51:57eb311faafa 4511 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4512 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4513 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4514 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4515 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4516 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4517 // firing motion.
mjr 51:57eb311faafa 4518 //
mjr 51:57eb311faafa 4519 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4520 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4521 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4522 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4523 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4524 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4525 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4526 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4527 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4528 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4529 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4530 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4531 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4532 //
mjr 51:57eb311faafa 4533 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4534 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4535 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4536 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4537 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4538 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4539 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4540 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4541 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4542 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4543 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4544 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4545 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4546 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4547 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4548 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4549 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4550 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4551 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4552 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4553 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4554 //
mjr 48:058ace2aed1d 4555 class PlungerReader
mjr 48:058ace2aed1d 4556 {
mjr 48:058ace2aed1d 4557 public:
mjr 48:058ace2aed1d 4558 PlungerReader()
mjr 48:058ace2aed1d 4559 {
mjr 48:058ace2aed1d 4560 // not in a firing event yet
mjr 48:058ace2aed1d 4561 firing = 0;
mjr 48:058ace2aed1d 4562 }
mjr 76:7f5912b6340e 4563
mjr 48:058ace2aed1d 4564 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4565 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4566 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4567 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4568 void read()
mjr 48:058ace2aed1d 4569 {
mjr 76:7f5912b6340e 4570 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4571 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4572 return;
mjr 76:7f5912b6340e 4573
mjr 48:058ace2aed1d 4574 // Read a sample from the sensor
mjr 48:058ace2aed1d 4575 PlungerReading r;
mjr 48:058ace2aed1d 4576 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4577 {
mjr 53:9b2611964afc 4578 // check for calibration mode
mjr 53:9b2611964afc 4579 if (plungerCalMode)
mjr 53:9b2611964afc 4580 {
mjr 53:9b2611964afc 4581 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4582 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4583 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4584 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4585 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4586 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4587 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4588
mjr 76:7f5912b6340e 4589 // update our cached calibration data
mjr 76:7f5912b6340e 4590 onUpdateCal();
mjr 50:40015764bbe6 4591
mjr 53:9b2611964afc 4592 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4593 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4594 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4595 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4596 if (calState == 0)
mjr 53:9b2611964afc 4597 {
mjr 53:9b2611964afc 4598 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4599 {
mjr 53:9b2611964afc 4600 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4601 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4602 {
mjr 53:9b2611964afc 4603 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4604 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4605 calZeroPosN += 1;
mjr 53:9b2611964afc 4606
mjr 53:9b2611964afc 4607 // update the zero position from the new average
mjr 53:9b2611964afc 4608 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4609 onUpdateCal();
mjr 53:9b2611964afc 4610
mjr 53:9b2611964afc 4611 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4612 calState = 1;
mjr 53:9b2611964afc 4613 }
mjr 53:9b2611964afc 4614 }
mjr 53:9b2611964afc 4615 else
mjr 53:9b2611964afc 4616 {
mjr 53:9b2611964afc 4617 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4618 calZeroStart = r;
mjr 53:9b2611964afc 4619 }
mjr 53:9b2611964afc 4620 }
mjr 53:9b2611964afc 4621
mjr 53:9b2611964afc 4622 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4623 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4624 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4625 r.pos = int(
mjr 53:9b2611964afc 4626 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4627 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4628 }
mjr 53:9b2611964afc 4629 else
mjr 53:9b2611964afc 4630 {
mjr 53:9b2611964afc 4631 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4632 // rescale to the joystick range.
mjr 76:7f5912b6340e 4633 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4634
mjr 53:9b2611964afc 4635 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4636 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4637 r.pos = JOYMAX;
mjr 53:9b2611964afc 4638 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4639 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4640 }
mjr 50:40015764bbe6 4641
mjr 87:8d35c74403af 4642 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 4643 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 4644 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 4645 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 4646 //
mjr 87:8d35c74403af 4647 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 4648 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 4649 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 4650 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 4651 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 4652 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 4653 // 25-50ms.
mjr 87:8d35c74403af 4654 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 4655 return;
mjr 87:8d35c74403af 4656
mjr 87:8d35c74403af 4657 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 4658 z = r.pos;
mjr 87:8d35c74403af 4659
mjr 87:8d35c74403af 4660 // Firing event detection.
mjr 87:8d35c74403af 4661 //
mjr 87:8d35c74403af 4662 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 4663 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 4664 // spring tension.
mjr 50:40015764bbe6 4665 //
mjr 87:8d35c74403af 4666 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 4667 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 4668 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 4669 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 4670 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 4671 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 4672 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 4673 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 4674 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 4675 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 4676 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 4677 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 4678 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 4679 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 4680 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 4681 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 4682 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 4683 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 4684 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 4685 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 4686 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 4687 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 4688 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 4689 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 4690 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 4691 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 4692 // forward position for a short time.
mjr 76:7f5912b6340e 4693 //
mjr 87:8d35c74403af 4694 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 4695 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 4696 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 4697 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 4698 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 4699 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 4700 //
mjr 87:8d35c74403af 4701 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 4702 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 4703 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 4704 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 4705 // to the park position.
mjr 87:8d35c74403af 4706 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 4707 switch (firing)
mjr 50:40015764bbe6 4708 {
mjr 50:40015764bbe6 4709 case 0:
mjr 87:8d35c74403af 4710 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 4711 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 4712 // release, enter firing mode.
mjr 87:8d35c74403af 4713 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4714 {
mjr 87:8d35c74403af 4715 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 4716 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 4717 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 4718 {
mjr 87:8d35c74403af 4719 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 4720 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 4721 firingMode(1);
mjr 87:8d35c74403af 4722 f0 = prv;
mjr 87:8d35c74403af 4723 z = f0.pos;
mjr 87:8d35c74403af 4724
mjr 87:8d35c74403af 4725 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 4726 // state 2 (not at rest)
mjr 87:8d35c74403af 4727 if (calState == 1)
mjr 87:8d35c74403af 4728 calState = 2;
mjr 87:8d35c74403af 4729 }
mjr 50:40015764bbe6 4730 }
mjr 50:40015764bbe6 4731 break;
mjr 50:40015764bbe6 4732
mjr 50:40015764bbe6 4733 case 1:
mjr 87:8d35c74403af 4734 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 4735 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 4736 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 4737 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 4738 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 4739 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 4740 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 4741 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 4742 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 4743 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 4744 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 4745 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 4746 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 4747 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 4748 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 4749 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 4750 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 4751 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 4752 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 4753 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 4754 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 4755 if (r.pos <= 0)
mjr 50:40015764bbe6 4756 {
mjr 87:8d35c74403af 4757 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 4758 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 4759 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 4760 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 4761 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 4762 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 4763 // and processes the release motion via the simulated
mjr 87:8d35c74403af 4764 // physics.
mjr 50:40015764bbe6 4765 firingMode(2);
mjr 53:9b2611964afc 4766
mjr 53:9b2611964afc 4767 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 4768 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 4769 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 4770 {
mjr 53:9b2611964afc 4771 // collect a new zero point for the average when we
mjr 53:9b2611964afc 4772 // come to rest
mjr 53:9b2611964afc 4773 calState = 0;
mjr 53:9b2611964afc 4774
mjr 87:8d35c74403af 4775 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 4776 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 4777 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 4778 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 4779 {
mjr 53:9b2611964afc 4780 calRlsTimeSum += dt;
mjr 53:9b2611964afc 4781 calRlsTimeN += 1;
mjr 53:9b2611964afc 4782 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 4783 }
mjr 53:9b2611964afc 4784 }
mjr 87:8d35c74403af 4785
mjr 87:8d35c74403af 4786 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 4787 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 4788 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 4789 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 4790 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 4791 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 4792 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 4793 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 4794 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 4795 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 4796 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 4797 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 4798 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 4799 // small in any case.)
mjr 87:8d35c74403af 4800 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 4801
mjr 87:8d35c74403af 4802 // reset the starting time for this phase
mjr 87:8d35c74403af 4803 f0.t = r.t;
mjr 50:40015764bbe6 4804 }
mjr 50:40015764bbe6 4805 else
mjr 50:40015764bbe6 4806 {
mjr 87:8d35c74403af 4807 // check for motion since the start of the firing event
mjr 87:8d35c74403af 4808 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 4809 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 4810 if (dt < 50000
mjr 87:8d35c74403af 4811 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 4812 {
mjr 87:8d35c74403af 4813 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 4814 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 4815 // stay in the first release phase.
mjr 87:8d35c74403af 4816 z = f0.pos;
mjr 87:8d35c74403af 4817 }
mjr 87:8d35c74403af 4818 else
mjr 87:8d35c74403af 4819 {
mjr 87:8d35c74403af 4820 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 4821 // motion. Return to the default state.
mjr 87:8d35c74403af 4822 firingMode(0);
mjr 87:8d35c74403af 4823 calState = 1;
mjr 87:8d35c74403af 4824 }
mjr 50:40015764bbe6 4825 }
mjr 50:40015764bbe6 4826 break;
mjr 50:40015764bbe6 4827
mjr 50:40015764bbe6 4828 case 2:
mjr 87:8d35c74403af 4829 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 4830 // Hold here for 25ms.
mjr 87:8d35c74403af 4831 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 4832 {
mjr 87:8d35c74403af 4833 // stay here for now
mjr 87:8d35c74403af 4834 z = f0.pos;
mjr 50:40015764bbe6 4835 }
mjr 50:40015764bbe6 4836 else
mjr 50:40015764bbe6 4837 {
mjr 87:8d35c74403af 4838 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 4839 // position until the plunger comes to rest
mjr 50:40015764bbe6 4840 firingMode(3);
mjr 50:40015764bbe6 4841 z = 0;
mjr 87:8d35c74403af 4842
mjr 87:8d35c74403af 4843 // remember when we started
mjr 87:8d35c74403af 4844 f0.t = r.t;
mjr 50:40015764bbe6 4845 }
mjr 50:40015764bbe6 4846 break;
mjr 50:40015764bbe6 4847
mjr 50:40015764bbe6 4848 case 3:
mjr 87:8d35c74403af 4849 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 4850 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 4851 // full release motion, then return to real readings.
mjr 87:8d35c74403af 4852 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 4853 {
mjr 87:8d35c74403af 4854 // stay here a while longer
mjr 87:8d35c74403af 4855 z = 0;
mjr 50:40015764bbe6 4856 }
mjr 50:40015764bbe6 4857 else
mjr 50:40015764bbe6 4858 {
mjr 87:8d35c74403af 4859 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 4860 firingMode(0);
mjr 50:40015764bbe6 4861 }
mjr 50:40015764bbe6 4862 break;
mjr 50:40015764bbe6 4863 }
mjr 50:40015764bbe6 4864
mjr 82:4f6209cb5c33 4865 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 4866 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 4867 {
mjr 82:4f6209cb5c33 4868 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 4869 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 4870 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 4871 // long, so auto-zero now.
mjr 82:4f6209cb5c33 4872 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 4873 {
mjr 82:4f6209cb5c33 4874 // movement detected - reset the timer
mjr 82:4f6209cb5c33 4875 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 4876 autoZeroTimer.start();
mjr 82:4f6209cb5c33 4877 }
mjr 82:4f6209cb5c33 4878 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 4879 {
mjr 82:4f6209cb5c33 4880 // auto-zero now
mjr 82:4f6209cb5c33 4881 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 4882
mjr 82:4f6209cb5c33 4883 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 4884 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 4885 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 4886 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 4887 }
mjr 82:4f6209cb5c33 4888 }
mjr 82:4f6209cb5c33 4889
mjr 87:8d35c74403af 4890 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 4891 prv = r;
mjr 48:058ace2aed1d 4892 }
mjr 48:058ace2aed1d 4893 }
mjr 48:058ace2aed1d 4894
mjr 48:058ace2aed1d 4895 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 4896 int16_t getPosition()
mjr 58:523fdcffbe6d 4897 {
mjr 86:e30a1f60f783 4898 // return the last reading
mjr 86:e30a1f60f783 4899 return z;
mjr 55:4db125cd11a0 4900 }
mjr 58:523fdcffbe6d 4901
mjr 48:058ace2aed1d 4902 // Set calibration mode on or off
mjr 52:8298b2a73eb2 4903 void setCalMode(bool f)
mjr 48:058ace2aed1d 4904 {
mjr 52:8298b2a73eb2 4905 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 4906 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 4907 {
mjr 52:8298b2a73eb2 4908 // reset the calibration in the configuration
mjr 48:058ace2aed1d 4909 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 4910
mjr 52:8298b2a73eb2 4911 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 4912 calState = 0;
mjr 52:8298b2a73eb2 4913 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 4914 calZeroPosN = 0;
mjr 52:8298b2a73eb2 4915 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 4916 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 4917
mjr 82:4f6209cb5c33 4918 // tell the plunger we're starting calibration
mjr 82:4f6209cb5c33 4919 plungerSensor->beginCalibration();
mjr 82:4f6209cb5c33 4920
mjr 52:8298b2a73eb2 4921 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 4922 PlungerReading r;
mjr 52:8298b2a73eb2 4923 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 4924 {
mjr 52:8298b2a73eb2 4925 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 4926 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 4927 onUpdateCal();
mjr 52:8298b2a73eb2 4928
mjr 52:8298b2a73eb2 4929 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 4930 calZeroStart = r;
mjr 52:8298b2a73eb2 4931 }
mjr 52:8298b2a73eb2 4932 else
mjr 52:8298b2a73eb2 4933 {
mjr 52:8298b2a73eb2 4934 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 4935 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4936 onUpdateCal();
mjr 52:8298b2a73eb2 4937
mjr 52:8298b2a73eb2 4938 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 4939 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 4940 calZeroStart.t = 0;
mjr 53:9b2611964afc 4941 }
mjr 53:9b2611964afc 4942 }
mjr 53:9b2611964afc 4943 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 4944 {
mjr 53:9b2611964afc 4945 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 4946 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 4947 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 4948 // physically meaningless.
mjr 53:9b2611964afc 4949 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 4950 {
mjr 53:9b2611964afc 4951 // bad settings - reset to defaults
mjr 53:9b2611964afc 4952 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 4953 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4954 onUpdateCal();
mjr 52:8298b2a73eb2 4955 }
mjr 52:8298b2a73eb2 4956 }
mjr 52:8298b2a73eb2 4957
mjr 48:058ace2aed1d 4958 // remember the new mode
mjr 52:8298b2a73eb2 4959 plungerCalMode = f;
mjr 48:058ace2aed1d 4960 }
mjr 48:058ace2aed1d 4961
mjr 76:7f5912b6340e 4962 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 4963 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 4964 // cached inverse is calculated as
mjr 76:7f5912b6340e 4965 //
mjr 76:7f5912b6340e 4966 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 4967 //
mjr 76:7f5912b6340e 4968 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 4969 //
mjr 76:7f5912b6340e 4970 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 4971 //
mjr 76:7f5912b6340e 4972 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 4973 int invCalRange;
mjr 76:7f5912b6340e 4974
mjr 76:7f5912b6340e 4975 // apply the calibration range to a reading
mjr 76:7f5912b6340e 4976 inline int applyCal(int reading)
mjr 76:7f5912b6340e 4977 {
mjr 76:7f5912b6340e 4978 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 4979 }
mjr 76:7f5912b6340e 4980
mjr 76:7f5912b6340e 4981 void onUpdateCal()
mjr 76:7f5912b6340e 4982 {
mjr 76:7f5912b6340e 4983 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 4984 }
mjr 76:7f5912b6340e 4985
mjr 48:058ace2aed1d 4986 // is a firing event in progress?
mjr 53:9b2611964afc 4987 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 4988
mjr 48:058ace2aed1d 4989 private:
mjr 87:8d35c74403af 4990 // current reported joystick reading
mjr 87:8d35c74403af 4991 int z;
mjr 87:8d35c74403af 4992
mjr 87:8d35c74403af 4993 // previous reading
mjr 87:8d35c74403af 4994 PlungerReading prv;
mjr 87:8d35c74403af 4995
mjr 52:8298b2a73eb2 4996 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 4997 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 4998 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 4999 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5000 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5001 // 1 = at rest
mjr 52:8298b2a73eb2 5002 // 2 = retracting
mjr 52:8298b2a73eb2 5003 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5004 uint8_t calState;
mjr 52:8298b2a73eb2 5005
mjr 52:8298b2a73eb2 5006 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5007 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5008 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5009 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5010 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5011 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5012 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5013 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5014 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5015 long calZeroPosSum;
mjr 52:8298b2a73eb2 5016 int calZeroPosN;
mjr 52:8298b2a73eb2 5017
mjr 52:8298b2a73eb2 5018 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5019 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5020 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5021 int calRlsTimeN;
mjr 52:8298b2a73eb2 5022
mjr 85:3c28aee81cde 5023 // Auto-zeroing timer
mjr 85:3c28aee81cde 5024 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5025
mjr 48:058ace2aed1d 5026 // set a firing mode
mjr 48:058ace2aed1d 5027 inline void firingMode(int m)
mjr 48:058ace2aed1d 5028 {
mjr 48:058ace2aed1d 5029 firing = m;
mjr 48:058ace2aed1d 5030 }
mjr 48:058ace2aed1d 5031
mjr 48:058ace2aed1d 5032 // Firing event state.
mjr 48:058ace2aed1d 5033 //
mjr 87:8d35c74403af 5034 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5035 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5036 //
mjr 87:8d35c74403af 5037 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5038 //
mjr 87:8d35c74403af 5039 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5040 //
mjr 87:8d35c74403af 5041 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5042 //
mjr 48:058ace2aed1d 5043 int firing;
mjr 48:058ace2aed1d 5044
mjr 87:8d35c74403af 5045 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5046 PlungerReading f0;
mjr 48:058ace2aed1d 5047 };
mjr 48:058ace2aed1d 5048
mjr 48:058ace2aed1d 5049 // plunger reader singleton
mjr 48:058ace2aed1d 5050 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5051
mjr 48:058ace2aed1d 5052 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5053 //
mjr 48:058ace2aed1d 5054 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5055 //
mjr 48:058ace2aed1d 5056 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5057 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5058 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5059 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5060 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5061 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5062 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5063 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5064 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5065 //
mjr 48:058ace2aed1d 5066 // This feature has two configuration components:
mjr 48:058ace2aed1d 5067 //
mjr 48:058ace2aed1d 5068 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5069 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5070 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5071 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5072 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5073 // plunger/launch button connection.
mjr 48:058ace2aed1d 5074 //
mjr 48:058ace2aed1d 5075 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5076 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5077 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5078 // position.
mjr 48:058ace2aed1d 5079 //
mjr 48:058ace2aed1d 5080 class ZBLaunchBall
mjr 48:058ace2aed1d 5081 {
mjr 48:058ace2aed1d 5082 public:
mjr 48:058ace2aed1d 5083 ZBLaunchBall()
mjr 48:058ace2aed1d 5084 {
mjr 48:058ace2aed1d 5085 // start in the default state
mjr 48:058ace2aed1d 5086 lbState = 0;
mjr 53:9b2611964afc 5087 btnState = false;
mjr 48:058ace2aed1d 5088 }
mjr 48:058ace2aed1d 5089
mjr 48:058ace2aed1d 5090 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5091 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5092 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5093 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5094 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5095 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5096 void update()
mjr 48:058ace2aed1d 5097 {
mjr 53:9b2611964afc 5098 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5099 // plunger firing event
mjr 53:9b2611964afc 5100 if (zbLaunchOn)
mjr 48:058ace2aed1d 5101 {
mjr 53:9b2611964afc 5102 // note the new position
mjr 48:058ace2aed1d 5103 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5104
mjr 53:9b2611964afc 5105 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5106 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5107
mjr 53:9b2611964afc 5108 // check the state
mjr 48:058ace2aed1d 5109 switch (lbState)
mjr 48:058ace2aed1d 5110 {
mjr 48:058ace2aed1d 5111 case 0:
mjr 53:9b2611964afc 5112 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5113 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5114 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5115 // the button.
mjr 53:9b2611964afc 5116 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5117 {
mjr 53:9b2611964afc 5118 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5119 lbTimer.reset();
mjr 53:9b2611964afc 5120 lbTimer.start();
mjr 53:9b2611964afc 5121 setButton(true);
mjr 53:9b2611964afc 5122
mjr 53:9b2611964afc 5123 // switch to state 1
mjr 53:9b2611964afc 5124 lbState = 1;
mjr 53:9b2611964afc 5125 }
mjr 48:058ace2aed1d 5126 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5127 {
mjr 53:9b2611964afc 5128 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5129 // button as long as we're pushed forward
mjr 53:9b2611964afc 5130 setButton(true);
mjr 53:9b2611964afc 5131 }
mjr 53:9b2611964afc 5132 else
mjr 53:9b2611964afc 5133 {
mjr 53:9b2611964afc 5134 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5135 setButton(false);
mjr 53:9b2611964afc 5136 }
mjr 48:058ace2aed1d 5137 break;
mjr 48:058ace2aed1d 5138
mjr 48:058ace2aed1d 5139 case 1:
mjr 53:9b2611964afc 5140 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5141 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5142 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5143 {
mjr 53:9b2611964afc 5144 // timer expired - turn off the button
mjr 53:9b2611964afc 5145 setButton(false);
mjr 53:9b2611964afc 5146
mjr 53:9b2611964afc 5147 // switch to state 2
mjr 53:9b2611964afc 5148 lbState = 2;
mjr 53:9b2611964afc 5149 }
mjr 48:058ace2aed1d 5150 break;
mjr 48:058ace2aed1d 5151
mjr 48:058ace2aed1d 5152 case 2:
mjr 53:9b2611964afc 5153 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5154 // plunger launch event to end.
mjr 53:9b2611964afc 5155 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5156 {
mjr 53:9b2611964afc 5157 // firing event done - return to default state
mjr 53:9b2611964afc 5158 lbState = 0;
mjr 53:9b2611964afc 5159 }
mjr 48:058ace2aed1d 5160 break;
mjr 48:058ace2aed1d 5161 }
mjr 53:9b2611964afc 5162 }
mjr 53:9b2611964afc 5163 else
mjr 53:9b2611964afc 5164 {
mjr 53:9b2611964afc 5165 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5166 setButton(false);
mjr 48:058ace2aed1d 5167
mjr 53:9b2611964afc 5168 // return to the default state
mjr 53:9b2611964afc 5169 lbState = 0;
mjr 48:058ace2aed1d 5170 }
mjr 48:058ace2aed1d 5171 }
mjr 53:9b2611964afc 5172
mjr 53:9b2611964afc 5173 // Set the button state
mjr 53:9b2611964afc 5174 void setButton(bool on)
mjr 53:9b2611964afc 5175 {
mjr 53:9b2611964afc 5176 if (btnState != on)
mjr 53:9b2611964afc 5177 {
mjr 53:9b2611964afc 5178 // remember the new state
mjr 53:9b2611964afc 5179 btnState = on;
mjr 53:9b2611964afc 5180
mjr 53:9b2611964afc 5181 // update the virtual button state
mjr 65:739875521aae 5182 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5183 }
mjr 53:9b2611964afc 5184 }
mjr 53:9b2611964afc 5185
mjr 48:058ace2aed1d 5186 private:
mjr 48:058ace2aed1d 5187 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5188 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5189 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5190 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5191 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5192 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5193 //
mjr 48:058ace2aed1d 5194 // States:
mjr 48:058ace2aed1d 5195 // 0 = default
mjr 53:9b2611964afc 5196 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5197 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5198 // firing event to end)
mjr 53:9b2611964afc 5199 uint8_t lbState;
mjr 48:058ace2aed1d 5200
mjr 53:9b2611964afc 5201 // button state
mjr 53:9b2611964afc 5202 bool btnState;
mjr 48:058ace2aed1d 5203
mjr 48:058ace2aed1d 5204 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5205 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5206 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5207 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5208 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5209 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5210 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5211 Timer lbTimer;
mjr 48:058ace2aed1d 5212 };
mjr 48:058ace2aed1d 5213
mjr 35:e959ffba78fd 5214 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5215 //
mjr 35:e959ffba78fd 5216 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5217 //
mjr 54:fd77a6b2f76c 5218 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5219 {
mjr 35:e959ffba78fd 5220 // disconnect from USB
mjr 54:fd77a6b2f76c 5221 if (disconnect)
mjr 54:fd77a6b2f76c 5222 js.disconnect();
mjr 35:e959ffba78fd 5223
mjr 35:e959ffba78fd 5224 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5225 wait_us(pause_us);
mjr 35:e959ffba78fd 5226
mjr 35:e959ffba78fd 5227 // reset the device
mjr 35:e959ffba78fd 5228 NVIC_SystemReset();
mjr 35:e959ffba78fd 5229 while (true) { }
mjr 35:e959ffba78fd 5230 }
mjr 35:e959ffba78fd 5231
mjr 35:e959ffba78fd 5232 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5233 //
mjr 35:e959ffba78fd 5234 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5235 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5236 //
mjr 35:e959ffba78fd 5237 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5238 {
mjr 35:e959ffba78fd 5239 int tmp;
mjr 78:1e00b3fa11af 5240 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5241 {
mjr 35:e959ffba78fd 5242 case OrientationFront:
mjr 35:e959ffba78fd 5243 tmp = x;
mjr 35:e959ffba78fd 5244 x = y;
mjr 35:e959ffba78fd 5245 y = tmp;
mjr 35:e959ffba78fd 5246 break;
mjr 35:e959ffba78fd 5247
mjr 35:e959ffba78fd 5248 case OrientationLeft:
mjr 35:e959ffba78fd 5249 x = -x;
mjr 35:e959ffba78fd 5250 break;
mjr 35:e959ffba78fd 5251
mjr 35:e959ffba78fd 5252 case OrientationRight:
mjr 35:e959ffba78fd 5253 y = -y;
mjr 35:e959ffba78fd 5254 break;
mjr 35:e959ffba78fd 5255
mjr 35:e959ffba78fd 5256 case OrientationRear:
mjr 35:e959ffba78fd 5257 tmp = -x;
mjr 35:e959ffba78fd 5258 x = -y;
mjr 35:e959ffba78fd 5259 y = tmp;
mjr 35:e959ffba78fd 5260 break;
mjr 35:e959ffba78fd 5261 }
mjr 35:e959ffba78fd 5262 }
mjr 35:e959ffba78fd 5263
mjr 35:e959ffba78fd 5264 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5265 //
mjr 35:e959ffba78fd 5266 // Calibration button state:
mjr 35:e959ffba78fd 5267 // 0 = not pushed
mjr 35:e959ffba78fd 5268 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5269 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5270 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5271 int calBtnState = 0;
mjr 35:e959ffba78fd 5272
mjr 35:e959ffba78fd 5273 // calibration button debounce timer
mjr 35:e959ffba78fd 5274 Timer calBtnTimer;
mjr 35:e959ffba78fd 5275
mjr 35:e959ffba78fd 5276 // calibration button light state
mjr 35:e959ffba78fd 5277 int calBtnLit = false;
mjr 35:e959ffba78fd 5278
mjr 35:e959ffba78fd 5279
mjr 35:e959ffba78fd 5280 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5281 //
mjr 40:cc0d9814522b 5282 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5283 //
mjr 40:cc0d9814522b 5284
mjr 40:cc0d9814522b 5285 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5286 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5287 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5288 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5289 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5290 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5291 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5292 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5293 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5294 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5295 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5296
mjr 40:cc0d9814522b 5297 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5298 #undef if_msg_valid
mjr 40:cc0d9814522b 5299 #undef v_byte
mjr 40:cc0d9814522b 5300 #undef v_ui16
mjr 77:0b96f6867312 5301 #undef v_ui32
mjr 40:cc0d9814522b 5302 #undef v_pin
mjr 53:9b2611964afc 5303 #undef v_byte_ro
mjr 74:822a92bc11d2 5304 #undef v_ui32_ro
mjr 74:822a92bc11d2 5305 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5306 #undef v_func
mjr 38:091e511ce8a0 5307
mjr 40:cc0d9814522b 5308 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 5309 #define if_msg_valid(test)
mjr 53:9b2611964afc 5310 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5311 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5312 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5313 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5314 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5315 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5316 #define VAR_MODE_SET 0 // we're in GET mode
mjr 76:7f5912b6340e 5317 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5318 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5319
mjr 35:e959ffba78fd 5320
mjr 35:e959ffba78fd 5321 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5322 //
mjr 35:e959ffba78fd 5323 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5324 // LedWiz protocol.
mjr 33:d832bcab089e 5325 //
mjr 78:1e00b3fa11af 5326 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5327 {
mjr 38:091e511ce8a0 5328 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5329 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5330 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5331 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5332 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5333 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5334 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5335 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5336 //
mjr 38:091e511ce8a0 5337 // first byte =
mjr 74:822a92bc11d2 5338 // 0-48 -> PBA
mjr 74:822a92bc11d2 5339 // 64 -> SBA
mjr 38:091e511ce8a0 5340 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5341 // 129-132 -> PBA
mjr 38:091e511ce8a0 5342 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5343 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5344 // other -> reserved for future use
mjr 38:091e511ce8a0 5345 //
mjr 39:b3815a1c3802 5346 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5347 if (data[0] == 64)
mjr 35:e959ffba78fd 5348 {
mjr 74:822a92bc11d2 5349 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5350 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5351 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5352 sba_sbx(0, data);
mjr 74:822a92bc11d2 5353
mjr 74:822a92bc11d2 5354 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5355 pbaIdx = 0;
mjr 38:091e511ce8a0 5356 }
mjr 38:091e511ce8a0 5357 else if (data[0] == 65)
mjr 38:091e511ce8a0 5358 {
mjr 38:091e511ce8a0 5359 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5360 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5361 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5362 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5363 // message type.
mjr 39:b3815a1c3802 5364 switch (data[1])
mjr 38:091e511ce8a0 5365 {
mjr 39:b3815a1c3802 5366 case 0:
mjr 39:b3815a1c3802 5367 // No Op
mjr 39:b3815a1c3802 5368 break;
mjr 39:b3815a1c3802 5369
mjr 39:b3815a1c3802 5370 case 1:
mjr 38:091e511ce8a0 5371 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5372 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5373 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5374 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5375 {
mjr 39:b3815a1c3802 5376
mjr 39:b3815a1c3802 5377 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5378 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5379 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5380
mjr 86:e30a1f60f783 5381 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 5382 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5383
mjr 39:b3815a1c3802 5384 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5385 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5386 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5387
mjr 77:0b96f6867312 5388 // set the flag to do the save
mjr 86:e30a1f60f783 5389 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 5390 }
mjr 39:b3815a1c3802 5391 break;
mjr 38:091e511ce8a0 5392
mjr 39:b3815a1c3802 5393 case 2:
mjr 38:091e511ce8a0 5394 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5395 // (No parameters)
mjr 38:091e511ce8a0 5396
mjr 38:091e511ce8a0 5397 // enter calibration mode
mjr 38:091e511ce8a0 5398 calBtnState = 3;
mjr 52:8298b2a73eb2 5399 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5400 calBtnTimer.reset();
mjr 39:b3815a1c3802 5401 break;
mjr 39:b3815a1c3802 5402
mjr 39:b3815a1c3802 5403 case 3:
mjr 52:8298b2a73eb2 5404 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5405 // data[2] = flag bits
mjr 53:9b2611964afc 5406 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5407 reportPlungerStat = true;
mjr 53:9b2611964afc 5408 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5409 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5410
mjr 38:091e511ce8a0 5411 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5412 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5413 break;
mjr 39:b3815a1c3802 5414
mjr 39:b3815a1c3802 5415 case 4:
mjr 38:091e511ce8a0 5416 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5417 // (No parameters)
mjr 38:091e511ce8a0 5418 js.reportConfig(
mjr 38:091e511ce8a0 5419 numOutputs,
mjr 38:091e511ce8a0 5420 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5421 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5422 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5423 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5424 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 5425 true, // we support the "flash write ok" status bit in joystick reports
mjr 79:682ae3171a08 5426 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 5427 break;
mjr 39:b3815a1c3802 5428
mjr 39:b3815a1c3802 5429 case 5:
mjr 38:091e511ce8a0 5430 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5431 allOutputsOff();
mjr 39:b3815a1c3802 5432 break;
mjr 39:b3815a1c3802 5433
mjr 39:b3815a1c3802 5434 case 6:
mjr 85:3c28aee81cde 5435 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 5436 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 5437 //
mjr 85:3c28aee81cde 5438 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 5439 // data[3] = flags:
mjr 85:3c28aee81cde 5440 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 5441 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 5442 break;
mjr 40:cc0d9814522b 5443
mjr 40:cc0d9814522b 5444 case 7:
mjr 40:cc0d9814522b 5445 // 7 = Device ID report
mjr 53:9b2611964afc 5446 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5447 js.reportID(data[2]);
mjr 40:cc0d9814522b 5448 break;
mjr 40:cc0d9814522b 5449
mjr 40:cc0d9814522b 5450 case 8:
mjr 40:cc0d9814522b 5451 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5452 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5453 setNightMode(data[2]);
mjr 40:cc0d9814522b 5454 break;
mjr 52:8298b2a73eb2 5455
mjr 52:8298b2a73eb2 5456 case 9:
mjr 52:8298b2a73eb2 5457 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5458 // data[2] = config var ID
mjr 52:8298b2a73eb2 5459 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5460 {
mjr 53:9b2611964afc 5461 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5462 // the rest of the buffer
mjr 52:8298b2a73eb2 5463 uint8_t reply[8];
mjr 52:8298b2a73eb2 5464 reply[1] = data[2];
mjr 52:8298b2a73eb2 5465 reply[2] = data[3];
mjr 53:9b2611964afc 5466 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5467
mjr 52:8298b2a73eb2 5468 // query the value
mjr 52:8298b2a73eb2 5469 configVarGet(reply);
mjr 52:8298b2a73eb2 5470
mjr 52:8298b2a73eb2 5471 // send the reply
mjr 52:8298b2a73eb2 5472 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5473 }
mjr 52:8298b2a73eb2 5474 break;
mjr 53:9b2611964afc 5475
mjr 53:9b2611964afc 5476 case 10:
mjr 53:9b2611964afc 5477 // 10 = Build ID query.
mjr 53:9b2611964afc 5478 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5479 break;
mjr 73:4e8ce0b18915 5480
mjr 73:4e8ce0b18915 5481 case 11:
mjr 73:4e8ce0b18915 5482 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5483 // data[2] = operation:
mjr 73:4e8ce0b18915 5484 // 0 = turn relay off
mjr 73:4e8ce0b18915 5485 // 1 = turn relay on
mjr 73:4e8ce0b18915 5486 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5487 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5488 break;
mjr 73:4e8ce0b18915 5489
mjr 73:4e8ce0b18915 5490 case 12:
mjr 77:0b96f6867312 5491 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5492 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5493 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5494 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5495 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5496
mjr 77:0b96f6867312 5497 // enter IR learning mode
mjr 77:0b96f6867312 5498 IRLearningMode = 1;
mjr 77:0b96f6867312 5499
mjr 77:0b96f6867312 5500 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5501 IRCommandIn = 0;
mjr 77:0b96f6867312 5502
mjr 77:0b96f6867312 5503 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5504 IRTimer.reset();
mjr 73:4e8ce0b18915 5505 break;
mjr 73:4e8ce0b18915 5506
mjr 73:4e8ce0b18915 5507 case 13:
mjr 73:4e8ce0b18915 5508 // 13 = Send button status report
mjr 73:4e8ce0b18915 5509 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5510 break;
mjr 78:1e00b3fa11af 5511
mjr 78:1e00b3fa11af 5512 case 14:
mjr 78:1e00b3fa11af 5513 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5514 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5515 break;
mjr 78:1e00b3fa11af 5516
mjr 78:1e00b3fa11af 5517 case 15:
mjr 78:1e00b3fa11af 5518 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5519 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5520 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5521 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5522 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5523 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5524 break;
mjr 78:1e00b3fa11af 5525
mjr 78:1e00b3fa11af 5526 case 16:
mjr 78:1e00b3fa11af 5527 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5528 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5529 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5530 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5531 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5532 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5533 break;
mjr 38:091e511ce8a0 5534 }
mjr 38:091e511ce8a0 5535 }
mjr 38:091e511ce8a0 5536 else if (data[0] == 66)
mjr 38:091e511ce8a0 5537 {
mjr 38:091e511ce8a0 5538 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5539 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5540 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5541 // in a variable-dependent format.
mjr 40:cc0d9814522b 5542 configVarSet(data);
mjr 86:e30a1f60f783 5543
mjr 87:8d35c74403af 5544 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 5545 // dynamically
mjr 87:8d35c74403af 5546 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 5547 }
mjr 74:822a92bc11d2 5548 else if (data[0] == 67)
mjr 74:822a92bc11d2 5549 {
mjr 74:822a92bc11d2 5550 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5551 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5552 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5553 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5554 }
mjr 74:822a92bc11d2 5555 else if (data[0] == 68)
mjr 74:822a92bc11d2 5556 {
mjr 74:822a92bc11d2 5557 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5558 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5559 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5560
mjr 74:822a92bc11d2 5561 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5562 int portGroup = data[1];
mjr 74:822a92bc11d2 5563
mjr 74:822a92bc11d2 5564 // unpack the brightness values
mjr 74:822a92bc11d2 5565 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5566 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5567 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5568 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5569 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5570 };
mjr 74:822a92bc11d2 5571
mjr 74:822a92bc11d2 5572 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5573 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5574 {
mjr 74:822a92bc11d2 5575 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5576 bri[i] += 129-60;
mjr 74:822a92bc11d2 5577 }
mjr 74:822a92bc11d2 5578
mjr 74:822a92bc11d2 5579 // Carry out the PBA
mjr 74:822a92bc11d2 5580 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5581 }
mjr 38:091e511ce8a0 5582 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5583 {
mjr 38:091e511ce8a0 5584 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5585 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5586 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5587 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5588 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5589 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5590 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5591 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5592 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5593 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5594 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5595 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5596 //
mjr 38:091e511ce8a0 5597 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5598 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5599 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5600 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5601 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5602 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5603
mjr 63:5cd1a5f3a41b 5604 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5605 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5606 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5607
mjr 63:5cd1a5f3a41b 5608 // update each port
mjr 38:091e511ce8a0 5609 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5610 {
mjr 38:091e511ce8a0 5611 // set the brightness level for the output
mjr 40:cc0d9814522b 5612 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5613 outLevel[i] = b;
mjr 38:091e511ce8a0 5614
mjr 74:822a92bc11d2 5615 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5616 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5617 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5618 if (b != 0)
mjr 76:7f5912b6340e 5619 {
mjr 76:7f5912b6340e 5620 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5621 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5622 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5623 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5624 // forward unchanged.
mjr 76:7f5912b6340e 5625 wizOn[i] = 1;
mjr 76:7f5912b6340e 5626 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5627 }
mjr 76:7f5912b6340e 5628 else
mjr 76:7f5912b6340e 5629 {
mjr 76:7f5912b6340e 5630 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5631 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5632 wizOn[i] = 0;
mjr 76:7f5912b6340e 5633 }
mjr 74:822a92bc11d2 5634
mjr 38:091e511ce8a0 5635 // set the output
mjr 40:cc0d9814522b 5636 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5637 }
mjr 38:091e511ce8a0 5638
mjr 38:091e511ce8a0 5639 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5640 if (hc595 != 0)
mjr 38:091e511ce8a0 5641 hc595->update();
mjr 38:091e511ce8a0 5642 }
mjr 38:091e511ce8a0 5643 else
mjr 38:091e511ce8a0 5644 {
mjr 74:822a92bc11d2 5645 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5646 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5647 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5648 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5649 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5650 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5651 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5652 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5653 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5654 //
mjr 38:091e511ce8a0 5655 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5656 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5657 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5658 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5659 // protocol mode.
mjr 38:091e511ce8a0 5660 //
mjr 38:091e511ce8a0 5661 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5662 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5663
mjr 74:822a92bc11d2 5664 // carry out the PBA
mjr 74:822a92bc11d2 5665 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5666
mjr 74:822a92bc11d2 5667 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5668 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5669 }
mjr 38:091e511ce8a0 5670 }
mjr 35:e959ffba78fd 5671
mjr 38:091e511ce8a0 5672 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5673 //
mjr 5:a70c0bce770d 5674 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5675 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5676 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5677 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5678 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5679 // port outputs.
mjr 5:a70c0bce770d 5680 //
mjr 0:5acbbe3f4cf4 5681 int main(void)
mjr 0:5acbbe3f4cf4 5682 {
mjr 60:f38da020aa13 5683 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5684 printf("\r\nPinscape Controller starting\r\n");
mjr 82:4f6209cb5c33 5685
mjr 76:7f5912b6340e 5686 // clear the I2C connection
mjr 35:e959ffba78fd 5687 clear_i2c();
mjr 82:4f6209cb5c33 5688
mjr 82:4f6209cb5c33 5689 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 5690 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 5691 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 5692 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 5693 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 5694 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 5695
mjr 76:7f5912b6340e 5696 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 5697 // configuration data:
mjr 76:7f5912b6340e 5698 //
mjr 76:7f5912b6340e 5699 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 5700 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 5701 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 5702 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 5703 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 5704 // to store user settings updates.
mjr 76:7f5912b6340e 5705 //
mjr 76:7f5912b6340e 5706 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 5707 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 5708 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 5709 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 5710 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 5711 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 5712 // without a separate download of the config data.
mjr 76:7f5912b6340e 5713 //
mjr 76:7f5912b6340e 5714 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 5715 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 5716 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 5717 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 5718 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 5719 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 5720 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 5721 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 5722 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 5723 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 5724 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 5725 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 5726 loadHostLoadedConfig();
mjr 35:e959ffba78fd 5727
mjr 38:091e511ce8a0 5728 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 5729 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 5730
mjr 33:d832bcab089e 5731 // we're not connected/awake yet
mjr 33:d832bcab089e 5732 bool connected = false;
mjr 40:cc0d9814522b 5733 Timer connectChangeTimer;
mjr 33:d832bcab089e 5734
mjr 35:e959ffba78fd 5735 // create the plunger sensor interface
mjr 35:e959ffba78fd 5736 createPlunger();
mjr 76:7f5912b6340e 5737
mjr 76:7f5912b6340e 5738 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 5739 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 5740
mjr 60:f38da020aa13 5741 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 5742 init_tlc5940(cfg);
mjr 34:6b981a2afab7 5743
mjr 87:8d35c74403af 5744 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 5745 init_tlc59116(cfg);
mjr 87:8d35c74403af 5746
mjr 60:f38da020aa13 5747 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 5748 init_hc595(cfg);
mjr 6:cc35eb643e8f 5749
mjr 54:fd77a6b2f76c 5750 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 5751 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 5752 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 5753 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 5754 initLwOut(cfg);
mjr 48:058ace2aed1d 5755
mjr 60:f38da020aa13 5756 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 5757 if (tlc5940 != 0)
mjr 35:e959ffba78fd 5758 tlc5940->start();
mjr 87:8d35c74403af 5759
mjr 77:0b96f6867312 5760 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 5761 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 5762 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 5763 // USB keyboard interface.
mjr 77:0b96f6867312 5764 bool kbKeys = false;
mjr 77:0b96f6867312 5765
mjr 77:0b96f6867312 5766 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 5767 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 5768
mjr 77:0b96f6867312 5769 // start the power status time, if applicable
mjr 77:0b96f6867312 5770 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 5771
mjr 35:e959ffba78fd 5772 // initialize the button input ports
mjr 35:e959ffba78fd 5773 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 5774
mjr 60:f38da020aa13 5775 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 5776 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 5777 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 5778 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 5779 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 5780 // to the joystick interface.
mjr 51:57eb311faafa 5781 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 5782 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 5783
mjr 60:f38da020aa13 5784 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 5785 // flash pattern while waiting.
mjr 70:9f58735a1732 5786 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 5787 connTimeoutTimer.start();
mjr 70:9f58735a1732 5788 connFlashTimer.start();
mjr 51:57eb311faafa 5789 while (!js.configured())
mjr 51:57eb311faafa 5790 {
mjr 51:57eb311faafa 5791 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 5792 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5793 {
mjr 51:57eb311faafa 5794 // short yellow flash
mjr 51:57eb311faafa 5795 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 5796 wait_us(50000);
mjr 51:57eb311faafa 5797 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5798
mjr 51:57eb311faafa 5799 // reset the flash timer
mjr 70:9f58735a1732 5800 connFlashTimer.reset();
mjr 51:57eb311faafa 5801 }
mjr 70:9f58735a1732 5802
mjr 77:0b96f6867312 5803 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 5804 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 5805 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 5806 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 5807 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 5808 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 5809 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 5810 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 5811 reboot(js, false, 0);
mjr 77:0b96f6867312 5812
mjr 77:0b96f6867312 5813 // update the PSU2 power sensing status
mjr 77:0b96f6867312 5814 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 5815 }
mjr 60:f38da020aa13 5816
mjr 60:f38da020aa13 5817 // we're now connected to the host
mjr 54:fd77a6b2f76c 5818 connected = true;
mjr 40:cc0d9814522b 5819
mjr 60:f38da020aa13 5820 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 5821 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 5822 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 5823 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 5824 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 5825 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 5826 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 5827 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 5828 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 5829 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 5830 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 5831 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 5832 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 5833 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 5834 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 5835 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 5836 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 5837 // around to polling.
mjr 38:091e511ce8a0 5838 Timer jsReportTimer;
mjr 38:091e511ce8a0 5839 jsReportTimer.start();
mjr 38:091e511ce8a0 5840
mjr 60:f38da020aa13 5841 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 5842 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 5843 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 5844 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 5845 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 5846 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 5847 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 5848 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 5849 Timer jsOKTimer;
mjr 38:091e511ce8a0 5850 jsOKTimer.start();
mjr 35:e959ffba78fd 5851
mjr 55:4db125cd11a0 5852 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 5853 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 5854 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 5855 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 5856 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 5857
mjr 55:4db125cd11a0 5858 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 5859 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 5860 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 5861
mjr 55:4db125cd11a0 5862 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 5863 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 5864 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 5865
mjr 35:e959ffba78fd 5866 // initialize the calibration button
mjr 1:d913e0afb2ac 5867 calBtnTimer.start();
mjr 35:e959ffba78fd 5868 calBtnState = 0;
mjr 1:d913e0afb2ac 5869
mjr 1:d913e0afb2ac 5870 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 5871 Timer hbTimer;
mjr 1:d913e0afb2ac 5872 hbTimer.start();
mjr 1:d913e0afb2ac 5873 int hb = 0;
mjr 5:a70c0bce770d 5874 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 5875
mjr 1:d913e0afb2ac 5876 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 5877 Timer acTimer;
mjr 1:d913e0afb2ac 5878 acTimer.start();
mjr 1:d913e0afb2ac 5879
mjr 0:5acbbe3f4cf4 5880 // create the accelerometer object
mjr 77:0b96f6867312 5881 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 5882 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 5883
mjr 17:ab3cec0c8bf4 5884 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 5885 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 5886 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 5887
mjr 48:058ace2aed1d 5888 // initialize the plunger sensor
mjr 35:e959ffba78fd 5889 plungerSensor->init();
mjr 10:976666ffa4ef 5890
mjr 48:058ace2aed1d 5891 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 5892 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 5893
mjr 54:fd77a6b2f76c 5894 // enable the peripheral chips
mjr 54:fd77a6b2f76c 5895 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 5896 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 5897 if (hc595 != 0)
mjr 54:fd77a6b2f76c 5898 hc595->enable(true);
mjr 87:8d35c74403af 5899 if (tlc59116 != 0)
mjr 87:8d35c74403af 5900 tlc59116->enable(true);
mjr 74:822a92bc11d2 5901
mjr 76:7f5912b6340e 5902 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 5903 wizCycleTimer.start();
mjr 74:822a92bc11d2 5904
mjr 74:822a92bc11d2 5905 // start the PWM update polling timer
mjr 74:822a92bc11d2 5906 polledPwmTimer.start();
mjr 43:7a6364d82a41 5907
mjr 1:d913e0afb2ac 5908 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 5909 // host requests
mjr 0:5acbbe3f4cf4 5910 for (;;)
mjr 0:5acbbe3f4cf4 5911 {
mjr 74:822a92bc11d2 5912 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 5913 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 5914
mjr 48:058ace2aed1d 5915 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 5916 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 5917 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 5918 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 5919 LedWizMsg lwm;
mjr 48:058ace2aed1d 5920 Timer lwt;
mjr 48:058ace2aed1d 5921 lwt.start();
mjr 77:0b96f6867312 5922 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 5923 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 5924 {
mjr 78:1e00b3fa11af 5925 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 5926 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 5927 }
mjr 74:822a92bc11d2 5928
mjr 74:822a92bc11d2 5929 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 5930 IF_DIAG(
mjr 74:822a92bc11d2 5931 if (msgCount != 0)
mjr 74:822a92bc11d2 5932 {
mjr 76:7f5912b6340e 5933 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 5934 mainLoopMsgCount++;
mjr 74:822a92bc11d2 5935 }
mjr 74:822a92bc11d2 5936 )
mjr 74:822a92bc11d2 5937
mjr 77:0b96f6867312 5938 // process IR input
mjr 77:0b96f6867312 5939 process_IR(cfg, js);
mjr 77:0b96f6867312 5940
mjr 77:0b96f6867312 5941 // update the PSU2 power sensing status
mjr 77:0b96f6867312 5942 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 5943
mjr 74:822a92bc11d2 5944 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 5945 wizPulse();
mjr 74:822a92bc11d2 5946
mjr 74:822a92bc11d2 5947 // update PWM outputs
mjr 74:822a92bc11d2 5948 pollPwmUpdates();
mjr 77:0b96f6867312 5949
mjr 77:0b96f6867312 5950 // poll the accelerometer
mjr 77:0b96f6867312 5951 accel.poll();
mjr 55:4db125cd11a0 5952
mjr 76:7f5912b6340e 5953 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 5954 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5955
mjr 55:4db125cd11a0 5956 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 5957 if (tlc5940 != 0)
mjr 55:4db125cd11a0 5958 tlc5940->send();
mjr 87:8d35c74403af 5959
mjr 87:8d35c74403af 5960 // send TLC59116 data updates
mjr 87:8d35c74403af 5961 if (tlc59116 != 0)
mjr 87:8d35c74403af 5962 tlc59116->send();
mjr 1:d913e0afb2ac 5963
mjr 76:7f5912b6340e 5964 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 5965 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 5966
mjr 1:d913e0afb2ac 5967 // check for plunger calibration
mjr 17:ab3cec0c8bf4 5968 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 5969 {
mjr 1:d913e0afb2ac 5970 // check the state
mjr 1:d913e0afb2ac 5971 switch (calBtnState)
mjr 0:5acbbe3f4cf4 5972 {
mjr 1:d913e0afb2ac 5973 case 0:
mjr 1:d913e0afb2ac 5974 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 5975 calBtnTimer.reset();
mjr 1:d913e0afb2ac 5976 calBtnState = 1;
mjr 1:d913e0afb2ac 5977 break;
mjr 1:d913e0afb2ac 5978
mjr 1:d913e0afb2ac 5979 case 1:
mjr 1:d913e0afb2ac 5980 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 5981 // passed, start the hold period
mjr 48:058ace2aed1d 5982 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 5983 calBtnState = 2;
mjr 1:d913e0afb2ac 5984 break;
mjr 1:d913e0afb2ac 5985
mjr 1:d913e0afb2ac 5986 case 2:
mjr 1:d913e0afb2ac 5987 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 5988 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 5989 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 5990 {
mjr 1:d913e0afb2ac 5991 // enter calibration mode
mjr 1:d913e0afb2ac 5992 calBtnState = 3;
mjr 9:fd65b0a94720 5993 calBtnTimer.reset();
mjr 35:e959ffba78fd 5994
mjr 44:b5ac89b9cd5d 5995 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 5996 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 5997 }
mjr 1:d913e0afb2ac 5998 break;
mjr 2:c174f9ee414a 5999
mjr 2:c174f9ee414a 6000 case 3:
mjr 9:fd65b0a94720 6001 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6002 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6003 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6004 break;
mjr 0:5acbbe3f4cf4 6005 }
mjr 0:5acbbe3f4cf4 6006 }
mjr 1:d913e0afb2ac 6007 else
mjr 1:d913e0afb2ac 6008 {
mjr 2:c174f9ee414a 6009 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6010 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6011 // and save the results to flash.
mjr 2:c174f9ee414a 6012 //
mjr 2:c174f9ee414a 6013 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6014 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6015 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6016 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6017 {
mjr 2:c174f9ee414a 6018 // exit calibration mode
mjr 1:d913e0afb2ac 6019 calBtnState = 0;
mjr 52:8298b2a73eb2 6020 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6021
mjr 6:cc35eb643e8f 6022 // save the updated configuration
mjr 35:e959ffba78fd 6023 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6024 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6025 }
mjr 2:c174f9ee414a 6026 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6027 {
mjr 2:c174f9ee414a 6028 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6029 calBtnState = 0;
mjr 2:c174f9ee414a 6030 }
mjr 1:d913e0afb2ac 6031 }
mjr 1:d913e0afb2ac 6032
mjr 1:d913e0afb2ac 6033 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6034 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6035 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6036 {
mjr 1:d913e0afb2ac 6037 case 2:
mjr 1:d913e0afb2ac 6038 // in the hold period - flash the light
mjr 48:058ace2aed1d 6039 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6040 break;
mjr 1:d913e0afb2ac 6041
mjr 1:d913e0afb2ac 6042 case 3:
mjr 1:d913e0afb2ac 6043 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6044 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6045 break;
mjr 1:d913e0afb2ac 6046
mjr 1:d913e0afb2ac 6047 default:
mjr 1:d913e0afb2ac 6048 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6049 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6050 break;
mjr 1:d913e0afb2ac 6051 }
mjr 3:3514575d4f86 6052
mjr 3:3514575d4f86 6053 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6054 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6055 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6056 {
mjr 1:d913e0afb2ac 6057 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6058 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6059 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6060 calBtnLed->write(1);
mjr 38:091e511ce8a0 6061 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6062 }
mjr 2:c174f9ee414a 6063 else {
mjr 17:ab3cec0c8bf4 6064 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6065 calBtnLed->write(0);
mjr 38:091e511ce8a0 6066 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6067 }
mjr 1:d913e0afb2ac 6068 }
mjr 35:e959ffba78fd 6069
mjr 76:7f5912b6340e 6070 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6071 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6072
mjr 48:058ace2aed1d 6073 // read the plunger sensor
mjr 48:058ace2aed1d 6074 plungerReader.read();
mjr 48:058ace2aed1d 6075
mjr 76:7f5912b6340e 6076 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6077 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6078
mjr 53:9b2611964afc 6079 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6080 zbLaunchBall.update();
mjr 37:ed52738445fc 6081
mjr 76:7f5912b6340e 6082 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6083 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6084
mjr 53:9b2611964afc 6085 // process button updates
mjr 53:9b2611964afc 6086 processButtons(cfg);
mjr 53:9b2611964afc 6087
mjr 76:7f5912b6340e 6088 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6089 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6090
mjr 38:091e511ce8a0 6091 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6092 if (kbState.changed)
mjr 37:ed52738445fc 6093 {
mjr 38:091e511ce8a0 6094 // send a keyboard report
mjr 37:ed52738445fc 6095 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6096 kbState.changed = false;
mjr 37:ed52738445fc 6097 }
mjr 38:091e511ce8a0 6098
mjr 38:091e511ce8a0 6099 // likewise for the media controller
mjr 37:ed52738445fc 6100 if (mediaState.changed)
mjr 37:ed52738445fc 6101 {
mjr 38:091e511ce8a0 6102 // send a media report
mjr 37:ed52738445fc 6103 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6104 mediaState.changed = false;
mjr 37:ed52738445fc 6105 }
mjr 38:091e511ce8a0 6106
mjr 76:7f5912b6340e 6107 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6108 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6109
mjr 38:091e511ce8a0 6110 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6111 bool jsOK = false;
mjr 55:4db125cd11a0 6112
mjr 55:4db125cd11a0 6113 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6114 uint16_t statusFlags =
mjr 77:0b96f6867312 6115 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6116 | nightMode // 0x02
mjr 79:682ae3171a08 6117 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6118 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6119 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6120 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6121
mjr 50:40015764bbe6 6122 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6123 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6124 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6125 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 6126 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 6127 {
mjr 17:ab3cec0c8bf4 6128 // read the accelerometer
mjr 17:ab3cec0c8bf4 6129 int xa, ya;
mjr 17:ab3cec0c8bf4 6130 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6131
mjr 17:ab3cec0c8bf4 6132 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 6133 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 6134 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 6135 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 6136 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 6137
mjr 17:ab3cec0c8bf4 6138 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 6139 x = xa;
mjr 17:ab3cec0c8bf4 6140 y = ya;
mjr 17:ab3cec0c8bf4 6141
mjr 48:058ace2aed1d 6142 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6143 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6144 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6145 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6146 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6147 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6148 // regular plunger inputs.
mjr 48:058ace2aed1d 6149 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 6150 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 6151
mjr 35:e959ffba78fd 6152 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6153 accelRotate(x, y);
mjr 35:e959ffba78fd 6154
mjr 35:e959ffba78fd 6155 // send the joystick report
mjr 53:9b2611964afc 6156 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6157
mjr 17:ab3cec0c8bf4 6158 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6159 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6160 }
mjr 21:5048e16cc9ef 6161
mjr 52:8298b2a73eb2 6162 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6163 if (reportPlungerStat)
mjr 10:976666ffa4ef 6164 {
mjr 17:ab3cec0c8bf4 6165 // send the report
mjr 53:9b2611964afc 6166 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6167
mjr 10:976666ffa4ef 6168 // we have satisfied this request
mjr 52:8298b2a73eb2 6169 reportPlungerStat = false;
mjr 10:976666ffa4ef 6170 }
mjr 10:976666ffa4ef 6171
mjr 35:e959ffba78fd 6172 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6173 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6174 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6175 {
mjr 55:4db125cd11a0 6176 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6177 jsReportTimer.reset();
mjr 38:091e511ce8a0 6178 }
mjr 38:091e511ce8a0 6179
mjr 38:091e511ce8a0 6180 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6181 if (jsOK)
mjr 38:091e511ce8a0 6182 {
mjr 38:091e511ce8a0 6183 jsOKTimer.reset();
mjr 38:091e511ce8a0 6184 jsOKTimer.start();
mjr 21:5048e16cc9ef 6185 }
mjr 21:5048e16cc9ef 6186
mjr 76:7f5912b6340e 6187 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6188 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6189
mjr 6:cc35eb643e8f 6190 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6191 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6192 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6193 #endif
mjr 6:cc35eb643e8f 6194
mjr 33:d832bcab089e 6195 // check for connection status changes
mjr 54:fd77a6b2f76c 6196 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6197 if (newConnected != connected)
mjr 33:d832bcab089e 6198 {
mjr 54:fd77a6b2f76c 6199 // give it a moment to stabilize
mjr 40:cc0d9814522b 6200 connectChangeTimer.start();
mjr 55:4db125cd11a0 6201 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6202 {
mjr 33:d832bcab089e 6203 // note the new status
mjr 33:d832bcab089e 6204 connected = newConnected;
mjr 40:cc0d9814522b 6205
mjr 40:cc0d9814522b 6206 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6207 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6208 connectChangeTimer.reset();
mjr 33:d832bcab089e 6209
mjr 54:fd77a6b2f76c 6210 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6211 if (!connected)
mjr 40:cc0d9814522b 6212 {
mjr 54:fd77a6b2f76c 6213 // turn off all outputs
mjr 33:d832bcab089e 6214 allOutputsOff();
mjr 40:cc0d9814522b 6215
mjr 40:cc0d9814522b 6216 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6217 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6218 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6219 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6220 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6221 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6222 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6223 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6224 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6225 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6226 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6227 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6228 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6229 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6230 // the power first comes on.
mjr 40:cc0d9814522b 6231 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6232 tlc5940->enable(false);
mjr 87:8d35c74403af 6233 if (tlc59116 != 0)
mjr 87:8d35c74403af 6234 tlc59116->enable(false);
mjr 40:cc0d9814522b 6235 if (hc595 != 0)
mjr 40:cc0d9814522b 6236 hc595->enable(false);
mjr 40:cc0d9814522b 6237 }
mjr 33:d832bcab089e 6238 }
mjr 33:d832bcab089e 6239 }
mjr 48:058ace2aed1d 6240
mjr 53:9b2611964afc 6241 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 6242 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 6243 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 6244 {
mjr 85:3c28aee81cde 6245 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 6246 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 6247 {
mjr 86:e30a1f60f783 6248 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 6249 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 6250 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 6251 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 6252 // status allows it.
mjr 86:e30a1f60f783 6253 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 6254 reboot(js);
mjr 82:4f6209cb5c33 6255 }
mjr 85:3c28aee81cde 6256 else
mjr 85:3c28aee81cde 6257 {
mjr 86:e30a1f60f783 6258 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 6259
mjr 86:e30a1f60f783 6260 // stop and reset the post-save timer
mjr 86:e30a1f60f783 6261 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 6262 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 6263
mjr 86:e30a1f60f783 6264 // clear the post-save success flag
mjr 86:e30a1f60f783 6265 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 6266 }
mjr 77:0b96f6867312 6267 }
mjr 86:e30a1f60f783 6268
mjr 48:058ace2aed1d 6269 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6270 if (!connected)
mjr 48:058ace2aed1d 6271 {
mjr 54:fd77a6b2f76c 6272 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6273 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6274 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6275
mjr 54:fd77a6b2f76c 6276 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6277 js.diagFlash();
mjr 54:fd77a6b2f76c 6278
mjr 54:fd77a6b2f76c 6279 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6280 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6281
mjr 51:57eb311faafa 6282 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6283 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6284 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6285
mjr 54:fd77a6b2f76c 6286 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6287 Timer diagTimer;
mjr 54:fd77a6b2f76c 6288 diagTimer.reset();
mjr 54:fd77a6b2f76c 6289 diagTimer.start();
mjr 74:822a92bc11d2 6290
mjr 74:822a92bc11d2 6291 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6292 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6293
mjr 54:fd77a6b2f76c 6294 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6295 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6296 {
mjr 54:fd77a6b2f76c 6297 // try to recover the connection
mjr 54:fd77a6b2f76c 6298 js.recoverConnection();
mjr 54:fd77a6b2f76c 6299
mjr 55:4db125cd11a0 6300 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6301 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6302 tlc5940->send();
mjr 87:8d35c74403af 6303
mjr 87:8d35c74403af 6304 // update TLC59116 outputs
mjr 87:8d35c74403af 6305 if (tlc59116 != 0)
mjr 87:8d35c74403af 6306 tlc59116->send();
mjr 55:4db125cd11a0 6307
mjr 54:fd77a6b2f76c 6308 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6309 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6310 {
mjr 54:fd77a6b2f76c 6311 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6312 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6313
mjr 54:fd77a6b2f76c 6314 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6315 js.diagFlash();
mjr 51:57eb311faafa 6316
mjr 51:57eb311faafa 6317 // reset the flash timer
mjr 54:fd77a6b2f76c 6318 diagTimer.reset();
mjr 51:57eb311faafa 6319 }
mjr 51:57eb311faafa 6320
mjr 77:0b96f6867312 6321 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6322 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6323 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6324 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6325 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6326 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 6327 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 6328 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 6329 // round and keep waiting.
mjr 51:57eb311faafa 6330 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6331 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6332 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6333 reboot(js, false, 0);
mjr 77:0b96f6867312 6334
mjr 77:0b96f6867312 6335 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6336 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6337 }
mjr 54:fd77a6b2f76c 6338
mjr 74:822a92bc11d2 6339 // resume the main loop timer
mjr 74:822a92bc11d2 6340 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6341
mjr 54:fd77a6b2f76c 6342 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6343 connected = true;
mjr 54:fd77a6b2f76c 6344 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6345
mjr 54:fd77a6b2f76c 6346 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6347 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6348 tlc5940->enable(true);
mjr 87:8d35c74403af 6349 if (tlc59116 != 0)
mjr 87:8d35c74403af 6350 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 6351 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6352 {
mjr 55:4db125cd11a0 6353 hc595->enable(true);
mjr 54:fd77a6b2f76c 6354 hc595->update(true);
mjr 51:57eb311faafa 6355 }
mjr 48:058ace2aed1d 6356 }
mjr 43:7a6364d82a41 6357
mjr 6:cc35eb643e8f 6358 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6359 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6360 {
mjr 54:fd77a6b2f76c 6361 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6362 {
mjr 39:b3815a1c3802 6363 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6364 //
mjr 54:fd77a6b2f76c 6365 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6366 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6367 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6368 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6369 hb = !hb;
mjr 38:091e511ce8a0 6370 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6371
mjr 54:fd77a6b2f76c 6372 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6373 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6374 // with the USB connection.
mjr 54:fd77a6b2f76c 6375 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6376 {
mjr 54:fd77a6b2f76c 6377 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6378 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6379 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 6380 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 6381 // power status allows it.
mjr 86:e30a1f60f783 6382 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6383 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6384 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6385 }
mjr 54:fd77a6b2f76c 6386 else
mjr 54:fd77a6b2f76c 6387 {
mjr 54:fd77a6b2f76c 6388 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6389 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6390 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6391 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6392 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6393 }
mjr 38:091e511ce8a0 6394 }
mjr 73:4e8ce0b18915 6395 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6396 {
mjr 73:4e8ce0b18915 6397 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6398 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6399 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6400 }
mjr 35:e959ffba78fd 6401 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6402 {
mjr 6:cc35eb643e8f 6403 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6404 hb = !hb;
mjr 38:091e511ce8a0 6405 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6406 }
mjr 6:cc35eb643e8f 6407 else
mjr 6:cc35eb643e8f 6408 {
mjr 6:cc35eb643e8f 6409 // connected - flash blue/green
mjr 2:c174f9ee414a 6410 hb = !hb;
mjr 38:091e511ce8a0 6411 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6412 }
mjr 1:d913e0afb2ac 6413
mjr 1:d913e0afb2ac 6414 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6415 hbTimer.reset();
mjr 5:a70c0bce770d 6416 ++hbcnt;
mjr 1:d913e0afb2ac 6417 }
mjr 74:822a92bc11d2 6418
mjr 74:822a92bc11d2 6419 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6420 IF_DIAG(
mjr 76:7f5912b6340e 6421 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6422 mainLoopIterCount++;
mjr 74:822a92bc11d2 6423 )
mjr 1:d913e0afb2ac 6424 }
mjr 0:5acbbe3f4cf4 6425 }