Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Fri Apr 14 17:56:54 2017 +0000
Revision:
85:3c28aee81cde
Parent:
84:31e926f4f3bc
Child:
86:e30a1f60f783
Save config updates before slight rearrangement;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 77:0b96f6867312 55 // Note that VP has built-in support for plunger devices like this one, but
mjr 77:0b96f6867312 56 // some VP tables can't use it without some additional scripting work. The
mjr 77:0b96f6867312 57 // Build Guide has advice on adjusting tables to add plunger support when
mjr 77:0b96f6867312 58 // necessary.
mjr 5:a70c0bce770d 59 //
mjr 6:cc35eb643e8f 60 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 61 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 62 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 63 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 64 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 65 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 66 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 67 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 68 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 69 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 70 //
mjr 17:ab3cec0c8bf4 71 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 72 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 73 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 74 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 75 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 76 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 77 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 78 //
mjr 77:0b96f6867312 79 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 80 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 81 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 82 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 83 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 143 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 144 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 145 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 146 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 147 // remote control transmitter feature below.
mjr 77:0b96f6867312 148 //
mjr 77:0b96f6867312 149 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 150 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 151 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 152 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 153 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 154 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 155 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 156 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 157 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 158 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 159 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 160 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 161 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 162 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 163 //
mjr 35:e959ffba78fd 164 //
mjr 35:e959ffba78fd 165 //
mjr 33:d832bcab089e 166 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 167 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 168 //
mjr 48:058ace2aed1d 169 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 170 //
mjr 48:058ace2aed1d 171 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 172 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 173 // has been established)
mjr 48:058ace2aed1d 174 //
mjr 48:058ace2aed1d 175 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 176 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 177 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 178 //
mjr 38:091e511ce8a0 179 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 180 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 181 // transmissions are failing.
mjr 38:091e511ce8a0 182 //
mjr 73:4e8ce0b18915 183 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 184 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 185 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 186 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 187 // enabled.
mjr 73:4e8ce0b18915 188 //
mjr 6:cc35eb643e8f 189 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 190 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 191 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 192 // no plunger sensor configured.
mjr 6:cc35eb643e8f 193 //
mjr 38:091e511ce8a0 194 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 195 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 196 //
mjr 48:058ace2aed1d 197 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 198 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 199 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 200 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 201 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 202 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 203 //
mjr 48:058ace2aed1d 204 //
mjr 48:058ace2aed1d 205 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 206 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 207 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 208 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 209 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 210 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 211 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 212 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 213
mjr 33:d832bcab089e 214
mjr 0:5acbbe3f4cf4 215 #include "mbed.h"
mjr 6:cc35eb643e8f 216 #include "math.h"
mjr 74:822a92bc11d2 217 #include "diags.h"
mjr 48:058ace2aed1d 218 #include "pinscape.h"
mjr 79:682ae3171a08 219 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 220 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 221 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 222 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 223 #include "crc32.h"
mjr 26:cb71c4af2912 224 #include "TLC5940.h"
mjr 34:6b981a2afab7 225 #include "74HC595.h"
mjr 35:e959ffba78fd 226 #include "nvm.h"
mjr 48:058ace2aed1d 227 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 228 #include "IRReceiver.h"
mjr 77:0b96f6867312 229 #include "IRTransmitter.h"
mjr 77:0b96f6867312 230 #include "NewPwm.h"
mjr 74:822a92bc11d2 231
mjr 82:4f6209cb5c33 232 // plunger sensors
mjr 82:4f6209cb5c33 233 #include "plunger.h"
mjr 82:4f6209cb5c33 234 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 235 #include "potSensor.h"
mjr 82:4f6209cb5c33 236 #include "quadSensor.h"
mjr 82:4f6209cb5c33 237 #include "nullSensor.h"
mjr 82:4f6209cb5c33 238 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 239 #include "distanceSensor.h"
mjr 82:4f6209cb5c33 240
mjr 2:c174f9ee414a 241
mjr 21:5048e16cc9ef 242 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 243 #include "config.h"
mjr 17:ab3cec0c8bf4 244
mjr 76:7f5912b6340e 245 // forward declarations
mjr 76:7f5912b6340e 246 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 247
mjr 53:9b2611964afc 248 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 249 //
mjr 53:9b2611964afc 250 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 251 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 252 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 253 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 254 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 255 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 256 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 257 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 258 // interface.
mjr 53:9b2611964afc 259 //
mjr 53:9b2611964afc 260 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 261 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 262 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 263 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 264 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 265 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 266 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 267 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 268 //
mjr 53:9b2611964afc 269 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 270 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 271 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 272 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 273 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 274 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 275 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 276 //
mjr 53:9b2611964afc 277 const char *getOpenSDAID()
mjr 53:9b2611964afc 278 {
mjr 53:9b2611964afc 279 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 280 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 281 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 282
mjr 53:9b2611964afc 283 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 284 }
mjr 53:9b2611964afc 285
mjr 53:9b2611964afc 286 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 287 //
mjr 53:9b2611964afc 288 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 289 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 290 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 291 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 292 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 293 // want from this.
mjr 53:9b2611964afc 294 //
mjr 53:9b2611964afc 295 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 296 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 297 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 298 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 299 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 300 // macros.
mjr 53:9b2611964afc 301 //
mjr 53:9b2611964afc 302 const char *getBuildID()
mjr 53:9b2611964afc 303 {
mjr 53:9b2611964afc 304 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 305 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 306 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 309 }
mjr 53:9b2611964afc 310
mjr 74:822a92bc11d2 311 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 312 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 313 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 314 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 315 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 316 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 317 Timer mainLoopTimer;
mjr 76:7f5912b6340e 318 #endif
mjr 76:7f5912b6340e 319
mjr 53:9b2611964afc 320
mjr 5:a70c0bce770d 321 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 322 //
mjr 38:091e511ce8a0 323 // Forward declarations
mjr 38:091e511ce8a0 324 //
mjr 38:091e511ce8a0 325 void setNightMode(bool on);
mjr 38:091e511ce8a0 326 void toggleNightMode();
mjr 38:091e511ce8a0 327
mjr 38:091e511ce8a0 328 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 329 // utilities
mjr 17:ab3cec0c8bf4 330
mjr 77:0b96f6867312 331 // int/float point square of a number
mjr 77:0b96f6867312 332 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 333 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 334
mjr 26:cb71c4af2912 335 // floating point rounding
mjr 26:cb71c4af2912 336 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 337
mjr 17:ab3cec0c8bf4 338
mjr 33:d832bcab089e 339 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 340 //
mjr 40:cc0d9814522b 341 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 342 // the running state.
mjr 40:cc0d9814522b 343 //
mjr 77:0b96f6867312 344 class ExtTimer: public Timer
mjr 40:cc0d9814522b 345 {
mjr 40:cc0d9814522b 346 public:
mjr 77:0b96f6867312 347 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 348
mjr 40:cc0d9814522b 349 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 350 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 351
mjr 40:cc0d9814522b 352 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 353
mjr 40:cc0d9814522b 354 private:
mjr 40:cc0d9814522b 355 bool running;
mjr 40:cc0d9814522b 356 };
mjr 40:cc0d9814522b 357
mjr 53:9b2611964afc 358
mjr 53:9b2611964afc 359 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 360 //
mjr 33:d832bcab089e 361 // USB product version number
mjr 5:a70c0bce770d 362 //
mjr 47:df7a88cd249c 363 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 364
mjr 33:d832bcab089e 365 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 366 //
mjr 6:cc35eb643e8f 367 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 368 //
mjr 6:cc35eb643e8f 369 #define JOYMAX 4096
mjr 6:cc35eb643e8f 370
mjr 9:fd65b0a94720 371
mjr 17:ab3cec0c8bf4 372 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 373 //
mjr 40:cc0d9814522b 374 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 375 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 376 //
mjr 35:e959ffba78fd 377
mjr 35:e959ffba78fd 378 // unsigned 16-bit integer
mjr 35:e959ffba78fd 379 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 380 {
mjr 35:e959ffba78fd 381 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 382 }
mjr 40:cc0d9814522b 383 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 384 {
mjr 40:cc0d9814522b 385 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 386 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 387 }
mjr 35:e959ffba78fd 388
mjr 35:e959ffba78fd 389 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 390 {
mjr 35:e959ffba78fd 391 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 392 }
mjr 40:cc0d9814522b 393 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 394 {
mjr 40:cc0d9814522b 395 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 396 }
mjr 35:e959ffba78fd 397
mjr 35:e959ffba78fd 398 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 399 {
mjr 35:e959ffba78fd 400 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 401 }
mjr 40:cc0d9814522b 402 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 403 {
mjr 40:cc0d9814522b 404 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 405 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 406 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 407 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 408 }
mjr 35:e959ffba78fd 409
mjr 35:e959ffba78fd 410 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 411 {
mjr 35:e959ffba78fd 412 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 413 }
mjr 35:e959ffba78fd 414
mjr 53:9b2611964afc 415 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 416 //
mjr 53:9b2611964afc 417 // The internal mbed PinName format is
mjr 53:9b2611964afc 418 //
mjr 53:9b2611964afc 419 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 420 //
mjr 53:9b2611964afc 421 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 422 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 423 //
mjr 53:9b2611964afc 424 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 425 // pin name fits in 8 bits:
mjr 53:9b2611964afc 426 //
mjr 53:9b2611964afc 427 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 428 //
mjr 53:9b2611964afc 429 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 430 //
mjr 53:9b2611964afc 431 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 432 //
mjr 53:9b2611964afc 433 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 434 {
mjr 53:9b2611964afc 435 if (c == 0xFF)
mjr 53:9b2611964afc 436 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 437 else
mjr 53:9b2611964afc 438 return PinName(
mjr 53:9b2611964afc 439 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 440 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 441 }
mjr 40:cc0d9814522b 442 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 443 {
mjr 53:9b2611964afc 444 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 445 }
mjr 35:e959ffba78fd 446
mjr 35:e959ffba78fd 447
mjr 35:e959ffba78fd 448 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 449 //
mjr 38:091e511ce8a0 450 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 451 //
mjr 38:091e511ce8a0 452 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 453 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 454 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 455 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 456 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 457 // SPI capability.
mjr 38:091e511ce8a0 458 //
mjr 38:091e511ce8a0 459 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 460
mjr 73:4e8ce0b18915 461 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 462 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 463 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 464 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 465
mjr 38:091e511ce8a0 466 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 467 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 468 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 469 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 470 {
mjr 73:4e8ce0b18915 471 // remember the new state
mjr 73:4e8ce0b18915 472 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 473
mjr 73:4e8ce0b18915 474 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 475 // applying it to the blue LED
mjr 73:4e8ce0b18915 476 if (diagLEDState == 0)
mjr 77:0b96f6867312 477 {
mjr 77:0b96f6867312 478 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 479 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 480 }
mjr 73:4e8ce0b18915 481
mjr 73:4e8ce0b18915 482 // set the new state
mjr 38:091e511ce8a0 483 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 484 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 485 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 486 }
mjr 38:091e511ce8a0 487
mjr 73:4e8ce0b18915 488 // update the LEDs with the current state
mjr 73:4e8ce0b18915 489 void diagLED(void)
mjr 73:4e8ce0b18915 490 {
mjr 73:4e8ce0b18915 491 diagLED(
mjr 73:4e8ce0b18915 492 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 493 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 494 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 495 }
mjr 73:4e8ce0b18915 496
mjr 38:091e511ce8a0 497 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 498 // an on-board LED segment
mjr 38:091e511ce8a0 499 struct LedSeg
mjr 38:091e511ce8a0 500 {
mjr 38:091e511ce8a0 501 bool r, g, b;
mjr 38:091e511ce8a0 502 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 503
mjr 38:091e511ce8a0 504 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 505 {
mjr 38:091e511ce8a0 506 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 507 // our on-board LED segments
mjr 38:091e511ce8a0 508 int t = pc.typ;
mjr 38:091e511ce8a0 509 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 510 {
mjr 38:091e511ce8a0 511 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 512 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 513 if (pin == LED1)
mjr 38:091e511ce8a0 514 r = true;
mjr 38:091e511ce8a0 515 else if (pin == LED2)
mjr 38:091e511ce8a0 516 g = true;
mjr 38:091e511ce8a0 517 else if (pin == LED3)
mjr 38:091e511ce8a0 518 b = true;
mjr 38:091e511ce8a0 519 }
mjr 38:091e511ce8a0 520 }
mjr 38:091e511ce8a0 521 };
mjr 38:091e511ce8a0 522
mjr 38:091e511ce8a0 523 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 524 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 525 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 526 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 527 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 528 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 529 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 530 {
mjr 38:091e511ce8a0 531 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 532 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 533 LedSeg l;
mjr 38:091e511ce8a0 534 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 535 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 536
mjr 38:091e511ce8a0 537 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 538 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 539 // LedWiz use.
mjr 38:091e511ce8a0 540 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 541 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 542 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 543 }
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545
mjr 38:091e511ce8a0 546 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 547 //
mjr 76:7f5912b6340e 548 // LedWiz emulation
mjr 76:7f5912b6340e 549 //
mjr 76:7f5912b6340e 550
mjr 76:7f5912b6340e 551 // LedWiz output states.
mjr 76:7f5912b6340e 552 //
mjr 76:7f5912b6340e 553 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 554 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 555 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 556 // The two axes are independent.
mjr 76:7f5912b6340e 557 //
mjr 76:7f5912b6340e 558 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 559 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 560 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 561 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 562 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 563 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 564 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 565 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 566
mjr 76:7f5912b6340e 567 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 568 static uint8_t *wizOn;
mjr 76:7f5912b6340e 569
mjr 76:7f5912b6340e 570 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 571 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 572 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 573 //
mjr 76:7f5912b6340e 574 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 575 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 576 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 577 // 130 = flash on / off
mjr 76:7f5912b6340e 578 // 131 = on / ramp down
mjr 76:7f5912b6340e 579 // 132 = ramp up / on
mjr 5:a70c0bce770d 580 //
mjr 76:7f5912b6340e 581 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 582 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 583 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 584 static uint8_t *wizVal;
mjr 76:7f5912b6340e 585
mjr 76:7f5912b6340e 586 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 587 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 588 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 589 // by the extended protocol:
mjr 76:7f5912b6340e 590 //
mjr 76:7f5912b6340e 591 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 592 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 593 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 594 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 595 // if the brightness is non-zero.
mjr 76:7f5912b6340e 596 //
mjr 76:7f5912b6340e 597 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 598 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 599 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 600 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 601 // 0..255 range.
mjr 26:cb71c4af2912 602 //
mjr 76:7f5912b6340e 603 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 604 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 605 // level.
mjr 26:cb71c4af2912 606 //
mjr 76:7f5912b6340e 607 static uint8_t *outLevel;
mjr 76:7f5912b6340e 608
mjr 76:7f5912b6340e 609
mjr 76:7f5912b6340e 610 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 611 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 612 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 613 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 614 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 615 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 616 //
mjr 76:7f5912b6340e 617 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 618 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 619 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 620 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 621 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 622 // at the maximum size.
mjr 76:7f5912b6340e 623 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 624 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 625
mjr 26:cb71c4af2912 626 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 627 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 628 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 629 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 630 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 631
mjr 76:7f5912b6340e 632
mjr 76:7f5912b6340e 633 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 634 //
mjr 76:7f5912b6340e 635 // Output Ports
mjr 76:7f5912b6340e 636 //
mjr 76:7f5912b6340e 637 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 638 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 639 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 640 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 641 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 642 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 643 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 644 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 645 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 646 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 647 // you have to ration pins among features.
mjr 76:7f5912b6340e 648 //
mjr 76:7f5912b6340e 649 // To overcome some of these limitations, we also provide two types of
mjr 76:7f5912b6340e 650 // peripheral controllers that allow adding many more outputs, using only
mjr 76:7f5912b6340e 651 // a small number of GPIO pins to interface with the peripherals. First,
mjr 76:7f5912b6340e 652 // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports
mjr 76:7f5912b6340e 653 // with full PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 76:7f5912b6340e 654 // chip only requires 5 GPIO pins for the interface, no matter how many
mjr 76:7f5912b6340e 655 // chips are in the chain, so it effectively converts 5 GPIO pins into
mjr 76:7f5912b6340e 656 // almost any number of PWM outputs. Second, we support 74HC595 chips.
mjr 76:7f5912b6340e 657 // These provide only digital outputs, but like the TLC5940 they can be
mjr 76:7f5912b6340e 658 // daisy-chained to provide almost unlimited outputs with a few GPIO pins
mjr 76:7f5912b6340e 659 // to control the whole chain.
mjr 76:7f5912b6340e 660 //
mjr 76:7f5912b6340e 661 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 662 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 663 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 664 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 665 //
mjr 76:7f5912b6340e 666 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 667 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 668 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 669 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 670 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 671 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 672 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 673 // of physical devices they're connected to.
mjr 76:7f5912b6340e 674
mjr 76:7f5912b6340e 675
mjr 26:cb71c4af2912 676 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 677 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 678 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 679 class LwOut
mjr 6:cc35eb643e8f 680 {
mjr 6:cc35eb643e8f 681 public:
mjr 40:cc0d9814522b 682 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 683 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 684 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 685 };
mjr 26:cb71c4af2912 686
mjr 35:e959ffba78fd 687 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 688 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 689 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 690 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 691 // numbering.
mjr 35:e959ffba78fd 692 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 693 {
mjr 33:d832bcab089e 694 public:
mjr 35:e959ffba78fd 695 LwVirtualOut() { }
mjr 40:cc0d9814522b 696 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 697 };
mjr 26:cb71c4af2912 698
mjr 34:6b981a2afab7 699 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 700 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 701 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 702 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 703 {
mjr 34:6b981a2afab7 704 public:
mjr 34:6b981a2afab7 705 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 706 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 707
mjr 34:6b981a2afab7 708 private:
mjr 53:9b2611964afc 709 // underlying physical output
mjr 34:6b981a2afab7 710 LwOut *out;
mjr 34:6b981a2afab7 711 };
mjr 34:6b981a2afab7 712
mjr 53:9b2611964afc 713 // Global ZB Launch Ball state
mjr 53:9b2611964afc 714 bool zbLaunchOn = false;
mjr 53:9b2611964afc 715
mjr 53:9b2611964afc 716 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 717 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 718 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 719 {
mjr 53:9b2611964afc 720 public:
mjr 53:9b2611964afc 721 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 722 virtual void set(uint8_t val)
mjr 53:9b2611964afc 723 {
mjr 53:9b2611964afc 724 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 725 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 726
mjr 53:9b2611964afc 727 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 728 out->set(val);
mjr 53:9b2611964afc 729 }
mjr 53:9b2611964afc 730
mjr 53:9b2611964afc 731 private:
mjr 53:9b2611964afc 732 // underlying physical or virtual output
mjr 53:9b2611964afc 733 LwOut *out;
mjr 53:9b2611964afc 734 };
mjr 53:9b2611964afc 735
mjr 53:9b2611964afc 736
mjr 40:cc0d9814522b 737 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 738 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 741 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 742 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 743 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 744 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 745 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 746 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 747 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 748 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 749 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 750 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 751 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 752 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 753 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 754 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 755 };
mjr 40:cc0d9814522b 756
mjr 40:cc0d9814522b 757 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 758 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 759 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 760 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 761 {
mjr 40:cc0d9814522b 762 public:
mjr 40:cc0d9814522b 763 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 764 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 765
mjr 40:cc0d9814522b 766 private:
mjr 40:cc0d9814522b 767 LwOut *out;
mjr 40:cc0d9814522b 768 };
mjr 40:cc0d9814522b 769
mjr 77:0b96f6867312 770 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 771 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 772 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 773 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 774
mjr 40:cc0d9814522b 775 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 776 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 777 // mode is engaged.
mjr 40:cc0d9814522b 778 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 779 {
mjr 40:cc0d9814522b 780 public:
mjr 40:cc0d9814522b 781 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 782 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 783
mjr 53:9b2611964afc 784 private:
mjr 53:9b2611964afc 785 LwOut *out;
mjr 53:9b2611964afc 786 };
mjr 53:9b2611964afc 787
mjr 53:9b2611964afc 788 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 789 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 790 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 791 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 792 {
mjr 53:9b2611964afc 793 public:
mjr 53:9b2611964afc 794 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 795 virtual void set(uint8_t)
mjr 53:9b2611964afc 796 {
mjr 53:9b2611964afc 797 // ignore the host value and simply show the current
mjr 53:9b2611964afc 798 // night mode setting
mjr 53:9b2611964afc 799 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 800 }
mjr 40:cc0d9814522b 801
mjr 40:cc0d9814522b 802 private:
mjr 40:cc0d9814522b 803 LwOut *out;
mjr 40:cc0d9814522b 804 };
mjr 40:cc0d9814522b 805
mjr 26:cb71c4af2912 806
mjr 35:e959ffba78fd 807 //
mjr 35:e959ffba78fd 808 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 809 // assignments set in config.h.
mjr 33:d832bcab089e 810 //
mjr 35:e959ffba78fd 811 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 812 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 813 {
mjr 35:e959ffba78fd 814 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 815 {
mjr 53:9b2611964afc 816 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 817 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 818 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 819 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 820 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 821 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 822 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 823 }
mjr 35:e959ffba78fd 824 }
mjr 26:cb71c4af2912 825
mjr 40:cc0d9814522b 826 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 827 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 828 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 829 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 830 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 831 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 832 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 833 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 834 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 835 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 836 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 837 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 838 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 839 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 840 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 841 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 842 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 843 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 844 };
mjr 40:cc0d9814522b 845
mjr 40:cc0d9814522b 846 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 847 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 848 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 849 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 850 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 851 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 852 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 853 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 854 // are always 8 bits.
mjr 40:cc0d9814522b 855 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 856 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 857 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 858 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 859 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 860 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 861 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 862 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 863 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 864 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 865 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 866 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 867 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 868 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 869 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 870 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 871 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 872 };
mjr 40:cc0d9814522b 873
mjr 26:cb71c4af2912 874 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 875 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 876 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 877 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 878 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 879 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 880 {
mjr 26:cb71c4af2912 881 public:
mjr 60:f38da020aa13 882 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 883 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 884 {
mjr 26:cb71c4af2912 885 if (val != prv)
mjr 40:cc0d9814522b 886 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 887 }
mjr 60:f38da020aa13 888 uint8_t idx;
mjr 40:cc0d9814522b 889 uint8_t prv;
mjr 26:cb71c4af2912 890 };
mjr 26:cb71c4af2912 891
mjr 40:cc0d9814522b 892 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 893 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 894 {
mjr 40:cc0d9814522b 895 public:
mjr 60:f38da020aa13 896 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 897 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 898 {
mjr 40:cc0d9814522b 899 if (val != prv)
mjr 40:cc0d9814522b 900 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 901 }
mjr 60:f38da020aa13 902 uint8_t idx;
mjr 40:cc0d9814522b 903 uint8_t prv;
mjr 40:cc0d9814522b 904 };
mjr 40:cc0d9814522b 905
mjr 40:cc0d9814522b 906
mjr 33:d832bcab089e 907
mjr 34:6b981a2afab7 908 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 909 // config.h.
mjr 35:e959ffba78fd 910 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 911
mjr 35:e959ffba78fd 912 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 913 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 914 {
mjr 35:e959ffba78fd 915 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 916 {
mjr 53:9b2611964afc 917 hc595 = new HC595(
mjr 53:9b2611964afc 918 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 919 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 920 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 921 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 922 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 923 hc595->init();
mjr 35:e959ffba78fd 924 hc595->update();
mjr 35:e959ffba78fd 925 }
mjr 35:e959ffba78fd 926 }
mjr 34:6b981a2afab7 927
mjr 34:6b981a2afab7 928 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 929 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 930 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 931 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 932 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 933 class Lw595Out: public LwOut
mjr 33:d832bcab089e 934 {
mjr 33:d832bcab089e 935 public:
mjr 60:f38da020aa13 936 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 937 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 938 {
mjr 34:6b981a2afab7 939 if (val != prv)
mjr 40:cc0d9814522b 940 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 941 }
mjr 60:f38da020aa13 942 uint8_t idx;
mjr 40:cc0d9814522b 943 uint8_t prv;
mjr 33:d832bcab089e 944 };
mjr 33:d832bcab089e 945
mjr 26:cb71c4af2912 946
mjr 40:cc0d9814522b 947
mjr 64:ef7ca92dff36 948 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 949 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 950 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 951 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 952 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 953 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 954 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 955 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 956 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 957 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 958 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 959 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 960 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 961 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 962 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 963 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 964 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 965 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 966 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 967 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 968 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 969 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 970 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 971 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 972 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 973 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 974 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 975 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 976 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 977 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 978 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 979 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 980 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 981 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 982 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 983 };
mjr 26:cb71c4af2912 984
mjr 64:ef7ca92dff36 985
mjr 64:ef7ca92dff36 986 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 987 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 988 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 989 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 990 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 991 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 992 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 993 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 994 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 995 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 996 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 997 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 998 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 999 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1000 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1001 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1002 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1003 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1004 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1005 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1006 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1007 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1008 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1009 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1010 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1011 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1012 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1013 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1014 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1015 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1016 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1017 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1018 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1019 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1020 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1021 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1022 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1023 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1024 };
mjr 64:ef7ca92dff36 1025
mjr 77:0b96f6867312 1026 // Polled-update PWM output list
mjr 74:822a92bc11d2 1027 //
mjr 77:0b96f6867312 1028 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1029 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1030 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1031 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1032 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1033 //
mjr 77:0b96f6867312 1034 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1035 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1036 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1037 // the main loop.
mjr 74:822a92bc11d2 1038 //
mjr 77:0b96f6867312 1039 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1040 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1041 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1042 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1043 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1044 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1045 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1046 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1047 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1048 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1049 //
mjr 77:0b96f6867312 1050 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1051 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1052 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1053 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1054 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1055 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1056 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1057 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1058 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1059 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1060 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1061 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1062 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1063 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1064 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1065 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1066 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1067 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1068 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1069 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1070 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1071 //
mjr 77:0b96f6867312 1072 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1073 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1074 // of polled items.
mjr 74:822a92bc11d2 1075 static int numPolledPwm;
mjr 74:822a92bc11d2 1076 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1077
mjr 74:822a92bc11d2 1078 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1079 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1080 {
mjr 6:cc35eb643e8f 1081 public:
mjr 43:7a6364d82a41 1082 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1083 {
mjr 77:0b96f6867312 1084 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1085 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1086 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1087
mjr 77:0b96f6867312 1088 // set the initial value
mjr 77:0b96f6867312 1089 set(initVal);
mjr 43:7a6364d82a41 1090 }
mjr 74:822a92bc11d2 1091
mjr 40:cc0d9814522b 1092 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1093 {
mjr 77:0b96f6867312 1094 // save the new value
mjr 74:822a92bc11d2 1095 this->val = val;
mjr 77:0b96f6867312 1096
mjr 77:0b96f6867312 1097 // commit it to the hardware
mjr 77:0b96f6867312 1098 commit();
mjr 13:72dda449c3c0 1099 }
mjr 74:822a92bc11d2 1100
mjr 74:822a92bc11d2 1101 // handle periodic update polling
mjr 74:822a92bc11d2 1102 void poll()
mjr 74:822a92bc11d2 1103 {
mjr 77:0b96f6867312 1104 commit();
mjr 74:822a92bc11d2 1105 }
mjr 74:822a92bc11d2 1106
mjr 74:822a92bc11d2 1107 protected:
mjr 77:0b96f6867312 1108 virtual void commit()
mjr 74:822a92bc11d2 1109 {
mjr 74:822a92bc11d2 1110 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1111 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1112 }
mjr 74:822a92bc11d2 1113
mjr 77:0b96f6867312 1114 NewPwmOut p;
mjr 77:0b96f6867312 1115 uint8_t val;
mjr 6:cc35eb643e8f 1116 };
mjr 26:cb71c4af2912 1117
mjr 74:822a92bc11d2 1118 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1119 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1120 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1121 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1122 {
mjr 64:ef7ca92dff36 1123 public:
mjr 64:ef7ca92dff36 1124 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1125 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1126 {
mjr 64:ef7ca92dff36 1127 }
mjr 74:822a92bc11d2 1128
mjr 74:822a92bc11d2 1129 protected:
mjr 77:0b96f6867312 1130 virtual void commit()
mjr 64:ef7ca92dff36 1131 {
mjr 74:822a92bc11d2 1132 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1133 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1134 }
mjr 64:ef7ca92dff36 1135 };
mjr 64:ef7ca92dff36 1136
mjr 74:822a92bc11d2 1137 // poll the PWM outputs
mjr 74:822a92bc11d2 1138 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1139 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1140 void pollPwmUpdates()
mjr 74:822a92bc11d2 1141 {
mjr 74:822a92bc11d2 1142 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1143 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1144 {
mjr 74:822a92bc11d2 1145 // time the run for statistics collection
mjr 74:822a92bc11d2 1146 IF_DIAG(
mjr 74:822a92bc11d2 1147 Timer t;
mjr 74:822a92bc11d2 1148 t.start();
mjr 74:822a92bc11d2 1149 )
mjr 74:822a92bc11d2 1150
mjr 74:822a92bc11d2 1151 // poll each output
mjr 74:822a92bc11d2 1152 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1153 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1154
mjr 74:822a92bc11d2 1155 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1156 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1157
mjr 74:822a92bc11d2 1158 // collect statistics
mjr 74:822a92bc11d2 1159 IF_DIAG(
mjr 76:7f5912b6340e 1160 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1161 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1162 )
mjr 74:822a92bc11d2 1163 }
mjr 74:822a92bc11d2 1164 }
mjr 64:ef7ca92dff36 1165
mjr 26:cb71c4af2912 1166 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1167 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1168 {
mjr 6:cc35eb643e8f 1169 public:
mjr 43:7a6364d82a41 1170 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1171 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1172 {
mjr 13:72dda449c3c0 1173 if (val != prv)
mjr 40:cc0d9814522b 1174 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1175 }
mjr 6:cc35eb643e8f 1176 DigitalOut p;
mjr 40:cc0d9814522b 1177 uint8_t prv;
mjr 6:cc35eb643e8f 1178 };
mjr 26:cb71c4af2912 1179
mjr 29:582472d0bc57 1180 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1181 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1182 // port n (0-based).
mjr 35:e959ffba78fd 1183 //
mjr 35:e959ffba78fd 1184 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1185 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1186 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1187 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1188 // 74HC595 ports).
mjr 33:d832bcab089e 1189 static int numOutputs;
mjr 33:d832bcab089e 1190 static LwOut **lwPin;
mjr 33:d832bcab089e 1191
mjr 38:091e511ce8a0 1192 // create a single output pin
mjr 53:9b2611964afc 1193 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1194 {
mjr 38:091e511ce8a0 1195 // get this item's values
mjr 38:091e511ce8a0 1196 int typ = pc.typ;
mjr 38:091e511ce8a0 1197 int pin = pc.pin;
mjr 38:091e511ce8a0 1198 int flags = pc.flags;
mjr 40:cc0d9814522b 1199 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1200 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1201 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1202
mjr 38:091e511ce8a0 1203 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1204 LwOut *lwp;
mjr 38:091e511ce8a0 1205 switch (typ)
mjr 38:091e511ce8a0 1206 {
mjr 38:091e511ce8a0 1207 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1208 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1209 if (pin != 0)
mjr 64:ef7ca92dff36 1210 {
mjr 64:ef7ca92dff36 1211 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1212 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1213 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1214 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1215 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1216 {
mjr 64:ef7ca92dff36 1217 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1218 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1219
mjr 64:ef7ca92dff36 1220 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1221 gamma = false;
mjr 64:ef7ca92dff36 1222 }
mjr 64:ef7ca92dff36 1223 else
mjr 64:ef7ca92dff36 1224 {
mjr 64:ef7ca92dff36 1225 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1226 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1227 }
mjr 64:ef7ca92dff36 1228 }
mjr 48:058ace2aed1d 1229 else
mjr 48:058ace2aed1d 1230 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1231 break;
mjr 38:091e511ce8a0 1232
mjr 38:091e511ce8a0 1233 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1234 // Digital GPIO port
mjr 48:058ace2aed1d 1235 if (pin != 0)
mjr 48:058ace2aed1d 1236 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1237 else
mjr 48:058ace2aed1d 1238 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1239 break;
mjr 38:091e511ce8a0 1240
mjr 38:091e511ce8a0 1241 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1242 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1243 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1244 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1245 {
mjr 40:cc0d9814522b 1246 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1247 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1248 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1249 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1250 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1251 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1252 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1253 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1254 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1255 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1256 // for this unlikely case.
mjr 40:cc0d9814522b 1257 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1258 {
mjr 40:cc0d9814522b 1259 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1260 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1261
mjr 40:cc0d9814522b 1262 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1263 gamma = false;
mjr 40:cc0d9814522b 1264 }
mjr 40:cc0d9814522b 1265 else
mjr 40:cc0d9814522b 1266 {
mjr 40:cc0d9814522b 1267 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1268 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1269 }
mjr 40:cc0d9814522b 1270 }
mjr 38:091e511ce8a0 1271 else
mjr 40:cc0d9814522b 1272 {
mjr 40:cc0d9814522b 1273 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1274 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1275 }
mjr 38:091e511ce8a0 1276 break;
mjr 38:091e511ce8a0 1277
mjr 38:091e511ce8a0 1278 case PortType74HC595:
mjr 38:091e511ce8a0 1279 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1280 // output number, create a virtual port)
mjr 38:091e511ce8a0 1281 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1282 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1283 else
mjr 38:091e511ce8a0 1284 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1285 break;
mjr 38:091e511ce8a0 1286
mjr 38:091e511ce8a0 1287 case PortTypeVirtual:
mjr 43:7a6364d82a41 1288 case PortTypeDisabled:
mjr 38:091e511ce8a0 1289 default:
mjr 38:091e511ce8a0 1290 // virtual or unknown
mjr 38:091e511ce8a0 1291 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1292 break;
mjr 38:091e511ce8a0 1293 }
mjr 38:091e511ce8a0 1294
mjr 40:cc0d9814522b 1295 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1296 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1297 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1298 if (activeLow)
mjr 38:091e511ce8a0 1299 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1300
mjr 40:cc0d9814522b 1301 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1302 // needs to be
mjr 40:cc0d9814522b 1303 if (noisy)
mjr 40:cc0d9814522b 1304 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1305
mjr 40:cc0d9814522b 1306 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1307 if (gamma)
mjr 40:cc0d9814522b 1308 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1309
mjr 53:9b2611964afc 1310 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1311 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1312 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1313 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1314 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1315
mjr 53:9b2611964afc 1316 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1317 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1318 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1319
mjr 38:091e511ce8a0 1320 // turn it off initially
mjr 38:091e511ce8a0 1321 lwp->set(0);
mjr 38:091e511ce8a0 1322
mjr 38:091e511ce8a0 1323 // return the pin
mjr 38:091e511ce8a0 1324 return lwp;
mjr 38:091e511ce8a0 1325 }
mjr 38:091e511ce8a0 1326
mjr 6:cc35eb643e8f 1327 // initialize the output pin array
mjr 35:e959ffba78fd 1328 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1329 {
mjr 35:e959ffba78fd 1330 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1331 // total number of ports.
mjr 35:e959ffba78fd 1332 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1333 int i;
mjr 35:e959ffba78fd 1334 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1335 {
mjr 35:e959ffba78fd 1336 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1337 {
mjr 35:e959ffba78fd 1338 numOutputs = i;
mjr 34:6b981a2afab7 1339 break;
mjr 34:6b981a2afab7 1340 }
mjr 33:d832bcab089e 1341 }
mjr 33:d832bcab089e 1342
mjr 73:4e8ce0b18915 1343 // allocate the pin array
mjr 73:4e8ce0b18915 1344 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1345
mjr 73:4e8ce0b18915 1346 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1347 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1348
mjr 73:4e8ce0b18915 1349 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1350 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1351 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1352
mjr 73:4e8ce0b18915 1353 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1354 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1355 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1356
mjr 73:4e8ce0b18915 1357 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1358 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1359 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1360
mjr 35:e959ffba78fd 1361 // create the pin interface object for each port
mjr 35:e959ffba78fd 1362 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1363 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1364 }
mjr 6:cc35eb643e8f 1365
mjr 76:7f5912b6340e 1366 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1367 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1368 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1369 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1370 // equivalent to 48.
mjr 40:cc0d9814522b 1371 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1372 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1373 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1374 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1375 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1376 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1377 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1378 255, 255
mjr 40:cc0d9814522b 1379 };
mjr 40:cc0d9814522b 1380
mjr 76:7f5912b6340e 1381 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1382 // level (1..48)
mjr 76:7f5912b6340e 1383 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1384 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1385 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1386 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1387 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1388 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1389 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1390 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1391 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1392 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1393 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1394 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1395 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1396 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1397 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1398 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1399 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1400 };
mjr 76:7f5912b6340e 1401
mjr 74:822a92bc11d2 1402 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1403 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1404 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1405 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1406 //
mjr 74:822a92bc11d2 1407 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1408 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1409 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1410 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1411 //
mjr 74:822a92bc11d2 1412 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1413 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1414 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1415 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1416 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1417 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1418 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1419 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1420 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1421 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1422 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1423 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1424 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1425 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1426 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1427 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1428 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1429 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1430 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1431 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1432
mjr 74:822a92bc11d2 1433 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1434 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1435 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1436 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1437 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1438 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1439 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1440 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1441 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1442 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1443 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1444 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1445 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1446 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1447 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1448 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1449 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1450
mjr 74:822a92bc11d2 1451 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1452 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1453 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1454 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1455 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1456 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1457 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1458 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1459 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1460 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1461 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1462 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1463 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1464 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1465 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1466 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1467 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1468
mjr 74:822a92bc11d2 1469 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1470 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1471 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1472 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1473 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1474 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1475 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1476 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1477 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1478 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1479 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1480 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1481 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1482 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1483 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1484 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1485 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1486 };
mjr 74:822a92bc11d2 1487
mjr 74:822a92bc11d2 1488 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1489 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1490 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1491
mjr 76:7f5912b6340e 1492 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1493 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1494
mjr 76:7f5912b6340e 1495 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1496 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1497 // outputs on each cycle.
mjr 29:582472d0bc57 1498 static void wizPulse()
mjr 29:582472d0bc57 1499 {
mjr 76:7f5912b6340e 1500 // current bank
mjr 76:7f5912b6340e 1501 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1502
mjr 76:7f5912b6340e 1503 // start a timer for statistics collection
mjr 76:7f5912b6340e 1504 IF_DIAG(
mjr 76:7f5912b6340e 1505 Timer t;
mjr 76:7f5912b6340e 1506 t.start();
mjr 76:7f5912b6340e 1507 )
mjr 76:7f5912b6340e 1508
mjr 76:7f5912b6340e 1509 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1510 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1511 //
mjr 76:7f5912b6340e 1512 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1513 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1514 //
mjr 76:7f5912b6340e 1515 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1516 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1517 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1518 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1519 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1520 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1521 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1522 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1523 // current cycle.
mjr 76:7f5912b6340e 1524 //
mjr 76:7f5912b6340e 1525 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1526 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1527 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1528 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1529 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1530 //
mjr 76:7f5912b6340e 1531 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1532 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1533 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1534 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1535 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1536 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1537 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1538 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1539 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1540 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1541 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1542 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1543 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1544 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1545 // bit counts.
mjr 76:7f5912b6340e 1546 //
mjr 76:7f5912b6340e 1547 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1548 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1549 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1550 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1551 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1552 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1553 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1554 // one division for another!
mjr 76:7f5912b6340e 1555 //
mjr 76:7f5912b6340e 1556 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1557 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1558 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1559 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1560 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1561 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1562 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1563 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1564 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1565 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1566 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1567 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1568 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1569 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1570 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1571 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1572 // remainder calculation anyway.
mjr 76:7f5912b6340e 1573 //
mjr 76:7f5912b6340e 1574 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1575 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1576 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1577 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1578 //
mjr 76:7f5912b6340e 1579 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1580 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1581 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1582 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1583 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1584 // the result, since we started with 32.
mjr 76:7f5912b6340e 1585 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1586 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1587 };
mjr 76:7f5912b6340e 1588 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1589
mjr 76:7f5912b6340e 1590 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1591 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1592 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1593 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1594 toPort = numOutputs;
mjr 76:7f5912b6340e 1595
mjr 76:7f5912b6340e 1596 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1597 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1598 {
mjr 76:7f5912b6340e 1599 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1600 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1601 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1602 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1603 if (wizOn[i])
mjr 29:582472d0bc57 1604 {
mjr 76:7f5912b6340e 1605 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1606 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1607 {
mjr 76:7f5912b6340e 1608 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1609 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1610 }
mjr 29:582472d0bc57 1611 }
mjr 76:7f5912b6340e 1612 }
mjr 76:7f5912b6340e 1613
mjr 34:6b981a2afab7 1614 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1615 if (hc595 != 0)
mjr 35:e959ffba78fd 1616 hc595->update();
mjr 76:7f5912b6340e 1617
mjr 76:7f5912b6340e 1618 // switch to the next bank
mjr 76:7f5912b6340e 1619 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1620 wizPulseBank = 0;
mjr 76:7f5912b6340e 1621
mjr 76:7f5912b6340e 1622 // collect timing statistics
mjr 76:7f5912b6340e 1623 IF_DIAG(
mjr 76:7f5912b6340e 1624 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1625 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1626 )
mjr 1:d913e0afb2ac 1627 }
mjr 38:091e511ce8a0 1628
mjr 76:7f5912b6340e 1629 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1630 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1631 {
mjr 76:7f5912b6340e 1632 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1633 if (wizOn[port])
mjr 76:7f5912b6340e 1634 {
mjr 76:7f5912b6340e 1635 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1636 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1637 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1638 // it on the next cycle.
mjr 76:7f5912b6340e 1639 int val = wizVal[port];
mjr 76:7f5912b6340e 1640 if (val <= 49)
mjr 76:7f5912b6340e 1641 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1642 }
mjr 76:7f5912b6340e 1643 else
mjr 76:7f5912b6340e 1644 {
mjr 76:7f5912b6340e 1645 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1646 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1647 }
mjr 73:4e8ce0b18915 1648 }
mjr 73:4e8ce0b18915 1649
mjr 73:4e8ce0b18915 1650 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1651 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1652 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1653 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1654 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1655 //
mjr 73:4e8ce0b18915 1656 void allOutputsOff()
mjr 73:4e8ce0b18915 1657 {
mjr 73:4e8ce0b18915 1658 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1659 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1660 {
mjr 73:4e8ce0b18915 1661 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1662 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1663 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1664 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1665 }
mjr 73:4e8ce0b18915 1666
mjr 73:4e8ce0b18915 1667 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1668 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1669 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1670
mjr 73:4e8ce0b18915 1671 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1672 if (hc595 != 0)
mjr 38:091e511ce8a0 1673 hc595->update();
mjr 38:091e511ce8a0 1674 }
mjr 38:091e511ce8a0 1675
mjr 74:822a92bc11d2 1676 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1677 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1678 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1679 // address any port group.
mjr 74:822a92bc11d2 1680 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1681 {
mjr 76:7f5912b6340e 1682 // update all on/off states in the group
mjr 74:822a92bc11d2 1683 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1684 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1685 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1686 {
mjr 74:822a92bc11d2 1687 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1688 if (bit == 0x100) {
mjr 74:822a92bc11d2 1689 bit = 1;
mjr 74:822a92bc11d2 1690 ++imsg;
mjr 74:822a92bc11d2 1691 }
mjr 74:822a92bc11d2 1692
mjr 74:822a92bc11d2 1693 // set the on/off state
mjr 76:7f5912b6340e 1694 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1695
mjr 76:7f5912b6340e 1696 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1697 updateLwPort(port);
mjr 74:822a92bc11d2 1698 }
mjr 74:822a92bc11d2 1699
mjr 74:822a92bc11d2 1700 // set the flash speed for the port group
mjr 74:822a92bc11d2 1701 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1702 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1703
mjr 76:7f5912b6340e 1704 // update 74HC959 outputs
mjr 76:7f5912b6340e 1705 if (hc595 != 0)
mjr 76:7f5912b6340e 1706 hc595->update();
mjr 74:822a92bc11d2 1707 }
mjr 74:822a92bc11d2 1708
mjr 74:822a92bc11d2 1709 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1710 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1711 {
mjr 74:822a92bc11d2 1712 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1713 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1714 {
mjr 74:822a92bc11d2 1715 // get the value
mjr 74:822a92bc11d2 1716 uint8_t v = data[i];
mjr 74:822a92bc11d2 1717
mjr 74:822a92bc11d2 1718 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1719 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1720 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1721 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1722 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1723 // as such.
mjr 74:822a92bc11d2 1724 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1725 v = 48;
mjr 74:822a92bc11d2 1726
mjr 74:822a92bc11d2 1727 // store it
mjr 76:7f5912b6340e 1728 wizVal[port] = v;
mjr 76:7f5912b6340e 1729
mjr 76:7f5912b6340e 1730 // update the port
mjr 76:7f5912b6340e 1731 updateLwPort(port);
mjr 74:822a92bc11d2 1732 }
mjr 74:822a92bc11d2 1733
mjr 76:7f5912b6340e 1734 // update 74HC595 outputs
mjr 76:7f5912b6340e 1735 if (hc595 != 0)
mjr 76:7f5912b6340e 1736 hc595->update();
mjr 74:822a92bc11d2 1737 }
mjr 74:822a92bc11d2 1738
mjr 77:0b96f6867312 1739 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1740 //
mjr 77:0b96f6867312 1741 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1742 //
mjr 77:0b96f6867312 1743
mjr 77:0b96f6867312 1744 // receiver
mjr 77:0b96f6867312 1745 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1746
mjr 77:0b96f6867312 1747 // transmitter
mjr 77:0b96f6867312 1748 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1749
mjr 77:0b96f6867312 1750 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1751 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1752 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1753 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1754 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1755 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1756 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1757 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1758 // configuration slot n
mjr 77:0b96f6867312 1759 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 1760
mjr 78:1e00b3fa11af 1761 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 1762 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 1763 // protocol.
mjr 78:1e00b3fa11af 1764 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 1765
mjr 78:1e00b3fa11af 1766 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 1767 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 1768 // while waiting for the rest.
mjr 78:1e00b3fa11af 1769 static struct
mjr 78:1e00b3fa11af 1770 {
mjr 78:1e00b3fa11af 1771 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 1772 uint64_t code; // code
mjr 78:1e00b3fa11af 1773 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 1774 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 1775 } IRAdHocCmd;
mjr 78:1e00b3fa11af 1776
mjr 77:0b96f6867312 1777
mjr 77:0b96f6867312 1778 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1779 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1780 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1781 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1782 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1783 // amount of time.
mjr 77:0b96f6867312 1784 Timer IRTimer;
mjr 77:0b96f6867312 1785
mjr 77:0b96f6867312 1786 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1787 // The states are:
mjr 77:0b96f6867312 1788 //
mjr 77:0b96f6867312 1789 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1790 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1791 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1792 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1793 //
mjr 77:0b96f6867312 1794 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1795 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1796 // received within a reasonable time.
mjr 77:0b96f6867312 1797 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1798
mjr 77:0b96f6867312 1799 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1800 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1801 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1802 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1803 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1804 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1805 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1806 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1807 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1808
mjr 78:1e00b3fa11af 1809 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1810 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1811 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1812 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1813 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1814 // index; 0 represents no command.
mjr 77:0b96f6867312 1815 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1816
mjr 77:0b96f6867312 1817 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1818 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1819 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1820 // command we received.
mjr 77:0b96f6867312 1821 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1822
mjr 77:0b96f6867312 1823 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1824 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1825 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 1826 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 1827 // distinct key press.
mjr 77:0b96f6867312 1828 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 1829
mjr 78:1e00b3fa11af 1830
mjr 77:0b96f6867312 1831 // initialize
mjr 77:0b96f6867312 1832 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 1833 {
mjr 77:0b96f6867312 1834 PinName pin;
mjr 77:0b96f6867312 1835
mjr 77:0b96f6867312 1836 // start the IR timer
mjr 77:0b96f6867312 1837 IRTimer.start();
mjr 77:0b96f6867312 1838
mjr 77:0b96f6867312 1839 // if there's a transmitter, set it up
mjr 77:0b96f6867312 1840 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 1841 {
mjr 77:0b96f6867312 1842 // no virtual buttons yet
mjr 77:0b96f6867312 1843 int nVirtualButtons = 0;
mjr 77:0b96f6867312 1844 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 1845
mjr 77:0b96f6867312 1846 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 1847 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1848 {
mjr 77:0b96f6867312 1849 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 1850 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 1851 }
mjr 77:0b96f6867312 1852
mjr 77:0b96f6867312 1853 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 1854 // real button inputs
mjr 77:0b96f6867312 1855 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 1856 {
mjr 77:0b96f6867312 1857 // get the button
mjr 77:0b96f6867312 1858 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 1859
mjr 77:0b96f6867312 1860 // check the unshifted button
mjr 77:0b96f6867312 1861 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 1862 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1863 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1864 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1865
mjr 77:0b96f6867312 1866 // check the shifted button
mjr 77:0b96f6867312 1867 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 1868 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 1869 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 1870 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 1871 }
mjr 77:0b96f6867312 1872
mjr 77:0b96f6867312 1873 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 1874 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 1875 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 1876
mjr 77:0b96f6867312 1877 // create the transmitter
mjr 77:0b96f6867312 1878 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 1879
mjr 77:0b96f6867312 1880 // program the commands into the virtual button slots
mjr 77:0b96f6867312 1881 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1882 {
mjr 77:0b96f6867312 1883 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 1884 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 1885 if (vb != 0xFF)
mjr 77:0b96f6867312 1886 {
mjr 77:0b96f6867312 1887 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1888 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 1889 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 1890 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 1891 }
mjr 77:0b96f6867312 1892 }
mjr 77:0b96f6867312 1893 }
mjr 77:0b96f6867312 1894
mjr 77:0b96f6867312 1895 // if there's a receiver, set it up
mjr 77:0b96f6867312 1896 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 1897 {
mjr 77:0b96f6867312 1898 // create the receiver
mjr 77:0b96f6867312 1899 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 1900
mjr 77:0b96f6867312 1901 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 1902 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 1903 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 1904
mjr 77:0b96f6867312 1905 // enable it
mjr 77:0b96f6867312 1906 ir_rx->enable();
mjr 77:0b96f6867312 1907
mjr 77:0b96f6867312 1908 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 1909 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 1910 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 1911 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 1912 {
mjr 77:0b96f6867312 1913 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 1914 if (cb.protocol != 0
mjr 77:0b96f6867312 1915 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 1916 {
mjr 77:0b96f6867312 1917 kbKeys = true;
mjr 77:0b96f6867312 1918 break;
mjr 77:0b96f6867312 1919 }
mjr 77:0b96f6867312 1920 }
mjr 77:0b96f6867312 1921 }
mjr 77:0b96f6867312 1922 }
mjr 77:0b96f6867312 1923
mjr 77:0b96f6867312 1924 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 1925 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 1926 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 1927 {
mjr 77:0b96f6867312 1928 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 1929 if (ir_tx != 0)
mjr 77:0b96f6867312 1930 {
mjr 77:0b96f6867312 1931 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 1932 int slot = cmd - 1;
mjr 77:0b96f6867312 1933
mjr 77:0b96f6867312 1934 // press or release the virtual button
mjr 77:0b96f6867312 1935 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 1936 }
mjr 77:0b96f6867312 1937 }
mjr 77:0b96f6867312 1938
mjr 78:1e00b3fa11af 1939 // Process IR input and output
mjr 77:0b96f6867312 1940 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 1941 {
mjr 78:1e00b3fa11af 1942 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 1943 if (ir_tx != 0)
mjr 77:0b96f6867312 1944 {
mjr 78:1e00b3fa11af 1945 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 1946 // is ready to send, send it.
mjr 78:1e00b3fa11af 1947 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 1948 {
mjr 78:1e00b3fa11af 1949 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 1950 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 1951 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 1952 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 1953
mjr 78:1e00b3fa11af 1954 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 1955 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 1956 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 1957
mjr 78:1e00b3fa11af 1958 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 1959 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 1960 }
mjr 77:0b96f6867312 1961 }
mjr 78:1e00b3fa11af 1962
mjr 78:1e00b3fa11af 1963 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 1964 if (ir_rx != 0)
mjr 77:0b96f6867312 1965 {
mjr 78:1e00b3fa11af 1966 // Time out any received command
mjr 78:1e00b3fa11af 1967 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 1968 {
mjr 80:94dc2946871b 1969 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 1970 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 1971 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 1972 if (t > 200000)
mjr 78:1e00b3fa11af 1973 IRCommandIn = 0;
mjr 80:94dc2946871b 1974 else if (t > 50000)
mjr 78:1e00b3fa11af 1975 IRKeyGap = false;
mjr 78:1e00b3fa11af 1976 }
mjr 78:1e00b3fa11af 1977
mjr 78:1e00b3fa11af 1978 // Check if we're in learning mode
mjr 78:1e00b3fa11af 1979 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 1980 {
mjr 78:1e00b3fa11af 1981 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 1982 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 1983 // limit.
mjr 78:1e00b3fa11af 1984 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 1985 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 1986 int n;
mjr 78:1e00b3fa11af 1987 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 1988
mjr 78:1e00b3fa11af 1989 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 1990 if (n != 0)
mjr 78:1e00b3fa11af 1991 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 1992
mjr 78:1e00b3fa11af 1993 // check for a command
mjr 78:1e00b3fa11af 1994 IRCommand c;
mjr 78:1e00b3fa11af 1995 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 1996 {
mjr 78:1e00b3fa11af 1997 // check the current learning state
mjr 78:1e00b3fa11af 1998 switch (IRLearningMode)
mjr 78:1e00b3fa11af 1999 {
mjr 78:1e00b3fa11af 2000 case 1:
mjr 78:1e00b3fa11af 2001 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2002 // This is it.
mjr 78:1e00b3fa11af 2003 learnedIRCode = c;
mjr 78:1e00b3fa11af 2004
mjr 78:1e00b3fa11af 2005 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2006 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2007 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2008 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2009 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2010 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2011 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2012 break;
mjr 78:1e00b3fa11af 2013
mjr 78:1e00b3fa11af 2014 case 2:
mjr 78:1e00b3fa11af 2015 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2016 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2017 //
mjr 78:1e00b3fa11af 2018 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2019 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2020 //
mjr 78:1e00b3fa11af 2021 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2022 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2023 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2024 // them.
mjr 78:1e00b3fa11af 2025 //
mjr 78:1e00b3fa11af 2026 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2027 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2028 // over.
mjr 78:1e00b3fa11af 2029 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2030 && c.hasDittos
mjr 78:1e00b3fa11af 2031 && c.ditto)
mjr 78:1e00b3fa11af 2032 {
mjr 78:1e00b3fa11af 2033 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2034 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2035 }
mjr 78:1e00b3fa11af 2036 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2037 && c.hasDittos
mjr 78:1e00b3fa11af 2038 && !c.ditto
mjr 78:1e00b3fa11af 2039 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2040 {
mjr 78:1e00b3fa11af 2041 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2042 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2043 // protocol supports them
mjr 78:1e00b3fa11af 2044 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2045 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2046 }
mjr 78:1e00b3fa11af 2047 else
mjr 78:1e00b3fa11af 2048 {
mjr 78:1e00b3fa11af 2049 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2050 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2051 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2052 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2053 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2054 }
mjr 78:1e00b3fa11af 2055 break;
mjr 78:1e00b3fa11af 2056 }
mjr 77:0b96f6867312 2057
mjr 78:1e00b3fa11af 2058 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2059 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2060 // learning mode.
mjr 78:1e00b3fa11af 2061 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2062 {
mjr 78:1e00b3fa11af 2063 // figure the flags:
mjr 78:1e00b3fa11af 2064 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2065 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2066 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2067 flags |= 0x02;
mjr 78:1e00b3fa11af 2068
mjr 78:1e00b3fa11af 2069 // report the code
mjr 78:1e00b3fa11af 2070 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2071
mjr 78:1e00b3fa11af 2072 // exit learning mode
mjr 78:1e00b3fa11af 2073 IRLearningMode = 0;
mjr 77:0b96f6867312 2074 }
mjr 77:0b96f6867312 2075 }
mjr 77:0b96f6867312 2076
mjr 78:1e00b3fa11af 2077 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2078 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2079 {
mjr 78:1e00b3fa11af 2080 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2081 // zero data elements
mjr 78:1e00b3fa11af 2082 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2083
mjr 78:1e00b3fa11af 2084
mjr 78:1e00b3fa11af 2085 // cancel learning mode
mjr 77:0b96f6867312 2086 IRLearningMode = 0;
mjr 77:0b96f6867312 2087 }
mjr 77:0b96f6867312 2088 }
mjr 78:1e00b3fa11af 2089 else
mjr 77:0b96f6867312 2090 {
mjr 78:1e00b3fa11af 2091 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2092 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2093 ir_rx->process();
mjr 78:1e00b3fa11af 2094
mjr 78:1e00b3fa11af 2095 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2096 // have been read.
mjr 78:1e00b3fa11af 2097 IRCommand c;
mjr 78:1e00b3fa11af 2098 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2099 {
mjr 78:1e00b3fa11af 2100 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2101 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2102 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2103 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2104 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2105 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2106 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2107 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2108 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2109 //
mjr 78:1e00b3fa11af 2110 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2111 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2112 // command.
mjr 78:1e00b3fa11af 2113 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2114 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2115 {
mjr 78:1e00b3fa11af 2116 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2117 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2118 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2119 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2120 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2121 if (c.ditto)
mjr 78:1e00b3fa11af 2122 {
mjr 78:1e00b3fa11af 2123 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2124 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2125 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2126 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2127 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2128 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2129 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2130 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2131 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2132 }
mjr 78:1e00b3fa11af 2133 else
mjr 78:1e00b3fa11af 2134 {
mjr 78:1e00b3fa11af 2135 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2136 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2137 // prior command.
mjr 78:1e00b3fa11af 2138 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2139 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2140 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2141
mjr 78:1e00b3fa11af 2142 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2143 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2144 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2145 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2146 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2147 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2148 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2149 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2150 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2151 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2152 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2153 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2154 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2155 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2156 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2157 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2158 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2159 autoRepeat =
mjr 78:1e00b3fa11af 2160 repeat
mjr 78:1e00b3fa11af 2161 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2162 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2163 }
mjr 78:1e00b3fa11af 2164 }
mjr 78:1e00b3fa11af 2165
mjr 78:1e00b3fa11af 2166 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2167 if (repeat)
mjr 78:1e00b3fa11af 2168 {
mjr 78:1e00b3fa11af 2169 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2170 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2171 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2172 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2173 // key press event.
mjr 78:1e00b3fa11af 2174 if (!autoRepeat)
mjr 78:1e00b3fa11af 2175 IRKeyGap = true;
mjr 78:1e00b3fa11af 2176
mjr 78:1e00b3fa11af 2177 // restart the key-up timer
mjr 78:1e00b3fa11af 2178 IRTimer.reset();
mjr 78:1e00b3fa11af 2179 }
mjr 78:1e00b3fa11af 2180 else if (c.ditto)
mjr 78:1e00b3fa11af 2181 {
mjr 78:1e00b3fa11af 2182 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2183 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2184 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2185 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2186 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2187 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2188 // a full command for a new key press.
mjr 78:1e00b3fa11af 2189 IRCommandIn = 0;
mjr 77:0b96f6867312 2190 }
mjr 77:0b96f6867312 2191 else
mjr 77:0b96f6867312 2192 {
mjr 78:1e00b3fa11af 2193 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2194 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2195 // the new command).
mjr 78:1e00b3fa11af 2196 IRCommandIn = 0;
mjr 77:0b96f6867312 2197
mjr 78:1e00b3fa11af 2198 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2199 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2200 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2201 {
mjr 78:1e00b3fa11af 2202 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2203 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2204 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2205 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2206 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2207 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2208 {
mjr 78:1e00b3fa11af 2209 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2210 // remember the starting time.
mjr 78:1e00b3fa11af 2211 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2212 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2213 IRTimer.reset();
mjr 78:1e00b3fa11af 2214
mjr 78:1e00b3fa11af 2215 // no need to keep searching
mjr 78:1e00b3fa11af 2216 break;
mjr 78:1e00b3fa11af 2217 }
mjr 77:0b96f6867312 2218 }
mjr 77:0b96f6867312 2219 }
mjr 77:0b96f6867312 2220 }
mjr 77:0b96f6867312 2221 }
mjr 77:0b96f6867312 2222 }
mjr 77:0b96f6867312 2223 }
mjr 77:0b96f6867312 2224
mjr 74:822a92bc11d2 2225
mjr 11:bd9da7088e6e 2226 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2227 //
mjr 11:bd9da7088e6e 2228 // Button input
mjr 11:bd9da7088e6e 2229 //
mjr 11:bd9da7088e6e 2230
mjr 18:5e890ebd0023 2231 // button state
mjr 18:5e890ebd0023 2232 struct ButtonState
mjr 18:5e890ebd0023 2233 {
mjr 38:091e511ce8a0 2234 ButtonState()
mjr 38:091e511ce8a0 2235 {
mjr 53:9b2611964afc 2236 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2237 virtState = 0;
mjr 53:9b2611964afc 2238 dbState = 0;
mjr 38:091e511ce8a0 2239 pulseState = 0;
mjr 53:9b2611964afc 2240 pulseTime = 0;
mjr 38:091e511ce8a0 2241 }
mjr 35:e959ffba78fd 2242
mjr 53:9b2611964afc 2243 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2244 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2245 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2246 //
mjr 53:9b2611964afc 2247 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2248 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2249 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2250 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2251 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2252 void virtPress(bool on)
mjr 53:9b2611964afc 2253 {
mjr 53:9b2611964afc 2254 // Increment or decrement the current state
mjr 53:9b2611964afc 2255 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2256 }
mjr 53:9b2611964afc 2257
mjr 53:9b2611964afc 2258 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2259 TinyDigitalIn di;
mjr 38:091e511ce8a0 2260
mjr 65:739875521aae 2261 // Time of last pulse state transition.
mjr 65:739875521aae 2262 //
mjr 65:739875521aae 2263 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2264 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2265 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2266 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2267 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2268 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2269 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2270 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2271 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2272 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2273 // This software system can't be fooled that way.)
mjr 65:739875521aae 2274 uint32_t pulseTime;
mjr 18:5e890ebd0023 2275
mjr 65:739875521aae 2276 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2277 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2278 uint8_t cfgIndex;
mjr 53:9b2611964afc 2279
mjr 53:9b2611964afc 2280 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2281 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2282 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2283 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2284 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2285 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2286 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2287 // and physical source states.
mjr 53:9b2611964afc 2288 uint8_t virtState;
mjr 38:091e511ce8a0 2289
mjr 38:091e511ce8a0 2290 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2291 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2292 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2293 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2294 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2295 uint8_t dbState;
mjr 38:091e511ce8a0 2296
mjr 65:739875521aae 2297 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2298 uint8_t physState : 1;
mjr 65:739875521aae 2299
mjr 65:739875521aae 2300 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2301 uint8_t logState : 1;
mjr 65:739875521aae 2302
mjr 79:682ae3171a08 2303 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2304 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2305 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2306 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2307 uint8_t prevLogState : 1;
mjr 65:739875521aae 2308
mjr 65:739875521aae 2309 // Pulse state
mjr 65:739875521aae 2310 //
mjr 65:739875521aae 2311 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2312 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2313 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2314 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2315 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2316 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2317 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2318 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2319 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2320 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2321 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2322 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2323 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2324 //
mjr 38:091e511ce8a0 2325 // Pulse state:
mjr 38:091e511ce8a0 2326 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2327 // 1 -> off
mjr 38:091e511ce8a0 2328 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2329 // 3 -> on
mjr 38:091e511ce8a0 2330 // 4 -> transitioning on-off
mjr 65:739875521aae 2331 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2332
mjr 65:739875521aae 2333 } __attribute__((packed));
mjr 65:739875521aae 2334
mjr 65:739875521aae 2335 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2336 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2337 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2338
mjr 66:2e3583fbd2f4 2339 // Shift button state
mjr 66:2e3583fbd2f4 2340 struct
mjr 66:2e3583fbd2f4 2341 {
mjr 66:2e3583fbd2f4 2342 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2343 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2344 // 0 = not shifted
mjr 66:2e3583fbd2f4 2345 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2346 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2347 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2348 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2349 }
mjr 66:2e3583fbd2f4 2350 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2351
mjr 38:091e511ce8a0 2352 // Button data
mjr 38:091e511ce8a0 2353 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2354
mjr 38:091e511ce8a0 2355 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2356 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2357 // modifier keys.
mjr 38:091e511ce8a0 2358 struct
mjr 38:091e511ce8a0 2359 {
mjr 38:091e511ce8a0 2360 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2361 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2362 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2363 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2364 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2365
mjr 38:091e511ce8a0 2366 // Media key state
mjr 38:091e511ce8a0 2367 struct
mjr 38:091e511ce8a0 2368 {
mjr 38:091e511ce8a0 2369 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2370 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2371 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2372
mjr 79:682ae3171a08 2373 // button scan interrupt timer
mjr 79:682ae3171a08 2374 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2375
mjr 38:091e511ce8a0 2376 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2377 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2378 void scanButtons()
mjr 38:091e511ce8a0 2379 {
mjr 79:682ae3171a08 2380 // schedule the next interrupt
mjr 79:682ae3171a08 2381 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2382
mjr 38:091e511ce8a0 2383 // scan all button input pins
mjr 73:4e8ce0b18915 2384 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2385 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2386 {
mjr 73:4e8ce0b18915 2387 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2388 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2389 bs->dbState = db;
mjr 73:4e8ce0b18915 2390
mjr 73:4e8ce0b18915 2391 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2392 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2393 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2394 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2395 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2396 db &= stable;
mjr 73:4e8ce0b18915 2397 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2398 bs->physState = !db;
mjr 38:091e511ce8a0 2399 }
mjr 38:091e511ce8a0 2400 }
mjr 38:091e511ce8a0 2401
mjr 38:091e511ce8a0 2402 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2403 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2404 // in the physical button state.
mjr 38:091e511ce8a0 2405 Timer buttonTimer;
mjr 12:669df364a565 2406
mjr 65:739875521aae 2407 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2408 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2409 {
mjr 65:739875521aae 2410 // count it
mjr 65:739875521aae 2411 ++nButtons;
mjr 65:739875521aae 2412
mjr 67:c39e66c4e000 2413 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2414 // keyboard interface
mjr 72:884207c0aab0 2415 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2416 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2417 kbKeys = true;
mjr 65:739875521aae 2418 }
mjr 65:739875521aae 2419
mjr 11:bd9da7088e6e 2420 // initialize the button inputs
mjr 35:e959ffba78fd 2421 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2422 {
mjr 66:2e3583fbd2f4 2423 // presume no shift key
mjr 66:2e3583fbd2f4 2424 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2425 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2426
mjr 65:739875521aae 2427 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2428 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2429 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2430 nButtons = 0;
mjr 65:739875521aae 2431 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2432 {
mjr 65:739875521aae 2433 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2434 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2435 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2436 }
mjr 65:739875521aae 2437
mjr 65:739875521aae 2438 // Count virtual buttons
mjr 65:739875521aae 2439
mjr 65:739875521aae 2440 // ZB Launch
mjr 65:739875521aae 2441 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2442 {
mjr 65:739875521aae 2443 // valid - remember the live button index
mjr 65:739875521aae 2444 zblButtonIndex = nButtons;
mjr 65:739875521aae 2445
mjr 65:739875521aae 2446 // count it
mjr 72:884207c0aab0 2447 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2448 }
mjr 65:739875521aae 2449
mjr 65:739875521aae 2450 // Allocate the live button slots
mjr 65:739875521aae 2451 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2452
mjr 65:739875521aae 2453 // Configure the physical inputs
mjr 65:739875521aae 2454 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2455 {
mjr 65:739875521aae 2456 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2457 if (pin != NC)
mjr 65:739875521aae 2458 {
mjr 65:739875521aae 2459 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2460 bs->cfgIndex = i;
mjr 65:739875521aae 2461
mjr 65:739875521aae 2462 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2463 bs->di.assignPin(pin);
mjr 65:739875521aae 2464
mjr 65:739875521aae 2465 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2466 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2467 bs->pulseState = 1;
mjr 65:739875521aae 2468
mjr 66:2e3583fbd2f4 2469 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2470 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2471 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2472 // config slots are left unused.
mjr 78:1e00b3fa11af 2473 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2474 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2475
mjr 65:739875521aae 2476 // advance to the next button
mjr 65:739875521aae 2477 ++bs;
mjr 65:739875521aae 2478 }
mjr 65:739875521aae 2479 }
mjr 65:739875521aae 2480
mjr 53:9b2611964afc 2481 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2482 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2483 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2484 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2485
mjr 53:9b2611964afc 2486 // ZB Launch Ball button
mjr 65:739875521aae 2487 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2488 {
mjr 65:739875521aae 2489 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2490 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2491 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2492 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2493 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2494 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2495 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2496 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2497
mjr 66:2e3583fbd2f4 2498 // advance to the next button
mjr 65:739875521aae 2499 ++bs;
mjr 11:bd9da7088e6e 2500 }
mjr 12:669df364a565 2501
mjr 38:091e511ce8a0 2502 // start the button scan thread
mjr 79:682ae3171a08 2503 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2504
mjr 38:091e511ce8a0 2505 // start the button state transition timer
mjr 12:669df364a565 2506 buttonTimer.start();
mjr 11:bd9da7088e6e 2507 }
mjr 11:bd9da7088e6e 2508
mjr 67:c39e66c4e000 2509 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2510 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2511 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2512 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2513 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2514 //
mjr 67:c39e66c4e000 2515 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2516 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2517 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2518 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2519 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2520 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2521 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2522 //
mjr 67:c39e66c4e000 2523 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2524 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2526 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2527 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2528 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2529 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2530 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2531 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2532 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2533 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2534 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2535 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2536 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2537 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2538 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2539 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2540 };
mjr 77:0b96f6867312 2541
mjr 77:0b96f6867312 2542 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2543 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2544 // states of the button iputs.
mjr 77:0b96f6867312 2545 struct KeyState
mjr 77:0b96f6867312 2546 {
mjr 77:0b96f6867312 2547 KeyState()
mjr 77:0b96f6867312 2548 {
mjr 77:0b96f6867312 2549 // zero all members
mjr 77:0b96f6867312 2550 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2551 }
mjr 77:0b96f6867312 2552
mjr 77:0b96f6867312 2553 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2554 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2555 uint8_t mediakeys;
mjr 77:0b96f6867312 2556
mjr 77:0b96f6867312 2557 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2558 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2559 // USBJoystick.cpp).
mjr 77:0b96f6867312 2560 uint8_t modkeys;
mjr 77:0b96f6867312 2561
mjr 77:0b96f6867312 2562 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2563 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2564 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2565 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2566 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2567 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2568 uint8_t keys[7];
mjr 77:0b96f6867312 2569
mjr 77:0b96f6867312 2570 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2571 int nkeys;
mjr 77:0b96f6867312 2572
mjr 77:0b96f6867312 2573 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2574 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2575 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2576 uint32_t js;
mjr 77:0b96f6867312 2577
mjr 77:0b96f6867312 2578
mjr 77:0b96f6867312 2579 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2580 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2581 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2582 {
mjr 77:0b96f6867312 2583 // add the key according to the type
mjr 77:0b96f6867312 2584 switch (typ)
mjr 77:0b96f6867312 2585 {
mjr 77:0b96f6867312 2586 case BtnTypeJoystick:
mjr 77:0b96f6867312 2587 // joystick button
mjr 77:0b96f6867312 2588 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2589 break;
mjr 77:0b96f6867312 2590
mjr 77:0b96f6867312 2591 case BtnTypeKey:
mjr 77:0b96f6867312 2592 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2593 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2594 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2595 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2596 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2597 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2598 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2599 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2600 {
mjr 77:0b96f6867312 2601 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2602 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2603 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2604 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 2605 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 2606 }
mjr 77:0b96f6867312 2607 else
mjr 77:0b96f6867312 2608 {
mjr 77:0b96f6867312 2609 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 2610 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 2611 // apply, add the key to the key array.
mjr 77:0b96f6867312 2612 if (nkeys < 7)
mjr 77:0b96f6867312 2613 {
mjr 77:0b96f6867312 2614 bool found = false;
mjr 77:0b96f6867312 2615 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 2616 {
mjr 77:0b96f6867312 2617 if (keys[i] == val)
mjr 77:0b96f6867312 2618 {
mjr 77:0b96f6867312 2619 found = true;
mjr 77:0b96f6867312 2620 break;
mjr 77:0b96f6867312 2621 }
mjr 77:0b96f6867312 2622 }
mjr 77:0b96f6867312 2623 if (!found)
mjr 77:0b96f6867312 2624 keys[nkeys++] = val;
mjr 77:0b96f6867312 2625 }
mjr 77:0b96f6867312 2626 }
mjr 77:0b96f6867312 2627 break;
mjr 77:0b96f6867312 2628
mjr 77:0b96f6867312 2629 case BtnTypeMedia:
mjr 77:0b96f6867312 2630 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 2631 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 2632 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 2633 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 2634 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 2635 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 2636 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 2637 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 2638 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 2639 break;
mjr 77:0b96f6867312 2640 }
mjr 77:0b96f6867312 2641 }
mjr 77:0b96f6867312 2642 };
mjr 67:c39e66c4e000 2643
mjr 67:c39e66c4e000 2644
mjr 38:091e511ce8a0 2645 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2646 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2647 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2648 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2649 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2650 {
mjr 77:0b96f6867312 2651 // key state
mjr 77:0b96f6867312 2652 KeyState ks;
mjr 38:091e511ce8a0 2653
mjr 38:091e511ce8a0 2654 // calculate the time since the last run
mjr 53:9b2611964afc 2655 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2656 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2657
mjr 66:2e3583fbd2f4 2658 // check the shift button state
mjr 66:2e3583fbd2f4 2659 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2660 {
mjr 78:1e00b3fa11af 2661 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 2662 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 2663
mjr 78:1e00b3fa11af 2664 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 2665 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2666 {
mjr 66:2e3583fbd2f4 2667 case 0:
mjr 78:1e00b3fa11af 2668 default:
mjr 78:1e00b3fa11af 2669 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 2670 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 2671 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 2672 switch (shiftButton.state)
mjr 78:1e00b3fa11af 2673 {
mjr 78:1e00b3fa11af 2674 case 0:
mjr 78:1e00b3fa11af 2675 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 2676 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 2677 if (sbs->physState)
mjr 78:1e00b3fa11af 2678 shiftButton.state = 1;
mjr 78:1e00b3fa11af 2679 break;
mjr 78:1e00b3fa11af 2680
mjr 78:1e00b3fa11af 2681 case 1:
mjr 78:1e00b3fa11af 2682 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 2683 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 2684 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 2685 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 2686 // pulse event.
mjr 78:1e00b3fa11af 2687 if (!sbs->physState)
mjr 78:1e00b3fa11af 2688 {
mjr 78:1e00b3fa11af 2689 shiftButton.state = 3;
mjr 78:1e00b3fa11af 2690 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 2691 }
mjr 78:1e00b3fa11af 2692 break;
mjr 78:1e00b3fa11af 2693
mjr 78:1e00b3fa11af 2694 case 2:
mjr 78:1e00b3fa11af 2695 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 2696 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 2697 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 2698 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 2699 // suppressed.
mjr 78:1e00b3fa11af 2700 if (!sbs->physState)
mjr 78:1e00b3fa11af 2701 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2702 break;
mjr 78:1e00b3fa11af 2703
mjr 78:1e00b3fa11af 2704 case 3:
mjr 78:1e00b3fa11af 2705 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 2706 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 2707 // has expired.
mjr 78:1e00b3fa11af 2708 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 2709 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 2710 else
mjr 78:1e00b3fa11af 2711 shiftButton.state = 0;
mjr 78:1e00b3fa11af 2712 break;
mjr 78:1e00b3fa11af 2713 }
mjr 66:2e3583fbd2f4 2714 break;
mjr 66:2e3583fbd2f4 2715
mjr 66:2e3583fbd2f4 2716 case 1:
mjr 78:1e00b3fa11af 2717 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 2718 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 2719 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 2720 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 2721 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 2722 break;
mjr 66:2e3583fbd2f4 2723 }
mjr 66:2e3583fbd2f4 2724 }
mjr 38:091e511ce8a0 2725
mjr 11:bd9da7088e6e 2726 // scan the button list
mjr 18:5e890ebd0023 2727 ButtonState *bs = buttonState;
mjr 65:739875521aae 2728 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2729 {
mjr 77:0b96f6867312 2730 // get the config entry for the button
mjr 77:0b96f6867312 2731 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 2732
mjr 66:2e3583fbd2f4 2733 // Check the button type:
mjr 66:2e3583fbd2f4 2734 // - shift button
mjr 66:2e3583fbd2f4 2735 // - pulsed button
mjr 66:2e3583fbd2f4 2736 // - regular button
mjr 66:2e3583fbd2f4 2737 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2738 {
mjr 78:1e00b3fa11af 2739 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 2740 // depends on the mode.
mjr 78:1e00b3fa11af 2741 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 2742 {
mjr 78:1e00b3fa11af 2743 case 0:
mjr 78:1e00b3fa11af 2744 default:
mjr 78:1e00b3fa11af 2745 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 2746 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 2747 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 2748 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 2749 break;
mjr 78:1e00b3fa11af 2750
mjr 78:1e00b3fa11af 2751 case 1:
mjr 78:1e00b3fa11af 2752 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 2753 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 2754 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 2755 break;
mjr 66:2e3583fbd2f4 2756 }
mjr 66:2e3583fbd2f4 2757 }
mjr 66:2e3583fbd2f4 2758 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2759 {
mjr 38:091e511ce8a0 2760 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2761 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2762 {
mjr 53:9b2611964afc 2763 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2764 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2765 }
mjr 53:9b2611964afc 2766 else
mjr 53:9b2611964afc 2767 {
mjr 53:9b2611964afc 2768 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2769 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2770 switch (bs->pulseState)
mjr 18:5e890ebd0023 2771 {
mjr 38:091e511ce8a0 2772 case 1:
mjr 38:091e511ce8a0 2773 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2774 if (bs->physState)
mjr 53:9b2611964afc 2775 {
mjr 38:091e511ce8a0 2776 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2777 bs->pulseState = 2;
mjr 53:9b2611964afc 2778 bs->logState = 1;
mjr 38:091e511ce8a0 2779 }
mjr 38:091e511ce8a0 2780 break;
mjr 18:5e890ebd0023 2781
mjr 38:091e511ce8a0 2782 case 2:
mjr 38:091e511ce8a0 2783 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2784 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2785 // change in state in the logical button
mjr 38:091e511ce8a0 2786 bs->pulseState = 3;
mjr 38:091e511ce8a0 2787 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2788 bs->logState = 0;
mjr 38:091e511ce8a0 2789 break;
mjr 38:091e511ce8a0 2790
mjr 38:091e511ce8a0 2791 case 3:
mjr 38:091e511ce8a0 2792 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2793 if (!bs->physState)
mjr 53:9b2611964afc 2794 {
mjr 38:091e511ce8a0 2795 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2796 bs->pulseState = 4;
mjr 53:9b2611964afc 2797 bs->logState = 1;
mjr 38:091e511ce8a0 2798 }
mjr 38:091e511ce8a0 2799 break;
mjr 38:091e511ce8a0 2800
mjr 38:091e511ce8a0 2801 case 4:
mjr 38:091e511ce8a0 2802 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2803 bs->pulseState = 1;
mjr 38:091e511ce8a0 2804 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2805 bs->logState = 0;
mjr 38:091e511ce8a0 2806 break;
mjr 18:5e890ebd0023 2807 }
mjr 18:5e890ebd0023 2808 }
mjr 38:091e511ce8a0 2809 }
mjr 38:091e511ce8a0 2810 else
mjr 38:091e511ce8a0 2811 {
mjr 38:091e511ce8a0 2812 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2813 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2814 }
mjr 77:0b96f6867312 2815
mjr 77:0b96f6867312 2816 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 2817 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 2818 //
mjr 78:1e00b3fa11af 2819 // - the shift button is down, AND
mjr 78:1e00b3fa11af 2820 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 2821 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 2822 //
mjr 78:1e00b3fa11af 2823 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 2824 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 2825 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 2826 //
mjr 78:1e00b3fa11af 2827 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 2828 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 2829 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 2830 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 2831 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 2832 bool useShift =
mjr 77:0b96f6867312 2833 (shiftButton.state != 0
mjr 78:1e00b3fa11af 2834 && shiftButton.index != i
mjr 77:0b96f6867312 2835 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 2836 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 2837 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 2838
mjr 77:0b96f6867312 2839 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 2840 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 2841 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 2842 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 2843 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 2844 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 2845 shiftButton.state = 2;
mjr 35:e959ffba78fd 2846
mjr 38:091e511ce8a0 2847 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2848 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2849 {
mjr 77:0b96f6867312 2850 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 2851 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2852 {
mjr 77:0b96f6867312 2853 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 2854 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 2855 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 2856 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 2857 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 2858 // the night mode state.
mjr 77:0b96f6867312 2859 //
mjr 77:0b96f6867312 2860 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 2861 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 2862 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 2863 {
mjr 77:0b96f6867312 2864 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 2865 // current switch state.
mjr 53:9b2611964afc 2866 setNightMode(bs->logState);
mjr 53:9b2611964afc 2867 }
mjr 82:4f6209cb5c33 2868 else if (bs->logState)
mjr 53:9b2611964afc 2869 {
mjr 77:0b96f6867312 2870 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 2871 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 2872 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 2873 // OFF to ON.
mjr 66:2e3583fbd2f4 2874 //
mjr 77:0b96f6867312 2875 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 2876 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 2877 // button.
mjr 77:0b96f6867312 2878 bool pressed;
mjr 66:2e3583fbd2f4 2879 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2880 {
mjr 77:0b96f6867312 2881 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 2882 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 2883 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 2884 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 2885 }
mjr 77:0b96f6867312 2886 else
mjr 77:0b96f6867312 2887 {
mjr 77:0b96f6867312 2888 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 2889 // regular unshifted button. The button press only
mjr 77:0b96f6867312 2890 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 2891 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 2892 }
mjr 66:2e3583fbd2f4 2893
mjr 66:2e3583fbd2f4 2894 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2895 // toggle night mode
mjr 66:2e3583fbd2f4 2896 if (pressed)
mjr 53:9b2611964afc 2897 toggleNightMode();
mjr 53:9b2611964afc 2898 }
mjr 35:e959ffba78fd 2899 }
mjr 38:091e511ce8a0 2900
mjr 77:0b96f6867312 2901 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 2902 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 2903 if (irc != 0)
mjr 77:0b96f6867312 2904 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 2905
mjr 38:091e511ce8a0 2906 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2907 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2908 }
mjr 38:091e511ce8a0 2909
mjr 53:9b2611964afc 2910 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2911 // key state list
mjr 53:9b2611964afc 2912 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2913 {
mjr 70:9f58735a1732 2914 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 2915 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 2916 uint8_t typ, val;
mjr 77:0b96f6867312 2917 if (useShift)
mjr 66:2e3583fbd2f4 2918 {
mjr 77:0b96f6867312 2919 typ = bc->typ2;
mjr 77:0b96f6867312 2920 val = bc->val2;
mjr 66:2e3583fbd2f4 2921 }
mjr 77:0b96f6867312 2922 else
mjr 77:0b96f6867312 2923 {
mjr 77:0b96f6867312 2924 typ = bc->typ;
mjr 77:0b96f6867312 2925 val = bc->val;
mjr 77:0b96f6867312 2926 }
mjr 77:0b96f6867312 2927
mjr 70:9f58735a1732 2928 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 2929 // the keyboard or joystick event.
mjr 77:0b96f6867312 2930 ks.addKey(typ, val);
mjr 18:5e890ebd0023 2931 }
mjr 11:bd9da7088e6e 2932 }
mjr 77:0b96f6867312 2933
mjr 77:0b96f6867312 2934 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 2935 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 2936 // the IR key.
mjr 77:0b96f6867312 2937 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 2938 {
mjr 77:0b96f6867312 2939 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 2940 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 2941 }
mjr 77:0b96f6867312 2942
mjr 77:0b96f6867312 2943 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 2944 // key state variables to reflect the new state.
mjr 77:0b96f6867312 2945
mjr 77:0b96f6867312 2946 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 2947 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 2948 jsButtons = ks.js;
mjr 77:0b96f6867312 2949
mjr 77:0b96f6867312 2950 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 2951 // something changes)
mjr 77:0b96f6867312 2952 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 2953 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 2954 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 2955 {
mjr 35:e959ffba78fd 2956 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2957 kbState.changed = true;
mjr 77:0b96f6867312 2958 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 2959 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 2960 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 2961 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 2962 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 2963 }
mjr 35:e959ffba78fd 2964 else {
mjr 35:e959ffba78fd 2965 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 2966 kbState.nkeys = 6;
mjr 35:e959ffba78fd 2967 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 2968 }
mjr 35:e959ffba78fd 2969 }
mjr 35:e959ffba78fd 2970
mjr 77:0b96f6867312 2971 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 2972 // something changes)
mjr 77:0b96f6867312 2973 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 2974 {
mjr 77:0b96f6867312 2975 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 2976 mediaState.changed = true;
mjr 77:0b96f6867312 2977 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 2978 }
mjr 11:bd9da7088e6e 2979 }
mjr 11:bd9da7088e6e 2980
mjr 73:4e8ce0b18915 2981 // Send a button status report
mjr 73:4e8ce0b18915 2982 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 2983 {
mjr 73:4e8ce0b18915 2984 // start with all buttons off
mjr 73:4e8ce0b18915 2985 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 2986 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 2987
mjr 73:4e8ce0b18915 2988 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 2989 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 2990 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 2991 {
mjr 73:4e8ce0b18915 2992 // get the physical state
mjr 73:4e8ce0b18915 2993 int b = bs->physState;
mjr 73:4e8ce0b18915 2994
mjr 73:4e8ce0b18915 2995 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 2996 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 2997 int si = idx / 8;
mjr 73:4e8ce0b18915 2998 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 2999 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3000 }
mjr 73:4e8ce0b18915 3001
mjr 73:4e8ce0b18915 3002 // send the report
mjr 73:4e8ce0b18915 3003 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3004 }
mjr 73:4e8ce0b18915 3005
mjr 5:a70c0bce770d 3006 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3007 //
mjr 5:a70c0bce770d 3008 // Customization joystick subbclass
mjr 5:a70c0bce770d 3009 //
mjr 5:a70c0bce770d 3010
mjr 5:a70c0bce770d 3011 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3012 {
mjr 5:a70c0bce770d 3013 public:
mjr 35:e959ffba78fd 3014 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 3015 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 3016 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 3017 {
mjr 54:fd77a6b2f76c 3018 sleeping_ = false;
mjr 54:fd77a6b2f76c 3019 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3020 timer_.start();
mjr 54:fd77a6b2f76c 3021 }
mjr 54:fd77a6b2f76c 3022
mjr 54:fd77a6b2f76c 3023 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3024 void diagFlash()
mjr 54:fd77a6b2f76c 3025 {
mjr 54:fd77a6b2f76c 3026 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3027 {
mjr 54:fd77a6b2f76c 3028 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3029 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3030 {
mjr 54:fd77a6b2f76c 3031 // short red flash
mjr 54:fd77a6b2f76c 3032 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3033 wait_us(50000);
mjr 54:fd77a6b2f76c 3034 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3035 wait_us(50000);
mjr 54:fd77a6b2f76c 3036 }
mjr 54:fd77a6b2f76c 3037 }
mjr 5:a70c0bce770d 3038 }
mjr 5:a70c0bce770d 3039
mjr 5:a70c0bce770d 3040 // are we connected?
mjr 5:a70c0bce770d 3041 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3042
mjr 54:fd77a6b2f76c 3043 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3044 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3045 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3046 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3047 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3048
mjr 54:fd77a6b2f76c 3049 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3050 //
mjr 54:fd77a6b2f76c 3051 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3052 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3053 // other way.
mjr 54:fd77a6b2f76c 3054 //
mjr 54:fd77a6b2f76c 3055 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3056 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3057 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3058 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3059 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3060 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3061 //
mjr 54:fd77a6b2f76c 3062 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3063 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3064 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3065 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3066 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3067 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3068 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3069 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3070 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3071 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3072 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3073 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3074 // is effectively dead.
mjr 54:fd77a6b2f76c 3075 //
mjr 54:fd77a6b2f76c 3076 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3077 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3078 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3079 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3080 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3081 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3082 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3083 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3084 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3085 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3086 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3087 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3088 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3089 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3090 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3091 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3092 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3093 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3094 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3095 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3096 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3097 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3098 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3099 // a disconnect.
mjr 54:fd77a6b2f76c 3100 //
mjr 54:fd77a6b2f76c 3101 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3102 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3103 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3104 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3105 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3106 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3107 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3108 //
mjr 54:fd77a6b2f76c 3109 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3110 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3111 //
mjr 54:fd77a6b2f76c 3112 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3113 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3114 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3115 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3116 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3117 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3118 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3119 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3120 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3121 // reliable in practice.
mjr 54:fd77a6b2f76c 3122 //
mjr 54:fd77a6b2f76c 3123 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3124 //
mjr 54:fd77a6b2f76c 3125 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3126 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3127 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3128 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3129 // return.
mjr 54:fd77a6b2f76c 3130 //
mjr 54:fd77a6b2f76c 3131 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3132 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3133 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3134 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3135 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3136 //
mjr 54:fd77a6b2f76c 3137 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3138 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3139 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3140 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3141 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3142 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3143 //
mjr 54:fd77a6b2f76c 3144 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3145 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3146 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3147 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3148 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3149 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3150 // freezes over.
mjr 54:fd77a6b2f76c 3151 //
mjr 54:fd77a6b2f76c 3152 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3153 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3154 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3155 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3156 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3157 void recoverConnection()
mjr 54:fd77a6b2f76c 3158 {
mjr 54:fd77a6b2f76c 3159 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3160 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3161 {
mjr 54:fd77a6b2f76c 3162 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3163 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3164 {
mjr 54:fd77a6b2f76c 3165 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3166 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3167 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3168 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3169 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3170 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3171 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3172 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3173 __disable_irq();
mjr 54:fd77a6b2f76c 3174 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3175 {
mjr 54:fd77a6b2f76c 3176 connect(false);
mjr 54:fd77a6b2f76c 3177 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3178 done = true;
mjr 54:fd77a6b2f76c 3179 }
mjr 54:fd77a6b2f76c 3180 __enable_irq();
mjr 54:fd77a6b2f76c 3181 }
mjr 54:fd77a6b2f76c 3182 }
mjr 54:fd77a6b2f76c 3183 }
mjr 5:a70c0bce770d 3184
mjr 5:a70c0bce770d 3185 protected:
mjr 54:fd77a6b2f76c 3186 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3187 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3188 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3189 //
mjr 54:fd77a6b2f76c 3190 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3191 //
mjr 54:fd77a6b2f76c 3192 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3193 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3194 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3195 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3196 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3197 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3198 {
mjr 54:fd77a6b2f76c 3199 // note the new state
mjr 54:fd77a6b2f76c 3200 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3201
mjr 54:fd77a6b2f76c 3202 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3203 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3204 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3205 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3206 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3207 {
mjr 54:fd77a6b2f76c 3208 disconnect();
mjr 54:fd77a6b2f76c 3209 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3210 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3211 }
mjr 54:fd77a6b2f76c 3212 }
mjr 54:fd77a6b2f76c 3213
mjr 54:fd77a6b2f76c 3214 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3215 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3216
mjr 54:fd77a6b2f76c 3217 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3218 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3219
mjr 54:fd77a6b2f76c 3220 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3221 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3222
mjr 54:fd77a6b2f76c 3223 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3224 Timer timer_;
mjr 5:a70c0bce770d 3225 };
mjr 5:a70c0bce770d 3226
mjr 5:a70c0bce770d 3227 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3228 //
mjr 5:a70c0bce770d 3229 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3230 //
mjr 5:a70c0bce770d 3231
mjr 5:a70c0bce770d 3232 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3233 //
mjr 5:a70c0bce770d 3234 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3235 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3236 // automatic calibration.
mjr 5:a70c0bce770d 3237 //
mjr 77:0b96f6867312 3238 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3239 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3240 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3241 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3242 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3243 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3244 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3245 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3246 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3247 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3248 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3249 //
mjr 77:0b96f6867312 3250 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3251 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3252 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3253 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3254 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3255 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3256 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3257 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3258 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3259 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3260 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3261 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3262 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3263 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3264 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3265 // rather than change it across the board.
mjr 5:a70c0bce770d 3266 //
mjr 6:cc35eb643e8f 3267 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3268 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3269 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3270 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3271 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3272 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3273 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3274 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3275 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3276 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3277 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3278 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3279 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3280 // of nudging, say).
mjr 5:a70c0bce770d 3281 //
mjr 5:a70c0bce770d 3282
mjr 17:ab3cec0c8bf4 3283 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3284 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3285
mjr 17:ab3cec0c8bf4 3286 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3287 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3288 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3289
mjr 17:ab3cec0c8bf4 3290 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3291 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3292 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3293 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3294
mjr 17:ab3cec0c8bf4 3295
mjr 6:cc35eb643e8f 3296 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3297 struct AccHist
mjr 5:a70c0bce770d 3298 {
mjr 77:0b96f6867312 3299 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3300 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3301 {
mjr 6:cc35eb643e8f 3302 // save the raw position
mjr 6:cc35eb643e8f 3303 this->x = x;
mjr 6:cc35eb643e8f 3304 this->y = y;
mjr 77:0b96f6867312 3305 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3306 }
mjr 6:cc35eb643e8f 3307
mjr 6:cc35eb643e8f 3308 // reading for this entry
mjr 77:0b96f6867312 3309 int x, y;
mjr 77:0b96f6867312 3310
mjr 77:0b96f6867312 3311 // (distance from previous entry) squared
mjr 77:0b96f6867312 3312 int dsq;
mjr 5:a70c0bce770d 3313
mjr 6:cc35eb643e8f 3314 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3315 int xtot, ytot;
mjr 6:cc35eb643e8f 3316 int cnt;
mjr 6:cc35eb643e8f 3317
mjr 77:0b96f6867312 3318 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3319 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3320 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3321 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3322
mjr 77:0b96f6867312 3323 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3324 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3325 };
mjr 5:a70c0bce770d 3326
mjr 5:a70c0bce770d 3327 // accelerometer wrapper class
mjr 3:3514575d4f86 3328 class Accel
mjr 3:3514575d4f86 3329 {
mjr 3:3514575d4f86 3330 public:
mjr 78:1e00b3fa11af 3331 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3332 int range, int autoCenterMode)
mjr 77:0b96f6867312 3333 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3334 {
mjr 5:a70c0bce770d 3335 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3336 irqPin_ = irqPin;
mjr 77:0b96f6867312 3337
mjr 77:0b96f6867312 3338 // remember the range
mjr 77:0b96f6867312 3339 range_ = range;
mjr 78:1e00b3fa11af 3340
mjr 78:1e00b3fa11af 3341 // set the auto-centering mode
mjr 78:1e00b3fa11af 3342 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3343
mjr 78:1e00b3fa11af 3344 // no manual centering request has been received
mjr 78:1e00b3fa11af 3345 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3346
mjr 5:a70c0bce770d 3347 // reset and initialize
mjr 5:a70c0bce770d 3348 reset();
mjr 5:a70c0bce770d 3349 }
mjr 5:a70c0bce770d 3350
mjr 78:1e00b3fa11af 3351 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3352 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3353 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3354 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3355
mjr 78:1e00b3fa11af 3356 // set the auto-centering mode
mjr 78:1e00b3fa11af 3357 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3358 {
mjr 78:1e00b3fa11af 3359 // remember the mode
mjr 78:1e00b3fa11af 3360 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3361
mjr 78:1e00b3fa11af 3362 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3363 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3364 if (mode == 0)
mjr 78:1e00b3fa11af 3365 {
mjr 78:1e00b3fa11af 3366 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3367 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3368 }
mjr 78:1e00b3fa11af 3369 else if (mode <= 60)
mjr 78:1e00b3fa11af 3370 {
mjr 78:1e00b3fa11af 3371 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3372 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3373 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3374 }
mjr 78:1e00b3fa11af 3375 else
mjr 78:1e00b3fa11af 3376 {
mjr 78:1e00b3fa11af 3377 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3378 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3379 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3380 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3381 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3382 // includes recent data.
mjr 78:1e00b3fa11af 3383 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3384 }
mjr 78:1e00b3fa11af 3385 }
mjr 78:1e00b3fa11af 3386
mjr 5:a70c0bce770d 3387 void reset()
mjr 5:a70c0bce770d 3388 {
mjr 6:cc35eb643e8f 3389 // clear the center point
mjr 77:0b96f6867312 3390 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3391
mjr 77:0b96f6867312 3392 // start the auto-centering timer
mjr 5:a70c0bce770d 3393 tCenter_.start();
mjr 5:a70c0bce770d 3394 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3395
mjr 5:a70c0bce770d 3396 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3397 mma_.init();
mjr 77:0b96f6867312 3398
mjr 77:0b96f6867312 3399 // set the range
mjr 77:0b96f6867312 3400 mma_.setRange(
mjr 77:0b96f6867312 3401 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3402 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3403 2);
mjr 6:cc35eb643e8f 3404
mjr 77:0b96f6867312 3405 // set the average accumulators to zero
mjr 77:0b96f6867312 3406 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3407 nSum_ = 0;
mjr 3:3514575d4f86 3408
mjr 3:3514575d4f86 3409 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3410 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3411 }
mjr 3:3514575d4f86 3412
mjr 77:0b96f6867312 3413 void poll()
mjr 76:7f5912b6340e 3414 {
mjr 77:0b96f6867312 3415 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3416 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3417 {
mjr 77:0b96f6867312 3418 int x, y, z;
mjr 77:0b96f6867312 3419 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3420
mjr 77:0b96f6867312 3421 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3422 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3423 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3424 ++nSum_;
mjr 77:0b96f6867312 3425
mjr 77:0b96f6867312 3426 // store the updates
mjr 77:0b96f6867312 3427 ax_ = x;
mjr 77:0b96f6867312 3428 ay_ = y;
mjr 77:0b96f6867312 3429 az_ = z;
mjr 77:0b96f6867312 3430 }
mjr 76:7f5912b6340e 3431 }
mjr 77:0b96f6867312 3432
mjr 9:fd65b0a94720 3433 void get(int &x, int &y)
mjr 3:3514575d4f86 3434 {
mjr 77:0b96f6867312 3435 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3436 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3437 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3438 int nSum = nSum_;
mjr 6:cc35eb643e8f 3439
mjr 77:0b96f6867312 3440 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3441 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3442 nSum_ = 0;
mjr 77:0b96f6867312 3443
mjr 77:0b96f6867312 3444 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3445 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3446 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3447
mjr 78:1e00b3fa11af 3448 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3449 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3450 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3451 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3452 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3453 {
mjr 77:0b96f6867312 3454 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3455 AccHist *prv = p;
mjr 77:0b96f6867312 3456 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3457 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3458 iAccPrv_ = 0;
mjr 77:0b96f6867312 3459 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3460 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3461
mjr 78:1e00b3fa11af 3462 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3463 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3464 {
mjr 78:1e00b3fa11af 3465 // Center if:
mjr 78:1e00b3fa11af 3466 //
mjr 78:1e00b3fa11af 3467 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3468 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3469 //
mjr 78:1e00b3fa11af 3470 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3471 //
mjr 77:0b96f6867312 3472 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3473 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3474 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3475 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3476 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3477 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3478 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3479 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3480 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3481 {
mjr 77:0b96f6867312 3482 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3483 // the samples over the rest period
mjr 77:0b96f6867312 3484 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3485 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3486
mjr 78:1e00b3fa11af 3487 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3488 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3489 }
mjr 77:0b96f6867312 3490 }
mjr 77:0b96f6867312 3491 else
mjr 77:0b96f6867312 3492 {
mjr 77:0b96f6867312 3493 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3494 ++nAccPrv_;
mjr 77:0b96f6867312 3495 }
mjr 6:cc35eb643e8f 3496
mjr 77:0b96f6867312 3497 // clear the new item's running totals
mjr 77:0b96f6867312 3498 p->clearAvg();
mjr 5:a70c0bce770d 3499
mjr 77:0b96f6867312 3500 // reset the timer
mjr 77:0b96f6867312 3501 tCenter_.reset();
mjr 77:0b96f6867312 3502 }
mjr 5:a70c0bce770d 3503
mjr 77:0b96f6867312 3504 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3505 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3506 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3507
mjr 6:cc35eb643e8f 3508 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3509 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3510 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3511 #endif
mjr 77:0b96f6867312 3512 }
mjr 29:582472d0bc57 3513
mjr 3:3514575d4f86 3514 private:
mjr 6:cc35eb643e8f 3515 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3516 int rawToReport(int v)
mjr 5:a70c0bce770d 3517 {
mjr 77:0b96f6867312 3518 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3519 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3520 // so their scale is 2^13.
mjr 77:0b96f6867312 3521 //
mjr 77:0b96f6867312 3522 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3523 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3524 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3525 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3526 int i = v*JOYMAX;
mjr 77:0b96f6867312 3527 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3528
mjr 6:cc35eb643e8f 3529 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3530 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3531 static const int filter[] = {
mjr 6:cc35eb643e8f 3532 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3533 0,
mjr 6:cc35eb643e8f 3534 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3535 };
mjr 6:cc35eb643e8f 3536 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3537 }
mjr 5:a70c0bce770d 3538
mjr 3:3514575d4f86 3539 // underlying accelerometer object
mjr 3:3514575d4f86 3540 MMA8451Q mma_;
mjr 3:3514575d4f86 3541
mjr 77:0b96f6867312 3542 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3543 // scale -8192..+8191
mjr 77:0b96f6867312 3544 int ax_, ay_, az_;
mjr 77:0b96f6867312 3545
mjr 77:0b96f6867312 3546 // running sum of readings since last get()
mjr 77:0b96f6867312 3547 int xSum_, ySum_;
mjr 77:0b96f6867312 3548
mjr 77:0b96f6867312 3549 // number of readings since last get()
mjr 77:0b96f6867312 3550 int nSum_;
mjr 6:cc35eb643e8f 3551
mjr 6:cc35eb643e8f 3552 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3553 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3554 // at rest.
mjr 77:0b96f6867312 3555 int cx_, cy_;
mjr 77:0b96f6867312 3556
mjr 77:0b96f6867312 3557 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3558 uint8_t range_;
mjr 78:1e00b3fa11af 3559
mjr 78:1e00b3fa11af 3560 // auto-center mode:
mjr 78:1e00b3fa11af 3561 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3562 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3563 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3564 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3565
mjr 78:1e00b3fa11af 3566 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3567 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3568
mjr 78:1e00b3fa11af 3569 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3570 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3571
mjr 77:0b96f6867312 3572 // atuo-centering timer
mjr 5:a70c0bce770d 3573 Timer tCenter_;
mjr 6:cc35eb643e8f 3574
mjr 6:cc35eb643e8f 3575 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3576 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3577 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3578 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3579 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3580 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3581 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3582 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3583 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3584 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3585 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3586 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3587 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3588 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3589 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3590
mjr 5:a70c0bce770d 3591 // interurupt pin name
mjr 5:a70c0bce770d 3592 PinName irqPin_;
mjr 3:3514575d4f86 3593 };
mjr 3:3514575d4f86 3594
mjr 5:a70c0bce770d 3595 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3596 //
mjr 14:df700b22ca08 3597 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3598 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3599 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3600 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3601 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3602 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3603 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3604 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3605 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3606 //
mjr 14:df700b22ca08 3607 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3608 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3609 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3610 //
mjr 5:a70c0bce770d 3611 void clear_i2c()
mjr 5:a70c0bce770d 3612 {
mjr 38:091e511ce8a0 3613 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3614 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3615 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3616
mjr 5:a70c0bce770d 3617 // clock the SCL 9 times
mjr 5:a70c0bce770d 3618 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3619 {
mjr 5:a70c0bce770d 3620 scl = 1;
mjr 5:a70c0bce770d 3621 wait_us(20);
mjr 5:a70c0bce770d 3622 scl = 0;
mjr 5:a70c0bce770d 3623 wait_us(20);
mjr 5:a70c0bce770d 3624 }
mjr 5:a70c0bce770d 3625 }
mjr 76:7f5912b6340e 3626
mjr 76:7f5912b6340e 3627
mjr 14:df700b22ca08 3628 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3629 //
mjr 33:d832bcab089e 3630 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3631 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3632 //
mjr 33:d832bcab089e 3633 class Debouncer
mjr 33:d832bcab089e 3634 {
mjr 33:d832bcab089e 3635 public:
mjr 33:d832bcab089e 3636 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3637 {
mjr 33:d832bcab089e 3638 t.start();
mjr 33:d832bcab089e 3639 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3640 this->tmin = tmin;
mjr 33:d832bcab089e 3641 }
mjr 33:d832bcab089e 3642
mjr 33:d832bcab089e 3643 // Get the current stable value
mjr 33:d832bcab089e 3644 bool val() const { return stable; }
mjr 33:d832bcab089e 3645
mjr 33:d832bcab089e 3646 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3647 // input device.
mjr 33:d832bcab089e 3648 void sampleIn(bool val)
mjr 33:d832bcab089e 3649 {
mjr 33:d832bcab089e 3650 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 3651 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 3652 // on the sample reader.
mjr 33:d832bcab089e 3653 if (val != prv)
mjr 33:d832bcab089e 3654 {
mjr 33:d832bcab089e 3655 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 3656 t.reset();
mjr 33:d832bcab089e 3657
mjr 33:d832bcab089e 3658 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 3659 prv = val;
mjr 33:d832bcab089e 3660 }
mjr 33:d832bcab089e 3661 else if (val != stable)
mjr 33:d832bcab089e 3662 {
mjr 33:d832bcab089e 3663 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 3664 // and different from the stable value. This means that
mjr 33:d832bcab089e 3665 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 3666 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 3667 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 3668 if (t.read() > tmin)
mjr 33:d832bcab089e 3669 stable = val;
mjr 33:d832bcab089e 3670 }
mjr 33:d832bcab089e 3671 }
mjr 33:d832bcab089e 3672
mjr 33:d832bcab089e 3673 private:
mjr 33:d832bcab089e 3674 // current stable value
mjr 33:d832bcab089e 3675 bool stable;
mjr 33:d832bcab089e 3676
mjr 33:d832bcab089e 3677 // last raw sample value
mjr 33:d832bcab089e 3678 bool prv;
mjr 33:d832bcab089e 3679
mjr 33:d832bcab089e 3680 // elapsed time since last raw input change
mjr 33:d832bcab089e 3681 Timer t;
mjr 33:d832bcab089e 3682
mjr 33:d832bcab089e 3683 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 3684 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 3685 float tmin;
mjr 33:d832bcab089e 3686 };
mjr 33:d832bcab089e 3687
mjr 33:d832bcab089e 3688
mjr 33:d832bcab089e 3689 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 3690 //
mjr 33:d832bcab089e 3691 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 3692 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 3693 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 3694 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 3695 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 3696 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 3697 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 3698 //
mjr 33:d832bcab089e 3699 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 3700 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 3701 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 3702 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 3703 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 3704 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 3705 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 3706 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 3707 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 3708 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 3709 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 3710 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 3711 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 3712 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 3713 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 3714 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 3715 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 3716 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 3717 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 3718 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 3719 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 3720 //
mjr 40:cc0d9814522b 3721 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 3722 // of tricky but likely scenarios:
mjr 33:d832bcab089e 3723 //
mjr 33:d832bcab089e 3724 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 3725 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 3726 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 3727 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 3728 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 3729 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 3730 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 3731 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 3732 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 3733 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 3734 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 3735 //
mjr 33:d832bcab089e 3736 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 3737 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 3738 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 3739 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 3740 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 3741 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 3742 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 3743 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 3744 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 3745 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 3746 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 3747 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 3748 // first check.
mjr 33:d832bcab089e 3749 //
mjr 33:d832bcab089e 3750 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 3751 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 3752 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 3753 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 3754 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 3755 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 3756 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 3757 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 3758 //
mjr 33:d832bcab089e 3759
mjr 77:0b96f6867312 3760 // Current PSU2 power state:
mjr 33:d832bcab089e 3761 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 3762 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 3763 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 3764 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 3765 // 5 -> TV relay on
mjr 77:0b96f6867312 3766 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 3767 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 3768
mjr 73:4e8ce0b18915 3769 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 3770 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 3771 // separate state for each:
mjr 73:4e8ce0b18915 3772 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 3773 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 3774 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 3775 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 3776 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 3777
mjr 79:682ae3171a08 3778 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 3779 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 3780
mjr 77:0b96f6867312 3781 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 3782 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 3783 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 3784 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 3785 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 3786 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 3787 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 3788 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 3789 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 3790 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 3791 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 3792
mjr 77:0b96f6867312 3793 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 3794 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 3795
mjr 35:e959ffba78fd 3796 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 3797 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 3798 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 3799
mjr 73:4e8ce0b18915 3800 // Apply the current TV relay state
mjr 73:4e8ce0b18915 3801 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 3802 {
mjr 73:4e8ce0b18915 3803 // update the state
mjr 73:4e8ce0b18915 3804 if (state)
mjr 73:4e8ce0b18915 3805 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 3806 else
mjr 73:4e8ce0b18915 3807 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 3808
mjr 73:4e8ce0b18915 3809 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 3810 if (tv_relay != 0)
mjr 73:4e8ce0b18915 3811 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 3812 }
mjr 35:e959ffba78fd 3813
mjr 77:0b96f6867312 3814 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 3815 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 3816 // functions.
mjr 77:0b96f6867312 3817 Timer powerStatusTimer;
mjr 77:0b96f6867312 3818 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 3819 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 3820 {
mjr 79:682ae3171a08 3821 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 3822 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 3823 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 3824 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 3825 {
mjr 79:682ae3171a08 3826 // turn off the relay and disable the timer
mjr 79:682ae3171a08 3827 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 3828 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 3829 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 3830 }
mjr 79:682ae3171a08 3831
mjr 77:0b96f6867312 3832 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 3833 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 3834 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 3835 // skip this whole routine.
mjr 77:0b96f6867312 3836 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 3837 return;
mjr 77:0b96f6867312 3838
mjr 77:0b96f6867312 3839 // reset the update timer for next time
mjr 77:0b96f6867312 3840 powerStatusTimer.reset();
mjr 77:0b96f6867312 3841
mjr 77:0b96f6867312 3842 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 3843 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 3844 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 3845 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 3846 static Timer tv_timer;
mjr 35:e959ffba78fd 3847
mjr 33:d832bcab089e 3848 // Check our internal state
mjr 33:d832bcab089e 3849 switch (psu2_state)
mjr 33:d832bcab089e 3850 {
mjr 33:d832bcab089e 3851 case 1:
mjr 33:d832bcab089e 3852 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 3853 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 3854 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 3855 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 3856 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 3857 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 3858 {
mjr 33:d832bcab089e 3859 // switch to OFF state
mjr 33:d832bcab089e 3860 psu2_state = 2;
mjr 33:d832bcab089e 3861
mjr 33:d832bcab089e 3862 // try setting the latch
mjr 35:e959ffba78fd 3863 psu2_status_set->write(1);
mjr 33:d832bcab089e 3864 }
mjr 77:0b96f6867312 3865 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3866 break;
mjr 33:d832bcab089e 3867
mjr 33:d832bcab089e 3868 case 2:
mjr 33:d832bcab089e 3869 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 3870 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 3871 psu2_status_set->write(0);
mjr 33:d832bcab089e 3872 psu2_state = 3;
mjr 77:0b96f6867312 3873 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3874 break;
mjr 33:d832bcab089e 3875
mjr 33:d832bcab089e 3876 case 3:
mjr 33:d832bcab089e 3877 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3878 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3879 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3880 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3881 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3882 {
mjr 33:d832bcab089e 3883 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3884 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3885 tv_timer.reset();
mjr 33:d832bcab089e 3886 tv_timer.start();
mjr 33:d832bcab089e 3887 psu2_state = 4;
mjr 73:4e8ce0b18915 3888
mjr 73:4e8ce0b18915 3889 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3890 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3891 }
mjr 33:d832bcab089e 3892 else
mjr 33:d832bcab089e 3893 {
mjr 33:d832bcab089e 3894 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 3895 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 3896 // was turned on since the last check.
mjr 35:e959ffba78fd 3897 psu2_status_set->write(1);
mjr 33:d832bcab089e 3898 psu2_state = 2;
mjr 33:d832bcab089e 3899 }
mjr 33:d832bcab089e 3900 break;
mjr 33:d832bcab089e 3901
mjr 33:d832bcab089e 3902 case 4:
mjr 77:0b96f6867312 3903 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 3904 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 3905 // off again before the countdown finished.
mjr 77:0b96f6867312 3906 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 3907 {
mjr 77:0b96f6867312 3908 // power is off - start a new check cycle
mjr 77:0b96f6867312 3909 psu2_status_set->write(1);
mjr 77:0b96f6867312 3910 psu2_state = 2;
mjr 77:0b96f6867312 3911 break;
mjr 77:0b96f6867312 3912 }
mjr 77:0b96f6867312 3913
mjr 77:0b96f6867312 3914 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 3915 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 3916
mjr 77:0b96f6867312 3917 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 3918 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 3919 {
mjr 33:d832bcab089e 3920 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 3921 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 3922 psu2_state = 5;
mjr 77:0b96f6867312 3923
mjr 77:0b96f6867312 3924 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 3925 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3926 }
mjr 33:d832bcab089e 3927 break;
mjr 33:d832bcab089e 3928
mjr 33:d832bcab089e 3929 case 5:
mjr 33:d832bcab089e 3930 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 3931 // it's now time to turn it off.
mjr 73:4e8ce0b18915 3932 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 3933
mjr 77:0b96f6867312 3934 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 3935 psu2_state = 6;
mjr 77:0b96f6867312 3936 tvon_ir_state = 0;
mjr 77:0b96f6867312 3937
mjr 77:0b96f6867312 3938 // diagnostic LEDs off for now
mjr 77:0b96f6867312 3939 powerTimerDiagState = 0;
mjr 77:0b96f6867312 3940 break;
mjr 77:0b96f6867312 3941
mjr 77:0b96f6867312 3942 case 6:
mjr 77:0b96f6867312 3943 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 3944 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 3945 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 3946 psu2_state = 1;
mjr 77:0b96f6867312 3947 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 3948
mjr 77:0b96f6867312 3949 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 3950 if (ir_tx != 0)
mjr 77:0b96f6867312 3951 {
mjr 77:0b96f6867312 3952 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 3953 if (ir_tx->isSending())
mjr 77:0b96f6867312 3954 {
mjr 77:0b96f6867312 3955 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 3956 // state 6.
mjr 77:0b96f6867312 3957 psu2_state = 6;
mjr 77:0b96f6867312 3958 powerTimerDiagState = 4;
mjr 77:0b96f6867312 3959 break;
mjr 77:0b96f6867312 3960 }
mjr 77:0b96f6867312 3961
mjr 77:0b96f6867312 3962 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 3963 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 3964 // number.
mjr 77:0b96f6867312 3965 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 3966 {
mjr 77:0b96f6867312 3967 // is this a TV ON command?
mjr 77:0b96f6867312 3968 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 3969 {
mjr 77:0b96f6867312 3970 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 3971 // looking for.
mjr 77:0b96f6867312 3972 if (n == tvon_ir_state)
mjr 77:0b96f6867312 3973 {
mjr 77:0b96f6867312 3974 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 3975 // pushing its virtual button.
mjr 77:0b96f6867312 3976 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 3977 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 3978
mjr 77:0b96f6867312 3979 // Pushing the button starts transmission, and once
mjr 77:0b96f6867312 3980 // started, the transmission will run to completion
mjr 77:0b96f6867312 3981 // even if the button is no longer pushed. So we
mjr 77:0b96f6867312 3982 // can immediately un-push the button, since we only
mjr 77:0b96f6867312 3983 // need to send the code once.
mjr 77:0b96f6867312 3984 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 3985
mjr 77:0b96f6867312 3986 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 3987 // await the end of this transmission and move on to
mjr 77:0b96f6867312 3988 // the next one.
mjr 77:0b96f6867312 3989 psu2_state = 6;
mjr 77:0b96f6867312 3990 tvon_ir_state++;
mjr 77:0b96f6867312 3991 break;
mjr 77:0b96f6867312 3992 }
mjr 77:0b96f6867312 3993
mjr 77:0b96f6867312 3994 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 3995 ++n;
mjr 77:0b96f6867312 3996 }
mjr 77:0b96f6867312 3997 }
mjr 77:0b96f6867312 3998 }
mjr 33:d832bcab089e 3999 break;
mjr 33:d832bcab089e 4000 }
mjr 77:0b96f6867312 4001
mjr 77:0b96f6867312 4002 // update the diagnostic LEDs
mjr 77:0b96f6867312 4003 diagLED();
mjr 33:d832bcab089e 4004 }
mjr 33:d832bcab089e 4005
mjr 77:0b96f6867312 4006 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4007 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4008 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4009 // are configured as NC.
mjr 77:0b96f6867312 4010 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4011 {
mjr 55:4db125cd11a0 4012 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4013 // time is nonzero
mjr 77:0b96f6867312 4014 powerStatusTimer.reset();
mjr 77:0b96f6867312 4015 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4016 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4017 {
mjr 77:0b96f6867312 4018 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4019 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4020 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4021
mjr 77:0b96f6867312 4022 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4023 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4024 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4025
mjr 77:0b96f6867312 4026 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4027 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4028 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4029 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4030
mjr 77:0b96f6867312 4031 // Start the TV timer
mjr 77:0b96f6867312 4032 powerStatusTimer.start();
mjr 35:e959ffba78fd 4033 }
mjr 35:e959ffba78fd 4034 }
mjr 35:e959ffba78fd 4035
mjr 73:4e8ce0b18915 4036 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4037 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4038 //
mjr 73:4e8ce0b18915 4039 // Mode:
mjr 73:4e8ce0b18915 4040 // 0 = turn relay off
mjr 73:4e8ce0b18915 4041 // 1 = turn relay on
mjr 73:4e8ce0b18915 4042 // 2 = pulse relay
mjr 73:4e8ce0b18915 4043 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4044 {
mjr 73:4e8ce0b18915 4045 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4046 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4047 return;
mjr 73:4e8ce0b18915 4048
mjr 73:4e8ce0b18915 4049 switch (mode)
mjr 73:4e8ce0b18915 4050 {
mjr 73:4e8ce0b18915 4051 case 0:
mjr 73:4e8ce0b18915 4052 // relay off
mjr 73:4e8ce0b18915 4053 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4054 break;
mjr 73:4e8ce0b18915 4055
mjr 73:4e8ce0b18915 4056 case 1:
mjr 73:4e8ce0b18915 4057 // relay on
mjr 73:4e8ce0b18915 4058 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4059 break;
mjr 73:4e8ce0b18915 4060
mjr 73:4e8ce0b18915 4061 case 2:
mjr 79:682ae3171a08 4062 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4063 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4064 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4065 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4066 break;
mjr 73:4e8ce0b18915 4067 }
mjr 73:4e8ce0b18915 4068 }
mjr 73:4e8ce0b18915 4069
mjr 73:4e8ce0b18915 4070
mjr 35:e959ffba78fd 4071 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4072 //
mjr 35:e959ffba78fd 4073 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4074 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4075 //
mjr 35:e959ffba78fd 4076 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4077 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4078 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4079 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4080 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4081 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4082 //
mjr 35:e959ffba78fd 4083 NVM nvm;
mjr 35:e959ffba78fd 4084
mjr 85:3c28aee81cde 4085 // Configuration save state
mjr 85:3c28aee81cde 4086 const uint8_t SAVE_CONFIG_IDLE = 0; // no config save work pending
mjr 85:3c28aee81cde 4087 const uint8_t SAVE_CONFIG_ONLY = 1; // save is pending
mjr 85:3c28aee81cde 4088 const uint8_t SAVE_CONFIG_AND_REBOOT = 2; // save is pending, reboot after save
mjr 85:3c28aee81cde 4089 const uint8_t SAVE_CONFIG_REBOOT = 3; // save done, reboot is pending
mjr 85:3c28aee81cde 4090 uint8_t saveConfigState = SAVE_CONFIG_IDLE;
mjr 85:3c28aee81cde 4091
mjr 85:3c28aee81cde 4092 // Save Config post-processing time, in seconds.
mjr 85:3c28aee81cde 4093 //
mjr 85:3c28aee81cde 4094 // If saveConfigState == SAVE_CONFIG_AND_REBOOT, we reboot after this
mjr 85:3c28aee81cde 4095 // time elapses. Otherwise, we simply clear the timer and clear the
mjr 85:3c28aee81cde 4096 // "succeeded" flag.
mjr 85:3c28aee81cde 4097 uint8_t saveConfigPostTime;
mjr 77:0b96f6867312 4098
mjr 79:682ae3171a08 4099 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4100 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4101
mjr 35:e959ffba78fd 4102 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4103 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4104
mjr 35:e959ffba78fd 4105 // flash memory controller interface
mjr 35:e959ffba78fd 4106 FreescaleIAP iap;
mjr 35:e959ffba78fd 4107
mjr 79:682ae3171a08 4108 // figure the flash address for the config data
mjr 79:682ae3171a08 4109 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4110 {
mjr 79:682ae3171a08 4111 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4112 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4113
mjr 79:682ae3171a08 4114 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4115 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4116
mjr 79:682ae3171a08 4117 // locate it at the top of memory
mjr 79:682ae3171a08 4118 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4119
mjr 79:682ae3171a08 4120 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4121 return (const NVM *)addr;
mjr 35:e959ffba78fd 4122 }
mjr 35:e959ffba78fd 4123
mjr 76:7f5912b6340e 4124 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4125 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4126 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4127 // in either case.
mjr 76:7f5912b6340e 4128 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4129 {
mjr 35:e959ffba78fd 4130 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4131 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4132 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4133 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4134 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4135 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4136 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4137 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4138 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4139 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4140 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4141 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4142 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4143 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4144 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4145 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4146
mjr 35:e959ffba78fd 4147 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4148 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4149
mjr 35:e959ffba78fd 4150 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4151 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4152 if (nvm_valid)
mjr 35:e959ffba78fd 4153 {
mjr 35:e959ffba78fd 4154 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4155 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4156 }
mjr 35:e959ffba78fd 4157 else
mjr 35:e959ffba78fd 4158 {
mjr 76:7f5912b6340e 4159 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4160 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4161 }
mjr 76:7f5912b6340e 4162
mjr 76:7f5912b6340e 4163 // tell the caller what happened
mjr 76:7f5912b6340e 4164 return nvm_valid;
mjr 35:e959ffba78fd 4165 }
mjr 35:e959ffba78fd 4166
mjr 79:682ae3171a08 4167 // save the config - returns true on success, false on failure
mjr 79:682ae3171a08 4168 bool saveConfigToFlash()
mjr 33:d832bcab089e 4169 {
mjr 76:7f5912b6340e 4170 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4171 waitPlungerIdle();
mjr 76:7f5912b6340e 4172
mjr 76:7f5912b6340e 4173 // get the config block location in the flash memory
mjr 77:0b96f6867312 4174 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4175
mjr 79:682ae3171a08 4176 // save the data
mjr 79:682ae3171a08 4177 return nvm.save(iap, addr);
mjr 76:7f5912b6340e 4178 }
mjr 76:7f5912b6340e 4179
mjr 76:7f5912b6340e 4180 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4181 //
mjr 76:7f5912b6340e 4182 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4183 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4184 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4185 // downloading it to the device.
mjr 76:7f5912b6340e 4186 //
mjr 76:7f5912b6340e 4187 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4188 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4189 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4190 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4191 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4192 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4193 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4194 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4195 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4196 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4197 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4198 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4199 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4200 //
mjr 76:7f5912b6340e 4201 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4202 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4203 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4204 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4205 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4206 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4207 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4208 //
mjr 76:7f5912b6340e 4209 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4210 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4211 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4212 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4213 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4214 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4215 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4216 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4217 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4218 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4219
mjr 76:7f5912b6340e 4220 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4221 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4222 {
mjr 76:7f5912b6340e 4223 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4224 // 32-byte signature header
mjr 76:7f5912b6340e 4225 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4226 };
mjr 76:7f5912b6340e 4227
mjr 76:7f5912b6340e 4228 // forward reference to config var store function
mjr 76:7f5912b6340e 4229 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4230
mjr 76:7f5912b6340e 4231 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4232 // configuration object.
mjr 76:7f5912b6340e 4233 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4234 {
mjr 76:7f5912b6340e 4235 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4236 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4237 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4238 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4239 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4240 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4241 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4242 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4243 {
mjr 76:7f5912b6340e 4244 // load this variable
mjr 76:7f5912b6340e 4245 configVarSet(p);
mjr 76:7f5912b6340e 4246 }
mjr 35:e959ffba78fd 4247 }
mjr 35:e959ffba78fd 4248
mjr 35:e959ffba78fd 4249 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4250 //
mjr 55:4db125cd11a0 4251 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4252 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4253 //
mjr 55:4db125cd11a0 4254 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4255 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4256 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4257
mjr 55:4db125cd11a0 4258
mjr 55:4db125cd11a0 4259
mjr 55:4db125cd11a0 4260 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4261 //
mjr 40:cc0d9814522b 4262 // Night mode setting updates
mjr 40:cc0d9814522b 4263 //
mjr 38:091e511ce8a0 4264
mjr 38:091e511ce8a0 4265 // Turn night mode on or off
mjr 38:091e511ce8a0 4266 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4267 {
mjr 77:0b96f6867312 4268 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4269 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4270 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4271 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4272
mjr 40:cc0d9814522b 4273 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4274 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4275 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4276 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4277
mjr 76:7f5912b6340e 4278 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4279 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4280 // mode change.
mjr 76:7f5912b6340e 4281 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4282 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4283
mjr 76:7f5912b6340e 4284 // update 74HC595 outputs
mjr 76:7f5912b6340e 4285 if (hc595 != 0)
mjr 76:7f5912b6340e 4286 hc595->update();
mjr 38:091e511ce8a0 4287 }
mjr 38:091e511ce8a0 4288
mjr 38:091e511ce8a0 4289 // Toggle night mode
mjr 38:091e511ce8a0 4290 static void toggleNightMode()
mjr 38:091e511ce8a0 4291 {
mjr 53:9b2611964afc 4292 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4293 }
mjr 38:091e511ce8a0 4294
mjr 38:091e511ce8a0 4295
mjr 38:091e511ce8a0 4296 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4297 //
mjr 35:e959ffba78fd 4298 // Plunger Sensor
mjr 35:e959ffba78fd 4299 //
mjr 35:e959ffba78fd 4300
mjr 35:e959ffba78fd 4301 // the plunger sensor interface object
mjr 35:e959ffba78fd 4302 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4303
mjr 76:7f5912b6340e 4304 // wait for the plunger sensor to complete any outstanding read
mjr 76:7f5912b6340e 4305 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4306 {
mjr 76:7f5912b6340e 4307 while (!plungerSensor->ready()) { }
mjr 76:7f5912b6340e 4308 }
mjr 76:7f5912b6340e 4309
mjr 35:e959ffba78fd 4310 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4311 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4312 void createPlunger()
mjr 35:e959ffba78fd 4313 {
mjr 35:e959ffba78fd 4314 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4315 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4316 {
mjr 82:4f6209cb5c33 4317 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 4318 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 4319 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4320 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4321 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4322 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4323 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4324 break;
mjr 35:e959ffba78fd 4325
mjr 82:4f6209cb5c33 4326 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 4327 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 4328 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4329 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4330 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4331 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4332 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4333 break;
mjr 35:e959ffba78fd 4334
mjr 35:e959ffba78fd 4335 case PlungerType_Pot:
mjr 82:4f6209cb5c33 4336 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 4337 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 4338 // pins are: AO (analog in)
mjr 53:9b2611964afc 4339 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4340 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4341 break;
mjr 82:4f6209cb5c33 4342
mjr 82:4f6209cb5c33 4343 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 4344 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 4345 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 4346 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 4347 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 4348 300,
mjr 82:4f6209cb5c33 4349 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4350 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 4351 break;
mjr 82:4f6209cb5c33 4352
mjr 82:4f6209cb5c33 4353 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 4354 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 4355 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 4356 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 4357 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4358 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4359 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4360 break;
mjr 82:4f6209cb5c33 4361
mjr 82:4f6209cb5c33 4362 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 4363 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 4364 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 4365 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 4366 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4367 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4368 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4369 break;
mjr 82:4f6209cb5c33 4370
mjr 35:e959ffba78fd 4371 case PlungerType_None:
mjr 35:e959ffba78fd 4372 default:
mjr 35:e959ffba78fd 4373 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4374 break;
mjr 35:e959ffba78fd 4375 }
mjr 33:d832bcab089e 4376 }
mjr 33:d832bcab089e 4377
mjr 52:8298b2a73eb2 4378 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4379 bool plungerCalMode;
mjr 52:8298b2a73eb2 4380
mjr 48:058ace2aed1d 4381 // Plunger reader
mjr 51:57eb311faafa 4382 //
mjr 51:57eb311faafa 4383 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4384 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4385 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4386 //
mjr 51:57eb311faafa 4387 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4388 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4389 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4390 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4391 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4392 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4393 // firing motion.
mjr 51:57eb311faafa 4394 //
mjr 51:57eb311faafa 4395 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4396 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4397 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4398 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4399 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4400 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4401 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4402 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4403 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4404 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4405 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4406 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4407 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4408 //
mjr 51:57eb311faafa 4409 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4410 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4411 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4412 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4413 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4414 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4415 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4416 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4417 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4418 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4419 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4420 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4421 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4422 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4423 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4424 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4425 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4426 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4427 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4428 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4429 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4430 //
mjr 48:058ace2aed1d 4431 class PlungerReader
mjr 48:058ace2aed1d 4432 {
mjr 48:058ace2aed1d 4433 public:
mjr 48:058ace2aed1d 4434 PlungerReader()
mjr 48:058ace2aed1d 4435 {
mjr 48:058ace2aed1d 4436 // not in a firing event yet
mjr 48:058ace2aed1d 4437 firing = 0;
mjr 48:058ace2aed1d 4438
mjr 48:058ace2aed1d 4439 // no history yet
mjr 48:058ace2aed1d 4440 histIdx = 0;
mjr 55:4db125cd11a0 4441
mjr 85:3c28aee81cde 4442 // clear the jitter filter
mjr 85:3c28aee81cde 4443 jfLow = jfHigh = 0;
mjr 48:058ace2aed1d 4444 }
mjr 76:7f5912b6340e 4445
mjr 48:058ace2aed1d 4446 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4447 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4448 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4449 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4450 void read()
mjr 48:058ace2aed1d 4451 {
mjr 76:7f5912b6340e 4452 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4453 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4454 return;
mjr 76:7f5912b6340e 4455
mjr 48:058ace2aed1d 4456 // Read a sample from the sensor
mjr 48:058ace2aed1d 4457 PlungerReading r;
mjr 48:058ace2aed1d 4458 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4459 {
mjr 51:57eb311faafa 4460 // Pull the previous reading from the history
mjr 50:40015764bbe6 4461 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 4462
mjr 69:cc5039284fac 4463 // If the new reading is within 1ms of the previous reading,
mjr 48:058ace2aed1d 4464 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 4465 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 4466 // denominator (the time interval) for calculating the plunger
mjr 69:cc5039284fac 4467 // velocity. The CCD sensor hardware takes about 2.5ms to
mjr 69:cc5039284fac 4468 // read, so it will never be affected by this, but other sensor
mjr 69:cc5039284fac 4469 // types don't all have the same hardware cycle time, so we need
mjr 69:cc5039284fac 4470 // to throttle them artificially. E.g., the potentiometer only
mjr 82:4f6209cb5c33 4471 // needs one ADC sample per reading, which only takes about 15us;
mjr 82:4f6209cb5c33 4472 // the quadrature sensor needs no time at all since it keeps
mjr 82:4f6209cb5c33 4473 // track of the position continuously via interrupts. We don't
mjr 82:4f6209cb5c33 4474 // need to check which sensor type we have here; we just ignore
mjr 82:4f6209cb5c33 4475 // readings until the minimum interval has passed.
mjr 69:cc5039284fac 4476 if (uint32_t(r.t - prv.t) < 1000UL)
mjr 48:058ace2aed1d 4477 return;
mjr 53:9b2611964afc 4478
mjr 53:9b2611964afc 4479 // check for calibration mode
mjr 53:9b2611964afc 4480 if (plungerCalMode)
mjr 53:9b2611964afc 4481 {
mjr 53:9b2611964afc 4482 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4483 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4484 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4485 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4486 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4487 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4488 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4489
mjr 76:7f5912b6340e 4490 // update our cached calibration data
mjr 76:7f5912b6340e 4491 onUpdateCal();
mjr 50:40015764bbe6 4492
mjr 53:9b2611964afc 4493 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4494 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4495 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4496 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4497 if (calState == 0)
mjr 53:9b2611964afc 4498 {
mjr 53:9b2611964afc 4499 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4500 {
mjr 53:9b2611964afc 4501 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4502 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4503 {
mjr 53:9b2611964afc 4504 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4505 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4506 calZeroPosN += 1;
mjr 53:9b2611964afc 4507
mjr 53:9b2611964afc 4508 // update the zero position from the new average
mjr 53:9b2611964afc 4509 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4510 onUpdateCal();
mjr 53:9b2611964afc 4511
mjr 53:9b2611964afc 4512 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4513 calState = 1;
mjr 53:9b2611964afc 4514 }
mjr 53:9b2611964afc 4515 }
mjr 53:9b2611964afc 4516 else
mjr 53:9b2611964afc 4517 {
mjr 53:9b2611964afc 4518 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4519 calZeroStart = r;
mjr 53:9b2611964afc 4520 }
mjr 53:9b2611964afc 4521 }
mjr 53:9b2611964afc 4522
mjr 53:9b2611964afc 4523 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4524 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4525 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4526 r.pos = int(
mjr 53:9b2611964afc 4527 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4528 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4529 }
mjr 53:9b2611964afc 4530 else
mjr 53:9b2611964afc 4531 {
mjr 53:9b2611964afc 4532 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4533 // rescale to the joystick range.
mjr 76:7f5912b6340e 4534 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4535
mjr 53:9b2611964afc 4536 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4537 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4538 r.pos = JOYMAX;
mjr 53:9b2611964afc 4539 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4540 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4541 }
mjr 50:40015764bbe6 4542
mjr 50:40015764bbe6 4543 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 4544 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 4545 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 4546 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 4547 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 4548 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 4549 // large.
mjr 50:40015764bbe6 4550 //
mjr 50:40015764bbe6 4551 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 4552 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 4553 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 4554 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 4555 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 4556 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 4557 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 4558 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 4559 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 4560 //
mjr 50:40015764bbe6 4561 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 4562 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 4563 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 4564 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 4565 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 4566 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 4567 // a little CPU time by using the natural units of our inputs.
mjr 76:7f5912b6340e 4568 //
mjr 76:7f5912b6340e 4569 // We don't care about the absolute velocity; this is a purely
mjr 76:7f5912b6340e 4570 // relative calculation. So to speed things up, calculate it
mjr 76:7f5912b6340e 4571 // in the integer domain, using a fixed-point representation
mjr 76:7f5912b6340e 4572 // with a 64K scale. In other words, with the stored values
mjr 76:7f5912b6340e 4573 // shifted left 16 bits from the actual values: the value 1
mjr 76:7f5912b6340e 4574 // is stored as 1<<16. The position readings are in the range
mjr 76:7f5912b6340e 4575 // -JOYMAX..JOYMAX, which fits in 16 bits, and the time
mjr 76:7f5912b6340e 4576 // differences will generally be on the scale of a few
mjr 76:7f5912b6340e 4577 // milliseconds = thousands of microseconds. So the velocity
mjr 76:7f5912b6340e 4578 // figures will fit nicely into a 32-bit fixed point value with
mjr 76:7f5912b6340e 4579 // a 64K scale factor.
mjr 51:57eb311faafa 4580 const PlungerReading &prv2 = nthHist(1);
mjr 82:4f6209cb5c33 4581 int v = ((r.pos - prv2.pos) * 65536L)/int(r.t - prv2.t);
mjr 50:40015764bbe6 4582
mjr 50:40015764bbe6 4583 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 4584 z = r.pos;
mjr 48:058ace2aed1d 4585
mjr 50:40015764bbe6 4586 // Check firing events
mjr 50:40015764bbe6 4587 switch (firing)
mjr 50:40015764bbe6 4588 {
mjr 50:40015764bbe6 4589 case 0:
mjr 50:40015764bbe6 4590 // Default state - not in a firing event.
mjr 50:40015764bbe6 4591
mjr 50:40015764bbe6 4592 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 4593 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 4594 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 4595 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 4596 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4597 {
mjr 53:9b2611964afc 4598 // enter firing phase 1
mjr 50:40015764bbe6 4599 firingMode(1);
mjr 50:40015764bbe6 4600
mjr 53:9b2611964afc 4601 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 4602 // at rest)
mjr 53:9b2611964afc 4603 if (calState == 1)
mjr 53:9b2611964afc 4604 calState = 2;
mjr 53:9b2611964afc 4605
mjr 50:40015764bbe6 4606 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 4607 f1.pos = 0;
mjr 50:40015764bbe6 4608 f1.t = r.t;
mjr 50:40015764bbe6 4609
mjr 50:40015764bbe6 4610 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 4611 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 4612 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 4613 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 4614 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 4615 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 4616 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 4617 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 4618 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 4619 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 4620 }
mjr 50:40015764bbe6 4621 break;
mjr 50:40015764bbe6 4622
mjr 50:40015764bbe6 4623 case 1:
mjr 50:40015764bbe6 4624 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 4625 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 4626 // see acceleration in the forward direction.
mjr 50:40015764bbe6 4627 if (r.pos <= 0)
mjr 50:40015764bbe6 4628 {
mjr 50:40015764bbe6 4629 // switch to the synthetic firing mode
mjr 50:40015764bbe6 4630 firingMode(2);
mjr 50:40015764bbe6 4631 z = f2.pos;
mjr 50:40015764bbe6 4632
mjr 50:40015764bbe6 4633 // note the start time for the firing phase
mjr 50:40015764bbe6 4634 f2.t = r.t;
mjr 53:9b2611964afc 4635
mjr 53:9b2611964afc 4636 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 4637 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 4638 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 4639 {
mjr 53:9b2611964afc 4640 // collect a new zero point for the average when we
mjr 53:9b2611964afc 4641 // come to rest
mjr 53:9b2611964afc 4642 calState = 0;
mjr 53:9b2611964afc 4643
mjr 53:9b2611964afc 4644 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 4645 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 4646 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 4647 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 4648 {
mjr 53:9b2611964afc 4649 calRlsTimeSum += dt;
mjr 53:9b2611964afc 4650 calRlsTimeN += 1;
mjr 53:9b2611964afc 4651 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 4652 }
mjr 53:9b2611964afc 4653 }
mjr 50:40015764bbe6 4654 }
mjr 50:40015764bbe6 4655 else if (v < vprv2)
mjr 50:40015764bbe6 4656 {
mjr 50:40015764bbe6 4657 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 4658 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 4659 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 4660 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 4661 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 4662 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 4663
mjr 50:40015764bbe6 4664 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 4665 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 4666 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 4667 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 4668 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 4669 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 4670 if (f1.pos != 0)
mjr 50:40015764bbe6 4671 {
mjr 50:40015764bbe6 4672 // we have a reset point - freeze there
mjr 50:40015764bbe6 4673 z = f1.pos;
mjr 50:40015764bbe6 4674 }
mjr 50:40015764bbe6 4675 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 4676 {
mjr 50:40015764bbe6 4677 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 4678 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 4679 }
mjr 50:40015764bbe6 4680 }
mjr 50:40015764bbe6 4681 else
mjr 50:40015764bbe6 4682 {
mjr 50:40015764bbe6 4683 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 4684 firingMode(0);
mjr 53:9b2611964afc 4685 calState = 1;
mjr 50:40015764bbe6 4686 }
mjr 50:40015764bbe6 4687 break;
mjr 50:40015764bbe6 4688
mjr 50:40015764bbe6 4689 case 2:
mjr 50:40015764bbe6 4690 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 4691 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 4692 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 4693 // report at least once.
mjr 50:40015764bbe6 4694 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 4695 {
mjr 50:40015764bbe6 4696 // report the bounce position
mjr 50:40015764bbe6 4697 z = f2.pos;
mjr 50:40015764bbe6 4698 }
mjr 50:40015764bbe6 4699 else
mjr 50:40015764bbe6 4700 {
mjr 50:40015764bbe6 4701 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 4702 // report the park position until the real plunger comes
mjr 50:40015764bbe6 4703 // to rest
mjr 50:40015764bbe6 4704 firingMode(3);
mjr 50:40015764bbe6 4705 z = 0;
mjr 50:40015764bbe6 4706
mjr 50:40015764bbe6 4707 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 4708 f3s.t = r.t;
mjr 50:40015764bbe6 4709 f3s.pos = 0;
mjr 50:40015764bbe6 4710
mjr 50:40015764bbe6 4711 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 4712 f3r = r;
mjr 50:40015764bbe6 4713 }
mjr 50:40015764bbe6 4714 break;
mjr 50:40015764bbe6 4715
mjr 50:40015764bbe6 4716 case 3:
mjr 50:40015764bbe6 4717 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 4718 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 4719 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 4720 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 4721 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 4722 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 4723 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 4724 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 4725 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 4726 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 4727 // for longer.
mjr 50:40015764bbe6 4728 if (v >= 0)
mjr 50:40015764bbe6 4729 {
mjr 50:40015764bbe6 4730 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 4731 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 4732 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 4733 {
mjr 50:40015764bbe6 4734 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 4735 firingMode(0);
mjr 50:40015764bbe6 4736 break;
mjr 50:40015764bbe6 4737 }
mjr 50:40015764bbe6 4738 }
mjr 50:40015764bbe6 4739 else
mjr 50:40015764bbe6 4740 {
mjr 50:40015764bbe6 4741 // forward motion - reset retraction window
mjr 50:40015764bbe6 4742 f3r.t = r.t;
mjr 50:40015764bbe6 4743 }
mjr 50:40015764bbe6 4744
mjr 53:9b2611964afc 4745 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 4746 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 4747 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 4748 // about 100 units.
mjr 53:9b2611964afc 4749 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 4750 {
mjr 53:9b2611964afc 4751 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 4752 // Consider it stable if this has been true for 300ms.
mjr 82:4f6209cb5c33 4753 if (uint32_t(r.t - f3s.t) > 300000UL)
mjr 50:40015764bbe6 4754 {
mjr 50:40015764bbe6 4755 // we're done with the firing event
mjr 50:40015764bbe6 4756 firingMode(0);
mjr 50:40015764bbe6 4757 }
mjr 50:40015764bbe6 4758 else
mjr 50:40015764bbe6 4759 {
mjr 50:40015764bbe6 4760 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 4761 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 4762 // to report the park position
mjr 50:40015764bbe6 4763 z = 0;
mjr 50:40015764bbe6 4764 }
mjr 50:40015764bbe6 4765 }
mjr 50:40015764bbe6 4766 else
mjr 50:40015764bbe6 4767 {
mjr 50:40015764bbe6 4768 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 4769 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 4770 f3s = r;
mjr 50:40015764bbe6 4771 z = 0;
mjr 50:40015764bbe6 4772 }
mjr 50:40015764bbe6 4773 break;
mjr 50:40015764bbe6 4774 }
mjr 50:40015764bbe6 4775
mjr 50:40015764bbe6 4776 // save the velocity reading for next time
mjr 50:40015764bbe6 4777 vprv2 = vprv;
mjr 50:40015764bbe6 4778 vprv = v;
mjr 50:40015764bbe6 4779
mjr 82:4f6209cb5c33 4780 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 4781 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 4782 {
mjr 82:4f6209cb5c33 4783 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 4784 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 4785 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 4786 // long, so auto-zero now.
mjr 82:4f6209cb5c33 4787 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 4788 {
mjr 82:4f6209cb5c33 4789 // movement detected - reset the timer
mjr 82:4f6209cb5c33 4790 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 4791 autoZeroTimer.start();
mjr 82:4f6209cb5c33 4792 }
mjr 82:4f6209cb5c33 4793 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 4794 {
mjr 82:4f6209cb5c33 4795 // auto-zero now
mjr 82:4f6209cb5c33 4796 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 4797
mjr 82:4f6209cb5c33 4798 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 4799 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 4800 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 4801 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 4802 }
mjr 82:4f6209cb5c33 4803 }
mjr 82:4f6209cb5c33 4804
mjr 50:40015764bbe6 4805 // add the new reading to the history
mjr 76:7f5912b6340e 4806 hist[histIdx] = r;
mjr 82:4f6209cb5c33 4807 if (++histIdx >= countof(hist))
mjr 76:7f5912b6340e 4808 histIdx = 0;
mjr 82:4f6209cb5c33 4809
mjr 85:3c28aee81cde 4810 // apply the jitter filter
mjr 85:3c28aee81cde 4811 zf = jitterFilter(z);
mjr 48:058ace2aed1d 4812 }
mjr 48:058ace2aed1d 4813 }
mjr 48:058ace2aed1d 4814
mjr 48:058ace2aed1d 4815 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 4816 int16_t getPosition()
mjr 58:523fdcffbe6d 4817 {
mjr 58:523fdcffbe6d 4818 // return the last filtered reading
mjr 58:523fdcffbe6d 4819 return zf;
mjr 55:4db125cd11a0 4820 }
mjr 58:523fdcffbe6d 4821
mjr 48:058ace2aed1d 4822 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 4823 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 4824
mjr 48:058ace2aed1d 4825 // Set calibration mode on or off
mjr 52:8298b2a73eb2 4826 void setCalMode(bool f)
mjr 48:058ace2aed1d 4827 {
mjr 52:8298b2a73eb2 4828 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 4829 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 4830 {
mjr 52:8298b2a73eb2 4831 // reset the calibration in the configuration
mjr 48:058ace2aed1d 4832 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 4833
mjr 52:8298b2a73eb2 4834 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 4835 calState = 0;
mjr 52:8298b2a73eb2 4836 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 4837 calZeroPosN = 0;
mjr 52:8298b2a73eb2 4838 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 4839 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 4840
mjr 82:4f6209cb5c33 4841 // tell the plunger we're starting calibration
mjr 82:4f6209cb5c33 4842 plungerSensor->beginCalibration();
mjr 82:4f6209cb5c33 4843
mjr 52:8298b2a73eb2 4844 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 4845 PlungerReading r;
mjr 52:8298b2a73eb2 4846 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 4847 {
mjr 52:8298b2a73eb2 4848 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 4849 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 4850 onUpdateCal();
mjr 52:8298b2a73eb2 4851
mjr 52:8298b2a73eb2 4852 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 4853 calZeroStart = r;
mjr 52:8298b2a73eb2 4854 }
mjr 52:8298b2a73eb2 4855 else
mjr 52:8298b2a73eb2 4856 {
mjr 52:8298b2a73eb2 4857 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 4858 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4859 onUpdateCal();
mjr 52:8298b2a73eb2 4860
mjr 52:8298b2a73eb2 4861 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 4862 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 4863 calZeroStart.t = 0;
mjr 53:9b2611964afc 4864 }
mjr 53:9b2611964afc 4865 }
mjr 53:9b2611964afc 4866 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 4867 {
mjr 53:9b2611964afc 4868 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 4869 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 4870 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 4871 // physically meaningless.
mjr 53:9b2611964afc 4872 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 4873 {
mjr 53:9b2611964afc 4874 // bad settings - reset to defaults
mjr 53:9b2611964afc 4875 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 4876 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4877 onUpdateCal();
mjr 52:8298b2a73eb2 4878 }
mjr 52:8298b2a73eb2 4879 }
mjr 52:8298b2a73eb2 4880
mjr 48:058ace2aed1d 4881 // remember the new mode
mjr 52:8298b2a73eb2 4882 plungerCalMode = f;
mjr 48:058ace2aed1d 4883 }
mjr 48:058ace2aed1d 4884
mjr 76:7f5912b6340e 4885 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 4886 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 4887 // cached inverse is calculated as
mjr 76:7f5912b6340e 4888 //
mjr 76:7f5912b6340e 4889 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 4890 //
mjr 76:7f5912b6340e 4891 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 4892 //
mjr 76:7f5912b6340e 4893 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 4894 //
mjr 76:7f5912b6340e 4895 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 4896 int invCalRange;
mjr 76:7f5912b6340e 4897
mjr 76:7f5912b6340e 4898 // apply the calibration range to a reading
mjr 76:7f5912b6340e 4899 inline int applyCal(int reading)
mjr 76:7f5912b6340e 4900 {
mjr 76:7f5912b6340e 4901 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 4902 }
mjr 76:7f5912b6340e 4903
mjr 76:7f5912b6340e 4904 void onUpdateCal()
mjr 76:7f5912b6340e 4905 {
mjr 76:7f5912b6340e 4906 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 4907 }
mjr 76:7f5912b6340e 4908
mjr 48:058ace2aed1d 4909 // is a firing event in progress?
mjr 53:9b2611964afc 4910 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 4911
mjr 48:058ace2aed1d 4912 private:
mjr 85:3c28aee81cde 4913 // Apply the jitter filter
mjr 85:3c28aee81cde 4914 int jitterFilter(int z)
mjr 73:4e8ce0b18915 4915 {
mjr 85:3c28aee81cde 4916 // If the new reading is within the current window, simply re-use
mjr 85:3c28aee81cde 4917 // the last filtered reading.
mjr 85:3c28aee81cde 4918 if (z >= jfLow && z <= jfHigh)
mjr 85:3c28aee81cde 4919 return zf;
mjr 73:4e8ce0b18915 4920
mjr 85:3c28aee81cde 4921 // The new reading is outside the current window. Push the window
mjr 85:3c28aee81cde 4922 // over so that the new reading is at the outside edge.
mjr 85:3c28aee81cde 4923 if (z < jfLow)
mjr 85:3c28aee81cde 4924 {
mjr 85:3c28aee81cde 4925 // the new reading is below the current window, so move the
mjr 85:3c28aee81cde 4926 // window such that the new reading is at the bottom of the window
mjr 85:3c28aee81cde 4927 jfLow = z;
mjr 85:3c28aee81cde 4928 jfHigh = z + cfg.plunger.jitterWindow;
mjr 73:4e8ce0b18915 4929 }
mjr 73:4e8ce0b18915 4930 else
mjr 73:4e8ce0b18915 4931 {
mjr 85:3c28aee81cde 4932 // the new reading is above the current window, so move the
mjr 85:3c28aee81cde 4933 // window such that the new reading is at the top of the window
mjr 85:3c28aee81cde 4934 jfHigh = z;
mjr 85:3c28aee81cde 4935 jfLow = z - cfg.plunger.jitterWindow;
mjr 73:4e8ce0b18915 4936 }
mjr 69:cc5039284fac 4937
mjr 85:3c28aee81cde 4938 // use the new reading exactly as read from the sensor
mjr 69:cc5039284fac 4939 return z;
mjr 69:cc5039284fac 4940 }
mjr 85:3c28aee81cde 4941
mjr 52:8298b2a73eb2 4942 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 4943 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 4944 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 4945 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 4946 // 0 = waiting to settle
mjr 52:8298b2a73eb2 4947 // 1 = at rest
mjr 52:8298b2a73eb2 4948 // 2 = retracting
mjr 52:8298b2a73eb2 4949 // 3 = possibly releasing
mjr 52:8298b2a73eb2 4950 uint8_t calState;
mjr 52:8298b2a73eb2 4951
mjr 52:8298b2a73eb2 4952 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 4953 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 4954 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 4955 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 4956 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 4957 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 4958 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 4959 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 4960 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 4961 long calZeroPosSum;
mjr 52:8298b2a73eb2 4962 int calZeroPosN;
mjr 52:8298b2a73eb2 4963
mjr 52:8298b2a73eb2 4964 // Calibration release time statistics.
mjr 52:8298b2a73eb2 4965 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 4966 long calRlsTimeSum;
mjr 52:8298b2a73eb2 4967 int calRlsTimeN;
mjr 52:8298b2a73eb2 4968
mjr 85:3c28aee81cde 4969 // Auto-zeroing timer
mjr 85:3c28aee81cde 4970 Timer autoZeroTimer;
mjr 85:3c28aee81cde 4971
mjr 85:3c28aee81cde 4972 // Current jitter filter window
mjr 85:3c28aee81cde 4973 int jfLow, jfHigh;
mjr 85:3c28aee81cde 4974
mjr 48:058ace2aed1d 4975 // set a firing mode
mjr 48:058ace2aed1d 4976 inline void firingMode(int m)
mjr 48:058ace2aed1d 4977 {
mjr 48:058ace2aed1d 4978 firing = m;
mjr 48:058ace2aed1d 4979 }
mjr 48:058ace2aed1d 4980
mjr 48:058ace2aed1d 4981 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 4982 // the given time limit.
mjr 48:058ace2aed1d 4983 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 4984 {
mjr 48:058ace2aed1d 4985 // start with the prior entry
mjr 48:058ace2aed1d 4986 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 4987 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 4988
mjr 48:058ace2aed1d 4989 // scan backwards for a local maximum
mjr 48:058ace2aed1d 4990 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 4991 {
mjr 48:058ace2aed1d 4992 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 4993 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 4994 break;
mjr 48:058ace2aed1d 4995
mjr 48:058ace2aed1d 4996 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 4997 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 4998 break;
mjr 48:058ace2aed1d 4999
mjr 48:058ace2aed1d 5000 // this is the new high
mjr 48:058ace2aed1d 5001 hi = hist[idx].pos;
mjr 48:058ace2aed1d 5002 }
mjr 48:058ace2aed1d 5003
mjr 48:058ace2aed1d 5004 // return the local maximum
mjr 48:058ace2aed1d 5005 return hi;
mjr 48:058ace2aed1d 5006 }
mjr 48:058ace2aed1d 5007
mjr 50:40015764bbe6 5008 // velocity at previous reading, and the one before that
mjr 76:7f5912b6340e 5009 int vprv, vprv2;
mjr 48:058ace2aed1d 5010
mjr 48:058ace2aed1d 5011 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 5012 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 5013 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 5014 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 5015 // exactly when it started. We throttle our readings to no more
mjr 74:822a92bc11d2 5016 // than one every 1ms, so we have at least N*1ms of history in this
mjr 48:058ace2aed1d 5017 // array.
mjr 74:822a92bc11d2 5018 PlungerReading hist[32];
mjr 48:058ace2aed1d 5019 int histIdx;
mjr 49:37bd97eb7688 5020
mjr 50:40015764bbe6 5021 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 74:822a92bc11d2 5022 inline const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 5023 {
mjr 50:40015764bbe6 5024 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 5025 n = histIdx - 1 - n;
mjr 50:40015764bbe6 5026
mjr 50:40015764bbe6 5027 // adjust for wrapping
mjr 50:40015764bbe6 5028 if (n < 0)
mjr 50:40015764bbe6 5029 n += countof(hist);
mjr 50:40015764bbe6 5030
mjr 50:40015764bbe6 5031 // return the item
mjr 50:40015764bbe6 5032 return hist[n];
mjr 50:40015764bbe6 5033 }
mjr 48:058ace2aed1d 5034
mjr 48:058ace2aed1d 5035 // Firing event state.
mjr 48:058ace2aed1d 5036 //
mjr 48:058ace2aed1d 5037 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 5038 // position to the joystick interface.
mjr 48:058ace2aed1d 5039 //
mjr 53:9b2611964afc 5040 // 1 - Moving forward
mjr 48:058ace2aed1d 5041 //
mjr 53:9b2611964afc 5042 // 2 - Accelerating
mjr 48:058ace2aed1d 5043 //
mjr 53:9b2611964afc 5044 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 5045 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 5046 //
mjr 48:058ace2aed1d 5047 int firing;
mjr 48:058ace2aed1d 5048
mjr 51:57eb311faafa 5049 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 5050 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 5051 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 5052 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 5053 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 5054 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 5055 PlungerReading f1;
mjr 48:058ace2aed1d 5056
mjr 48:058ace2aed1d 5057 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 5058 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 5059 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 5060 // after enough time elapses.
mjr 48:058ace2aed1d 5061 PlungerReading f2;
mjr 48:058ace2aed1d 5062
mjr 48:058ace2aed1d 5063 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 5064 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 5065 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 5066 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 5067 PlungerReading f3s;
mjr 48:058ace2aed1d 5068
mjr 48:058ace2aed1d 5069 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 5070 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 5071 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 5072 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 5073 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 5074 // freely.
mjr 48:058ace2aed1d 5075 PlungerReading f3r;
mjr 48:058ace2aed1d 5076
mjr 58:523fdcffbe6d 5077 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5078 // (in joystick distance units)
mjr 48:058ace2aed1d 5079 int z;
mjr 48:058ace2aed1d 5080
mjr 58:523fdcffbe6d 5081 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5082 int zf;
mjr 48:058ace2aed1d 5083 };
mjr 48:058ace2aed1d 5084
mjr 48:058ace2aed1d 5085 // plunger reader singleton
mjr 48:058ace2aed1d 5086 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5087
mjr 48:058ace2aed1d 5088 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5089 //
mjr 48:058ace2aed1d 5090 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5091 //
mjr 48:058ace2aed1d 5092 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5093 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5094 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5095 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5096 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5097 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5098 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5099 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5100 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5101 //
mjr 48:058ace2aed1d 5102 // This feature has two configuration components:
mjr 48:058ace2aed1d 5103 //
mjr 48:058ace2aed1d 5104 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5105 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5106 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5107 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5108 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5109 // plunger/launch button connection.
mjr 48:058ace2aed1d 5110 //
mjr 48:058ace2aed1d 5111 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5112 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5113 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5114 // position.
mjr 48:058ace2aed1d 5115 //
mjr 48:058ace2aed1d 5116 class ZBLaunchBall
mjr 48:058ace2aed1d 5117 {
mjr 48:058ace2aed1d 5118 public:
mjr 48:058ace2aed1d 5119 ZBLaunchBall()
mjr 48:058ace2aed1d 5120 {
mjr 48:058ace2aed1d 5121 // start in the default state
mjr 48:058ace2aed1d 5122 lbState = 0;
mjr 53:9b2611964afc 5123 btnState = false;
mjr 48:058ace2aed1d 5124 }
mjr 48:058ace2aed1d 5125
mjr 48:058ace2aed1d 5126 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5127 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5128 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5129 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5130 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5131 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5132 void update()
mjr 48:058ace2aed1d 5133 {
mjr 53:9b2611964afc 5134 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5135 // plunger firing event
mjr 53:9b2611964afc 5136 if (zbLaunchOn)
mjr 48:058ace2aed1d 5137 {
mjr 53:9b2611964afc 5138 // note the new position
mjr 48:058ace2aed1d 5139 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5140
mjr 53:9b2611964afc 5141 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5142 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5143
mjr 53:9b2611964afc 5144 // check the state
mjr 48:058ace2aed1d 5145 switch (lbState)
mjr 48:058ace2aed1d 5146 {
mjr 48:058ace2aed1d 5147 case 0:
mjr 53:9b2611964afc 5148 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5149 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5150 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5151 // the button.
mjr 53:9b2611964afc 5152 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5153 {
mjr 53:9b2611964afc 5154 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5155 lbTimer.reset();
mjr 53:9b2611964afc 5156 lbTimer.start();
mjr 53:9b2611964afc 5157 setButton(true);
mjr 53:9b2611964afc 5158
mjr 53:9b2611964afc 5159 // switch to state 1
mjr 53:9b2611964afc 5160 lbState = 1;
mjr 53:9b2611964afc 5161 }
mjr 48:058ace2aed1d 5162 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5163 {
mjr 53:9b2611964afc 5164 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5165 // button as long as we're pushed forward
mjr 53:9b2611964afc 5166 setButton(true);
mjr 53:9b2611964afc 5167 }
mjr 53:9b2611964afc 5168 else
mjr 53:9b2611964afc 5169 {
mjr 53:9b2611964afc 5170 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5171 setButton(false);
mjr 53:9b2611964afc 5172 }
mjr 48:058ace2aed1d 5173 break;
mjr 48:058ace2aed1d 5174
mjr 48:058ace2aed1d 5175 case 1:
mjr 53:9b2611964afc 5176 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5177 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5178 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5179 {
mjr 53:9b2611964afc 5180 // timer expired - turn off the button
mjr 53:9b2611964afc 5181 setButton(false);
mjr 53:9b2611964afc 5182
mjr 53:9b2611964afc 5183 // switch to state 2
mjr 53:9b2611964afc 5184 lbState = 2;
mjr 53:9b2611964afc 5185 }
mjr 48:058ace2aed1d 5186 break;
mjr 48:058ace2aed1d 5187
mjr 48:058ace2aed1d 5188 case 2:
mjr 53:9b2611964afc 5189 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5190 // plunger launch event to end.
mjr 53:9b2611964afc 5191 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5192 {
mjr 53:9b2611964afc 5193 // firing event done - return to default state
mjr 53:9b2611964afc 5194 lbState = 0;
mjr 53:9b2611964afc 5195 }
mjr 48:058ace2aed1d 5196 break;
mjr 48:058ace2aed1d 5197 }
mjr 53:9b2611964afc 5198 }
mjr 53:9b2611964afc 5199 else
mjr 53:9b2611964afc 5200 {
mjr 53:9b2611964afc 5201 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5202 setButton(false);
mjr 48:058ace2aed1d 5203
mjr 53:9b2611964afc 5204 // return to the default state
mjr 53:9b2611964afc 5205 lbState = 0;
mjr 48:058ace2aed1d 5206 }
mjr 48:058ace2aed1d 5207 }
mjr 53:9b2611964afc 5208
mjr 53:9b2611964afc 5209 // Set the button state
mjr 53:9b2611964afc 5210 void setButton(bool on)
mjr 53:9b2611964afc 5211 {
mjr 53:9b2611964afc 5212 if (btnState != on)
mjr 53:9b2611964afc 5213 {
mjr 53:9b2611964afc 5214 // remember the new state
mjr 53:9b2611964afc 5215 btnState = on;
mjr 53:9b2611964afc 5216
mjr 53:9b2611964afc 5217 // update the virtual button state
mjr 65:739875521aae 5218 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5219 }
mjr 53:9b2611964afc 5220 }
mjr 53:9b2611964afc 5221
mjr 48:058ace2aed1d 5222 private:
mjr 48:058ace2aed1d 5223 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5224 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5225 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5226 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5227 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5228 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5229 //
mjr 48:058ace2aed1d 5230 // States:
mjr 48:058ace2aed1d 5231 // 0 = default
mjr 53:9b2611964afc 5232 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5233 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5234 // firing event to end)
mjr 53:9b2611964afc 5235 uint8_t lbState;
mjr 48:058ace2aed1d 5236
mjr 53:9b2611964afc 5237 // button state
mjr 53:9b2611964afc 5238 bool btnState;
mjr 48:058ace2aed1d 5239
mjr 48:058ace2aed1d 5240 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5241 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5242 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5243 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5244 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5245 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5246 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5247 Timer lbTimer;
mjr 48:058ace2aed1d 5248 };
mjr 48:058ace2aed1d 5249
mjr 35:e959ffba78fd 5250 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5251 //
mjr 35:e959ffba78fd 5252 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5253 //
mjr 54:fd77a6b2f76c 5254 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5255 {
mjr 35:e959ffba78fd 5256 // disconnect from USB
mjr 54:fd77a6b2f76c 5257 if (disconnect)
mjr 54:fd77a6b2f76c 5258 js.disconnect();
mjr 35:e959ffba78fd 5259
mjr 35:e959ffba78fd 5260 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5261 wait_us(pause_us);
mjr 35:e959ffba78fd 5262
mjr 35:e959ffba78fd 5263 // reset the device
mjr 35:e959ffba78fd 5264 NVIC_SystemReset();
mjr 35:e959ffba78fd 5265 while (true) { }
mjr 35:e959ffba78fd 5266 }
mjr 35:e959ffba78fd 5267
mjr 35:e959ffba78fd 5268 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5269 //
mjr 35:e959ffba78fd 5270 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5271 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5272 //
mjr 35:e959ffba78fd 5273 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5274 {
mjr 35:e959ffba78fd 5275 int tmp;
mjr 78:1e00b3fa11af 5276 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5277 {
mjr 35:e959ffba78fd 5278 case OrientationFront:
mjr 35:e959ffba78fd 5279 tmp = x;
mjr 35:e959ffba78fd 5280 x = y;
mjr 35:e959ffba78fd 5281 y = tmp;
mjr 35:e959ffba78fd 5282 break;
mjr 35:e959ffba78fd 5283
mjr 35:e959ffba78fd 5284 case OrientationLeft:
mjr 35:e959ffba78fd 5285 x = -x;
mjr 35:e959ffba78fd 5286 break;
mjr 35:e959ffba78fd 5287
mjr 35:e959ffba78fd 5288 case OrientationRight:
mjr 35:e959ffba78fd 5289 y = -y;
mjr 35:e959ffba78fd 5290 break;
mjr 35:e959ffba78fd 5291
mjr 35:e959ffba78fd 5292 case OrientationRear:
mjr 35:e959ffba78fd 5293 tmp = -x;
mjr 35:e959ffba78fd 5294 x = -y;
mjr 35:e959ffba78fd 5295 y = tmp;
mjr 35:e959ffba78fd 5296 break;
mjr 35:e959ffba78fd 5297 }
mjr 35:e959ffba78fd 5298 }
mjr 35:e959ffba78fd 5299
mjr 35:e959ffba78fd 5300 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5301 //
mjr 35:e959ffba78fd 5302 // Calibration button state:
mjr 35:e959ffba78fd 5303 // 0 = not pushed
mjr 35:e959ffba78fd 5304 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5305 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5306 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5307 int calBtnState = 0;
mjr 35:e959ffba78fd 5308
mjr 35:e959ffba78fd 5309 // calibration button debounce timer
mjr 35:e959ffba78fd 5310 Timer calBtnTimer;
mjr 35:e959ffba78fd 5311
mjr 35:e959ffba78fd 5312 // calibration button light state
mjr 35:e959ffba78fd 5313 int calBtnLit = false;
mjr 35:e959ffba78fd 5314
mjr 35:e959ffba78fd 5315
mjr 35:e959ffba78fd 5316 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5317 //
mjr 40:cc0d9814522b 5318 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5319 //
mjr 40:cc0d9814522b 5320
mjr 40:cc0d9814522b 5321 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5322 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5323 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5324 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5325 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5326 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5327 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5328 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5329 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5330 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5331 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5332
mjr 40:cc0d9814522b 5333 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5334 #undef if_msg_valid
mjr 40:cc0d9814522b 5335 #undef v_byte
mjr 40:cc0d9814522b 5336 #undef v_ui16
mjr 77:0b96f6867312 5337 #undef v_ui32
mjr 40:cc0d9814522b 5338 #undef v_pin
mjr 53:9b2611964afc 5339 #undef v_byte_ro
mjr 74:822a92bc11d2 5340 #undef v_ui32_ro
mjr 74:822a92bc11d2 5341 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5342 #undef v_func
mjr 38:091e511ce8a0 5343
mjr 40:cc0d9814522b 5344 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 5345 #define if_msg_valid(test)
mjr 53:9b2611964afc 5346 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5347 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5348 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5349 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5350 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5351 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5352 #define VAR_MODE_SET 0 // we're in GET mode
mjr 76:7f5912b6340e 5353 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5354 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5355
mjr 35:e959ffba78fd 5356
mjr 35:e959ffba78fd 5357 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5358 //
mjr 35:e959ffba78fd 5359 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5360 // LedWiz protocol.
mjr 33:d832bcab089e 5361 //
mjr 78:1e00b3fa11af 5362 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5363 {
mjr 38:091e511ce8a0 5364 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5365 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5366 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5367 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5368 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5369 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5370 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5371 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5372 //
mjr 38:091e511ce8a0 5373 // first byte =
mjr 74:822a92bc11d2 5374 // 0-48 -> PBA
mjr 74:822a92bc11d2 5375 // 64 -> SBA
mjr 38:091e511ce8a0 5376 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5377 // 129-132 -> PBA
mjr 38:091e511ce8a0 5378 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5379 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5380 // other -> reserved for future use
mjr 38:091e511ce8a0 5381 //
mjr 39:b3815a1c3802 5382 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5383 if (data[0] == 64)
mjr 35:e959ffba78fd 5384 {
mjr 74:822a92bc11d2 5385 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5386 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5387 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5388 sba_sbx(0, data);
mjr 74:822a92bc11d2 5389
mjr 74:822a92bc11d2 5390 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5391 pbaIdx = 0;
mjr 38:091e511ce8a0 5392 }
mjr 38:091e511ce8a0 5393 else if (data[0] == 65)
mjr 38:091e511ce8a0 5394 {
mjr 38:091e511ce8a0 5395 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5396 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5397 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5398 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5399 // message type.
mjr 39:b3815a1c3802 5400 switch (data[1])
mjr 38:091e511ce8a0 5401 {
mjr 39:b3815a1c3802 5402 case 0:
mjr 39:b3815a1c3802 5403 // No Op
mjr 39:b3815a1c3802 5404 break;
mjr 39:b3815a1c3802 5405
mjr 39:b3815a1c3802 5406 case 1:
mjr 38:091e511ce8a0 5407 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5408 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5409 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5410 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5411 {
mjr 39:b3815a1c3802 5412
mjr 39:b3815a1c3802 5413 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5414 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5415 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5416
mjr 39:b3815a1c3802 5417 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 5418 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5419
mjr 39:b3815a1c3802 5420 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5421 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5422 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5423
mjr 77:0b96f6867312 5424 // set the flag to do the save
mjr 85:3c28aee81cde 5425 saveConfigState = needReset ? SAVE_CONFIG_AND_REBOOT : SAVE_CONFIG_ONLY;
mjr 85:3c28aee81cde 5426 saveConfigPostTime = 0;
mjr 39:b3815a1c3802 5427 }
mjr 39:b3815a1c3802 5428 break;
mjr 38:091e511ce8a0 5429
mjr 39:b3815a1c3802 5430 case 2:
mjr 38:091e511ce8a0 5431 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5432 // (No parameters)
mjr 38:091e511ce8a0 5433
mjr 38:091e511ce8a0 5434 // enter calibration mode
mjr 38:091e511ce8a0 5435 calBtnState = 3;
mjr 52:8298b2a73eb2 5436 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5437 calBtnTimer.reset();
mjr 39:b3815a1c3802 5438 break;
mjr 39:b3815a1c3802 5439
mjr 39:b3815a1c3802 5440 case 3:
mjr 52:8298b2a73eb2 5441 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5442 // data[2] = flag bits
mjr 53:9b2611964afc 5443 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5444 reportPlungerStat = true;
mjr 53:9b2611964afc 5445 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5446 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5447
mjr 38:091e511ce8a0 5448 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5449 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5450 break;
mjr 39:b3815a1c3802 5451
mjr 39:b3815a1c3802 5452 case 4:
mjr 38:091e511ce8a0 5453 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5454 // (No parameters)
mjr 38:091e511ce8a0 5455 js.reportConfig(
mjr 38:091e511ce8a0 5456 numOutputs,
mjr 38:091e511ce8a0 5457 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5458 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5459 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5460 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5461 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 5462 true, // we support the "flash write ok" status bit in joystick reports
mjr 79:682ae3171a08 5463 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 5464 break;
mjr 39:b3815a1c3802 5465
mjr 39:b3815a1c3802 5466 case 5:
mjr 38:091e511ce8a0 5467 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5468 allOutputsOff();
mjr 39:b3815a1c3802 5469 break;
mjr 39:b3815a1c3802 5470
mjr 39:b3815a1c3802 5471 case 6:
mjr 85:3c28aee81cde 5472 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 5473 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 5474 //
mjr 85:3c28aee81cde 5475 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 5476 // data[3] = flags:
mjr 85:3c28aee81cde 5477 // 0x01 -> do not reboot
mjr 85:3c28aee81cde 5478 saveConfigState =
mjr 85:3c28aee81cde 5479 (data[3] & 0x01) != 0 ? SAVE_CONFIG_ONLY : SAVE_CONFIG_AND_REBOOT;
mjr 85:3c28aee81cde 5480 saveConfigPostTime = data[2];
mjr 39:b3815a1c3802 5481 break;
mjr 40:cc0d9814522b 5482
mjr 40:cc0d9814522b 5483 case 7:
mjr 40:cc0d9814522b 5484 // 7 = Device ID report
mjr 53:9b2611964afc 5485 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5486 js.reportID(data[2]);
mjr 40:cc0d9814522b 5487 break;
mjr 40:cc0d9814522b 5488
mjr 40:cc0d9814522b 5489 case 8:
mjr 40:cc0d9814522b 5490 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5491 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5492 setNightMode(data[2]);
mjr 40:cc0d9814522b 5493 break;
mjr 52:8298b2a73eb2 5494
mjr 52:8298b2a73eb2 5495 case 9:
mjr 52:8298b2a73eb2 5496 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5497 // data[2] = config var ID
mjr 52:8298b2a73eb2 5498 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5499 {
mjr 53:9b2611964afc 5500 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5501 // the rest of the buffer
mjr 52:8298b2a73eb2 5502 uint8_t reply[8];
mjr 52:8298b2a73eb2 5503 reply[1] = data[2];
mjr 52:8298b2a73eb2 5504 reply[2] = data[3];
mjr 53:9b2611964afc 5505 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5506
mjr 52:8298b2a73eb2 5507 // query the value
mjr 52:8298b2a73eb2 5508 configVarGet(reply);
mjr 52:8298b2a73eb2 5509
mjr 52:8298b2a73eb2 5510 // send the reply
mjr 52:8298b2a73eb2 5511 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5512 }
mjr 52:8298b2a73eb2 5513 break;
mjr 53:9b2611964afc 5514
mjr 53:9b2611964afc 5515 case 10:
mjr 53:9b2611964afc 5516 // 10 = Build ID query.
mjr 53:9b2611964afc 5517 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5518 break;
mjr 73:4e8ce0b18915 5519
mjr 73:4e8ce0b18915 5520 case 11:
mjr 73:4e8ce0b18915 5521 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5522 // data[2] = operation:
mjr 73:4e8ce0b18915 5523 // 0 = turn relay off
mjr 73:4e8ce0b18915 5524 // 1 = turn relay on
mjr 73:4e8ce0b18915 5525 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5526 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5527 break;
mjr 73:4e8ce0b18915 5528
mjr 73:4e8ce0b18915 5529 case 12:
mjr 77:0b96f6867312 5530 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5531 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5532 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5533 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5534 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5535
mjr 77:0b96f6867312 5536 // enter IR learning mode
mjr 77:0b96f6867312 5537 IRLearningMode = 1;
mjr 77:0b96f6867312 5538
mjr 77:0b96f6867312 5539 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5540 IRCommandIn = 0;
mjr 77:0b96f6867312 5541
mjr 77:0b96f6867312 5542 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5543 IRTimer.reset();
mjr 73:4e8ce0b18915 5544 break;
mjr 73:4e8ce0b18915 5545
mjr 73:4e8ce0b18915 5546 case 13:
mjr 73:4e8ce0b18915 5547 // 13 = Send button status report
mjr 73:4e8ce0b18915 5548 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5549 break;
mjr 78:1e00b3fa11af 5550
mjr 78:1e00b3fa11af 5551 case 14:
mjr 78:1e00b3fa11af 5552 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5553 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5554 break;
mjr 78:1e00b3fa11af 5555
mjr 78:1e00b3fa11af 5556 case 15:
mjr 78:1e00b3fa11af 5557 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5558 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5559 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5560 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5561 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5562 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5563 break;
mjr 78:1e00b3fa11af 5564
mjr 78:1e00b3fa11af 5565 case 16:
mjr 78:1e00b3fa11af 5566 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5567 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5568 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5569 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5570 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5571 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5572 break;
mjr 38:091e511ce8a0 5573 }
mjr 38:091e511ce8a0 5574 }
mjr 38:091e511ce8a0 5575 else if (data[0] == 66)
mjr 38:091e511ce8a0 5576 {
mjr 38:091e511ce8a0 5577 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5578 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5579 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5580 // in a variable-dependent format.
mjr 40:cc0d9814522b 5581 configVarSet(data);
mjr 38:091e511ce8a0 5582 }
mjr 74:822a92bc11d2 5583 else if (data[0] == 67)
mjr 74:822a92bc11d2 5584 {
mjr 74:822a92bc11d2 5585 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5586 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5587 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5588 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5589 }
mjr 74:822a92bc11d2 5590 else if (data[0] == 68)
mjr 74:822a92bc11d2 5591 {
mjr 74:822a92bc11d2 5592 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5593 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5594 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5595
mjr 74:822a92bc11d2 5596 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5597 int portGroup = data[1];
mjr 74:822a92bc11d2 5598
mjr 74:822a92bc11d2 5599 // unpack the brightness values
mjr 74:822a92bc11d2 5600 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5601 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5602 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5603 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5604 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5605 };
mjr 74:822a92bc11d2 5606
mjr 74:822a92bc11d2 5607 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5608 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5609 {
mjr 74:822a92bc11d2 5610 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5611 bri[i] += 129-60;
mjr 74:822a92bc11d2 5612 }
mjr 74:822a92bc11d2 5613
mjr 74:822a92bc11d2 5614 // Carry out the PBA
mjr 74:822a92bc11d2 5615 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5616 }
mjr 38:091e511ce8a0 5617 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5618 {
mjr 38:091e511ce8a0 5619 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5620 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5621 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5622 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5623 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5624 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5625 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5626 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5627 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5628 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5629 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5630 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5631 //
mjr 38:091e511ce8a0 5632 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5633 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5634 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5635 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5636 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5637 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5638
mjr 63:5cd1a5f3a41b 5639 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5640 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5641 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5642
mjr 63:5cd1a5f3a41b 5643 // update each port
mjr 38:091e511ce8a0 5644 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5645 {
mjr 38:091e511ce8a0 5646 // set the brightness level for the output
mjr 40:cc0d9814522b 5647 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5648 outLevel[i] = b;
mjr 38:091e511ce8a0 5649
mjr 74:822a92bc11d2 5650 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5651 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5652 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5653 if (b != 0)
mjr 76:7f5912b6340e 5654 {
mjr 76:7f5912b6340e 5655 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5656 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5657 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5658 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5659 // forward unchanged.
mjr 76:7f5912b6340e 5660 wizOn[i] = 1;
mjr 76:7f5912b6340e 5661 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5662 }
mjr 76:7f5912b6340e 5663 else
mjr 76:7f5912b6340e 5664 {
mjr 76:7f5912b6340e 5665 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5666 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5667 wizOn[i] = 0;
mjr 76:7f5912b6340e 5668 }
mjr 74:822a92bc11d2 5669
mjr 38:091e511ce8a0 5670 // set the output
mjr 40:cc0d9814522b 5671 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5672 }
mjr 38:091e511ce8a0 5673
mjr 38:091e511ce8a0 5674 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5675 if (hc595 != 0)
mjr 38:091e511ce8a0 5676 hc595->update();
mjr 38:091e511ce8a0 5677 }
mjr 38:091e511ce8a0 5678 else
mjr 38:091e511ce8a0 5679 {
mjr 74:822a92bc11d2 5680 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5681 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5682 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5683 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5684 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5685 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5686 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5687 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5688 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5689 //
mjr 38:091e511ce8a0 5690 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5691 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5692 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5693 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5694 // protocol mode.
mjr 38:091e511ce8a0 5695 //
mjr 38:091e511ce8a0 5696 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5697 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5698
mjr 74:822a92bc11d2 5699 // carry out the PBA
mjr 74:822a92bc11d2 5700 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5701
mjr 74:822a92bc11d2 5702 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5703 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5704 }
mjr 38:091e511ce8a0 5705 }
mjr 35:e959ffba78fd 5706
mjr 38:091e511ce8a0 5707 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5708 //
mjr 5:a70c0bce770d 5709 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5710 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5711 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5712 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5713 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5714 // port outputs.
mjr 5:a70c0bce770d 5715 //
mjr 0:5acbbe3f4cf4 5716 int main(void)
mjr 0:5acbbe3f4cf4 5717 {
mjr 60:f38da020aa13 5718 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5719 printf("\r\nPinscape Controller starting\r\n");
mjr 82:4f6209cb5c33 5720
mjr 76:7f5912b6340e 5721 // clear the I2C connection
mjr 35:e959ffba78fd 5722 clear_i2c();
mjr 82:4f6209cb5c33 5723
mjr 82:4f6209cb5c33 5724 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 5725 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 5726 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 5727 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 5728 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 5729 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 5730
mjr 76:7f5912b6340e 5731 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 5732 // configuration data:
mjr 76:7f5912b6340e 5733 //
mjr 76:7f5912b6340e 5734 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 5735 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 5736 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 5737 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 5738 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 5739 // to store user settings updates.
mjr 76:7f5912b6340e 5740 //
mjr 76:7f5912b6340e 5741 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 5742 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 5743 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 5744 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 5745 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 5746 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 5747 // without a separate download of the config data.
mjr 76:7f5912b6340e 5748 //
mjr 76:7f5912b6340e 5749 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 5750 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 5751 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 5752 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 5753 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 5754 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 5755 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 5756 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 5757 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 5758 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 5759 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 5760 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 5761 loadHostLoadedConfig();
mjr 35:e959ffba78fd 5762
mjr 38:091e511ce8a0 5763 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 5764 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 5765
mjr 33:d832bcab089e 5766 // we're not connected/awake yet
mjr 33:d832bcab089e 5767 bool connected = false;
mjr 40:cc0d9814522b 5768 Timer connectChangeTimer;
mjr 33:d832bcab089e 5769
mjr 35:e959ffba78fd 5770 // create the plunger sensor interface
mjr 35:e959ffba78fd 5771 createPlunger();
mjr 76:7f5912b6340e 5772
mjr 76:7f5912b6340e 5773 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 5774 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 5775
mjr 60:f38da020aa13 5776 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 5777 init_tlc5940(cfg);
mjr 34:6b981a2afab7 5778
mjr 60:f38da020aa13 5779 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 5780 init_hc595(cfg);
mjr 6:cc35eb643e8f 5781
mjr 54:fd77a6b2f76c 5782 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 5783 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 5784 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 5785 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 5786 initLwOut(cfg);
mjr 48:058ace2aed1d 5787
mjr 60:f38da020aa13 5788 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 5789 if (tlc5940 != 0)
mjr 35:e959ffba78fd 5790 tlc5940->start();
mjr 77:0b96f6867312 5791
mjr 77:0b96f6867312 5792 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 5793 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 5794 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 5795 // USB keyboard interface.
mjr 77:0b96f6867312 5796 bool kbKeys = false;
mjr 77:0b96f6867312 5797
mjr 77:0b96f6867312 5798 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 5799 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 5800
mjr 77:0b96f6867312 5801 // start the power status time, if applicable
mjr 77:0b96f6867312 5802 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 5803
mjr 35:e959ffba78fd 5804 // initialize the button input ports
mjr 35:e959ffba78fd 5805 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 5806
mjr 60:f38da020aa13 5807 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 5808 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 5809 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 5810 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 5811 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 5812 // to the joystick interface.
mjr 51:57eb311faafa 5813 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 5814 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 5815
mjr 60:f38da020aa13 5816 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 5817 // flash pattern while waiting.
mjr 70:9f58735a1732 5818 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 5819 connTimeoutTimer.start();
mjr 70:9f58735a1732 5820 connFlashTimer.start();
mjr 51:57eb311faafa 5821 while (!js.configured())
mjr 51:57eb311faafa 5822 {
mjr 51:57eb311faafa 5823 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 5824 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5825 {
mjr 51:57eb311faafa 5826 // short yellow flash
mjr 51:57eb311faafa 5827 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 5828 wait_us(50000);
mjr 51:57eb311faafa 5829 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5830
mjr 51:57eb311faafa 5831 // reset the flash timer
mjr 70:9f58735a1732 5832 connFlashTimer.reset();
mjr 51:57eb311faafa 5833 }
mjr 70:9f58735a1732 5834
mjr 77:0b96f6867312 5835 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 5836 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 5837 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 5838 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 70:9f58735a1732 5839 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 5840 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 70:9f58735a1732 5841 reboot(js, false, 0);
mjr 77:0b96f6867312 5842
mjr 77:0b96f6867312 5843 // update the PSU2 power sensing status
mjr 77:0b96f6867312 5844 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 5845 }
mjr 60:f38da020aa13 5846
mjr 60:f38da020aa13 5847 // we're now connected to the host
mjr 54:fd77a6b2f76c 5848 connected = true;
mjr 40:cc0d9814522b 5849
mjr 60:f38da020aa13 5850 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 5851 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 5852 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 5853 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 5854 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 5855 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 5856 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 5857 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 5858 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 5859 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 5860 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 5861 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 5862 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 5863 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 5864 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 5865 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 5866 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 5867 // around to polling.
mjr 38:091e511ce8a0 5868 Timer jsReportTimer;
mjr 38:091e511ce8a0 5869 jsReportTimer.start();
mjr 38:091e511ce8a0 5870
mjr 60:f38da020aa13 5871 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 5872 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 5873 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 5874 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 5875 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 5876 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 5877 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 5878 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 5879 Timer jsOKTimer;
mjr 38:091e511ce8a0 5880 jsOKTimer.start();
mjr 35:e959ffba78fd 5881
mjr 55:4db125cd11a0 5882 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 5883 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 5884 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 5885 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 5886 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 5887
mjr 55:4db125cd11a0 5888 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 5889 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 5890 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 5891
mjr 55:4db125cd11a0 5892 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 5893 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 5894 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 5895
mjr 35:e959ffba78fd 5896 // initialize the calibration button
mjr 1:d913e0afb2ac 5897 calBtnTimer.start();
mjr 35:e959ffba78fd 5898 calBtnState = 0;
mjr 1:d913e0afb2ac 5899
mjr 1:d913e0afb2ac 5900 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 5901 Timer hbTimer;
mjr 1:d913e0afb2ac 5902 hbTimer.start();
mjr 1:d913e0afb2ac 5903 int hb = 0;
mjr 5:a70c0bce770d 5904 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 5905
mjr 1:d913e0afb2ac 5906 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 5907 Timer acTimer;
mjr 1:d913e0afb2ac 5908 acTimer.start();
mjr 1:d913e0afb2ac 5909
mjr 0:5acbbe3f4cf4 5910 // create the accelerometer object
mjr 77:0b96f6867312 5911 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 5912 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 5913
mjr 17:ab3cec0c8bf4 5914 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 5915 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 5916 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 5917
mjr 48:058ace2aed1d 5918 // initialize the plunger sensor
mjr 35:e959ffba78fd 5919 plungerSensor->init();
mjr 10:976666ffa4ef 5920
mjr 48:058ace2aed1d 5921 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 5922 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 5923
mjr 54:fd77a6b2f76c 5924 // enable the peripheral chips
mjr 54:fd77a6b2f76c 5925 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 5926 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 5927 if (hc595 != 0)
mjr 54:fd77a6b2f76c 5928 hc595->enable(true);
mjr 74:822a92bc11d2 5929
mjr 76:7f5912b6340e 5930 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 5931 wizCycleTimer.start();
mjr 74:822a92bc11d2 5932
mjr 74:822a92bc11d2 5933 // start the PWM update polling timer
mjr 74:822a92bc11d2 5934 polledPwmTimer.start();
mjr 43:7a6364d82a41 5935
mjr 85:3c28aee81cde 5936 // Timer for configuration change followup timer
mjr 85:3c28aee81cde 5937 ExtTimer saveConfigPostTimer;
mjr 77:0b96f6867312 5938
mjr 1:d913e0afb2ac 5939 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 5940 // host requests
mjr 0:5acbbe3f4cf4 5941 for (;;)
mjr 0:5acbbe3f4cf4 5942 {
mjr 74:822a92bc11d2 5943 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 5944 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 5945
mjr 48:058ace2aed1d 5946 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 5947 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 5948 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 5949 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 5950 LedWizMsg lwm;
mjr 48:058ace2aed1d 5951 Timer lwt;
mjr 48:058ace2aed1d 5952 lwt.start();
mjr 77:0b96f6867312 5953 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 5954 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 5955 {
mjr 78:1e00b3fa11af 5956 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 5957 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 5958 }
mjr 74:822a92bc11d2 5959
mjr 74:822a92bc11d2 5960 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 5961 IF_DIAG(
mjr 74:822a92bc11d2 5962 if (msgCount != 0)
mjr 74:822a92bc11d2 5963 {
mjr 76:7f5912b6340e 5964 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 5965 mainLoopMsgCount++;
mjr 74:822a92bc11d2 5966 }
mjr 74:822a92bc11d2 5967 )
mjr 74:822a92bc11d2 5968
mjr 77:0b96f6867312 5969 // process IR input
mjr 77:0b96f6867312 5970 process_IR(cfg, js);
mjr 77:0b96f6867312 5971
mjr 77:0b96f6867312 5972 // update the PSU2 power sensing status
mjr 77:0b96f6867312 5973 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 5974
mjr 74:822a92bc11d2 5975 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 5976 wizPulse();
mjr 74:822a92bc11d2 5977
mjr 74:822a92bc11d2 5978 // update PWM outputs
mjr 74:822a92bc11d2 5979 pollPwmUpdates();
mjr 77:0b96f6867312 5980
mjr 77:0b96f6867312 5981 // poll the accelerometer
mjr 77:0b96f6867312 5982 accel.poll();
mjr 55:4db125cd11a0 5983
mjr 76:7f5912b6340e 5984 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 5985 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 5986
mjr 55:4db125cd11a0 5987 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 5988 if (tlc5940 != 0)
mjr 55:4db125cd11a0 5989 tlc5940->send();
mjr 1:d913e0afb2ac 5990
mjr 76:7f5912b6340e 5991 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 5992 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 5993
mjr 1:d913e0afb2ac 5994 // check for plunger calibration
mjr 17:ab3cec0c8bf4 5995 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 5996 {
mjr 1:d913e0afb2ac 5997 // check the state
mjr 1:d913e0afb2ac 5998 switch (calBtnState)
mjr 0:5acbbe3f4cf4 5999 {
mjr 1:d913e0afb2ac 6000 case 0:
mjr 1:d913e0afb2ac 6001 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6002 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6003 calBtnState = 1;
mjr 1:d913e0afb2ac 6004 break;
mjr 1:d913e0afb2ac 6005
mjr 1:d913e0afb2ac 6006 case 1:
mjr 1:d913e0afb2ac 6007 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6008 // passed, start the hold period
mjr 48:058ace2aed1d 6009 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6010 calBtnState = 2;
mjr 1:d913e0afb2ac 6011 break;
mjr 1:d913e0afb2ac 6012
mjr 1:d913e0afb2ac 6013 case 2:
mjr 1:d913e0afb2ac 6014 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6015 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6016 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6017 {
mjr 1:d913e0afb2ac 6018 // enter calibration mode
mjr 1:d913e0afb2ac 6019 calBtnState = 3;
mjr 9:fd65b0a94720 6020 calBtnTimer.reset();
mjr 35:e959ffba78fd 6021
mjr 44:b5ac89b9cd5d 6022 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6023 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6024 }
mjr 1:d913e0afb2ac 6025 break;
mjr 2:c174f9ee414a 6026
mjr 2:c174f9ee414a 6027 case 3:
mjr 9:fd65b0a94720 6028 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6029 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6030 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6031 break;
mjr 0:5acbbe3f4cf4 6032 }
mjr 0:5acbbe3f4cf4 6033 }
mjr 1:d913e0afb2ac 6034 else
mjr 1:d913e0afb2ac 6035 {
mjr 2:c174f9ee414a 6036 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6037 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6038 // and save the results to flash.
mjr 2:c174f9ee414a 6039 //
mjr 2:c174f9ee414a 6040 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6041 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6042 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6043 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6044 {
mjr 2:c174f9ee414a 6045 // exit calibration mode
mjr 1:d913e0afb2ac 6046 calBtnState = 0;
mjr 52:8298b2a73eb2 6047 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6048
mjr 6:cc35eb643e8f 6049 // save the updated configuration
mjr 35:e959ffba78fd 6050 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 6051 saveConfigToFlash();
mjr 2:c174f9ee414a 6052 }
mjr 2:c174f9ee414a 6053 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6054 {
mjr 2:c174f9ee414a 6055 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6056 calBtnState = 0;
mjr 2:c174f9ee414a 6057 }
mjr 1:d913e0afb2ac 6058 }
mjr 1:d913e0afb2ac 6059
mjr 1:d913e0afb2ac 6060 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6061 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6062 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6063 {
mjr 1:d913e0afb2ac 6064 case 2:
mjr 1:d913e0afb2ac 6065 // in the hold period - flash the light
mjr 48:058ace2aed1d 6066 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6067 break;
mjr 1:d913e0afb2ac 6068
mjr 1:d913e0afb2ac 6069 case 3:
mjr 1:d913e0afb2ac 6070 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6071 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6072 break;
mjr 1:d913e0afb2ac 6073
mjr 1:d913e0afb2ac 6074 default:
mjr 1:d913e0afb2ac 6075 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6076 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6077 break;
mjr 1:d913e0afb2ac 6078 }
mjr 3:3514575d4f86 6079
mjr 3:3514575d4f86 6080 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6081 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6082 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6083 {
mjr 1:d913e0afb2ac 6084 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6085 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6086 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6087 calBtnLed->write(1);
mjr 38:091e511ce8a0 6088 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6089 }
mjr 2:c174f9ee414a 6090 else {
mjr 17:ab3cec0c8bf4 6091 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6092 calBtnLed->write(0);
mjr 38:091e511ce8a0 6093 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6094 }
mjr 1:d913e0afb2ac 6095 }
mjr 35:e959ffba78fd 6096
mjr 76:7f5912b6340e 6097 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6098 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6099
mjr 48:058ace2aed1d 6100 // read the plunger sensor
mjr 48:058ace2aed1d 6101 plungerReader.read();
mjr 48:058ace2aed1d 6102
mjr 76:7f5912b6340e 6103 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6104 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6105
mjr 53:9b2611964afc 6106 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6107 zbLaunchBall.update();
mjr 37:ed52738445fc 6108
mjr 76:7f5912b6340e 6109 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6110 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6111
mjr 53:9b2611964afc 6112 // process button updates
mjr 53:9b2611964afc 6113 processButtons(cfg);
mjr 53:9b2611964afc 6114
mjr 76:7f5912b6340e 6115 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6116 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6117
mjr 38:091e511ce8a0 6118 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6119 if (kbState.changed)
mjr 37:ed52738445fc 6120 {
mjr 38:091e511ce8a0 6121 // send a keyboard report
mjr 37:ed52738445fc 6122 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6123 kbState.changed = false;
mjr 37:ed52738445fc 6124 }
mjr 38:091e511ce8a0 6125
mjr 38:091e511ce8a0 6126 // likewise for the media controller
mjr 37:ed52738445fc 6127 if (mediaState.changed)
mjr 37:ed52738445fc 6128 {
mjr 38:091e511ce8a0 6129 // send a media report
mjr 37:ed52738445fc 6130 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6131 mediaState.changed = false;
mjr 37:ed52738445fc 6132 }
mjr 38:091e511ce8a0 6133
mjr 76:7f5912b6340e 6134 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6135 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6136
mjr 38:091e511ce8a0 6137 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6138 bool jsOK = false;
mjr 55:4db125cd11a0 6139
mjr 55:4db125cd11a0 6140 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6141 uint16_t statusFlags =
mjr 77:0b96f6867312 6142 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6143 | nightMode // 0x02
mjr 79:682ae3171a08 6144 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6145 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6146 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6147 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6148
mjr 50:40015764bbe6 6149 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6150 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6151 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6152 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 6153 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 6154 {
mjr 17:ab3cec0c8bf4 6155 // read the accelerometer
mjr 17:ab3cec0c8bf4 6156 int xa, ya;
mjr 17:ab3cec0c8bf4 6157 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6158
mjr 17:ab3cec0c8bf4 6159 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 6160 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 6161 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 6162 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 6163 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 6164
mjr 17:ab3cec0c8bf4 6165 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 6166 x = xa;
mjr 17:ab3cec0c8bf4 6167 y = ya;
mjr 17:ab3cec0c8bf4 6168
mjr 48:058ace2aed1d 6169 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6170 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6171 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6172 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6173 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6174 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6175 // regular plunger inputs.
mjr 48:058ace2aed1d 6176 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 6177 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 6178
mjr 35:e959ffba78fd 6179 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6180 accelRotate(x, y);
mjr 35:e959ffba78fd 6181
mjr 35:e959ffba78fd 6182 // send the joystick report
mjr 53:9b2611964afc 6183 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6184
mjr 17:ab3cec0c8bf4 6185 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6186 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6187 }
mjr 21:5048e16cc9ef 6188
mjr 52:8298b2a73eb2 6189 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6190 if (reportPlungerStat)
mjr 10:976666ffa4ef 6191 {
mjr 17:ab3cec0c8bf4 6192 // send the report
mjr 53:9b2611964afc 6193 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6194
mjr 10:976666ffa4ef 6195 // we have satisfied this request
mjr 52:8298b2a73eb2 6196 reportPlungerStat = false;
mjr 10:976666ffa4ef 6197 }
mjr 10:976666ffa4ef 6198
mjr 35:e959ffba78fd 6199 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6200 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6201 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6202 {
mjr 55:4db125cd11a0 6203 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6204 jsReportTimer.reset();
mjr 38:091e511ce8a0 6205 }
mjr 38:091e511ce8a0 6206
mjr 38:091e511ce8a0 6207 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6208 if (jsOK)
mjr 38:091e511ce8a0 6209 {
mjr 38:091e511ce8a0 6210 jsOKTimer.reset();
mjr 38:091e511ce8a0 6211 jsOKTimer.start();
mjr 21:5048e16cc9ef 6212 }
mjr 21:5048e16cc9ef 6213
mjr 76:7f5912b6340e 6214 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6215 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6216
mjr 6:cc35eb643e8f 6217 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6218 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6219 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6220 #endif
mjr 6:cc35eb643e8f 6221
mjr 33:d832bcab089e 6222 // check for connection status changes
mjr 54:fd77a6b2f76c 6223 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6224 if (newConnected != connected)
mjr 33:d832bcab089e 6225 {
mjr 54:fd77a6b2f76c 6226 // give it a moment to stabilize
mjr 40:cc0d9814522b 6227 connectChangeTimer.start();
mjr 55:4db125cd11a0 6228 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6229 {
mjr 33:d832bcab089e 6230 // note the new status
mjr 33:d832bcab089e 6231 connected = newConnected;
mjr 40:cc0d9814522b 6232
mjr 40:cc0d9814522b 6233 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6234 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6235 connectChangeTimer.reset();
mjr 33:d832bcab089e 6236
mjr 54:fd77a6b2f76c 6237 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6238 if (!connected)
mjr 40:cc0d9814522b 6239 {
mjr 54:fd77a6b2f76c 6240 // turn off all outputs
mjr 33:d832bcab089e 6241 allOutputsOff();
mjr 40:cc0d9814522b 6242
mjr 40:cc0d9814522b 6243 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6244 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6245 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6246 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6247 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6248 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6249 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6250 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6251 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6252 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6253 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6254 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6255 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6256 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6257 // the power first comes on.
mjr 40:cc0d9814522b 6258 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6259 tlc5940->enable(false);
mjr 40:cc0d9814522b 6260 if (hc595 != 0)
mjr 40:cc0d9814522b 6261 hc595->enable(false);
mjr 40:cc0d9814522b 6262 }
mjr 33:d832bcab089e 6263 }
mjr 33:d832bcab089e 6264 }
mjr 48:058ace2aed1d 6265
mjr 53:9b2611964afc 6266 // if we have a reboot timer pending, check for completion
mjr 85:3c28aee81cde 6267 if (saveConfigPostTimer.isRunning()
mjr 85:3c28aee81cde 6268 && saveConfigPostTimer.read() > saveConfigPostTime)
mjr 85:3c28aee81cde 6269 {
mjr 85:3c28aee81cde 6270 // if a reboot is pending, execute it now
mjr 85:3c28aee81cde 6271 if (saveConfigState == SAVE_CONFIG_REBOOT)
mjr 85:3c28aee81cde 6272 reboot(js);
mjr 77:0b96f6867312 6273
mjr 85:3c28aee81cde 6274 // done with the timer - reset it
mjr 85:3c28aee81cde 6275 saveConfigPostTimer.stop();
mjr 85:3c28aee81cde 6276 saveConfigPostTimer.reset();
mjr 85:3c28aee81cde 6277
mjr 85:3c28aee81cde 6278 // clear the save-config success flag
mjr 85:3c28aee81cde 6279 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 6280 }
mjr 85:3c28aee81cde 6281
mjr 77:0b96f6867312 6282 // if a config save is pending, do it now
mjr 85:3c28aee81cde 6283 if (saveConfigState == SAVE_CONFIG_ONLY
mjr 85:3c28aee81cde 6284 || saveConfigState == SAVE_CONFIG_AND_REBOOT)
mjr 77:0b96f6867312 6285 {
mjr 77:0b96f6867312 6286 // save the configuration
mjr 79:682ae3171a08 6287 if (saveConfigToFlash())
mjr 82:4f6209cb5c33 6288 {
mjr 82:4f6209cb5c33 6289 // report success in the status flags
mjr 79:682ae3171a08 6290 saveConfigSucceededFlag = 0x40;
mjr 77:0b96f6867312 6291
mjr 85:3c28aee81cde 6292 // start the followup timer
mjr 85:3c28aee81cde 6293 saveConfigPostTimer.start();
mjr 85:3c28aee81cde 6294
mjr 85:3c28aee81cde 6295 // The save is no longer pending. Switch to reboot pending
mjr 85:3c28aee81cde 6296 // mode if desired.
mjr 85:3c28aee81cde 6297 saveConfigState = (saveConfigState == SAVE_CONFIG_AND_REBOOT ?
mjr 85:3c28aee81cde 6298 SAVE_CONFIG_REBOOT : SAVE_CONFIG_IDLE);
mjr 82:4f6209cb5c33 6299 }
mjr 85:3c28aee81cde 6300 else
mjr 85:3c28aee81cde 6301 {
mjr 85:3c28aee81cde 6302 // save failed - return to idle state
mjr 85:3c28aee81cde 6303 saveConfigState = SAVE_CONFIG_IDLE;
mjr 85:3c28aee81cde 6304 }
mjr 77:0b96f6867312 6305 }
mjr 53:9b2611964afc 6306
mjr 48:058ace2aed1d 6307 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6308 if (!connected)
mjr 48:058ace2aed1d 6309 {
mjr 54:fd77a6b2f76c 6310 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6311 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6312 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6313
mjr 54:fd77a6b2f76c 6314 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6315 js.diagFlash();
mjr 54:fd77a6b2f76c 6316
mjr 54:fd77a6b2f76c 6317 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6318 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6319
mjr 51:57eb311faafa 6320 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6321 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6322 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6323
mjr 54:fd77a6b2f76c 6324 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6325 Timer diagTimer;
mjr 54:fd77a6b2f76c 6326 diagTimer.reset();
mjr 54:fd77a6b2f76c 6327 diagTimer.start();
mjr 74:822a92bc11d2 6328
mjr 74:822a92bc11d2 6329 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6330 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6331
mjr 54:fd77a6b2f76c 6332 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6333 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6334 {
mjr 54:fd77a6b2f76c 6335 // try to recover the connection
mjr 54:fd77a6b2f76c 6336 js.recoverConnection();
mjr 54:fd77a6b2f76c 6337
mjr 55:4db125cd11a0 6338 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6339 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6340 tlc5940->send();
mjr 55:4db125cd11a0 6341
mjr 54:fd77a6b2f76c 6342 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6343 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6344 {
mjr 54:fd77a6b2f76c 6345 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6346 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6347
mjr 54:fd77a6b2f76c 6348 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6349 js.diagFlash();
mjr 51:57eb311faafa 6350
mjr 51:57eb311faafa 6351 // reset the flash timer
mjr 54:fd77a6b2f76c 6352 diagTimer.reset();
mjr 51:57eb311faafa 6353 }
mjr 51:57eb311faafa 6354
mjr 77:0b96f6867312 6355 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6356 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6357 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6358 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6359 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6360 // reliable way to get Windows to notice us again after one
mjr 77:0b96f6867312 6361 // of these events and make it reconnect.
mjr 51:57eb311faafa 6362 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 6363 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6364 reboot(js, false, 0);
mjr 77:0b96f6867312 6365
mjr 77:0b96f6867312 6366 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6367 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6368 }
mjr 54:fd77a6b2f76c 6369
mjr 74:822a92bc11d2 6370 // resume the main loop timer
mjr 74:822a92bc11d2 6371 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6372
mjr 54:fd77a6b2f76c 6373 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6374 connected = true;
mjr 54:fd77a6b2f76c 6375 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6376
mjr 54:fd77a6b2f76c 6377 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6378 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6379 {
mjr 55:4db125cd11a0 6380 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6381 tlc5940->update(true);
mjr 54:fd77a6b2f76c 6382 }
mjr 54:fd77a6b2f76c 6383 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6384 {
mjr 55:4db125cd11a0 6385 hc595->enable(true);
mjr 54:fd77a6b2f76c 6386 hc595->update(true);
mjr 51:57eb311faafa 6387 }
mjr 48:058ace2aed1d 6388 }
mjr 43:7a6364d82a41 6389
mjr 6:cc35eb643e8f 6390 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6391 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6392 {
mjr 54:fd77a6b2f76c 6393 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6394 {
mjr 39:b3815a1c3802 6395 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6396 //
mjr 54:fd77a6b2f76c 6397 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6398 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6399 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6400 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6401 hb = !hb;
mjr 38:091e511ce8a0 6402 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6403
mjr 54:fd77a6b2f76c 6404 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6405 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6406 // with the USB connection.
mjr 54:fd77a6b2f76c 6407 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6408 {
mjr 54:fd77a6b2f76c 6409 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6410 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6411 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 6412 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 6413 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6414 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6415 }
mjr 54:fd77a6b2f76c 6416 else
mjr 54:fd77a6b2f76c 6417 {
mjr 54:fd77a6b2f76c 6418 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6419 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6420 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6421 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6422 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6423 }
mjr 38:091e511ce8a0 6424 }
mjr 73:4e8ce0b18915 6425 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6426 {
mjr 73:4e8ce0b18915 6427 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6428 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6429 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6430 }
mjr 35:e959ffba78fd 6431 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6432 {
mjr 6:cc35eb643e8f 6433 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6434 hb = !hb;
mjr 38:091e511ce8a0 6435 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6436 }
mjr 6:cc35eb643e8f 6437 else
mjr 6:cc35eb643e8f 6438 {
mjr 6:cc35eb643e8f 6439 // connected - flash blue/green
mjr 2:c174f9ee414a 6440 hb = !hb;
mjr 38:091e511ce8a0 6441 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6442 }
mjr 1:d913e0afb2ac 6443
mjr 1:d913e0afb2ac 6444 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6445 hbTimer.reset();
mjr 5:a70c0bce770d 6446 ++hbcnt;
mjr 1:d913e0afb2ac 6447 }
mjr 74:822a92bc11d2 6448
mjr 74:822a92bc11d2 6449 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6450 IF_DIAG(
mjr 76:7f5912b6340e 6451 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6452 mainLoopIterCount++;
mjr 74:822a92bc11d2 6453 )
mjr 1:d913e0afb2ac 6454 }
mjr 0:5acbbe3f4cf4 6455 }