Mirror with some correction
Dependencies: mbed FastIO FastPWM USBDevice
main.cpp@101:755f44622abc, 2019-11-29 (annotated)
- Committer:
- mjr
- Date:
- Fri Nov 29 05:38:07 2019 +0000
- Revision:
- 101:755f44622abc
- Parent:
- 100:1ff35c07217c
- Child:
- 106:e9e3b46132c1
Use continuous asynchronous frame transfers in image sensors
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 51:57eb311faafa | 1 | /* Copyright 2014, 2016 M J Roberts, MIT License |
mjr | 5:a70c0bce770d | 2 | * |
mjr | 5:a70c0bce770d | 3 | * Permission is hereby granted, free of charge, to any person obtaining a copy of this software |
mjr | 5:a70c0bce770d | 4 | * and associated documentation files (the "Software"), to deal in the Software without |
mjr | 5:a70c0bce770d | 5 | * restriction, including without limitation the rights to use, copy, modify, merge, publish, |
mjr | 5:a70c0bce770d | 6 | * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the |
mjr | 5:a70c0bce770d | 7 | * Software is furnished to do so, subject to the following conditions: |
mjr | 5:a70c0bce770d | 8 | * |
mjr | 5:a70c0bce770d | 9 | * The above copyright notice and this permission notice shall be included in all copies or |
mjr | 5:a70c0bce770d | 10 | * substantial portions of the Software. |
mjr | 5:a70c0bce770d | 11 | * |
mjr | 5:a70c0bce770d | 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING |
mjr | 99:8139b0c274f4 | 13 | * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
mjr | 5:a70c0bce770d | 14 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, |
mjr | 5:a70c0bce770d | 15 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
mjr | 5:a70c0bce770d | 16 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
mjr | 5:a70c0bce770d | 17 | */ |
mjr | 5:a70c0bce770d | 18 | |
mjr | 5:a70c0bce770d | 19 | // |
mjr | 35:e959ffba78fd | 20 | // The Pinscape Controller |
mjr | 35:e959ffba78fd | 21 | // A comprehensive input/output controller for virtual pinball machines |
mjr | 5:a70c0bce770d | 22 | // |
mjr | 48:058ace2aed1d | 23 | // This project implements an I/O controller for virtual pinball cabinets. The |
mjr | 48:058ace2aed1d | 24 | // controller's function is to connect Visual Pinball (and other Windows pinball |
mjr | 48:058ace2aed1d | 25 | // emulators) with physical devices in the cabinet: buttons, sensors, and |
mjr | 48:058ace2aed1d | 26 | // feedback devices that create visual or mechanical effects during play. |
mjr | 38:091e511ce8a0 | 27 | // |
mjr | 48:058ace2aed1d | 28 | // The controller can perform several different functions, which can be used |
mjr | 38:091e511ce8a0 | 29 | // individually or in any combination: |
mjr | 5:a70c0bce770d | 30 | // |
mjr | 38:091e511ce8a0 | 31 | // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the |
mjr | 38:091e511ce8a0 | 32 | // motion of the cabinet when you nudge it. Visual Pinball and other pinball |
mjr | 38:091e511ce8a0 | 33 | // emulators on the PC have native handling for this type of input, so that |
mjr | 38:091e511ce8a0 | 34 | // physical nudges on the cabinet turn into simulated effects on the virtual |
mjr | 38:091e511ce8a0 | 35 | // ball. The KL25Z measures accelerations as analog readings and is quite |
mjr | 38:091e511ce8a0 | 36 | // sensitive, so the effect of a nudge on the simulation is proportional |
mjr | 38:091e511ce8a0 | 37 | // to the strength of the nudge. Accelerations are reported to the PC via a |
mjr | 38:091e511ce8a0 | 38 | // simulated joystick (using the X and Y axes); you just have to set some |
mjr | 38:091e511ce8a0 | 39 | // preferences in your pinball software to tell it that an accelerometer |
mjr | 38:091e511ce8a0 | 40 | // is attached. |
mjr | 5:a70c0bce770d | 41 | // |
mjr | 74:822a92bc11d2 | 42 | // - Plunger position sensing, with multiple sensor options. To use this feature, |
mjr | 35:e959ffba78fd | 43 | // you need to choose a sensor and set it up, connect the sensor electrically to |
mjr | 35:e959ffba78fd | 44 | // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how |
mjr | 35:e959ffba78fd | 45 | // the sensor is hooked up. The Pinscape software monitors the sensor and sends |
mjr | 35:e959ffba78fd | 46 | // readings to Visual Pinball via the joystick Z axis. VP and other PC software |
mjr | 38:091e511ce8a0 | 47 | // have native support for this type of input; as with the nudge setup, you just |
mjr | 38:091e511ce8a0 | 48 | // have to set some options in VP to activate the plunger. |
mjr | 17:ab3cec0c8bf4 | 49 | // |
mjr | 87:8d35c74403af | 50 | // We support several sensor types: |
mjr | 35:e959ffba78fd | 51 | // |
mjr | 87:8d35c74403af | 52 | // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with |
mjr | 87:8d35c74403af | 53 | // reflective optical sensing and built-in lighting and optics. The sensor |
mjr | 87:8d35c74403af | 54 | // is attached to the plunger so that it moves with the plunger, and slides |
mjr | 87:8d35c74403af | 55 | // along a guide rail with a reflective pattern of regularly spaces bars |
mjr | 87:8d35c74403af | 56 | // for the encoder to read. We read the plunger position by counting the |
mjr | 87:8d35c74403af | 57 | // bars the sensor passes as it moves across the rail. This is the newest |
mjr | 87:8d35c74403af | 58 | // option, and it's my current favorite because it's highly accurate, |
mjr | 87:8d35c74403af | 59 | // precise, and fast, plus it's relatively inexpensive. |
mjr | 87:8d35c74403af | 60 | // |
mjr | 87:8d35c74403af | 61 | // - Slide potentiometers. There are slide potentioneters available with a |
mjr | 87:8d35c74403af | 62 | // long enough travel distance (at least 85mm) to cover the plunger travel. |
mjr | 87:8d35c74403af | 63 | // Attach the plunger to the potentiometer knob so that the moving the |
mjr | 87:8d35c74403af | 64 | // plunger moves the pot knob. We sense the position by simply reading |
mjr | 87:8d35c74403af | 65 | // the analog voltage on the pot brush. A pot with a "linear taper" (that |
mjr | 87:8d35c74403af | 66 | // is, the resistance varies linearly with the position) is required. |
mjr | 87:8d35c74403af | 67 | // This option is cheap, easy to set up, and works well. |
mjr | 5:a70c0bce770d | 68 | // |
mjr | 87:8d35c74403af | 69 | // - VL6108X time-of-flight distance sensor. This is an optical distance |
mjr | 87:8d35c74403af | 70 | // sensor that measures the distance to a nearby object (within about 10cm) |
mjr | 87:8d35c74403af | 71 | // by measuring the travel time for reflected pulses of light. It's fairly |
mjr | 87:8d35c74403af | 72 | // cheap and easy to set up, but I don't recommend it because it has very |
mjr | 87:8d35c74403af | 73 | // low precision. |
mjr | 6:cc35eb643e8f | 74 | // |
mjr | 87:8d35c74403af | 75 | // - TSL1410R/TSL1412R linear array optical sensors. These are large optical |
mjr | 87:8d35c74403af | 76 | // sensors with the pixels arranged in a single row. The pixel arrays are |
mjr | 87:8d35c74403af | 77 | // large enough on these to cover the travel distance of the plunger, so we |
mjr | 87:8d35c74403af | 78 | // can set up the sensor near the plunger in such a way that the plunger |
mjr | 87:8d35c74403af | 79 | // casts a shadow on the sensor. We detect the plunger position by finding |
mjr | 87:8d35c74403af | 80 | // the edge of the sahdow in the image. The optics for this setup are very |
mjr | 87:8d35c74403af | 81 | // simple since we don't need any lenses. This was the first sensor we |
mjr | 87:8d35c74403af | 82 | // supported, and works very well, but unfortunately the sensor is difficult |
mjr | 87:8d35c74403af | 83 | // to find now since it's been discontinued by the manufacturer. |
mjr | 87:8d35c74403af | 84 | // |
mjr | 87:8d35c74403af | 85 | // The v2 Build Guide has details on how to build and configure all of the |
mjr | 87:8d35c74403af | 86 | // sensor options. |
mjr | 87:8d35c74403af | 87 | // |
mjr | 87:8d35c74403af | 88 | // Visual Pinball has built-in support for plunger devices like this one, but |
mjr | 87:8d35c74403af | 89 | // some older VP tables (particularly for VP 9) can't use it without some |
mjr | 87:8d35c74403af | 90 | // modifications to their scripting. The Build Guide has advice on how to |
mjr | 87:8d35c74403af | 91 | // fix up VP tables to add plunger support when necessary. |
mjr | 5:a70c0bce770d | 92 | // |
mjr | 77:0b96f6867312 | 93 | // - Button input wiring. You can assign GPIO ports as inputs for physical |
mjr | 77:0b96f6867312 | 94 | // pinball-style buttons, such as flipper buttons, a Start button, coin |
mjr | 77:0b96f6867312 | 95 | // chute switches, tilt bobs, and service panel buttons. You can configure |
mjr | 77:0b96f6867312 | 96 | // each button input to report a keyboard key or joystick button press to |
mjr | 77:0b96f6867312 | 97 | // the PC when the physical button is pushed. |
mjr | 13:72dda449c3c0 | 98 | // |
mjr | 53:9b2611964afc | 99 | // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets |
mjr | 53:9b2611964afc | 100 | // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the |
mjr | 53:9b2611964afc | 101 | // KL25Z, and lets PC software (such as Visual Pinball) control them during game |
mjr | 53:9b2611964afc | 102 | // play to create a more immersive playing experience. The Pinscape software |
mjr | 53:9b2611964afc | 103 | // presents itself to the host as an LedWiz device and accepts the full LedWiz |
mjr | 53:9b2611964afc | 104 | // command set, so software on the PC designed for real LedWiz'es can control |
mjr | 53:9b2611964afc | 105 | // attached devices without any modifications. |
mjr | 5:a70c0bce770d | 106 | // |
mjr | 53:9b2611964afc | 107 | // Even though the software provides a very thorough LedWiz emulation, the KL25Z |
mjr | 53:9b2611964afc | 108 | // GPIO hardware design imposes some serious limitations. The big one is that |
mjr | 53:9b2611964afc | 109 | // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have |
mjr | 53:9b2611964afc | 110 | // varying-intensity outputs (e.g., for controlling the brightness level of an |
mjr | 53:9b2611964afc | 111 | // LED or the speed or a motor). You can control more than 10 output ports, but |
mjr | 53:9b2611964afc | 112 | // only 10 can have PWM control; the rest are simple "digital" ports that can only |
mjr | 53:9b2611964afc | 113 | // be switched fully on or fully off. The second limitation is that the KL25Z |
mjr | 53:9b2611964afc | 114 | // just doesn't have that many GPIO ports overall. There are enough to populate |
mjr | 53:9b2611964afc | 115 | // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is |
mjr | 53:9b2611964afc | 116 | // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade |
mjr | 53:9b2611964afc | 117 | // off more outputs for fewer inputs, or vice versa. The third limitation is that |
mjr | 53:9b2611964afc | 118 | // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't |
mjr | 53:9b2611964afc | 119 | // even enough to control a small LED. So in order to connect any kind of feedback |
mjr | 53:9b2611964afc | 120 | // device to an output, you *must* build some external circuitry to boost the |
mjr | 53:9b2611964afc | 121 | // current handing. The Build Guide has a reference circuit design for this |
mjr | 53:9b2611964afc | 122 | // purpose that's simple and inexpensive to build. |
mjr | 6:cc35eb643e8f | 123 | // |
mjr | 87:8d35c74403af | 124 | // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips. |
mjr | 87:8d35c74403af | 125 | // You can attach external PWM chips for controlling device outputs, instead of |
mjr | 87:8d35c74403af | 126 | // using (or in addition to) the on-board GPIO ports as described above. The |
mjr | 87:8d35c74403af | 127 | // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each |
mjr | 87:8d35c74403af | 128 | // chip provides 16 PWM outputs, so you just need two of them to get the full |
mjr | 87:8d35c74403af | 129 | // complement of 32 output ports of a real LedWiz. You can hook up even more, |
mjr | 87:8d35c74403af | 130 | // though. Four chips gives you 64 ports, which should be plenty for nearly any |
mjr | 87:8d35c74403af | 131 | // virtual pinball project. |
mjr | 53:9b2611964afc | 132 | // |
mjr | 53:9b2611964afc | 133 | // The Pinscape Expansion Board project (which appeared in early 2016) provides |
mjr | 53:9b2611964afc | 134 | // a reference hardware design, with EAGLE circuit board layouts, that takes full |
mjr | 53:9b2611964afc | 135 | // advantage of the TLC5940 capability. It lets you create a customized set of |
mjr | 53:9b2611964afc | 136 | // outputs with full PWM control and power handling for high-current devices |
mjr | 87:8d35c74403af | 137 | // built in to the boards. |
mjr | 87:8d35c74403af | 138 | // |
mjr | 87:8d35c74403af | 139 | // To accommodate the larger supply of ports possible with the external chips, |
mjr | 87:8d35c74403af | 140 | // the controller software provides a custom, extended version of the LedWiz |
mjr | 87:8d35c74403af | 141 | // protocol that can handle up to 128 ports. Legacy PC software designed only |
mjr | 87:8d35c74403af | 142 | // for the original LedWiz obviously can't use the extended protocol, and thus |
mjr | 87:8d35c74403af | 143 | // can't take advantage of its extra capabilities, but the latest version of |
mjr | 87:8d35c74403af | 144 | // DOF (DirectOutput Framework) *does* know the new language and can take full |
mjr | 87:8d35c74403af | 145 | // advantage. Older software will still work, though - the new extensions are |
mjr | 87:8d35c74403af | 146 | // all backwards compatible, so old software that only knows about the original |
mjr | 87:8d35c74403af | 147 | // LedWiz protocol will still work, with the limitation that it can only access |
mjr | 87:8d35c74403af | 148 | // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that |
mjr | 87:8d35c74403af | 149 | // creates virtual LedWiz units representing additional ports beyond the first |
mjr | 87:8d35c74403af | 150 | // 32. This allows legacy LedWiz client software to address all ports by |
mjr | 87:8d35c74403af | 151 | // making them think that you have several physical LedWiz units installed. |
mjr | 26:cb71c4af2912 | 152 | // |
mjr | 38:091e511ce8a0 | 153 | // - Night Mode control for output devices. You can connect a switch or button |
mjr | 38:091e511ce8a0 | 154 | // to the controller to activate "Night Mode", which disables feedback devices |
mjr | 38:091e511ce8a0 | 155 | // that you designate as noisy. You can designate outputs individually as being |
mjr | 38:091e511ce8a0 | 156 | // included in this set or not. This is useful if you want to play a game on |
mjr | 38:091e511ce8a0 | 157 | // your cabinet late at night without waking the kids and annoying the neighbors. |
mjr | 38:091e511ce8a0 | 158 | // |
mjr | 38:091e511ce8a0 | 159 | // - TV ON switch. The controller can pulse a relay to turn on your TVs after |
mjr | 38:091e511ce8a0 | 160 | // power to the cabinet comes on, with a configurable delay timer. This feature |
mjr | 38:091e511ce8a0 | 161 | // is for TVs that don't turn themselves on automatically when first plugged in. |
mjr | 38:091e511ce8a0 | 162 | // To use this feature, you have to build some external circuitry to allow the |
mjr | 77:0b96f6867312 | 163 | // software to sense the power supply status. The Build Guide has details |
mjr | 77:0b96f6867312 | 164 | // on the necessary circuitry. You can use this to switch your TV on via a |
mjr | 77:0b96f6867312 | 165 | // hardwired connection to the TV's "on" button, which requires taking the |
mjr | 77:0b96f6867312 | 166 | // TV apart to gain access to its internal wiring, or optionally via the IR |
mjr | 77:0b96f6867312 | 167 | // remote control transmitter feature below. |
mjr | 77:0b96f6867312 | 168 | // |
mjr | 77:0b96f6867312 | 169 | // - Infrared (IR) remote control receiver and transmitter. You can attach an |
mjr | 77:0b96f6867312 | 170 | // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the |
mjr | 77:0b96f6867312 | 171 | // KL25Z capable of sending and/or receiving IR remote control signals. This |
mjr | 77:0b96f6867312 | 172 | // can be used with the TV ON feature above to turn your TV(s) on when the |
mjr | 77:0b96f6867312 | 173 | // system power comes on by sending the "on" command to them via IR, as though |
mjr | 77:0b96f6867312 | 174 | // you pressed the "on" button on the remote control. The sensor lets the |
mjr | 77:0b96f6867312 | 175 | // Pinscape software learn the IR codes from your existing remotes, in the |
mjr | 77:0b96f6867312 | 176 | // same manner as a handheld universal remote control, and the IR LED lets |
mjr | 77:0b96f6867312 | 177 | // it transmit learned codes. The sensor can also be used to receive codes |
mjr | 77:0b96f6867312 | 178 | // during normal operation and turn them into PC keystrokes; this lets you |
mjr | 77:0b96f6867312 | 179 | // access extra commands on the PC without adding more buttons to your |
mjr | 77:0b96f6867312 | 180 | // cabinet. The IR LED can also be used to transmit other codes when you |
mjr | 77:0b96f6867312 | 181 | // press selected cabinet buttons, allowing you to assign cabinet buttons |
mjr | 77:0b96f6867312 | 182 | // to send IR commands to your cabinet TV or other devices. |
mjr | 38:091e511ce8a0 | 183 | // |
mjr | 35:e959ffba78fd | 184 | // |
mjr | 35:e959ffba78fd | 185 | // |
mjr | 33:d832bcab089e | 186 | // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current |
mjr | 33:d832bcab089e | 187 | // device status. The flash patterns are: |
mjr | 6:cc35eb643e8f | 188 | // |
mjr | 48:058ace2aed1d | 189 | // short yellow flash = waiting to connect |
mjr | 6:cc35eb643e8f | 190 | // |
mjr | 48:058ace2aed1d | 191 | // short red flash = the connection is suspended (the host is in sleep |
mjr | 48:058ace2aed1d | 192 | // or suspend mode, the USB cable is unplugged after a connection |
mjr | 48:058ace2aed1d | 193 | // has been established) |
mjr | 48:058ace2aed1d | 194 | // |
mjr | 48:058ace2aed1d | 195 | // two short red flashes = connection lost (the device should immediately |
mjr | 48:058ace2aed1d | 196 | // go back to short-yellow "waiting to reconnect" mode when a connection |
mjr | 48:058ace2aed1d | 197 | // is lost, so this display shouldn't normally appear) |
mjr | 6:cc35eb643e8f | 198 | // |
mjr | 38:091e511ce8a0 | 199 | // long red/yellow = USB connection problem. The device still has a USB |
mjr | 48:058ace2aed1d | 200 | // connection to the host (or so it appears to the device), but data |
mjr | 48:058ace2aed1d | 201 | // transmissions are failing. |
mjr | 38:091e511ce8a0 | 202 | // |
mjr | 73:4e8ce0b18915 | 203 | // medium blue flash = TV ON delay timer running. This means that the |
mjr | 73:4e8ce0b18915 | 204 | // power to the secondary PSU has just been turned on, and the TV ON |
mjr | 73:4e8ce0b18915 | 205 | // timer is waiting for the configured delay time before pulsing the |
mjr | 73:4e8ce0b18915 | 206 | // TV power button relay. This is only shown if the TV ON feature is |
mjr | 73:4e8ce0b18915 | 207 | // enabled. |
mjr | 73:4e8ce0b18915 | 208 | // |
mjr | 6:cc35eb643e8f | 209 | // long yellow/green = everything's working, but the plunger hasn't |
mjr | 38:091e511ce8a0 | 210 | // been calibrated. Follow the calibration procedure described in |
mjr | 38:091e511ce8a0 | 211 | // the project documentation. This flash mode won't appear if there's |
mjr | 38:091e511ce8a0 | 212 | // no plunger sensor configured. |
mjr | 6:cc35eb643e8f | 213 | // |
mjr | 38:091e511ce8a0 | 214 | // alternating blue/green = everything's working normally, and plunger |
mjr | 38:091e511ce8a0 | 215 | // calibration has been completed (or there's no plunger attached) |
mjr | 10:976666ffa4ef | 216 | // |
mjr | 48:058ace2aed1d | 217 | // fast red/purple = out of memory. The controller halts and displays |
mjr | 48:058ace2aed1d | 218 | // this diagnostic code until you manually reset it. If this happens, |
mjr | 48:058ace2aed1d | 219 | // it's probably because the configuration is too complex, in which |
mjr | 48:058ace2aed1d | 220 | // case the same error will occur after the reset. If it's stuck |
mjr | 48:058ace2aed1d | 221 | // in this cycle, you'll have to restore the default configuration |
mjr | 48:058ace2aed1d | 222 | // by re-installing the controller software (the Pinscape .bin file). |
mjr | 10:976666ffa4ef | 223 | // |
mjr | 48:058ace2aed1d | 224 | // |
mjr | 48:058ace2aed1d | 225 | // USB PROTOCOL: Most of our USB messaging is through standard USB HID |
mjr | 48:058ace2aed1d | 226 | // classes (joystick, keyboard). We also accept control messages on our |
mjr | 48:058ace2aed1d | 227 | // primary HID interface "OUT endpoint" using a custom protocol that's |
mjr | 48:058ace2aed1d | 228 | // not defined in any USB standards (we do have to provide a USB HID |
mjr | 48:058ace2aed1d | 229 | // Report Descriptor for it, but this just describes the protocol as |
mjr | 48:058ace2aed1d | 230 | // opaque vendor-defined bytes). The control protocol incorporates the |
mjr | 48:058ace2aed1d | 231 | // LedWiz protocol as a subset, and adds our own private extensions. |
mjr | 48:058ace2aed1d | 232 | // For full details, see USBProtocol.h. |
mjr | 33:d832bcab089e | 233 | |
mjr | 33:d832bcab089e | 234 | |
mjr | 0:5acbbe3f4cf4 | 235 | #include "mbed.h" |
mjr | 6:cc35eb643e8f | 236 | #include "math.h" |
mjr | 74:822a92bc11d2 | 237 | #include "diags.h" |
mjr | 48:058ace2aed1d | 238 | #include "pinscape.h" |
mjr | 79:682ae3171a08 | 239 | #include "NewMalloc.h" |
mjr | 0:5acbbe3f4cf4 | 240 | #include "USBJoystick.h" |
mjr | 0:5acbbe3f4cf4 | 241 | #include "MMA8451Q.h" |
mjr | 1:d913e0afb2ac | 242 | #include "FreescaleIAP.h" |
mjr | 2:c174f9ee414a | 243 | #include "crc32.h" |
mjr | 26:cb71c4af2912 | 244 | #include "TLC5940.h" |
mjr | 87:8d35c74403af | 245 | #include "TLC59116.h" |
mjr | 34:6b981a2afab7 | 246 | #include "74HC595.h" |
mjr | 35:e959ffba78fd | 247 | #include "nvm.h" |
mjr | 48:058ace2aed1d | 248 | #include "TinyDigitalIn.h" |
mjr | 77:0b96f6867312 | 249 | #include "IRReceiver.h" |
mjr | 77:0b96f6867312 | 250 | #include "IRTransmitter.h" |
mjr | 77:0b96f6867312 | 251 | #include "NewPwm.h" |
mjr | 74:822a92bc11d2 | 252 | |
mjr | 82:4f6209cb5c33 | 253 | // plunger sensors |
mjr | 82:4f6209cb5c33 | 254 | #include "plunger.h" |
mjr | 82:4f6209cb5c33 | 255 | #include "edgeSensor.h" |
mjr | 82:4f6209cb5c33 | 256 | #include "potSensor.h" |
mjr | 82:4f6209cb5c33 | 257 | #include "quadSensor.h" |
mjr | 82:4f6209cb5c33 | 258 | #include "nullSensor.h" |
mjr | 82:4f6209cb5c33 | 259 | #include "barCodeSensor.h" |
mjr | 82:4f6209cb5c33 | 260 | #include "distanceSensor.h" |
mjr | 87:8d35c74403af | 261 | #include "tsl14xxSensor.h" |
mjr | 100:1ff35c07217c | 262 | #include "rotarySensor.h" |
mjr | 100:1ff35c07217c | 263 | #include "tcd1103Sensor.h" |
mjr | 82:4f6209cb5c33 | 264 | |
mjr | 2:c174f9ee414a | 265 | |
mjr | 21:5048e16cc9ef | 266 | #define DECL_EXTERNS |
mjr | 17:ab3cec0c8bf4 | 267 | #include "config.h" |
mjr | 17:ab3cec0c8bf4 | 268 | |
mjr | 53:9b2611964afc | 269 | |
mjr | 53:9b2611964afc | 270 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 271 | // |
mjr | 53:9b2611964afc | 272 | // OpenSDA module identifier. This is for the benefit of the Windows |
mjr | 53:9b2611964afc | 273 | // configuration tool. When the config tool installs a .bin file onto |
mjr | 53:9b2611964afc | 274 | // the KL25Z, it will first find the sentinel string within the .bin file, |
mjr | 53:9b2611964afc | 275 | // and patch the "\0" bytes that follow the sentinel string with the |
mjr | 53:9b2611964afc | 276 | // OpenSDA module ID data. This allows us to report the OpenSDA |
mjr | 53:9b2611964afc | 277 | // identifiers back to the host system via USB, which in turn allows the |
mjr | 53:9b2611964afc | 278 | // config tool to figure out which OpenSDA MSD (mass storage device - a |
mjr | 53:9b2611964afc | 279 | // virtual disk drive) correlates to which Pinscape controller USB |
mjr | 53:9b2611964afc | 280 | // interface. |
mjr | 53:9b2611964afc | 281 | // |
mjr | 53:9b2611964afc | 282 | // This is only important if multiple Pinscape devices are attached to |
mjr | 53:9b2611964afc | 283 | // the same host. There doesn't seem to be any other way to figure out |
mjr | 53:9b2611964afc | 284 | // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA |
mjr | 53:9b2611964afc | 285 | // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't |
mjr | 53:9b2611964afc | 286 | // have any way to learn about the OpenSDA module it's connected to. The |
mjr | 53:9b2611964afc | 287 | // only way to pass this information to the KL25Z side that I can come up |
mjr | 53:9b2611964afc | 288 | // with is to have the Windows host embed it in the .bin file before |
mjr | 53:9b2611964afc | 289 | // downloading it to the OpenSDA MSD. |
mjr | 53:9b2611964afc | 290 | // |
mjr | 53:9b2611964afc | 291 | // We initialize the const data buffer (the part after the sentinel string) |
mjr | 53:9b2611964afc | 292 | // with all "\0" bytes, so that's what will be in the executable image that |
mjr | 53:9b2611964afc | 293 | // comes out of the mbed compiler. If you manually install the resulting |
mjr | 53:9b2611964afc | 294 | // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes |
mjr | 53:9b2611964afc | 295 | // will stay this way and read as all 0's at run-time. Since a real TUID |
mjr | 53:9b2611964afc | 296 | // would never be all 0's, that tells us that we were never patched and |
mjr | 53:9b2611964afc | 297 | // thus don't have any information on the OpenSDA module. |
mjr | 53:9b2611964afc | 298 | // |
mjr | 53:9b2611964afc | 299 | const char *getOpenSDAID() |
mjr | 53:9b2611964afc | 300 | { |
mjr | 53:9b2611964afc | 301 | #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///" |
mjr | 53:9b2611964afc | 302 | static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///"; |
mjr | 53:9b2611964afc | 303 | const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1; |
mjr | 53:9b2611964afc | 304 | |
mjr | 53:9b2611964afc | 305 | return OpenSDA + OpenSDA_prefix_length; |
mjr | 53:9b2611964afc | 306 | } |
mjr | 53:9b2611964afc | 307 | |
mjr | 53:9b2611964afc | 308 | // -------------------------------------------------------------------------- |
mjr | 53:9b2611964afc | 309 | // |
mjr | 53:9b2611964afc | 310 | // Build ID. We use the date and time of compiling the program as a build |
mjr | 53:9b2611964afc | 311 | // identifier. It would be a little nicer to use a simple serial number |
mjr | 53:9b2611964afc | 312 | // instead, but the mbed platform doesn't have a way to automate that. The |
mjr | 53:9b2611964afc | 313 | // timestamp is a pretty good proxy for a serial number in that it will |
mjr | 53:9b2611964afc | 314 | // naturally increase on each new build, which is the primary property we |
mjr | 53:9b2611964afc | 315 | // want from this. |
mjr | 53:9b2611964afc | 316 | // |
mjr | 53:9b2611964afc | 317 | // As with the embedded OpenSDA ID, we store the build timestamp with a |
mjr | 53:9b2611964afc | 318 | // sentinel string prefix, to allow automated tools to find the static data |
mjr | 53:9b2611964afc | 319 | // in the .bin file by searching for the sentinel string. In contrast to |
mjr | 53:9b2611964afc | 320 | // the OpenSDA ID, the value we store here is for tools to extract rather |
mjr | 53:9b2611964afc | 321 | // than store, since we automatically populate it via the preprocessor |
mjr | 53:9b2611964afc | 322 | // macros. |
mjr | 53:9b2611964afc | 323 | // |
mjr | 53:9b2611964afc | 324 | const char *getBuildID() |
mjr | 53:9b2611964afc | 325 | { |
mjr | 53:9b2611964afc | 326 | #define BUILDID_PREFIX "///Pinscape.Build.ID///" |
mjr | 53:9b2611964afc | 327 | static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///"; |
mjr | 53:9b2611964afc | 328 | const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1; |
mjr | 53:9b2611964afc | 329 | |
mjr | 53:9b2611964afc | 330 | return BuildID + BuildID_prefix_length; |
mjr | 53:9b2611964afc | 331 | } |
mjr | 53:9b2611964afc | 332 | |
mjr | 74:822a92bc11d2 | 333 | // -------------------------------------------------------------------------- |
mjr | 74:822a92bc11d2 | 334 | // Main loop iteration timing statistics. Collected only if |
mjr | 74:822a92bc11d2 | 335 | // ENABLE_DIAGNOSTICS is set in diags.h. |
mjr | 76:7f5912b6340e | 336 | #if ENABLE_DIAGNOSTICS |
mjr | 76:7f5912b6340e | 337 | uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount; |
mjr | 76:7f5912b6340e | 338 | uint64_t mainLoopMsgTime, mainLoopMsgCount; |
mjr | 76:7f5912b6340e | 339 | Timer mainLoopTimer; |
mjr | 76:7f5912b6340e | 340 | #endif |
mjr | 76:7f5912b6340e | 341 | |
mjr | 53:9b2611964afc | 342 | |
mjr | 5:a70c0bce770d | 343 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 344 | // |
mjr | 38:091e511ce8a0 | 345 | // Forward declarations |
mjr | 38:091e511ce8a0 | 346 | // |
mjr | 38:091e511ce8a0 | 347 | void setNightMode(bool on); |
mjr | 38:091e511ce8a0 | 348 | void toggleNightMode(); |
mjr | 38:091e511ce8a0 | 349 | |
mjr | 38:091e511ce8a0 | 350 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 351 | // utilities |
mjr | 17:ab3cec0c8bf4 | 352 | |
mjr | 77:0b96f6867312 | 353 | // int/float point square of a number |
mjr | 77:0b96f6867312 | 354 | inline int square(int x) { return x*x; } |
mjr | 26:cb71c4af2912 | 355 | inline float square(float x) { return x*x; } |
mjr | 26:cb71c4af2912 | 356 | |
mjr | 26:cb71c4af2912 | 357 | // floating point rounding |
mjr | 26:cb71c4af2912 | 358 | inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); } |
mjr | 26:cb71c4af2912 | 359 | |
mjr | 17:ab3cec0c8bf4 | 360 | |
mjr | 33:d832bcab089e | 361 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 362 | // |
mjr | 40:cc0d9814522b | 363 | // Extended verison of Timer class. This adds the ability to interrogate |
mjr | 40:cc0d9814522b | 364 | // the running state. |
mjr | 40:cc0d9814522b | 365 | // |
mjr | 77:0b96f6867312 | 366 | class ExtTimer: public Timer |
mjr | 40:cc0d9814522b | 367 | { |
mjr | 40:cc0d9814522b | 368 | public: |
mjr | 77:0b96f6867312 | 369 | ExtTimer() : running(false) { } |
mjr | 40:cc0d9814522b | 370 | |
mjr | 40:cc0d9814522b | 371 | void start() { running = true; Timer::start(); } |
mjr | 40:cc0d9814522b | 372 | void stop() { running = false; Timer::stop(); } |
mjr | 40:cc0d9814522b | 373 | |
mjr | 40:cc0d9814522b | 374 | bool isRunning() const { return running; } |
mjr | 40:cc0d9814522b | 375 | |
mjr | 40:cc0d9814522b | 376 | private: |
mjr | 40:cc0d9814522b | 377 | bool running; |
mjr | 40:cc0d9814522b | 378 | }; |
mjr | 40:cc0d9814522b | 379 | |
mjr | 53:9b2611964afc | 380 | |
mjr | 53:9b2611964afc | 381 | // -------------------------------------------------------------------------- |
mjr | 40:cc0d9814522b | 382 | // |
mjr | 33:d832bcab089e | 383 | // USB product version number |
mjr | 5:a70c0bce770d | 384 | // |
mjr | 47:df7a88cd249c | 385 | const uint16_t USB_VERSION_NO = 0x000A; |
mjr | 33:d832bcab089e | 386 | |
mjr | 33:d832bcab089e | 387 | // -------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 388 | // |
mjr | 6:cc35eb643e8f | 389 | // Joystick axis report range - we report from -JOYMAX to +JOYMAX |
mjr | 33:d832bcab089e | 390 | // |
mjr | 6:cc35eb643e8f | 391 | #define JOYMAX 4096 |
mjr | 6:cc35eb643e8f | 392 | |
mjr | 9:fd65b0a94720 | 393 | |
mjr | 17:ab3cec0c8bf4 | 394 | // --------------------------------------------------------------------------- |
mjr | 17:ab3cec0c8bf4 | 395 | // |
mjr | 40:cc0d9814522b | 396 | // Wire protocol value translations. These translate byte values to and |
mjr | 40:cc0d9814522b | 397 | // from the USB protocol to local native format. |
mjr | 35:e959ffba78fd | 398 | // |
mjr | 35:e959ffba78fd | 399 | |
mjr | 35:e959ffba78fd | 400 | // unsigned 16-bit integer |
mjr | 35:e959ffba78fd | 401 | inline uint16_t wireUI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 402 | { |
mjr | 35:e959ffba78fd | 403 | return b[0] | ((uint16_t)b[1] << 8); |
mjr | 35:e959ffba78fd | 404 | } |
mjr | 40:cc0d9814522b | 405 | inline void ui16Wire(uint8_t *b, uint16_t val) |
mjr | 40:cc0d9814522b | 406 | { |
mjr | 40:cc0d9814522b | 407 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 408 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 409 | } |
mjr | 35:e959ffba78fd | 410 | |
mjr | 35:e959ffba78fd | 411 | inline int16_t wireI16(const uint8_t *b) |
mjr | 35:e959ffba78fd | 412 | { |
mjr | 35:e959ffba78fd | 413 | return (int16_t)wireUI16(b); |
mjr | 35:e959ffba78fd | 414 | } |
mjr | 40:cc0d9814522b | 415 | inline void i16Wire(uint8_t *b, int16_t val) |
mjr | 40:cc0d9814522b | 416 | { |
mjr | 40:cc0d9814522b | 417 | ui16Wire(b, (uint16_t)val); |
mjr | 40:cc0d9814522b | 418 | } |
mjr | 35:e959ffba78fd | 419 | |
mjr | 35:e959ffba78fd | 420 | inline uint32_t wireUI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 421 | { |
mjr | 35:e959ffba78fd | 422 | return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24); |
mjr | 35:e959ffba78fd | 423 | } |
mjr | 40:cc0d9814522b | 424 | inline void ui32Wire(uint8_t *b, uint32_t val) |
mjr | 40:cc0d9814522b | 425 | { |
mjr | 40:cc0d9814522b | 426 | b[0] = (uint8_t)(val & 0xff); |
mjr | 40:cc0d9814522b | 427 | b[1] = (uint8_t)((val >> 8) & 0xff); |
mjr | 40:cc0d9814522b | 428 | b[2] = (uint8_t)((val >> 16) & 0xff); |
mjr | 40:cc0d9814522b | 429 | b[3] = (uint8_t)((val >> 24) & 0xff); |
mjr | 40:cc0d9814522b | 430 | } |
mjr | 35:e959ffba78fd | 431 | |
mjr | 35:e959ffba78fd | 432 | inline int32_t wireI32(const uint8_t *b) |
mjr | 35:e959ffba78fd | 433 | { |
mjr | 35:e959ffba78fd | 434 | return (int32_t)wireUI32(b); |
mjr | 35:e959ffba78fd | 435 | } |
mjr | 35:e959ffba78fd | 436 | |
mjr | 53:9b2611964afc | 437 | // Convert "wire" (USB) pin codes to/from PinName values. |
mjr | 53:9b2611964afc | 438 | // |
mjr | 53:9b2611964afc | 439 | // The internal mbed PinName format is |
mjr | 53:9b2611964afc | 440 | // |
mjr | 53:9b2611964afc | 441 | // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT |
mjr | 53:9b2611964afc | 442 | // |
mjr | 53:9b2611964afc | 443 | // where 'port' is 0-4 for Port A to Port E, and 'pin' is |
mjr | 53:9b2611964afc | 444 | // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2). |
mjr | 53:9b2611964afc | 445 | // |
mjr | 53:9b2611964afc | 446 | // We remap this to our more compact wire format where each |
mjr | 53:9b2611964afc | 447 | // pin name fits in 8 bits: |
mjr | 53:9b2611964afc | 448 | // |
mjr | 53:9b2611964afc | 449 | // ((port) << 5) | pin) // WIRE FORMAT |
mjr | 53:9b2611964afc | 450 | // |
mjr | 53:9b2611964afc | 451 | // E.g., E31 is (4 << 5) | 31. |
mjr | 53:9b2611964afc | 452 | // |
mjr | 53:9b2611964afc | 453 | // Wire code FF corresponds to PinName NC (not connected). |
mjr | 53:9b2611964afc | 454 | // |
mjr | 53:9b2611964afc | 455 | inline PinName wirePinName(uint8_t c) |
mjr | 35:e959ffba78fd | 456 | { |
mjr | 53:9b2611964afc | 457 | if (c == 0xFF) |
mjr | 53:9b2611964afc | 458 | return NC; // 0xFF -> NC |
mjr | 53:9b2611964afc | 459 | else |
mjr | 53:9b2611964afc | 460 | return PinName( |
mjr | 53:9b2611964afc | 461 | (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port |
mjr | 53:9b2611964afc | 462 | | (int(c & 0x1F) << 2)); // bottom five bits are pin |
mjr | 40:cc0d9814522b | 463 | } |
mjr | 40:cc0d9814522b | 464 | inline void pinNameWire(uint8_t *b, PinName n) |
mjr | 40:cc0d9814522b | 465 | { |
mjr | 53:9b2611964afc | 466 | *b = PINNAME_TO_WIRE(n); |
mjr | 35:e959ffba78fd | 467 | } |
mjr | 35:e959ffba78fd | 468 | |
mjr | 35:e959ffba78fd | 469 | |
mjr | 35:e959ffba78fd | 470 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 471 | // |
mjr | 38:091e511ce8a0 | 472 | // On-board RGB LED elements - we use these for diagnostic displays. |
mjr | 38:091e511ce8a0 | 473 | // |
mjr | 38:091e511ce8a0 | 474 | // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1, |
mjr | 38:091e511ce8a0 | 475 | // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard |
mjr | 38:091e511ce8a0 | 476 | // input or a device output). This is kind of unfortunate in that it's |
mjr | 38:091e511ce8a0 | 477 | // one of only two ports exposed on the jumper pins that can be muxed to |
mjr | 38:091e511ce8a0 | 478 | // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the |
mjr | 38:091e511ce8a0 | 479 | // SPI capability. |
mjr | 38:091e511ce8a0 | 480 | // |
mjr | 38:091e511ce8a0 | 481 | DigitalOut *ledR, *ledG, *ledB; |
mjr | 38:091e511ce8a0 | 482 | |
mjr | 73:4e8ce0b18915 | 483 | // Power on timer state for diagnostics. We flash the blue LED when |
mjr | 77:0b96f6867312 | 484 | // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also |
mjr | 77:0b96f6867312 | 485 | // show red when transmitting an LED signal, indicated by state 4. |
mjr | 73:4e8ce0b18915 | 486 | uint8_t powerTimerDiagState = 0; |
mjr | 73:4e8ce0b18915 | 487 | |
mjr | 38:091e511ce8a0 | 488 | // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is |
mjr | 38:091e511ce8a0 | 489 | // on, and -1 is no change (leaves the current setting intact). |
mjr | 73:4e8ce0b18915 | 490 | static uint8_t diagLEDState = 0; |
mjr | 38:091e511ce8a0 | 491 | void diagLED(int r, int g, int b) |
mjr | 38:091e511ce8a0 | 492 | { |
mjr | 73:4e8ce0b18915 | 493 | // remember the new state |
mjr | 73:4e8ce0b18915 | 494 | diagLEDState = r | (g << 1) | (b << 2); |
mjr | 73:4e8ce0b18915 | 495 | |
mjr | 73:4e8ce0b18915 | 496 | // if turning everything off, use the power timer state instead, |
mjr | 73:4e8ce0b18915 | 497 | // applying it to the blue LED |
mjr | 73:4e8ce0b18915 | 498 | if (diagLEDState == 0) |
mjr | 77:0b96f6867312 | 499 | { |
mjr | 77:0b96f6867312 | 500 | b = (powerTimerDiagState == 2 || powerTimerDiagState == 3); |
mjr | 77:0b96f6867312 | 501 | r = (powerTimerDiagState == 4); |
mjr | 77:0b96f6867312 | 502 | } |
mjr | 73:4e8ce0b18915 | 503 | |
mjr | 73:4e8ce0b18915 | 504 | // set the new state |
mjr | 38:091e511ce8a0 | 505 | if (ledR != 0 && r != -1) ledR->write(!r); |
mjr | 38:091e511ce8a0 | 506 | if (ledG != 0 && g != -1) ledG->write(!g); |
mjr | 38:091e511ce8a0 | 507 | if (ledB != 0 && b != -1) ledB->write(!b); |
mjr | 38:091e511ce8a0 | 508 | } |
mjr | 38:091e511ce8a0 | 509 | |
mjr | 73:4e8ce0b18915 | 510 | // update the LEDs with the current state |
mjr | 73:4e8ce0b18915 | 511 | void diagLED(void) |
mjr | 73:4e8ce0b18915 | 512 | { |
mjr | 73:4e8ce0b18915 | 513 | diagLED( |
mjr | 73:4e8ce0b18915 | 514 | diagLEDState & 0x01, |
mjr | 73:4e8ce0b18915 | 515 | (diagLEDState >> 1) & 0x01, |
mjr | 77:0b96f6867312 | 516 | (diagLEDState >> 2) & 0x01); |
mjr | 73:4e8ce0b18915 | 517 | } |
mjr | 73:4e8ce0b18915 | 518 | |
mjr | 38:091e511ce8a0 | 519 | // check an output port assignment to see if it conflicts with |
mjr | 38:091e511ce8a0 | 520 | // an on-board LED segment |
mjr | 38:091e511ce8a0 | 521 | struct LedSeg |
mjr | 38:091e511ce8a0 | 522 | { |
mjr | 38:091e511ce8a0 | 523 | bool r, g, b; |
mjr | 38:091e511ce8a0 | 524 | LedSeg() { r = g = b = false; } |
mjr | 38:091e511ce8a0 | 525 | |
mjr | 38:091e511ce8a0 | 526 | void check(LedWizPortCfg &pc) |
mjr | 38:091e511ce8a0 | 527 | { |
mjr | 38:091e511ce8a0 | 528 | // if it's a GPIO, check to see if it's assigned to one of |
mjr | 38:091e511ce8a0 | 529 | // our on-board LED segments |
mjr | 38:091e511ce8a0 | 530 | int t = pc.typ; |
mjr | 38:091e511ce8a0 | 531 | if (t == PortTypeGPIOPWM || t == PortTypeGPIODig) |
mjr | 38:091e511ce8a0 | 532 | { |
mjr | 38:091e511ce8a0 | 533 | // it's a GPIO port - check for a matching pin assignment |
mjr | 38:091e511ce8a0 | 534 | PinName pin = wirePinName(pc.pin); |
mjr | 38:091e511ce8a0 | 535 | if (pin == LED1) |
mjr | 38:091e511ce8a0 | 536 | r = true; |
mjr | 38:091e511ce8a0 | 537 | else if (pin == LED2) |
mjr | 38:091e511ce8a0 | 538 | g = true; |
mjr | 38:091e511ce8a0 | 539 | else if (pin == LED3) |
mjr | 38:091e511ce8a0 | 540 | b = true; |
mjr | 38:091e511ce8a0 | 541 | } |
mjr | 38:091e511ce8a0 | 542 | } |
mjr | 38:091e511ce8a0 | 543 | }; |
mjr | 38:091e511ce8a0 | 544 | |
mjr | 38:091e511ce8a0 | 545 | // Initialize the diagnostic LEDs. By default, we use the on-board |
mjr | 38:091e511ce8a0 | 546 | // RGB LED to display the microcontroller status. However, we allow |
mjr | 38:091e511ce8a0 | 547 | // the user to commandeer the on-board LED as an LedWiz output device, |
mjr | 38:091e511ce8a0 | 548 | // which can be useful for testing a new installation. So we'll check |
mjr | 38:091e511ce8a0 | 549 | // for LedWiz outputs assigned to the on-board LED segments, and turn |
mjr | 38:091e511ce8a0 | 550 | // off the diagnostic use for any so assigned. |
mjr | 38:091e511ce8a0 | 551 | void initDiagLEDs(Config &cfg) |
mjr | 38:091e511ce8a0 | 552 | { |
mjr | 38:091e511ce8a0 | 553 | // run through the configuration list and cross off any of the |
mjr | 38:091e511ce8a0 | 554 | // LED segments assigned to LedWiz ports |
mjr | 38:091e511ce8a0 | 555 | LedSeg l; |
mjr | 38:091e511ce8a0 | 556 | for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i) |
mjr | 38:091e511ce8a0 | 557 | l.check(cfg.outPort[i]); |
mjr | 38:091e511ce8a0 | 558 | |
mjr | 38:091e511ce8a0 | 559 | // We now know which segments are taken for LedWiz use and which |
mjr | 38:091e511ce8a0 | 560 | // are free. Create diagnostic ports for the ones not claimed for |
mjr | 38:091e511ce8a0 | 561 | // LedWiz use. |
mjr | 38:091e511ce8a0 | 562 | if (!l.r) ledR = new DigitalOut(LED1, 1); |
mjr | 38:091e511ce8a0 | 563 | if (!l.g) ledG = new DigitalOut(LED2, 1); |
mjr | 38:091e511ce8a0 | 564 | if (!l.b) ledB = new DigitalOut(LED3, 1); |
mjr | 38:091e511ce8a0 | 565 | } |
mjr | 38:091e511ce8a0 | 566 | |
mjr | 38:091e511ce8a0 | 567 | |
mjr | 38:091e511ce8a0 | 568 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 569 | // |
mjr | 76:7f5912b6340e | 570 | // LedWiz emulation |
mjr | 76:7f5912b6340e | 571 | // |
mjr | 76:7f5912b6340e | 572 | |
mjr | 76:7f5912b6340e | 573 | // LedWiz output states. |
mjr | 76:7f5912b6340e | 574 | // |
mjr | 76:7f5912b6340e | 575 | // The LedWiz protocol has two separate control axes for each output. |
mjr | 76:7f5912b6340e | 576 | // One axis is its on/off state; the other is its "profile" state, which |
mjr | 76:7f5912b6340e | 577 | // is either a fixed brightness or a blinking pattern for the light. |
mjr | 76:7f5912b6340e | 578 | // The two axes are independent. |
mjr | 76:7f5912b6340e | 579 | // |
mjr | 76:7f5912b6340e | 580 | // Even though the original LedWiz protocol can only access 32 ports, we |
mjr | 76:7f5912b6340e | 581 | // maintain LedWiz state for every port, even if we have more than 32. Our |
mjr | 76:7f5912b6340e | 582 | // extended protocol allows the client to send LedWiz-style messages that |
mjr | 76:7f5912b6340e | 583 | // control any set of ports. A replacement LEDWIZ.DLL can make a single |
mjr | 76:7f5912b6340e | 584 | // Pinscape unit look like multiple virtual LedWiz units to legacy clients, |
mjr | 76:7f5912b6340e | 585 | // allowing them to control all of our ports. The clients will still be |
mjr | 76:7f5912b6340e | 586 | // using LedWiz-style states to control the ports, so we need to support |
mjr | 76:7f5912b6340e | 587 | // the LedWiz scheme with separate on/off and brightness control per port. |
mjr | 76:7f5912b6340e | 588 | |
mjr | 76:7f5912b6340e | 589 | // On/off state for each LedWiz output |
mjr | 76:7f5912b6340e | 590 | static uint8_t *wizOn; |
mjr | 76:7f5912b6340e | 591 | |
mjr | 76:7f5912b6340e | 592 | // LedWiz "Profile State" (the LedWiz brightness level or blink mode) |
mjr | 76:7f5912b6340e | 593 | // for each LedWiz output. If the output was last updated through an |
mjr | 76:7f5912b6340e | 594 | // LedWiz protocol message, it will have one of these values: |
mjr | 76:7f5912b6340e | 595 | // |
mjr | 76:7f5912b6340e | 596 | // 0-48 = fixed brightness 0% to 100% |
mjr | 76:7f5912b6340e | 597 | // 49 = fixed brightness 100% (equivalent to 48) |
mjr | 76:7f5912b6340e | 598 | // 129 = ramp up / ramp down |
mjr | 76:7f5912b6340e | 599 | // 130 = flash on / off |
mjr | 76:7f5912b6340e | 600 | // 131 = on / ramp down |
mjr | 76:7f5912b6340e | 601 | // 132 = ramp up / on |
mjr | 5:a70c0bce770d | 602 | // |
mjr | 76:7f5912b6340e | 603 | // (Note that value 49 isn't documented in the LedWiz spec, but real |
mjr | 76:7f5912b6340e | 604 | // LedWiz units treat it as equivalent to 48, and some PC software uses |
mjr | 76:7f5912b6340e | 605 | // it, so we need to accept it for compatibility.) |
mjr | 76:7f5912b6340e | 606 | static uint8_t *wizVal; |
mjr | 76:7f5912b6340e | 607 | |
mjr | 76:7f5912b6340e | 608 | // Current actual brightness for each output. This is a simple linear |
mjr | 76:7f5912b6340e | 609 | // value on a 0..255 scale. This is EITHER the linear brightness computed |
mjr | 76:7f5912b6340e | 610 | // from the LedWiz setting for the port, OR the 0..255 value set explicitly |
mjr | 76:7f5912b6340e | 611 | // by the extended protocol: |
mjr | 76:7f5912b6340e | 612 | // |
mjr | 76:7f5912b6340e | 613 | // - If the last command that updated the port was an extended protocol |
mjr | 76:7f5912b6340e | 614 | // SET BRIGHTNESS command, this is the value set by that command. In |
mjr | 76:7f5912b6340e | 615 | // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise; |
mjr | 76:7f5912b6340e | 616 | // and wizVal[port] is set to the brightness rescaled to the 0..48 range |
mjr | 76:7f5912b6340e | 617 | // if the brightness is non-zero. |
mjr | 76:7f5912b6340e | 618 | // |
mjr | 76:7f5912b6340e | 619 | // - If the last command that updated the port was an LedWiz command |
mjr | 76:7f5912b6340e | 620 | // (SBA/PBA/SBX/PBX), this contains the brightness value computed from |
mjr | 76:7f5912b6340e | 621 | // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is |
mjr | 76:7f5912b6340e | 622 | // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the |
mjr | 76:7f5912b6340e | 623 | // 0..255 range. |
mjr | 26:cb71c4af2912 | 624 | // |
mjr | 76:7f5912b6340e | 625 | // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is |
mjr | 76:7f5912b6340e | 626 | // also updated continuously to reflect the current flashing brightness |
mjr | 76:7f5912b6340e | 627 | // level. |
mjr | 26:cb71c4af2912 | 628 | // |
mjr | 76:7f5912b6340e | 629 | static uint8_t *outLevel; |
mjr | 76:7f5912b6340e | 630 | |
mjr | 76:7f5912b6340e | 631 | |
mjr | 76:7f5912b6340e | 632 | // LedWiz flash speed. This is a value from 1 to 7 giving the pulse |
mjr | 76:7f5912b6340e | 633 | // rate for lights in blinking states. The LedWiz API doesn't document |
mjr | 76:7f5912b6340e | 634 | // what the numbers mean in real time units, but by observation, the |
mjr | 76:7f5912b6340e | 635 | // "speed" setting represents the period of the flash cycle in 0.25s |
mjr | 76:7f5912b6340e | 636 | // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz. |
mjr | 76:7f5912b6340e | 637 | // The period is the full cycle time of the flash waveform. |
mjr | 76:7f5912b6340e | 638 | // |
mjr | 76:7f5912b6340e | 639 | // Each bank of 32 lights has its independent own pulse rate, so we need |
mjr | 76:7f5912b6340e | 640 | // one entry per bank. Each bank has 32 outputs, so we need a total of |
mjr | 76:7f5912b6340e | 641 | // ceil(number_of_physical_outputs/32) entries. Note that we could allocate |
mjr | 76:7f5912b6340e | 642 | // this dynamically once we know the number of actual outputs, but the |
mjr | 76:7f5912b6340e | 643 | // upper limit is low enough that it's more efficient to use a fixed array |
mjr | 76:7f5912b6340e | 644 | // at the maximum size. |
mjr | 76:7f5912b6340e | 645 | static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32; |
mjr | 76:7f5912b6340e | 646 | static uint8_t wizSpeed[MAX_LW_BANKS]; |
mjr | 29:582472d0bc57 | 647 | |
mjr | 26:cb71c4af2912 | 648 | // Current starting output index for "PBA" messages from the PC (using |
mjr | 26:cb71c4af2912 | 649 | // the LedWiz USB protocol). Each PBA message implicitly uses the |
mjr | 26:cb71c4af2912 | 650 | // current index as the starting point for the ports referenced in |
mjr | 26:cb71c4af2912 | 651 | // the message, and increases it (by 8) for the next call. |
mjr | 0:5acbbe3f4cf4 | 652 | static int pbaIdx = 0; |
mjr | 0:5acbbe3f4cf4 | 653 | |
mjr | 76:7f5912b6340e | 654 | |
mjr | 76:7f5912b6340e | 655 | // --------------------------------------------------------------------------- |
mjr | 76:7f5912b6340e | 656 | // |
mjr | 76:7f5912b6340e | 657 | // Output Ports |
mjr | 76:7f5912b6340e | 658 | // |
mjr | 76:7f5912b6340e | 659 | // There are two way to connect outputs. First, you can use the on-board |
mjr | 76:7f5912b6340e | 660 | // GPIO ports to implement device outputs: each LedWiz software port is |
mjr | 76:7f5912b6340e | 661 | // connected to a physical GPIO pin on the KL25Z. This has some pretty |
mjr | 76:7f5912b6340e | 662 | // strict limits, though. The KL25Z only has 10 PWM channels, so only 10 |
mjr | 76:7f5912b6340e | 663 | // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off. |
mjr | 76:7f5912b6340e | 664 | // The KL25Z also simply doesn't have enough exposed GPIO ports overall to |
mjr | 76:7f5912b6340e | 665 | // support all of the features the software supports. The software allows |
mjr | 76:7f5912b6340e | 666 | // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5 |
mjr | 76:7f5912b6340e | 667 | // GPIO pins), and various other external devices. The KL25Z only exposes |
mjr | 76:7f5912b6340e | 668 | // about 50 GPIO pins. So if you want to do everything with GPIO ports, |
mjr | 76:7f5912b6340e | 669 | // you have to ration pins among features. |
mjr | 76:7f5912b6340e | 670 | // |
mjr | 87:8d35c74403af | 671 | // To overcome some of these limitations, we also support several external |
mjr | 76:7f5912b6340e | 672 | // peripheral controllers that allow adding many more outputs, using only |
mjr | 87:8d35c74403af | 673 | // a small number of GPIO pins to interface with the peripherals: |
mjr | 87:8d35c74403af | 674 | // |
mjr | 87:8d35c74403af | 675 | // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with |
mjr | 87:8d35c74403af | 676 | // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The |
mjr | 87:8d35c74403af | 677 | // chips connect via 5 GPIO pins, and since they're daisy-chainable, |
mjr | 87:8d35c74403af | 678 | // one set of 5 pins can control any number of the chips. So this chip |
mjr | 87:8d35c74403af | 679 | // effectively converts 5 GPIO pins into almost any number of PWM outputs. |
mjr | 87:8d35c74403af | 680 | // |
mjr | 87:8d35c74403af | 681 | // - TLC59116 PWM controller chips. These are similar to the TLC5940 but |
mjr | 87:8d35c74403af | 682 | // a newer generation with an improved design. These use an I2C bus, |
mjr | 87:8d35c74403af | 683 | // allowing up to 14 chips to be connected via 3 GPIO pins. |
mjr | 87:8d35c74403af | 684 | // |
mjr | 87:8d35c74403af | 685 | // - 74HC595 shift register chips. These provide 8 digital (on/off only) |
mjr | 87:8d35c74403af | 686 | // outputs per chip. These need 4 GPIO pins, and like the other can be |
mjr | 87:8d35c74403af | 687 | // daisy chained to add more outputs without using more GPIO pins. These |
mjr | 87:8d35c74403af | 688 | // are advantageous for outputs that don't require PWM, since the data |
mjr | 87:8d35c74403af | 689 | // transfer sizes are so much smaller. The expansion boards use these |
mjr | 87:8d35c74403af | 690 | // for the chime board outputs. |
mjr | 76:7f5912b6340e | 691 | // |
mjr | 76:7f5912b6340e | 692 | // Direct GPIO output ports and peripheral controllers can be mixed and |
mjr | 76:7f5912b6340e | 693 | // matched in one system. The assignment of pins to ports and the |
mjr | 76:7f5912b6340e | 694 | // configuration of peripheral controllers is all handled in the software |
mjr | 76:7f5912b6340e | 695 | // setup, so a physical system can be expanded and updated at any time. |
mjr | 76:7f5912b6340e | 696 | // |
mjr | 76:7f5912b6340e | 697 | // To handle the diversity of output port types, we start with an abstract |
mjr | 76:7f5912b6340e | 698 | // base class for outputs. Each type of physical output interface has a |
mjr | 76:7f5912b6340e | 699 | // concrete subclass. During initialization, we create the appropriate |
mjr | 76:7f5912b6340e | 700 | // subclass for each software port, mapping it to the assigned GPIO pin |
mjr | 76:7f5912b6340e | 701 | // or peripheral port. Most of the rest of the software only cares about |
mjr | 76:7f5912b6340e | 702 | // the abstract interface, so once the subclassed port objects are set up, |
mjr | 76:7f5912b6340e | 703 | // the rest of the system can control the ports without knowing which types |
mjr | 76:7f5912b6340e | 704 | // of physical devices they're connected to. |
mjr | 76:7f5912b6340e | 705 | |
mjr | 76:7f5912b6340e | 706 | |
mjr | 26:cb71c4af2912 | 707 | // Generic LedWiz output port interface. We create a cover class to |
mjr | 26:cb71c4af2912 | 708 | // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external |
mjr | 26:cb71c4af2912 | 709 | // TLC5940 outputs, and give them all a common interface. |
mjr | 6:cc35eb643e8f | 710 | class LwOut |
mjr | 6:cc35eb643e8f | 711 | { |
mjr | 6:cc35eb643e8f | 712 | public: |
mjr | 40:cc0d9814522b | 713 | // Set the output intensity. 'val' is 0 for fully off, 255 for |
mjr | 40:cc0d9814522b | 714 | // fully on, with values in between signifying lower intensity. |
mjr | 40:cc0d9814522b | 715 | virtual void set(uint8_t val) = 0; |
mjr | 6:cc35eb643e8f | 716 | }; |
mjr | 26:cb71c4af2912 | 717 | |
mjr | 35:e959ffba78fd | 718 | // LwOut class for virtual ports. This type of port is visible to |
mjr | 35:e959ffba78fd | 719 | // the host software, but isn't connected to any physical output. |
mjr | 35:e959ffba78fd | 720 | // This can be used for special software-only ports like the ZB |
mjr | 35:e959ffba78fd | 721 | // Launch Ball output, or simply for placeholders in the LedWiz port |
mjr | 35:e959ffba78fd | 722 | // numbering. |
mjr | 35:e959ffba78fd | 723 | class LwVirtualOut: public LwOut |
mjr | 33:d832bcab089e | 724 | { |
mjr | 33:d832bcab089e | 725 | public: |
mjr | 35:e959ffba78fd | 726 | LwVirtualOut() { } |
mjr | 40:cc0d9814522b | 727 | virtual void set(uint8_t ) { } |
mjr | 33:d832bcab089e | 728 | }; |
mjr | 26:cb71c4af2912 | 729 | |
mjr | 34:6b981a2afab7 | 730 | // Active Low out. For any output marked as active low, we layer this |
mjr | 34:6b981a2afab7 | 731 | // on top of the physical pin interface. This simply inverts the value of |
mjr | 40:cc0d9814522b | 732 | // the output value, so that 255 means fully off and 0 means fully on. |
mjr | 34:6b981a2afab7 | 733 | class LwInvertedOut: public LwOut |
mjr | 34:6b981a2afab7 | 734 | { |
mjr | 34:6b981a2afab7 | 735 | public: |
mjr | 34:6b981a2afab7 | 736 | LwInvertedOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 737 | virtual void set(uint8_t val) { out->set(255 - val); } |
mjr | 34:6b981a2afab7 | 738 | |
mjr | 34:6b981a2afab7 | 739 | private: |
mjr | 53:9b2611964afc | 740 | // underlying physical output |
mjr | 34:6b981a2afab7 | 741 | LwOut *out; |
mjr | 34:6b981a2afab7 | 742 | }; |
mjr | 34:6b981a2afab7 | 743 | |
mjr | 53:9b2611964afc | 744 | // Global ZB Launch Ball state |
mjr | 53:9b2611964afc | 745 | bool zbLaunchOn = false; |
mjr | 53:9b2611964afc | 746 | |
mjr | 53:9b2611964afc | 747 | // ZB Launch Ball output. This is layered on a port (physical or virtual) |
mjr | 53:9b2611964afc | 748 | // to track the ZB Launch Ball signal. |
mjr | 53:9b2611964afc | 749 | class LwZbLaunchOut: public LwOut |
mjr | 53:9b2611964afc | 750 | { |
mjr | 53:9b2611964afc | 751 | public: |
mjr | 53:9b2611964afc | 752 | LwZbLaunchOut(LwOut *o) : out(o) { } |
mjr | 53:9b2611964afc | 753 | virtual void set(uint8_t val) |
mjr | 53:9b2611964afc | 754 | { |
mjr | 53:9b2611964afc | 755 | // update the global ZB Launch Ball state |
mjr | 53:9b2611964afc | 756 | zbLaunchOn = (val != 0); |
mjr | 53:9b2611964afc | 757 | |
mjr | 53:9b2611964afc | 758 | // pass it along to the underlying port, in case it's a physical output |
mjr | 53:9b2611964afc | 759 | out->set(val); |
mjr | 53:9b2611964afc | 760 | } |
mjr | 53:9b2611964afc | 761 | |
mjr | 53:9b2611964afc | 762 | private: |
mjr | 53:9b2611964afc | 763 | // underlying physical or virtual output |
mjr | 53:9b2611964afc | 764 | LwOut *out; |
mjr | 53:9b2611964afc | 765 | }; |
mjr | 53:9b2611964afc | 766 | |
mjr | 53:9b2611964afc | 767 | |
mjr | 40:cc0d9814522b | 768 | // Gamma correction table for 8-bit input values |
mjr | 87:8d35c74403af | 769 | static const uint8_t dof_to_gamma_8bit[] = { |
mjr | 40:cc0d9814522b | 770 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
mjr | 40:cc0d9814522b | 771 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 772 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, |
mjr | 40:cc0d9814522b | 773 | 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, |
mjr | 40:cc0d9814522b | 774 | 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, |
mjr | 40:cc0d9814522b | 775 | 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, |
mjr | 40:cc0d9814522b | 776 | 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, |
mjr | 40:cc0d9814522b | 777 | 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, |
mjr | 40:cc0d9814522b | 778 | 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, |
mjr | 40:cc0d9814522b | 779 | 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, |
mjr | 40:cc0d9814522b | 780 | 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, |
mjr | 40:cc0d9814522b | 781 | 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114, |
mjr | 40:cc0d9814522b | 782 | 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, |
mjr | 40:cc0d9814522b | 783 | 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, |
mjr | 40:cc0d9814522b | 784 | 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, |
mjr | 40:cc0d9814522b | 785 | 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255 |
mjr | 40:cc0d9814522b | 786 | }; |
mjr | 40:cc0d9814522b | 787 | |
mjr | 40:cc0d9814522b | 788 | // Gamma-corrected out. This is a filter object that we layer on top |
mjr | 40:cc0d9814522b | 789 | // of a physical pin interface. This applies gamma correction to the |
mjr | 40:cc0d9814522b | 790 | // input value and then passes it along to the underlying pin object. |
mjr | 40:cc0d9814522b | 791 | class LwGammaOut: public LwOut |
mjr | 40:cc0d9814522b | 792 | { |
mjr | 40:cc0d9814522b | 793 | public: |
mjr | 40:cc0d9814522b | 794 | LwGammaOut(LwOut *o) : out(o) { } |
mjr | 87:8d35c74403af | 795 | virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); } |
mjr | 40:cc0d9814522b | 796 | |
mjr | 40:cc0d9814522b | 797 | private: |
mjr | 40:cc0d9814522b | 798 | LwOut *out; |
mjr | 40:cc0d9814522b | 799 | }; |
mjr | 40:cc0d9814522b | 800 | |
mjr | 77:0b96f6867312 | 801 | // Global night mode flag. To minimize overhead when reporting |
mjr | 77:0b96f6867312 | 802 | // the status, we set this to the status report flag bit for |
mjr | 77:0b96f6867312 | 803 | // night mode, 0x02, when engaged. |
mjr | 77:0b96f6867312 | 804 | static uint8_t nightMode = 0x00; |
mjr | 53:9b2611964afc | 805 | |
mjr | 40:cc0d9814522b | 806 | // Noisy output. This is a filter object that we layer on top of |
mjr | 40:cc0d9814522b | 807 | // a physical pin output. This filter disables the port when night |
mjr | 40:cc0d9814522b | 808 | // mode is engaged. |
mjr | 40:cc0d9814522b | 809 | class LwNoisyOut: public LwOut |
mjr | 40:cc0d9814522b | 810 | { |
mjr | 40:cc0d9814522b | 811 | public: |
mjr | 40:cc0d9814522b | 812 | LwNoisyOut(LwOut *o) : out(o) { } |
mjr | 40:cc0d9814522b | 813 | virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); } |
mjr | 40:cc0d9814522b | 814 | |
mjr | 53:9b2611964afc | 815 | private: |
mjr | 53:9b2611964afc | 816 | LwOut *out; |
mjr | 53:9b2611964afc | 817 | }; |
mjr | 53:9b2611964afc | 818 | |
mjr | 53:9b2611964afc | 819 | // Night Mode indicator output. This is a filter object that we |
mjr | 53:9b2611964afc | 820 | // layer on top of a physical pin output. This filter ignores the |
mjr | 53:9b2611964afc | 821 | // host value and simply shows the night mode status. |
mjr | 53:9b2611964afc | 822 | class LwNightModeIndicatorOut: public LwOut |
mjr | 53:9b2611964afc | 823 | { |
mjr | 53:9b2611964afc | 824 | public: |
mjr | 53:9b2611964afc | 825 | LwNightModeIndicatorOut(LwOut *o) : out(o) { } |
mjr | 89:c43cd923401c | 826 | virtual void set(uint8_t) |
mjr | 53:9b2611964afc | 827 | { |
mjr | 53:9b2611964afc | 828 | // ignore the host value and simply show the current |
mjr | 53:9b2611964afc | 829 | // night mode setting |
mjr | 53:9b2611964afc | 830 | out->set(nightMode ? 255 : 0); |
mjr | 53:9b2611964afc | 831 | } |
mjr | 40:cc0d9814522b | 832 | |
mjr | 40:cc0d9814522b | 833 | private: |
mjr | 40:cc0d9814522b | 834 | LwOut *out; |
mjr | 40:cc0d9814522b | 835 | }; |
mjr | 40:cc0d9814522b | 836 | |
mjr | 26:cb71c4af2912 | 837 | |
mjr | 89:c43cd923401c | 838 | // Flipper Logic output. This is a filter object that we layer on |
mjr | 89:c43cd923401c | 839 | // top of a physical pin output. |
mjr | 89:c43cd923401c | 840 | // |
mjr | 89:c43cd923401c | 841 | // A Flipper Logic output is effectively a digital output from the |
mjr | 89:c43cd923401c | 842 | // client's perspective, in that it ignores the intensity level and |
mjr | 89:c43cd923401c | 843 | // only pays attention to the ON/OFF state. 0 is OFF and any other |
mjr | 89:c43cd923401c | 844 | // level is ON. |
mjr | 89:c43cd923401c | 845 | // |
mjr | 89:c43cd923401c | 846 | // In terms of the physical output, though, we do use varying power. |
mjr | 89:c43cd923401c | 847 | // It's just that the varying power isn't under the client's control; |
mjr | 89:c43cd923401c | 848 | // we control it according to our flipperLogic settings: |
mjr | 89:c43cd923401c | 849 | // |
mjr | 89:c43cd923401c | 850 | // - When the software port transitions from OFF (0 brightness) to ON |
mjr | 89:c43cd923401c | 851 | // (any non-zero brightness level), we set the physical port to 100% |
mjr | 89:c43cd923401c | 852 | // power and start a timer. |
mjr | 89:c43cd923401c | 853 | // |
mjr | 89:c43cd923401c | 854 | // - When the full power time in our flipperLogic settings elapses, |
mjr | 89:c43cd923401c | 855 | // if the software port is still ON, we reduce the physical port to |
mjr | 89:c43cd923401c | 856 | // the PWM level in our flipperLogic setting. |
mjr | 89:c43cd923401c | 857 | // |
mjr | 89:c43cd923401c | 858 | class LwFlipperLogicOut: public LwOut |
mjr | 89:c43cd923401c | 859 | { |
mjr | 89:c43cd923401c | 860 | public: |
mjr | 89:c43cd923401c | 861 | // Set up the output. 'params' is the flipperLogic value from |
mjr | 89:c43cd923401c | 862 | // the configuration. |
mjr | 89:c43cd923401c | 863 | LwFlipperLogicOut(LwOut *o, uint8_t params) |
mjr | 89:c43cd923401c | 864 | : out(o), params(params) |
mjr | 89:c43cd923401c | 865 | { |
mjr | 89:c43cd923401c | 866 | // initially OFF |
mjr | 89:c43cd923401c | 867 | state = 0; |
mjr | 89:c43cd923401c | 868 | } |
mjr | 89:c43cd923401c | 869 | |
mjr | 89:c43cd923401c | 870 | virtual void set(uint8_t level) |
mjr | 89:c43cd923401c | 871 | { |
mjr | 98:4df3c0f7e707 | 872 | // remember the new nominal level set by the client |
mjr | 89:c43cd923401c | 873 | val = level; |
mjr | 89:c43cd923401c | 874 | |
mjr | 89:c43cd923401c | 875 | // update the physical output according to our current timing state |
mjr | 89:c43cd923401c | 876 | switch (state) |
mjr | 89:c43cd923401c | 877 | { |
mjr | 89:c43cd923401c | 878 | case 0: |
mjr | 89:c43cd923401c | 879 | // We're currently off. If the new level is non-zero, switch |
mjr | 89:c43cd923401c | 880 | // to state 1 (initial full-power interval) and set the requested |
mjr | 89:c43cd923401c | 881 | // level. If the new level is zero, we're switching from off to |
mjr | 89:c43cd923401c | 882 | // off, so there's no change. |
mjr | 89:c43cd923401c | 883 | if (level != 0) |
mjr | 89:c43cd923401c | 884 | { |
mjr | 89:c43cd923401c | 885 | // switch to state 1 (initial full-power interval) |
mjr | 89:c43cd923401c | 886 | state = 1; |
mjr | 89:c43cd923401c | 887 | |
mjr | 89:c43cd923401c | 888 | // set the requested output level - there's no limit during |
mjr | 89:c43cd923401c | 889 | // the initial full-power interval, so set the exact level |
mjr | 89:c43cd923401c | 890 | // requested |
mjr | 89:c43cd923401c | 891 | out->set(level); |
mjr | 89:c43cd923401c | 892 | |
mjr | 89:c43cd923401c | 893 | // add myself to the pending timer list |
mjr | 89:c43cd923401c | 894 | pending[nPending++] = this; |
mjr | 89:c43cd923401c | 895 | |
mjr | 89:c43cd923401c | 896 | // note the starting time |
mjr | 89:c43cd923401c | 897 | t0 = timer.read_us(); |
mjr | 89:c43cd923401c | 898 | } |
mjr | 89:c43cd923401c | 899 | break; |
mjr | 89:c43cd923401c | 900 | |
mjr | 89:c43cd923401c | 901 | case 1: |
mjr | 89:c43cd923401c | 902 | // Initial full-power interval. If the new level is non-zero, |
mjr | 89:c43cd923401c | 903 | // simply apply the new level as requested, since there's no |
mjr | 89:c43cd923401c | 904 | // limit during this period. If the new level is zero, shut |
mjr | 89:c43cd923401c | 905 | // off the output and cancel the pending timer. |
mjr | 89:c43cd923401c | 906 | out->set(level); |
mjr | 89:c43cd923401c | 907 | if (level == 0) |
mjr | 89:c43cd923401c | 908 | { |
mjr | 89:c43cd923401c | 909 | // We're switching off. In state 1, we have a pending timer, |
mjr | 89:c43cd923401c | 910 | // so we need to remove it from the list. |
mjr | 89:c43cd923401c | 911 | for (int i = 0 ; i < nPending ; ++i) |
mjr | 89:c43cd923401c | 912 | { |
mjr | 89:c43cd923401c | 913 | // is this us? |
mjr | 89:c43cd923401c | 914 | if (pending[i] == this) |
mjr | 89:c43cd923401c | 915 | { |
mjr | 89:c43cd923401c | 916 | // remove myself by replacing the slot with the |
mjr | 89:c43cd923401c | 917 | // last list entry |
mjr | 89:c43cd923401c | 918 | pending[i] = pending[--nPending]; |
mjr | 89:c43cd923401c | 919 | |
mjr | 89:c43cd923401c | 920 | // no need to look any further |
mjr | 89:c43cd923401c | 921 | break; |
mjr | 89:c43cd923401c | 922 | } |
mjr | 89:c43cd923401c | 923 | } |
mjr | 89:c43cd923401c | 924 | |
mjr | 89:c43cd923401c | 925 | // switch to state 0 (off) |
mjr | 89:c43cd923401c | 926 | state = 0; |
mjr | 89:c43cd923401c | 927 | } |
mjr | 89:c43cd923401c | 928 | break; |
mjr | 89:c43cd923401c | 929 | |
mjr | 89:c43cd923401c | 930 | case 2: |
mjr | 89:c43cd923401c | 931 | // Hold interval. If the new level is zero, switch to state |
mjr | 89:c43cd923401c | 932 | // 0 (off). If the new level is non-zero, stay in the hold |
mjr | 89:c43cd923401c | 933 | // state, and set the new level, applying the hold power setting |
mjr | 89:c43cd923401c | 934 | // as the upper bound. |
mjr | 89:c43cd923401c | 935 | if (level == 0) |
mjr | 89:c43cd923401c | 936 | { |
mjr | 89:c43cd923401c | 937 | // switching off - turn off the physical output |
mjr | 89:c43cd923401c | 938 | out->set(0); |
mjr | 89:c43cd923401c | 939 | |
mjr | 89:c43cd923401c | 940 | // go to state 0 (off) |
mjr | 89:c43cd923401c | 941 | state = 0; |
mjr | 89:c43cd923401c | 942 | } |
mjr | 89:c43cd923401c | 943 | else |
mjr | 89:c43cd923401c | 944 | { |
mjr | 89:c43cd923401c | 945 | // staying on - set the new physical output power to the |
mjr | 89:c43cd923401c | 946 | // lower of the requested power and the hold power |
mjr | 89:c43cd923401c | 947 | uint8_t hold = holdPower(); |
mjr | 89:c43cd923401c | 948 | out->set(level < hold ? level : hold); |
mjr | 89:c43cd923401c | 949 | } |
mjr | 89:c43cd923401c | 950 | break; |
mjr | 89:c43cd923401c | 951 | } |
mjr | 89:c43cd923401c | 952 | } |
mjr | 89:c43cd923401c | 953 | |
mjr | 89:c43cd923401c | 954 | // Class initialization |
mjr | 89:c43cd923401c | 955 | static void classInit(Config &cfg) |
mjr | 89:c43cd923401c | 956 | { |
mjr | 89:c43cd923401c | 957 | // Count the Flipper Logic outputs in the configuration. We |
mjr | 89:c43cd923401c | 958 | // need to allocate enough pending timer list space to accommodate |
mjr | 89:c43cd923401c | 959 | // all of these outputs. |
mjr | 89:c43cd923401c | 960 | int n = 0; |
mjr | 89:c43cd923401c | 961 | for (int i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 89:c43cd923401c | 962 | { |
mjr | 89:c43cd923401c | 963 | // if this port is active and marked as Flipper Logic, count it |
mjr | 89:c43cd923401c | 964 | if (cfg.outPort[i].typ != PortTypeDisabled |
mjr | 89:c43cd923401c | 965 | && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0) |
mjr | 89:c43cd923401c | 966 | ++n; |
mjr | 89:c43cd923401c | 967 | } |
mjr | 89:c43cd923401c | 968 | |
mjr | 89:c43cd923401c | 969 | // allocate space for the pending timer list |
mjr | 89:c43cd923401c | 970 | pending = new LwFlipperLogicOut*[n]; |
mjr | 89:c43cd923401c | 971 | |
mjr | 89:c43cd923401c | 972 | // there's nothing in the pending list yet |
mjr | 89:c43cd923401c | 973 | nPending = 0; |
mjr | 89:c43cd923401c | 974 | |
mjr | 89:c43cd923401c | 975 | // Start our shared timer. The epoch is arbitrary, since we only |
mjr | 89:c43cd923401c | 976 | // use it to figure elapsed times. |
mjr | 89:c43cd923401c | 977 | timer.start(); |
mjr | 89:c43cd923401c | 978 | } |
mjr | 89:c43cd923401c | 979 | |
mjr | 89:c43cd923401c | 980 | // Check for ports with pending timers. The main routine should |
mjr | 89:c43cd923401c | 981 | // call this on each iteration to process our state transitions. |
mjr | 89:c43cd923401c | 982 | static void poll() |
mjr | 89:c43cd923401c | 983 | { |
mjr | 89:c43cd923401c | 984 | // note the current time |
mjr | 89:c43cd923401c | 985 | uint32_t t = timer.read_us(); |
mjr | 89:c43cd923401c | 986 | |
mjr | 89:c43cd923401c | 987 | // go through the timer list |
mjr | 89:c43cd923401c | 988 | for (int i = 0 ; i < nPending ; ) |
mjr | 89:c43cd923401c | 989 | { |
mjr | 89:c43cd923401c | 990 | // get the port |
mjr | 89:c43cd923401c | 991 | LwFlipperLogicOut *port = pending[i]; |
mjr | 89:c43cd923401c | 992 | |
mjr | 89:c43cd923401c | 993 | // assume we'll keep it |
mjr | 89:c43cd923401c | 994 | bool remove = false; |
mjr | 89:c43cd923401c | 995 | |
mjr | 89:c43cd923401c | 996 | // check if the port is still on |
mjr | 89:c43cd923401c | 997 | if (port->state != 0) |
mjr | 89:c43cd923401c | 998 | { |
mjr | 89:c43cd923401c | 999 | // it's still on - check if the initial full power time has elapsed |
mjr | 89:c43cd923401c | 1000 | if (uint32_t(t - port->t0) > port->fullPowerTime_us()) |
mjr | 89:c43cd923401c | 1001 | { |
mjr | 89:c43cd923401c | 1002 | // done with the full power interval - switch to hold state |
mjr | 89:c43cd923401c | 1003 | port->state = 2; |
mjr | 89:c43cd923401c | 1004 | |
mjr | 89:c43cd923401c | 1005 | // set the physical port to the hold power setting or the |
mjr | 89:c43cd923401c | 1006 | // client brightness setting, whichever is lower |
mjr | 89:c43cd923401c | 1007 | uint8_t hold = port->holdPower(); |
mjr | 89:c43cd923401c | 1008 | uint8_t val = port->val; |
mjr | 89:c43cd923401c | 1009 | port->out->set(val < hold ? val : hold); |
mjr | 89:c43cd923401c | 1010 | |
mjr | 89:c43cd923401c | 1011 | // we're done with the timer |
mjr | 89:c43cd923401c | 1012 | remove = true; |
mjr | 89:c43cd923401c | 1013 | } |
mjr | 89:c43cd923401c | 1014 | } |
mjr | 89:c43cd923401c | 1015 | else |
mjr | 89:c43cd923401c | 1016 | { |
mjr | 89:c43cd923401c | 1017 | // the port was turned off before the timer expired - remove |
mjr | 89:c43cd923401c | 1018 | // it from the timer list |
mjr | 89:c43cd923401c | 1019 | remove = true; |
mjr | 89:c43cd923401c | 1020 | } |
mjr | 89:c43cd923401c | 1021 | |
mjr | 89:c43cd923401c | 1022 | // if desired, remove the port from the timer list |
mjr | 89:c43cd923401c | 1023 | if (remove) |
mjr | 89:c43cd923401c | 1024 | { |
mjr | 89:c43cd923401c | 1025 | // Remove the list entry by overwriting the slot with |
mjr | 89:c43cd923401c | 1026 | // the last entry in the list. |
mjr | 89:c43cd923401c | 1027 | pending[i] = pending[--nPending]; |
mjr | 89:c43cd923401c | 1028 | |
mjr | 89:c43cd923401c | 1029 | // Note that we don't increment the loop counter, since |
mjr | 89:c43cd923401c | 1030 | // we now need to revisit this same slot. |
mjr | 89:c43cd923401c | 1031 | } |
mjr | 89:c43cd923401c | 1032 | else |
mjr | 89:c43cd923401c | 1033 | { |
mjr | 89:c43cd923401c | 1034 | // we're keeping this item; move on to the next one |
mjr | 89:c43cd923401c | 1035 | ++i; |
mjr | 89:c43cd923401c | 1036 | } |
mjr | 89:c43cd923401c | 1037 | } |
mjr | 89:c43cd923401c | 1038 | } |
mjr | 89:c43cd923401c | 1039 | |
mjr | 89:c43cd923401c | 1040 | protected: |
mjr | 89:c43cd923401c | 1041 | // underlying physical output |
mjr | 89:c43cd923401c | 1042 | LwOut *out; |
mjr | 89:c43cd923401c | 1043 | |
mjr | 89:c43cd923401c | 1044 | // Timestamp on 'timer' of start of full-power interval. We set this |
mjr | 89:c43cd923401c | 1045 | // to the current 'timer' timestamp when entering state 1. |
mjr | 89:c43cd923401c | 1046 | uint32_t t0; |
mjr | 89:c43cd923401c | 1047 | |
mjr | 89:c43cd923401c | 1048 | // Nominal output level (brightness) last set by the client. During |
mjr | 89:c43cd923401c | 1049 | // the initial full-power interval, we replicate the requested level |
mjr | 89:c43cd923401c | 1050 | // exactly on the physical output. During the hold interval, we limit |
mjr | 89:c43cd923401c | 1051 | // the physical output to the hold power, but use the caller's value |
mjr | 89:c43cd923401c | 1052 | // if it's lower. |
mjr | 89:c43cd923401c | 1053 | uint8_t val; |
mjr | 89:c43cd923401c | 1054 | |
mjr | 89:c43cd923401c | 1055 | // Current port state: |
mjr | 89:c43cd923401c | 1056 | // |
mjr | 89:c43cd923401c | 1057 | // 0 = off |
mjr | 89:c43cd923401c | 1058 | // 1 = on at initial full power |
mjr | 89:c43cd923401c | 1059 | // 2 = on at hold power |
mjr | 89:c43cd923401c | 1060 | uint8_t state; |
mjr | 89:c43cd923401c | 1061 | |
mjr | 89:c43cd923401c | 1062 | // Configuration parameters. The high 4 bits encode the initial full- |
mjr | 89:c43cd923401c | 1063 | // power time in 50ms units, starting at 0=50ms. The low 4 bits encode |
mjr | 89:c43cd923401c | 1064 | // the hold power (applied after the initial time expires if the output |
mjr | 89:c43cd923401c | 1065 | // is still on) in units of 6.66%. The resulting percentage is used |
mjr | 89:c43cd923401c | 1066 | // for the PWM duty cycle of the physical output. |
mjr | 89:c43cd923401c | 1067 | uint8_t params; |
mjr | 89:c43cd923401c | 1068 | |
mjr | 99:8139b0c274f4 | 1069 | // Figure the initial full-power time in microseconds: 50ms * (1+N), |
mjr | 99:8139b0c274f4 | 1070 | // where N is the high 4 bits of the parameter byte. |
mjr | 99:8139b0c274f4 | 1071 | inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); } |
mjr | 89:c43cd923401c | 1072 | |
mjr | 89:c43cd923401c | 1073 | // Figure the hold power PWM level (0-255) |
mjr | 89:c43cd923401c | 1074 | inline uint8_t holdPower() const { return (params & 0x0F) * 17; } |
mjr | 89:c43cd923401c | 1075 | |
mjr | 89:c43cd923401c | 1076 | // Timer. This is a shared timer for all of the FL ports. When we |
mjr | 89:c43cd923401c | 1077 | // transition from OFF to ON, we note the current time on this timer |
mjr | 89:c43cd923401c | 1078 | // (which runs continuously). |
mjr | 89:c43cd923401c | 1079 | static Timer timer; |
mjr | 89:c43cd923401c | 1080 | |
mjr | 89:c43cd923401c | 1081 | // Flipper logic pending timer list. Whenever a flipper logic output |
mjr | 98:4df3c0f7e707 | 1082 | // transitions from OFF to ON, we add it to this list. We scan the |
mjr | 98:4df3c0f7e707 | 1083 | // list in our polling routine to find ports that have reached the |
mjr | 98:4df3c0f7e707 | 1084 | // expiration of their initial full-power intervals. |
mjr | 89:c43cd923401c | 1085 | static LwFlipperLogicOut **pending; |
mjr | 89:c43cd923401c | 1086 | static uint8_t nPending; |
mjr | 89:c43cd923401c | 1087 | }; |
mjr | 89:c43cd923401c | 1088 | |
mjr | 89:c43cd923401c | 1089 | // Flipper Logic statics |
mjr | 89:c43cd923401c | 1090 | Timer LwFlipperLogicOut::timer; |
mjr | 89:c43cd923401c | 1091 | LwFlipperLogicOut **LwFlipperLogicOut::pending; |
mjr | 89:c43cd923401c | 1092 | uint8_t LwFlipperLogicOut::nPending; |
mjr | 99:8139b0c274f4 | 1093 | |
mjr | 99:8139b0c274f4 | 1094 | // Chime Logic. This is a filter output that we layer on a physical |
mjr | 99:8139b0c274f4 | 1095 | // output to set a minimum and maximum ON time for the output. |
mjr | 99:8139b0c274f4 | 1096 | class LwChimeLogicOut: public LwOut |
mjr | 98:4df3c0f7e707 | 1097 | { |
mjr | 98:4df3c0f7e707 | 1098 | public: |
mjr | 99:8139b0c274f4 | 1099 | // Set up the output. 'params' encodes the minimum and maximum time. |
mjr | 99:8139b0c274f4 | 1100 | LwChimeLogicOut(LwOut *o, uint8_t params) |
mjr | 99:8139b0c274f4 | 1101 | : out(o), params(params) |
mjr | 98:4df3c0f7e707 | 1102 | { |
mjr | 98:4df3c0f7e707 | 1103 | // initially OFF |
mjr | 98:4df3c0f7e707 | 1104 | state = 0; |
mjr | 98:4df3c0f7e707 | 1105 | } |
mjr | 98:4df3c0f7e707 | 1106 | |
mjr | 98:4df3c0f7e707 | 1107 | virtual void set(uint8_t level) |
mjr | 98:4df3c0f7e707 | 1108 | { |
mjr | 98:4df3c0f7e707 | 1109 | // update the physical output according to our current timing state |
mjr | 98:4df3c0f7e707 | 1110 | switch (state) |
mjr | 98:4df3c0f7e707 | 1111 | { |
mjr | 98:4df3c0f7e707 | 1112 | case 0: |
mjr | 98:4df3c0f7e707 | 1113 | // We're currently off. If the new level is non-zero, switch |
mjr | 98:4df3c0f7e707 | 1114 | // to state 1 (initial minimum interval) and set the requested |
mjr | 98:4df3c0f7e707 | 1115 | // level. If the new level is zero, we're switching from off to |
mjr | 98:4df3c0f7e707 | 1116 | // off, so there's no change. |
mjr | 98:4df3c0f7e707 | 1117 | if (level != 0) |
mjr | 98:4df3c0f7e707 | 1118 | { |
mjr | 98:4df3c0f7e707 | 1119 | // switch to state 1 (initial minimum interval, port is |
mjr | 98:4df3c0f7e707 | 1120 | // logically on) |
mjr | 98:4df3c0f7e707 | 1121 | state = 1; |
mjr | 98:4df3c0f7e707 | 1122 | |
mjr | 98:4df3c0f7e707 | 1123 | // set the requested output level |
mjr | 98:4df3c0f7e707 | 1124 | out->set(level); |
mjr | 98:4df3c0f7e707 | 1125 | |
mjr | 98:4df3c0f7e707 | 1126 | // add myself to the pending timer list |
mjr | 98:4df3c0f7e707 | 1127 | pending[nPending++] = this; |
mjr | 98:4df3c0f7e707 | 1128 | |
mjr | 98:4df3c0f7e707 | 1129 | // note the starting time |
mjr | 98:4df3c0f7e707 | 1130 | t0 = timer.read_us(); |
mjr | 98:4df3c0f7e707 | 1131 | } |
mjr | 98:4df3c0f7e707 | 1132 | break; |
mjr | 98:4df3c0f7e707 | 1133 | |
mjr | 98:4df3c0f7e707 | 1134 | case 1: // min ON interval, port on |
mjr | 98:4df3c0f7e707 | 1135 | case 2: // min ON interval, port off |
mjr | 98:4df3c0f7e707 | 1136 | // We're in the initial minimum ON interval. If the new power |
mjr | 98:4df3c0f7e707 | 1137 | // level is non-zero, pass it through to the physical port, since |
mjr | 98:4df3c0f7e707 | 1138 | // the client is allowed to change the power level during the |
mjr | 98:4df3c0f7e707 | 1139 | // initial ON interval - they just can't turn it off entirely. |
mjr | 98:4df3c0f7e707 | 1140 | // Set the state to 1 to indicate that the logical port is on. |
mjr | 98:4df3c0f7e707 | 1141 | // |
mjr | 98:4df3c0f7e707 | 1142 | // If the new level is zero, leave the underlying port at its |
mjr | 98:4df3c0f7e707 | 1143 | // current power level, since we're not allowed to turn it off |
mjr | 98:4df3c0f7e707 | 1144 | // during this period. Set the state to 2 to indicate that the |
mjr | 98:4df3c0f7e707 | 1145 | // logical port is off even though the physical port has to stay |
mjr | 98:4df3c0f7e707 | 1146 | // on for the remainder of the interval. |
mjr | 98:4df3c0f7e707 | 1147 | if (level != 0) |
mjr | 98:4df3c0f7e707 | 1148 | { |
mjr | 98:4df3c0f7e707 | 1149 | // client is leaving the port on - pass through the new |
mjr | 98:4df3c0f7e707 | 1150 | // power level and set state 1 (logically on) |
mjr | 98:4df3c0f7e707 | 1151 | out->set(level); |
mjr | 98:4df3c0f7e707 | 1152 | state = 1; |
mjr | 98:4df3c0f7e707 | 1153 | } |
mjr | 98:4df3c0f7e707 | 1154 | else |
mjr | 98:4df3c0f7e707 | 1155 | { |
mjr | 98:4df3c0f7e707 | 1156 | // Client is turning off the port - leave the underlying port |
mjr | 98:4df3c0f7e707 | 1157 | // on at its current level and set state 2 (logically off). |
mjr | 98:4df3c0f7e707 | 1158 | // When the minimum ON time expires, the polling routine will |
mjr | 98:4df3c0f7e707 | 1159 | // see that we're logically off and will pass that through to |
mjr | 98:4df3c0f7e707 | 1160 | // the underlying physical port. Until then, though, we have |
mjr | 98:4df3c0f7e707 | 1161 | // to leave the physical port on to satisfy the minimum ON |
mjr | 98:4df3c0f7e707 | 1162 | // time requirement. |
mjr | 98:4df3c0f7e707 | 1163 | state = 2; |
mjr | 98:4df3c0f7e707 | 1164 | } |
mjr | 98:4df3c0f7e707 | 1165 | break; |
mjr | 98:4df3c0f7e707 | 1166 | |
mjr | 98:4df3c0f7e707 | 1167 | case 3: |
mjr | 99:8139b0c274f4 | 1168 | // We're after the minimum ON interval and before the maximum |
mjr | 99:8139b0c274f4 | 1169 | // ON time limit. We can set any new level, including fully off. |
mjr | 99:8139b0c274f4 | 1170 | // Pass the new power level through to the port. |
mjr | 98:4df3c0f7e707 | 1171 | out->set(level); |
mjr | 98:4df3c0f7e707 | 1172 | |
mjr | 98:4df3c0f7e707 | 1173 | // if the port is now off, return to state 0 (OFF) |
mjr | 98:4df3c0f7e707 | 1174 | if (level == 0) |
mjr | 99:8139b0c274f4 | 1175 | { |
mjr | 99:8139b0c274f4 | 1176 | // return to the OFF state |
mjr | 99:8139b0c274f4 | 1177 | state = 0; |
mjr | 99:8139b0c274f4 | 1178 | |
mjr | 99:8139b0c274f4 | 1179 | // If we have a timer pending, remove it. A timer will be |
mjr | 99:8139b0c274f4 | 1180 | // pending if we have a non-infinite maximum on time for the |
mjr | 99:8139b0c274f4 | 1181 | // port. |
mjr | 99:8139b0c274f4 | 1182 | for (int i = 0 ; i < nPending ; ++i) |
mjr | 99:8139b0c274f4 | 1183 | { |
mjr | 99:8139b0c274f4 | 1184 | // is this us? |
mjr | 99:8139b0c274f4 | 1185 | if (pending[i] == this) |
mjr | 99:8139b0c274f4 | 1186 | { |
mjr | 99:8139b0c274f4 | 1187 | // remove myself by replacing the slot with the |
mjr | 99:8139b0c274f4 | 1188 | // last list entry |
mjr | 99:8139b0c274f4 | 1189 | pending[i] = pending[--nPending]; |
mjr | 99:8139b0c274f4 | 1190 | |
mjr | 99:8139b0c274f4 | 1191 | // no need to look any further |
mjr | 99:8139b0c274f4 | 1192 | break; |
mjr | 99:8139b0c274f4 | 1193 | } |
mjr | 99:8139b0c274f4 | 1194 | } |
mjr | 99:8139b0c274f4 | 1195 | } |
mjr | 99:8139b0c274f4 | 1196 | break; |
mjr | 99:8139b0c274f4 | 1197 | |
mjr | 99:8139b0c274f4 | 1198 | case 4: |
mjr | 99:8139b0c274f4 | 1199 | // We're after the maximum ON time. The physical port stays off |
mjr | 99:8139b0c274f4 | 1200 | // during this interval, so we don't pass any changes through to |
mjr | 99:8139b0c274f4 | 1201 | // the physical port. When the client sets the level to 0, we |
mjr | 99:8139b0c274f4 | 1202 | // turn off the logical port and reset to state 0. |
mjr | 99:8139b0c274f4 | 1203 | if (level == 0) |
mjr | 98:4df3c0f7e707 | 1204 | state = 0; |
mjr | 98:4df3c0f7e707 | 1205 | break; |
mjr | 98:4df3c0f7e707 | 1206 | } |
mjr | 98:4df3c0f7e707 | 1207 | } |
mjr | 98:4df3c0f7e707 | 1208 | |
mjr | 98:4df3c0f7e707 | 1209 | // Class initialization |
mjr | 98:4df3c0f7e707 | 1210 | static void classInit(Config &cfg) |
mjr | 98:4df3c0f7e707 | 1211 | { |
mjr | 98:4df3c0f7e707 | 1212 | // Count the Minimum On Time outputs in the configuration. We |
mjr | 98:4df3c0f7e707 | 1213 | // need to allocate enough pending timer list space to accommodate |
mjr | 98:4df3c0f7e707 | 1214 | // all of these outputs. |
mjr | 98:4df3c0f7e707 | 1215 | int n = 0; |
mjr | 98:4df3c0f7e707 | 1216 | for (int i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 98:4df3c0f7e707 | 1217 | { |
mjr | 98:4df3c0f7e707 | 1218 | // if this port is active and marked as Flipper Logic, count it |
mjr | 98:4df3c0f7e707 | 1219 | if (cfg.outPort[i].typ != PortTypeDisabled |
mjr | 99:8139b0c274f4 | 1220 | && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0) |
mjr | 98:4df3c0f7e707 | 1221 | ++n; |
mjr | 98:4df3c0f7e707 | 1222 | } |
mjr | 98:4df3c0f7e707 | 1223 | |
mjr | 98:4df3c0f7e707 | 1224 | // allocate space for the pending timer list |
mjr | 99:8139b0c274f4 | 1225 | pending = new LwChimeLogicOut*[n]; |
mjr | 98:4df3c0f7e707 | 1226 | |
mjr | 98:4df3c0f7e707 | 1227 | // there's nothing in the pending list yet |
mjr | 98:4df3c0f7e707 | 1228 | nPending = 0; |
mjr | 98:4df3c0f7e707 | 1229 | |
mjr | 98:4df3c0f7e707 | 1230 | // Start our shared timer. The epoch is arbitrary, since we only |
mjr | 98:4df3c0f7e707 | 1231 | // use it to figure elapsed times. |
mjr | 98:4df3c0f7e707 | 1232 | timer.start(); |
mjr | 98:4df3c0f7e707 | 1233 | } |
mjr | 98:4df3c0f7e707 | 1234 | |
mjr | 98:4df3c0f7e707 | 1235 | // Check for ports with pending timers. The main routine should |
mjr | 98:4df3c0f7e707 | 1236 | // call this on each iteration to process our state transitions. |
mjr | 98:4df3c0f7e707 | 1237 | static void poll() |
mjr | 98:4df3c0f7e707 | 1238 | { |
mjr | 98:4df3c0f7e707 | 1239 | // note the current time |
mjr | 98:4df3c0f7e707 | 1240 | uint32_t t = timer.read_us(); |
mjr | 98:4df3c0f7e707 | 1241 | |
mjr | 98:4df3c0f7e707 | 1242 | // go through the timer list |
mjr | 98:4df3c0f7e707 | 1243 | for (int i = 0 ; i < nPending ; ) |
mjr | 98:4df3c0f7e707 | 1244 | { |
mjr | 98:4df3c0f7e707 | 1245 | // get the port |
mjr | 99:8139b0c274f4 | 1246 | LwChimeLogicOut *port = pending[i]; |
mjr | 98:4df3c0f7e707 | 1247 | |
mjr | 98:4df3c0f7e707 | 1248 | // assume we'll keep it |
mjr | 98:4df3c0f7e707 | 1249 | bool remove = false; |
mjr | 98:4df3c0f7e707 | 1250 | |
mjr | 99:8139b0c274f4 | 1251 | // check our state |
mjr | 99:8139b0c274f4 | 1252 | switch (port->state) |
mjr | 98:4df3c0f7e707 | 1253 | { |
mjr | 99:8139b0c274f4 | 1254 | case 1: // initial minimum ON time, port logically on |
mjr | 99:8139b0c274f4 | 1255 | case 2: // initial minimum ON time, port logically off |
mjr | 99:8139b0c274f4 | 1256 | // check if the minimum ON time has elapsed |
mjr | 98:4df3c0f7e707 | 1257 | if (uint32_t(t - port->t0) > port->minOnTime_us()) |
mjr | 98:4df3c0f7e707 | 1258 | { |
mjr | 98:4df3c0f7e707 | 1259 | // This port has completed its initial ON interval, so |
mjr | 98:4df3c0f7e707 | 1260 | // it advances to the next state. |
mjr | 98:4df3c0f7e707 | 1261 | if (port->state == 1) |
mjr | 98:4df3c0f7e707 | 1262 | { |
mjr | 99:8139b0c274f4 | 1263 | // The port is logically on, so advance to state 3. |
mjr | 99:8139b0c274f4 | 1264 | // The underlying port is already at its proper level, |
mjr | 99:8139b0c274f4 | 1265 | // since we pass through non-zero power settings to the |
mjr | 99:8139b0c274f4 | 1266 | // underlying port throughout the initial minimum time. |
mjr | 99:8139b0c274f4 | 1267 | // The timer stays active into state 3. |
mjr | 98:4df3c0f7e707 | 1268 | port->state = 3; |
mjr | 99:8139b0c274f4 | 1269 | |
mjr | 99:8139b0c274f4 | 1270 | // Special case: maximum on time 0 means "infinite". |
mjr | 99:8139b0c274f4 | 1271 | // There's no need for a timer in this case; we'll |
mjr | 99:8139b0c274f4 | 1272 | // just stay in state 3 until the client turns the |
mjr | 99:8139b0c274f4 | 1273 | // port off. |
mjr | 99:8139b0c274f4 | 1274 | if (port->maxOnTime_us() == 0) |
mjr | 99:8139b0c274f4 | 1275 | remove = true; |
mjr | 98:4df3c0f7e707 | 1276 | } |
mjr | 98:4df3c0f7e707 | 1277 | else |
mjr | 98:4df3c0f7e707 | 1278 | { |
mjr | 98:4df3c0f7e707 | 1279 | // The port was switched off by the client during the |
mjr | 98:4df3c0f7e707 | 1280 | // minimum ON period. We haven't passed the OFF state |
mjr | 98:4df3c0f7e707 | 1281 | // to the underlying port yet, because the port has to |
mjr | 98:4df3c0f7e707 | 1282 | // stay on throughout the minimum ON period. So turn |
mjr | 98:4df3c0f7e707 | 1283 | // the port off now. |
mjr | 98:4df3c0f7e707 | 1284 | port->out->set(0); |
mjr | 98:4df3c0f7e707 | 1285 | |
mjr | 98:4df3c0f7e707 | 1286 | // return to state 0 (OFF) |
mjr | 98:4df3c0f7e707 | 1287 | port->state = 0; |
mjr | 99:8139b0c274f4 | 1288 | |
mjr | 99:8139b0c274f4 | 1289 | // we're done with the timer |
mjr | 99:8139b0c274f4 | 1290 | remove = true; |
mjr | 98:4df3c0f7e707 | 1291 | } |
mjr | 99:8139b0c274f4 | 1292 | } |
mjr | 99:8139b0c274f4 | 1293 | break; |
mjr | 99:8139b0c274f4 | 1294 | |
mjr | 99:8139b0c274f4 | 1295 | case 3: // between minimum ON time and maximum ON time |
mjr | 99:8139b0c274f4 | 1296 | // check if the maximum ON time has expired |
mjr | 99:8139b0c274f4 | 1297 | if (uint32_t(t - port->t0) > port->maxOnTime_us()) |
mjr | 99:8139b0c274f4 | 1298 | { |
mjr | 99:8139b0c274f4 | 1299 | // The maximum ON time has expired. Turn off the physical |
mjr | 99:8139b0c274f4 | 1300 | // port. |
mjr | 99:8139b0c274f4 | 1301 | port->out->set(0); |
mjr | 98:4df3c0f7e707 | 1302 | |
mjr | 99:8139b0c274f4 | 1303 | // Switch to state 4 (logically ON past maximum time) |
mjr | 99:8139b0c274f4 | 1304 | port->state = 4; |
mjr | 99:8139b0c274f4 | 1305 | |
mjr | 99:8139b0c274f4 | 1306 | // Remove the timer on this port. This port simply stays |
mjr | 99:8139b0c274f4 | 1307 | // in state 4 until the client turns off the port. |
mjr | 98:4df3c0f7e707 | 1308 | remove = true; |
mjr | 98:4df3c0f7e707 | 1309 | } |
mjr | 99:8139b0c274f4 | 1310 | break; |
mjr | 98:4df3c0f7e707 | 1311 | } |
mjr | 98:4df3c0f7e707 | 1312 | |
mjr | 98:4df3c0f7e707 | 1313 | // if desired, remove the port from the timer list |
mjr | 98:4df3c0f7e707 | 1314 | if (remove) |
mjr | 98:4df3c0f7e707 | 1315 | { |
mjr | 98:4df3c0f7e707 | 1316 | // Remove the list entry by overwriting the slot with |
mjr | 98:4df3c0f7e707 | 1317 | // the last entry in the list. |
mjr | 98:4df3c0f7e707 | 1318 | pending[i] = pending[--nPending]; |
mjr | 98:4df3c0f7e707 | 1319 | |
mjr | 98:4df3c0f7e707 | 1320 | // Note that we don't increment the loop counter, since |
mjr | 98:4df3c0f7e707 | 1321 | // we now need to revisit this same slot. |
mjr | 98:4df3c0f7e707 | 1322 | } |
mjr | 98:4df3c0f7e707 | 1323 | else |
mjr | 98:4df3c0f7e707 | 1324 | { |
mjr | 98:4df3c0f7e707 | 1325 | // we're keeping this item; move on to the next one |
mjr | 98:4df3c0f7e707 | 1326 | ++i; |
mjr | 98:4df3c0f7e707 | 1327 | } |
mjr | 98:4df3c0f7e707 | 1328 | } |
mjr | 98:4df3c0f7e707 | 1329 | } |
mjr | 98:4df3c0f7e707 | 1330 | |
mjr | 98:4df3c0f7e707 | 1331 | protected: |
mjr | 98:4df3c0f7e707 | 1332 | // underlying physical output |
mjr | 98:4df3c0f7e707 | 1333 | LwOut *out; |
mjr | 98:4df3c0f7e707 | 1334 | |
mjr | 98:4df3c0f7e707 | 1335 | // Timestamp on 'timer' of start of full-power interval. We set this |
mjr | 98:4df3c0f7e707 | 1336 | // to the current 'timer' timestamp when entering state 1. |
mjr | 98:4df3c0f7e707 | 1337 | uint32_t t0; |
mjr | 98:4df3c0f7e707 | 1338 | |
mjr | 98:4df3c0f7e707 | 1339 | // Current port state: |
mjr | 98:4df3c0f7e707 | 1340 | // |
mjr | 98:4df3c0f7e707 | 1341 | // 0 = off |
mjr | 99:8139b0c274f4 | 1342 | // 1 = in initial minimum ON interval, logical port is on |
mjr | 99:8139b0c274f4 | 1343 | // 2 = in initial minimum ON interval, logical port is off |
mjr | 99:8139b0c274f4 | 1344 | // 3 = in interval between minimum and maximum ON times |
mjr | 99:8139b0c274f4 | 1345 | // 4 = after the maximum ON interval |
mjr | 99:8139b0c274f4 | 1346 | // |
mjr | 99:8139b0c274f4 | 1347 | // The "logical" on/off state of the port is the state set by the |
mjr | 99:8139b0c274f4 | 1348 | // client. The "physical" state is the state of the underlying port. |
mjr | 99:8139b0c274f4 | 1349 | // The relationships between logical and physical port state, and the |
mjr | 99:8139b0c274f4 | 1350 | // effects of updates by the client, are as follows: |
mjr | 99:8139b0c274f4 | 1351 | // |
mjr | 99:8139b0c274f4 | 1352 | // State | Logical | Physical | Client set on | Client set off |
mjr | 99:8139b0c274f4 | 1353 | // ----------------------------------------------------------- |
mjr | 99:8139b0c274f4 | 1354 | // 0 | Off | Off | phys on, -> 1 | no effect |
mjr | 99:8139b0c274f4 | 1355 | // 1 | On | On | no effect | -> 2 |
mjr | 99:8139b0c274f4 | 1356 | // 2 | Off | On | -> 1 | no effect |
mjr | 99:8139b0c274f4 | 1357 | // 3 | On | On | no effect | phys off, -> 0 |
mjr | 99:8139b0c274f4 | 1358 | // 4 | On | On | no effect | phys off, -> 0 |
mjr | 99:8139b0c274f4 | 1359 | // |
mjr | 99:8139b0c274f4 | 1360 | // The polling routine makes the following transitions when the current |
mjr | 99:8139b0c274f4 | 1361 | // time limit expires: |
mjr | 99:8139b0c274f4 | 1362 | // |
mjr | 99:8139b0c274f4 | 1363 | // 1: at end of minimum ON, -> 3 (or 4 if max == infinity) |
mjr | 99:8139b0c274f4 | 1364 | // 2: at end of minimum ON, port off, -> 0 |
mjr | 99:8139b0c274f4 | 1365 | // 3: at end of maximum ON, port off, -> 4 |
mjr | 98:4df3c0f7e707 | 1366 | // |
mjr | 98:4df3c0f7e707 | 1367 | uint8_t state; |
mjr | 98:4df3c0f7e707 | 1368 | |
mjr | 99:8139b0c274f4 | 1369 | // Configuration parameters byte. This encodes the minimum and maximum |
mjr | 99:8139b0c274f4 | 1370 | // ON times. |
mjr | 99:8139b0c274f4 | 1371 | uint8_t params; |
mjr | 98:4df3c0f7e707 | 1372 | |
mjr | 98:4df3c0f7e707 | 1373 | // Timer. This is a shared timer for all of the minimum ON time ports. |
mjr | 98:4df3c0f7e707 | 1374 | // When we transition from OFF to ON, we note the current time on this |
mjr | 98:4df3c0f7e707 | 1375 | // timer to establish the start of our minimum ON period. |
mjr | 98:4df3c0f7e707 | 1376 | static Timer timer; |
mjr | 98:4df3c0f7e707 | 1377 | |
mjr | 98:4df3c0f7e707 | 1378 | // translaton table from timing parameter in config to minimum ON time |
mjr | 98:4df3c0f7e707 | 1379 | static const uint32_t paramToTime_us[]; |
mjr | 98:4df3c0f7e707 | 1380 | |
mjr | 99:8139b0c274f4 | 1381 | // Figure the minimum ON time. The minimum ON time is given by the |
mjr | 99:8139b0c274f4 | 1382 | // low-order 4 bits of the parameters byte, which serves as an index |
mjr | 99:8139b0c274f4 | 1383 | // into our time table. |
mjr | 99:8139b0c274f4 | 1384 | inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; } |
mjr | 99:8139b0c274f4 | 1385 | |
mjr | 99:8139b0c274f4 | 1386 | // Figure the maximum ON time. The maximum time is the high 4 bits |
mjr | 99:8139b0c274f4 | 1387 | // of the parameters byte. This is an index into our time table, but |
mjr | 99:8139b0c274f4 | 1388 | // 0 has the special meaning "infinite". |
mjr | 99:8139b0c274f4 | 1389 | inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; } |
mjr | 98:4df3c0f7e707 | 1390 | |
mjr | 98:4df3c0f7e707 | 1391 | // Pending timer list. Whenever one of our ports transitions from OFF |
mjr | 98:4df3c0f7e707 | 1392 | // to ON, we add it to this list. We scan this list in our polling |
mjr | 98:4df3c0f7e707 | 1393 | // routine to find ports that have reached the ends of their initial |
mjr | 98:4df3c0f7e707 | 1394 | // ON intervals. |
mjr | 99:8139b0c274f4 | 1395 | static LwChimeLogicOut **pending; |
mjr | 98:4df3c0f7e707 | 1396 | static uint8_t nPending; |
mjr | 98:4df3c0f7e707 | 1397 | }; |
mjr | 98:4df3c0f7e707 | 1398 | |
mjr | 98:4df3c0f7e707 | 1399 | // Min Time Out statics |
mjr | 99:8139b0c274f4 | 1400 | Timer LwChimeLogicOut::timer; |
mjr | 99:8139b0c274f4 | 1401 | LwChimeLogicOut **LwChimeLogicOut::pending; |
mjr | 99:8139b0c274f4 | 1402 | uint8_t LwChimeLogicOut::nPending; |
mjr | 99:8139b0c274f4 | 1403 | const uint32_t LwChimeLogicOut::paramToTime_us[] = { |
mjr | 99:8139b0c274f4 | 1404 | 0, // for the max time, this means "infinite" |
mjr | 98:4df3c0f7e707 | 1405 | 1000, |
mjr | 98:4df3c0f7e707 | 1406 | 2000, |
mjr | 98:4df3c0f7e707 | 1407 | 5000, |
mjr | 98:4df3c0f7e707 | 1408 | 10000, |
mjr | 98:4df3c0f7e707 | 1409 | 20000, |
mjr | 98:4df3c0f7e707 | 1410 | 40000, |
mjr | 98:4df3c0f7e707 | 1411 | 80000, |
mjr | 98:4df3c0f7e707 | 1412 | 100000, |
mjr | 98:4df3c0f7e707 | 1413 | 200000, |
mjr | 98:4df3c0f7e707 | 1414 | 300000, |
mjr | 98:4df3c0f7e707 | 1415 | 400000, |
mjr | 98:4df3c0f7e707 | 1416 | 500000, |
mjr | 98:4df3c0f7e707 | 1417 | 600000, |
mjr | 98:4df3c0f7e707 | 1418 | 700000, |
mjr | 98:4df3c0f7e707 | 1419 | 800000 |
mjr | 98:4df3c0f7e707 | 1420 | }; |
mjr | 89:c43cd923401c | 1421 | |
mjr | 35:e959ffba78fd | 1422 | // |
mjr | 35:e959ffba78fd | 1423 | // The TLC5940 interface object. We'll set this up with the port |
mjr | 35:e959ffba78fd | 1424 | // assignments set in config.h. |
mjr | 33:d832bcab089e | 1425 | // |
mjr | 35:e959ffba78fd | 1426 | TLC5940 *tlc5940 = 0; |
mjr | 35:e959ffba78fd | 1427 | void init_tlc5940(Config &cfg) |
mjr | 35:e959ffba78fd | 1428 | { |
mjr | 35:e959ffba78fd | 1429 | if (cfg.tlc5940.nchips != 0) |
mjr | 35:e959ffba78fd | 1430 | { |
mjr | 53:9b2611964afc | 1431 | tlc5940 = new TLC5940( |
mjr | 53:9b2611964afc | 1432 | wirePinName(cfg.tlc5940.sclk), |
mjr | 53:9b2611964afc | 1433 | wirePinName(cfg.tlc5940.sin), |
mjr | 53:9b2611964afc | 1434 | wirePinName(cfg.tlc5940.gsclk), |
mjr | 53:9b2611964afc | 1435 | wirePinName(cfg.tlc5940.blank), |
mjr | 53:9b2611964afc | 1436 | wirePinName(cfg.tlc5940.xlat), |
mjr | 53:9b2611964afc | 1437 | cfg.tlc5940.nchips); |
mjr | 35:e959ffba78fd | 1438 | } |
mjr | 35:e959ffba78fd | 1439 | } |
mjr | 26:cb71c4af2912 | 1440 | |
mjr | 40:cc0d9814522b | 1441 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level |
mjr | 40:cc0d9814522b | 1442 | static const uint16_t dof_to_tlc[] = { |
mjr | 40:cc0d9814522b | 1443 | 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241, |
mjr | 40:cc0d9814522b | 1444 | 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498, |
mjr | 40:cc0d9814522b | 1445 | 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755, |
mjr | 40:cc0d9814522b | 1446 | 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012, |
mjr | 40:cc0d9814522b | 1447 | 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269, |
mjr | 40:cc0d9814522b | 1448 | 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526, |
mjr | 40:cc0d9814522b | 1449 | 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783, |
mjr | 40:cc0d9814522b | 1450 | 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039, |
mjr | 40:cc0d9814522b | 1451 | 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296, |
mjr | 40:cc0d9814522b | 1452 | 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553, |
mjr | 40:cc0d9814522b | 1453 | 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810, |
mjr | 40:cc0d9814522b | 1454 | 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067, |
mjr | 40:cc0d9814522b | 1455 | 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324, |
mjr | 40:cc0d9814522b | 1456 | 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581, |
mjr | 40:cc0d9814522b | 1457 | 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838, |
mjr | 40:cc0d9814522b | 1458 | 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095 |
mjr | 40:cc0d9814522b | 1459 | }; |
mjr | 40:cc0d9814522b | 1460 | |
mjr | 40:cc0d9814522b | 1461 | // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with |
mjr | 40:cc0d9814522b | 1462 | // gamma correction. Note that the output layering scheme can handle |
mjr | 40:cc0d9814522b | 1463 | // this without a separate table, by first applying gamma to the DOF |
mjr | 40:cc0d9814522b | 1464 | // level to produce an 8-bit gamma-corrected value, then convert that |
mjr | 40:cc0d9814522b | 1465 | // to the 12-bit TLC5940 value. But we get better precision by doing |
mjr | 40:cc0d9814522b | 1466 | // the gamma correction in the 12-bit TLC5940 domain. We can only |
mjr | 40:cc0d9814522b | 1467 | // get the 12-bit domain by combining both steps into one layering |
mjr | 40:cc0d9814522b | 1468 | // object, though, since the intermediate values in the layering system |
mjr | 40:cc0d9814522b | 1469 | // are always 8 bits. |
mjr | 40:cc0d9814522b | 1470 | static const uint16_t dof_to_gamma_tlc[] = { |
mjr | 40:cc0d9814522b | 1471 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, |
mjr | 40:cc0d9814522b | 1472 | 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, |
mjr | 40:cc0d9814522b | 1473 | 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36, |
mjr | 40:cc0d9814522b | 1474 | 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82, |
mjr | 40:cc0d9814522b | 1475 | 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154, |
mjr | 40:cc0d9814522b | 1476 | 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258, |
mjr | 40:cc0d9814522b | 1477 | 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399, |
mjr | 40:cc0d9814522b | 1478 | 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582, |
mjr | 40:cc0d9814522b | 1479 | 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811, |
mjr | 40:cc0d9814522b | 1480 | 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091, |
mjr | 40:cc0d9814522b | 1481 | 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427, |
mjr | 40:cc0d9814522b | 1482 | 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823, |
mjr | 40:cc0d9814522b | 1483 | 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284, |
mjr | 40:cc0d9814522b | 1484 | 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813, |
mjr | 40:cc0d9814522b | 1485 | 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416, |
mjr | 40:cc0d9814522b | 1486 | 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095 |
mjr | 40:cc0d9814522b | 1487 | }; |
mjr | 40:cc0d9814522b | 1488 | |
mjr | 26:cb71c4af2912 | 1489 | // LwOut class for TLC5940 outputs. These are fully PWM capable. |
mjr | 26:cb71c4af2912 | 1490 | // The 'idx' value in the constructor is the output index in the |
mjr | 26:cb71c4af2912 | 1491 | // daisy-chained TLC5940 array. 0 is output #0 on the first chip, |
mjr | 26:cb71c4af2912 | 1492 | // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is |
mjr | 26:cb71c4af2912 | 1493 | // #0 on the second chip, 32 is #0 on the third chip, etc. |
mjr | 26:cb71c4af2912 | 1494 | class Lw5940Out: public LwOut |
mjr | 26:cb71c4af2912 | 1495 | { |
mjr | 26:cb71c4af2912 | 1496 | public: |
mjr | 60:f38da020aa13 | 1497 | Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 1498 | virtual void set(uint8_t val) |
mjr | 26:cb71c4af2912 | 1499 | { |
mjr | 26:cb71c4af2912 | 1500 | if (val != prv) |
mjr | 40:cc0d9814522b | 1501 | tlc5940->set(idx, dof_to_tlc[prv = val]); |
mjr | 26:cb71c4af2912 | 1502 | } |
mjr | 60:f38da020aa13 | 1503 | uint8_t idx; |
mjr | 40:cc0d9814522b | 1504 | uint8_t prv; |
mjr | 26:cb71c4af2912 | 1505 | }; |
mjr | 26:cb71c4af2912 | 1506 | |
mjr | 40:cc0d9814522b | 1507 | // LwOut class for TLC5940 gamma-corrected outputs. |
mjr | 40:cc0d9814522b | 1508 | class Lw5940GammaOut: public LwOut |
mjr | 40:cc0d9814522b | 1509 | { |
mjr | 40:cc0d9814522b | 1510 | public: |
mjr | 60:f38da020aa13 | 1511 | Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 1512 | virtual void set(uint8_t val) |
mjr | 40:cc0d9814522b | 1513 | { |
mjr | 40:cc0d9814522b | 1514 | if (val != prv) |
mjr | 40:cc0d9814522b | 1515 | tlc5940->set(idx, dof_to_gamma_tlc[prv = val]); |
mjr | 40:cc0d9814522b | 1516 | } |
mjr | 60:f38da020aa13 | 1517 | uint8_t idx; |
mjr | 40:cc0d9814522b | 1518 | uint8_t prv; |
mjr | 40:cc0d9814522b | 1519 | }; |
mjr | 40:cc0d9814522b | 1520 | |
mjr | 87:8d35c74403af | 1521 | // |
mjr | 87:8d35c74403af | 1522 | // TLC59116 interface object |
mjr | 87:8d35c74403af | 1523 | // |
mjr | 87:8d35c74403af | 1524 | TLC59116 *tlc59116 = 0; |
mjr | 87:8d35c74403af | 1525 | void init_tlc59116(Config &cfg) |
mjr | 87:8d35c74403af | 1526 | { |
mjr | 87:8d35c74403af | 1527 | // Create the interface if any chips are enabled |
mjr | 87:8d35c74403af | 1528 | if (cfg.tlc59116.chipMask != 0) |
mjr | 87:8d35c74403af | 1529 | { |
mjr | 87:8d35c74403af | 1530 | // set up the interface |
mjr | 87:8d35c74403af | 1531 | tlc59116 = new TLC59116( |
mjr | 87:8d35c74403af | 1532 | wirePinName(cfg.tlc59116.sda), |
mjr | 87:8d35c74403af | 1533 | wirePinName(cfg.tlc59116.scl), |
mjr | 87:8d35c74403af | 1534 | wirePinName(cfg.tlc59116.reset)); |
mjr | 87:8d35c74403af | 1535 | |
mjr | 87:8d35c74403af | 1536 | // initialize the chips |
mjr | 87:8d35c74403af | 1537 | tlc59116->init(); |
mjr | 87:8d35c74403af | 1538 | } |
mjr | 87:8d35c74403af | 1539 | } |
mjr | 87:8d35c74403af | 1540 | |
mjr | 87:8d35c74403af | 1541 | // LwOut class for TLC59116 outputs. The 'addr' value in the constructor |
mjr | 87:8d35c74403af | 1542 | // is low 4 bits of the chip's I2C address; this is the part of the address |
mjr | 87:8d35c74403af | 1543 | // that's configurable per chip. 'port' is the output number on the chip |
mjr | 87:8d35c74403af | 1544 | // (0-15). |
mjr | 87:8d35c74403af | 1545 | // |
mjr | 87:8d35c74403af | 1546 | // Note that we don't need a separate gamma-corrected subclass for this |
mjr | 87:8d35c74403af | 1547 | // output type, since there's no loss of precision with the standard layered |
mjr | 87:8d35c74403af | 1548 | // gamma (it emits 8-bit values, and we take 8-bit inputs). |
mjr | 87:8d35c74403af | 1549 | class Lw59116Out: public LwOut |
mjr | 87:8d35c74403af | 1550 | { |
mjr | 87:8d35c74403af | 1551 | public: |
mjr | 87:8d35c74403af | 1552 | Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; } |
mjr | 87:8d35c74403af | 1553 | virtual void set(uint8_t val) |
mjr | 87:8d35c74403af | 1554 | { |
mjr | 87:8d35c74403af | 1555 | if (val != prv) |
mjr | 87:8d35c74403af | 1556 | tlc59116->set(addr, port, prv = val); |
mjr | 87:8d35c74403af | 1557 | } |
mjr | 87:8d35c74403af | 1558 | |
mjr | 87:8d35c74403af | 1559 | protected: |
mjr | 87:8d35c74403af | 1560 | uint8_t addr; |
mjr | 87:8d35c74403af | 1561 | uint8_t port; |
mjr | 87:8d35c74403af | 1562 | uint8_t prv; |
mjr | 87:8d35c74403af | 1563 | }; |
mjr | 87:8d35c74403af | 1564 | |
mjr | 87:8d35c74403af | 1565 | |
mjr | 87:8d35c74403af | 1566 | // |
mjr | 34:6b981a2afab7 | 1567 | // 74HC595 interface object. Set this up with the port assignments in |
mjr | 34:6b981a2afab7 | 1568 | // config.h. |
mjr | 87:8d35c74403af | 1569 | // |
mjr | 35:e959ffba78fd | 1570 | HC595 *hc595 = 0; |
mjr | 35:e959ffba78fd | 1571 | |
mjr | 35:e959ffba78fd | 1572 | // initialize the 74HC595 interface |
mjr | 35:e959ffba78fd | 1573 | void init_hc595(Config &cfg) |
mjr | 35:e959ffba78fd | 1574 | { |
mjr | 35:e959ffba78fd | 1575 | if (cfg.hc595.nchips != 0) |
mjr | 35:e959ffba78fd | 1576 | { |
mjr | 53:9b2611964afc | 1577 | hc595 = new HC595( |
mjr | 53:9b2611964afc | 1578 | wirePinName(cfg.hc595.nchips), |
mjr | 53:9b2611964afc | 1579 | wirePinName(cfg.hc595.sin), |
mjr | 53:9b2611964afc | 1580 | wirePinName(cfg.hc595.sclk), |
mjr | 53:9b2611964afc | 1581 | wirePinName(cfg.hc595.latch), |
mjr | 53:9b2611964afc | 1582 | wirePinName(cfg.hc595.ena)); |
mjr | 35:e959ffba78fd | 1583 | hc595->init(); |
mjr | 35:e959ffba78fd | 1584 | hc595->update(); |
mjr | 35:e959ffba78fd | 1585 | } |
mjr | 35:e959ffba78fd | 1586 | } |
mjr | 34:6b981a2afab7 | 1587 | |
mjr | 34:6b981a2afab7 | 1588 | // LwOut class for 74HC595 outputs. These are simple digial outs. |
mjr | 34:6b981a2afab7 | 1589 | // The 'idx' value in the constructor is the output index in the |
mjr | 34:6b981a2afab7 | 1590 | // daisy-chained 74HC595 array. 0 is output #0 on the first chip, |
mjr | 34:6b981a2afab7 | 1591 | // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is |
mjr | 34:6b981a2afab7 | 1592 | // #0 on the second chip, etc. |
mjr | 34:6b981a2afab7 | 1593 | class Lw595Out: public LwOut |
mjr | 33:d832bcab089e | 1594 | { |
mjr | 33:d832bcab089e | 1595 | public: |
mjr | 60:f38da020aa13 | 1596 | Lw595Out(uint8_t idx) : idx(idx) { prv = 0; } |
mjr | 40:cc0d9814522b | 1597 | virtual void set(uint8_t val) |
mjr | 34:6b981a2afab7 | 1598 | { |
mjr | 34:6b981a2afab7 | 1599 | if (val != prv) |
mjr | 40:cc0d9814522b | 1600 | hc595->set(idx, (prv = val) == 0 ? 0 : 1); |
mjr | 34:6b981a2afab7 | 1601 | } |
mjr | 60:f38da020aa13 | 1602 | uint8_t idx; |
mjr | 40:cc0d9814522b | 1603 | uint8_t prv; |
mjr | 33:d832bcab089e | 1604 | }; |
mjr | 33:d832bcab089e | 1605 | |
mjr | 26:cb71c4af2912 | 1606 | |
mjr | 40:cc0d9814522b | 1607 | |
mjr | 64:ef7ca92dff36 | 1608 | // Conversion table - 8-bit DOF output level to PWM duty cycle, |
mjr | 64:ef7ca92dff36 | 1609 | // normalized to 0.0 to 1.0 scale. |
mjr | 74:822a92bc11d2 | 1610 | static const float dof_to_pwm[] = { |
mjr | 64:ef7ca92dff36 | 1611 | 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f, |
mjr | 64:ef7ca92dff36 | 1612 | 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f, |
mjr | 64:ef7ca92dff36 | 1613 | 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f, |
mjr | 64:ef7ca92dff36 | 1614 | 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f, |
mjr | 64:ef7ca92dff36 | 1615 | 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f, |
mjr | 64:ef7ca92dff36 | 1616 | 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f, |
mjr | 64:ef7ca92dff36 | 1617 | 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f, |
mjr | 64:ef7ca92dff36 | 1618 | 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f, |
mjr | 64:ef7ca92dff36 | 1619 | 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f, |
mjr | 64:ef7ca92dff36 | 1620 | 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f, |
mjr | 64:ef7ca92dff36 | 1621 | 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f, |
mjr | 64:ef7ca92dff36 | 1622 | 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f, |
mjr | 64:ef7ca92dff36 | 1623 | 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f, |
mjr | 64:ef7ca92dff36 | 1624 | 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f, |
mjr | 64:ef7ca92dff36 | 1625 | 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f, |
mjr | 64:ef7ca92dff36 | 1626 | 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f, |
mjr | 64:ef7ca92dff36 | 1627 | 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f, |
mjr | 64:ef7ca92dff36 | 1628 | 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f, |
mjr | 64:ef7ca92dff36 | 1629 | 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f, |
mjr | 64:ef7ca92dff36 | 1630 | 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f, |
mjr | 64:ef7ca92dff36 | 1631 | 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f, |
mjr | 64:ef7ca92dff36 | 1632 | 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f, |
mjr | 64:ef7ca92dff36 | 1633 | 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f, |
mjr | 64:ef7ca92dff36 | 1634 | 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f, |
mjr | 64:ef7ca92dff36 | 1635 | 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f, |
mjr | 64:ef7ca92dff36 | 1636 | 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f, |
mjr | 64:ef7ca92dff36 | 1637 | 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f, |
mjr | 64:ef7ca92dff36 | 1638 | 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f, |
mjr | 64:ef7ca92dff36 | 1639 | 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f, |
mjr | 64:ef7ca92dff36 | 1640 | 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f, |
mjr | 64:ef7ca92dff36 | 1641 | 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f, |
mjr | 64:ef7ca92dff36 | 1642 | 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f |
mjr | 40:cc0d9814522b | 1643 | }; |
mjr | 26:cb71c4af2912 | 1644 | |
mjr | 64:ef7ca92dff36 | 1645 | |
mjr | 92:f264fbaa1be5 | 1646 | // Conversion table for 8-bit DOF level to pulse width, with gamma correction |
mjr | 92:f264fbaa1be5 | 1647 | // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0. |
mjr | 92:f264fbaa1be5 | 1648 | // Note that we could use the layered gamma output on top of the regular |
mjr | 92:f264fbaa1be5 | 1649 | // LwPwmOut class for this instead of a separate table, but we get much better |
mjr | 92:f264fbaa1be5 | 1650 | // precision with a dedicated table, because we apply gamma correction to the |
mjr | 92:f264fbaa1be5 | 1651 | // actual duty cycle values (as 'float') rather than the 8-bit DOF values. |
mjr | 64:ef7ca92dff36 | 1652 | static const float dof_to_gamma_pwm[] = { |
mjr | 64:ef7ca92dff36 | 1653 | 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f, |
mjr | 64:ef7ca92dff36 | 1654 | 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f, |
mjr | 64:ef7ca92dff36 | 1655 | 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f, |
mjr | 64:ef7ca92dff36 | 1656 | 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f, |
mjr | 64:ef7ca92dff36 | 1657 | 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f, |
mjr | 64:ef7ca92dff36 | 1658 | 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f, |
mjr | 64:ef7ca92dff36 | 1659 | 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f, |
mjr | 64:ef7ca92dff36 | 1660 | 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f, |
mjr | 64:ef7ca92dff36 | 1661 | 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f, |
mjr | 64:ef7ca92dff36 | 1662 | 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f, |
mjr | 64:ef7ca92dff36 | 1663 | 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f, |
mjr | 64:ef7ca92dff36 | 1664 | 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f, |
mjr | 64:ef7ca92dff36 | 1665 | 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f, |
mjr | 64:ef7ca92dff36 | 1666 | 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f, |
mjr | 64:ef7ca92dff36 | 1667 | 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f, |
mjr | 64:ef7ca92dff36 | 1668 | 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f, |
mjr | 64:ef7ca92dff36 | 1669 | 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f, |
mjr | 64:ef7ca92dff36 | 1670 | 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f, |
mjr | 64:ef7ca92dff36 | 1671 | 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f, |
mjr | 64:ef7ca92dff36 | 1672 | 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f, |
mjr | 64:ef7ca92dff36 | 1673 | 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f, |
mjr | 64:ef7ca92dff36 | 1674 | 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f, |
mjr | 64:ef7ca92dff36 | 1675 | 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f, |
mjr | 64:ef7ca92dff36 | 1676 | 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f, |
mjr | 64:ef7ca92dff36 | 1677 | 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f, |
mjr | 64:ef7ca92dff36 | 1678 | 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f, |
mjr | 64:ef7ca92dff36 | 1679 | 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f, |
mjr | 64:ef7ca92dff36 | 1680 | 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f, |
mjr | 64:ef7ca92dff36 | 1681 | 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f, |
mjr | 64:ef7ca92dff36 | 1682 | 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f, |
mjr | 64:ef7ca92dff36 | 1683 | 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f, |
mjr | 64:ef7ca92dff36 | 1684 | 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f |
mjr | 64:ef7ca92dff36 | 1685 | }; |
mjr | 64:ef7ca92dff36 | 1686 | |
mjr | 77:0b96f6867312 | 1687 | // Polled-update PWM output list |
mjr | 74:822a92bc11d2 | 1688 | // |
mjr | 77:0b96f6867312 | 1689 | // This is a workaround for a KL25Z hardware bug/limitation. The bug (more |
mjr | 77:0b96f6867312 | 1690 | // about this below) is that we can't write to a PWM output "value" register |
mjr | 77:0b96f6867312 | 1691 | // more than once per PWM cycle; if we do, outputs after the first are lost. |
mjr | 77:0b96f6867312 | 1692 | // The value register controls the duty cycle, so it's what you have to write |
mjr | 77:0b96f6867312 | 1693 | // if you want to update the brightness of an output. |
mjr | 74:822a92bc11d2 | 1694 | // |
mjr | 92:f264fbaa1be5 | 1695 | // The symptom of the problem, if it's not worked around somehow, is that |
mjr | 92:f264fbaa1be5 | 1696 | // an output will get "stuck" due to a missed write. This is especially |
mjr | 92:f264fbaa1be5 | 1697 | // noticeable during a series of updates such as a fade. If the last |
mjr | 92:f264fbaa1be5 | 1698 | // couple of updates in a fade are lost, the output will get stuck at some |
mjr | 92:f264fbaa1be5 | 1699 | // value above or below the desired final value. The stuck setting will |
mjr | 92:f264fbaa1be5 | 1700 | // persist until the output is deliberately changed again later. |
mjr | 92:f264fbaa1be5 | 1701 | // |
mjr | 92:f264fbaa1be5 | 1702 | // Our solution: Simply repeat all PWM updates periodically. This way, any |
mjr | 92:f264fbaa1be5 | 1703 | // lost write will *eventually* take hold on one of the repeats. Repeats of |
mjr | 92:f264fbaa1be5 | 1704 | // the same value won't change anything and thus won't be noticeable. We do |
mjr | 92:f264fbaa1be5 | 1705 | // these periodic updates during the main loop, which makes them very low |
mjr | 92:f264fbaa1be5 | 1706 | // overhead (there's no interrupt overhead; we just do them when convenient |
mjr | 92:f264fbaa1be5 | 1707 | // in the main loop), and also makes them very frequent. The frequency |
mjr | 92:f264fbaa1be5 | 1708 | // is crucial because it ensures that updates will never be lost for long |
mjr | 92:f264fbaa1be5 | 1709 | // enough to become noticeable. |
mjr | 92:f264fbaa1be5 | 1710 | // |
mjr | 92:f264fbaa1be5 | 1711 | // The mbed library has its own, different solution to this bug, but the |
mjr | 92:f264fbaa1be5 | 1712 | // mbed solution isn't really a solution at all because it creates a separate |
mjr | 100:1ff35c07217c | 1713 | // problem of its own. The mbed approach is to reset the TPM "count" register |
mjr | 92:f264fbaa1be5 | 1714 | // on every value register write. The count reset truncates the current |
mjr | 92:f264fbaa1be5 | 1715 | // PWM cycle, which bypasses the hardware problem. Remember, the hardware |
mjr | 92:f264fbaa1be5 | 1716 | // problem is that you can only write once per cycle; the mbed "solution" gets |
mjr | 92:f264fbaa1be5 | 1717 | // around that by making sure the cycle ends immediately after the write. |
mjr | 92:f264fbaa1be5 | 1718 | // The problem with this approach is that the truncated cycle causes visible |
mjr | 92:f264fbaa1be5 | 1719 | // flicker if the output is connected to an LED. This is particularly |
mjr | 92:f264fbaa1be5 | 1720 | // noticeable during fades, when we're updating the value register repeatedly |
mjr | 92:f264fbaa1be5 | 1721 | // and rapidly: an attempt to fade from fully on to fully off causes rapid |
mjr | 92:f264fbaa1be5 | 1722 | // fluttering and flashing rather than a smooth brightness fade. That's why |
mjr | 92:f264fbaa1be5 | 1723 | // I had to come up with something different - the mbed solution just trades |
mjr | 92:f264fbaa1be5 | 1724 | // one annoying bug for another that's just as bad. |
mjr | 92:f264fbaa1be5 | 1725 | // |
mjr | 92:f264fbaa1be5 | 1726 | // The hardware bug, by the way, is a case of good intentions gone bad. |
mjr | 92:f264fbaa1be5 | 1727 | // The whole point of the staging register is to make things easier for |
mjr | 92:f264fbaa1be5 | 1728 | // us software writers. In most PWM hardware, software has to coordinate |
mjr | 92:f264fbaa1be5 | 1729 | // with the PWM duty cycle when updating registers to avoid a glitch that |
mjr | 92:f264fbaa1be5 | 1730 | // you'd get by scribbling to the duty cycle register mid-cycle. The |
mjr | 92:f264fbaa1be5 | 1731 | // staging register solves this by letting the software write an update at |
mjr | 92:f264fbaa1be5 | 1732 | // any time, knowing that the hardware will apply the update at exactly the |
mjr | 92:f264fbaa1be5 | 1733 | // end of the cycle, ensuring glitch-free updates. It's a great design, |
mjr | 92:f264fbaa1be5 | 1734 | // except that it doesn't quite work. The problem is that they implemented |
mjr | 92:f264fbaa1be5 | 1735 | // this clever staging register as a one-element FIFO that refuses any more |
mjr | 92:f264fbaa1be5 | 1736 | // writes when full. That is, writing a value to the FIFO fills it; once |
mjr | 92:f264fbaa1be5 | 1737 | // full, it ignores writes until it gets emptied out. How's it emptied out? |
mjr | 92:f264fbaa1be5 | 1738 | // By the hardware moving the staged value to the real register. Sadly, they |
mjr | 92:f264fbaa1be5 | 1739 | // didn't provide any way for the software to clear the register, and no way |
mjr | 92:f264fbaa1be5 | 1740 | // to even tell that it's full. So we don't have glitches on write, but we're |
mjr | 92:f264fbaa1be5 | 1741 | // back to the original problem that the software has to be aware of the PWM |
mjr | 92:f264fbaa1be5 | 1742 | // cycle timing, because the only way for the software to know that a write |
mjr | 92:f264fbaa1be5 | 1743 | // actually worked is to know that it's been at least one PWM cycle since the |
mjr | 92:f264fbaa1be5 | 1744 | // last write. That largely defeats the whole purpose of the staging register, |
mjr | 92:f264fbaa1be5 | 1745 | // since the whole point was to free software writers of these timing |
mjr | 92:f264fbaa1be5 | 1746 | // considerations. It's still an improvement over no staging register at |
mjr | 92:f264fbaa1be5 | 1747 | // all, since we at least don't have to worry about glitches, but it leaves |
mjr | 92:f264fbaa1be5 | 1748 | // us with this somewhat similar hassle. |
mjr | 74:822a92bc11d2 | 1749 | // |
mjr | 77:0b96f6867312 | 1750 | // So here we have our list of PWM outputs that need to be polled for updates. |
mjr | 77:0b96f6867312 | 1751 | // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set |
mjr | 77:0b96f6867312 | 1752 | // of polled items. |
mjr | 74:822a92bc11d2 | 1753 | static int numPolledPwm; |
mjr | 74:822a92bc11d2 | 1754 | static class LwPwmOut *polledPwm[10]; |
mjr | 74:822a92bc11d2 | 1755 | |
mjr | 74:822a92bc11d2 | 1756 | // LwOut class for a PWM-capable GPIO port. |
mjr | 6:cc35eb643e8f | 1757 | class LwPwmOut: public LwOut |
mjr | 6:cc35eb643e8f | 1758 | { |
mjr | 6:cc35eb643e8f | 1759 | public: |
mjr | 43:7a6364d82a41 | 1760 | LwPwmOut(PinName pin, uint8_t initVal) : p(pin) |
mjr | 43:7a6364d82a41 | 1761 | { |
mjr | 77:0b96f6867312 | 1762 | // add myself to the list of polled outputs for periodic updates |
mjr | 77:0b96f6867312 | 1763 | if (numPolledPwm < countof(polledPwm)) |
mjr | 74:822a92bc11d2 | 1764 | polledPwm[numPolledPwm++] = this; |
mjr | 93:177832c29041 | 1765 | |
mjr | 94:0476b3e2b996 | 1766 | // IMPORTANT: Do not set the PWM period (frequency) here explicitly. |
mjr | 94:0476b3e2b996 | 1767 | // We instead want to accept the current setting for the TPM unit |
mjr | 94:0476b3e2b996 | 1768 | // we're assigned to. The KL25Z hardware can only set the period at |
mjr | 94:0476b3e2b996 | 1769 | // the TPM unit level, not per channel, so if we changed the frequency |
mjr | 94:0476b3e2b996 | 1770 | // here, we'd change it for everything attached to our TPM unit. LW |
mjr | 94:0476b3e2b996 | 1771 | // outputs don't care about frequency other than that it's fast enough |
mjr | 94:0476b3e2b996 | 1772 | // that attached LEDs won't flicker. Some other PWM users (IR remote, |
mjr | 94:0476b3e2b996 | 1773 | // TLC5940) DO care about exact frequencies, because they use the PWM |
mjr | 94:0476b3e2b996 | 1774 | // as a signal generator rather than merely for brightness control. |
mjr | 94:0476b3e2b996 | 1775 | // If we changed the frequency here, we could clobber one of those |
mjr | 94:0476b3e2b996 | 1776 | // carefully chosen frequencies and break the other subsystem. So |
mjr | 94:0476b3e2b996 | 1777 | // we need to be the "free variable" here and accept whatever setting |
mjr | 94:0476b3e2b996 | 1778 | // is currently on our assigned unit. To minimize flicker, the main() |
mjr | 94:0476b3e2b996 | 1779 | // entrypoint sets a default PWM rate of 1kHz on all channels. All |
mjr | 94:0476b3e2b996 | 1780 | // of the other subsystems that might set specific frequencies will |
mjr | 94:0476b3e2b996 | 1781 | // set much high frequencies, so that should only be good for us. |
mjr | 94:0476b3e2b996 | 1782 | |
mjr | 94:0476b3e2b996 | 1783 | // set the initial brightness value |
mjr | 77:0b96f6867312 | 1784 | set(initVal); |
mjr | 43:7a6364d82a41 | 1785 | } |
mjr | 74:822a92bc11d2 | 1786 | |
mjr | 40:cc0d9814522b | 1787 | virtual void set(uint8_t val) |
mjr | 74:822a92bc11d2 | 1788 | { |
mjr | 77:0b96f6867312 | 1789 | // save the new value |
mjr | 74:822a92bc11d2 | 1790 | this->val = val; |
mjr | 77:0b96f6867312 | 1791 | |
mjr | 77:0b96f6867312 | 1792 | // commit it to the hardware |
mjr | 77:0b96f6867312 | 1793 | commit(); |
mjr | 13:72dda449c3c0 | 1794 | } |
mjr | 74:822a92bc11d2 | 1795 | |
mjr | 74:822a92bc11d2 | 1796 | // handle periodic update polling |
mjr | 74:822a92bc11d2 | 1797 | void poll() |
mjr | 74:822a92bc11d2 | 1798 | { |
mjr | 77:0b96f6867312 | 1799 | commit(); |
mjr | 74:822a92bc11d2 | 1800 | } |
mjr | 74:822a92bc11d2 | 1801 | |
mjr | 74:822a92bc11d2 | 1802 | protected: |
mjr | 77:0b96f6867312 | 1803 | virtual void commit() |
mjr | 74:822a92bc11d2 | 1804 | { |
mjr | 74:822a92bc11d2 | 1805 | // write the current value to the PWM controller if it's changed |
mjr | 77:0b96f6867312 | 1806 | p.glitchFreeWrite(dof_to_pwm[val]); |
mjr | 74:822a92bc11d2 | 1807 | } |
mjr | 74:822a92bc11d2 | 1808 | |
mjr | 77:0b96f6867312 | 1809 | NewPwmOut p; |
mjr | 77:0b96f6867312 | 1810 | uint8_t val; |
mjr | 6:cc35eb643e8f | 1811 | }; |
mjr | 26:cb71c4af2912 | 1812 | |
mjr | 74:822a92bc11d2 | 1813 | // Gamma corrected PWM GPIO output. This works exactly like the regular |
mjr | 74:822a92bc11d2 | 1814 | // PWM output, but translates DOF values through the gamma-corrected |
mjr | 74:822a92bc11d2 | 1815 | // table instead of the regular linear table. |
mjr | 64:ef7ca92dff36 | 1816 | class LwPwmGammaOut: public LwPwmOut |
mjr | 64:ef7ca92dff36 | 1817 | { |
mjr | 64:ef7ca92dff36 | 1818 | public: |
mjr | 64:ef7ca92dff36 | 1819 | LwPwmGammaOut(PinName pin, uint8_t initVal) |
mjr | 64:ef7ca92dff36 | 1820 | : LwPwmOut(pin, initVal) |
mjr | 64:ef7ca92dff36 | 1821 | { |
mjr | 64:ef7ca92dff36 | 1822 | } |
mjr | 74:822a92bc11d2 | 1823 | |
mjr | 74:822a92bc11d2 | 1824 | protected: |
mjr | 77:0b96f6867312 | 1825 | virtual void commit() |
mjr | 64:ef7ca92dff36 | 1826 | { |
mjr | 74:822a92bc11d2 | 1827 | // write the current value to the PWM controller if it's changed |
mjr | 77:0b96f6867312 | 1828 | p.glitchFreeWrite(dof_to_gamma_pwm[val]); |
mjr | 64:ef7ca92dff36 | 1829 | } |
mjr | 64:ef7ca92dff36 | 1830 | }; |
mjr | 64:ef7ca92dff36 | 1831 | |
mjr | 74:822a92bc11d2 | 1832 | // poll the PWM outputs |
mjr | 74:822a92bc11d2 | 1833 | Timer polledPwmTimer; |
mjr | 76:7f5912b6340e | 1834 | uint64_t polledPwmTotalTime, polledPwmRunCount; |
mjr | 74:822a92bc11d2 | 1835 | void pollPwmUpdates() |
mjr | 74:822a92bc11d2 | 1836 | { |
mjr | 94:0476b3e2b996 | 1837 | // If it's been long enough since the last update, do another update. |
mjr | 94:0476b3e2b996 | 1838 | // Note that the time limit is fairly arbitrary: it has to be at least |
mjr | 94:0476b3e2b996 | 1839 | // 1.5X the PWM period, so that we can be sure that at least one PWM |
mjr | 94:0476b3e2b996 | 1840 | // period has elapsed since the last update, but there's no hard upper |
mjr | 94:0476b3e2b996 | 1841 | // bound. Instead, it only has to be short enough that fades don't |
mjr | 94:0476b3e2b996 | 1842 | // become noticeably chunky. The competing interest is that we don't |
mjr | 94:0476b3e2b996 | 1843 | // want to do this more often than necessary to provide incremental |
mjr | 94:0476b3e2b996 | 1844 | // benefit, because the polling adds overhead to the main loop and |
mjr | 94:0476b3e2b996 | 1845 | // takes time away from other tasks we could be performing. The |
mjr | 94:0476b3e2b996 | 1846 | // shortest time with practical benefit is probably around 50-60Hz, |
mjr | 94:0476b3e2b996 | 1847 | // since that gives us "video rate" granularity in fades. Anything |
mjr | 94:0476b3e2b996 | 1848 | // faster wouldn't probably make fades look any smoother to a human |
mjr | 94:0476b3e2b996 | 1849 | // viewer. |
mjr | 94:0476b3e2b996 | 1850 | if (polledPwmTimer.read_us() >= 15000) |
mjr | 74:822a92bc11d2 | 1851 | { |
mjr | 74:822a92bc11d2 | 1852 | // time the run for statistics collection |
mjr | 74:822a92bc11d2 | 1853 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 1854 | Timer t; |
mjr | 74:822a92bc11d2 | 1855 | t.start(); |
mjr | 74:822a92bc11d2 | 1856 | ) |
mjr | 74:822a92bc11d2 | 1857 | |
mjr | 74:822a92bc11d2 | 1858 | // poll each output |
mjr | 74:822a92bc11d2 | 1859 | for (int i = numPolledPwm ; i > 0 ; ) |
mjr | 74:822a92bc11d2 | 1860 | polledPwm[--i]->poll(); |
mjr | 74:822a92bc11d2 | 1861 | |
mjr | 74:822a92bc11d2 | 1862 | // reset the timer for the next cycle |
mjr | 74:822a92bc11d2 | 1863 | polledPwmTimer.reset(); |
mjr | 74:822a92bc11d2 | 1864 | |
mjr | 74:822a92bc11d2 | 1865 | // collect statistics |
mjr | 74:822a92bc11d2 | 1866 | IF_DIAG( |
mjr | 76:7f5912b6340e | 1867 | polledPwmTotalTime += t.read_us(); |
mjr | 74:822a92bc11d2 | 1868 | polledPwmRunCount += 1; |
mjr | 74:822a92bc11d2 | 1869 | ) |
mjr | 74:822a92bc11d2 | 1870 | } |
mjr | 74:822a92bc11d2 | 1871 | } |
mjr | 64:ef7ca92dff36 | 1872 | |
mjr | 26:cb71c4af2912 | 1873 | // LwOut class for a Digital-Only (Non-PWM) GPIO port |
mjr | 6:cc35eb643e8f | 1874 | class LwDigOut: public LwOut |
mjr | 6:cc35eb643e8f | 1875 | { |
mjr | 6:cc35eb643e8f | 1876 | public: |
mjr | 43:7a6364d82a41 | 1877 | LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; } |
mjr | 40:cc0d9814522b | 1878 | virtual void set(uint8_t val) |
mjr | 13:72dda449c3c0 | 1879 | { |
mjr | 13:72dda449c3c0 | 1880 | if (val != prv) |
mjr | 40:cc0d9814522b | 1881 | p.write((prv = val) == 0 ? 0 : 1); |
mjr | 13:72dda449c3c0 | 1882 | } |
mjr | 6:cc35eb643e8f | 1883 | DigitalOut p; |
mjr | 40:cc0d9814522b | 1884 | uint8_t prv; |
mjr | 6:cc35eb643e8f | 1885 | }; |
mjr | 26:cb71c4af2912 | 1886 | |
mjr | 29:582472d0bc57 | 1887 | // Array of output physical pin assignments. This array is indexed |
mjr | 29:582472d0bc57 | 1888 | // by LedWiz logical port number - lwPin[n] is the maping for LedWiz |
mjr | 35:e959ffba78fd | 1889 | // port n (0-based). |
mjr | 35:e959ffba78fd | 1890 | // |
mjr | 35:e959ffba78fd | 1891 | // Each pin is handled by an interface object for the physical output |
mjr | 35:e959ffba78fd | 1892 | // type for the port, as set in the configuration. The interface |
mjr | 35:e959ffba78fd | 1893 | // objects handle the specifics of addressing the different hardware |
mjr | 35:e959ffba78fd | 1894 | // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and |
mjr | 35:e959ffba78fd | 1895 | // 74HC595 ports). |
mjr | 33:d832bcab089e | 1896 | static int numOutputs; |
mjr | 33:d832bcab089e | 1897 | static LwOut **lwPin; |
mjr | 33:d832bcab089e | 1898 | |
mjr | 38:091e511ce8a0 | 1899 | // create a single output pin |
mjr | 53:9b2611964afc | 1900 | LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg) |
mjr | 38:091e511ce8a0 | 1901 | { |
mjr | 38:091e511ce8a0 | 1902 | // get this item's values |
mjr | 38:091e511ce8a0 | 1903 | int typ = pc.typ; |
mjr | 38:091e511ce8a0 | 1904 | int pin = pc.pin; |
mjr | 38:091e511ce8a0 | 1905 | int flags = pc.flags; |
mjr | 40:cc0d9814522b | 1906 | int noisy = flags & PortFlagNoisemaker; |
mjr | 38:091e511ce8a0 | 1907 | int activeLow = flags & PortFlagActiveLow; |
mjr | 40:cc0d9814522b | 1908 | int gamma = flags & PortFlagGamma; |
mjr | 89:c43cd923401c | 1909 | int flipperLogic = flags & PortFlagFlipperLogic; |
mjr | 99:8139b0c274f4 | 1910 | int chimeLogic = flags & PortFlagChimeLogic; |
mjr | 89:c43cd923401c | 1911 | |
mjr | 89:c43cd923401c | 1912 | // cancel gamma on flipper logic ports |
mjr | 89:c43cd923401c | 1913 | if (flipperLogic) |
mjr | 89:c43cd923401c | 1914 | gamma = false; |
mjr | 38:091e511ce8a0 | 1915 | |
mjr | 38:091e511ce8a0 | 1916 | // create the pin interface object according to the port type |
mjr | 38:091e511ce8a0 | 1917 | LwOut *lwp; |
mjr | 38:091e511ce8a0 | 1918 | switch (typ) |
mjr | 38:091e511ce8a0 | 1919 | { |
mjr | 38:091e511ce8a0 | 1920 | case PortTypeGPIOPWM: |
mjr | 48:058ace2aed1d | 1921 | // PWM GPIO port - assign if we have a valid pin |
mjr | 48:058ace2aed1d | 1922 | if (pin != 0) |
mjr | 64:ef7ca92dff36 | 1923 | { |
mjr | 64:ef7ca92dff36 | 1924 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 64:ef7ca92dff36 | 1925 | // use the combined Pwmout + Gamma output class; otherwise use the plain |
mjr | 64:ef7ca92dff36 | 1926 | // PwmOut class. We can't use the combined class for inverted outputs |
mjr | 64:ef7ca92dff36 | 1927 | // because we have to apply gamma correction before the inversion. |
mjr | 64:ef7ca92dff36 | 1928 | if (gamma && !activeLow) |
mjr | 64:ef7ca92dff36 | 1929 | { |
mjr | 64:ef7ca92dff36 | 1930 | // use the gamma-corrected PwmOut type |
mjr | 64:ef7ca92dff36 | 1931 | lwp = new LwPwmGammaOut(wirePinName(pin), 0); |
mjr | 64:ef7ca92dff36 | 1932 | |
mjr | 64:ef7ca92dff36 | 1933 | // don't apply further gamma correction to this output |
mjr | 64:ef7ca92dff36 | 1934 | gamma = false; |
mjr | 64:ef7ca92dff36 | 1935 | } |
mjr | 64:ef7ca92dff36 | 1936 | else |
mjr | 64:ef7ca92dff36 | 1937 | { |
mjr | 64:ef7ca92dff36 | 1938 | // no gamma correction - use the standard PwmOut class |
mjr | 64:ef7ca92dff36 | 1939 | lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 64:ef7ca92dff36 | 1940 | } |
mjr | 64:ef7ca92dff36 | 1941 | } |
mjr | 48:058ace2aed1d | 1942 | else |
mjr | 48:058ace2aed1d | 1943 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1944 | break; |
mjr | 38:091e511ce8a0 | 1945 | |
mjr | 38:091e511ce8a0 | 1946 | case PortTypeGPIODig: |
mjr | 38:091e511ce8a0 | 1947 | // Digital GPIO port |
mjr | 48:058ace2aed1d | 1948 | if (pin != 0) |
mjr | 48:058ace2aed1d | 1949 | lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0); |
mjr | 48:058ace2aed1d | 1950 | else |
mjr | 48:058ace2aed1d | 1951 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1952 | break; |
mjr | 38:091e511ce8a0 | 1953 | |
mjr | 38:091e511ce8a0 | 1954 | case PortTypeTLC5940: |
mjr | 38:091e511ce8a0 | 1955 | // TLC5940 port (if we don't have a TLC controller object, or it's not a valid |
mjr | 38:091e511ce8a0 | 1956 | // output port number on the chips we have, create a virtual port) |
mjr | 38:091e511ce8a0 | 1957 | if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16) |
mjr | 40:cc0d9814522b | 1958 | { |
mjr | 40:cc0d9814522b | 1959 | // If gamma correction is to be used, and we're not inverting the output, |
mjr | 40:cc0d9814522b | 1960 | // use the combined TLC4950 + Gamma output class. Otherwise use the plain |
mjr | 40:cc0d9814522b | 1961 | // TLC5940 output. We skip the combined class if the output is inverted |
mjr | 40:cc0d9814522b | 1962 | // because we need to apply gamma BEFORE the inversion to get the right |
mjr | 40:cc0d9814522b | 1963 | // results, but the combined class would apply it after because of the |
mjr | 40:cc0d9814522b | 1964 | // layering scheme - the combined class is a physical device output class, |
mjr | 40:cc0d9814522b | 1965 | // and a physical device output class is necessarily at the bottom of |
mjr | 40:cc0d9814522b | 1966 | // the stack. We don't have a combined inverted+gamma+TLC class, because |
mjr | 40:cc0d9814522b | 1967 | // inversion isn't recommended for TLC5940 chips in the first place, so |
mjr | 40:cc0d9814522b | 1968 | // it's not worth the extra memory footprint to have a dedicated table |
mjr | 40:cc0d9814522b | 1969 | // for this unlikely case. |
mjr | 40:cc0d9814522b | 1970 | if (gamma && !activeLow) |
mjr | 40:cc0d9814522b | 1971 | { |
mjr | 40:cc0d9814522b | 1972 | // use the gamma-corrected 5940 output mapper |
mjr | 40:cc0d9814522b | 1973 | lwp = new Lw5940GammaOut(pin); |
mjr | 40:cc0d9814522b | 1974 | |
mjr | 40:cc0d9814522b | 1975 | // DON'T apply further gamma correction to this output |
mjr | 40:cc0d9814522b | 1976 | gamma = false; |
mjr | 40:cc0d9814522b | 1977 | } |
mjr | 40:cc0d9814522b | 1978 | else |
mjr | 40:cc0d9814522b | 1979 | { |
mjr | 40:cc0d9814522b | 1980 | // no gamma - use the plain (linear) 5940 output class |
mjr | 40:cc0d9814522b | 1981 | lwp = new Lw5940Out(pin); |
mjr | 40:cc0d9814522b | 1982 | } |
mjr | 40:cc0d9814522b | 1983 | } |
mjr | 38:091e511ce8a0 | 1984 | else |
mjr | 40:cc0d9814522b | 1985 | { |
mjr | 40:cc0d9814522b | 1986 | // no TLC5940 chips, or invalid port number - use a virtual out |
mjr | 38:091e511ce8a0 | 1987 | lwp = new LwVirtualOut(); |
mjr | 40:cc0d9814522b | 1988 | } |
mjr | 38:091e511ce8a0 | 1989 | break; |
mjr | 38:091e511ce8a0 | 1990 | |
mjr | 38:091e511ce8a0 | 1991 | case PortType74HC595: |
mjr | 87:8d35c74403af | 1992 | // 74HC595 port (if we don't have an HC595 controller object, or it's not |
mjr | 87:8d35c74403af | 1993 | // a valid output number, create a virtual port) |
mjr | 38:091e511ce8a0 | 1994 | if (hc595 != 0 && pin < cfg.hc595.nchips*8) |
mjr | 38:091e511ce8a0 | 1995 | lwp = new Lw595Out(pin); |
mjr | 38:091e511ce8a0 | 1996 | else |
mjr | 38:091e511ce8a0 | 1997 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 1998 | break; |
mjr | 87:8d35c74403af | 1999 | |
mjr | 87:8d35c74403af | 2000 | case PortTypeTLC59116: |
mjr | 87:8d35c74403af | 2001 | // TLC59116 port. The pin number in the config encodes the chip address |
mjr | 87:8d35c74403af | 2002 | // in the high 4 bits and the output number on the chip in the low 4 bits. |
mjr | 87:8d35c74403af | 2003 | // There's no gamma-corrected version of this output handler, so we don't |
mjr | 87:8d35c74403af | 2004 | // need to worry about that here; just use the layered gamma as needed. |
mjr | 87:8d35c74403af | 2005 | if (tlc59116 != 0) |
mjr | 87:8d35c74403af | 2006 | lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F); |
mjr | 87:8d35c74403af | 2007 | break; |
mjr | 38:091e511ce8a0 | 2008 | |
mjr | 38:091e511ce8a0 | 2009 | case PortTypeVirtual: |
mjr | 43:7a6364d82a41 | 2010 | case PortTypeDisabled: |
mjr | 38:091e511ce8a0 | 2011 | default: |
mjr | 38:091e511ce8a0 | 2012 | // virtual or unknown |
mjr | 38:091e511ce8a0 | 2013 | lwp = new LwVirtualOut(); |
mjr | 38:091e511ce8a0 | 2014 | break; |
mjr | 38:091e511ce8a0 | 2015 | } |
mjr | 38:091e511ce8a0 | 2016 | |
mjr | 40:cc0d9814522b | 2017 | // If it's Active Low, layer on an inverter. Note that an inverter |
mjr | 40:cc0d9814522b | 2018 | // needs to be the bottom-most layer, since all of the other filters |
mjr | 40:cc0d9814522b | 2019 | // assume that they're working with normal (non-inverted) values. |
mjr | 38:091e511ce8a0 | 2020 | if (activeLow) |
mjr | 38:091e511ce8a0 | 2021 | lwp = new LwInvertedOut(lwp); |
mjr | 40:cc0d9814522b | 2022 | |
mjr | 89:c43cd923401c | 2023 | // Layer on Flipper Logic if desired |
mjr | 89:c43cd923401c | 2024 | if (flipperLogic) |
mjr | 89:c43cd923401c | 2025 | lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic); |
mjr | 89:c43cd923401c | 2026 | |
mjr | 99:8139b0c274f4 | 2027 | // Layer on Chime Logic if desired. Note that Chime Logic and |
mjr | 99:8139b0c274f4 | 2028 | // Flipper Logic are mutually exclusive, and Flipper Logic takes |
mjr | 99:8139b0c274f4 | 2029 | // precedence, so ignore the Chime Logic bit if both are set. |
mjr | 99:8139b0c274f4 | 2030 | if (chimeLogic && !flipperLogic) |
mjr | 99:8139b0c274f4 | 2031 | lwp = new LwChimeLogicOut(lwp, pc.flipperLogic); |
mjr | 98:4df3c0f7e707 | 2032 | |
mjr | 89:c43cd923401c | 2033 | // If it's a noisemaker, layer on a night mode switch |
mjr | 40:cc0d9814522b | 2034 | if (noisy) |
mjr | 40:cc0d9814522b | 2035 | lwp = new LwNoisyOut(lwp); |
mjr | 40:cc0d9814522b | 2036 | |
mjr | 40:cc0d9814522b | 2037 | // If it's gamma-corrected, layer on a gamma corrector |
mjr | 40:cc0d9814522b | 2038 | if (gamma) |
mjr | 40:cc0d9814522b | 2039 | lwp = new LwGammaOut(lwp); |
mjr | 53:9b2611964afc | 2040 | |
mjr | 53:9b2611964afc | 2041 | // If this is the ZB Launch Ball port, layer a monitor object. Note |
mjr | 64:ef7ca92dff36 | 2042 | // that the nominal port numbering in the config starts at 1, but we're |
mjr | 53:9b2611964afc | 2043 | // using an array index, so test against portno+1. |
mjr | 53:9b2611964afc | 2044 | if (portno + 1 == cfg.plunger.zbLaunchBall.port) |
mjr | 53:9b2611964afc | 2045 | lwp = new LwZbLaunchOut(lwp); |
mjr | 53:9b2611964afc | 2046 | |
mjr | 53:9b2611964afc | 2047 | // If this is the Night Mode indicator port, layer a night mode object. |
mjr | 53:9b2611964afc | 2048 | if (portno + 1 == cfg.nightMode.port) |
mjr | 53:9b2611964afc | 2049 | lwp = new LwNightModeIndicatorOut(lwp); |
mjr | 38:091e511ce8a0 | 2050 | |
mjr | 38:091e511ce8a0 | 2051 | // turn it off initially |
mjr | 38:091e511ce8a0 | 2052 | lwp->set(0); |
mjr | 38:091e511ce8a0 | 2053 | |
mjr | 38:091e511ce8a0 | 2054 | // return the pin |
mjr | 38:091e511ce8a0 | 2055 | return lwp; |
mjr | 38:091e511ce8a0 | 2056 | } |
mjr | 38:091e511ce8a0 | 2057 | |
mjr | 6:cc35eb643e8f | 2058 | // initialize the output pin array |
mjr | 35:e959ffba78fd | 2059 | void initLwOut(Config &cfg) |
mjr | 6:cc35eb643e8f | 2060 | { |
mjr | 99:8139b0c274f4 | 2061 | // Initialize the Flipper Logic and Chime Logic outputs |
mjr | 89:c43cd923401c | 2062 | LwFlipperLogicOut::classInit(cfg); |
mjr | 99:8139b0c274f4 | 2063 | LwChimeLogicOut::classInit(cfg); |
mjr | 89:c43cd923401c | 2064 | |
mjr | 35:e959ffba78fd | 2065 | // Count the outputs. The first disabled output determines the |
mjr | 35:e959ffba78fd | 2066 | // total number of ports. |
mjr | 35:e959ffba78fd | 2067 | numOutputs = MAX_OUT_PORTS; |
mjr | 33:d832bcab089e | 2068 | int i; |
mjr | 35:e959ffba78fd | 2069 | for (i = 0 ; i < MAX_OUT_PORTS ; ++i) |
mjr | 6:cc35eb643e8f | 2070 | { |
mjr | 35:e959ffba78fd | 2071 | if (cfg.outPort[i].typ == PortTypeDisabled) |
mjr | 34:6b981a2afab7 | 2072 | { |
mjr | 35:e959ffba78fd | 2073 | numOutputs = i; |
mjr | 34:6b981a2afab7 | 2074 | break; |
mjr | 34:6b981a2afab7 | 2075 | } |
mjr | 33:d832bcab089e | 2076 | } |
mjr | 33:d832bcab089e | 2077 | |
mjr | 73:4e8ce0b18915 | 2078 | // allocate the pin array |
mjr | 73:4e8ce0b18915 | 2079 | lwPin = new LwOut*[numOutputs]; |
mjr | 35:e959ffba78fd | 2080 | |
mjr | 73:4e8ce0b18915 | 2081 | // Allocate the current brightness array |
mjr | 73:4e8ce0b18915 | 2082 | outLevel = new uint8_t[numOutputs]; |
mjr | 33:d832bcab089e | 2083 | |
mjr | 73:4e8ce0b18915 | 2084 | // allocate the LedWiz output state arrays |
mjr | 73:4e8ce0b18915 | 2085 | wizOn = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 2086 | wizVal = new uint8_t[numOutputs]; |
mjr | 73:4e8ce0b18915 | 2087 | |
mjr | 73:4e8ce0b18915 | 2088 | // initialize all LedWiz outputs to off and brightness 48 |
mjr | 73:4e8ce0b18915 | 2089 | memset(wizOn, 0, numOutputs); |
mjr | 73:4e8ce0b18915 | 2090 | memset(wizVal, 48, numOutputs); |
mjr | 73:4e8ce0b18915 | 2091 | |
mjr | 73:4e8ce0b18915 | 2092 | // set all LedWiz virtual unit flash speeds to 2 |
mjr | 73:4e8ce0b18915 | 2093 | for (i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 2094 | wizSpeed[i] = 2; |
mjr | 33:d832bcab089e | 2095 | |
mjr | 35:e959ffba78fd | 2096 | // create the pin interface object for each port |
mjr | 35:e959ffba78fd | 2097 | for (i = 0 ; i < numOutputs ; ++i) |
mjr | 53:9b2611964afc | 2098 | lwPin[i] = createLwPin(i, cfg.outPort[i], cfg); |
mjr | 6:cc35eb643e8f | 2099 | } |
mjr | 6:cc35eb643e8f | 2100 | |
mjr | 76:7f5912b6340e | 2101 | // Translate an LedWiz brightness level (0..49) to a DOF brightness |
mjr | 76:7f5912b6340e | 2102 | // level (0..255). Note that brightness level 49 isn't actually valid, |
mjr | 76:7f5912b6340e | 2103 | // according to the LedWiz API documentation, but many clients use it |
mjr | 76:7f5912b6340e | 2104 | // anyway, and the real LedWiz accepts it and seems to treat it as |
mjr | 76:7f5912b6340e | 2105 | // equivalent to 48. |
mjr | 40:cc0d9814522b | 2106 | static const uint8_t lw_to_dof[] = { |
mjr | 40:cc0d9814522b | 2107 | 0, 5, 11, 16, 21, 27, 32, 37, |
mjr | 40:cc0d9814522b | 2108 | 43, 48, 53, 58, 64, 69, 74, 80, |
mjr | 40:cc0d9814522b | 2109 | 85, 90, 96, 101, 106, 112, 117, 122, |
mjr | 40:cc0d9814522b | 2110 | 128, 133, 138, 143, 149, 154, 159, 165, |
mjr | 40:cc0d9814522b | 2111 | 170, 175, 181, 186, 191, 197, 202, 207, |
mjr | 40:cc0d9814522b | 2112 | 213, 218, 223, 228, 234, 239, 244, 250, |
mjr | 40:cc0d9814522b | 2113 | 255, 255 |
mjr | 40:cc0d9814522b | 2114 | }; |
mjr | 40:cc0d9814522b | 2115 | |
mjr | 76:7f5912b6340e | 2116 | // Translate a DOF brightness level (0..255) to an LedWiz brightness |
mjr | 76:7f5912b6340e | 2117 | // level (1..48) |
mjr | 76:7f5912b6340e | 2118 | static const uint8_t dof_to_lw[] = { |
mjr | 76:7f5912b6340e | 2119 | 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, |
mjr | 76:7f5912b6340e | 2120 | 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, |
mjr | 76:7f5912b6340e | 2121 | 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, |
mjr | 76:7f5912b6340e | 2122 | 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, |
mjr | 76:7f5912b6340e | 2123 | 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, |
mjr | 76:7f5912b6340e | 2124 | 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, |
mjr | 76:7f5912b6340e | 2125 | 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, |
mjr | 76:7f5912b6340e | 2126 | 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, |
mjr | 76:7f5912b6340e | 2127 | 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27, |
mjr | 76:7f5912b6340e | 2128 | 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30, |
mjr | 76:7f5912b6340e | 2129 | 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33, |
mjr | 76:7f5912b6340e | 2130 | 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36, |
mjr | 76:7f5912b6340e | 2131 | 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39, |
mjr | 76:7f5912b6340e | 2132 | 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42, |
mjr | 76:7f5912b6340e | 2133 | 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, |
mjr | 76:7f5912b6340e | 2134 | 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48 |
mjr | 76:7f5912b6340e | 2135 | }; |
mjr | 76:7f5912b6340e | 2136 | |
mjr | 74:822a92bc11d2 | 2137 | // LedWiz flash cycle tables. For efficiency, we use a lookup table |
mjr | 74:822a92bc11d2 | 2138 | // rather than calculating these on the fly. The flash cycles are |
mjr | 74:822a92bc11d2 | 2139 | // generated by the following formulas, where 'c' is the current |
mjr | 74:822a92bc11d2 | 2140 | // cycle counter, from 0 to 255: |
mjr | 74:822a92bc11d2 | 2141 | // |
mjr | 74:822a92bc11d2 | 2142 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 2143 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 2144 | // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 2145 | // mode 132 = ramp up/on = (c < 128 ? c*2 : 255) |
mjr | 74:822a92bc11d2 | 2146 | // |
mjr | 74:822a92bc11d2 | 2147 | // To look up the current output value for a given mode and a given |
mjr | 74:822a92bc11d2 | 2148 | // cycle counter 'c', index the table with ((mode-129)*256)+c. |
mjr | 74:822a92bc11d2 | 2149 | static const uint8_t wizFlashLookup[] = { |
mjr | 74:822a92bc11d2 | 2150 | // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2) |
mjr | 74:822a92bc11d2 | 2151 | 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f, |
mjr | 74:822a92bc11d2 | 2152 | 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, |
mjr | 74:822a92bc11d2 | 2153 | 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f, |
mjr | 74:822a92bc11d2 | 2154 | 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f, |
mjr | 74:822a92bc11d2 | 2155 | 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f, |
mjr | 74:822a92bc11d2 | 2156 | 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf, |
mjr | 74:822a92bc11d2 | 2157 | 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf, |
mjr | 74:822a92bc11d2 | 2158 | 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff, |
mjr | 74:822a92bc11d2 | 2159 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 2160 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 2161 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 2162 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 2163 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 2164 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 2165 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 2166 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 2167 | |
mjr | 74:822a92bc11d2 | 2168 | // mode 130 = flash on/off = (c < 128 ? 255 : 0) |
mjr | 74:822a92bc11d2 | 2169 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2170 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2171 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2172 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2173 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2174 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2175 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2176 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2177 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2178 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2179 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2180 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2181 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2182 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2183 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2184 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
mjr | 74:822a92bc11d2 | 2185 | |
mjr | 74:822a92bc11d2 | 2186 | // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2 |
mjr | 74:822a92bc11d2 | 2187 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2188 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2189 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2190 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2191 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2192 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2193 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2194 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2195 | 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, |
mjr | 74:822a92bc11d2 | 2196 | 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0, |
mjr | 74:822a92bc11d2 | 2197 | 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0, |
mjr | 74:822a92bc11d2 | 2198 | 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80, |
mjr | 74:822a92bc11d2 | 2199 | 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60, |
mjr | 74:822a92bc11d2 | 2200 | 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40, |
mjr | 74:822a92bc11d2 | 2201 | 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20, |
mjr | 74:822a92bc11d2 | 2202 | 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00, |
mjr | 74:822a92bc11d2 | 2203 | |
mjr | 74:822a92bc11d2 | 2204 | // mode 132 = ramp up/on = c < 128 ? c*2 : 255 |
mjr | 74:822a92bc11d2 | 2205 | 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, |
mjr | 74:822a92bc11d2 | 2206 | 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, |
mjr | 74:822a92bc11d2 | 2207 | 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, |
mjr | 74:822a92bc11d2 | 2208 | 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e, |
mjr | 74:822a92bc11d2 | 2209 | 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e, |
mjr | 74:822a92bc11d2 | 2210 | 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, |
mjr | 74:822a92bc11d2 | 2211 | 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde, |
mjr | 74:822a92bc11d2 | 2212 | 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, |
mjr | 74:822a92bc11d2 | 2213 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2214 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2215 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2216 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2217 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2218 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2219 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
mjr | 74:822a92bc11d2 | 2220 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
mjr | 74:822a92bc11d2 | 2221 | }; |
mjr | 74:822a92bc11d2 | 2222 | |
mjr | 74:822a92bc11d2 | 2223 | // LedWiz flash cycle timer. This runs continuously. On each update, |
mjr | 74:822a92bc11d2 | 2224 | // we use this to figure out where we are on the cycle for each bank. |
mjr | 74:822a92bc11d2 | 2225 | Timer wizCycleTimer; |
mjr | 74:822a92bc11d2 | 2226 | |
mjr | 76:7f5912b6340e | 2227 | // timing statistics for wizPulse() |
mjr | 76:7f5912b6340e | 2228 | uint64_t wizPulseTotalTime, wizPulseRunCount; |
mjr | 76:7f5912b6340e | 2229 | |
mjr | 76:7f5912b6340e | 2230 | // LedWiz flash timer pulse. The main loop calls this on each cycle |
mjr | 76:7f5912b6340e | 2231 | // to update outputs using LedWiz flash modes. We do one bank of 32 |
mjr | 76:7f5912b6340e | 2232 | // outputs on each cycle. |
mjr | 29:582472d0bc57 | 2233 | static void wizPulse() |
mjr | 29:582472d0bc57 | 2234 | { |
mjr | 76:7f5912b6340e | 2235 | // current bank |
mjr | 76:7f5912b6340e | 2236 | static int wizPulseBank = 0; |
mjr | 76:7f5912b6340e | 2237 | |
mjr | 76:7f5912b6340e | 2238 | // start a timer for statistics collection |
mjr | 76:7f5912b6340e | 2239 | IF_DIAG( |
mjr | 76:7f5912b6340e | 2240 | Timer t; |
mjr | 76:7f5912b6340e | 2241 | t.start(); |
mjr | 76:7f5912b6340e | 2242 | ) |
mjr | 76:7f5912b6340e | 2243 | |
mjr | 76:7f5912b6340e | 2244 | // Update the current bank's cycle counter: figure the current |
mjr | 76:7f5912b6340e | 2245 | // phase of the LedWiz pulse cycle for this bank. |
mjr | 76:7f5912b6340e | 2246 | // |
mjr | 76:7f5912b6340e | 2247 | // The LedWiz speed setting gives the flash period in 0.25s units |
mjr | 76:7f5912b6340e | 2248 | // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s). |
mjr | 76:7f5912b6340e | 2249 | // |
mjr | 76:7f5912b6340e | 2250 | // What we're after here is the "phase", which is to say the point |
mjr | 76:7f5912b6340e | 2251 | // in the current cycle. If we assume that the cycle has been running |
mjr | 76:7f5912b6340e | 2252 | // continuously since some arbitrary time zero in the past, we can |
mjr | 76:7f5912b6340e | 2253 | // figure where we are in the current cycle by dividing the time since |
mjr | 76:7f5912b6340e | 2254 | // that zero by the cycle period and taking the remainder. E.g., if |
mjr | 76:7f5912b6340e | 2255 | // the cycle time is 5 seconds, and the time since t-zero is 17 seconds, |
mjr | 76:7f5912b6340e | 2256 | // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds |
mjr | 76:7f5912b6340e | 2257 | // into the current 5-second cycle, or 2/5 of the way through the |
mjr | 76:7f5912b6340e | 2258 | // current cycle. |
mjr | 76:7f5912b6340e | 2259 | // |
mjr | 76:7f5912b6340e | 2260 | // We do this calculation on every iteration of the main loop, so we |
mjr | 76:7f5912b6340e | 2261 | // want it to be very fast. To streamline it, we'll use some tricky |
mjr | 76:7f5912b6340e | 2262 | // integer arithmetic. The result will be the same as the straightforward |
mjr | 76:7f5912b6340e | 2263 | // remainder and fraction calculation we just explained, but we'll get |
mjr | 76:7f5912b6340e | 2264 | // there by less-than-obvious means. |
mjr | 76:7f5912b6340e | 2265 | // |
mjr | 76:7f5912b6340e | 2266 | // Rather than finding the phase as a continuous quantity or floating |
mjr | 76:7f5912b6340e | 2267 | // point number, we'll quantize it. We'll divide each cycle into 256 |
mjr | 76:7f5912b6340e | 2268 | // time units, or quanta. Each quantum is 1/256 of the cycle length, |
mjr | 76:7f5912b6340e | 2269 | // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of |
mjr | 76:7f5912b6340e | 2270 | // a second, or about 3.9ms. If we express the time since t-zero in |
mjr | 76:7f5912b6340e | 2271 | // these units, the time period of one cycle is exactly 256 units, so |
mjr | 76:7f5912b6340e | 2272 | // we can calculate our point in the cycle by taking the remainder of |
mjr | 76:7f5912b6340e | 2273 | // the time (in our funny units) divided by 256. The special thing |
mjr | 76:7f5912b6340e | 2274 | // about making the cycle time equal to 256 units is that "x % 256" |
mjr | 76:7f5912b6340e | 2275 | // is exactly the same as "x & 255", which is a much faster operation |
mjr | 76:7f5912b6340e | 2276 | // than division on ARM M0+: this CPU has no hardware DIVIDE operation, |
mjr | 76:7f5912b6340e | 2277 | // so an integer division takes about 5us. The bit mask operation, in |
mjr | 76:7f5912b6340e | 2278 | // contrast, takes only about 60ns - about 100x faster. 5us doesn't |
mjr | 76:7f5912b6340e | 2279 | // sound like much, but we do this on every main loop, so every little |
mjr | 76:7f5912b6340e | 2280 | // bit counts. |
mjr | 76:7f5912b6340e | 2281 | // |
mjr | 76:7f5912b6340e | 2282 | // The snag is that our system timer gives us the elapsed time in |
mjr | 76:7f5912b6340e | 2283 | // microseconds. We still need to convert this to our special quanta |
mjr | 76:7f5912b6340e | 2284 | // of 256 units per cycle. The straightforward way to do that is by |
mjr | 76:7f5912b6340e | 2285 | // dividing by (microseconds per quantum). E.g., for LedWiz speed 4, |
mjr | 76:7f5912b6340e | 2286 | // we decided that our quantum was 1/256 of a second, or 3906us, so |
mjr | 76:7f5912b6340e | 2287 | // dividing the current system time in microseconds by 3906 will give |
mjr | 76:7f5912b6340e | 2288 | // us the time in our quantum units. But now we've just substituted |
mjr | 76:7f5912b6340e | 2289 | // one division for another! |
mjr | 76:7f5912b6340e | 2290 | // |
mjr | 76:7f5912b6340e | 2291 | // This is where our really tricky integer math comes in. Dividing |
mjr | 76:7f5912b6340e | 2292 | // by X is the same as multiplying by 1/X. In integer math, 1/3906 |
mjr | 76:7f5912b6340e | 2293 | // is zero, so that won't work. But we can get around that by doing |
mjr | 76:7f5912b6340e | 2294 | // the integer math as "fixed point" arithmetic instead. It's still |
mjr | 76:7f5912b6340e | 2295 | // actually carried out as integer operations, but we'll scale our |
mjr | 76:7f5912b6340e | 2296 | // integers by a scaling factor, then take out the scaling factor |
mjr | 76:7f5912b6340e | 2297 | // later to get the final result. The scaling factor we'll use is |
mjr | 76:7f5912b6340e | 2298 | // 2^24. So we're going to calculate (time * 2^24/3906), then divide |
mjr | 76:7f5912b6340e | 2299 | // the result by 2^24 to get the final answer. I know it seems like |
mjr | 76:7f5912b6340e | 2300 | // we're substituting one division for another yet again, but this |
mjr | 76:7f5912b6340e | 2301 | // time's the charm, because dividing by 2^24 is a bit shift operation, |
mjr | 76:7f5912b6340e | 2302 | // which is another single-cycle operation on M0+. You might also |
mjr | 76:7f5912b6340e | 2303 | // wonder how all these tricks don't cause overflows or underflows |
mjr | 76:7f5912b6340e | 2304 | // or what not. Well, the multiply by 2^24/3906 will cause an |
mjr | 76:7f5912b6340e | 2305 | // overflow, but we don't care, because the overflow will all be in |
mjr | 76:7f5912b6340e | 2306 | // the high-order bits that we're going to discard in the final |
mjr | 76:7f5912b6340e | 2307 | // remainder calculation anyway. |
mjr | 76:7f5912b6340e | 2308 | // |
mjr | 76:7f5912b6340e | 2309 | // Each entry in the array below represents 2^24/N for the corresponding |
mjr | 76:7f5912b6340e | 2310 | // LedWiz speed, where N is the number of time quanta per cycle at that |
mjr | 76:7f5912b6340e | 2311 | // speed. The time quanta are chosen such that 256 quanta add up to |
mjr | 76:7f5912b6340e | 2312 | // approximately (LedWiz speed setting * 0.25s). |
mjr | 76:7f5912b6340e | 2313 | // |
mjr | 76:7f5912b6340e | 2314 | // Note that the calculation has an implicit bit mask (result & 0xFF) |
mjr | 76:7f5912b6340e | 2315 | // to get the final result mod 256. But we don't have to actually |
mjr | 76:7f5912b6340e | 2316 | // do that work because we're using 32-bit ints and a 2^24 fixed |
mjr | 76:7f5912b6340e | 2317 | // point base (X in the narrative above). The final shift right by |
mjr | 76:7f5912b6340e | 2318 | // 24 bits to divide out the base will leave us with only 8 bits in |
mjr | 76:7f5912b6340e | 2319 | // the result, since we started with 32. |
mjr | 76:7f5912b6340e | 2320 | static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed |
mjr | 76:7f5912b6340e | 2321 | 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454 |
mjr | 76:7f5912b6340e | 2322 | }; |
mjr | 76:7f5912b6340e | 2323 | int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24); |
mjr | 76:7f5912b6340e | 2324 | |
mjr | 76:7f5912b6340e | 2325 | // get the range of 32 output sin this bank |
mjr | 76:7f5912b6340e | 2326 | int fromPort = wizPulseBank*32; |
mjr | 76:7f5912b6340e | 2327 | int toPort = fromPort+32; |
mjr | 76:7f5912b6340e | 2328 | if (toPort > numOutputs) |
mjr | 76:7f5912b6340e | 2329 | toPort = numOutputs; |
mjr | 76:7f5912b6340e | 2330 | |
mjr | 76:7f5912b6340e | 2331 | // update all outputs set to flashing values |
mjr | 76:7f5912b6340e | 2332 | for (int i = fromPort ; i < toPort ; ++i) |
mjr | 73:4e8ce0b18915 | 2333 | { |
mjr | 76:7f5912b6340e | 2334 | // Update the port only if the LedWiz SBA switch for the port is on |
mjr | 76:7f5912b6340e | 2335 | // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132. |
mjr | 76:7f5912b6340e | 2336 | // These modes and only these modes have the high bit (0x80) set, so |
mjr | 76:7f5912b6340e | 2337 | // we can test for them simply by testing the high bit. |
mjr | 76:7f5912b6340e | 2338 | if (wizOn[i]) |
mjr | 29:582472d0bc57 | 2339 | { |
mjr | 76:7f5912b6340e | 2340 | uint8_t val = wizVal[i]; |
mjr | 76:7f5912b6340e | 2341 | if ((val & 0x80) != 0) |
mjr | 29:582472d0bc57 | 2342 | { |
mjr | 76:7f5912b6340e | 2343 | // ook up the value for the mode at the cycle time |
mjr | 76:7f5912b6340e | 2344 | lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]); |
mjr | 29:582472d0bc57 | 2345 | } |
mjr | 29:582472d0bc57 | 2346 | } |
mjr | 76:7f5912b6340e | 2347 | } |
mjr | 76:7f5912b6340e | 2348 | |
mjr | 34:6b981a2afab7 | 2349 | // flush changes to 74HC595 chips, if attached |
mjr | 35:e959ffba78fd | 2350 | if (hc595 != 0) |
mjr | 35:e959ffba78fd | 2351 | hc595->update(); |
mjr | 76:7f5912b6340e | 2352 | |
mjr | 76:7f5912b6340e | 2353 | // switch to the next bank |
mjr | 76:7f5912b6340e | 2354 | if (++wizPulseBank >= MAX_LW_BANKS) |
mjr | 76:7f5912b6340e | 2355 | wizPulseBank = 0; |
mjr | 76:7f5912b6340e | 2356 | |
mjr | 76:7f5912b6340e | 2357 | // collect timing statistics |
mjr | 76:7f5912b6340e | 2358 | IF_DIAG( |
mjr | 76:7f5912b6340e | 2359 | wizPulseTotalTime += t.read_us(); |
mjr | 76:7f5912b6340e | 2360 | wizPulseRunCount += 1; |
mjr | 76:7f5912b6340e | 2361 | ) |
mjr | 1:d913e0afb2ac | 2362 | } |
mjr | 38:091e511ce8a0 | 2363 | |
mjr | 76:7f5912b6340e | 2364 | // Update a port to reflect its new LedWiz SBA+PBA setting. |
mjr | 76:7f5912b6340e | 2365 | static void updateLwPort(int port) |
mjr | 38:091e511ce8a0 | 2366 | { |
mjr | 76:7f5912b6340e | 2367 | // check if the SBA switch is on or off |
mjr | 76:7f5912b6340e | 2368 | if (wizOn[port]) |
mjr | 76:7f5912b6340e | 2369 | { |
mjr | 76:7f5912b6340e | 2370 | // It's on. If the port is a valid static brightness level, |
mjr | 76:7f5912b6340e | 2371 | // set the output port to match. Otherwise leave it as is: |
mjr | 76:7f5912b6340e | 2372 | // if it's a flashing mode, the flash mode pulse will update |
mjr | 76:7f5912b6340e | 2373 | // it on the next cycle. |
mjr | 76:7f5912b6340e | 2374 | int val = wizVal[port]; |
mjr | 76:7f5912b6340e | 2375 | if (val <= 49) |
mjr | 76:7f5912b6340e | 2376 | lwPin[port]->set(outLevel[port] = lw_to_dof[val]); |
mjr | 76:7f5912b6340e | 2377 | } |
mjr | 76:7f5912b6340e | 2378 | else |
mjr | 76:7f5912b6340e | 2379 | { |
mjr | 76:7f5912b6340e | 2380 | // the port is off - set absolute brightness zero |
mjr | 76:7f5912b6340e | 2381 | lwPin[port]->set(outLevel[port] = 0); |
mjr | 76:7f5912b6340e | 2382 | } |
mjr | 73:4e8ce0b18915 | 2383 | } |
mjr | 73:4e8ce0b18915 | 2384 | |
mjr | 73:4e8ce0b18915 | 2385 | // Turn off all outputs and restore everything to the default LedWiz |
mjr | 92:f264fbaa1be5 | 2386 | // state. This sets all outputs to LedWiz profile value 48 (full |
mjr | 92:f264fbaa1be5 | 2387 | // brightness) and switch state Off, and sets the LedWiz flash rate |
mjr | 92:f264fbaa1be5 | 2388 | // to 2. This effectively restores the power-on conditions. |
mjr | 73:4e8ce0b18915 | 2389 | // |
mjr | 73:4e8ce0b18915 | 2390 | void allOutputsOff() |
mjr | 73:4e8ce0b18915 | 2391 | { |
mjr | 92:f264fbaa1be5 | 2392 | // reset all outputs to OFF/48 |
mjr | 73:4e8ce0b18915 | 2393 | for (int i = 0 ; i < numOutputs ; ++i) |
mjr | 73:4e8ce0b18915 | 2394 | { |
mjr | 73:4e8ce0b18915 | 2395 | outLevel[i] = 0; |
mjr | 73:4e8ce0b18915 | 2396 | wizOn[i] = 0; |
mjr | 73:4e8ce0b18915 | 2397 | wizVal[i] = 48; |
mjr | 73:4e8ce0b18915 | 2398 | lwPin[i]->set(0); |
mjr | 73:4e8ce0b18915 | 2399 | } |
mjr | 73:4e8ce0b18915 | 2400 | |
mjr | 73:4e8ce0b18915 | 2401 | // restore default LedWiz flash rate |
mjr | 73:4e8ce0b18915 | 2402 | for (int i = 0 ; i < countof(wizSpeed) ; ++i) |
mjr | 73:4e8ce0b18915 | 2403 | wizSpeed[i] = 2; |
mjr | 38:091e511ce8a0 | 2404 | |
mjr | 73:4e8ce0b18915 | 2405 | // flush changes to hc595, if applicable |
mjr | 38:091e511ce8a0 | 2406 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 2407 | hc595->update(); |
mjr | 38:091e511ce8a0 | 2408 | } |
mjr | 38:091e511ce8a0 | 2409 | |
mjr | 74:822a92bc11d2 | 2410 | // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32, |
mjr | 74:822a92bc11d2 | 2411 | // 1 for ports 33-64, etc. Original protocol SBA messages always |
mjr | 74:822a92bc11d2 | 2412 | // address port group 0; our private SBX extension messages can |
mjr | 74:822a92bc11d2 | 2413 | // address any port group. |
mjr | 74:822a92bc11d2 | 2414 | void sba_sbx(int portGroup, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 2415 | { |
mjr | 76:7f5912b6340e | 2416 | // update all on/off states in the group |
mjr | 74:822a92bc11d2 | 2417 | for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ; |
mjr | 74:822a92bc11d2 | 2418 | i < 32 && port < numOutputs ; |
mjr | 74:822a92bc11d2 | 2419 | ++i, bit <<= 1, ++port) |
mjr | 74:822a92bc11d2 | 2420 | { |
mjr | 74:822a92bc11d2 | 2421 | // figure the on/off state bit for this output |
mjr | 74:822a92bc11d2 | 2422 | if (bit == 0x100) { |
mjr | 74:822a92bc11d2 | 2423 | bit = 1; |
mjr | 74:822a92bc11d2 | 2424 | ++imsg; |
mjr | 74:822a92bc11d2 | 2425 | } |
mjr | 74:822a92bc11d2 | 2426 | |
mjr | 74:822a92bc11d2 | 2427 | // set the on/off state |
mjr | 76:7f5912b6340e | 2428 | bool on = wizOn[port] = ((data[imsg] & bit) != 0); |
mjr | 76:7f5912b6340e | 2429 | |
mjr | 76:7f5912b6340e | 2430 | // set the output port brightness to match the new setting |
mjr | 76:7f5912b6340e | 2431 | updateLwPort(port); |
mjr | 74:822a92bc11d2 | 2432 | } |
mjr | 74:822a92bc11d2 | 2433 | |
mjr | 74:822a92bc11d2 | 2434 | // set the flash speed for the port group |
mjr | 74:822a92bc11d2 | 2435 | if (portGroup < countof(wizSpeed)) |
mjr | 74:822a92bc11d2 | 2436 | wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]); |
mjr | 74:822a92bc11d2 | 2437 | |
mjr | 76:7f5912b6340e | 2438 | // update 74HC959 outputs |
mjr | 76:7f5912b6340e | 2439 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 2440 | hc595->update(); |
mjr | 74:822a92bc11d2 | 2441 | } |
mjr | 74:822a92bc11d2 | 2442 | |
mjr | 74:822a92bc11d2 | 2443 | // Carry out a PBA or PBX message. |
mjr | 74:822a92bc11d2 | 2444 | void pba_pbx(int basePort, const uint8_t *data) |
mjr | 74:822a92bc11d2 | 2445 | { |
mjr | 74:822a92bc11d2 | 2446 | // update each wizVal entry from the brightness data |
mjr | 76:7f5912b6340e | 2447 | for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port) |
mjr | 74:822a92bc11d2 | 2448 | { |
mjr | 74:822a92bc11d2 | 2449 | // get the value |
mjr | 74:822a92bc11d2 | 2450 | uint8_t v = data[i]; |
mjr | 74:822a92bc11d2 | 2451 | |
mjr | 74:822a92bc11d2 | 2452 | // Validate it. The legal values are 0..49 for brightness |
mjr | 74:822a92bc11d2 | 2453 | // levels, and 128..132 for flash modes. Set anything invalid |
mjr | 74:822a92bc11d2 | 2454 | // to full brightness (48) instead. Note that 49 isn't actually |
mjr | 74:822a92bc11d2 | 2455 | // a valid documented value, but in practice some clients send |
mjr | 74:822a92bc11d2 | 2456 | // this to mean 100% brightness, and the real LedWiz treats it |
mjr | 74:822a92bc11d2 | 2457 | // as such. |
mjr | 74:822a92bc11d2 | 2458 | if ((v > 49 && v < 129) || v > 132) |
mjr | 74:822a92bc11d2 | 2459 | v = 48; |
mjr | 74:822a92bc11d2 | 2460 | |
mjr | 74:822a92bc11d2 | 2461 | // store it |
mjr | 76:7f5912b6340e | 2462 | wizVal[port] = v; |
mjr | 76:7f5912b6340e | 2463 | |
mjr | 76:7f5912b6340e | 2464 | // update the port |
mjr | 76:7f5912b6340e | 2465 | updateLwPort(port); |
mjr | 74:822a92bc11d2 | 2466 | } |
mjr | 74:822a92bc11d2 | 2467 | |
mjr | 76:7f5912b6340e | 2468 | // update 74HC595 outputs |
mjr | 76:7f5912b6340e | 2469 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 2470 | hc595->update(); |
mjr | 74:822a92bc11d2 | 2471 | } |
mjr | 74:822a92bc11d2 | 2472 | |
mjr | 77:0b96f6867312 | 2473 | // --------------------------------------------------------------------------- |
mjr | 77:0b96f6867312 | 2474 | // |
mjr | 77:0b96f6867312 | 2475 | // IR Remote Control transmitter & receiver |
mjr | 77:0b96f6867312 | 2476 | // |
mjr | 77:0b96f6867312 | 2477 | |
mjr | 77:0b96f6867312 | 2478 | // receiver |
mjr | 77:0b96f6867312 | 2479 | IRReceiver *ir_rx; |
mjr | 77:0b96f6867312 | 2480 | |
mjr | 77:0b96f6867312 | 2481 | // transmitter |
mjr | 77:0b96f6867312 | 2482 | IRTransmitter *ir_tx; |
mjr | 77:0b96f6867312 | 2483 | |
mjr | 77:0b96f6867312 | 2484 | // Mapping from IR commands slots in the configuration to "virtual button" |
mjr | 77:0b96f6867312 | 2485 | // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage, |
mjr | 77:0b96f6867312 | 2486 | // we only create virtual buttons on the transmitter object for code slots |
mjr | 77:0b96f6867312 | 2487 | // that are configured for transmission, which includes slots used for TV |
mjr | 77:0b96f6867312 | 2488 | // ON commands and slots that can be triggered by button presses. This |
mjr | 77:0b96f6867312 | 2489 | // means that virtual button numbers won't necessarily match the config |
mjr | 77:0b96f6867312 | 2490 | // slot numbers. This table provides the mapping: |
mjr | 77:0b96f6867312 | 2491 | // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for |
mjr | 77:0b96f6867312 | 2492 | // configuration slot n |
mjr | 77:0b96f6867312 | 2493 | uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES]; |
mjr | 78:1e00b3fa11af | 2494 | |
mjr | 78:1e00b3fa11af | 2495 | // IR transmitter virtual button number for ad hoc IR command. We allocate |
mjr | 78:1e00b3fa11af | 2496 | // one virtual button for sending ad hoc IR codes, such as through the USB |
mjr | 78:1e00b3fa11af | 2497 | // protocol. |
mjr | 78:1e00b3fa11af | 2498 | uint8_t IRAdHocBtn; |
mjr | 78:1e00b3fa11af | 2499 | |
mjr | 78:1e00b3fa11af | 2500 | // Staging area for ad hoc IR commands. It takes multiple messages |
mjr | 78:1e00b3fa11af | 2501 | // to fill out an IR command, so we store the partial command here |
mjr | 78:1e00b3fa11af | 2502 | // while waiting for the rest. |
mjr | 78:1e00b3fa11af | 2503 | static struct |
mjr | 78:1e00b3fa11af | 2504 | { |
mjr | 78:1e00b3fa11af | 2505 | uint8_t protocol; // protocol ID |
mjr | 78:1e00b3fa11af | 2506 | uint64_t code; // code |
mjr | 78:1e00b3fa11af | 2507 | uint8_t dittos : 1; // using dittos? |
mjr | 78:1e00b3fa11af | 2508 | uint8_t ready : 1; // do we have a code ready to transmit? |
mjr | 78:1e00b3fa11af | 2509 | } IRAdHocCmd; |
mjr | 88:98bce687e6c0 | 2510 | |
mjr | 77:0b96f6867312 | 2511 | |
mjr | 77:0b96f6867312 | 2512 | // IR mode timer. In normal mode, this is the time since the last |
mjr | 77:0b96f6867312 | 2513 | // command received; we use this to handle commands with timed effects, |
mjr | 77:0b96f6867312 | 2514 | // such as sending a key to the PC. In learning mode, this is the time |
mjr | 77:0b96f6867312 | 2515 | // since we activated learning mode, which we use to automatically end |
mjr | 77:0b96f6867312 | 2516 | // learning mode if a decodable command isn't received within a reasonable |
mjr | 77:0b96f6867312 | 2517 | // amount of time. |
mjr | 77:0b96f6867312 | 2518 | Timer IRTimer; |
mjr | 77:0b96f6867312 | 2519 | |
mjr | 77:0b96f6867312 | 2520 | // IR Learning Mode. The PC enters learning mode via special function 65 12. |
mjr | 77:0b96f6867312 | 2521 | // The states are: |
mjr | 77:0b96f6867312 | 2522 | // |
mjr | 77:0b96f6867312 | 2523 | // 0 -> normal operation (not in learning mode) |
mjr | 77:0b96f6867312 | 2524 | // 1 -> learning mode; reading raw codes, no command read yet |
mjr | 77:0b96f6867312 | 2525 | // 2 -> learning mode; command received, awaiting auto-repeat |
mjr | 77:0b96f6867312 | 2526 | // 3 -> learning mode; done, command and repeat mode decoded |
mjr | 77:0b96f6867312 | 2527 | // |
mjr | 77:0b96f6867312 | 2528 | // When we enter learning mode, we reset IRTimer to keep track of how long |
mjr | 77:0b96f6867312 | 2529 | // we've been in the mode. This allows the mode to time out if no code is |
mjr | 77:0b96f6867312 | 2530 | // received within a reasonable time. |
mjr | 77:0b96f6867312 | 2531 | uint8_t IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 2532 | |
mjr | 77:0b96f6867312 | 2533 | // Learning mode command received. This stores the first decoded command |
mjr | 77:0b96f6867312 | 2534 | // when in learning mode. For some protocols, we can't just report the |
mjr | 77:0b96f6867312 | 2535 | // first command we receive, because we need to wait for an auto-repeat to |
mjr | 77:0b96f6867312 | 2536 | // determine what format the remote uses for repeats. This stores the first |
mjr | 77:0b96f6867312 | 2537 | // command while we await a repeat. This is necessary for protocols that |
mjr | 77:0b96f6867312 | 2538 | // have "dittos", since some remotes for such protocols use the dittos and |
mjr | 77:0b96f6867312 | 2539 | // some don't; the only way to find out is to read a repeat code and see if |
mjr | 77:0b96f6867312 | 2540 | // it's a ditto or just a repeat of the full code. |
mjr | 77:0b96f6867312 | 2541 | IRCommand learnedIRCode; |
mjr | 77:0b96f6867312 | 2542 | |
mjr | 78:1e00b3fa11af | 2543 | // IR command received, as a config slot index, 1..MAX_IR_CODES. |
mjr | 77:0b96f6867312 | 2544 | // When we receive a command that matches one of our programmed commands, |
mjr | 77:0b96f6867312 | 2545 | // we note the slot here. We also reset the IR timer so that we know how |
mjr | 77:0b96f6867312 | 2546 | // long it's been since the command came in. This lets us handle commands |
mjr | 77:0b96f6867312 | 2547 | // with timed effects, such as PC key input. Note that this is a 1-based |
mjr | 77:0b96f6867312 | 2548 | // index; 0 represents no command. |
mjr | 77:0b96f6867312 | 2549 | uint8_t IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 2550 | |
mjr | 77:0b96f6867312 | 2551 | // "Toggle bit" of last command. Some IR protocols have a toggle bit |
mjr | 77:0b96f6867312 | 2552 | // that distinguishes an auto-repeating key from a key being pressed |
mjr | 77:0b96f6867312 | 2553 | // several times in a row. This records the toggle bit of the last |
mjr | 77:0b96f6867312 | 2554 | // command we received. |
mjr | 77:0b96f6867312 | 2555 | uint8_t lastIRToggle = 0; |
mjr | 77:0b96f6867312 | 2556 | |
mjr | 77:0b96f6867312 | 2557 | // Are we in a gap between successive key presses? When we detect that a |
mjr | 77:0b96f6867312 | 2558 | // key is being pressed multiple times rather than auto-repeated (which we |
mjr | 77:0b96f6867312 | 2559 | // can detect via a toggle bit in some protocols), we'll briefly stop sending |
mjr | 77:0b96f6867312 | 2560 | // the associated key to the PC, so that the PC likewise recognizes the |
mjr | 77:0b96f6867312 | 2561 | // distinct key press. |
mjr | 77:0b96f6867312 | 2562 | uint8_t IRKeyGap = false; |
mjr | 77:0b96f6867312 | 2563 | |
mjr | 78:1e00b3fa11af | 2564 | |
mjr | 77:0b96f6867312 | 2565 | // initialize |
mjr | 77:0b96f6867312 | 2566 | void init_IR(Config &cfg, bool &kbKeys) |
mjr | 77:0b96f6867312 | 2567 | { |
mjr | 77:0b96f6867312 | 2568 | PinName pin; |
mjr | 77:0b96f6867312 | 2569 | |
mjr | 77:0b96f6867312 | 2570 | // start the IR timer |
mjr | 77:0b96f6867312 | 2571 | IRTimer.start(); |
mjr | 77:0b96f6867312 | 2572 | |
mjr | 77:0b96f6867312 | 2573 | // if there's a transmitter, set it up |
mjr | 77:0b96f6867312 | 2574 | if ((pin = wirePinName(cfg.IR.emitter)) != NC) |
mjr | 77:0b96f6867312 | 2575 | { |
mjr | 77:0b96f6867312 | 2576 | // no virtual buttons yet |
mjr | 77:0b96f6867312 | 2577 | int nVirtualButtons = 0; |
mjr | 77:0b96f6867312 | 2578 | memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton)); |
mjr | 77:0b96f6867312 | 2579 | |
mjr | 77:0b96f6867312 | 2580 | // assign virtual buttons slots for TV ON codes |
mjr | 77:0b96f6867312 | 2581 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 2582 | { |
mjr | 77:0b96f6867312 | 2583 | if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0) |
mjr | 77:0b96f6867312 | 2584 | IRConfigSlotToVirtualButton[i] = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 2585 | } |
mjr | 77:0b96f6867312 | 2586 | |
mjr | 77:0b96f6867312 | 2587 | // assign virtual buttons for codes that can be triggered by |
mjr | 77:0b96f6867312 | 2588 | // real button inputs |
mjr | 77:0b96f6867312 | 2589 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 77:0b96f6867312 | 2590 | { |
mjr | 77:0b96f6867312 | 2591 | // get the button |
mjr | 77:0b96f6867312 | 2592 | ButtonCfg &b = cfg.button[i]; |
mjr | 77:0b96f6867312 | 2593 | |
mjr | 77:0b96f6867312 | 2594 | // check the unshifted button |
mjr | 77:0b96f6867312 | 2595 | int c = b.IRCommand - 1; |
mjr | 77:0b96f6867312 | 2596 | if (c >= 0 && c < MAX_IR_CODES |
mjr | 77:0b96f6867312 | 2597 | && IRConfigSlotToVirtualButton[c] == 0xFF) |
mjr | 77:0b96f6867312 | 2598 | IRConfigSlotToVirtualButton[c] = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 2599 | |
mjr | 77:0b96f6867312 | 2600 | // check the shifted button |
mjr | 77:0b96f6867312 | 2601 | c = b.IRCommand2 - 1; |
mjr | 77:0b96f6867312 | 2602 | if (c >= 0 && c < MAX_IR_CODES |
mjr | 77:0b96f6867312 | 2603 | && IRConfigSlotToVirtualButton[c] == 0xFF) |
mjr | 77:0b96f6867312 | 2604 | IRConfigSlotToVirtualButton[c] = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 2605 | } |
mjr | 77:0b96f6867312 | 2606 | |
mjr | 77:0b96f6867312 | 2607 | // allocate an additional virtual button for transmitting ad hoc |
mjr | 77:0b96f6867312 | 2608 | // codes, such as for the "send code" USB API function |
mjr | 78:1e00b3fa11af | 2609 | IRAdHocBtn = nVirtualButtons++; |
mjr | 77:0b96f6867312 | 2610 | |
mjr | 77:0b96f6867312 | 2611 | // create the transmitter |
mjr | 77:0b96f6867312 | 2612 | ir_tx = new IRTransmitter(pin, nVirtualButtons); |
mjr | 77:0b96f6867312 | 2613 | |
mjr | 77:0b96f6867312 | 2614 | // program the commands into the virtual button slots |
mjr | 77:0b96f6867312 | 2615 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 2616 | { |
mjr | 77:0b96f6867312 | 2617 | // if this slot is assigned to a virtual button, program it |
mjr | 77:0b96f6867312 | 2618 | int vb = IRConfigSlotToVirtualButton[i]; |
mjr | 77:0b96f6867312 | 2619 | if (vb != 0xFF) |
mjr | 77:0b96f6867312 | 2620 | { |
mjr | 77:0b96f6867312 | 2621 | IRCommandCfg &cb = cfg.IRCommand[i]; |
mjr | 77:0b96f6867312 | 2622 | uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32); |
mjr | 77:0b96f6867312 | 2623 | bool dittos = (cb.flags & IRFlagDittos) != 0; |
mjr | 77:0b96f6867312 | 2624 | ir_tx->programButton(vb, cb.protocol, dittos, code); |
mjr | 77:0b96f6867312 | 2625 | } |
mjr | 77:0b96f6867312 | 2626 | } |
mjr | 77:0b96f6867312 | 2627 | } |
mjr | 77:0b96f6867312 | 2628 | |
mjr | 77:0b96f6867312 | 2629 | // if there's a receiver, set it up |
mjr | 77:0b96f6867312 | 2630 | if ((pin = wirePinName(cfg.IR.sensor)) != NC) |
mjr | 77:0b96f6867312 | 2631 | { |
mjr | 77:0b96f6867312 | 2632 | // create the receiver |
mjr | 77:0b96f6867312 | 2633 | ir_rx = new IRReceiver(pin, 32); |
mjr | 77:0b96f6867312 | 2634 | |
mjr | 77:0b96f6867312 | 2635 | // connect the transmitter (if any) to the receiver, so that |
mjr | 77:0b96f6867312 | 2636 | // the receiver can suppress reception of our own transmissions |
mjr | 77:0b96f6867312 | 2637 | ir_rx->setTransmitter(ir_tx); |
mjr | 77:0b96f6867312 | 2638 | |
mjr | 77:0b96f6867312 | 2639 | // enable it |
mjr | 77:0b96f6867312 | 2640 | ir_rx->enable(); |
mjr | 77:0b96f6867312 | 2641 | |
mjr | 77:0b96f6867312 | 2642 | // Check the IR command slots to see if any slots are configured |
mjr | 77:0b96f6867312 | 2643 | // to send a keyboard key on receiving an IR command. If any are, |
mjr | 77:0b96f6867312 | 2644 | // tell the caller that we need a USB keyboard interface. |
mjr | 77:0b96f6867312 | 2645 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 2646 | { |
mjr | 77:0b96f6867312 | 2647 | IRCommandCfg &cb = cfg.IRCommand[i]; |
mjr | 77:0b96f6867312 | 2648 | if (cb.protocol != 0 |
mjr | 77:0b96f6867312 | 2649 | && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia)) |
mjr | 77:0b96f6867312 | 2650 | { |
mjr | 77:0b96f6867312 | 2651 | kbKeys = true; |
mjr | 77:0b96f6867312 | 2652 | break; |
mjr | 77:0b96f6867312 | 2653 | } |
mjr | 77:0b96f6867312 | 2654 | } |
mjr | 77:0b96f6867312 | 2655 | } |
mjr | 77:0b96f6867312 | 2656 | } |
mjr | 77:0b96f6867312 | 2657 | |
mjr | 77:0b96f6867312 | 2658 | // Press or release a button with an assigned IR function. 'cmd' |
mjr | 77:0b96f6867312 | 2659 | // is the command slot number (1..MAX_IR_CODES) assigned to the button. |
mjr | 77:0b96f6867312 | 2660 | void IR_buttonChange(uint8_t cmd, bool pressed) |
mjr | 77:0b96f6867312 | 2661 | { |
mjr | 77:0b96f6867312 | 2662 | // only proceed if there's an IR transmitter attached |
mjr | 77:0b96f6867312 | 2663 | if (ir_tx != 0) |
mjr | 77:0b96f6867312 | 2664 | { |
mjr | 77:0b96f6867312 | 2665 | // adjust the command slot to a zero-based index |
mjr | 77:0b96f6867312 | 2666 | int slot = cmd - 1; |
mjr | 77:0b96f6867312 | 2667 | |
mjr | 77:0b96f6867312 | 2668 | // press or release the virtual button |
mjr | 77:0b96f6867312 | 2669 | ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed); |
mjr | 77:0b96f6867312 | 2670 | } |
mjr | 77:0b96f6867312 | 2671 | } |
mjr | 77:0b96f6867312 | 2672 | |
mjr | 78:1e00b3fa11af | 2673 | // Process IR input and output |
mjr | 77:0b96f6867312 | 2674 | void process_IR(Config &cfg, USBJoystick &js) |
mjr | 77:0b96f6867312 | 2675 | { |
mjr | 78:1e00b3fa11af | 2676 | // check for transmitter tasks, if there's a transmitter |
mjr | 78:1e00b3fa11af | 2677 | if (ir_tx != 0) |
mjr | 77:0b96f6867312 | 2678 | { |
mjr | 78:1e00b3fa11af | 2679 | // If we're not currently sending, and an ad hoc IR command |
mjr | 78:1e00b3fa11af | 2680 | // is ready to send, send it. |
mjr | 78:1e00b3fa11af | 2681 | if (!ir_tx->isSending() && IRAdHocCmd.ready) |
mjr | 78:1e00b3fa11af | 2682 | { |
mjr | 78:1e00b3fa11af | 2683 | // program the command into the transmitter virtual button |
mjr | 78:1e00b3fa11af | 2684 | // that we reserved for ad hoc commands |
mjr | 78:1e00b3fa11af | 2685 | ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol, |
mjr | 78:1e00b3fa11af | 2686 | IRAdHocCmd.dittos, IRAdHocCmd.code); |
mjr | 78:1e00b3fa11af | 2687 | |
mjr | 78:1e00b3fa11af | 2688 | // send the command - just pulse the button to send it once |
mjr | 78:1e00b3fa11af | 2689 | ir_tx->pushButton(IRAdHocBtn, true); |
mjr | 78:1e00b3fa11af | 2690 | ir_tx->pushButton(IRAdHocBtn, false); |
mjr | 78:1e00b3fa11af | 2691 | |
mjr | 78:1e00b3fa11af | 2692 | // we've sent the command, so clear the 'ready' flag |
mjr | 78:1e00b3fa11af | 2693 | IRAdHocCmd.ready = false; |
mjr | 78:1e00b3fa11af | 2694 | } |
mjr | 77:0b96f6867312 | 2695 | } |
mjr | 78:1e00b3fa11af | 2696 | |
mjr | 78:1e00b3fa11af | 2697 | // check for receiver tasks, if there's a receiver |
mjr | 78:1e00b3fa11af | 2698 | if (ir_rx != 0) |
mjr | 77:0b96f6867312 | 2699 | { |
mjr | 78:1e00b3fa11af | 2700 | // Time out any received command |
mjr | 78:1e00b3fa11af | 2701 | if (IRCommandIn != 0) |
mjr | 78:1e00b3fa11af | 2702 | { |
mjr | 80:94dc2946871b | 2703 | // Time out commands after 200ms without a repeat signal. |
mjr | 80:94dc2946871b | 2704 | // Time out the inter-key gap after 50ms. |
mjr | 78:1e00b3fa11af | 2705 | uint32_t t = IRTimer.read_us(); |
mjr | 80:94dc2946871b | 2706 | if (t > 200000) |
mjr | 78:1e00b3fa11af | 2707 | IRCommandIn = 0; |
mjr | 80:94dc2946871b | 2708 | else if (t > 50000) |
mjr | 78:1e00b3fa11af | 2709 | IRKeyGap = false; |
mjr | 78:1e00b3fa11af | 2710 | } |
mjr | 78:1e00b3fa11af | 2711 | |
mjr | 78:1e00b3fa11af | 2712 | // Check if we're in learning mode |
mjr | 78:1e00b3fa11af | 2713 | if (IRLearningMode != 0) |
mjr | 78:1e00b3fa11af | 2714 | { |
mjr | 78:1e00b3fa11af | 2715 | // Learning mode. Read raw inputs from the IR sensor and |
mjr | 78:1e00b3fa11af | 2716 | // forward them to the PC via USB reports, up to the report |
mjr | 78:1e00b3fa11af | 2717 | // limit. |
mjr | 78:1e00b3fa11af | 2718 | const int nmax = USBJoystick::maxRawIR; |
mjr | 78:1e00b3fa11af | 2719 | uint16_t raw[nmax]; |
mjr | 78:1e00b3fa11af | 2720 | int n; |
mjr | 78:1e00b3fa11af | 2721 | for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ; |
mjr | 77:0b96f6867312 | 2722 | |
mjr | 78:1e00b3fa11af | 2723 | // if we read any raw samples, report them |
mjr | 78:1e00b3fa11af | 2724 | if (n != 0) |
mjr | 78:1e00b3fa11af | 2725 | js.reportRawIR(n, raw); |
mjr | 77:0b96f6867312 | 2726 | |
mjr | 78:1e00b3fa11af | 2727 | // check for a command |
mjr | 78:1e00b3fa11af | 2728 | IRCommand c; |
mjr | 78:1e00b3fa11af | 2729 | if (ir_rx->readCommand(c)) |
mjr | 78:1e00b3fa11af | 2730 | { |
mjr | 78:1e00b3fa11af | 2731 | // check the current learning state |
mjr | 78:1e00b3fa11af | 2732 | switch (IRLearningMode) |
mjr | 78:1e00b3fa11af | 2733 | { |
mjr | 78:1e00b3fa11af | 2734 | case 1: |
mjr | 78:1e00b3fa11af | 2735 | // Initial state, waiting for the first decoded command. |
mjr | 78:1e00b3fa11af | 2736 | // This is it. |
mjr | 78:1e00b3fa11af | 2737 | learnedIRCode = c; |
mjr | 78:1e00b3fa11af | 2738 | |
mjr | 78:1e00b3fa11af | 2739 | // Check if we need additional information. If the |
mjr | 78:1e00b3fa11af | 2740 | // protocol supports dittos, we have to wait for a repeat |
mjr | 78:1e00b3fa11af | 2741 | // to see if the remote actually uses the dittos, since |
mjr | 78:1e00b3fa11af | 2742 | // some implementations of such protocols use the dittos |
mjr | 78:1e00b3fa11af | 2743 | // while others just send repeated full codes. Otherwise, |
mjr | 78:1e00b3fa11af | 2744 | // all we need is the initial code, so we're done. |
mjr | 78:1e00b3fa11af | 2745 | IRLearningMode = (c.hasDittos ? 2 : 3); |
mjr | 78:1e00b3fa11af | 2746 | break; |
mjr | 78:1e00b3fa11af | 2747 | |
mjr | 78:1e00b3fa11af | 2748 | case 2: |
mjr | 78:1e00b3fa11af | 2749 | // Code received, awaiting auto-repeat information. If |
mjr | 78:1e00b3fa11af | 2750 | // the protocol has dittos, check to see if we got a ditto: |
mjr | 78:1e00b3fa11af | 2751 | // |
mjr | 78:1e00b3fa11af | 2752 | // - If we received a ditto in the same protocol as the |
mjr | 78:1e00b3fa11af | 2753 | // prior command, the remote uses dittos. |
mjr | 78:1e00b3fa11af | 2754 | // |
mjr | 78:1e00b3fa11af | 2755 | // - If we received a repeat of the prior command (not a |
mjr | 78:1e00b3fa11af | 2756 | // ditto, but a repeat of the full code), the remote |
mjr | 78:1e00b3fa11af | 2757 | // doesn't use dittos even though the protocol supports |
mjr | 78:1e00b3fa11af | 2758 | // them. |
mjr | 78:1e00b3fa11af | 2759 | // |
mjr | 78:1e00b3fa11af | 2760 | // - Otherwise, it's not an auto-repeat at all, so we |
mjr | 78:1e00b3fa11af | 2761 | // can't decide one way or the other on dittos: start |
mjr | 78:1e00b3fa11af | 2762 | // over. |
mjr | 78:1e00b3fa11af | 2763 | if (c.proId == learnedIRCode.proId |
mjr | 78:1e00b3fa11af | 2764 | && c.hasDittos |
mjr | 78:1e00b3fa11af | 2765 | && c.ditto) |
mjr | 78:1e00b3fa11af | 2766 | { |
mjr | 78:1e00b3fa11af | 2767 | // success - the remote uses dittos |
mjr | 78:1e00b3fa11af | 2768 | IRLearningMode = 3; |
mjr | 78:1e00b3fa11af | 2769 | } |
mjr | 78:1e00b3fa11af | 2770 | else if (c.proId == learnedIRCode.proId |
mjr | 78:1e00b3fa11af | 2771 | && c.hasDittos |
mjr | 78:1e00b3fa11af | 2772 | && !c.ditto |
mjr | 78:1e00b3fa11af | 2773 | && c.code == learnedIRCode.code) |
mjr | 78:1e00b3fa11af | 2774 | { |
mjr | 78:1e00b3fa11af | 2775 | // success - it's a repeat of the last code, so |
mjr | 78:1e00b3fa11af | 2776 | // the remote doesn't use dittos even though the |
mjr | 78:1e00b3fa11af | 2777 | // protocol supports them |
mjr | 78:1e00b3fa11af | 2778 | learnedIRCode.hasDittos = false; |
mjr | 78:1e00b3fa11af | 2779 | IRLearningMode = 3; |
mjr | 78:1e00b3fa11af | 2780 | } |
mjr | 78:1e00b3fa11af | 2781 | else |
mjr | 78:1e00b3fa11af | 2782 | { |
mjr | 78:1e00b3fa11af | 2783 | // It's not a ditto and not a full repeat of the |
mjr | 78:1e00b3fa11af | 2784 | // last code, so it's either a new key, or some kind |
mjr | 78:1e00b3fa11af | 2785 | // of multi-code key encoding that we don't recognize. |
mjr | 78:1e00b3fa11af | 2786 | // We can't use this code, so start over. |
mjr | 78:1e00b3fa11af | 2787 | IRLearningMode = 1; |
mjr | 78:1e00b3fa11af | 2788 | } |
mjr | 78:1e00b3fa11af | 2789 | break; |
mjr | 78:1e00b3fa11af | 2790 | } |
mjr | 77:0b96f6867312 | 2791 | |
mjr | 78:1e00b3fa11af | 2792 | // If we ended in state 3, we've successfully decoded |
mjr | 78:1e00b3fa11af | 2793 | // the transmission. Report the decoded data and terminate |
mjr | 78:1e00b3fa11af | 2794 | // learning mode. |
mjr | 78:1e00b3fa11af | 2795 | if (IRLearningMode == 3) |
mjr | 77:0b96f6867312 | 2796 | { |
mjr | 78:1e00b3fa11af | 2797 | // figure the flags: |
mjr | 78:1e00b3fa11af | 2798 | // 0x02 -> dittos |
mjr | 78:1e00b3fa11af | 2799 | uint8_t flags = 0; |
mjr | 78:1e00b3fa11af | 2800 | if (learnedIRCode.hasDittos) |
mjr | 78:1e00b3fa11af | 2801 | flags |= 0x02; |
mjr | 78:1e00b3fa11af | 2802 | |
mjr | 78:1e00b3fa11af | 2803 | // report the code |
mjr | 78:1e00b3fa11af | 2804 | js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code); |
mjr | 78:1e00b3fa11af | 2805 | |
mjr | 78:1e00b3fa11af | 2806 | // exit learning mode |
mjr | 78:1e00b3fa11af | 2807 | IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 2808 | } |
mjr | 77:0b96f6867312 | 2809 | } |
mjr | 77:0b96f6867312 | 2810 | |
mjr | 78:1e00b3fa11af | 2811 | // time out of IR learning mode if it's been too long |
mjr | 78:1e00b3fa11af | 2812 | if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L) |
mjr | 77:0b96f6867312 | 2813 | { |
mjr | 78:1e00b3fa11af | 2814 | // report the termination by sending a raw IR report with |
mjr | 78:1e00b3fa11af | 2815 | // zero data elements |
mjr | 78:1e00b3fa11af | 2816 | js.reportRawIR(0, 0); |
mjr | 78:1e00b3fa11af | 2817 | |
mjr | 78:1e00b3fa11af | 2818 | |
mjr | 78:1e00b3fa11af | 2819 | // cancel learning mode |
mjr | 77:0b96f6867312 | 2820 | IRLearningMode = 0; |
mjr | 77:0b96f6867312 | 2821 | } |
mjr | 77:0b96f6867312 | 2822 | } |
mjr | 78:1e00b3fa11af | 2823 | else |
mjr | 77:0b96f6867312 | 2824 | { |
mjr | 78:1e00b3fa11af | 2825 | // Not in learning mode. We don't care about the raw signals; |
mjr | 78:1e00b3fa11af | 2826 | // just run them through the protocol decoders. |
mjr | 78:1e00b3fa11af | 2827 | ir_rx->process(); |
mjr | 78:1e00b3fa11af | 2828 | |
mjr | 78:1e00b3fa11af | 2829 | // Check for decoded commands. Keep going until all commands |
mjr | 78:1e00b3fa11af | 2830 | // have been read. |
mjr | 78:1e00b3fa11af | 2831 | IRCommand c; |
mjr | 78:1e00b3fa11af | 2832 | while (ir_rx->readCommand(c)) |
mjr | 77:0b96f6867312 | 2833 | { |
mjr | 78:1e00b3fa11af | 2834 | // We received a decoded command. Determine if it's a repeat, |
mjr | 78:1e00b3fa11af | 2835 | // and if so, try to determine whether it's an auto-repeat (due |
mjr | 78:1e00b3fa11af | 2836 | // to the remote key being held down) or a distinct new press |
mjr | 78:1e00b3fa11af | 2837 | // on the same key as last time. The distinction is significant |
mjr | 78:1e00b3fa11af | 2838 | // because it affects the auto-repeat behavior of the PC key |
mjr | 78:1e00b3fa11af | 2839 | // input. An auto-repeat represents a key being held down on |
mjr | 78:1e00b3fa11af | 2840 | // the remote, which we want to translate to a (virtual) key |
mjr | 78:1e00b3fa11af | 2841 | // being held down on the PC keyboard; a distinct key press on |
mjr | 78:1e00b3fa11af | 2842 | // the remote translates to a distinct key press on the PC. |
mjr | 78:1e00b3fa11af | 2843 | // |
mjr | 78:1e00b3fa11af | 2844 | // It can only be a repeat if there's a prior command that |
mjr | 78:1e00b3fa11af | 2845 | // hasn't timed out yet, so start by checking for a previous |
mjr | 78:1e00b3fa11af | 2846 | // command. |
mjr | 78:1e00b3fa11af | 2847 | bool repeat = false, autoRepeat = false; |
mjr | 78:1e00b3fa11af | 2848 | if (IRCommandIn != 0) |
mjr | 77:0b96f6867312 | 2849 | { |
mjr | 78:1e00b3fa11af | 2850 | // We have a command in progress. Check to see if the |
mjr | 78:1e00b3fa11af | 2851 | // new command is a repeat of the previous command. Check |
mjr | 78:1e00b3fa11af | 2852 | // first to see if it's a "ditto", which explicitly represents |
mjr | 78:1e00b3fa11af | 2853 | // an auto-repeat of the last command. |
mjr | 78:1e00b3fa11af | 2854 | IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1]; |
mjr | 78:1e00b3fa11af | 2855 | if (c.ditto) |
mjr | 78:1e00b3fa11af | 2856 | { |
mjr | 78:1e00b3fa11af | 2857 | // We received a ditto. Dittos are always auto- |
mjr | 78:1e00b3fa11af | 2858 | // repeats, so it's an auto-repeat as long as the |
mjr | 78:1e00b3fa11af | 2859 | // ditto is in the same protocol as the last command. |
mjr | 78:1e00b3fa11af | 2860 | // If the ditto is in a new protocol, the ditto can't |
mjr | 78:1e00b3fa11af | 2861 | // be for the last command we saw, because a ditto |
mjr | 78:1e00b3fa11af | 2862 | // never changes protocols from its antecedent. In |
mjr | 78:1e00b3fa11af | 2863 | // such a case, we must have missed the antecedent |
mjr | 78:1e00b3fa11af | 2864 | // command and thus don't know what's being repeated. |
mjr | 78:1e00b3fa11af | 2865 | repeat = autoRepeat = (c.proId == cmdcfg.protocol); |
mjr | 78:1e00b3fa11af | 2866 | } |
mjr | 78:1e00b3fa11af | 2867 | else |
mjr | 78:1e00b3fa11af | 2868 | { |
mjr | 78:1e00b3fa11af | 2869 | // It's not a ditto. The new command is a repeat if |
mjr | 78:1e00b3fa11af | 2870 | // it matches the protocol and command code of the |
mjr | 78:1e00b3fa11af | 2871 | // prior command. |
mjr | 78:1e00b3fa11af | 2872 | repeat = (c.proId == cmdcfg.protocol |
mjr | 78:1e00b3fa11af | 2873 | && uint32_t(c.code) == cmdcfg.code.lo |
mjr | 78:1e00b3fa11af | 2874 | && uint32_t(c.code >> 32) == cmdcfg.code.hi); |
mjr | 78:1e00b3fa11af | 2875 | |
mjr | 78:1e00b3fa11af | 2876 | // If the command is a repeat, try to determine whether |
mjr | 78:1e00b3fa11af | 2877 | // it's an auto-repeat or a new press on the same key. |
mjr | 78:1e00b3fa11af | 2878 | // If the protocol uses dittos, it's definitely a new |
mjr | 78:1e00b3fa11af | 2879 | // key press, because an auto-repeat would have used a |
mjr | 78:1e00b3fa11af | 2880 | // ditto. For a protocol that doesn't use dittos, both |
mjr | 78:1e00b3fa11af | 2881 | // an auto-repeat and a new key press just send the key |
mjr | 78:1e00b3fa11af | 2882 | // code again, so we can't tell the difference based on |
mjr | 78:1e00b3fa11af | 2883 | // that alone. But if the protocol has a toggle bit, we |
mjr | 78:1e00b3fa11af | 2884 | // can tell by the toggle bit value: a new key press has |
mjr | 78:1e00b3fa11af | 2885 | // the opposite toggle value as the last key press, while |
mjr | 78:1e00b3fa11af | 2886 | // an auto-repeat has the same toggle. Note that if the |
mjr | 78:1e00b3fa11af | 2887 | // protocol doesn't use toggle bits, the toggle value |
mjr | 78:1e00b3fa11af | 2888 | // will always be the same, so we'll simply always treat |
mjr | 78:1e00b3fa11af | 2889 | // any repeat as an auto-repeat. Many protocols simply |
mjr | 78:1e00b3fa11af | 2890 | // provide no way to distinguish the two, so in such |
mjr | 78:1e00b3fa11af | 2891 | // cases it's consistent with the native implementations |
mjr | 78:1e00b3fa11af | 2892 | // to treat any repeat as an auto-repeat. |
mjr | 78:1e00b3fa11af | 2893 | autoRepeat = |
mjr | 78:1e00b3fa11af | 2894 | repeat |
mjr | 78:1e00b3fa11af | 2895 | && !(cmdcfg.flags & IRFlagDittos) |
mjr | 78:1e00b3fa11af | 2896 | && c.toggle == lastIRToggle; |
mjr | 78:1e00b3fa11af | 2897 | } |
mjr | 78:1e00b3fa11af | 2898 | } |
mjr | 78:1e00b3fa11af | 2899 | |
mjr | 78:1e00b3fa11af | 2900 | // Check to see if it's a repeat of any kind |
mjr | 78:1e00b3fa11af | 2901 | if (repeat) |
mjr | 78:1e00b3fa11af | 2902 | { |
mjr | 78:1e00b3fa11af | 2903 | // It's a repeat. If it's not an auto-repeat, it's a |
mjr | 78:1e00b3fa11af | 2904 | // new distinct key press, so we need to send the PC a |
mjr | 78:1e00b3fa11af | 2905 | // momentary gap where we're not sending the same key, |
mjr | 78:1e00b3fa11af | 2906 | // so that the PC also recognizes this as a distinct |
mjr | 78:1e00b3fa11af | 2907 | // key press event. |
mjr | 78:1e00b3fa11af | 2908 | if (!autoRepeat) |
mjr | 78:1e00b3fa11af | 2909 | IRKeyGap = true; |
mjr | 78:1e00b3fa11af | 2910 | |
mjr | 78:1e00b3fa11af | 2911 | // restart the key-up timer |
mjr | 78:1e00b3fa11af | 2912 | IRTimer.reset(); |
mjr | 78:1e00b3fa11af | 2913 | } |
mjr | 78:1e00b3fa11af | 2914 | else if (c.ditto) |
mjr | 78:1e00b3fa11af | 2915 | { |
mjr | 78:1e00b3fa11af | 2916 | // It's a ditto, but not a repeat of the last command. |
mjr | 78:1e00b3fa11af | 2917 | // But a ditto doesn't contain any information of its own |
mjr | 78:1e00b3fa11af | 2918 | // on the command being repeated, so given that it's not |
mjr | 78:1e00b3fa11af | 2919 | // our last command, we can't infer what command the ditto |
mjr | 78:1e00b3fa11af | 2920 | // is for and thus can't make sense of it. We have to |
mjr | 78:1e00b3fa11af | 2921 | // simply ignore it and wait for the sender to start with |
mjr | 78:1e00b3fa11af | 2922 | // a full command for a new key press. |
mjr | 78:1e00b3fa11af | 2923 | IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 2924 | } |
mjr | 77:0b96f6867312 | 2925 | else |
mjr | 77:0b96f6867312 | 2926 | { |
mjr | 78:1e00b3fa11af | 2927 | // It's not a repeat, so the last command is no longer |
mjr | 78:1e00b3fa11af | 2928 | // in effect (regardless of whether we find a match for |
mjr | 78:1e00b3fa11af | 2929 | // the new command). |
mjr | 78:1e00b3fa11af | 2930 | IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 2931 | |
mjr | 78:1e00b3fa11af | 2932 | // Check to see if we recognize the new command, by |
mjr | 78:1e00b3fa11af | 2933 | // searching for a match in our learned code list. |
mjr | 78:1e00b3fa11af | 2934 | for (int i = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 2935 | { |
mjr | 78:1e00b3fa11af | 2936 | // if the protocol and command code from the code |
mjr | 78:1e00b3fa11af | 2937 | // list both match the input, it's a match |
mjr | 78:1e00b3fa11af | 2938 | IRCommandCfg &cmdcfg = cfg.IRCommand[i]; |
mjr | 78:1e00b3fa11af | 2939 | if (cmdcfg.protocol == c.proId |
mjr | 78:1e00b3fa11af | 2940 | && cmdcfg.code.lo == uint32_t(c.code) |
mjr | 78:1e00b3fa11af | 2941 | && cmdcfg.code.hi == uint32_t(c.code >> 32)) |
mjr | 78:1e00b3fa11af | 2942 | { |
mjr | 78:1e00b3fa11af | 2943 | // Found it! Make this the last command, and |
mjr | 78:1e00b3fa11af | 2944 | // remember the starting time. |
mjr | 78:1e00b3fa11af | 2945 | IRCommandIn = i + 1; |
mjr | 78:1e00b3fa11af | 2946 | lastIRToggle = c.toggle; |
mjr | 78:1e00b3fa11af | 2947 | IRTimer.reset(); |
mjr | 78:1e00b3fa11af | 2948 | |
mjr | 78:1e00b3fa11af | 2949 | // no need to keep searching |
mjr | 78:1e00b3fa11af | 2950 | break; |
mjr | 78:1e00b3fa11af | 2951 | } |
mjr | 77:0b96f6867312 | 2952 | } |
mjr | 77:0b96f6867312 | 2953 | } |
mjr | 77:0b96f6867312 | 2954 | } |
mjr | 77:0b96f6867312 | 2955 | } |
mjr | 77:0b96f6867312 | 2956 | } |
mjr | 77:0b96f6867312 | 2957 | } |
mjr | 77:0b96f6867312 | 2958 | |
mjr | 74:822a92bc11d2 | 2959 | |
mjr | 11:bd9da7088e6e | 2960 | // --------------------------------------------------------------------------- |
mjr | 11:bd9da7088e6e | 2961 | // |
mjr | 11:bd9da7088e6e | 2962 | // Button input |
mjr | 11:bd9da7088e6e | 2963 | // |
mjr | 11:bd9da7088e6e | 2964 | |
mjr | 18:5e890ebd0023 | 2965 | // button state |
mjr | 18:5e890ebd0023 | 2966 | struct ButtonState |
mjr | 18:5e890ebd0023 | 2967 | { |
mjr | 38:091e511ce8a0 | 2968 | ButtonState() |
mjr | 38:091e511ce8a0 | 2969 | { |
mjr | 53:9b2611964afc | 2970 | physState = logState = prevLogState = 0; |
mjr | 53:9b2611964afc | 2971 | virtState = 0; |
mjr | 53:9b2611964afc | 2972 | dbState = 0; |
mjr | 38:091e511ce8a0 | 2973 | pulseState = 0; |
mjr | 53:9b2611964afc | 2974 | pulseTime = 0; |
mjr | 38:091e511ce8a0 | 2975 | } |
mjr | 35:e959ffba78fd | 2976 | |
mjr | 53:9b2611964afc | 2977 | // "Virtually" press or un-press the button. This can be used to |
mjr | 53:9b2611964afc | 2978 | // control the button state via a software (virtual) source, such as |
mjr | 53:9b2611964afc | 2979 | // the ZB Launch Ball feature. |
mjr | 53:9b2611964afc | 2980 | // |
mjr | 53:9b2611964afc | 2981 | // To allow sharing of one button by multiple virtual sources, each |
mjr | 53:9b2611964afc | 2982 | // virtual source must keep track of its own state internally, and |
mjr | 53:9b2611964afc | 2983 | // only call this routine to CHANGE the state. This is because calls |
mjr | 53:9b2611964afc | 2984 | // to this routine are additive: turning the button ON twice will |
mjr | 53:9b2611964afc | 2985 | // require turning it OFF twice before it actually turns off. |
mjr | 53:9b2611964afc | 2986 | void virtPress(bool on) |
mjr | 53:9b2611964afc | 2987 | { |
mjr | 53:9b2611964afc | 2988 | // Increment or decrement the current state |
mjr | 53:9b2611964afc | 2989 | virtState += on ? 1 : -1; |
mjr | 53:9b2611964afc | 2990 | } |
mjr | 53:9b2611964afc | 2991 | |
mjr | 53:9b2611964afc | 2992 | // DigitalIn for the button, if connected to a physical input |
mjr | 73:4e8ce0b18915 | 2993 | TinyDigitalIn di; |
mjr | 38:091e511ce8a0 | 2994 | |
mjr | 65:739875521aae | 2995 | // Time of last pulse state transition. |
mjr | 65:739875521aae | 2996 | // |
mjr | 65:739875521aae | 2997 | // Each state change sticks for a minimum period; when the timer expires, |
mjr | 65:739875521aae | 2998 | // if the underlying physical switch is in a different state, we switch |
mjr | 65:739875521aae | 2999 | // to the next state and restart the timer. pulseTime is the time remaining |
mjr | 65:739875521aae | 3000 | // remaining before we can make another state transition, in microseconds. |
mjr | 65:739875521aae | 3001 | // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...; |
mjr | 65:739875521aae | 3002 | // this guarantees that the parity of the pulse count always matches the |
mjr | 65:739875521aae | 3003 | // current physical switch state when the latter is stable, which makes |
mjr | 65:739875521aae | 3004 | // it impossible to "trick" the host by rapidly toggling the switch state. |
mjr | 65:739875521aae | 3005 | // (On my original Pinscape cabinet, I had a hardware pulse generator |
mjr | 65:739875521aae | 3006 | // for coin door, and that *was* possible to trick by rapid toggling. |
mjr | 65:739875521aae | 3007 | // This software system can't be fooled that way.) |
mjr | 65:739875521aae | 3008 | uint32_t pulseTime; |
mjr | 18:5e890ebd0023 | 3009 | |
mjr | 65:739875521aae | 3010 | // Config key index. This points to the ButtonCfg structure in the |
mjr | 65:739875521aae | 3011 | // configuration that contains the PC key mapping for the button. |
mjr | 65:739875521aae | 3012 | uint8_t cfgIndex; |
mjr | 53:9b2611964afc | 3013 | |
mjr | 53:9b2611964afc | 3014 | // Virtual press state. This is used to simulate pressing the button via |
mjr | 53:9b2611964afc | 3015 | // software inputs rather than physical inputs. To allow one button to be |
mjr | 53:9b2611964afc | 3016 | // controlled by mulitple software sources, each source should keep track |
mjr | 53:9b2611964afc | 3017 | // of its own virtual state for the button independently, and then INCREMENT |
mjr | 53:9b2611964afc | 3018 | // this variable when the source's state transitions from off to on, and |
mjr | 53:9b2611964afc | 3019 | // DECREMENT it when the source's state transitions from on to off. That |
mjr | 53:9b2611964afc | 3020 | // will make the button's pressed state the logical OR of all of the virtual |
mjr | 53:9b2611964afc | 3021 | // and physical source states. |
mjr | 53:9b2611964afc | 3022 | uint8_t virtState; |
mjr | 38:091e511ce8a0 | 3023 | |
mjr | 38:091e511ce8a0 | 3024 | // Debounce history. On each scan, we shift in a 1 bit to the lsb if |
mjr | 38:091e511ce8a0 | 3025 | // the physical key is reporting ON, and shift in a 0 bit if the physical |
mjr | 38:091e511ce8a0 | 3026 | // key is reporting OFF. We consider the key to have a new stable state |
mjr | 38:091e511ce8a0 | 3027 | // if we have N consecutive 0's or 1's in the low N bits (where N is |
mjr | 38:091e511ce8a0 | 3028 | // a parameter that determines how long we wait for transients to settle). |
mjr | 53:9b2611964afc | 3029 | uint8_t dbState; |
mjr | 38:091e511ce8a0 | 3030 | |
mjr | 65:739875521aae | 3031 | // current PHYSICAL on/off state, after debouncing |
mjr | 65:739875521aae | 3032 | uint8_t physState : 1; |
mjr | 65:739875521aae | 3033 | |
mjr | 65:739875521aae | 3034 | // current LOGICAL on/off state as reported to the host. |
mjr | 65:739875521aae | 3035 | uint8_t logState : 1; |
mjr | 65:739875521aae | 3036 | |
mjr | 79:682ae3171a08 | 3037 | // Previous logical on/off state, when keys were last processed for USB |
mjr | 79:682ae3171a08 | 3038 | // reports and local effects. This lets us detect edges (transitions) |
mjr | 79:682ae3171a08 | 3039 | // in the logical state, for effects that are triggered when the state |
mjr | 79:682ae3171a08 | 3040 | // changes rather than merely by the button being on or off. |
mjr | 65:739875521aae | 3041 | uint8_t prevLogState : 1; |
mjr | 65:739875521aae | 3042 | |
mjr | 65:739875521aae | 3043 | // Pulse state |
mjr | 65:739875521aae | 3044 | // |
mjr | 65:739875521aae | 3045 | // A button in pulse mode (selected via the config flags for the button) |
mjr | 65:739875521aae | 3046 | // transmits a brief logical button press and release each time the attached |
mjr | 65:739875521aae | 3047 | // physical switch changes state. This is useful for cases where the host |
mjr | 65:739875521aae | 3048 | // expects a key press for each change in the state of the physical switch. |
mjr | 65:739875521aae | 3049 | // The canonical example is the Coin Door switch in VPinMAME, which requires |
mjr | 65:739875521aae | 3050 | // pressing the END key to toggle the open/closed state. This software design |
mjr | 65:739875521aae | 3051 | // isn't easily implemented in a physical coin door, though; the simplest |
mjr | 65:739875521aae | 3052 | // physical sensor for the coin door state is a switch that's on when the |
mjr | 65:739875521aae | 3053 | // door is open and off when the door is closed (or vice versa, but in either |
mjr | 65:739875521aae | 3054 | // case, the switch state corresponds to the current state of the door at any |
mjr | 65:739875521aae | 3055 | // given time, rather than pulsing on state changes). The "pulse mode" |
mjr | 79:682ae3171a08 | 3056 | // option bridges this gap by generating a toggle key event each time |
mjr | 65:739875521aae | 3057 | // there's a change to the physical switch's state. |
mjr | 38:091e511ce8a0 | 3058 | // |
mjr | 38:091e511ce8a0 | 3059 | // Pulse state: |
mjr | 38:091e511ce8a0 | 3060 | // 0 -> not a pulse switch - logical key state equals physical switch state |
mjr | 38:091e511ce8a0 | 3061 | // 1 -> off |
mjr | 38:091e511ce8a0 | 3062 | // 2 -> transitioning off-on |
mjr | 38:091e511ce8a0 | 3063 | // 3 -> on |
mjr | 38:091e511ce8a0 | 3064 | // 4 -> transitioning on-off |
mjr | 65:739875521aae | 3065 | uint8_t pulseState : 3; // 5 states -> we need 3 bits |
mjr | 65:739875521aae | 3066 | |
mjr | 65:739875521aae | 3067 | } __attribute__((packed)); |
mjr | 65:739875521aae | 3068 | |
mjr | 65:739875521aae | 3069 | ButtonState *buttonState; // live button slots, allocated on startup |
mjr | 65:739875521aae | 3070 | int8_t nButtons; // number of live button slots allocated |
mjr | 65:739875521aae | 3071 | int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused |
mjr | 18:5e890ebd0023 | 3072 | |
mjr | 66:2e3583fbd2f4 | 3073 | // Shift button state |
mjr | 66:2e3583fbd2f4 | 3074 | struct |
mjr | 66:2e3583fbd2f4 | 3075 | { |
mjr | 66:2e3583fbd2f4 | 3076 | int8_t index; // buttonState[] index of shift button; -1 if none |
mjr | 78:1e00b3fa11af | 3077 | uint8_t state; // current state, for "Key OR Shift" mode: |
mjr | 66:2e3583fbd2f4 | 3078 | // 0 = not shifted |
mjr | 66:2e3583fbd2f4 | 3079 | // 1 = shift button down, no key pressed yet |
mjr | 66:2e3583fbd2f4 | 3080 | // 2 = shift button down, key pressed |
mjr | 78:1e00b3fa11af | 3081 | // 3 = released, sending pulsed keystroke |
mjr | 78:1e00b3fa11af | 3082 | uint32_t pulseTime; // time remaining in pulsed keystroke (state 3) |
mjr | 66:2e3583fbd2f4 | 3083 | } |
mjr | 66:2e3583fbd2f4 | 3084 | __attribute__((packed)) shiftButton; |
mjr | 38:091e511ce8a0 | 3085 | |
mjr | 38:091e511ce8a0 | 3086 | // Button data |
mjr | 38:091e511ce8a0 | 3087 | uint32_t jsButtons = 0; |
mjr | 38:091e511ce8a0 | 3088 | |
mjr | 38:091e511ce8a0 | 3089 | // Keyboard report state. This tracks the USB keyboard state. We can |
mjr | 38:091e511ce8a0 | 3090 | // report at most 6 simultaneous non-modifier keys here, plus the 8 |
mjr | 38:091e511ce8a0 | 3091 | // modifier keys. |
mjr | 38:091e511ce8a0 | 3092 | struct |
mjr | 38:091e511ce8a0 | 3093 | { |
mjr | 38:091e511ce8a0 | 3094 | bool changed; // flag: changed since last report sent |
mjr | 48:058ace2aed1d | 3095 | uint8_t nkeys; // number of active keys in the list |
mjr | 38:091e511ce8a0 | 3096 | uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask, |
mjr | 38:091e511ce8a0 | 3097 | // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes |
mjr | 38:091e511ce8a0 | 3098 | } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } }; |
mjr | 38:091e511ce8a0 | 3099 | |
mjr | 38:091e511ce8a0 | 3100 | // Media key state |
mjr | 38:091e511ce8a0 | 3101 | struct |
mjr | 38:091e511ce8a0 | 3102 | { |
mjr | 38:091e511ce8a0 | 3103 | bool changed; // flag: changed since last report sent |
mjr | 38:091e511ce8a0 | 3104 | uint8_t data; // key state byte for USB reports |
mjr | 38:091e511ce8a0 | 3105 | } mediaState = { false, 0 }; |
mjr | 38:091e511ce8a0 | 3106 | |
mjr | 79:682ae3171a08 | 3107 | // button scan interrupt timer |
mjr | 79:682ae3171a08 | 3108 | Timeout scanButtonsTimeout; |
mjr | 38:091e511ce8a0 | 3109 | |
mjr | 38:091e511ce8a0 | 3110 | // Button scan interrupt handler. We call this periodically via |
mjr | 38:091e511ce8a0 | 3111 | // a timer interrupt to scan the physical button states. |
mjr | 38:091e511ce8a0 | 3112 | void scanButtons() |
mjr | 38:091e511ce8a0 | 3113 | { |
mjr | 79:682ae3171a08 | 3114 | // schedule the next interrupt |
mjr | 79:682ae3171a08 | 3115 | scanButtonsTimeout.attach_us(&scanButtons, 1000); |
mjr | 79:682ae3171a08 | 3116 | |
mjr | 38:091e511ce8a0 | 3117 | // scan all button input pins |
mjr | 73:4e8ce0b18915 | 3118 | ButtonState *bs = buttonState, *last = bs + nButtons; |
mjr | 73:4e8ce0b18915 | 3119 | for ( ; bs < last ; ++bs) |
mjr | 38:091e511ce8a0 | 3120 | { |
mjr | 73:4e8ce0b18915 | 3121 | // Shift the new state into the debounce history |
mjr | 73:4e8ce0b18915 | 3122 | uint8_t db = (bs->dbState << 1) | bs->di.read(); |
mjr | 73:4e8ce0b18915 | 3123 | bs->dbState = db; |
mjr | 73:4e8ce0b18915 | 3124 | |
mjr | 73:4e8ce0b18915 | 3125 | // If we have all 0's or 1's in the history for the required |
mjr | 73:4e8ce0b18915 | 3126 | // debounce period, the key state is stable, so apply the new |
mjr | 73:4e8ce0b18915 | 3127 | // physical state. Note that the pins are active low, so the |
mjr | 73:4e8ce0b18915 | 3128 | // new button on/off state is the inverse of the GPIO state. |
mjr | 73:4e8ce0b18915 | 3129 | const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings |
mjr | 73:4e8ce0b18915 | 3130 | db &= stable; |
mjr | 73:4e8ce0b18915 | 3131 | if (db == 0 || db == stable) |
mjr | 73:4e8ce0b18915 | 3132 | bs->physState = !db; |
mjr | 38:091e511ce8a0 | 3133 | } |
mjr | 38:091e511ce8a0 | 3134 | } |
mjr | 38:091e511ce8a0 | 3135 | |
mjr | 38:091e511ce8a0 | 3136 | // Button state transition timer. This is used for pulse buttons, to |
mjr | 38:091e511ce8a0 | 3137 | // control the timing of the logical key presses generated by transitions |
mjr | 38:091e511ce8a0 | 3138 | // in the physical button state. |
mjr | 38:091e511ce8a0 | 3139 | Timer buttonTimer; |
mjr | 12:669df364a565 | 3140 | |
mjr | 65:739875521aae | 3141 | // Count a button during the initial setup scan |
mjr | 72:884207c0aab0 | 3142 | void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys) |
mjr | 65:739875521aae | 3143 | { |
mjr | 65:739875521aae | 3144 | // count it |
mjr | 65:739875521aae | 3145 | ++nButtons; |
mjr | 65:739875521aae | 3146 | |
mjr | 67:c39e66c4e000 | 3147 | // if it's a keyboard key or media key, note that we need a USB |
mjr | 67:c39e66c4e000 | 3148 | // keyboard interface |
mjr | 72:884207c0aab0 | 3149 | if (typ == BtnTypeKey || typ == BtnTypeMedia |
mjr | 72:884207c0aab0 | 3150 | || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia) |
mjr | 65:739875521aae | 3151 | kbKeys = true; |
mjr | 65:739875521aae | 3152 | } |
mjr | 65:739875521aae | 3153 | |
mjr | 11:bd9da7088e6e | 3154 | // initialize the button inputs |
mjr | 35:e959ffba78fd | 3155 | void initButtons(Config &cfg, bool &kbKeys) |
mjr | 11:bd9da7088e6e | 3156 | { |
mjr | 66:2e3583fbd2f4 | 3157 | // presume no shift key |
mjr | 66:2e3583fbd2f4 | 3158 | shiftButton.index = -1; |
mjr | 82:4f6209cb5c33 | 3159 | shiftButton.state = 0; |
mjr | 66:2e3583fbd2f4 | 3160 | |
mjr | 65:739875521aae | 3161 | // Count up how many button slots we'll need to allocate. Start |
mjr | 65:739875521aae | 3162 | // with assigned buttons from the configuration, noting that we |
mjr | 65:739875521aae | 3163 | // only need to create slots for buttons that are actually wired. |
mjr | 65:739875521aae | 3164 | nButtons = 0; |
mjr | 65:739875521aae | 3165 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 65:739875521aae | 3166 | { |
mjr | 65:739875521aae | 3167 | // it's valid if it's wired to a real input pin |
mjr | 65:739875521aae | 3168 | if (wirePinName(cfg.button[i].pin) != NC) |
mjr | 72:884207c0aab0 | 3169 | countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys); |
mjr | 65:739875521aae | 3170 | } |
mjr | 65:739875521aae | 3171 | |
mjr | 65:739875521aae | 3172 | // Count virtual buttons |
mjr | 65:739875521aae | 3173 | |
mjr | 65:739875521aae | 3174 | // ZB Launch |
mjr | 65:739875521aae | 3175 | if (cfg.plunger.zbLaunchBall.port != 0) |
mjr | 65:739875521aae | 3176 | { |
mjr | 65:739875521aae | 3177 | // valid - remember the live button index |
mjr | 65:739875521aae | 3178 | zblButtonIndex = nButtons; |
mjr | 65:739875521aae | 3179 | |
mjr | 65:739875521aae | 3180 | // count it |
mjr | 72:884207c0aab0 | 3181 | countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys); |
mjr | 65:739875521aae | 3182 | } |
mjr | 65:739875521aae | 3183 | |
mjr | 65:739875521aae | 3184 | // Allocate the live button slots |
mjr | 65:739875521aae | 3185 | ButtonState *bs = buttonState = new ButtonState[nButtons]; |
mjr | 65:739875521aae | 3186 | |
mjr | 65:739875521aae | 3187 | // Configure the physical inputs |
mjr | 65:739875521aae | 3188 | for (int i = 0 ; i < MAX_BUTTONS ; ++i) |
mjr | 65:739875521aae | 3189 | { |
mjr | 65:739875521aae | 3190 | PinName pin = wirePinName(cfg.button[i].pin); |
mjr | 65:739875521aae | 3191 | if (pin != NC) |
mjr | 65:739875521aae | 3192 | { |
mjr | 65:739875521aae | 3193 | // point back to the config slot for the keyboard data |
mjr | 65:739875521aae | 3194 | bs->cfgIndex = i; |
mjr | 65:739875521aae | 3195 | |
mjr | 65:739875521aae | 3196 | // set up the GPIO input pin for this button |
mjr | 73:4e8ce0b18915 | 3197 | bs->di.assignPin(pin); |
mjr | 65:739875521aae | 3198 | |
mjr | 65:739875521aae | 3199 | // if it's a pulse mode button, set the initial pulse state to Off |
mjr | 65:739875521aae | 3200 | if (cfg.button[i].flags & BtnFlagPulse) |
mjr | 65:739875521aae | 3201 | bs->pulseState = 1; |
mjr | 65:739875521aae | 3202 | |
mjr | 66:2e3583fbd2f4 | 3203 | // If this is the shift button, note its buttonState[] index. |
mjr | 66:2e3583fbd2f4 | 3204 | // We have to figure the buttonState[] index separately from |
mjr | 66:2e3583fbd2f4 | 3205 | // the config index, because the indices can differ if some |
mjr | 66:2e3583fbd2f4 | 3206 | // config slots are left unused. |
mjr | 78:1e00b3fa11af | 3207 | if (cfg.shiftButton.idx == i+1) |
mjr | 66:2e3583fbd2f4 | 3208 | shiftButton.index = bs - buttonState; |
mjr | 66:2e3583fbd2f4 | 3209 | |
mjr | 65:739875521aae | 3210 | // advance to the next button |
mjr | 65:739875521aae | 3211 | ++bs; |
mjr | 65:739875521aae | 3212 | } |
mjr | 65:739875521aae | 3213 | } |
mjr | 65:739875521aae | 3214 | |
mjr | 53:9b2611964afc | 3215 | // Configure the virtual buttons. These are buttons controlled via |
mjr | 53:9b2611964afc | 3216 | // software triggers rather than physical GPIO inputs. The virtual |
mjr | 53:9b2611964afc | 3217 | // buttons have the same control structures as regular buttons, but |
mjr | 53:9b2611964afc | 3218 | // they get their configuration data from other config variables. |
mjr | 53:9b2611964afc | 3219 | |
mjr | 53:9b2611964afc | 3220 | // ZB Launch Ball button |
mjr | 65:739875521aae | 3221 | if (cfg.plunger.zbLaunchBall.port != 0) |
mjr | 11:bd9da7088e6e | 3222 | { |
mjr | 65:739875521aae | 3223 | // Point back to the config slot for the keyboard data. |
mjr | 66:2e3583fbd2f4 | 3224 | // We use a special extra slot for virtual buttons, |
mjr | 66:2e3583fbd2f4 | 3225 | // so we also need to set up the slot data by copying |
mjr | 66:2e3583fbd2f4 | 3226 | // the ZBL config data to our virtual button slot. |
mjr | 65:739875521aae | 3227 | bs->cfgIndex = ZBL_BUTTON_CFG; |
mjr | 65:739875521aae | 3228 | cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC); |
mjr | 65:739875521aae | 3229 | cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype; |
mjr | 65:739875521aae | 3230 | cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode; |
mjr | 65:739875521aae | 3231 | |
mjr | 66:2e3583fbd2f4 | 3232 | // advance to the next button |
mjr | 65:739875521aae | 3233 | ++bs; |
mjr | 11:bd9da7088e6e | 3234 | } |
mjr | 12:669df364a565 | 3235 | |
mjr | 38:091e511ce8a0 | 3236 | // start the button scan thread |
mjr | 79:682ae3171a08 | 3237 | scanButtonsTimeout.attach_us(scanButtons, 1000); |
mjr | 38:091e511ce8a0 | 3238 | |
mjr | 38:091e511ce8a0 | 3239 | // start the button state transition timer |
mjr | 12:669df364a565 | 3240 | buttonTimer.start(); |
mjr | 11:bd9da7088e6e | 3241 | } |
mjr | 11:bd9da7088e6e | 3242 | |
mjr | 67:c39e66c4e000 | 3243 | // Media key mapping. This maps from an 8-bit USB media key |
mjr | 67:c39e66c4e000 | 3244 | // code to the corresponding bit in our USB report descriptor. |
mjr | 67:c39e66c4e000 | 3245 | // The USB key code is the index, and the value at the index |
mjr | 67:c39e66c4e000 | 3246 | // is the report descriptor bit. See joystick.cpp for the |
mjr | 67:c39e66c4e000 | 3247 | // media descriptor details. Our currently mapped keys are: |
mjr | 67:c39e66c4e000 | 3248 | // |
mjr | 67:c39e66c4e000 | 3249 | // 0xE2 -> Mute -> 0x01 |
mjr | 67:c39e66c4e000 | 3250 | // 0xE9 -> Volume Up -> 0x02 |
mjr | 67:c39e66c4e000 | 3251 | // 0xEA -> Volume Down -> 0x04 |
mjr | 67:c39e66c4e000 | 3252 | // 0xB5 -> Next Track -> 0x08 |
mjr | 67:c39e66c4e000 | 3253 | // 0xB6 -> Previous Track -> 0x10 |
mjr | 67:c39e66c4e000 | 3254 | // 0xB7 -> Stop -> 0x20 |
mjr | 67:c39e66c4e000 | 3255 | // 0xCD -> Play / Pause -> 0x40 |
mjr | 67:c39e66c4e000 | 3256 | // |
mjr | 67:c39e66c4e000 | 3257 | static const uint8_t mediaKeyMap[] = { |
mjr | 67:c39e66c4e000 | 3258 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F |
mjr | 67:c39e66c4e000 | 3259 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F |
mjr | 67:c39e66c4e000 | 3260 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F |
mjr | 67:c39e66c4e000 | 3261 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F |
mjr | 67:c39e66c4e000 | 3262 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F |
mjr | 67:c39e66c4e000 | 3263 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F |
mjr | 67:c39e66c4e000 | 3264 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F |
mjr | 67:c39e66c4e000 | 3265 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F |
mjr | 67:c39e66c4e000 | 3266 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F |
mjr | 67:c39e66c4e000 | 3267 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F |
mjr | 67:c39e66c4e000 | 3268 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF |
mjr | 67:c39e66c4e000 | 3269 | 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF |
mjr | 67:c39e66c4e000 | 3270 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF |
mjr | 67:c39e66c4e000 | 3271 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF |
mjr | 67:c39e66c4e000 | 3272 | 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF |
mjr | 67:c39e66c4e000 | 3273 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF |
mjr | 77:0b96f6867312 | 3274 | }; |
mjr | 77:0b96f6867312 | 3275 | |
mjr | 77:0b96f6867312 | 3276 | // Keyboard key/joystick button state. processButtons() uses this to |
mjr | 77:0b96f6867312 | 3277 | // build the set of key presses to report to the PC based on the logical |
mjr | 77:0b96f6867312 | 3278 | // states of the button iputs. |
mjr | 77:0b96f6867312 | 3279 | struct KeyState |
mjr | 77:0b96f6867312 | 3280 | { |
mjr | 77:0b96f6867312 | 3281 | KeyState() |
mjr | 77:0b96f6867312 | 3282 | { |
mjr | 77:0b96f6867312 | 3283 | // zero all members |
mjr | 77:0b96f6867312 | 3284 | memset(this, 0, sizeof(*this)); |
mjr | 77:0b96f6867312 | 3285 | } |
mjr | 77:0b96f6867312 | 3286 | |
mjr | 77:0b96f6867312 | 3287 | // Keyboard media keys currently pressed. This is a bit vector in |
mjr | 77:0b96f6867312 | 3288 | // the format used in our USB keyboard reports (see USBJoystick.cpp). |
mjr | 77:0b96f6867312 | 3289 | uint8_t mediakeys; |
mjr | 77:0b96f6867312 | 3290 | |
mjr | 77:0b96f6867312 | 3291 | // Keyboard modifier (shift) keys currently pressed. This is a bit |
mjr | 77:0b96f6867312 | 3292 | // vector in the format used in our USB keyboard reports (see |
mjr | 77:0b96f6867312 | 3293 | // USBJoystick.cpp). |
mjr | 77:0b96f6867312 | 3294 | uint8_t modkeys; |
mjr | 77:0b96f6867312 | 3295 | |
mjr | 77:0b96f6867312 | 3296 | // Regular keyboard keys currently pressed. Each element is a USB |
mjr | 77:0b96f6867312 | 3297 | // key code, or 0 for empty slots. Note that the USB report format |
mjr | 77:0b96f6867312 | 3298 | // theoretically allows a flexible size limit, but the Windows KB |
mjr | 77:0b96f6867312 | 3299 | // drivers have a fixed limit of 6 simultaneous keys (and won't |
mjr | 77:0b96f6867312 | 3300 | // accept reports with more), so there's no point in making this |
mjr | 77:0b96f6867312 | 3301 | // flexible; we'll just use the fixed size dictated by Windows. |
mjr | 77:0b96f6867312 | 3302 | uint8_t keys[7]; |
mjr | 77:0b96f6867312 | 3303 | |
mjr | 77:0b96f6867312 | 3304 | // number of valid entries in keys[] array |
mjr | 77:0b96f6867312 | 3305 | int nkeys; |
mjr | 77:0b96f6867312 | 3306 | |
mjr | 77:0b96f6867312 | 3307 | // Joystick buttons pressed, as a bit vector. Bit n (1 << n) |
mjr | 77:0b96f6867312 | 3308 | // represents joystick button n, n in 0..31, with 0 meaning |
mjr | 77:0b96f6867312 | 3309 | // unpressed and 1 meaning pressed. |
mjr | 77:0b96f6867312 | 3310 | uint32_t js; |
mjr | 77:0b96f6867312 | 3311 | |
mjr | 77:0b96f6867312 | 3312 | |
mjr | 77:0b96f6867312 | 3313 | // Add a key press. 'typ' is the button type code (ButtonTypeXxx), |
mjr | 77:0b96f6867312 | 3314 | // and 'val' is the value (the meaning of which varies by type code). |
mjr | 77:0b96f6867312 | 3315 | void addKey(uint8_t typ, uint8_t val) |
mjr | 77:0b96f6867312 | 3316 | { |
mjr | 77:0b96f6867312 | 3317 | // add the key according to the type |
mjr | 77:0b96f6867312 | 3318 | switch (typ) |
mjr | 77:0b96f6867312 | 3319 | { |
mjr | 77:0b96f6867312 | 3320 | case BtnTypeJoystick: |
mjr | 77:0b96f6867312 | 3321 | // joystick button |
mjr | 77:0b96f6867312 | 3322 | js |= (1 << (val - 1)); |
mjr | 77:0b96f6867312 | 3323 | break; |
mjr | 77:0b96f6867312 | 3324 | |
mjr | 77:0b96f6867312 | 3325 | case BtnTypeKey: |
mjr | 77:0b96f6867312 | 3326 | // Keyboard key. The USB keyboard report encodes regular |
mjr | 77:0b96f6867312 | 3327 | // keys and modifier keys separately, so we need to check |
mjr | 77:0b96f6867312 | 3328 | // which type we have. Note that past versions mapped the |
mjr | 77:0b96f6867312 | 3329 | // Keyboard Volume Up, Keyboard Volume Down, and Keyboard |
mjr | 77:0b96f6867312 | 3330 | // Mute keys to the corresponding Media keys. We no longer |
mjr | 77:0b96f6867312 | 3331 | // do this; instead, we have the separate BtnTypeMedia for |
mjr | 77:0b96f6867312 | 3332 | // explicitly using media keys if desired. |
mjr | 77:0b96f6867312 | 3333 | if (val >= 0xE0 && val <= 0xE7) |
mjr | 77:0b96f6867312 | 3334 | { |
mjr | 77:0b96f6867312 | 3335 | // It's a modifier key. These are represented in the USB |
mjr | 77:0b96f6867312 | 3336 | // reports with a bit mask. We arrange the mask bits in |
mjr | 77:0b96f6867312 | 3337 | // the same order as the scan codes, so we can figure the |
mjr | 77:0b96f6867312 | 3338 | // appropriate bit with a simple shift. |
mjr | 77:0b96f6867312 | 3339 | modkeys |= (1 << (val - 0xE0)); |
mjr | 77:0b96f6867312 | 3340 | } |
mjr | 77:0b96f6867312 | 3341 | else |
mjr | 77:0b96f6867312 | 3342 | { |
mjr | 77:0b96f6867312 | 3343 | // It's a regular key. Make sure it's not already in the |
mjr | 77:0b96f6867312 | 3344 | // list, and that the list isn't full. If neither of these |
mjr | 77:0b96f6867312 | 3345 | // apply, add the key to the key array. |
mjr | 77:0b96f6867312 | 3346 | if (nkeys < 7) |
mjr | 77:0b96f6867312 | 3347 | { |
mjr | 77:0b96f6867312 | 3348 | bool found = false; |
mjr | 77:0b96f6867312 | 3349 | for (int i = 0 ; i < nkeys ; ++i) |
mjr | 77:0b96f6867312 | 3350 | { |
mjr | 77:0b96f6867312 | 3351 | if (keys[i] == val) |
mjr | 77:0b96f6867312 | 3352 | { |
mjr | 77:0b96f6867312 | 3353 | found = true; |
mjr | 77:0b96f6867312 | 3354 | break; |
mjr | 77:0b96f6867312 | 3355 | } |
mjr | 77:0b96f6867312 | 3356 | } |
mjr | 77:0b96f6867312 | 3357 | if (!found) |
mjr | 77:0b96f6867312 | 3358 | keys[nkeys++] = val; |
mjr | 77:0b96f6867312 | 3359 | } |
mjr | 77:0b96f6867312 | 3360 | } |
mjr | 77:0b96f6867312 | 3361 | break; |
mjr | 77:0b96f6867312 | 3362 | |
mjr | 77:0b96f6867312 | 3363 | case BtnTypeMedia: |
mjr | 77:0b96f6867312 | 3364 | // Media control key. The media keys are mapped in the USB |
mjr | 77:0b96f6867312 | 3365 | // report to bits, whereas the key codes are specified in the |
mjr | 77:0b96f6867312 | 3366 | // config with their USB usage numbers. E.g., the config val |
mjr | 77:0b96f6867312 | 3367 | // for Media Next Track is 0xB5, but we encode this in the USB |
mjr | 77:0b96f6867312 | 3368 | // report as bit 0x08. The mediaKeyMap[] table translates |
mjr | 77:0b96f6867312 | 3369 | // from the USB usage number to the mask bit. If the key isn't |
mjr | 77:0b96f6867312 | 3370 | // among the subset we support, the mapped bit will be zero, so |
mjr | 77:0b96f6867312 | 3371 | // the "|=" will have no effect and the key will be ignored. |
mjr | 77:0b96f6867312 | 3372 | mediakeys |= mediaKeyMap[val]; |
mjr | 77:0b96f6867312 | 3373 | break; |
mjr | 77:0b96f6867312 | 3374 | } |
mjr | 77:0b96f6867312 | 3375 | } |
mjr | 77:0b96f6867312 | 3376 | }; |
mjr | 67:c39e66c4e000 | 3377 | |
mjr | 67:c39e66c4e000 | 3378 | |
mjr | 38:091e511ce8a0 | 3379 | // Process the button state. This sets up the joystick, keyboard, and |
mjr | 38:091e511ce8a0 | 3380 | // media control descriptors with the current state of keys mapped to |
mjr | 38:091e511ce8a0 | 3381 | // those HID interfaces, and executes the local effects for any keys |
mjr | 38:091e511ce8a0 | 3382 | // mapped to special device functions (e.g., Night Mode). |
mjr | 53:9b2611964afc | 3383 | void processButtons(Config &cfg) |
mjr | 35:e959ffba78fd | 3384 | { |
mjr | 77:0b96f6867312 | 3385 | // key state |
mjr | 77:0b96f6867312 | 3386 | KeyState ks; |
mjr | 38:091e511ce8a0 | 3387 | |
mjr | 38:091e511ce8a0 | 3388 | // calculate the time since the last run |
mjr | 53:9b2611964afc | 3389 | uint32_t dt = buttonTimer.read_us(); |
mjr | 18:5e890ebd0023 | 3390 | buttonTimer.reset(); |
mjr | 66:2e3583fbd2f4 | 3391 | |
mjr | 66:2e3583fbd2f4 | 3392 | // check the shift button state |
mjr | 66:2e3583fbd2f4 | 3393 | if (shiftButton.index != -1) |
mjr | 66:2e3583fbd2f4 | 3394 | { |
mjr | 78:1e00b3fa11af | 3395 | // get the shift button's physical state object |
mjr | 66:2e3583fbd2f4 | 3396 | ButtonState *sbs = &buttonState[shiftButton.index]; |
mjr | 78:1e00b3fa11af | 3397 | |
mjr | 78:1e00b3fa11af | 3398 | // figure what to do based on the shift button mode in the config |
mjr | 78:1e00b3fa11af | 3399 | switch (cfg.shiftButton.mode) |
mjr | 66:2e3583fbd2f4 | 3400 | { |
mjr | 66:2e3583fbd2f4 | 3401 | case 0: |
mjr | 78:1e00b3fa11af | 3402 | default: |
mjr | 78:1e00b3fa11af | 3403 | // "Shift OR Key" mode. The shift button doesn't send its key |
mjr | 78:1e00b3fa11af | 3404 | // immediately when pressed. Instead, we wait to see what |
mjr | 78:1e00b3fa11af | 3405 | // happens while it's down. Check the current cycle state. |
mjr | 78:1e00b3fa11af | 3406 | switch (shiftButton.state) |
mjr | 78:1e00b3fa11af | 3407 | { |
mjr | 78:1e00b3fa11af | 3408 | case 0: |
mjr | 78:1e00b3fa11af | 3409 | // Not shifted. Check if the button is now down: if so, |
mjr | 78:1e00b3fa11af | 3410 | // switch to state 1 (shift button down, no key pressed yet). |
mjr | 78:1e00b3fa11af | 3411 | if (sbs->physState) |
mjr | 78:1e00b3fa11af | 3412 | shiftButton.state = 1; |
mjr | 78:1e00b3fa11af | 3413 | break; |
mjr | 78:1e00b3fa11af | 3414 | |
mjr | 78:1e00b3fa11af | 3415 | case 1: |
mjr | 78:1e00b3fa11af | 3416 | // Shift button down, no key pressed yet. If the button is |
mjr | 78:1e00b3fa11af | 3417 | // now up, it counts as an ordinary button press instead of |
mjr | 78:1e00b3fa11af | 3418 | // a shift button press, since the shift function was never |
mjr | 78:1e00b3fa11af | 3419 | // used. Return to unshifted state and start a timed key |
mjr | 78:1e00b3fa11af | 3420 | // pulse event. |
mjr | 78:1e00b3fa11af | 3421 | if (!sbs->physState) |
mjr | 78:1e00b3fa11af | 3422 | { |
mjr | 78:1e00b3fa11af | 3423 | shiftButton.state = 3; |
mjr | 78:1e00b3fa11af | 3424 | shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse |
mjr | 78:1e00b3fa11af | 3425 | } |
mjr | 78:1e00b3fa11af | 3426 | break; |
mjr | 78:1e00b3fa11af | 3427 | |
mjr | 78:1e00b3fa11af | 3428 | case 2: |
mjr | 78:1e00b3fa11af | 3429 | // Shift button down, other key was pressed. If the button is |
mjr | 78:1e00b3fa11af | 3430 | // now up, simply clear the shift state without sending a key |
mjr | 78:1e00b3fa11af | 3431 | // press for the shift button itself to the PC. The shift |
mjr | 78:1e00b3fa11af | 3432 | // function was used, so its ordinary key press function is |
mjr | 78:1e00b3fa11af | 3433 | // suppressed. |
mjr | 78:1e00b3fa11af | 3434 | if (!sbs->physState) |
mjr | 78:1e00b3fa11af | 3435 | shiftButton.state = 0; |
mjr | 78:1e00b3fa11af | 3436 | break; |
mjr | 78:1e00b3fa11af | 3437 | |
mjr | 78:1e00b3fa11af | 3438 | case 3: |
mjr | 78:1e00b3fa11af | 3439 | // Sending pulsed keystroke. Deduct the current time interval |
mjr | 78:1e00b3fa11af | 3440 | // from the remaining pulse timer. End the pulse if the time |
mjr | 78:1e00b3fa11af | 3441 | // has expired. |
mjr | 78:1e00b3fa11af | 3442 | if (shiftButton.pulseTime > dt) |
mjr | 78:1e00b3fa11af | 3443 | shiftButton.pulseTime -= dt; |
mjr | 78:1e00b3fa11af | 3444 | else |
mjr | 78:1e00b3fa11af | 3445 | shiftButton.state = 0; |
mjr | 78:1e00b3fa11af | 3446 | break; |
mjr | 78:1e00b3fa11af | 3447 | } |
mjr | 66:2e3583fbd2f4 | 3448 | break; |
mjr | 66:2e3583fbd2f4 | 3449 | |
mjr | 66:2e3583fbd2f4 | 3450 | case 1: |
mjr | 78:1e00b3fa11af | 3451 | // "Shift AND Key" mode. In this mode, the shift button acts |
mjr | 78:1e00b3fa11af | 3452 | // like any other button and sends its mapped key immediately. |
mjr | 78:1e00b3fa11af | 3453 | // The state cycle in this case simply matches the physical |
mjr | 78:1e00b3fa11af | 3454 | // state: ON -> cycle state 1, OFF -> cycle state 0. |
mjr | 78:1e00b3fa11af | 3455 | shiftButton.state = (sbs->physState ? 1 : 0); |
mjr | 66:2e3583fbd2f4 | 3456 | break; |
mjr | 66:2e3583fbd2f4 | 3457 | } |
mjr | 66:2e3583fbd2f4 | 3458 | } |
mjr | 38:091e511ce8a0 | 3459 | |
mjr | 11:bd9da7088e6e | 3460 | // scan the button list |
mjr | 18:5e890ebd0023 | 3461 | ButtonState *bs = buttonState; |
mjr | 65:739875521aae | 3462 | for (int i = 0 ; i < nButtons ; ++i, ++bs) |
mjr | 11:bd9da7088e6e | 3463 | { |
mjr | 77:0b96f6867312 | 3464 | // get the config entry for the button |
mjr | 77:0b96f6867312 | 3465 | ButtonCfg *bc = &cfg.button[bs->cfgIndex]; |
mjr | 77:0b96f6867312 | 3466 | |
mjr | 66:2e3583fbd2f4 | 3467 | // Check the button type: |
mjr | 66:2e3583fbd2f4 | 3468 | // - shift button |
mjr | 66:2e3583fbd2f4 | 3469 | // - pulsed button |
mjr | 66:2e3583fbd2f4 | 3470 | // - regular button |
mjr | 66:2e3583fbd2f4 | 3471 | if (shiftButton.index == i) |
mjr | 66:2e3583fbd2f4 | 3472 | { |
mjr | 78:1e00b3fa11af | 3473 | // This is the shift button. The logical state handling |
mjr | 78:1e00b3fa11af | 3474 | // depends on the mode. |
mjr | 78:1e00b3fa11af | 3475 | switch (cfg.shiftButton.mode) |
mjr | 66:2e3583fbd2f4 | 3476 | { |
mjr | 78:1e00b3fa11af | 3477 | case 0: |
mjr | 78:1e00b3fa11af | 3478 | default: |
mjr | 78:1e00b3fa11af | 3479 | // "Shift OR Key" mode. The logical state is ON only |
mjr | 78:1e00b3fa11af | 3480 | // during the timed pulse when the key is released, which |
mjr | 78:1e00b3fa11af | 3481 | // is signified by shift button state 3. |
mjr | 78:1e00b3fa11af | 3482 | bs->logState = (shiftButton.state == 3); |
mjr | 78:1e00b3fa11af | 3483 | break; |
mjr | 78:1e00b3fa11af | 3484 | |
mjr | 78:1e00b3fa11af | 3485 | case 1: |
mjr | 78:1e00b3fa11af | 3486 | // "Shif AND Key" mode. The shift button acts like any |
mjr | 78:1e00b3fa11af | 3487 | // other button, so it's logically on when physically on. |
mjr | 78:1e00b3fa11af | 3488 | bs->logState = bs->physState; |
mjr | 78:1e00b3fa11af | 3489 | break; |
mjr | 66:2e3583fbd2f4 | 3490 | } |
mjr | 66:2e3583fbd2f4 | 3491 | } |
mjr | 66:2e3583fbd2f4 | 3492 | else if (bs->pulseState != 0) |
mjr | 18:5e890ebd0023 | 3493 | { |
mjr | 38:091e511ce8a0 | 3494 | // if the timer has expired, check for state changes |
mjr | 53:9b2611964afc | 3495 | if (bs->pulseTime > dt) |
mjr | 18:5e890ebd0023 | 3496 | { |
mjr | 53:9b2611964afc | 3497 | // not expired yet - deduct the last interval |
mjr | 53:9b2611964afc | 3498 | bs->pulseTime -= dt; |
mjr | 53:9b2611964afc | 3499 | } |
mjr | 53:9b2611964afc | 3500 | else |
mjr | 53:9b2611964afc | 3501 | { |
mjr | 53:9b2611964afc | 3502 | // pulse time expired - check for a state change |
mjr | 53:9b2611964afc | 3503 | const uint32_t pulseLength = 200000UL; // 200 milliseconds |
mjr | 38:091e511ce8a0 | 3504 | switch (bs->pulseState) |
mjr | 18:5e890ebd0023 | 3505 | { |
mjr | 38:091e511ce8a0 | 3506 | case 1: |
mjr | 38:091e511ce8a0 | 3507 | // off - if the physical switch is now on, start a button pulse |
mjr | 53:9b2611964afc | 3508 | if (bs->physState) |
mjr | 53:9b2611964afc | 3509 | { |
mjr | 38:091e511ce8a0 | 3510 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 3511 | bs->pulseState = 2; |
mjr | 53:9b2611964afc | 3512 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 3513 | } |
mjr | 38:091e511ce8a0 | 3514 | break; |
mjr | 18:5e890ebd0023 | 3515 | |
mjr | 38:091e511ce8a0 | 3516 | case 2: |
mjr | 38:091e511ce8a0 | 3517 | // transitioning off to on - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 3518 | // equal to the pulse time so that the host can observe the |
mjr | 38:091e511ce8a0 | 3519 | // change in state in the logical button |
mjr | 38:091e511ce8a0 | 3520 | bs->pulseState = 3; |
mjr | 38:091e511ce8a0 | 3521 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 3522 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 3523 | break; |
mjr | 38:091e511ce8a0 | 3524 | |
mjr | 38:091e511ce8a0 | 3525 | case 3: |
mjr | 38:091e511ce8a0 | 3526 | // on - if the physical switch is now off, start a button pulse |
mjr | 53:9b2611964afc | 3527 | if (!bs->physState) |
mjr | 53:9b2611964afc | 3528 | { |
mjr | 38:091e511ce8a0 | 3529 | bs->pulseTime = pulseLength; |
mjr | 38:091e511ce8a0 | 3530 | bs->pulseState = 4; |
mjr | 53:9b2611964afc | 3531 | bs->logState = 1; |
mjr | 38:091e511ce8a0 | 3532 | } |
mjr | 38:091e511ce8a0 | 3533 | break; |
mjr | 38:091e511ce8a0 | 3534 | |
mjr | 38:091e511ce8a0 | 3535 | case 4: |
mjr | 38:091e511ce8a0 | 3536 | // transitioning on to off - end the pulse, and start a gap |
mjr | 38:091e511ce8a0 | 3537 | bs->pulseState = 1; |
mjr | 38:091e511ce8a0 | 3538 | bs->pulseTime = pulseLength; |
mjr | 53:9b2611964afc | 3539 | bs->logState = 0; |
mjr | 38:091e511ce8a0 | 3540 | break; |
mjr | 18:5e890ebd0023 | 3541 | } |
mjr | 18:5e890ebd0023 | 3542 | } |
mjr | 38:091e511ce8a0 | 3543 | } |
mjr | 38:091e511ce8a0 | 3544 | else |
mjr | 38:091e511ce8a0 | 3545 | { |
mjr | 38:091e511ce8a0 | 3546 | // not a pulse switch - the logical state is the same as the physical state |
mjr | 53:9b2611964afc | 3547 | bs->logState = bs->physState; |
mjr | 38:091e511ce8a0 | 3548 | } |
mjr | 77:0b96f6867312 | 3549 | |
mjr | 77:0b96f6867312 | 3550 | // Determine if we're going to use the shifted version of the |
mjr | 78:1e00b3fa11af | 3551 | // button. We're using the shifted version if... |
mjr | 78:1e00b3fa11af | 3552 | // |
mjr | 78:1e00b3fa11af | 3553 | // - the shift button is down, AND |
mjr | 78:1e00b3fa11af | 3554 | // - this button isn't itself the shift button, AND |
mjr | 78:1e00b3fa11af | 3555 | // - this button has some kind of shifted meaning |
mjr | 77:0b96f6867312 | 3556 | // |
mjr | 78:1e00b3fa11af | 3557 | // A "shifted meaning" means that we have any of the following |
mjr | 78:1e00b3fa11af | 3558 | // assigned to the shifted version of the button: a key assignment, |
mjr | 78:1e00b3fa11af | 3559 | // (in typ2,key2), an IR command (in IRCommand2), or Night mode. |
mjr | 78:1e00b3fa11af | 3560 | // |
mjr | 78:1e00b3fa11af | 3561 | // The test for Night Mode is a bit tricky. The shifted version of |
mjr | 78:1e00b3fa11af | 3562 | // the button is the Night Mode toggle if the button matches the |
mjr | 78:1e00b3fa11af | 3563 | // Night Mode button index, AND its flags are set with "toggle mode |
mjr | 78:1e00b3fa11af | 3564 | // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off). |
mjr | 78:1e00b3fa11af | 3565 | // So (button flags) & 0x03 must equal 0x02. |
mjr | 77:0b96f6867312 | 3566 | bool useShift = |
mjr | 77:0b96f6867312 | 3567 | (shiftButton.state != 0 |
mjr | 78:1e00b3fa11af | 3568 | && shiftButton.index != i |
mjr | 77:0b96f6867312 | 3569 | && (bc->typ2 != BtnTypeNone |
mjr | 77:0b96f6867312 | 3570 | || bc->IRCommand2 != 0 |
mjr | 77:0b96f6867312 | 3571 | || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02))); |
mjr | 77:0b96f6867312 | 3572 | |
mjr | 77:0b96f6867312 | 3573 | // If we're using the shift function, and no other button has used |
mjr | 77:0b96f6867312 | 3574 | // the shift function yet (shift state 1: "shift button is down but |
mjr | 77:0b96f6867312 | 3575 | // no one has used the shift function yet"), then we've "consumed" |
mjr | 77:0b96f6867312 | 3576 | // the shift button press (so go to shift state 2: "shift button has |
mjr | 77:0b96f6867312 | 3577 | // been used by some other button press that has a shifted meaning"). |
mjr | 78:1e00b3fa11af | 3578 | if (useShift && shiftButton.state == 1 && bs->logState) |
mjr | 77:0b96f6867312 | 3579 | shiftButton.state = 2; |
mjr | 35:e959ffba78fd | 3580 | |
mjr | 38:091e511ce8a0 | 3581 | // carry out any edge effects from buttons changing states |
mjr | 53:9b2611964afc | 3582 | if (bs->logState != bs->prevLogState) |
mjr | 38:091e511ce8a0 | 3583 | { |
mjr | 77:0b96f6867312 | 3584 | // check to see if this is the Night Mode button |
mjr | 53:9b2611964afc | 3585 | if (cfg.nightMode.btn == i + 1) |
mjr | 35:e959ffba78fd | 3586 | { |
mjr | 77:0b96f6867312 | 3587 | // Check the switch type in the config flags. If flag 0x01 is |
mjr | 77:0b96f6867312 | 3588 | // set, it's a persistent on/off switch, so the night mode |
mjr | 77:0b96f6867312 | 3589 | // state simply tracks the current state of the switch. |
mjr | 77:0b96f6867312 | 3590 | // Otherwise, it's a momentary button, so each button push |
mjr | 77:0b96f6867312 | 3591 | // (i.e., each transition from logical state OFF to ON) toggles |
mjr | 77:0b96f6867312 | 3592 | // the night mode state. |
mjr | 77:0b96f6867312 | 3593 | // |
mjr | 77:0b96f6867312 | 3594 | // Note that the "shift" flag (0x02) has no effect in switch |
mjr | 77:0b96f6867312 | 3595 | // mode. Shifting only works for toggle mode. |
mjr | 82:4f6209cb5c33 | 3596 | if ((cfg.nightMode.flags & 0x01) != 0) |
mjr | 53:9b2611964afc | 3597 | { |
mjr | 77:0b96f6867312 | 3598 | // It's an on/off switch. Night mode simply tracks the |
mjr | 77:0b96f6867312 | 3599 | // current switch state. |
mjr | 53:9b2611964afc | 3600 | setNightMode(bs->logState); |
mjr | 53:9b2611964afc | 3601 | } |
mjr | 82:4f6209cb5c33 | 3602 | else if (bs->logState) |
mjr | 53:9b2611964afc | 3603 | { |
mjr | 77:0b96f6867312 | 3604 | // It's a momentary toggle switch. Toggle the night mode |
mjr | 77:0b96f6867312 | 3605 | // state on each distinct press of the button: that is, |
mjr | 77:0b96f6867312 | 3606 | // whenever the button's logical state transitions from |
mjr | 77:0b96f6867312 | 3607 | // OFF to ON. |
mjr | 66:2e3583fbd2f4 | 3608 | // |
mjr | 77:0b96f6867312 | 3609 | // The "shift" flag (0x02) tells us whether night mode is |
mjr | 77:0b96f6867312 | 3610 | // assigned to the shifted or unshifted version of the |
mjr | 77:0b96f6867312 | 3611 | // button. |
mjr | 77:0b96f6867312 | 3612 | bool pressed; |
mjr | 98:4df3c0f7e707 | 3613 | if (shiftButton.index == i) |
mjr | 98:4df3c0f7e707 | 3614 | { |
mjr | 98:4df3c0f7e707 | 3615 | // This button is both the Shift button AND the Night |
mjr | 98:4df3c0f7e707 | 3616 | // Mode button. This is a special case in that the |
mjr | 98:4df3c0f7e707 | 3617 | // Shift status is irrelevant, because it's obviously |
mjr | 98:4df3c0f7e707 | 3618 | // identical to the Night Mode status. So it doesn't |
mjr | 98:4df3c0f7e707 | 3619 | // matter whether or not the Night Mode button has the |
mjr | 98:4df3c0f7e707 | 3620 | // shifted flags; the raw button state is all that |
mjr | 98:4df3c0f7e707 | 3621 | // counts in this case. |
mjr | 98:4df3c0f7e707 | 3622 | pressed = true; |
mjr | 98:4df3c0f7e707 | 3623 | } |
mjr | 98:4df3c0f7e707 | 3624 | else if ((cfg.nightMode.flags & 0x02) != 0) |
mjr | 66:2e3583fbd2f4 | 3625 | { |
mjr | 77:0b96f6867312 | 3626 | // Shift bit is set - night mode is assigned to the |
mjr | 77:0b96f6867312 | 3627 | // shifted version of the button. This is a Night |
mjr | 77:0b96f6867312 | 3628 | // Mode toggle only if the Shift button is pressed. |
mjr | 77:0b96f6867312 | 3629 | pressed = (shiftButton.state != 0); |
mjr | 77:0b96f6867312 | 3630 | } |
mjr | 77:0b96f6867312 | 3631 | else |
mjr | 77:0b96f6867312 | 3632 | { |
mjr | 77:0b96f6867312 | 3633 | // No shift bit - night mode is assigned to the |
mjr | 77:0b96f6867312 | 3634 | // regular unshifted button. The button press only |
mjr | 77:0b96f6867312 | 3635 | // applies if the Shift button is NOT pressed. |
mjr | 77:0b96f6867312 | 3636 | pressed = (shiftButton.state == 0); |
mjr | 66:2e3583fbd2f4 | 3637 | } |
mjr | 66:2e3583fbd2f4 | 3638 | |
mjr | 66:2e3583fbd2f4 | 3639 | // if it's pressed (even after considering the shift mode), |
mjr | 66:2e3583fbd2f4 | 3640 | // toggle night mode |
mjr | 66:2e3583fbd2f4 | 3641 | if (pressed) |
mjr | 53:9b2611964afc | 3642 | toggleNightMode(); |
mjr | 53:9b2611964afc | 3643 | } |
mjr | 35:e959ffba78fd | 3644 | } |
mjr | 38:091e511ce8a0 | 3645 | |
mjr | 77:0b96f6867312 | 3646 | // press or release IR virtual keys on key state changes |
mjr | 77:0b96f6867312 | 3647 | uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand; |
mjr | 77:0b96f6867312 | 3648 | if (irc != 0) |
mjr | 77:0b96f6867312 | 3649 | IR_buttonChange(irc, bs->logState); |
mjr | 77:0b96f6867312 | 3650 | |
mjr | 38:091e511ce8a0 | 3651 | // remember the new state for comparison on the next run |
mjr | 53:9b2611964afc | 3652 | bs->prevLogState = bs->logState; |
mjr | 38:091e511ce8a0 | 3653 | } |
mjr | 38:091e511ce8a0 | 3654 | |
mjr | 53:9b2611964afc | 3655 | // if it's pressed, physically or virtually, add it to the appropriate |
mjr | 53:9b2611964afc | 3656 | // key state list |
mjr | 53:9b2611964afc | 3657 | if (bs->logState || bs->virtState) |
mjr | 38:091e511ce8a0 | 3658 | { |
mjr | 70:9f58735a1732 | 3659 | // Get the key type and code. Start by assuming that we're |
mjr | 70:9f58735a1732 | 3660 | // going to use the normal unshifted meaning. |
mjr | 77:0b96f6867312 | 3661 | uint8_t typ, val; |
mjr | 77:0b96f6867312 | 3662 | if (useShift) |
mjr | 66:2e3583fbd2f4 | 3663 | { |
mjr | 77:0b96f6867312 | 3664 | typ = bc->typ2; |
mjr | 77:0b96f6867312 | 3665 | val = bc->val2; |
mjr | 66:2e3583fbd2f4 | 3666 | } |
mjr | 77:0b96f6867312 | 3667 | else |
mjr | 77:0b96f6867312 | 3668 | { |
mjr | 77:0b96f6867312 | 3669 | typ = bc->typ; |
mjr | 77:0b96f6867312 | 3670 | val = bc->val; |
mjr | 77:0b96f6867312 | 3671 | } |
mjr | 77:0b96f6867312 | 3672 | |
mjr | 70:9f58735a1732 | 3673 | // We've decided on the meaning of the button, so process |
mjr | 70:9f58735a1732 | 3674 | // the keyboard or joystick event. |
mjr | 77:0b96f6867312 | 3675 | ks.addKey(typ, val); |
mjr | 18:5e890ebd0023 | 3676 | } |
mjr | 11:bd9da7088e6e | 3677 | } |
mjr | 77:0b96f6867312 | 3678 | |
mjr | 77:0b96f6867312 | 3679 | // If an IR input command is in effect, add the IR command's |
mjr | 77:0b96f6867312 | 3680 | // assigned key, if any. If we're in an IR key gap, don't include |
mjr | 77:0b96f6867312 | 3681 | // the IR key. |
mjr | 77:0b96f6867312 | 3682 | if (IRCommandIn != 0 && !IRKeyGap) |
mjr | 77:0b96f6867312 | 3683 | { |
mjr | 77:0b96f6867312 | 3684 | IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1]; |
mjr | 77:0b96f6867312 | 3685 | ks.addKey(irc.keytype, irc.keycode); |
mjr | 77:0b96f6867312 | 3686 | } |
mjr | 77:0b96f6867312 | 3687 | |
mjr | 77:0b96f6867312 | 3688 | // We're finished building the new key state. Update the global |
mjr | 77:0b96f6867312 | 3689 | // key state variables to reflect the new state. |
mjr | 77:0b96f6867312 | 3690 | |
mjr | 77:0b96f6867312 | 3691 | // set the new joystick buttons (no need to check for changes, as we |
mjr | 77:0b96f6867312 | 3692 | // report these on every joystick report whether they changed or not) |
mjr | 77:0b96f6867312 | 3693 | jsButtons = ks.js; |
mjr | 77:0b96f6867312 | 3694 | |
mjr | 77:0b96f6867312 | 3695 | // check for keyboard key changes (we only send keyboard reports when |
mjr | 77:0b96f6867312 | 3696 | // something changes) |
mjr | 77:0b96f6867312 | 3697 | if (kbState.data[0] != ks.modkeys |
mjr | 77:0b96f6867312 | 3698 | || kbState.nkeys != ks.nkeys |
mjr | 77:0b96f6867312 | 3699 | || memcmp(ks.keys, &kbState.data[2], 6) != 0) |
mjr | 35:e959ffba78fd | 3700 | { |
mjr | 35:e959ffba78fd | 3701 | // we have changes - set the change flag and store the new key data |
mjr | 35:e959ffba78fd | 3702 | kbState.changed = true; |
mjr | 77:0b96f6867312 | 3703 | kbState.data[0] = ks.modkeys; |
mjr | 77:0b96f6867312 | 3704 | if (ks.nkeys <= 6) { |
mjr | 35:e959ffba78fd | 3705 | // 6 or fewer simultaneous keys - report the key codes |
mjr | 77:0b96f6867312 | 3706 | kbState.nkeys = ks.nkeys; |
mjr | 77:0b96f6867312 | 3707 | memcpy(&kbState.data[2], ks.keys, 6); |
mjr | 35:e959ffba78fd | 3708 | } |
mjr | 35:e959ffba78fd | 3709 | else { |
mjr | 35:e959ffba78fd | 3710 | // more than 6 simultaneous keys - report rollover (all '1' key codes) |
mjr | 35:e959ffba78fd | 3711 | kbState.nkeys = 6; |
mjr | 35:e959ffba78fd | 3712 | memset(&kbState.data[2], 1, 6); |
mjr | 35:e959ffba78fd | 3713 | } |
mjr | 35:e959ffba78fd | 3714 | } |
mjr | 35:e959ffba78fd | 3715 | |
mjr | 77:0b96f6867312 | 3716 | // check for media key changes (we only send media key reports when |
mjr | 77:0b96f6867312 | 3717 | // something changes) |
mjr | 77:0b96f6867312 | 3718 | if (mediaState.data != ks.mediakeys) |
mjr | 35:e959ffba78fd | 3719 | { |
mjr | 77:0b96f6867312 | 3720 | // we have changes - set the change flag and store the new key data |
mjr | 35:e959ffba78fd | 3721 | mediaState.changed = true; |
mjr | 77:0b96f6867312 | 3722 | mediaState.data = ks.mediakeys; |
mjr | 35:e959ffba78fd | 3723 | } |
mjr | 11:bd9da7088e6e | 3724 | } |
mjr | 11:bd9da7088e6e | 3725 | |
mjr | 73:4e8ce0b18915 | 3726 | // Send a button status report |
mjr | 73:4e8ce0b18915 | 3727 | void reportButtonStatus(USBJoystick &js) |
mjr | 73:4e8ce0b18915 | 3728 | { |
mjr | 73:4e8ce0b18915 | 3729 | // start with all buttons off |
mjr | 73:4e8ce0b18915 | 3730 | uint8_t state[(MAX_BUTTONS+7)/8]; |
mjr | 73:4e8ce0b18915 | 3731 | memset(state, 0, sizeof(state)); |
mjr | 73:4e8ce0b18915 | 3732 | |
mjr | 73:4e8ce0b18915 | 3733 | // pack the button states into bytes, one bit per button |
mjr | 73:4e8ce0b18915 | 3734 | ButtonState *bs = buttonState; |
mjr | 73:4e8ce0b18915 | 3735 | for (int i = 0 ; i < nButtons ; ++i, ++bs) |
mjr | 73:4e8ce0b18915 | 3736 | { |
mjr | 73:4e8ce0b18915 | 3737 | // get the physical state |
mjr | 73:4e8ce0b18915 | 3738 | int b = bs->physState; |
mjr | 73:4e8ce0b18915 | 3739 | |
mjr | 73:4e8ce0b18915 | 3740 | // pack it into the appropriate bit |
mjr | 73:4e8ce0b18915 | 3741 | int idx = bs->cfgIndex; |
mjr | 73:4e8ce0b18915 | 3742 | int si = idx / 8; |
mjr | 73:4e8ce0b18915 | 3743 | int shift = idx & 0x07; |
mjr | 73:4e8ce0b18915 | 3744 | state[si] |= b << shift; |
mjr | 73:4e8ce0b18915 | 3745 | } |
mjr | 73:4e8ce0b18915 | 3746 | |
mjr | 73:4e8ce0b18915 | 3747 | // send the report |
mjr | 73:4e8ce0b18915 | 3748 | js.reportButtonStatus(MAX_BUTTONS, state); |
mjr | 73:4e8ce0b18915 | 3749 | } |
mjr | 73:4e8ce0b18915 | 3750 | |
mjr | 5:a70c0bce770d | 3751 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 3752 | // |
mjr | 5:a70c0bce770d | 3753 | // Customization joystick subbclass |
mjr | 5:a70c0bce770d | 3754 | // |
mjr | 5:a70c0bce770d | 3755 | |
mjr | 5:a70c0bce770d | 3756 | class MyUSBJoystick: public USBJoystick |
mjr | 5:a70c0bce770d | 3757 | { |
mjr | 5:a70c0bce770d | 3758 | public: |
mjr | 35:e959ffba78fd | 3759 | MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release, |
mjr | 90:aa4e571da8e8 | 3760 | bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB) |
mjr | 90:aa4e571da8e8 | 3761 | : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB) |
mjr | 5:a70c0bce770d | 3762 | { |
mjr | 54:fd77a6b2f76c | 3763 | sleeping_ = false; |
mjr | 54:fd77a6b2f76c | 3764 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 3765 | timer_.start(); |
mjr | 54:fd77a6b2f76c | 3766 | } |
mjr | 54:fd77a6b2f76c | 3767 | |
mjr | 54:fd77a6b2f76c | 3768 | // show diagnostic LED feedback for connect state |
mjr | 54:fd77a6b2f76c | 3769 | void diagFlash() |
mjr | 54:fd77a6b2f76c | 3770 | { |
mjr | 54:fd77a6b2f76c | 3771 | if (!configured() || sleeping_) |
mjr | 54:fd77a6b2f76c | 3772 | { |
mjr | 54:fd77a6b2f76c | 3773 | // flash once if sleeping or twice if disconnected |
mjr | 54:fd77a6b2f76c | 3774 | for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j) |
mjr | 54:fd77a6b2f76c | 3775 | { |
mjr | 54:fd77a6b2f76c | 3776 | // short red flash |
mjr | 54:fd77a6b2f76c | 3777 | diagLED(1, 0, 0); |
mjr | 54:fd77a6b2f76c | 3778 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 3779 | diagLED(0, 0, 0); |
mjr | 54:fd77a6b2f76c | 3780 | wait_us(50000); |
mjr | 54:fd77a6b2f76c | 3781 | } |
mjr | 54:fd77a6b2f76c | 3782 | } |
mjr | 5:a70c0bce770d | 3783 | } |
mjr | 5:a70c0bce770d | 3784 | |
mjr | 5:a70c0bce770d | 3785 | // are we connected? |
mjr | 5:a70c0bce770d | 3786 | int isConnected() { return configured(); } |
mjr | 5:a70c0bce770d | 3787 | |
mjr | 54:fd77a6b2f76c | 3788 | // Are we in sleep mode? If true, this means that the hardware has |
mjr | 54:fd77a6b2f76c | 3789 | // detected no activity on the bus for 3ms. This happens when the |
mjr | 54:fd77a6b2f76c | 3790 | // cable is physically disconnected, the computer is turned off, or |
mjr | 54:fd77a6b2f76c | 3791 | // the connection is otherwise disabled. |
mjr | 54:fd77a6b2f76c | 3792 | bool isSleeping() const { return sleeping_; } |
mjr | 54:fd77a6b2f76c | 3793 | |
mjr | 54:fd77a6b2f76c | 3794 | // If necessary, attempt to recover from a broken connection. |
mjr | 54:fd77a6b2f76c | 3795 | // |
mjr | 54:fd77a6b2f76c | 3796 | // This is a hack, to work around an apparent timing bug in the |
mjr | 54:fd77a6b2f76c | 3797 | // KL25Z USB implementation that I haven't been able to solve any |
mjr | 54:fd77a6b2f76c | 3798 | // other way. |
mjr | 54:fd77a6b2f76c | 3799 | // |
mjr | 54:fd77a6b2f76c | 3800 | // The issue: when we have an established connection, and the |
mjr | 54:fd77a6b2f76c | 3801 | // connection is broken by physically unplugging the cable or by |
mjr | 54:fd77a6b2f76c | 3802 | // rebooting the PC, the KL25Z sometimes fails to reconnect when |
mjr | 54:fd77a6b2f76c | 3803 | // the physical connection is re-established. The failure is |
mjr | 54:fd77a6b2f76c | 3804 | // sporadic; I'd guess it happens about 25% of the time, but I |
mjr | 54:fd77a6b2f76c | 3805 | // haven't collected any real statistics on it. |
mjr | 54:fd77a6b2f76c | 3806 | // |
mjr | 54:fd77a6b2f76c | 3807 | // The proximate cause of the failure is a deadlock in the SETUP |
mjr | 54:fd77a6b2f76c | 3808 | // protocol between the host and device that happens around the |
mjr | 54:fd77a6b2f76c | 3809 | // point where the PC is requesting the configuration descriptor. |
mjr | 54:fd77a6b2f76c | 3810 | // The exact point in the protocol where this occurs varies slightly; |
mjr | 54:fd77a6b2f76c | 3811 | // it can occur a message or two before or after the Get Config |
mjr | 54:fd77a6b2f76c | 3812 | // Descriptor packet. No matter where it happens, the nature of |
mjr | 54:fd77a6b2f76c | 3813 | // the deadlock is the same: the PC thinks it sees a STALL on EP0 |
mjr | 54:fd77a6b2f76c | 3814 | // from the device, so it terminates the connection attempt, which |
mjr | 54:fd77a6b2f76c | 3815 | // stops further traffic on the cable. The KL25Z USB hardware sees |
mjr | 54:fd77a6b2f76c | 3816 | // the lack of traffic and triggers a SLEEP interrupt (a misnomer |
mjr | 54:fd77a6b2f76c | 3817 | // for what should have been called a BROKEN CONNECTION interrupt). |
mjr | 54:fd77a6b2f76c | 3818 | // Both sides simply stop talking at this point, so the connection |
mjr | 54:fd77a6b2f76c | 3819 | // is effectively dead. |
mjr | 54:fd77a6b2f76c | 3820 | // |
mjr | 54:fd77a6b2f76c | 3821 | // The strange thing is that, as far as I can tell, the KL25Z isn't |
mjr | 54:fd77a6b2f76c | 3822 | // doing anything to trigger the STALL on its end. Both the PC |
mjr | 54:fd77a6b2f76c | 3823 | // and the KL25Z are happy up until the very point of the failure |
mjr | 54:fd77a6b2f76c | 3824 | // and show no signs of anything wrong in the protocol exchange. |
mjr | 54:fd77a6b2f76c | 3825 | // In fact, every detail of the protocol exchange up to this point |
mjr | 54:fd77a6b2f76c | 3826 | // is identical to every successful exchange that does finish the |
mjr | 54:fd77a6b2f76c | 3827 | // whole setup process successfully, on both the KL25Z and Windows |
mjr | 54:fd77a6b2f76c | 3828 | // sides of the connection. I can't find any point of difference |
mjr | 54:fd77a6b2f76c | 3829 | // between successful and unsuccessful sequences that suggests why |
mjr | 54:fd77a6b2f76c | 3830 | // the fateful message fails. This makes me suspect that whatever |
mjr | 54:fd77a6b2f76c | 3831 | // is going wrong is inside the KL25Z USB hardware module, which |
mjr | 54:fd77a6b2f76c | 3832 | // is a pretty substantial black box - it has a lot of internal |
mjr | 54:fd77a6b2f76c | 3833 | // state that's inaccessible to the software. Further bolstering |
mjr | 54:fd77a6b2f76c | 3834 | // this theory is a little experiment where I found that I could |
mjr | 54:fd77a6b2f76c | 3835 | // reproduce the exact sequence of events of a failed reconnect |
mjr | 54:fd77a6b2f76c | 3836 | // attempt in an *initial* connection, which is otherwise 100% |
mjr | 54:fd77a6b2f76c | 3837 | // reliable, by inserting a little bit of artifical time padding |
mjr | 54:fd77a6b2f76c | 3838 | // (200us per event) into the SETUP interrupt handler. My |
mjr | 54:fd77a6b2f76c | 3839 | // hypothesis is that the STALL event happens because the KL25Z |
mjr | 54:fd77a6b2f76c | 3840 | // USB hardware is too slow to respond to a message. I'm not |
mjr | 54:fd77a6b2f76c | 3841 | // sure why this would only happen after a disconnect and not |
mjr | 54:fd77a6b2f76c | 3842 | // during the initial connection; maybe there's some reset work |
mjr | 54:fd77a6b2f76c | 3843 | // in the hardware that takes a substantial amount of time after |
mjr | 54:fd77a6b2f76c | 3844 | // a disconnect. |
mjr | 54:fd77a6b2f76c | 3845 | // |
mjr | 54:fd77a6b2f76c | 3846 | // The solution: the problem happens during the SETUP exchange, |
mjr | 54:fd77a6b2f76c | 3847 | // after we've been assigned a bus address. It only happens on |
mjr | 54:fd77a6b2f76c | 3848 | // some percentage of connection requests, so if we can simply |
mjr | 54:fd77a6b2f76c | 3849 | // start over when the failure occurs, we'll eventually succeed |
mjr | 54:fd77a6b2f76c | 3850 | // simply because not every attempt fails. The ideal would be |
mjr | 54:fd77a6b2f76c | 3851 | // to get the success rate up to 100%, but I can't figure out how |
mjr | 54:fd77a6b2f76c | 3852 | // to fix the underlying problem, so this is the next best thing. |
mjr | 54:fd77a6b2f76c | 3853 | // |
mjr | 54:fd77a6b2f76c | 3854 | // We can detect when the failure occurs by noticing when a SLEEP |
mjr | 54:fd77a6b2f76c | 3855 | // interrupt happens while we have an assigned bus address. |
mjr | 54:fd77a6b2f76c | 3856 | // |
mjr | 54:fd77a6b2f76c | 3857 | // To start a new connection attempt, we have to make the *host* |
mjr | 54:fd77a6b2f76c | 3858 | // try again. The logical connection is initiated solely by the |
mjr | 54:fd77a6b2f76c | 3859 | // host. Fortunately, it's easy to get the host to initiate the |
mjr | 54:fd77a6b2f76c | 3860 | // process: if we disconnect on the device side, it effectively |
mjr | 54:fd77a6b2f76c | 3861 | // makes the device look to the PC like it's electrically unplugged. |
mjr | 54:fd77a6b2f76c | 3862 | // When we reconnect on the device side, the PC thinks a new device |
mjr | 54:fd77a6b2f76c | 3863 | // has been plugged in and initiates the logical connection setup. |
mjr | 74:822a92bc11d2 | 3864 | // We have to remain disconnected for some minimum interval before |
mjr | 74:822a92bc11d2 | 3865 | // the host notices; the exact minimum is unclear, but 5ms seems |
mjr | 74:822a92bc11d2 | 3866 | // reliable in practice. |
mjr | 54:fd77a6b2f76c | 3867 | // |
mjr | 54:fd77a6b2f76c | 3868 | // Here's the full algorithm: |
mjr | 54:fd77a6b2f76c | 3869 | // |
mjr | 54:fd77a6b2f76c | 3870 | // 1. In the SLEEP interrupt handler, if we have a bus address, |
mjr | 54:fd77a6b2f76c | 3871 | // we disconnect the device. This happens in ISR context, so we |
mjr | 54:fd77a6b2f76c | 3872 | // can't wait around for 5ms. Instead, we simply set a flag noting |
mjr | 54:fd77a6b2f76c | 3873 | // that the connection has been broken, and we note the time and |
mjr | 54:fd77a6b2f76c | 3874 | // return. |
mjr | 54:fd77a6b2f76c | 3875 | // |
mjr | 54:fd77a6b2f76c | 3876 | // 2. In our main loop, whenever we find that we're disconnected, |
mjr | 54:fd77a6b2f76c | 3877 | // we call recoverConnection(). The main loop's job is basically a |
mjr | 54:fd77a6b2f76c | 3878 | // bunch of device polling. We're just one more device to poll, so |
mjr | 54:fd77a6b2f76c | 3879 | // recoverConnection() will be called soon after a disconnect, and |
mjr | 54:fd77a6b2f76c | 3880 | // then will be called in a loop for as long as we're disconnected. |
mjr | 54:fd77a6b2f76c | 3881 | // |
mjr | 54:fd77a6b2f76c | 3882 | // 3. In recoverConnection(), we check the flag we set in the SLEEP |
mjr | 54:fd77a6b2f76c | 3883 | // handler. If set, we wait until 5ms has elapsed from the SLEEP |
mjr | 54:fd77a6b2f76c | 3884 | // event time that we noted, then we'll reconnect and clear the flag. |
mjr | 54:fd77a6b2f76c | 3885 | // This gives us the required 5ms (or longer) delay between the |
mjr | 54:fd77a6b2f76c | 3886 | // disconnect and reconnect, ensuring that the PC will notice and |
mjr | 54:fd77a6b2f76c | 3887 | // will start over with the connection protocol. |
mjr | 54:fd77a6b2f76c | 3888 | // |
mjr | 54:fd77a6b2f76c | 3889 | // 4. The main loop keeps calling recoverConnection() in a loop for |
mjr | 54:fd77a6b2f76c | 3890 | // as long as we're disconnected, so if the new connection attempt |
mjr | 54:fd77a6b2f76c | 3891 | // triggered in step 3 fails, the SLEEP interrupt will happen again, |
mjr | 54:fd77a6b2f76c | 3892 | // we'll disconnect again, the flag will get set again, and |
mjr | 54:fd77a6b2f76c | 3893 | // recoverConnection() will reconnect again after another suitable |
mjr | 54:fd77a6b2f76c | 3894 | // delay. This will repeat until the connection succeeds or hell |
mjr | 54:fd77a6b2f76c | 3895 | // freezes over. |
mjr | 54:fd77a6b2f76c | 3896 | // |
mjr | 54:fd77a6b2f76c | 3897 | // Each disconnect happens immediately when a reconnect attempt |
mjr | 54:fd77a6b2f76c | 3898 | // fails, and an entire successful connection only takes about 25ms, |
mjr | 54:fd77a6b2f76c | 3899 | // so our loop can retry at more than 30 attempts per second. |
mjr | 54:fd77a6b2f76c | 3900 | // In my testing, lost connections almost always reconnect in |
mjr | 54:fd77a6b2f76c | 3901 | // less than second with this code in place. |
mjr | 54:fd77a6b2f76c | 3902 | void recoverConnection() |
mjr | 54:fd77a6b2f76c | 3903 | { |
mjr | 54:fd77a6b2f76c | 3904 | // if a reconnect is pending, reconnect |
mjr | 54:fd77a6b2f76c | 3905 | if (reconnectPending_) |
mjr | 54:fd77a6b2f76c | 3906 | { |
mjr | 54:fd77a6b2f76c | 3907 | // Loop until we reach 5ms after the last sleep event. |
mjr | 54:fd77a6b2f76c | 3908 | for (bool done = false ; !done ; ) |
mjr | 54:fd77a6b2f76c | 3909 | { |
mjr | 54:fd77a6b2f76c | 3910 | // If we've reached the target time, reconnect. Do the |
mjr | 54:fd77a6b2f76c | 3911 | // time check and flag reset atomically, so that we can't |
mjr | 54:fd77a6b2f76c | 3912 | // have another sleep event sneak in after we've verified |
mjr | 54:fd77a6b2f76c | 3913 | // the time. If another event occurs, it has to happen |
mjr | 54:fd77a6b2f76c | 3914 | // before we check, in which case it'll update the time |
mjr | 54:fd77a6b2f76c | 3915 | // before we check it, or after we clear the flag, in |
mjr | 54:fd77a6b2f76c | 3916 | // which case it will reset the flag and we'll do another |
mjr | 54:fd77a6b2f76c | 3917 | // round the next time we call this routine. |
mjr | 54:fd77a6b2f76c | 3918 | __disable_irq(); |
mjr | 54:fd77a6b2f76c | 3919 | if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000) |
mjr | 54:fd77a6b2f76c | 3920 | { |
mjr | 54:fd77a6b2f76c | 3921 | connect(false); |
mjr | 54:fd77a6b2f76c | 3922 | reconnectPending_ = false; |
mjr | 54:fd77a6b2f76c | 3923 | done = true; |
mjr | 54:fd77a6b2f76c | 3924 | } |
mjr | 54:fd77a6b2f76c | 3925 | __enable_irq(); |
mjr | 54:fd77a6b2f76c | 3926 | } |
mjr | 54:fd77a6b2f76c | 3927 | } |
mjr | 54:fd77a6b2f76c | 3928 | } |
mjr | 5:a70c0bce770d | 3929 | |
mjr | 5:a70c0bce770d | 3930 | protected: |
mjr | 54:fd77a6b2f76c | 3931 | // Handle a USB SLEEP interrupt. This interrupt signifies that the |
mjr | 54:fd77a6b2f76c | 3932 | // USB hardware module hasn't seen any token traffic for 3ms, which |
mjr | 54:fd77a6b2f76c | 3933 | // means that we're either physically or logically disconnected. |
mjr | 54:fd77a6b2f76c | 3934 | // |
mjr | 54:fd77a6b2f76c | 3935 | // Important: this runs in ISR context. |
mjr | 54:fd77a6b2f76c | 3936 | // |
mjr | 54:fd77a6b2f76c | 3937 | // Note that this is a specialized sense of "sleep" that's unrelated |
mjr | 54:fd77a6b2f76c | 3938 | // to the similarly named power modes on the PC. This has nothing |
mjr | 54:fd77a6b2f76c | 3939 | // to do with suspend/sleep mode on the PC, and it's not a low-power |
mjr | 54:fd77a6b2f76c | 3940 | // mode on the KL25Z. They really should have called this interrupt |
mjr | 54:fd77a6b2f76c | 3941 | // DISCONNECT or BROKEN CONNECTION.) |
mjr | 54:fd77a6b2f76c | 3942 | virtual void sleepStateChanged(unsigned int sleeping) |
mjr | 54:fd77a6b2f76c | 3943 | { |
mjr | 54:fd77a6b2f76c | 3944 | // note the new state |
mjr | 54:fd77a6b2f76c | 3945 | sleeping_ = sleeping; |
mjr | 54:fd77a6b2f76c | 3946 | |
mjr | 54:fd77a6b2f76c | 3947 | // If we have a non-zero bus address, we have at least a partial |
mjr | 54:fd77a6b2f76c | 3948 | // connection to the host (we've made it at least as far as the |
mjr | 54:fd77a6b2f76c | 3949 | // SETUP stage). Explicitly disconnect, and the pending reconnect |
mjr | 54:fd77a6b2f76c | 3950 | // flag, and remember the time of the sleep event. |
mjr | 54:fd77a6b2f76c | 3951 | if (USB0->ADDR != 0x00) |
mjr | 54:fd77a6b2f76c | 3952 | { |
mjr | 54:fd77a6b2f76c | 3953 | disconnect(); |
mjr | 54:fd77a6b2f76c | 3954 | lastSleepTime_ = timer_.read_us(); |
mjr | 54:fd77a6b2f76c | 3955 | reconnectPending_ = true; |
mjr | 54:fd77a6b2f76c | 3956 | } |
mjr | 54:fd77a6b2f76c | 3957 | } |
mjr | 54:fd77a6b2f76c | 3958 | |
mjr | 54:fd77a6b2f76c | 3959 | // is the USB connection asleep? |
mjr | 54:fd77a6b2f76c | 3960 | volatile bool sleeping_; |
mjr | 54:fd77a6b2f76c | 3961 | |
mjr | 54:fd77a6b2f76c | 3962 | // flag: reconnect pending after sleep event |
mjr | 54:fd77a6b2f76c | 3963 | volatile bool reconnectPending_; |
mjr | 54:fd77a6b2f76c | 3964 | |
mjr | 54:fd77a6b2f76c | 3965 | // time of last sleep event while connected |
mjr | 54:fd77a6b2f76c | 3966 | volatile uint32_t lastSleepTime_; |
mjr | 54:fd77a6b2f76c | 3967 | |
mjr | 54:fd77a6b2f76c | 3968 | // timer to keep track of interval since last sleep event |
mjr | 54:fd77a6b2f76c | 3969 | Timer timer_; |
mjr | 5:a70c0bce770d | 3970 | }; |
mjr | 5:a70c0bce770d | 3971 | |
mjr | 5:a70c0bce770d | 3972 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 3973 | // |
mjr | 5:a70c0bce770d | 3974 | // Accelerometer (MMA8451Q) |
mjr | 5:a70c0bce770d | 3975 | // |
mjr | 5:a70c0bce770d | 3976 | |
mjr | 5:a70c0bce770d | 3977 | // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer. |
mjr | 5:a70c0bce770d | 3978 | // |
mjr | 5:a70c0bce770d | 3979 | // This is a custom wrapper for the library code to interface to the |
mjr | 6:cc35eb643e8f | 3980 | // MMA8451Q. This class encapsulates an interrupt handler and |
mjr | 6:cc35eb643e8f | 3981 | // automatic calibration. |
mjr | 5:a70c0bce770d | 3982 | // |
mjr | 77:0b96f6867312 | 3983 | // We collect data at the device's maximum rate of 800kHz (one sample |
mjr | 77:0b96f6867312 | 3984 | // every 1.25ms). To keep up with the high data rate, we use the |
mjr | 77:0b96f6867312 | 3985 | // device's internal FIFO, and drain the FIFO by polling on each |
mjr | 77:0b96f6867312 | 3986 | // iteration of our main application loop. In the past, we used an |
mjr | 77:0b96f6867312 | 3987 | // interrupt handler to read the device immediately on the arrival of |
mjr | 77:0b96f6867312 | 3988 | // each sample, but this created too much latency for the IR remote |
mjr | 77:0b96f6867312 | 3989 | // receiver, due to the relatively long time it takes to transfer the |
mjr | 77:0b96f6867312 | 3990 | // accelerometer readings via I2C. The device's on-board FIFO can |
mjr | 77:0b96f6867312 | 3991 | // store up to 32 samples, which gives us up to about 40ms between |
mjr | 77:0b96f6867312 | 3992 | // polling iterations before the buffer overflows. Our main loop runs |
mjr | 77:0b96f6867312 | 3993 | // in under 2ms, so we can easily keep the FIFO far from overflowing. |
mjr | 77:0b96f6867312 | 3994 | // |
mjr | 77:0b96f6867312 | 3995 | // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC |
mjr | 77:0b96f6867312 | 3996 | // sample is the same bit width (14 bits) in all modes, so the higher |
mjr | 77:0b96f6867312 | 3997 | // dynamic range modes trade physical precision for range. For our |
mjr | 77:0b96f6867312 | 3998 | // purposes, precision is more important than range, so we use the |
mjr | 77:0b96f6867312 | 3999 | // +/-2G mode. Further, our joystick range is calibrated for only |
mjr | 77:0b96f6867312 | 4000 | // +/-1G. This was unintentional on my part; I didn't look at the |
mjr | 77:0b96f6867312 | 4001 | // MMA8451Q library closely enough to realize it was normalizing to |
mjr | 77:0b96f6867312 | 4002 | // actual "G" units, and assumed that it was normalizing to a -1..+1 |
mjr | 77:0b96f6867312 | 4003 | // scale. In practice, a +/-1G scale seems perfectly adequate for |
mjr | 77:0b96f6867312 | 4004 | // virtual pinball use, so I'm sticking with that range for now. But |
mjr | 77:0b96f6867312 | 4005 | // there might be some benefit in renormalizing to a +/-2G range, in |
mjr | 77:0b96f6867312 | 4006 | // that it would allow for higher dynamic range for very hard nudges. |
mjr | 77:0b96f6867312 | 4007 | // Everyone would have to tweak their nudge sensitivity in VP if I |
mjr | 77:0b96f6867312 | 4008 | // made that change, though, so I'm keeping it as is for now; it would |
mjr | 77:0b96f6867312 | 4009 | // be best to make it a config option ("accelerometer high dynamic range") |
mjr | 77:0b96f6867312 | 4010 | // rather than change it across the board. |
mjr | 5:a70c0bce770d | 4011 | // |
mjr | 6:cc35eb643e8f | 4012 | // We automatically calibrate the accelerometer so that it's not |
mjr | 6:cc35eb643e8f | 4013 | // necessary to get it exactly level when installing it, and so |
mjr | 6:cc35eb643e8f | 4014 | // that it's also not necessary to calibrate it manually. There's |
mjr | 6:cc35eb643e8f | 4015 | // lots of experience that tells us that manual calibration is a |
mjr | 6:cc35eb643e8f | 4016 | // terrible solution, mostly because cabinets tend to shift slightly |
mjr | 6:cc35eb643e8f | 4017 | // during use, requiring frequent recalibration. Instead, we |
mjr | 6:cc35eb643e8f | 4018 | // calibrate automatically. We continuously monitor the acceleration |
mjr | 6:cc35eb643e8f | 4019 | // data, watching for periods of constant (or nearly constant) values. |
mjr | 6:cc35eb643e8f | 4020 | // Any time it appears that the machine has been at rest for a while |
mjr | 6:cc35eb643e8f | 4021 | // (about 5 seconds), we'll average the readings during that rest |
mjr | 6:cc35eb643e8f | 4022 | // period and use the result as the level rest position. This is |
mjr | 6:cc35eb643e8f | 4023 | // is ongoing, so we'll quickly find the center point again if the |
mjr | 6:cc35eb643e8f | 4024 | // machine is moved during play (by an especially aggressive bout |
mjr | 6:cc35eb643e8f | 4025 | // of nudging, say). |
mjr | 5:a70c0bce770d | 4026 | // |
mjr | 5:a70c0bce770d | 4027 | |
mjr | 17:ab3cec0c8bf4 | 4028 | // I2C address of the accelerometer (this is a constant of the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 4029 | const int MMA8451_I2C_ADDRESS = (0x1d<<1); |
mjr | 17:ab3cec0c8bf4 | 4030 | |
mjr | 17:ab3cec0c8bf4 | 4031 | // SCL and SDA pins for the accelerometer (constant for the KL25Z) |
mjr | 17:ab3cec0c8bf4 | 4032 | #define MMA8451_SCL_PIN PTE25 |
mjr | 17:ab3cec0c8bf4 | 4033 | #define MMA8451_SDA_PIN PTE24 |
mjr | 17:ab3cec0c8bf4 | 4034 | |
mjr | 17:ab3cec0c8bf4 | 4035 | // Digital in pin to use for the accelerometer interrupt. For the KL25Z, |
mjr | 17:ab3cec0c8bf4 | 4036 | // this can be either PTA14 or PTA15, since those are the pins physically |
mjr | 17:ab3cec0c8bf4 | 4037 | // wired on this board to the MMA8451 interrupt controller. |
mjr | 17:ab3cec0c8bf4 | 4038 | #define MMA8451_INT_PIN PTA15 |
mjr | 17:ab3cec0c8bf4 | 4039 | |
mjr | 17:ab3cec0c8bf4 | 4040 | |
mjr | 6:cc35eb643e8f | 4041 | // accelerometer input history item, for gathering calibration data |
mjr | 6:cc35eb643e8f | 4042 | struct AccHist |
mjr | 5:a70c0bce770d | 4043 | { |
mjr | 77:0b96f6867312 | 4044 | AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; } |
mjr | 77:0b96f6867312 | 4045 | void set(int x, int y, AccHist *prv) |
mjr | 6:cc35eb643e8f | 4046 | { |
mjr | 6:cc35eb643e8f | 4047 | // save the raw position |
mjr | 6:cc35eb643e8f | 4048 | this->x = x; |
mjr | 6:cc35eb643e8f | 4049 | this->y = y; |
mjr | 77:0b96f6867312 | 4050 | this->dsq = distanceSquared(prv); |
mjr | 6:cc35eb643e8f | 4051 | } |
mjr | 6:cc35eb643e8f | 4052 | |
mjr | 6:cc35eb643e8f | 4053 | // reading for this entry |
mjr | 77:0b96f6867312 | 4054 | int x, y; |
mjr | 77:0b96f6867312 | 4055 | |
mjr | 77:0b96f6867312 | 4056 | // (distance from previous entry) squared |
mjr | 77:0b96f6867312 | 4057 | int dsq; |
mjr | 5:a70c0bce770d | 4058 | |
mjr | 6:cc35eb643e8f | 4059 | // total and count of samples averaged over this period |
mjr | 77:0b96f6867312 | 4060 | int xtot, ytot; |
mjr | 6:cc35eb643e8f | 4061 | int cnt; |
mjr | 6:cc35eb643e8f | 4062 | |
mjr | 77:0b96f6867312 | 4063 | void clearAvg() { xtot = ytot = 0; cnt = 0; } |
mjr | 77:0b96f6867312 | 4064 | void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; } |
mjr | 77:0b96f6867312 | 4065 | int xAvg() const { return xtot/cnt; } |
mjr | 77:0b96f6867312 | 4066 | int yAvg() const { return ytot/cnt; } |
mjr | 77:0b96f6867312 | 4067 | |
mjr | 77:0b96f6867312 | 4068 | int distanceSquared(AccHist *p) |
mjr | 77:0b96f6867312 | 4069 | { return square(p->x - x) + square(p->y - y); } |
mjr | 5:a70c0bce770d | 4070 | }; |
mjr | 5:a70c0bce770d | 4071 | |
mjr | 5:a70c0bce770d | 4072 | // accelerometer wrapper class |
mjr | 3:3514575d4f86 | 4073 | class Accel |
mjr | 3:3514575d4f86 | 4074 | { |
mjr | 3:3514575d4f86 | 4075 | public: |
mjr | 78:1e00b3fa11af | 4076 | Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin, |
mjr | 78:1e00b3fa11af | 4077 | int range, int autoCenterMode) |
mjr | 77:0b96f6867312 | 4078 | : mma_(sda, scl, i2cAddr) |
mjr | 3:3514575d4f86 | 4079 | { |
mjr | 5:a70c0bce770d | 4080 | // remember the interrupt pin assignment |
mjr | 5:a70c0bce770d | 4081 | irqPin_ = irqPin; |
mjr | 77:0b96f6867312 | 4082 | |
mjr | 77:0b96f6867312 | 4083 | // remember the range |
mjr | 77:0b96f6867312 | 4084 | range_ = range; |
mjr | 78:1e00b3fa11af | 4085 | |
mjr | 78:1e00b3fa11af | 4086 | // set the auto-centering mode |
mjr | 78:1e00b3fa11af | 4087 | setAutoCenterMode(autoCenterMode); |
mjr | 78:1e00b3fa11af | 4088 | |
mjr | 78:1e00b3fa11af | 4089 | // no manual centering request has been received |
mjr | 78:1e00b3fa11af | 4090 | manualCenterRequest_ = false; |
mjr | 5:a70c0bce770d | 4091 | |
mjr | 5:a70c0bce770d | 4092 | // reset and initialize |
mjr | 5:a70c0bce770d | 4093 | reset(); |
mjr | 5:a70c0bce770d | 4094 | } |
mjr | 5:a70c0bce770d | 4095 | |
mjr | 78:1e00b3fa11af | 4096 | // Request manual centering. This applies the trailing average |
mjr | 78:1e00b3fa11af | 4097 | // of recent measurements and applies it as the new center point |
mjr | 78:1e00b3fa11af | 4098 | // as soon as we have enough data. |
mjr | 78:1e00b3fa11af | 4099 | void manualCenterRequest() { manualCenterRequest_ = true; } |
mjr | 78:1e00b3fa11af | 4100 | |
mjr | 78:1e00b3fa11af | 4101 | // set the auto-centering mode |
mjr | 78:1e00b3fa11af | 4102 | void setAutoCenterMode(int mode) |
mjr | 78:1e00b3fa11af | 4103 | { |
mjr | 78:1e00b3fa11af | 4104 | // remember the mode |
mjr | 78:1e00b3fa11af | 4105 | autoCenterMode_ = mode; |
mjr | 78:1e00b3fa11af | 4106 | |
mjr | 78:1e00b3fa11af | 4107 | // Set the time between checks. We check 5 times over the course |
mjr | 78:1e00b3fa11af | 4108 | // of the centering time, so the check interval is 1/5 of the total. |
mjr | 78:1e00b3fa11af | 4109 | if (mode == 0) |
mjr | 78:1e00b3fa11af | 4110 | { |
mjr | 78:1e00b3fa11af | 4111 | // mode 0 is the old default of 5 seconds, so check every 1s |
mjr | 78:1e00b3fa11af | 4112 | autoCenterCheckTime_ = 1000000; |
mjr | 78:1e00b3fa11af | 4113 | } |
mjr | 78:1e00b3fa11af | 4114 | else if (mode <= 60) |
mjr | 78:1e00b3fa11af | 4115 | { |
mjr | 78:1e00b3fa11af | 4116 | // mode 1-60 means reset after 'mode' seconds; the check |
mjr | 78:1e00b3fa11af | 4117 | // interval is 1/5 of this |
mjr | 78:1e00b3fa11af | 4118 | autoCenterCheckTime_ = mode*200000; |
mjr | 78:1e00b3fa11af | 4119 | } |
mjr | 78:1e00b3fa11af | 4120 | else |
mjr | 78:1e00b3fa11af | 4121 | { |
mjr | 78:1e00b3fa11af | 4122 | // Auto-centering is off, but still gather statistics to apply |
mjr | 78:1e00b3fa11af | 4123 | // when we get a manual centering request. The check interval |
mjr | 78:1e00b3fa11af | 4124 | // in this case is 1/5 of the total time for the trailing average |
mjr | 78:1e00b3fa11af | 4125 | // we apply for the manual centering. We want this to be long |
mjr | 78:1e00b3fa11af | 4126 | // enough to smooth out the data, but short enough that it only |
mjr | 78:1e00b3fa11af | 4127 | // includes recent data. |
mjr | 78:1e00b3fa11af | 4128 | autoCenterCheckTime_ = 500000; |
mjr | 78:1e00b3fa11af | 4129 | } |
mjr | 78:1e00b3fa11af | 4130 | } |
mjr | 78:1e00b3fa11af | 4131 | |
mjr | 5:a70c0bce770d | 4132 | void reset() |
mjr | 5:a70c0bce770d | 4133 | { |
mjr | 6:cc35eb643e8f | 4134 | // clear the center point |
mjr | 77:0b96f6867312 | 4135 | cx_ = cy_ = 0; |
mjr | 6:cc35eb643e8f | 4136 | |
mjr | 77:0b96f6867312 | 4137 | // start the auto-centering timer |
mjr | 5:a70c0bce770d | 4138 | tCenter_.start(); |
mjr | 5:a70c0bce770d | 4139 | iAccPrv_ = nAccPrv_ = 0; |
mjr | 6:cc35eb643e8f | 4140 | |
mjr | 5:a70c0bce770d | 4141 | // reset and initialize the MMA8451Q |
mjr | 5:a70c0bce770d | 4142 | mma_.init(); |
mjr | 77:0b96f6867312 | 4143 | |
mjr | 77:0b96f6867312 | 4144 | // set the range |
mjr | 77:0b96f6867312 | 4145 | mma_.setRange( |
mjr | 77:0b96f6867312 | 4146 | range_ == AccelRange4G ? 4 : |
mjr | 77:0b96f6867312 | 4147 | range_ == AccelRange8G ? 8 : |
mjr | 77:0b96f6867312 | 4148 | 2); |
mjr | 6:cc35eb643e8f | 4149 | |
mjr | 77:0b96f6867312 | 4150 | // set the average accumulators to zero |
mjr | 77:0b96f6867312 | 4151 | xSum_ = ySum_ = 0; |
mjr | 77:0b96f6867312 | 4152 | nSum_ = 0; |
mjr | 3:3514575d4f86 | 4153 | |
mjr | 3:3514575d4f86 | 4154 | // read the current registers to clear the data ready flag |
mjr | 6:cc35eb643e8f | 4155 | mma_.getAccXYZ(ax_, ay_, az_); |
mjr | 3:3514575d4f86 | 4156 | } |
mjr | 3:3514575d4f86 | 4157 | |
mjr | 77:0b96f6867312 | 4158 | void poll() |
mjr | 76:7f5912b6340e | 4159 | { |
mjr | 77:0b96f6867312 | 4160 | // read samples until we clear the FIFO |
mjr | 77:0b96f6867312 | 4161 | while (mma_.getFIFOCount() != 0) |
mjr | 77:0b96f6867312 | 4162 | { |
mjr | 77:0b96f6867312 | 4163 | int x, y, z; |
mjr | 77:0b96f6867312 | 4164 | mma_.getAccXYZ(x, y, z); |
mjr | 77:0b96f6867312 | 4165 | |
mjr | 77:0b96f6867312 | 4166 | // add the new reading to the running total for averaging |
mjr | 77:0b96f6867312 | 4167 | xSum_ += (x - cx_); |
mjr | 77:0b96f6867312 | 4168 | ySum_ += (y - cy_); |
mjr | 77:0b96f6867312 | 4169 | ++nSum_; |
mjr | 77:0b96f6867312 | 4170 | |
mjr | 77:0b96f6867312 | 4171 | // store the updates |
mjr | 77:0b96f6867312 | 4172 | ax_ = x; |
mjr | 77:0b96f6867312 | 4173 | ay_ = y; |
mjr | 77:0b96f6867312 | 4174 | az_ = z; |
mjr | 77:0b96f6867312 | 4175 | } |
mjr | 76:7f5912b6340e | 4176 | } |
mjr | 77:0b96f6867312 | 4177 | |
mjr | 9:fd65b0a94720 | 4178 | void get(int &x, int &y) |
mjr | 3:3514575d4f86 | 4179 | { |
mjr | 77:0b96f6867312 | 4180 | // read the shared data and store locally for calculations |
mjr | 77:0b96f6867312 | 4181 | int ax = ax_, ay = ay_; |
mjr | 77:0b96f6867312 | 4182 | int xSum = xSum_, ySum = ySum_; |
mjr | 77:0b96f6867312 | 4183 | int nSum = nSum_; |
mjr | 6:cc35eb643e8f | 4184 | |
mjr | 77:0b96f6867312 | 4185 | // reset the average accumulators for the next run |
mjr | 77:0b96f6867312 | 4186 | xSum_ = ySum_ = 0; |
mjr | 77:0b96f6867312 | 4187 | nSum_ = 0; |
mjr | 77:0b96f6867312 | 4188 | |
mjr | 77:0b96f6867312 | 4189 | // add this sample to the current calibration interval's running total |
mjr | 77:0b96f6867312 | 4190 | AccHist *p = accPrv_ + iAccPrv_; |
mjr | 77:0b96f6867312 | 4191 | p->addAvg(ax, ay); |
mjr | 77:0b96f6867312 | 4192 | |
mjr | 78:1e00b3fa11af | 4193 | // If we're in auto-centering mode, check for auto-centering |
mjr | 78:1e00b3fa11af | 4194 | // at intervals of 1/5 of the overall time. If we're not in |
mjr | 78:1e00b3fa11af | 4195 | // auto-centering mode, check anyway at one-second intervals |
mjr | 78:1e00b3fa11af | 4196 | // so that we gather averages for manual centering requests. |
mjr | 78:1e00b3fa11af | 4197 | if (tCenter_.read_us() > autoCenterCheckTime_) |
mjr | 77:0b96f6867312 | 4198 | { |
mjr | 77:0b96f6867312 | 4199 | // add the latest raw sample to the history list |
mjr | 77:0b96f6867312 | 4200 | AccHist *prv = p; |
mjr | 77:0b96f6867312 | 4201 | iAccPrv_ = (iAccPrv_ + 1); |
mjr | 77:0b96f6867312 | 4202 | if (iAccPrv_ >= maxAccPrv) |
mjr | 77:0b96f6867312 | 4203 | iAccPrv_ = 0; |
mjr | 77:0b96f6867312 | 4204 | p = accPrv_ + iAccPrv_; |
mjr | 77:0b96f6867312 | 4205 | p->set(ax, ay, prv); |
mjr | 77:0b96f6867312 | 4206 | |
mjr | 78:1e00b3fa11af | 4207 | // if we have a full complement, check for auto-centering |
mjr | 77:0b96f6867312 | 4208 | if (nAccPrv_ >= maxAccPrv) |
mjr | 77:0b96f6867312 | 4209 | { |
mjr | 78:1e00b3fa11af | 4210 | // Center if: |
mjr | 78:1e00b3fa11af | 4211 | // |
mjr | 78:1e00b3fa11af | 4212 | // - Auto-centering is on, and we've been stable over the |
mjr | 78:1e00b3fa11af | 4213 | // whole sample period at our spot-check points |
mjr | 78:1e00b3fa11af | 4214 | // |
mjr | 78:1e00b3fa11af | 4215 | // - A manual centering request is pending |
mjr | 78:1e00b3fa11af | 4216 | // |
mjr | 77:0b96f6867312 | 4217 | static const int accTol = 164*164; // 1% of range, squared |
mjr | 77:0b96f6867312 | 4218 | AccHist *p0 = accPrv_; |
mjr | 78:1e00b3fa11af | 4219 | if (manualCenterRequest_ |
mjr | 78:1e00b3fa11af | 4220 | || (autoCenterMode_ <= 60 |
mjr | 78:1e00b3fa11af | 4221 | && p0[0].dsq < accTol |
mjr | 78:1e00b3fa11af | 4222 | && p0[1].dsq < accTol |
mjr | 78:1e00b3fa11af | 4223 | && p0[2].dsq < accTol |
mjr | 78:1e00b3fa11af | 4224 | && p0[3].dsq < accTol |
mjr | 78:1e00b3fa11af | 4225 | && p0[4].dsq < accTol)) |
mjr | 77:0b96f6867312 | 4226 | { |
mjr | 77:0b96f6867312 | 4227 | // Figure the new calibration point as the average of |
mjr | 77:0b96f6867312 | 4228 | // the samples over the rest period |
mjr | 77:0b96f6867312 | 4229 | cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5; |
mjr | 77:0b96f6867312 | 4230 | cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5; |
mjr | 78:1e00b3fa11af | 4231 | |
mjr | 78:1e00b3fa11af | 4232 | // clear any pending manual centering request |
mjr | 78:1e00b3fa11af | 4233 | manualCenterRequest_ = false; |
mjr | 77:0b96f6867312 | 4234 | } |
mjr | 77:0b96f6867312 | 4235 | } |
mjr | 77:0b96f6867312 | 4236 | else |
mjr | 77:0b96f6867312 | 4237 | { |
mjr | 77:0b96f6867312 | 4238 | // not enough samples yet; just up the count |
mjr | 77:0b96f6867312 | 4239 | ++nAccPrv_; |
mjr | 77:0b96f6867312 | 4240 | } |
mjr | 6:cc35eb643e8f | 4241 | |
mjr | 77:0b96f6867312 | 4242 | // clear the new item's running totals |
mjr | 77:0b96f6867312 | 4243 | p->clearAvg(); |
mjr | 5:a70c0bce770d | 4244 | |
mjr | 77:0b96f6867312 | 4245 | // reset the timer |
mjr | 77:0b96f6867312 | 4246 | tCenter_.reset(); |
mjr | 77:0b96f6867312 | 4247 | } |
mjr | 5:a70c0bce770d | 4248 | |
mjr | 77:0b96f6867312 | 4249 | // report our integrated velocity reading in x,y |
mjr | 77:0b96f6867312 | 4250 | x = rawToReport(xSum/nSum); |
mjr | 77:0b96f6867312 | 4251 | y = rawToReport(ySum/nSum); |
mjr | 5:a70c0bce770d | 4252 | |
mjr | 6:cc35eb643e8f | 4253 | #ifdef DEBUG_PRINTF |
mjr | 77:0b96f6867312 | 4254 | if (x != 0 || y != 0) |
mjr | 77:0b96f6867312 | 4255 | printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt); |
mjr | 6:cc35eb643e8f | 4256 | #endif |
mjr | 77:0b96f6867312 | 4257 | } |
mjr | 29:582472d0bc57 | 4258 | |
mjr | 3:3514575d4f86 | 4259 | private: |
mjr | 6:cc35eb643e8f | 4260 | // adjust a raw acceleration figure to a usb report value |
mjr | 77:0b96f6867312 | 4261 | int rawToReport(int v) |
mjr | 5:a70c0bce770d | 4262 | { |
mjr | 77:0b96f6867312 | 4263 | // Scale to the joystick report range. The accelerometer |
mjr | 77:0b96f6867312 | 4264 | // readings use the native 14-bit signed integer representation, |
mjr | 77:0b96f6867312 | 4265 | // so their scale is 2^13. |
mjr | 77:0b96f6867312 | 4266 | // |
mjr | 77:0b96f6867312 | 4267 | // The 1G range is special: it uses the 2G native hardware range, |
mjr | 77:0b96f6867312 | 4268 | // but rescales the result to a 1G range for the joystick reports. |
mjr | 77:0b96f6867312 | 4269 | // So for that mode, we divide by 4096 rather than 8192. All of |
mjr | 77:0b96f6867312 | 4270 | // the other modes map use the hardware scaling directly. |
mjr | 77:0b96f6867312 | 4271 | int i = v*JOYMAX; |
mjr | 77:0b96f6867312 | 4272 | i = (range_ == AccelRange1G ? i/4096 : i/8192); |
mjr | 5:a70c0bce770d | 4273 | |
mjr | 6:cc35eb643e8f | 4274 | // if it's near the center, scale it roughly as 20*(i/20)^2, |
mjr | 6:cc35eb643e8f | 4275 | // to suppress noise near the rest position |
mjr | 6:cc35eb643e8f | 4276 | static const int filter[] = { |
mjr | 6:cc35eb643e8f | 4277 | -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0, |
mjr | 6:cc35eb643e8f | 4278 | 0, |
mjr | 6:cc35eb643e8f | 4279 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18 |
mjr | 6:cc35eb643e8f | 4280 | }; |
mjr | 6:cc35eb643e8f | 4281 | return (i > 20 || i < -20 ? i : filter[i+20]); |
mjr | 5:a70c0bce770d | 4282 | } |
mjr | 5:a70c0bce770d | 4283 | |
mjr | 3:3514575d4f86 | 4284 | // underlying accelerometer object |
mjr | 3:3514575d4f86 | 4285 | MMA8451Q mma_; |
mjr | 3:3514575d4f86 | 4286 | |
mjr | 77:0b96f6867312 | 4287 | // last raw acceleration readings, on the device's signed 14-bit |
mjr | 77:0b96f6867312 | 4288 | // scale -8192..+8191 |
mjr | 77:0b96f6867312 | 4289 | int ax_, ay_, az_; |
mjr | 77:0b96f6867312 | 4290 | |
mjr | 77:0b96f6867312 | 4291 | // running sum of readings since last get() |
mjr | 77:0b96f6867312 | 4292 | int xSum_, ySum_; |
mjr | 77:0b96f6867312 | 4293 | |
mjr | 77:0b96f6867312 | 4294 | // number of readings since last get() |
mjr | 77:0b96f6867312 | 4295 | int nSum_; |
mjr | 6:cc35eb643e8f | 4296 | |
mjr | 6:cc35eb643e8f | 4297 | // Calibration reference point for accelerometer. This is the |
mjr | 6:cc35eb643e8f | 4298 | // average reading on the accelerometer when in the neutral position |
mjr | 6:cc35eb643e8f | 4299 | // at rest. |
mjr | 77:0b96f6867312 | 4300 | int cx_, cy_; |
mjr | 77:0b96f6867312 | 4301 | |
mjr | 77:0b96f6867312 | 4302 | // range (AccelRangeXxx value, from config.h) |
mjr | 77:0b96f6867312 | 4303 | uint8_t range_; |
mjr | 78:1e00b3fa11af | 4304 | |
mjr | 78:1e00b3fa11af | 4305 | // auto-center mode: |
mjr | 78:1e00b3fa11af | 4306 | // 0 = default of 5-second auto-centering |
mjr | 78:1e00b3fa11af | 4307 | // 1-60 = auto-center after this many seconds |
mjr | 78:1e00b3fa11af | 4308 | // 255 = auto-centering off (manual centering only) |
mjr | 78:1e00b3fa11af | 4309 | uint8_t autoCenterMode_; |
mjr | 78:1e00b3fa11af | 4310 | |
mjr | 78:1e00b3fa11af | 4311 | // flag: a manual centering request is pending |
mjr | 78:1e00b3fa11af | 4312 | bool manualCenterRequest_; |
mjr | 78:1e00b3fa11af | 4313 | |
mjr | 78:1e00b3fa11af | 4314 | // time in us between auto-centering incremental checks |
mjr | 78:1e00b3fa11af | 4315 | uint32_t autoCenterCheckTime_; |
mjr | 78:1e00b3fa11af | 4316 | |
mjr | 77:0b96f6867312 | 4317 | // atuo-centering timer |
mjr | 5:a70c0bce770d | 4318 | Timer tCenter_; |
mjr | 6:cc35eb643e8f | 4319 | |
mjr | 6:cc35eb643e8f | 4320 | // Auto-centering history. This is a separate history list that |
mjr | 77:0b96f6867312 | 4321 | // records results spaced out sparsely over time, so that we can |
mjr | 6:cc35eb643e8f | 4322 | // watch for long-lasting periods of rest. When we observe nearly |
mjr | 6:cc35eb643e8f | 4323 | // no motion for an extended period (on the order of 5 seconds), we |
mjr | 6:cc35eb643e8f | 4324 | // take this to mean that the cabinet is at rest in its neutral |
mjr | 6:cc35eb643e8f | 4325 | // position, so we take this as the calibration zero point for the |
mjr | 6:cc35eb643e8f | 4326 | // accelerometer. We update this history continuously, which allows |
mjr | 6:cc35eb643e8f | 4327 | // us to continuously re-calibrate the accelerometer. This ensures |
mjr | 6:cc35eb643e8f | 4328 | // that we'll automatically adjust to any actual changes in the |
mjr | 6:cc35eb643e8f | 4329 | // cabinet's orientation (e.g., if it gets moved slightly by an |
mjr | 6:cc35eb643e8f | 4330 | // especially strong nudge) as well as any systematic drift in the |
mjr | 6:cc35eb643e8f | 4331 | // accelerometer measurement bias (e.g., from temperature changes). |
mjr | 78:1e00b3fa11af | 4332 | uint8_t iAccPrv_, nAccPrv_; |
mjr | 78:1e00b3fa11af | 4333 | static const uint8_t maxAccPrv = 5; |
mjr | 6:cc35eb643e8f | 4334 | AccHist accPrv_[maxAccPrv]; |
mjr | 6:cc35eb643e8f | 4335 | |
mjr | 5:a70c0bce770d | 4336 | // interurupt pin name |
mjr | 5:a70c0bce770d | 4337 | PinName irqPin_; |
mjr | 3:3514575d4f86 | 4338 | }; |
mjr | 3:3514575d4f86 | 4339 | |
mjr | 5:a70c0bce770d | 4340 | // --------------------------------------------------------------------------- |
mjr | 5:a70c0bce770d | 4341 | // |
mjr | 14:df700b22ca08 | 4342 | // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time |
mjr | 5:a70c0bce770d | 4343 | // for reasons that aren't clear to me. Doing a hard power cycle has the same |
mjr | 5:a70c0bce770d | 4344 | // effect, but when we do a soft reset, the hardware sometimes seems to leave |
mjr | 5:a70c0bce770d | 4345 | // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through |
mjr | 14:df700b22ca08 | 4346 | // the SCL line is supposed to clear this condition. I'm not convinced this |
mjr | 14:df700b22ca08 | 4347 | // actually works with the way this component is wired on the KL25Z, but it |
mjr | 14:df700b22ca08 | 4348 | // seems harmless, so we'll do it on reset in case it does some good. What |
mjr | 14:df700b22ca08 | 4349 | // we really seem to need is a way to power cycle the MMA8451Q if it ever |
mjr | 14:df700b22ca08 | 4350 | // gets stuck, but this is simply not possible in software on the KL25Z. |
mjr | 14:df700b22ca08 | 4351 | // |
mjr | 14:df700b22ca08 | 4352 | // If the accelerometer does get stuck, and a software reboot doesn't reset |
mjr | 14:df700b22ca08 | 4353 | // it, the only workaround is to manually power cycle the whole KL25Z by |
mjr | 14:df700b22ca08 | 4354 | // unplugging both of its USB connections. |
mjr | 5:a70c0bce770d | 4355 | // |
mjr | 5:a70c0bce770d | 4356 | void clear_i2c() |
mjr | 5:a70c0bce770d | 4357 | { |
mjr | 38:091e511ce8a0 | 4358 | // set up general-purpose output pins to the I2C lines |
mjr | 5:a70c0bce770d | 4359 | DigitalOut scl(MMA8451_SCL_PIN); |
mjr | 5:a70c0bce770d | 4360 | DigitalIn sda(MMA8451_SDA_PIN); |
mjr | 5:a70c0bce770d | 4361 | |
mjr | 5:a70c0bce770d | 4362 | // clock the SCL 9 times |
mjr | 5:a70c0bce770d | 4363 | for (int i = 0 ; i < 9 ; ++i) |
mjr | 5:a70c0bce770d | 4364 | { |
mjr | 5:a70c0bce770d | 4365 | scl = 1; |
mjr | 5:a70c0bce770d | 4366 | wait_us(20); |
mjr | 5:a70c0bce770d | 4367 | scl = 0; |
mjr | 5:a70c0bce770d | 4368 | wait_us(20); |
mjr | 5:a70c0bce770d | 4369 | } |
mjr | 5:a70c0bce770d | 4370 | } |
mjr | 76:7f5912b6340e | 4371 | |
mjr | 76:7f5912b6340e | 4372 | |
mjr | 14:df700b22ca08 | 4373 | // --------------------------------------------------------------------------- |
mjr | 14:df700b22ca08 | 4374 | // |
mjr | 33:d832bcab089e | 4375 | // Simple binary (on/off) input debouncer. Requires an input to be stable |
mjr | 33:d832bcab089e | 4376 | // for a given interval before allowing an update. |
mjr | 33:d832bcab089e | 4377 | // |
mjr | 33:d832bcab089e | 4378 | class Debouncer |
mjr | 33:d832bcab089e | 4379 | { |
mjr | 33:d832bcab089e | 4380 | public: |
mjr | 33:d832bcab089e | 4381 | Debouncer(bool initVal, float tmin) |
mjr | 33:d832bcab089e | 4382 | { |
mjr | 33:d832bcab089e | 4383 | t.start(); |
mjr | 33:d832bcab089e | 4384 | this->stable = this->prv = initVal; |
mjr | 33:d832bcab089e | 4385 | this->tmin = tmin; |
mjr | 33:d832bcab089e | 4386 | } |
mjr | 33:d832bcab089e | 4387 | |
mjr | 33:d832bcab089e | 4388 | // Get the current stable value |
mjr | 33:d832bcab089e | 4389 | bool val() const { return stable; } |
mjr | 33:d832bcab089e | 4390 | |
mjr | 33:d832bcab089e | 4391 | // Apply a new sample. This tells us the new raw reading from the |
mjr | 33:d832bcab089e | 4392 | // input device. |
mjr | 33:d832bcab089e | 4393 | void sampleIn(bool val) |
mjr | 33:d832bcab089e | 4394 | { |
mjr | 33:d832bcab089e | 4395 | // If the new raw reading is different from the previous |
mjr | 33:d832bcab089e | 4396 | // raw reading, we've detected an edge - start the clock |
mjr | 33:d832bcab089e | 4397 | // on the sample reader. |
mjr | 33:d832bcab089e | 4398 | if (val != prv) |
mjr | 33:d832bcab089e | 4399 | { |
mjr | 33:d832bcab089e | 4400 | // we have an edge - reset the sample clock |
mjr | 33:d832bcab089e | 4401 | t.reset(); |
mjr | 33:d832bcab089e | 4402 | |
mjr | 33:d832bcab089e | 4403 | // this is now the previous raw sample for nxt time |
mjr | 33:d832bcab089e | 4404 | prv = val; |
mjr | 33:d832bcab089e | 4405 | } |
mjr | 33:d832bcab089e | 4406 | else if (val != stable) |
mjr | 33:d832bcab089e | 4407 | { |
mjr | 33:d832bcab089e | 4408 | // The new raw sample is the same as the last raw sample, |
mjr | 33:d832bcab089e | 4409 | // and different from the stable value. This means that |
mjr | 33:d832bcab089e | 4410 | // the sample value has been the same for the time currently |
mjr | 33:d832bcab089e | 4411 | // indicated by our timer. If enough time has elapsed to |
mjr | 33:d832bcab089e | 4412 | // consider the value stable, apply the new value. |
mjr | 33:d832bcab089e | 4413 | if (t.read() > tmin) |
mjr | 33:d832bcab089e | 4414 | stable = val; |
mjr | 33:d832bcab089e | 4415 | } |
mjr | 33:d832bcab089e | 4416 | } |
mjr | 33:d832bcab089e | 4417 | |
mjr | 33:d832bcab089e | 4418 | private: |
mjr | 33:d832bcab089e | 4419 | // current stable value |
mjr | 33:d832bcab089e | 4420 | bool stable; |
mjr | 33:d832bcab089e | 4421 | |
mjr | 33:d832bcab089e | 4422 | // last raw sample value |
mjr | 33:d832bcab089e | 4423 | bool prv; |
mjr | 33:d832bcab089e | 4424 | |
mjr | 33:d832bcab089e | 4425 | // elapsed time since last raw input change |
mjr | 33:d832bcab089e | 4426 | Timer t; |
mjr | 33:d832bcab089e | 4427 | |
mjr | 33:d832bcab089e | 4428 | // Minimum time interval for stability, in seconds. Input readings |
mjr | 33:d832bcab089e | 4429 | // must be stable for this long before the stable value is updated. |
mjr | 33:d832bcab089e | 4430 | float tmin; |
mjr | 33:d832bcab089e | 4431 | }; |
mjr | 33:d832bcab089e | 4432 | |
mjr | 33:d832bcab089e | 4433 | |
mjr | 33:d832bcab089e | 4434 | // --------------------------------------------------------------------------- |
mjr | 33:d832bcab089e | 4435 | // |
mjr | 33:d832bcab089e | 4436 | // TV ON timer. If this feature is enabled, we toggle a TV power switch |
mjr | 33:d832bcab089e | 4437 | // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly |
mjr | 33:d832bcab089e | 4438 | // after the system is powered. This is useful for TVs that don't remember |
mjr | 33:d832bcab089e | 4439 | // their power state and don't turn back on automatically after being |
mjr | 33:d832bcab089e | 4440 | // unplugged and plugged in again. This feature requires external |
mjr | 33:d832bcab089e | 4441 | // circuitry, which is built in to the expansion board and can also be |
mjr | 33:d832bcab089e | 4442 | // built separately - see the Build Guide for the circuit plan. |
mjr | 33:d832bcab089e | 4443 | // |
mjr | 33:d832bcab089e | 4444 | // Theory of operation: to use this feature, the cabinet must have a |
mjr | 33:d832bcab089e | 4445 | // secondary PC-style power supply (PSU2) for the feedback devices, and |
mjr | 33:d832bcab089e | 4446 | // this secondary supply must be plugged in to the same power strip or |
mjr | 33:d832bcab089e | 4447 | // switched outlet that controls power to the TVs. This lets us use PSU2 |
mjr | 33:d832bcab089e | 4448 | // as a proxy for the TV power state - when PSU2 is on, the TV outlet is |
mjr | 33:d832bcab089e | 4449 | // powered, and when PSU2 is off, the TV outlet is off. We use a little |
mjr | 33:d832bcab089e | 4450 | // latch circuit powered by PSU2 to monitor the status. The latch has a |
mjr | 33:d832bcab089e | 4451 | // current state, ON or OFF, that we can read via a GPIO input pin, and |
mjr | 33:d832bcab089e | 4452 | // we can set the state to ON by pulsing a separate GPIO output pin. As |
mjr | 33:d832bcab089e | 4453 | // long as PSU2 is powered off, the latch stays in the OFF state, even if |
mjr | 33:d832bcab089e | 4454 | // we try to set it by pulsing the SET pin. When PSU2 is turned on after |
mjr | 33:d832bcab089e | 4455 | // being off, the latch starts receiving power but stays in the OFF state, |
mjr | 33:d832bcab089e | 4456 | // since this is the initial condition when the power first comes on. So |
mjr | 33:d832bcab089e | 4457 | // if our latch state pin is reading OFF, we know that PSU2 is either off |
mjr | 33:d832bcab089e | 4458 | // now or *was* off some time since we last checked. We use a timer to |
mjr | 33:d832bcab089e | 4459 | // check the state periodically. Each time we see the state is OFF, we |
mjr | 33:d832bcab089e | 4460 | // try pulsing the SET pin. If the state still reads as OFF, we know |
mjr | 33:d832bcab089e | 4461 | // that PSU2 is currently off; if the state changes to ON, though, we |
mjr | 33:d832bcab089e | 4462 | // know that PSU2 has gone from OFF to ON some time between now and the |
mjr | 33:d832bcab089e | 4463 | // previous check. When we see this condition, we start a countdown |
mjr | 33:d832bcab089e | 4464 | // timer, and pulse the TV switch relay when the countdown ends. |
mjr | 33:d832bcab089e | 4465 | // |
mjr | 40:cc0d9814522b | 4466 | // This scheme might seem a little convoluted, but it handles a number |
mjr | 40:cc0d9814522b | 4467 | // of tricky but likely scenarios: |
mjr | 33:d832bcab089e | 4468 | // |
mjr | 33:d832bcab089e | 4469 | // - Most cabinets systems are set up with "soft" PC power switches, |
mjr | 40:cc0d9814522b | 4470 | // so that the PC goes into "Soft Off" mode when the user turns off |
mjr | 40:cc0d9814522b | 4471 | // the cabinet by pushing the power button or using the Shut Down |
mjr | 40:cc0d9814522b | 4472 | // command from within Windows. In Windows parlance, this "soft off" |
mjr | 40:cc0d9814522b | 4473 | // condition is called ACPI State S5. In this state, the main CPU |
mjr | 40:cc0d9814522b | 4474 | // power is turned off, but the motherboard still provides power to |
mjr | 40:cc0d9814522b | 4475 | // USB devices. This means that the KL25Z keeps running. Without |
mjr | 40:cc0d9814522b | 4476 | // the external power sensing circuit, the only hint that we're in |
mjr | 40:cc0d9814522b | 4477 | // this state is that the USB connection to the host goes into Suspend |
mjr | 40:cc0d9814522b | 4478 | // mode, but that could mean other things as well. The latch circuit |
mjr | 40:cc0d9814522b | 4479 | // lets us tell for sure that we're in this state. |
mjr | 33:d832bcab089e | 4480 | // |
mjr | 33:d832bcab089e | 4481 | // - Some cabinet builders might prefer to use "hard" power switches, |
mjr | 33:d832bcab089e | 4482 | // cutting all power to the cabinet, including the PC motherboard (and |
mjr | 33:d832bcab089e | 4483 | // thus the KL25Z) every time the machine is turned off. This also |
mjr | 33:d832bcab089e | 4484 | // applies to the "soft" switch case above when the cabinet is unplugged, |
mjr | 33:d832bcab089e | 4485 | // a power outage occurs, etc. In these cases, the KL25Z will do a cold |
mjr | 33:d832bcab089e | 4486 | // boot when the PC is turned on. We don't know whether the KL25Z |
mjr | 33:d832bcab089e | 4487 | // will power up before or after PSU2, so it's not good enough to |
mjr | 40:cc0d9814522b | 4488 | // observe the current state of PSU2 when we first check. If PSU2 |
mjr | 40:cc0d9814522b | 4489 | // were to come on first, checking only the current state would fool |
mjr | 40:cc0d9814522b | 4490 | // us into thinking that no action is required, because we'd only see |
mjr | 40:cc0d9814522b | 4491 | // that PSU2 is turned on any time we check. The latch handles this |
mjr | 40:cc0d9814522b | 4492 | // case by letting us see that PSU2 was indeed off some time before our |
mjr | 40:cc0d9814522b | 4493 | // first check. |
mjr | 33:d832bcab089e | 4494 | // |
mjr | 33:d832bcab089e | 4495 | // - If the KL25Z is rebooted while the main system is running, or the |
mjr | 40:cc0d9814522b | 4496 | // KL25Z is unplugged and plugged back in, we'll correctly leave the |
mjr | 33:d832bcab089e | 4497 | // TVs as they are. The latch state is independent of the KL25Z's |
mjr | 33:d832bcab089e | 4498 | // power or software state, so it's won't affect the latch state when |
mjr | 33:d832bcab089e | 4499 | // the KL25Z is unplugged or rebooted; when we boot, we'll see that |
mjr | 33:d832bcab089e | 4500 | // the latch is already on and that we don't have to turn on the TVs. |
mjr | 33:d832bcab089e | 4501 | // This is important because TV ON buttons are usually on/off toggles, |
mjr | 33:d832bcab089e | 4502 | // so we don't want to push the button on a TV that's already on. |
mjr | 33:d832bcab089e | 4503 | // |
mjr | 33:d832bcab089e | 4504 | |
mjr | 77:0b96f6867312 | 4505 | // Current PSU2 power state: |
mjr | 33:d832bcab089e | 4506 | // 1 -> default: latch was on at last check, or we haven't checked yet |
mjr | 33:d832bcab089e | 4507 | // 2 -> latch was off at last check, SET pulsed high |
mjr | 33:d832bcab089e | 4508 | // 3 -> SET pulsed low, ready to check status |
mjr | 33:d832bcab089e | 4509 | // 4 -> TV timer countdown in progress |
mjr | 33:d832bcab089e | 4510 | // 5 -> TV relay on |
mjr | 77:0b96f6867312 | 4511 | // 6 -> sending IR signals designed as TV ON signals |
mjr | 73:4e8ce0b18915 | 4512 | uint8_t psu2_state = 1; |
mjr | 73:4e8ce0b18915 | 4513 | |
mjr | 73:4e8ce0b18915 | 4514 | // TV relay state. The TV relay can be controlled by the power-on |
mjr | 73:4e8ce0b18915 | 4515 | // timer and directly from the PC (via USB commands), so keep a |
mjr | 73:4e8ce0b18915 | 4516 | // separate state for each: |
mjr | 73:4e8ce0b18915 | 4517 | // 0x01 -> turned on by power-on timer |
mjr | 73:4e8ce0b18915 | 4518 | // 0x02 -> turned on by USB command |
mjr | 73:4e8ce0b18915 | 4519 | uint8_t tv_relay_state = 0x00; |
mjr | 73:4e8ce0b18915 | 4520 | const uint8_t TV_RELAY_POWERON = 0x01; |
mjr | 73:4e8ce0b18915 | 4521 | const uint8_t TV_RELAY_USB = 0x02; |
mjr | 73:4e8ce0b18915 | 4522 | |
mjr | 79:682ae3171a08 | 4523 | // pulse timer for manual TV relay pulses |
mjr | 79:682ae3171a08 | 4524 | Timer tvRelayManualTimer; |
mjr | 79:682ae3171a08 | 4525 | |
mjr | 77:0b96f6867312 | 4526 | // TV ON IR command state. When the main PSU2 power state reaches |
mjr | 77:0b96f6867312 | 4527 | // the IR phase, we use this sub-state counter to send the TV ON |
mjr | 77:0b96f6867312 | 4528 | // IR signals. We initialize to state 0 when the main state counter |
mjr | 77:0b96f6867312 | 4529 | // reaches the IR step. In state 0, we start transmitting the first |
mjr | 77:0b96f6867312 | 4530 | // (lowest numbered) IR command slot marked as containing a TV ON |
mjr | 77:0b96f6867312 | 4531 | // code, and advance to state 1. In state 1, we check to see if |
mjr | 77:0b96f6867312 | 4532 | // the transmitter is still sending; if so, we do nothing, if so |
mjr | 77:0b96f6867312 | 4533 | // we start transmitting the second TV ON code and advance to state |
mjr | 77:0b96f6867312 | 4534 | // 2. Continue until we run out of TV ON IR codes, at which point |
mjr | 77:0b96f6867312 | 4535 | // we advance to the next main psu2_state step. |
mjr | 77:0b96f6867312 | 4536 | uint8_t tvon_ir_state = 0; |
mjr | 77:0b96f6867312 | 4537 | |
mjr | 77:0b96f6867312 | 4538 | // TV ON switch relay control output pin |
mjr | 73:4e8ce0b18915 | 4539 | DigitalOut *tv_relay; |
mjr | 35:e959ffba78fd | 4540 | |
mjr | 35:e959ffba78fd | 4541 | // PSU2 power sensing circuit connections |
mjr | 35:e959ffba78fd | 4542 | DigitalIn *psu2_status_sense; |
mjr | 35:e959ffba78fd | 4543 | DigitalOut *psu2_status_set; |
mjr | 35:e959ffba78fd | 4544 | |
mjr | 73:4e8ce0b18915 | 4545 | // Apply the current TV relay state |
mjr | 73:4e8ce0b18915 | 4546 | void tvRelayUpdate(uint8_t bit, bool state) |
mjr | 73:4e8ce0b18915 | 4547 | { |
mjr | 73:4e8ce0b18915 | 4548 | // update the state |
mjr | 73:4e8ce0b18915 | 4549 | if (state) |
mjr | 73:4e8ce0b18915 | 4550 | tv_relay_state |= bit; |
mjr | 73:4e8ce0b18915 | 4551 | else |
mjr | 73:4e8ce0b18915 | 4552 | tv_relay_state &= ~bit; |
mjr | 73:4e8ce0b18915 | 4553 | |
mjr | 73:4e8ce0b18915 | 4554 | // set the relay GPIO to the new state |
mjr | 73:4e8ce0b18915 | 4555 | if (tv_relay != 0) |
mjr | 73:4e8ce0b18915 | 4556 | tv_relay->write(tv_relay_state != 0); |
mjr | 73:4e8ce0b18915 | 4557 | } |
mjr | 35:e959ffba78fd | 4558 | |
mjr | 86:e30a1f60f783 | 4559 | // Does the current power status allow a reboot? We shouldn't reboot |
mjr | 86:e30a1f60f783 | 4560 | // in certain power states, because some states are purely internal: |
mjr | 86:e30a1f60f783 | 4561 | // we can't get enough information from the external power sensor to |
mjr | 86:e30a1f60f783 | 4562 | // return to the same state later. Code that performs discretionary |
mjr | 86:e30a1f60f783 | 4563 | // reboots should always check here first, and delay any reboot until |
mjr | 86:e30a1f60f783 | 4564 | // we say it's okay. |
mjr | 86:e30a1f60f783 | 4565 | static inline bool powerStatusAllowsReboot() |
mjr | 86:e30a1f60f783 | 4566 | { |
mjr | 86:e30a1f60f783 | 4567 | // The only safe state for rebooting is state 1, idle/default. |
mjr | 86:e30a1f60f783 | 4568 | // In other states, we can't reboot, because the external sensor |
mjr | 86:e30a1f60f783 | 4569 | // and latch circuit doesn't give us enough information to return |
mjr | 86:e30a1f60f783 | 4570 | // to the same state later. |
mjr | 86:e30a1f60f783 | 4571 | return psu2_state == 1; |
mjr | 86:e30a1f60f783 | 4572 | } |
mjr | 86:e30a1f60f783 | 4573 | |
mjr | 77:0b96f6867312 | 4574 | // PSU2 Status update routine. The main loop calls this from time |
mjr | 77:0b96f6867312 | 4575 | // to time to update the power sensing state and carry out TV ON |
mjr | 77:0b96f6867312 | 4576 | // functions. |
mjr | 77:0b96f6867312 | 4577 | Timer powerStatusTimer; |
mjr | 77:0b96f6867312 | 4578 | uint32_t tv_delay_time_us; |
mjr | 77:0b96f6867312 | 4579 | void powerStatusUpdate(Config &cfg) |
mjr | 33:d832bcab089e | 4580 | { |
mjr | 79:682ae3171a08 | 4581 | // If the manual relay pulse timer is past the pulse time, end the |
mjr | 79:682ae3171a08 | 4582 | // manual pulse. The timer only runs when a pulse is active, so |
mjr | 79:682ae3171a08 | 4583 | // it'll never read as past the time limit if a pulse isn't on. |
mjr | 79:682ae3171a08 | 4584 | if (tvRelayManualTimer.read_us() > 250000) |
mjr | 79:682ae3171a08 | 4585 | { |
mjr | 79:682ae3171a08 | 4586 | // turn off the relay and disable the timer |
mjr | 79:682ae3171a08 | 4587 | tvRelayUpdate(TV_RELAY_USB, false); |
mjr | 79:682ae3171a08 | 4588 | tvRelayManualTimer.stop(); |
mjr | 79:682ae3171a08 | 4589 | tvRelayManualTimer.reset(); |
mjr | 79:682ae3171a08 | 4590 | } |
mjr | 79:682ae3171a08 | 4591 | |
mjr | 77:0b96f6867312 | 4592 | // Only update every 1/4 second or so. Note that if the PSU2 |
mjr | 77:0b96f6867312 | 4593 | // circuit isn't configured, the initialization routine won't |
mjr | 77:0b96f6867312 | 4594 | // start the timer, so it'll always read zero and we'll always |
mjr | 77:0b96f6867312 | 4595 | // skip this whole routine. |
mjr | 77:0b96f6867312 | 4596 | if (powerStatusTimer.read_us() < 250000) |
mjr | 77:0b96f6867312 | 4597 | return; |
mjr | 77:0b96f6867312 | 4598 | |
mjr | 77:0b96f6867312 | 4599 | // reset the update timer for next time |
mjr | 77:0b96f6867312 | 4600 | powerStatusTimer.reset(); |
mjr | 77:0b96f6867312 | 4601 | |
mjr | 77:0b96f6867312 | 4602 | // TV ON timer. We start this timer when we detect a change |
mjr | 77:0b96f6867312 | 4603 | // in the PSU2 status from OFF to ON. When the timer reaches |
mjr | 77:0b96f6867312 | 4604 | // the configured TV ON delay time, and the PSU2 power is still |
mjr | 77:0b96f6867312 | 4605 | // on, we'll trigger the TV ON relay and send the TV ON IR codes. |
mjr | 35:e959ffba78fd | 4606 | static Timer tv_timer; |
mjr | 35:e959ffba78fd | 4607 | |
mjr | 33:d832bcab089e | 4608 | // Check our internal state |
mjr | 33:d832bcab089e | 4609 | switch (psu2_state) |
mjr | 33:d832bcab089e | 4610 | { |
mjr | 33:d832bcab089e | 4611 | case 1: |
mjr | 33:d832bcab089e | 4612 | // Default state. This means that the latch was on last |
mjr | 33:d832bcab089e | 4613 | // time we checked or that this is the first check. In |
mjr | 33:d832bcab089e | 4614 | // either case, if the latch is off, switch to state 2 and |
mjr | 33:d832bcab089e | 4615 | // try pulsing the latch. Next time we check, if the latch |
mjr | 33:d832bcab089e | 4616 | // stuck, it means that PSU2 is now on after being off. |
mjr | 35:e959ffba78fd | 4617 | if (!psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 4618 | { |
mjr | 33:d832bcab089e | 4619 | // switch to OFF state |
mjr | 33:d832bcab089e | 4620 | psu2_state = 2; |
mjr | 33:d832bcab089e | 4621 | |
mjr | 33:d832bcab089e | 4622 | // try setting the latch |
mjr | 35:e959ffba78fd | 4623 | psu2_status_set->write(1); |
mjr | 33:d832bcab089e | 4624 | } |
mjr | 77:0b96f6867312 | 4625 | powerTimerDiagState = 0; |
mjr | 33:d832bcab089e | 4626 | break; |
mjr | 33:d832bcab089e | 4627 | |
mjr | 33:d832bcab089e | 4628 | case 2: |
mjr | 33:d832bcab089e | 4629 | // PSU2 was off last time we checked, and we tried setting |
mjr | 33:d832bcab089e | 4630 | // the latch. Drop the SET signal and go to CHECK state. |
mjr | 35:e959ffba78fd | 4631 | psu2_status_set->write(0); |
mjr | 33:d832bcab089e | 4632 | psu2_state = 3; |
mjr | 77:0b96f6867312 | 4633 | powerTimerDiagState = 0; |
mjr | 33:d832bcab089e | 4634 | break; |
mjr | 33:d832bcab089e | 4635 | |
mjr | 33:d832bcab089e | 4636 | case 3: |
mjr | 33:d832bcab089e | 4637 | // CHECK state: we pulsed SET, and we're now ready to see |
mjr | 40:cc0d9814522b | 4638 | // if it stuck. If the latch is now on, PSU2 has transitioned |
mjr | 33:d832bcab089e | 4639 | // from OFF to ON, so start the TV countdown. If the latch is |
mjr | 33:d832bcab089e | 4640 | // off, our SET command didn't stick, so PSU2 is still off. |
mjr | 35:e959ffba78fd | 4641 | if (psu2_status_sense->read()) |
mjr | 33:d832bcab089e | 4642 | { |
mjr | 33:d832bcab089e | 4643 | // The latch stuck, so PSU2 has transitioned from OFF |
mjr | 33:d832bcab089e | 4644 | // to ON. Start the TV countdown timer. |
mjr | 33:d832bcab089e | 4645 | tv_timer.reset(); |
mjr | 33:d832bcab089e | 4646 | tv_timer.start(); |
mjr | 33:d832bcab089e | 4647 | psu2_state = 4; |
mjr | 73:4e8ce0b18915 | 4648 | |
mjr | 73:4e8ce0b18915 | 4649 | // start the power timer diagnostic flashes |
mjr | 73:4e8ce0b18915 | 4650 | powerTimerDiagState = 2; |
mjr | 33:d832bcab089e | 4651 | } |
mjr | 33:d832bcab089e | 4652 | else |
mjr | 33:d832bcab089e | 4653 | { |
mjr | 33:d832bcab089e | 4654 | // The latch didn't stick, so PSU2 was still off at |
mjr | 87:8d35c74403af | 4655 | // our last check. Return to idle state. |
mjr | 87:8d35c74403af | 4656 | psu2_state = 1; |
mjr | 33:d832bcab089e | 4657 | } |
mjr | 33:d832bcab089e | 4658 | break; |
mjr | 33:d832bcab089e | 4659 | |
mjr | 33:d832bcab089e | 4660 | case 4: |
mjr | 77:0b96f6867312 | 4661 | // TV timer countdown in progress. The latch has to stay on during |
mjr | 77:0b96f6867312 | 4662 | // the countdown; if the latch turns off, PSU2 power must have gone |
mjr | 77:0b96f6867312 | 4663 | // off again before the countdown finished. |
mjr | 77:0b96f6867312 | 4664 | if (!psu2_status_sense->read()) |
mjr | 77:0b96f6867312 | 4665 | { |
mjr | 77:0b96f6867312 | 4666 | // power is off - start a new check cycle |
mjr | 77:0b96f6867312 | 4667 | psu2_status_set->write(1); |
mjr | 77:0b96f6867312 | 4668 | psu2_state = 2; |
mjr | 77:0b96f6867312 | 4669 | break; |
mjr | 77:0b96f6867312 | 4670 | } |
mjr | 77:0b96f6867312 | 4671 | |
mjr | 77:0b96f6867312 | 4672 | // Flash the power time diagnostic every two cycles |
mjr | 77:0b96f6867312 | 4673 | powerTimerDiagState = (powerTimerDiagState + 1) & 0x03; |
mjr | 77:0b96f6867312 | 4674 | |
mjr | 77:0b96f6867312 | 4675 | // if we've reached the delay time, pulse the relay |
mjr | 77:0b96f6867312 | 4676 | if (tv_timer.read_us() >= tv_delay_time_us) |
mjr | 33:d832bcab089e | 4677 | { |
mjr | 33:d832bcab089e | 4678 | // turn on the relay for one timer interval |
mjr | 73:4e8ce0b18915 | 4679 | tvRelayUpdate(TV_RELAY_POWERON, true); |
mjr | 33:d832bcab089e | 4680 | psu2_state = 5; |
mjr | 77:0b96f6867312 | 4681 | |
mjr | 77:0b96f6867312 | 4682 | // show solid blue on the diagnostic LED while the relay is on |
mjr | 77:0b96f6867312 | 4683 | powerTimerDiagState = 2; |
mjr | 33:d832bcab089e | 4684 | } |
mjr | 33:d832bcab089e | 4685 | break; |
mjr | 33:d832bcab089e | 4686 | |
mjr | 33:d832bcab089e | 4687 | case 5: |
mjr | 33:d832bcab089e | 4688 | // TV timer relay on. We pulse this for one interval, so |
mjr | 77:0b96f6867312 | 4689 | // it's now time to turn it off. |
mjr | 73:4e8ce0b18915 | 4690 | tvRelayUpdate(TV_RELAY_POWERON, false); |
mjr | 77:0b96f6867312 | 4691 | |
mjr | 77:0b96f6867312 | 4692 | // Proceed to sending any TV ON IR commands |
mjr | 77:0b96f6867312 | 4693 | psu2_state = 6; |
mjr | 77:0b96f6867312 | 4694 | tvon_ir_state = 0; |
mjr | 77:0b96f6867312 | 4695 | |
mjr | 77:0b96f6867312 | 4696 | // diagnostic LEDs off for now |
mjr | 77:0b96f6867312 | 4697 | powerTimerDiagState = 0; |
mjr | 77:0b96f6867312 | 4698 | break; |
mjr | 77:0b96f6867312 | 4699 | |
mjr | 77:0b96f6867312 | 4700 | case 6: |
mjr | 77:0b96f6867312 | 4701 | // Sending TV ON IR signals. Start with the assumption that |
mjr | 77:0b96f6867312 | 4702 | // we have no IR work to do, in which case we're done with the |
mjr | 77:0b96f6867312 | 4703 | // whole TV ON sequence. So by default return to state 1. |
mjr | 33:d832bcab089e | 4704 | psu2_state = 1; |
mjr | 77:0b96f6867312 | 4705 | powerTimerDiagState = 0; |
mjr | 73:4e8ce0b18915 | 4706 | |
mjr | 77:0b96f6867312 | 4707 | // If we have an IR emitter, check for TV ON IR commands |
mjr | 77:0b96f6867312 | 4708 | if (ir_tx != 0) |
mjr | 77:0b96f6867312 | 4709 | { |
mjr | 77:0b96f6867312 | 4710 | // check to see if the last transmission is still in progress |
mjr | 77:0b96f6867312 | 4711 | if (ir_tx->isSending()) |
mjr | 77:0b96f6867312 | 4712 | { |
mjr | 77:0b96f6867312 | 4713 | // We're still sending the last transmission. Stay in |
mjr | 77:0b96f6867312 | 4714 | // state 6. |
mjr | 77:0b96f6867312 | 4715 | psu2_state = 6; |
mjr | 77:0b96f6867312 | 4716 | powerTimerDiagState = 4; |
mjr | 77:0b96f6867312 | 4717 | break; |
mjr | 77:0b96f6867312 | 4718 | } |
mjr | 77:0b96f6867312 | 4719 | |
mjr | 77:0b96f6867312 | 4720 | // The last transmission is done, so check for a new one. |
mjr | 77:0b96f6867312 | 4721 | // Look for the Nth TV ON IR slot, where N is our state |
mjr | 77:0b96f6867312 | 4722 | // number. |
mjr | 77:0b96f6867312 | 4723 | for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i) |
mjr | 77:0b96f6867312 | 4724 | { |
mjr | 77:0b96f6867312 | 4725 | // is this a TV ON command? |
mjr | 77:0b96f6867312 | 4726 | if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0) |
mjr | 77:0b96f6867312 | 4727 | { |
mjr | 77:0b96f6867312 | 4728 | // It's a TV ON command - check if it's the one we're |
mjr | 77:0b96f6867312 | 4729 | // looking for. |
mjr | 77:0b96f6867312 | 4730 | if (n == tvon_ir_state) |
mjr | 77:0b96f6867312 | 4731 | { |
mjr | 77:0b96f6867312 | 4732 | // It's the one. Start transmitting it by |
mjr | 77:0b96f6867312 | 4733 | // pushing its virtual button. |
mjr | 77:0b96f6867312 | 4734 | int vb = IRConfigSlotToVirtualButton[i]; |
mjr | 77:0b96f6867312 | 4735 | ir_tx->pushButton(vb, true); |
mjr | 77:0b96f6867312 | 4736 | |
mjr | 77:0b96f6867312 | 4737 | // Pushing the button starts transmission, and once |
mjr | 88:98bce687e6c0 | 4738 | // started, the transmission runs to completion even |
mjr | 88:98bce687e6c0 | 4739 | // if the button is no longer pushed. So we can |
mjr | 88:98bce687e6c0 | 4740 | // immediately un-push the button, since we only need |
mjr | 88:98bce687e6c0 | 4741 | // to send the code once. |
mjr | 77:0b96f6867312 | 4742 | ir_tx->pushButton(vb, false); |
mjr | 77:0b96f6867312 | 4743 | |
mjr | 77:0b96f6867312 | 4744 | // Advance to the next TV ON IR state, where we'll |
mjr | 77:0b96f6867312 | 4745 | // await the end of this transmission and move on to |
mjr | 77:0b96f6867312 | 4746 | // the next one. |
mjr | 77:0b96f6867312 | 4747 | psu2_state = 6; |
mjr | 77:0b96f6867312 | 4748 | tvon_ir_state++; |
mjr | 77:0b96f6867312 | 4749 | break; |
mjr | 77:0b96f6867312 | 4750 | } |
mjr | 77:0b96f6867312 | 4751 | |
mjr | 77:0b96f6867312 | 4752 | // it's not ours - count it and keep looking |
mjr | 77:0b96f6867312 | 4753 | ++n; |
mjr | 77:0b96f6867312 | 4754 | } |
mjr | 77:0b96f6867312 | 4755 | } |
mjr | 77:0b96f6867312 | 4756 | } |
mjr | 33:d832bcab089e | 4757 | break; |
mjr | 33:d832bcab089e | 4758 | } |
mjr | 77:0b96f6867312 | 4759 | |
mjr | 77:0b96f6867312 | 4760 | // update the diagnostic LEDs |
mjr | 77:0b96f6867312 | 4761 | diagLED(); |
mjr | 33:d832bcab089e | 4762 | } |
mjr | 33:d832bcab089e | 4763 | |
mjr | 77:0b96f6867312 | 4764 | // Start the power status timer. If the status sense circuit is enabled |
mjr | 77:0b96f6867312 | 4765 | // in the configuration, we'll set up the pin connections and start the |
mjr | 77:0b96f6867312 | 4766 | // timer for our periodic status checks. Does nothing if any of the pins |
mjr | 77:0b96f6867312 | 4767 | // are configured as NC. |
mjr | 77:0b96f6867312 | 4768 | void startPowerStatusTimer(Config &cfg) |
mjr | 35:e959ffba78fd | 4769 | { |
mjr | 55:4db125cd11a0 | 4770 | // only start the timer if the pins are configured and the delay |
mjr | 55:4db125cd11a0 | 4771 | // time is nonzero |
mjr | 77:0b96f6867312 | 4772 | powerStatusTimer.reset(); |
mjr | 77:0b96f6867312 | 4773 | if (cfg.TVON.statusPin != 0xFF |
mjr | 77:0b96f6867312 | 4774 | && cfg.TVON.latchPin != 0xFF) |
mjr | 35:e959ffba78fd | 4775 | { |
mjr | 77:0b96f6867312 | 4776 | // set up the power sensing circuit connections |
mjr | 53:9b2611964afc | 4777 | psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin)); |
mjr | 53:9b2611964afc | 4778 | psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin)); |
mjr | 77:0b96f6867312 | 4779 | |
mjr | 77:0b96f6867312 | 4780 | // if there's a TV ON relay, set up its control pin |
mjr | 77:0b96f6867312 | 4781 | if (cfg.TVON.relayPin != 0xFF) |
mjr | 77:0b96f6867312 | 4782 | tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin)); |
mjr | 77:0b96f6867312 | 4783 | |
mjr | 77:0b96f6867312 | 4784 | // Set the TV ON delay time. We store the time internally in |
mjr | 77:0b96f6867312 | 4785 | // microseconds, but the configuration stores it in units of |
mjr | 77:0b96f6867312 | 4786 | // 1/100 second = 10ms = 10000us. |
mjr | 77:0b96f6867312 | 4787 | tv_delay_time_us = cfg.TVON.delayTime * 10000;; |
mjr | 77:0b96f6867312 | 4788 | |
mjr | 77:0b96f6867312 | 4789 | // Start the TV timer |
mjr | 77:0b96f6867312 | 4790 | powerStatusTimer.start(); |
mjr | 35:e959ffba78fd | 4791 | } |
mjr | 35:e959ffba78fd | 4792 | } |
mjr | 35:e959ffba78fd | 4793 | |
mjr | 73:4e8ce0b18915 | 4794 | // Operate the TV ON relay. This allows manual control of the relay |
mjr | 73:4e8ce0b18915 | 4795 | // from the PC. See protocol message 65 submessage 11. |
mjr | 73:4e8ce0b18915 | 4796 | // |
mjr | 73:4e8ce0b18915 | 4797 | // Mode: |
mjr | 73:4e8ce0b18915 | 4798 | // 0 = turn relay off |
mjr | 73:4e8ce0b18915 | 4799 | // 1 = turn relay on |
mjr | 73:4e8ce0b18915 | 4800 | // 2 = pulse relay |
mjr | 73:4e8ce0b18915 | 4801 | void TVRelay(int mode) |
mjr | 73:4e8ce0b18915 | 4802 | { |
mjr | 73:4e8ce0b18915 | 4803 | // if there's no TV relay control pin, ignore this |
mjr | 73:4e8ce0b18915 | 4804 | if (tv_relay == 0) |
mjr | 73:4e8ce0b18915 | 4805 | return; |
mjr | 73:4e8ce0b18915 | 4806 | |
mjr | 73:4e8ce0b18915 | 4807 | switch (mode) |
mjr | 73:4e8ce0b18915 | 4808 | { |
mjr | 73:4e8ce0b18915 | 4809 | case 0: |
mjr | 73:4e8ce0b18915 | 4810 | // relay off |
mjr | 73:4e8ce0b18915 | 4811 | tvRelayUpdate(TV_RELAY_USB, false); |
mjr | 73:4e8ce0b18915 | 4812 | break; |
mjr | 73:4e8ce0b18915 | 4813 | |
mjr | 73:4e8ce0b18915 | 4814 | case 1: |
mjr | 73:4e8ce0b18915 | 4815 | // relay on |
mjr | 73:4e8ce0b18915 | 4816 | tvRelayUpdate(TV_RELAY_USB, true); |
mjr | 73:4e8ce0b18915 | 4817 | break; |
mjr | 73:4e8ce0b18915 | 4818 | |
mjr | 73:4e8ce0b18915 | 4819 | case 2: |
mjr | 79:682ae3171a08 | 4820 | // Turn the relay on and reset the manual TV pulse timer |
mjr | 73:4e8ce0b18915 | 4821 | tvRelayUpdate(TV_RELAY_USB, true); |
mjr | 79:682ae3171a08 | 4822 | tvRelayManualTimer.reset(); |
mjr | 79:682ae3171a08 | 4823 | tvRelayManualTimer.start(); |
mjr | 73:4e8ce0b18915 | 4824 | break; |
mjr | 73:4e8ce0b18915 | 4825 | } |
mjr | 73:4e8ce0b18915 | 4826 | } |
mjr | 73:4e8ce0b18915 | 4827 | |
mjr | 73:4e8ce0b18915 | 4828 | |
mjr | 35:e959ffba78fd | 4829 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 4830 | // |
mjr | 35:e959ffba78fd | 4831 | // In-memory configuration data structure. This is the live version in RAM |
mjr | 35:e959ffba78fd | 4832 | // that we use to determine how things are set up. |
mjr | 35:e959ffba78fd | 4833 | // |
mjr | 35:e959ffba78fd | 4834 | // When we save the configuration settings, we copy this structure to |
mjr | 35:e959ffba78fd | 4835 | // non-volatile flash memory. At startup, we check the flash location where |
mjr | 35:e959ffba78fd | 4836 | // we might have saved settings on a previous run, and it's valid, we copy |
mjr | 35:e959ffba78fd | 4837 | // the flash data to this structure. Firmware updates wipe the flash |
mjr | 35:e959ffba78fd | 4838 | // memory area, so you have to use the PC config tool to send the settings |
mjr | 35:e959ffba78fd | 4839 | // again each time the firmware is updated. |
mjr | 35:e959ffba78fd | 4840 | // |
mjr | 35:e959ffba78fd | 4841 | NVM nvm; |
mjr | 35:e959ffba78fd | 4842 | |
mjr | 86:e30a1f60f783 | 4843 | // Save Config followup time, in seconds. After a successful save, |
mjr | 86:e30a1f60f783 | 4844 | // we leave the success flag on in the status for this interval. At |
mjr | 86:e30a1f60f783 | 4845 | // the end of the interval, we reboot the device if requested. |
mjr | 86:e30a1f60f783 | 4846 | uint8_t saveConfigFollowupTime; |
mjr | 86:e30a1f60f783 | 4847 | |
mjr | 86:e30a1f60f783 | 4848 | // is a reboot pending at the end of the config save followup interval? |
mjr | 86:e30a1f60f783 | 4849 | uint8_t saveConfigRebootPending; |
mjr | 77:0b96f6867312 | 4850 | |
mjr | 79:682ae3171a08 | 4851 | // status flag for successful config save - set to 0x40 on success |
mjr | 79:682ae3171a08 | 4852 | uint8_t saveConfigSucceededFlag; |
mjr | 79:682ae3171a08 | 4853 | |
mjr | 86:e30a1f60f783 | 4854 | // Timer for configuration change followup timer |
mjr | 86:e30a1f60f783 | 4855 | ExtTimer saveConfigFollowupTimer; |
mjr | 86:e30a1f60f783 | 4856 | |
mjr | 86:e30a1f60f783 | 4857 | |
mjr | 35:e959ffba78fd | 4858 | // For convenience, a macro for the Config part of the NVM structure |
mjr | 35:e959ffba78fd | 4859 | #define cfg (nvm.d.c) |
mjr | 35:e959ffba78fd | 4860 | |
mjr | 35:e959ffba78fd | 4861 | // flash memory controller interface |
mjr | 35:e959ffba78fd | 4862 | FreescaleIAP iap; |
mjr | 35:e959ffba78fd | 4863 | |
mjr | 79:682ae3171a08 | 4864 | // figure the flash address for the config data |
mjr | 79:682ae3171a08 | 4865 | const NVM *configFlashAddr() |
mjr | 76:7f5912b6340e | 4866 | { |
mjr | 79:682ae3171a08 | 4867 | // figure the number of sectors we need, rounding up |
mjr | 79:682ae3171a08 | 4868 | int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE; |
mjr | 79:682ae3171a08 | 4869 | |
mjr | 79:682ae3171a08 | 4870 | // figure the total size required from the number of sectors |
mjr | 79:682ae3171a08 | 4871 | int reservedSize = nSectors * SECTOR_SIZE; |
mjr | 79:682ae3171a08 | 4872 | |
mjr | 79:682ae3171a08 | 4873 | // locate it at the top of memory |
mjr | 79:682ae3171a08 | 4874 | uint32_t addr = iap.flashSize() - reservedSize; |
mjr | 79:682ae3171a08 | 4875 | |
mjr | 79:682ae3171a08 | 4876 | // return it as a read-only NVM pointer |
mjr | 79:682ae3171a08 | 4877 | return (const NVM *)addr; |
mjr | 35:e959ffba78fd | 4878 | } |
mjr | 35:e959ffba78fd | 4879 | |
mjr | 76:7f5912b6340e | 4880 | // Load the config from flash. Returns true if a valid non-default |
mjr | 76:7f5912b6340e | 4881 | // configuration was loaded, false if we not. If we return false, |
mjr | 76:7f5912b6340e | 4882 | // we load the factory defaults, so the configuration object is valid |
mjr | 76:7f5912b6340e | 4883 | // in either case. |
mjr | 76:7f5912b6340e | 4884 | bool loadConfigFromFlash() |
mjr | 35:e959ffba78fd | 4885 | { |
mjr | 35:e959ffba78fd | 4886 | // We want to use the KL25Z's on-board flash to store our configuration |
mjr | 35:e959ffba78fd | 4887 | // data persistently, so that we can restore it across power cycles. |
mjr | 35:e959ffba78fd | 4888 | // Unfortunatly, the mbed platform doesn't explicitly support this. |
mjr | 35:e959ffba78fd | 4889 | // mbed treats the on-board flash as a raw storage device for linker |
mjr | 35:e959ffba78fd | 4890 | // output, and assumes that the linker output is the only thing |
mjr | 35:e959ffba78fd | 4891 | // stored there. There's no file system and no allowance for shared |
mjr | 35:e959ffba78fd | 4892 | // use for other purposes. Fortunately, the linker ues the space in |
mjr | 35:e959ffba78fd | 4893 | // the obvious way, storing the entire linked program in a contiguous |
mjr | 35:e959ffba78fd | 4894 | // block starting at the lowest flash address. This means that the |
mjr | 35:e959ffba78fd | 4895 | // rest of flash - from the end of the linked program to the highest |
mjr | 35:e959ffba78fd | 4896 | // flash address - is all unused free space. Writing our data there |
mjr | 35:e959ffba78fd | 4897 | // won't conflict with anything else. Since the linker doesn't give |
mjr | 35:e959ffba78fd | 4898 | // us any programmatic access to the total linker output size, it's |
mjr | 35:e959ffba78fd | 4899 | // safest to just store our config data at the very end of the flash |
mjr | 35:e959ffba78fd | 4900 | // region (i.e., the highest address). As long as it's smaller than |
mjr | 35:e959ffba78fd | 4901 | // the free space, it won't collide with the linker area. |
mjr | 35:e959ffba78fd | 4902 | |
mjr | 35:e959ffba78fd | 4903 | // Figure how many sectors we need for our structure |
mjr | 79:682ae3171a08 | 4904 | const NVM *flash = configFlashAddr(); |
mjr | 35:e959ffba78fd | 4905 | |
mjr | 35:e959ffba78fd | 4906 | // if the flash is valid, load it; otherwise initialize to defaults |
mjr | 76:7f5912b6340e | 4907 | bool nvm_valid = flash->valid(); |
mjr | 76:7f5912b6340e | 4908 | if (nvm_valid) |
mjr | 35:e959ffba78fd | 4909 | { |
mjr | 35:e959ffba78fd | 4910 | // flash is valid - load it into the RAM copy of the structure |
mjr | 35:e959ffba78fd | 4911 | memcpy(&nvm, flash, sizeof(NVM)); |
mjr | 35:e959ffba78fd | 4912 | } |
mjr | 35:e959ffba78fd | 4913 | else |
mjr | 35:e959ffba78fd | 4914 | { |
mjr | 76:7f5912b6340e | 4915 | // flash is invalid - load factory settings into RAM structure |
mjr | 35:e959ffba78fd | 4916 | cfg.setFactoryDefaults(); |
mjr | 35:e959ffba78fd | 4917 | } |
mjr | 76:7f5912b6340e | 4918 | |
mjr | 76:7f5912b6340e | 4919 | // tell the caller what happened |
mjr | 76:7f5912b6340e | 4920 | return nvm_valid; |
mjr | 35:e959ffba78fd | 4921 | } |
mjr | 35:e959ffba78fd | 4922 | |
mjr | 86:e30a1f60f783 | 4923 | // Save the config. Returns true on success, false on failure. |
mjr | 86:e30a1f60f783 | 4924 | // 'tFollowup' is the follow-up time in seconds. If the write is |
mjr | 86:e30a1f60f783 | 4925 | // successful, we'll turn on the success flag in the status reports |
mjr | 86:e30a1f60f783 | 4926 | // and leave it on for this interval. If 'reboot' is true, we'll |
mjr | 86:e30a1f60f783 | 4927 | // also schedule a reboot at the end of the followup interval. |
mjr | 86:e30a1f60f783 | 4928 | bool saveConfigToFlash(int tFollowup, bool reboot) |
mjr | 33:d832bcab089e | 4929 | { |
mjr | 76:7f5912b6340e | 4930 | // get the config block location in the flash memory |
mjr | 77:0b96f6867312 | 4931 | uint32_t addr = uint32_t(configFlashAddr()); |
mjr | 79:682ae3171a08 | 4932 | |
mjr | 101:755f44622abc | 4933 | // save the data |
mjr | 101:755f44622abc | 4934 | bool ok = nvm.save(iap, addr); |
mjr | 101:755f44622abc | 4935 | |
mjr | 101:755f44622abc | 4936 | // if the save succeeded, do post-save work |
mjr | 101:755f44622abc | 4937 | if (ok) |
mjr | 86:e30a1f60f783 | 4938 | { |
mjr | 86:e30a1f60f783 | 4939 | // success - report the successful save in the status flags |
mjr | 86:e30a1f60f783 | 4940 | saveConfigSucceededFlag = 0x40; |
mjr | 86:e30a1f60f783 | 4941 | |
mjr | 86:e30a1f60f783 | 4942 | // start the followup timer |
mjr | 87:8d35c74403af | 4943 | saveConfigFollowupTime = tFollowup; |
mjr | 87:8d35c74403af | 4944 | saveConfigFollowupTimer.reset(); |
mjr | 86:e30a1f60f783 | 4945 | saveConfigFollowupTimer.start(); |
mjr | 86:e30a1f60f783 | 4946 | |
mjr | 86:e30a1f60f783 | 4947 | // if a reboot is pending, flag it |
mjr | 86:e30a1f60f783 | 4948 | saveConfigRebootPending = reboot; |
mjr | 86:e30a1f60f783 | 4949 | } |
mjr | 101:755f44622abc | 4950 | |
mjr | 101:755f44622abc | 4951 | // return the success indication |
mjr | 101:755f44622abc | 4952 | return ok; |
mjr | 76:7f5912b6340e | 4953 | } |
mjr | 76:7f5912b6340e | 4954 | |
mjr | 76:7f5912b6340e | 4955 | // --------------------------------------------------------------------------- |
mjr | 76:7f5912b6340e | 4956 | // |
mjr | 76:7f5912b6340e | 4957 | // Host-loaded configuration. The Flash NVM block above is designed to be |
mjr | 76:7f5912b6340e | 4958 | // stored from within the firmware; in contrast, the host-loaded config is |
mjr | 76:7f5912b6340e | 4959 | // stored by the host, by patching the firwmare binary (.bin) file before |
mjr | 76:7f5912b6340e | 4960 | // downloading it to the device. |
mjr | 76:7f5912b6340e | 4961 | // |
mjr | 100:1ff35c07217c | 4962 | // Ideally, we'd use the host-loaded memory for all configuration updates |
mjr | 100:1ff35c07217c | 4963 | // from the host - that is, any time the host wants to update config settings, |
mjr | 100:1ff35c07217c | 4964 | // such as via user input in the config tool. In the past, I wanted to do |
mjr | 100:1ff35c07217c | 4965 | // it this way because it seemed to be unreliable to write flash memory via |
mjr | 100:1ff35c07217c | 4966 | // the device. But that turned out to be due to a bug in the mbed Ticker |
mjr | 100:1ff35c07217c | 4967 | // code (of all things!), which we've fixed - since then, flash writing on |
mjr | 100:1ff35c07217c | 4968 | // the device has been bulletproof. Even so, doing host-to-device flash |
mjr | 100:1ff35c07217c | 4969 | // writing for config updates would be nice just for the sake of speed, as |
mjr | 100:1ff35c07217c | 4970 | // the alternative is that we send the variables one at a time by USB, which |
mjr | 100:1ff35c07217c | 4971 | // takes noticeable time when reprogramming the whole config set. But |
mjr | 100:1ff35c07217c | 4972 | // there's no way to accomplish a single-sector flash write via OpenSDA; you |
mjr | 100:1ff35c07217c | 4973 | // can only rewrite the entire flash memory as a unit. |
mjr | 100:1ff35c07217c | 4974 | // |
mjr | 100:1ff35c07217c | 4975 | // We can at least use this approach to do a fast configuration restore |
mjr | 100:1ff35c07217c | 4976 | // when downloading new firmware. In that case, we're rewriting all of |
mjr | 100:1ff35c07217c | 4977 | // flash memory anyway, so we might as well include the config data. |
mjr | 76:7f5912b6340e | 4978 | // |
mjr | 76:7f5912b6340e | 4979 | // The memory here is stored using the same format as the USB "Set Config |
mjr | 76:7f5912b6340e | 4980 | // Variable" command. These messages are 8 bytes long and start with a |
mjr | 76:7f5912b6340e | 4981 | // byte value 66, followed by the variable ID, followed by the variable |
mjr | 76:7f5912b6340e | 4982 | // value data in a format defined separately for each variable. To load |
mjr | 76:7f5912b6340e | 4983 | // the data, we'll start at the first byte after the signature, and |
mjr | 76:7f5912b6340e | 4984 | // interpret each 8-byte block as a type 66 message. If the first byte |
mjr | 76:7f5912b6340e | 4985 | // of a block is not 66, we'll take it as the end of the data. |
mjr | 76:7f5912b6340e | 4986 | // |
mjr | 76:7f5912b6340e | 4987 | // We provide a block of storage here big enough for 1,024 variables. |
mjr | 76:7f5912b6340e | 4988 | // The header consists of a 30-byte signature followed by two bytes giving |
mjr | 76:7f5912b6340e | 4989 | // the available space in the area, in this case 8192 == 0x0200. The |
mjr | 76:7f5912b6340e | 4990 | // length is little-endian. Note that the linker will implicitly zero |
mjr | 76:7f5912b6340e | 4991 | // the rest of the block, so if the host doesn't populate it, we'll see |
mjr | 76:7f5912b6340e | 4992 | // that it's empty by virtue of not containing the required '66' byte |
mjr | 76:7f5912b6340e | 4993 | // prefix for the first 8-byte variable block. |
mjr | 76:7f5912b6340e | 4994 | static const uint8_t hostLoadedConfig[8192+32] |
mjr | 76:7f5912b6340e | 4995 | __attribute__ ((aligned(SECTOR_SIZE))) = |
mjr | 76:7f5912b6340e | 4996 | "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length |
mjr | 76:7f5912b6340e | 4997 | |
mjr | 76:7f5912b6340e | 4998 | // Get a pointer to the first byte of the configuration data |
mjr | 76:7f5912b6340e | 4999 | const uint8_t *getHostLoadedConfigData() |
mjr | 76:7f5912b6340e | 5000 | { |
mjr | 76:7f5912b6340e | 5001 | // the first configuration variable byte immediately follows the |
mjr | 76:7f5912b6340e | 5002 | // 32-byte signature header |
mjr | 76:7f5912b6340e | 5003 | return hostLoadedConfig + 32; |
mjr | 76:7f5912b6340e | 5004 | }; |
mjr | 76:7f5912b6340e | 5005 | |
mjr | 76:7f5912b6340e | 5006 | // forward reference to config var store function |
mjr | 76:7f5912b6340e | 5007 | void configVarSet(const uint8_t *); |
mjr | 76:7f5912b6340e | 5008 | |
mjr | 76:7f5912b6340e | 5009 | // Load the host-loaded configuration data into the active (RAM) |
mjr | 76:7f5912b6340e | 5010 | // configuration object. |
mjr | 76:7f5912b6340e | 5011 | void loadHostLoadedConfig() |
mjr | 76:7f5912b6340e | 5012 | { |
mjr | 76:7f5912b6340e | 5013 | // Start at the first configuration variable. Each variable |
mjr | 76:7f5912b6340e | 5014 | // block is in the format of a Set Config Variable command in |
mjr | 76:7f5912b6340e | 5015 | // the USB protocol, so each block starts with a byte value of |
mjr | 76:7f5912b6340e | 5016 | // 66 and is 8 bytes long. Continue as long as we find valid |
mjr | 76:7f5912b6340e | 5017 | // variable blocks, or reach end end of the block. |
mjr | 76:7f5912b6340e | 5018 | const uint8_t *start = getHostLoadedConfigData(); |
mjr | 76:7f5912b6340e | 5019 | const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig); |
mjr | 76:7f5912b6340e | 5020 | for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8) |
mjr | 76:7f5912b6340e | 5021 | { |
mjr | 76:7f5912b6340e | 5022 | // load this variable |
mjr | 76:7f5912b6340e | 5023 | configVarSet(p); |
mjr | 76:7f5912b6340e | 5024 | } |
mjr | 35:e959ffba78fd | 5025 | } |
mjr | 35:e959ffba78fd | 5026 | |
mjr | 35:e959ffba78fd | 5027 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5028 | // |
mjr | 55:4db125cd11a0 | 5029 | // Pixel dump mode - the host requested a dump of image sensor pixels |
mjr | 55:4db125cd11a0 | 5030 | // (helpful for installing and setting up the sensor and light source) |
mjr | 55:4db125cd11a0 | 5031 | // |
mjr | 55:4db125cd11a0 | 5032 | bool reportPlungerStat = false; |
mjr | 55:4db125cd11a0 | 5033 | uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h) |
mjr | 55:4db125cd11a0 | 5034 | uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report |
mjr | 101:755f44622abc | 5035 | uint8_t tReportPlungerStat; // timestamp of most recent plunger status request |
mjr | 55:4db125cd11a0 | 5036 | |
mjr | 55:4db125cd11a0 | 5037 | |
mjr | 55:4db125cd11a0 | 5038 | // --------------------------------------------------------------------------- |
mjr | 55:4db125cd11a0 | 5039 | // |
mjr | 40:cc0d9814522b | 5040 | // Night mode setting updates |
mjr | 40:cc0d9814522b | 5041 | // |
mjr | 38:091e511ce8a0 | 5042 | |
mjr | 38:091e511ce8a0 | 5043 | // Turn night mode on or off |
mjr | 38:091e511ce8a0 | 5044 | static void setNightMode(bool on) |
mjr | 38:091e511ce8a0 | 5045 | { |
mjr | 77:0b96f6867312 | 5046 | // Set the new night mode flag in the noisy output class. Note |
mjr | 77:0b96f6867312 | 5047 | // that we use the status report bit flag value 0x02 when on, so |
mjr | 77:0b96f6867312 | 5048 | // that we can just '|' this into the overall status bits. |
mjr | 77:0b96f6867312 | 5049 | nightMode = on ? 0x02 : 0x00; |
mjr | 55:4db125cd11a0 | 5050 | |
mjr | 40:cc0d9814522b | 5051 | // update the special output pin that shows the night mode state |
mjr | 53:9b2611964afc | 5052 | int port = int(cfg.nightMode.port) - 1; |
mjr | 53:9b2611964afc | 5053 | if (port >= 0 && port < numOutputs) |
mjr | 53:9b2611964afc | 5054 | lwPin[port]->set(nightMode ? 255 : 0); |
mjr | 76:7f5912b6340e | 5055 | |
mjr | 76:7f5912b6340e | 5056 | // Reset all outputs at their current value, so that the underlying |
mjr | 76:7f5912b6340e | 5057 | // physical outputs get turned on or off as appropriate for the night |
mjr | 76:7f5912b6340e | 5058 | // mode change. |
mjr | 76:7f5912b6340e | 5059 | for (int i = 0 ; i < numOutputs ; ++i) |
mjr | 76:7f5912b6340e | 5060 | lwPin[i]->set(outLevel[i]); |
mjr | 76:7f5912b6340e | 5061 | |
mjr | 76:7f5912b6340e | 5062 | // update 74HC595 outputs |
mjr | 76:7f5912b6340e | 5063 | if (hc595 != 0) |
mjr | 76:7f5912b6340e | 5064 | hc595->update(); |
mjr | 38:091e511ce8a0 | 5065 | } |
mjr | 38:091e511ce8a0 | 5066 | |
mjr | 38:091e511ce8a0 | 5067 | // Toggle night mode |
mjr | 38:091e511ce8a0 | 5068 | static void toggleNightMode() |
mjr | 38:091e511ce8a0 | 5069 | { |
mjr | 53:9b2611964afc | 5070 | setNightMode(!nightMode); |
mjr | 38:091e511ce8a0 | 5071 | } |
mjr | 38:091e511ce8a0 | 5072 | |
mjr | 38:091e511ce8a0 | 5073 | |
mjr | 38:091e511ce8a0 | 5074 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 5075 | // |
mjr | 35:e959ffba78fd | 5076 | // Plunger Sensor |
mjr | 35:e959ffba78fd | 5077 | // |
mjr | 35:e959ffba78fd | 5078 | |
mjr | 35:e959ffba78fd | 5079 | // the plunger sensor interface object |
mjr | 35:e959ffba78fd | 5080 | PlungerSensor *plungerSensor = 0; |
mjr | 35:e959ffba78fd | 5081 | |
mjr | 76:7f5912b6340e | 5082 | |
mjr | 35:e959ffba78fd | 5083 | // Create the plunger sensor based on the current configuration. If |
mjr | 35:e959ffba78fd | 5084 | // there's already a sensor object, we'll delete it. |
mjr | 35:e959ffba78fd | 5085 | void createPlunger() |
mjr | 35:e959ffba78fd | 5086 | { |
mjr | 35:e959ffba78fd | 5087 | // create the new sensor object according to the type |
mjr | 35:e959ffba78fd | 5088 | switch (cfg.plunger.sensorType) |
mjr | 35:e959ffba78fd | 5089 | { |
mjr | 82:4f6209cb5c33 | 5090 | case PlungerType_TSL1410R: |
mjr | 82:4f6209cb5c33 | 5091 | // TSL1410R, shadow edge detector |
mjr | 35:e959ffba78fd | 5092 | // pins are: SI, CLOCK, AO |
mjr | 53:9b2611964afc | 5093 | plungerSensor = new PlungerSensorTSL1410R( |
mjr | 53:9b2611964afc | 5094 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 5095 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 82:4f6209cb5c33 | 5096 | wirePinName(cfg.plunger.sensorPin[2])); |
mjr | 35:e959ffba78fd | 5097 | break; |
mjr | 35:e959ffba78fd | 5098 | |
mjr | 82:4f6209cb5c33 | 5099 | case PlungerType_TSL1412S: |
mjr | 82:4f6209cb5c33 | 5100 | // TSL1412S, shadow edge detector |
mjr | 82:4f6209cb5c33 | 5101 | // pins are: SI, CLOCK, AO |
mjr | 53:9b2611964afc | 5102 | plungerSensor = new PlungerSensorTSL1412R( |
mjr | 53:9b2611964afc | 5103 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 53:9b2611964afc | 5104 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 82:4f6209cb5c33 | 5105 | wirePinName(cfg.plunger.sensorPin[2])); |
mjr | 35:e959ffba78fd | 5106 | break; |
mjr | 35:e959ffba78fd | 5107 | |
mjr | 35:e959ffba78fd | 5108 | case PlungerType_Pot: |
mjr | 82:4f6209cb5c33 | 5109 | // Potentiometer (or any other sensor with a linear analog voltage |
mjr | 82:4f6209cb5c33 | 5110 | // reading as the proxy for the position) |
mjr | 82:4f6209cb5c33 | 5111 | // pins are: AO (analog in) |
mjr | 53:9b2611964afc | 5112 | plungerSensor = new PlungerSensorPot( |
mjr | 53:9b2611964afc | 5113 | wirePinName(cfg.plunger.sensorPin[0])); |
mjr | 35:e959ffba78fd | 5114 | break; |
mjr | 82:4f6209cb5c33 | 5115 | |
mjr | 82:4f6209cb5c33 | 5116 | case PlungerType_OptQuad: |
mjr | 82:4f6209cb5c33 | 5117 | // Optical quadrature sensor, AEDR8300-K or similar. The -K is |
mjr | 82:4f6209cb5c33 | 5118 | // designed for a 75 LPI scale, which translates to 300 pulses/inch. |
mjr | 82:4f6209cb5c33 | 5119 | // Pins are: CHA, CHB (quadrature pulse inputs). |
mjr | 82:4f6209cb5c33 | 5120 | plungerSensor = new PlungerSensorQuad( |
mjr | 82:4f6209cb5c33 | 5121 | 300, |
mjr | 82:4f6209cb5c33 | 5122 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 82:4f6209cb5c33 | 5123 | wirePinName(cfg.plunger.sensorPin[1])); |
mjr | 82:4f6209cb5c33 | 5124 | break; |
mjr | 82:4f6209cb5c33 | 5125 | |
mjr | 82:4f6209cb5c33 | 5126 | case PlungerType_TSL1401CL: |
mjr | 82:4f6209cb5c33 | 5127 | // TSL1401CL, absolute position encoder with bar code scale |
mjr | 82:4f6209cb5c33 | 5128 | // pins are: SI, CLOCK, AO |
mjr | 82:4f6209cb5c33 | 5129 | plungerSensor = new PlungerSensorTSL1401CL( |
mjr | 82:4f6209cb5c33 | 5130 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 82:4f6209cb5c33 | 5131 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 82:4f6209cb5c33 | 5132 | wirePinName(cfg.plunger.sensorPin[2])); |
mjr | 82:4f6209cb5c33 | 5133 | break; |
mjr | 82:4f6209cb5c33 | 5134 | |
mjr | 82:4f6209cb5c33 | 5135 | case PlungerType_VL6180X: |
mjr | 82:4f6209cb5c33 | 5136 | // VL6180X time-of-flight IR distance sensor |
mjr | 82:4f6209cb5c33 | 5137 | // pins are: SDL, SCL, GPIO0/CE |
mjr | 82:4f6209cb5c33 | 5138 | plungerSensor = new PlungerSensorVL6180X( |
mjr | 82:4f6209cb5c33 | 5139 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 82:4f6209cb5c33 | 5140 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 82:4f6209cb5c33 | 5141 | wirePinName(cfg.plunger.sensorPin[2])); |
mjr | 82:4f6209cb5c33 | 5142 | break; |
mjr | 82:4f6209cb5c33 | 5143 | |
mjr | 100:1ff35c07217c | 5144 | case PlungerType_AEAT6012: |
mjr | 100:1ff35c07217c | 5145 | // Broadcom AEAT-6012-A06 magnetic rotary encoder |
mjr | 100:1ff35c07217c | 5146 | // pins are: CS (chip select, dig out), CLK (dig out), DO (data, dig in) |
mjr | 100:1ff35c07217c | 5147 | plungerSensor = new PlungerSensorAEAT601X<12>( |
mjr | 100:1ff35c07217c | 5148 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 100:1ff35c07217c | 5149 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 100:1ff35c07217c | 5150 | wirePinName(cfg.plunger.sensorPin[2])); |
mjr | 100:1ff35c07217c | 5151 | break; |
mjr | 100:1ff35c07217c | 5152 | |
mjr | 100:1ff35c07217c | 5153 | case PlungerType_TCD1103: |
mjr | 100:1ff35c07217c | 5154 | // Toshiba TCD1103GFG linear CCD, optical edge detection, with |
mjr | 100:1ff35c07217c | 5155 | // inverted logic gates. |
mjr | 100:1ff35c07217c | 5156 | // |
mjr | 100:1ff35c07217c | 5157 | // Pins are: fM (master clock, PWM), OS (sample data, analog in), |
mjr | 100:1ff35c07217c | 5158 | // ICG (integration clear gate, dig out), SH (shift gate, dig out) |
mjr | 100:1ff35c07217c | 5159 | plungerSensor = new PlungerSensorTCD1103<true>( |
mjr | 100:1ff35c07217c | 5160 | wirePinName(cfg.plunger.sensorPin[0]), |
mjr | 100:1ff35c07217c | 5161 | wirePinName(cfg.plunger.sensorPin[1]), |
mjr | 100:1ff35c07217c | 5162 | wirePinName(cfg.plunger.sensorPin[2]), |
mjr | 100:1ff35c07217c | 5163 | wirePinName(cfg.plunger.sensorPin[3])); |
mjr | 100:1ff35c07217c | 5164 | break; |
mjr | 100:1ff35c07217c | 5165 | |
mjr | 35:e959ffba78fd | 5166 | case PlungerType_None: |
mjr | 35:e959ffba78fd | 5167 | default: |
mjr | 35:e959ffba78fd | 5168 | plungerSensor = new PlungerSensorNull(); |
mjr | 35:e959ffba78fd | 5169 | break; |
mjr | 35:e959ffba78fd | 5170 | } |
mjr | 100:1ff35c07217c | 5171 | |
mjr | 100:1ff35c07217c | 5172 | // initialize the plunger from the saved configuration |
mjr | 100:1ff35c07217c | 5173 | plungerSensor->restoreCalibration(cfg); |
mjr | 86:e30a1f60f783 | 5174 | |
mjr | 87:8d35c74403af | 5175 | // initialize the config variables affecting the plunger |
mjr | 87:8d35c74403af | 5176 | plungerSensor->onConfigChange(19, cfg); |
mjr | 87:8d35c74403af | 5177 | plungerSensor->onConfigChange(20, cfg); |
mjr | 33:d832bcab089e | 5178 | } |
mjr | 33:d832bcab089e | 5179 | |
mjr | 52:8298b2a73eb2 | 5180 | // Global plunger calibration mode flag |
mjr | 52:8298b2a73eb2 | 5181 | bool plungerCalMode; |
mjr | 52:8298b2a73eb2 | 5182 | |
mjr | 48:058ace2aed1d | 5183 | // Plunger reader |
mjr | 51:57eb311faafa | 5184 | // |
mjr | 51:57eb311faafa | 5185 | // This class encapsulates our plunger data processing. At the simplest |
mjr | 51:57eb311faafa | 5186 | // level, we read the position from the sensor, adjust it for the |
mjr | 51:57eb311faafa | 5187 | // calibration settings, and report the calibrated position to the host. |
mjr | 51:57eb311faafa | 5188 | // |
mjr | 51:57eb311faafa | 5189 | // In addition, we constantly monitor the data for "firing" motions. |
mjr | 51:57eb311faafa | 5190 | // A firing motion is when the user pulls back the plunger and releases |
mjr | 51:57eb311faafa | 5191 | // it, allowing it to shoot forward under the force of the main spring. |
mjr | 51:57eb311faafa | 5192 | // When we detect that this is happening, we briefly stop reporting the |
mjr | 51:57eb311faafa | 5193 | // real physical position that we're reading from the sensor, and instead |
mjr | 51:57eb311faafa | 5194 | // report a synthetic series of positions that depicts an idealized |
mjr | 51:57eb311faafa | 5195 | // firing motion. |
mjr | 51:57eb311faafa | 5196 | // |
mjr | 51:57eb311faafa | 5197 | // The point of the synthetic reports is to correct for distortions |
mjr | 51:57eb311faafa | 5198 | // created by the joystick interface conventions used by VP and other |
mjr | 51:57eb311faafa | 5199 | // PC pinball emulators. The convention they use is simply to have the |
mjr | 51:57eb311faafa | 5200 | // plunger device report the instantaneous position of the real plunger. |
mjr | 51:57eb311faafa | 5201 | // The PC software polls this reported position periodically, and moves |
mjr | 51:57eb311faafa | 5202 | // the on-screen virtual plunger in sync with the real plunger. This |
mjr | 51:57eb311faafa | 5203 | // works fine for human-scale motion when the user is manually moving |
mjr | 51:57eb311faafa | 5204 | // the plunger. But it doesn't work for the high speed motion of a |
mjr | 51:57eb311faafa | 5205 | // release. The plunger simply moves too fast. VP polls in about 10ms |
mjr | 51:57eb311faafa | 5206 | // intervals; the plunger takes about 50ms to travel from fully |
mjr | 51:57eb311faafa | 5207 | // retracted to the park position when released. The low sampling |
mjr | 51:57eb311faafa | 5208 | // rate relative to the rate of change of the sampled data creates |
mjr | 51:57eb311faafa | 5209 | // a classic digital aliasing effect. |
mjr | 51:57eb311faafa | 5210 | // |
mjr | 51:57eb311faafa | 5211 | // The synthetic reporting scheme compensates for the interface |
mjr | 51:57eb311faafa | 5212 | // distortions by essentially changing to a coarse enough timescale |
mjr | 51:57eb311faafa | 5213 | // that VP can reliably interpret the readings. Conceptually, there |
mjr | 51:57eb311faafa | 5214 | // are three steps involved in doing this. First, we analyze the |
mjr | 51:57eb311faafa | 5215 | // actual sensor data to detect and characterize the release motion. |
mjr | 51:57eb311faafa | 5216 | // Second, once we think we have a release in progress, we fit the |
mjr | 51:57eb311faafa | 5217 | // data to a mathematical model of the release. The model we use is |
mjr | 51:57eb311faafa | 5218 | // dead simple: we consider the release to have one parameter, namely |
mjr | 51:57eb311faafa | 5219 | // the retraction distance at the moment the user lets go. This is an |
mjr | 51:57eb311faafa | 5220 | // excellent proxy in the real physical system for the final speed |
mjr | 51:57eb311faafa | 5221 | // when the plunger hits the ball, and it also happens to match how |
mjr | 51:57eb311faafa | 5222 | // VP models it internally. Third, we construct synthetic reports |
mjr | 51:57eb311faafa | 5223 | // that will make VP's internal state match our model. This is also |
mjr | 51:57eb311faafa | 5224 | // pretty simple: we just need to send VP the maximum retraction |
mjr | 51:57eb311faafa | 5225 | // distance for long enough to be sure that it polls it at least |
mjr | 51:57eb311faafa | 5226 | // once, and then send it the park position for long enough to |
mjr | 51:57eb311faafa | 5227 | // ensure that VP will complete the same firing motion. The |
mjr | 51:57eb311faafa | 5228 | // immediate jump from the maximum point to the zero point will |
mjr | 51:57eb311faafa | 5229 | // cause VP to move its simulation model plunger forward from the |
mjr | 51:57eb311faafa | 5230 | // starting point at its natural spring acceleration rate, which |
mjr | 51:57eb311faafa | 5231 | // is exactly what the real plunger just did. |
mjr | 51:57eb311faafa | 5232 | // |
mjr | 48:058ace2aed1d | 5233 | class PlungerReader |
mjr | 48:058ace2aed1d | 5234 | { |
mjr | 48:058ace2aed1d | 5235 | public: |
mjr | 48:058ace2aed1d | 5236 | PlungerReader() |
mjr | 48:058ace2aed1d | 5237 | { |
mjr | 48:058ace2aed1d | 5238 | // not in a firing event yet |
mjr | 48:058ace2aed1d | 5239 | firing = 0; |
mjr | 48:058ace2aed1d | 5240 | } |
mjr | 76:7f5912b6340e | 5241 | |
mjr | 48:058ace2aed1d | 5242 | // Collect a reading from the plunger sensor. The main loop calls |
mjr | 48:058ace2aed1d | 5243 | // this frequently to read the current raw position data from the |
mjr | 48:058ace2aed1d | 5244 | // sensor. We analyze the raw data to produce the calibrated |
mjr | 48:058ace2aed1d | 5245 | // position that we report to the PC via the joystick interface. |
mjr | 48:058ace2aed1d | 5246 | void read() |
mjr | 48:058ace2aed1d | 5247 | { |
mjr | 76:7f5912b6340e | 5248 | // if the sensor is busy, skip the reading on this round |
mjr | 76:7f5912b6340e | 5249 | if (!plungerSensor->ready()) |
mjr | 76:7f5912b6340e | 5250 | return; |
mjr | 76:7f5912b6340e | 5251 | |
mjr | 48:058ace2aed1d | 5252 | // Read a sample from the sensor |
mjr | 48:058ace2aed1d | 5253 | PlungerReading r; |
mjr | 48:058ace2aed1d | 5254 | if (plungerSensor->read(r)) |
mjr | 48:058ace2aed1d | 5255 | { |
mjr | 53:9b2611964afc | 5256 | // check for calibration mode |
mjr | 53:9b2611964afc | 5257 | if (plungerCalMode) |
mjr | 53:9b2611964afc | 5258 | { |
mjr | 53:9b2611964afc | 5259 | // Calibration mode. Adjust the calibration bounds to fit |
mjr | 53:9b2611964afc | 5260 | // the value. If this value is beyond the current min or max, |
mjr | 53:9b2611964afc | 5261 | // expand the envelope to include this new value. |
mjr | 53:9b2611964afc | 5262 | if (r.pos > cfg.plunger.cal.max) |
mjr | 53:9b2611964afc | 5263 | cfg.plunger.cal.max = r.pos; |
mjr | 53:9b2611964afc | 5264 | if (r.pos < cfg.plunger.cal.min) |
mjr | 53:9b2611964afc | 5265 | cfg.plunger.cal.min = r.pos; |
mjr | 76:7f5912b6340e | 5266 | |
mjr | 76:7f5912b6340e | 5267 | // update our cached calibration data |
mjr | 76:7f5912b6340e | 5268 | onUpdateCal(); |
mjr | 50:40015764bbe6 | 5269 | |
mjr | 53:9b2611964afc | 5270 | // If we're in calibration state 0, we're waiting for the |
mjr | 53:9b2611964afc | 5271 | // plunger to come to rest at the park position so that we |
mjr | 53:9b2611964afc | 5272 | // can take a sample of the park position. Check to see if |
mjr | 53:9b2611964afc | 5273 | // we've been at rest for a minimum interval. |
mjr | 53:9b2611964afc | 5274 | if (calState == 0) |
mjr | 53:9b2611964afc | 5275 | { |
mjr | 53:9b2611964afc | 5276 | if (abs(r.pos - calZeroStart.pos) < 65535/3/50) |
mjr | 53:9b2611964afc | 5277 | { |
mjr | 53:9b2611964afc | 5278 | // we're close enough - make sure we've been here long enough |
mjr | 53:9b2611964afc | 5279 | if (uint32_t(r.t - calZeroStart.t) > 100000UL) |
mjr | 53:9b2611964afc | 5280 | { |
mjr | 53:9b2611964afc | 5281 | // we've been at rest long enough - count it |
mjr | 53:9b2611964afc | 5282 | calZeroPosSum += r.pos; |
mjr | 53:9b2611964afc | 5283 | calZeroPosN += 1; |
mjr | 53:9b2611964afc | 5284 | |
mjr | 53:9b2611964afc | 5285 | // update the zero position from the new average |
mjr | 53:9b2611964afc | 5286 | cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN); |
mjr | 76:7f5912b6340e | 5287 | onUpdateCal(); |
mjr | 53:9b2611964afc | 5288 | |
mjr | 53:9b2611964afc | 5289 | // switch to calibration state 1 - at rest |
mjr | 53:9b2611964afc | 5290 | calState = 1; |
mjr | 53:9b2611964afc | 5291 | } |
mjr | 53:9b2611964afc | 5292 | } |
mjr | 53:9b2611964afc | 5293 | else |
mjr | 53:9b2611964afc | 5294 | { |
mjr | 53:9b2611964afc | 5295 | // we're not close to the last position - start again here |
mjr | 53:9b2611964afc | 5296 | calZeroStart = r; |
mjr | 53:9b2611964afc | 5297 | } |
mjr | 53:9b2611964afc | 5298 | } |
mjr | 53:9b2611964afc | 5299 | |
mjr | 53:9b2611964afc | 5300 | // Rescale to the joystick range, and adjust for the current |
mjr | 53:9b2611964afc | 5301 | // park position, but don't calibrate. We don't know the maximum |
mjr | 53:9b2611964afc | 5302 | // point yet, so we can't calibrate the range. |
mjr | 53:9b2611964afc | 5303 | r.pos = int( |
mjr | 53:9b2611964afc | 5304 | (long(r.pos - cfg.plunger.cal.zero) * JOYMAX) |
mjr | 53:9b2611964afc | 5305 | / (65535 - cfg.plunger.cal.zero)); |
mjr | 53:9b2611964afc | 5306 | } |
mjr | 53:9b2611964afc | 5307 | else |
mjr | 53:9b2611964afc | 5308 | { |
mjr | 53:9b2611964afc | 5309 | // Not in calibration mode. Apply the existing calibration and |
mjr | 53:9b2611964afc | 5310 | // rescale to the joystick range. |
mjr | 76:7f5912b6340e | 5311 | r.pos = applyCal(r.pos); |
mjr | 53:9b2611964afc | 5312 | |
mjr | 53:9b2611964afc | 5313 | // limit the result to the valid joystick range |
mjr | 53:9b2611964afc | 5314 | if (r.pos > JOYMAX) |
mjr | 53:9b2611964afc | 5315 | r.pos = JOYMAX; |
mjr | 53:9b2611964afc | 5316 | else if (r.pos < -JOYMAX) |
mjr | 53:9b2611964afc | 5317 | r.pos = -JOYMAX; |
mjr | 53:9b2611964afc | 5318 | } |
mjr | 50:40015764bbe6 | 5319 | |
mjr | 87:8d35c74403af | 5320 | // Look for a firing event - the user releasing the plunger and |
mjr | 87:8d35c74403af | 5321 | // allowing it to shoot forward at full speed. Wait at least 5ms |
mjr | 87:8d35c74403af | 5322 | // between samples for this, to help distinguish random motion |
mjr | 87:8d35c74403af | 5323 | // from the rapid motion of a firing event. |
mjr | 50:40015764bbe6 | 5324 | // |
mjr | 87:8d35c74403af | 5325 | // There's a trade-off in the choice of minimum sampling interval. |
mjr | 87:8d35c74403af | 5326 | // The longer we wait, the more certain we can be of the trend. |
mjr | 87:8d35c74403af | 5327 | // But if we wait too long, the user will perceive a delay. We |
mjr | 87:8d35c74403af | 5328 | // also want to sample frequently enough to see the release motion |
mjr | 87:8d35c74403af | 5329 | // at intermediate steps along the way, so the sampling has to be |
mjr | 87:8d35c74403af | 5330 | // considerably faster than the whole travel time, which is about |
mjr | 87:8d35c74403af | 5331 | // 25-50ms. |
mjr | 87:8d35c74403af | 5332 | if (uint32_t(r.t - prv.t) < 5000UL) |
mjr | 87:8d35c74403af | 5333 | return; |
mjr | 87:8d35c74403af | 5334 | |
mjr | 87:8d35c74403af | 5335 | // assume that we'll report this reading as-is |
mjr | 87:8d35c74403af | 5336 | z = r.pos; |
mjr | 87:8d35c74403af | 5337 | |
mjr | 87:8d35c74403af | 5338 | // Firing event detection. |
mjr | 87:8d35c74403af | 5339 | // |
mjr | 87:8d35c74403af | 5340 | // A "firing event" is when the player releases the plunger from |
mjr | 87:8d35c74403af | 5341 | // a retracted position, allowing it to shoot forward under the |
mjr | 87:8d35c74403af | 5342 | // spring tension. |
mjr | 50:40015764bbe6 | 5343 | // |
mjr | 87:8d35c74403af | 5344 | // We monitor the plunger motion for these events, and when they |
mjr | 87:8d35c74403af | 5345 | // occur, we report an "idealized" version of the motion to the |
mjr | 87:8d35c74403af | 5346 | // PC. The idealized version consists of a series of readings |
mjr | 87:8d35c74403af | 5347 | // frozen at the fully retracted position for the whole duration |
mjr | 87:8d35c74403af | 5348 | // of the forward travel, followed by a series of readings at the |
mjr | 87:8d35c74403af | 5349 | // fully forward position for long enough for the plunger to come |
mjr | 87:8d35c74403af | 5350 | // mostly to rest. The series of frozen readings aren't meant to |
mjr | 87:8d35c74403af | 5351 | // be perceptible to the player - we try to keep them short enough |
mjr | 87:8d35c74403af | 5352 | // that they're not apparent as delay. Instead, they're for the |
mjr | 87:8d35c74403af | 5353 | // PC client software's benefit. PC joystick clients use polling, |
mjr | 87:8d35c74403af | 5354 | // so they only see an unpredictable subset of the readings we |
mjr | 87:8d35c74403af | 5355 | // send. The only way to be sure that the client sees a particular |
mjr | 87:8d35c74403af | 5356 | // reading is to hold it for long enough that the client is sure to |
mjr | 87:8d35c74403af | 5357 | // poll within the hold interval. In the case of the plunger |
mjr | 87:8d35c74403af | 5358 | // firing motion, it's important that the client sees the *ends* |
mjr | 87:8d35c74403af | 5359 | // of the travel - the fully retracted starting position in |
mjr | 87:8d35c74403af | 5360 | // particular. If the PC client only polls for a sample while the |
mjr | 87:8d35c74403af | 5361 | // plunger is somewhere in the middle of the travel, the PC will |
mjr | 87:8d35c74403af | 5362 | // think that the firing motion *started* in that middle position, |
mjr | 87:8d35c74403af | 5363 | // so it won't be able to model the right amount of momentum when |
mjr | 87:8d35c74403af | 5364 | // the plunger hits the ball. We try to ensure that the PC sees |
mjr | 87:8d35c74403af | 5365 | // the right starting point by reporting the starting point for |
mjr | 87:8d35c74403af | 5366 | // extra time during the forward motion. By the same token, we |
mjr | 87:8d35c74403af | 5367 | // want the PC to know that the plunger has moved all the way |
mjr | 87:8d35c74403af | 5368 | // forward, rather than mistakenly thinking that it stopped |
mjr | 87:8d35c74403af | 5369 | // somewhere in the middle of the travel, so we freeze at the |
mjr | 87:8d35c74403af | 5370 | // forward position for a short time. |
mjr | 76:7f5912b6340e | 5371 | // |
mjr | 87:8d35c74403af | 5372 | // To detect a firing event, we look for forward motion that's |
mjr | 87:8d35c74403af | 5373 | // fast enough to be a firing event. To determine how fast is |
mjr | 87:8d35c74403af | 5374 | // fast enough, we use a simple model of the plunger motion where |
mjr | 87:8d35c74403af | 5375 | // the acceleration is constant. This is only an approximation, |
mjr | 87:8d35c74403af | 5376 | // as the spring force actually varies with spring's compression, |
mjr | 87:8d35c74403af | 5377 | // but it's close enough for our purposes here. |
mjr | 87:8d35c74403af | 5378 | // |
mjr | 87:8d35c74403af | 5379 | // Do calculations in fixed-point 2^48 scale with 64-bit ints. |
mjr | 87:8d35c74403af | 5380 | // acc2 = acceleration/2 for 50ms release time, units of unit |
mjr | 87:8d35c74403af | 5381 | // distances per microsecond squared, where the unit distance |
mjr | 87:8d35c74403af | 5382 | // is the overall travel from the starting retracted position |
mjr | 87:8d35c74403af | 5383 | // to the park position. |
mjr | 87:8d35c74403af | 5384 | const int32_t acc2 = 112590; // 2^48 scale |
mjr | 50:40015764bbe6 | 5385 | switch (firing) |
mjr | 50:40015764bbe6 | 5386 | { |
mjr | 50:40015764bbe6 | 5387 | case 0: |
mjr | 87:8d35c74403af | 5388 | // Not in firing mode. If we're retracted a bit, and the |
mjr | 87:8d35c74403af | 5389 | // motion is forward at a fast enough rate to look like a |
mjr | 87:8d35c74403af | 5390 | // release, enter firing mode. |
mjr | 87:8d35c74403af | 5391 | if (r.pos > JOYMAX/6) |
mjr | 50:40015764bbe6 | 5392 | { |
mjr | 87:8d35c74403af | 5393 | const uint32_t dt = uint32_t(r.t - prv.t); |
mjr | 87:8d35c74403af | 5394 | const uint32_t dt2 = dt*dt; // dt^2 |
mjr | 87:8d35c74403af | 5395 | if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48)) |
mjr | 87:8d35c74403af | 5396 | { |
mjr | 87:8d35c74403af | 5397 | // Tentatively enter firing mode. Use the prior reading |
mjr | 87:8d35c74403af | 5398 | // as the starting point, and freeze reports for now. |
mjr | 87:8d35c74403af | 5399 | firingMode(1); |
mjr | 87:8d35c74403af | 5400 | f0 = prv; |
mjr | 87:8d35c74403af | 5401 | z = f0.pos; |
mjr | 87:8d35c74403af | 5402 | |
mjr | 87:8d35c74403af | 5403 | // if in calibration state 1 (at rest), switch to |
mjr | 87:8d35c74403af | 5404 | // state 2 (not at rest) |
mjr | 87:8d35c74403af | 5405 | if (calState == 1) |
mjr | 87:8d35c74403af | 5406 | calState = 2; |
mjr | 87:8d35c74403af | 5407 | } |
mjr | 50:40015764bbe6 | 5408 | } |
mjr | 50:40015764bbe6 | 5409 | break; |
mjr | 50:40015764bbe6 | 5410 | |
mjr | 50:40015764bbe6 | 5411 | case 1: |
mjr | 87:8d35c74403af | 5412 | // Tentative firing mode: the plunger was moving forward |
mjr | 87:8d35c74403af | 5413 | // at last check. To stay in firing mode, the plunger has |
mjr | 87:8d35c74403af | 5414 | // to keep moving forward fast enough to look like it's |
mjr | 87:8d35c74403af | 5415 | // moving under spring force. To figure out how fast is |
mjr | 87:8d35c74403af | 5416 | // fast enough, we use a simple model where the acceleration |
mjr | 87:8d35c74403af | 5417 | // is constant over the whole travel distance and the total |
mjr | 87:8d35c74403af | 5418 | // travel time is 50ms. The acceleration actually varies |
mjr | 87:8d35c74403af | 5419 | // slightly since it comes from the spring force, which |
mjr | 87:8d35c74403af | 5420 | // is linear in the displacement; but the plunger spring is |
mjr | 87:8d35c74403af | 5421 | // fairly compressed even when the plunger is all the way |
mjr | 87:8d35c74403af | 5422 | // forward, so the difference in tension from one end of |
mjr | 87:8d35c74403af | 5423 | // the travel to the other is fairly small, so it's not too |
mjr | 87:8d35c74403af | 5424 | // far off to model it as constant. And the real travel |
mjr | 87:8d35c74403af | 5425 | // time obviously isn't a constant, but all we need for |
mjr | 87:8d35c74403af | 5426 | // that is an upper bound. So: we'll figure the time since |
mjr | 87:8d35c74403af | 5427 | // we entered firing mode, and figure the distance we should |
mjr | 87:8d35c74403af | 5428 | // have traveled to complete the trip within the maximum |
mjr | 87:8d35c74403af | 5429 | // time allowed. If we've moved far enough, we'll stay |
mjr | 87:8d35c74403af | 5430 | // in firing mode; if not, we'll exit firing mode. And if |
mjr | 87:8d35c74403af | 5431 | // we cross the finish line while still in firing mode, |
mjr | 87:8d35c74403af | 5432 | // we'll switch to the next phase of the firing event. |
mjr | 50:40015764bbe6 | 5433 | if (r.pos <= 0) |
mjr | 50:40015764bbe6 | 5434 | { |
mjr | 87:8d35c74403af | 5435 | // We crossed the park position. Switch to the second |
mjr | 87:8d35c74403af | 5436 | // phase of the firing event, where we hold the reported |
mjr | 87:8d35c74403af | 5437 | // position at the "bounce" position (where the plunger |
mjr | 87:8d35c74403af | 5438 | // is all the way forward, compressing the barrel spring). |
mjr | 87:8d35c74403af | 5439 | // We'll stick here long enough to ensure that the PC |
mjr | 87:8d35c74403af | 5440 | // client (Visual Pinball or whatever) sees the reading |
mjr | 87:8d35c74403af | 5441 | // and processes the release motion via the simulated |
mjr | 87:8d35c74403af | 5442 | // physics. |
mjr | 50:40015764bbe6 | 5443 | firingMode(2); |
mjr | 53:9b2611964afc | 5444 | |
mjr | 53:9b2611964afc | 5445 | // if in calibration mode, and we're in state 2 (moving), |
mjr | 53:9b2611964afc | 5446 | // collect firing statistics for calibration purposes |
mjr | 53:9b2611964afc | 5447 | if (plungerCalMode && calState == 2) |
mjr | 53:9b2611964afc | 5448 | { |
mjr | 53:9b2611964afc | 5449 | // collect a new zero point for the average when we |
mjr | 53:9b2611964afc | 5450 | // come to rest |
mjr | 53:9b2611964afc | 5451 | calState = 0; |
mjr | 53:9b2611964afc | 5452 | |
mjr | 87:8d35c74403af | 5453 | // collect average firing time statistics in millseconds, |
mjr | 87:8d35c74403af | 5454 | // if it's in range (20 to 255 ms) |
mjr | 87:8d35c74403af | 5455 | const int dt = uint32_t(r.t - f0.t)/1000UL; |
mjr | 87:8d35c74403af | 5456 | if (dt >= 15 && dt <= 255) |
mjr | 53:9b2611964afc | 5457 | { |
mjr | 53:9b2611964afc | 5458 | calRlsTimeSum += dt; |
mjr | 53:9b2611964afc | 5459 | calRlsTimeN += 1; |
mjr | 53:9b2611964afc | 5460 | cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN); |
mjr | 53:9b2611964afc | 5461 | } |
mjr | 53:9b2611964afc | 5462 | } |
mjr | 87:8d35c74403af | 5463 | |
mjr | 87:8d35c74403af | 5464 | // Figure the "bounce" position as forward of the park |
mjr | 87:8d35c74403af | 5465 | // position by 1/6 of the starting retraction distance. |
mjr | 87:8d35c74403af | 5466 | // This simulates the momentum of the plunger compressing |
mjr | 87:8d35c74403af | 5467 | // the barrel spring on the rebound. The barrel spring |
mjr | 87:8d35c74403af | 5468 | // can compress by about 1/6 of the maximum retraction |
mjr | 87:8d35c74403af | 5469 | // distance, so we'll simply treat its compression as |
mjr | 87:8d35c74403af | 5470 | // proportional to the retraction. (It might be more |
mjr | 87:8d35c74403af | 5471 | // realistic to use a slightly higher value here, maybe |
mjr | 87:8d35c74403af | 5472 | // 1/4 or 1/3 or the retraction distance, capping it at |
mjr | 87:8d35c74403af | 5473 | // a maximum of 1/6, because the real plunger probably |
mjr | 87:8d35c74403af | 5474 | // compresses the barrel spring by 100% with less than |
mjr | 87:8d35c74403af | 5475 | // 100% retraction. But that won't affect the physics |
mjr | 87:8d35c74403af | 5476 | // meaningfully, just the animation, and the effect is |
mjr | 87:8d35c74403af | 5477 | // small in any case.) |
mjr | 87:8d35c74403af | 5478 | z = f0.pos = -f0.pos / 6; |
mjr | 87:8d35c74403af | 5479 | |
mjr | 87:8d35c74403af | 5480 | // reset the starting time for this phase |
mjr | 87:8d35c74403af | 5481 | f0.t = r.t; |
mjr | 50:40015764bbe6 | 5482 | } |
mjr | 50:40015764bbe6 | 5483 | else |
mjr | 50:40015764bbe6 | 5484 | { |
mjr | 87:8d35c74403af | 5485 | // check for motion since the start of the firing event |
mjr | 87:8d35c74403af | 5486 | const uint32_t dt = uint32_t(r.t - f0.t); |
mjr | 87:8d35c74403af | 5487 | const uint32_t dt2 = dt*dt; // dt^2 |
mjr | 87:8d35c74403af | 5488 | if (dt < 50000 |
mjr | 87:8d35c74403af | 5489 | && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48)) |
mjr | 87:8d35c74403af | 5490 | { |
mjr | 87:8d35c74403af | 5491 | // It's moving fast enough to still be in a release |
mjr | 87:8d35c74403af | 5492 | // motion. Continue reporting the start position, and |
mjr | 87:8d35c74403af | 5493 | // stay in the first release phase. |
mjr | 87:8d35c74403af | 5494 | z = f0.pos; |
mjr | 87:8d35c74403af | 5495 | } |
mjr | 87:8d35c74403af | 5496 | else |
mjr | 87:8d35c74403af | 5497 | { |
mjr | 87:8d35c74403af | 5498 | // It's not moving fast enough to be a release |
mjr | 87:8d35c74403af | 5499 | // motion. Return to the default state. |
mjr | 87:8d35c74403af | 5500 | firingMode(0); |
mjr | 87:8d35c74403af | 5501 | calState = 1; |
mjr | 87:8d35c74403af | 5502 | } |
mjr | 50:40015764bbe6 | 5503 | } |
mjr | 50:40015764bbe6 | 5504 | break; |
mjr | 50:40015764bbe6 | 5505 | |
mjr | 50:40015764bbe6 | 5506 | case 2: |
mjr | 87:8d35c74403af | 5507 | // Firing mode, holding at forward compression position. |
mjr | 87:8d35c74403af | 5508 | // Hold here for 25ms. |
mjr | 87:8d35c74403af | 5509 | if (uint32_t(r.t - f0.t) < 25000) |
mjr | 50:40015764bbe6 | 5510 | { |
mjr | 87:8d35c74403af | 5511 | // stay here for now |
mjr | 87:8d35c74403af | 5512 | z = f0.pos; |
mjr | 50:40015764bbe6 | 5513 | } |
mjr | 50:40015764bbe6 | 5514 | else |
mjr | 50:40015764bbe6 | 5515 | { |
mjr | 87:8d35c74403af | 5516 | // advance to the next phase, where we report the park |
mjr | 87:8d35c74403af | 5517 | // position until the plunger comes to rest |
mjr | 50:40015764bbe6 | 5518 | firingMode(3); |
mjr | 50:40015764bbe6 | 5519 | z = 0; |
mjr | 87:8d35c74403af | 5520 | |
mjr | 87:8d35c74403af | 5521 | // remember when we started |
mjr | 87:8d35c74403af | 5522 | f0.t = r.t; |
mjr | 50:40015764bbe6 | 5523 | } |
mjr | 50:40015764bbe6 | 5524 | break; |
mjr | 50:40015764bbe6 | 5525 | |
mjr | 50:40015764bbe6 | 5526 | case 3: |
mjr | 87:8d35c74403af | 5527 | // Firing event, holding at park position. Stay here for |
mjr | 87:8d35c74403af | 5528 | // a few moments so that the PC client can simulate the |
mjr | 87:8d35c74403af | 5529 | // full release motion, then return to real readings. |
mjr | 87:8d35c74403af | 5530 | if (uint32_t(r.t - f0.t) < 250000) |
mjr | 50:40015764bbe6 | 5531 | { |
mjr | 87:8d35c74403af | 5532 | // stay here a while longer |
mjr | 87:8d35c74403af | 5533 | z = 0; |
mjr | 50:40015764bbe6 | 5534 | } |
mjr | 50:40015764bbe6 | 5535 | else |
mjr | 50:40015764bbe6 | 5536 | { |
mjr | 87:8d35c74403af | 5537 | // it's been long enough - return to normal mode |
mjr | 87:8d35c74403af | 5538 | firingMode(0); |
mjr | 50:40015764bbe6 | 5539 | } |
mjr | 50:40015764bbe6 | 5540 | break; |
mjr | 50:40015764bbe6 | 5541 | } |
mjr | 50:40015764bbe6 | 5542 | |
mjr | 82:4f6209cb5c33 | 5543 | // Check for auto-zeroing, if enabled |
mjr | 82:4f6209cb5c33 | 5544 | if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0) |
mjr | 82:4f6209cb5c33 | 5545 | { |
mjr | 82:4f6209cb5c33 | 5546 | // If we moved since the last reading, reset and restart the |
mjr | 82:4f6209cb5c33 | 5547 | // auto-zero timer. Otherwise, if the timer has reached the |
mjr | 82:4f6209cb5c33 | 5548 | // auto-zero timeout, it means we've been motionless for that |
mjr | 82:4f6209cb5c33 | 5549 | // long, so auto-zero now. |
mjr | 82:4f6209cb5c33 | 5550 | if (r.pos != prv.pos) |
mjr | 82:4f6209cb5c33 | 5551 | { |
mjr | 82:4f6209cb5c33 | 5552 | // movement detected - reset the timer |
mjr | 82:4f6209cb5c33 | 5553 | autoZeroTimer.reset(); |
mjr | 82:4f6209cb5c33 | 5554 | autoZeroTimer.start(); |
mjr | 82:4f6209cb5c33 | 5555 | } |
mjr | 82:4f6209cb5c33 | 5556 | else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL) |
mjr | 82:4f6209cb5c33 | 5557 | { |
mjr | 82:4f6209cb5c33 | 5558 | // auto-zero now |
mjr | 82:4f6209cb5c33 | 5559 | plungerSensor->autoZero(); |
mjr | 82:4f6209cb5c33 | 5560 | |
mjr | 82:4f6209cb5c33 | 5561 | // stop the timer so that we don't keep repeating this |
mjr | 82:4f6209cb5c33 | 5562 | // if the plunger stays still for a long time |
mjr | 82:4f6209cb5c33 | 5563 | autoZeroTimer.stop(); |
mjr | 82:4f6209cb5c33 | 5564 | autoZeroTimer.reset(); |
mjr | 82:4f6209cb5c33 | 5565 | } |
mjr | 82:4f6209cb5c33 | 5566 | } |
mjr | 82:4f6209cb5c33 | 5567 | |
mjr | 87:8d35c74403af | 5568 | // this new reading becomes the previous reading for next time |
mjr | 87:8d35c74403af | 5569 | prv = r; |
mjr | 48:058ace2aed1d | 5570 | } |
mjr | 48:058ace2aed1d | 5571 | } |
mjr | 48:058ace2aed1d | 5572 | |
mjr | 48:058ace2aed1d | 5573 | // Get the current value to report through the joystick interface |
mjr | 58:523fdcffbe6d | 5574 | int16_t getPosition() |
mjr | 58:523fdcffbe6d | 5575 | { |
mjr | 86:e30a1f60f783 | 5576 | // return the last reading |
mjr | 86:e30a1f60f783 | 5577 | return z; |
mjr | 55:4db125cd11a0 | 5578 | } |
mjr | 58:523fdcffbe6d | 5579 | |
mjr | 48:058ace2aed1d | 5580 | // Set calibration mode on or off |
mjr | 52:8298b2a73eb2 | 5581 | void setCalMode(bool f) |
mjr | 48:058ace2aed1d | 5582 | { |
mjr | 52:8298b2a73eb2 | 5583 | // check to see if we're entering calibration mode |
mjr | 52:8298b2a73eb2 | 5584 | if (f && !plungerCalMode) |
mjr | 52:8298b2a73eb2 | 5585 | { |
mjr | 52:8298b2a73eb2 | 5586 | // reset the calibration in the configuration |
mjr | 48:058ace2aed1d | 5587 | cfg.plunger.cal.begin(); |
mjr | 52:8298b2a73eb2 | 5588 | |
mjr | 52:8298b2a73eb2 | 5589 | // start in state 0 (waiting to settle) |
mjr | 52:8298b2a73eb2 | 5590 | calState = 0; |
mjr | 52:8298b2a73eb2 | 5591 | calZeroPosSum = 0; |
mjr | 52:8298b2a73eb2 | 5592 | calZeroPosN = 0; |
mjr | 52:8298b2a73eb2 | 5593 | calRlsTimeSum = 0; |
mjr | 52:8298b2a73eb2 | 5594 | calRlsTimeN = 0; |
mjr | 52:8298b2a73eb2 | 5595 | |
mjr | 82:4f6209cb5c33 | 5596 | // tell the plunger we're starting calibration |
mjr | 100:1ff35c07217c | 5597 | plungerSensor->beginCalibration(cfg); |
mjr | 82:4f6209cb5c33 | 5598 | |
mjr | 52:8298b2a73eb2 | 5599 | // set the initial zero point to the current position |
mjr | 52:8298b2a73eb2 | 5600 | PlungerReading r; |
mjr | 52:8298b2a73eb2 | 5601 | if (plungerSensor->read(r)) |
mjr | 52:8298b2a73eb2 | 5602 | { |
mjr | 52:8298b2a73eb2 | 5603 | // got a reading - use it as the initial zero point |
mjr | 52:8298b2a73eb2 | 5604 | cfg.plunger.cal.zero = r.pos; |
mjr | 76:7f5912b6340e | 5605 | onUpdateCal(); |
mjr | 52:8298b2a73eb2 | 5606 | |
mjr | 52:8298b2a73eb2 | 5607 | // use it as the starting point for the settling watch |
mjr | 53:9b2611964afc | 5608 | calZeroStart = r; |
mjr | 52:8298b2a73eb2 | 5609 | } |
mjr | 52:8298b2a73eb2 | 5610 | else |
mjr | 52:8298b2a73eb2 | 5611 | { |
mjr | 52:8298b2a73eb2 | 5612 | // no reading available - use the default 1/6 position |
mjr | 52:8298b2a73eb2 | 5613 | cfg.plunger.cal.zero = 0xffff/6; |
mjr | 76:7f5912b6340e | 5614 | onUpdateCal(); |
mjr | 52:8298b2a73eb2 | 5615 | |
mjr | 52:8298b2a73eb2 | 5616 | // we don't have a starting point for the setting watch |
mjr | 53:9b2611964afc | 5617 | calZeroStart.pos = -65535; |
mjr | 53:9b2611964afc | 5618 | calZeroStart.t = 0; |
mjr | 53:9b2611964afc | 5619 | } |
mjr | 53:9b2611964afc | 5620 | } |
mjr | 53:9b2611964afc | 5621 | else if (!f && plungerCalMode) |
mjr | 53:9b2611964afc | 5622 | { |
mjr | 53:9b2611964afc | 5623 | // Leaving calibration mode. Make sure the max is past the |
mjr | 53:9b2611964afc | 5624 | // zero point - if it's not, we'd have a zero or negative |
mjr | 53:9b2611964afc | 5625 | // denominator for the scaling calculation, which would be |
mjr | 53:9b2611964afc | 5626 | // physically meaningless. |
mjr | 53:9b2611964afc | 5627 | if (cfg.plunger.cal.max <= cfg.plunger.cal.zero) |
mjr | 53:9b2611964afc | 5628 | { |
mjr | 53:9b2611964afc | 5629 | // bad settings - reset to defaults |
mjr | 53:9b2611964afc | 5630 | cfg.plunger.cal.max = 0xffff; |
mjr | 53:9b2611964afc | 5631 | cfg.plunger.cal.zero = 0xffff/6; |
mjr | 52:8298b2a73eb2 | 5632 | } |
mjr | 100:1ff35c07217c | 5633 | |
mjr | 100:1ff35c07217c | 5634 | // finalize the configuration in the plunger object |
mjr | 100:1ff35c07217c | 5635 | plungerSensor->endCalibration(cfg); |
mjr | 100:1ff35c07217c | 5636 | |
mjr | 100:1ff35c07217c | 5637 | // update our internal cached information for the new calibration |
mjr | 100:1ff35c07217c | 5638 | onUpdateCal(); |
mjr | 52:8298b2a73eb2 | 5639 | } |
mjr | 52:8298b2a73eb2 | 5640 | |
mjr | 48:058ace2aed1d | 5641 | // remember the new mode |
mjr | 52:8298b2a73eb2 | 5642 | plungerCalMode = f; |
mjr | 48:058ace2aed1d | 5643 | } |
mjr | 48:058ace2aed1d | 5644 | |
mjr | 76:7f5912b6340e | 5645 | // Cached inverse of the calibration range. This is for calculating |
mjr | 76:7f5912b6340e | 5646 | // the calibrated plunger position given a raw sensor reading. The |
mjr | 76:7f5912b6340e | 5647 | // cached inverse is calculated as |
mjr | 76:7f5912b6340e | 5648 | // |
mjr | 76:7f5912b6340e | 5649 | // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero) |
mjr | 76:7f5912b6340e | 5650 | // |
mjr | 76:7f5912b6340e | 5651 | // To convert a raw sensor reading to a calibrated position, calculate |
mjr | 76:7f5912b6340e | 5652 | // |
mjr | 76:7f5912b6340e | 5653 | // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16 |
mjr | 76:7f5912b6340e | 5654 | // |
mjr | 76:7f5912b6340e | 5655 | // That yields the calibration result without performing a division. |
mjr | 76:7f5912b6340e | 5656 | int invCalRange; |
mjr | 76:7f5912b6340e | 5657 | |
mjr | 76:7f5912b6340e | 5658 | // apply the calibration range to a reading |
mjr | 76:7f5912b6340e | 5659 | inline int applyCal(int reading) |
mjr | 76:7f5912b6340e | 5660 | { |
mjr | 76:7f5912b6340e | 5661 | return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16; |
mjr | 76:7f5912b6340e | 5662 | } |
mjr | 76:7f5912b6340e | 5663 | |
mjr | 76:7f5912b6340e | 5664 | void onUpdateCal() |
mjr | 76:7f5912b6340e | 5665 | { |
mjr | 76:7f5912b6340e | 5666 | invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero); |
mjr | 76:7f5912b6340e | 5667 | } |
mjr | 76:7f5912b6340e | 5668 | |
mjr | 48:058ace2aed1d | 5669 | // is a firing event in progress? |
mjr | 53:9b2611964afc | 5670 | bool isFiring() { return firing == 3; } |
mjr | 76:7f5912b6340e | 5671 | |
mjr | 48:058ace2aed1d | 5672 | private: |
mjr | 87:8d35c74403af | 5673 | // current reported joystick reading |
mjr | 87:8d35c74403af | 5674 | int z; |
mjr | 87:8d35c74403af | 5675 | |
mjr | 87:8d35c74403af | 5676 | // previous reading |
mjr | 87:8d35c74403af | 5677 | PlungerReading prv; |
mjr | 87:8d35c74403af | 5678 | |
mjr | 52:8298b2a73eb2 | 5679 | // Calibration state. During calibration mode, we watch for release |
mjr | 52:8298b2a73eb2 | 5680 | // events, to measure the time it takes to complete the release |
mjr | 52:8298b2a73eb2 | 5681 | // motion; and we watch for the plunger to come to reset after a |
mjr | 52:8298b2a73eb2 | 5682 | // release, to gather statistics on the rest position. |
mjr | 52:8298b2a73eb2 | 5683 | // 0 = waiting to settle |
mjr | 52:8298b2a73eb2 | 5684 | // 1 = at rest |
mjr | 52:8298b2a73eb2 | 5685 | // 2 = retracting |
mjr | 52:8298b2a73eb2 | 5686 | // 3 = possibly releasing |
mjr | 52:8298b2a73eb2 | 5687 | uint8_t calState; |
mjr | 52:8298b2a73eb2 | 5688 | |
mjr | 52:8298b2a73eb2 | 5689 | // Calibration zero point statistics. |
mjr | 52:8298b2a73eb2 | 5690 | // During calibration mode, we collect data on the rest position (the |
mjr | 52:8298b2a73eb2 | 5691 | // zero point) by watching for the plunger to come to rest after each |
mjr | 52:8298b2a73eb2 | 5692 | // release. We average these rest positions to get the calibrated |
mjr | 52:8298b2a73eb2 | 5693 | // zero point. We use the average because the real physical plunger |
mjr | 52:8298b2a73eb2 | 5694 | // itself doesn't come to rest at exactly the same spot every time, |
mjr | 52:8298b2a73eb2 | 5695 | // largely due to friction in the mechanism. To calculate the average, |
mjr | 52:8298b2a73eb2 | 5696 | // we keep a sum of the readings and a count of samples. |
mjr | 53:9b2611964afc | 5697 | PlungerReading calZeroStart; |
mjr | 52:8298b2a73eb2 | 5698 | long calZeroPosSum; |
mjr | 52:8298b2a73eb2 | 5699 | int calZeroPosN; |
mjr | 52:8298b2a73eb2 | 5700 | |
mjr | 52:8298b2a73eb2 | 5701 | // Calibration release time statistics. |
mjr | 52:8298b2a73eb2 | 5702 | // During calibration, we collect an average for the release time. |
mjr | 52:8298b2a73eb2 | 5703 | long calRlsTimeSum; |
mjr | 52:8298b2a73eb2 | 5704 | int calRlsTimeN; |
mjr | 52:8298b2a73eb2 | 5705 | |
mjr | 85:3c28aee81cde | 5706 | // Auto-zeroing timer |
mjr | 85:3c28aee81cde | 5707 | Timer autoZeroTimer; |
mjr | 85:3c28aee81cde | 5708 | |
mjr | 48:058ace2aed1d | 5709 | // set a firing mode |
mjr | 48:058ace2aed1d | 5710 | inline void firingMode(int m) |
mjr | 48:058ace2aed1d | 5711 | { |
mjr | 48:058ace2aed1d | 5712 | firing = m; |
mjr | 48:058ace2aed1d | 5713 | } |
mjr | 48:058ace2aed1d | 5714 | |
mjr | 48:058ace2aed1d | 5715 | // Firing event state. |
mjr | 48:058ace2aed1d | 5716 | // |
mjr | 87:8d35c74403af | 5717 | // 0 - Default state: not in firing event. We report the true |
mjr | 87:8d35c74403af | 5718 | // instantaneous plunger position to the joystick interface. |
mjr | 48:058ace2aed1d | 5719 | // |
mjr | 87:8d35c74403af | 5720 | // 1 - Moving forward at release speed |
mjr | 48:058ace2aed1d | 5721 | // |
mjr | 87:8d35c74403af | 5722 | // 2 - Firing - reporting the bounce position |
mjr | 87:8d35c74403af | 5723 | // |
mjr | 87:8d35c74403af | 5724 | // 3 - Firing - reporting the park position |
mjr | 48:058ace2aed1d | 5725 | // |
mjr | 48:058ace2aed1d | 5726 | int firing; |
mjr | 48:058ace2aed1d | 5727 | |
mjr | 87:8d35c74403af | 5728 | // Starting position for current firing mode phase |
mjr | 87:8d35c74403af | 5729 | PlungerReading f0; |
mjr | 48:058ace2aed1d | 5730 | }; |
mjr | 48:058ace2aed1d | 5731 | |
mjr | 48:058ace2aed1d | 5732 | // plunger reader singleton |
mjr | 48:058ace2aed1d | 5733 | PlungerReader plungerReader; |
mjr | 48:058ace2aed1d | 5734 | |
mjr | 48:058ace2aed1d | 5735 | // --------------------------------------------------------------------------- |
mjr | 48:058ace2aed1d | 5736 | // |
mjr | 48:058ace2aed1d | 5737 | // Handle the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 5738 | // |
mjr | 48:058ace2aed1d | 5739 | // The ZB Launch Ball feature, if enabled, lets the mechanical plunger |
mjr | 48:058ace2aed1d | 5740 | // serve as a substitute for a physical Launch Ball button. When a table |
mjr | 48:058ace2aed1d | 5741 | // is loaded in VP, and the table has the ZB Launch Ball LedWiz port |
mjr | 48:058ace2aed1d | 5742 | // turned on, we'll disable mechanical plunger reports through the |
mjr | 48:058ace2aed1d | 5743 | // joystick interface and instead use the plunger only to simulate the |
mjr | 48:058ace2aed1d | 5744 | // Launch Ball button. When the mode is active, pulling back and |
mjr | 48:058ace2aed1d | 5745 | // releasing the plunger causes a brief simulated press of the Launch |
mjr | 48:058ace2aed1d | 5746 | // button, and pushing the plunger forward of the rest position presses |
mjr | 48:058ace2aed1d | 5747 | // the Launch button as long as the plunger is pressed forward. |
mjr | 48:058ace2aed1d | 5748 | // |
mjr | 48:058ace2aed1d | 5749 | // This feature has two configuration components: |
mjr | 48:058ace2aed1d | 5750 | // |
mjr | 48:058ace2aed1d | 5751 | // - An LedWiz port number. This port is a "virtual" port that doesn't |
mjr | 48:058ace2aed1d | 5752 | // have to be attached to any actual output. DOF uses it to signal |
mjr | 48:058ace2aed1d | 5753 | // that the current table uses a Launch button instead of a plunger. |
mjr | 48:058ace2aed1d | 5754 | // DOF simply turns the port on when such a table is loaded and turns |
mjr | 48:058ace2aed1d | 5755 | // it off at all other times. We use it to enable and disable the |
mjr | 48:058ace2aed1d | 5756 | // plunger/launch button connection. |
mjr | 48:058ace2aed1d | 5757 | // |
mjr | 48:058ace2aed1d | 5758 | // - A joystick button ID. We simulate pressing this button when the |
mjr | 48:058ace2aed1d | 5759 | // launch feature is activated via the LedWiz port and the plunger is |
mjr | 48:058ace2aed1d | 5760 | // either pulled back and releasd, or pushed forward past the rest |
mjr | 48:058ace2aed1d | 5761 | // position. |
mjr | 48:058ace2aed1d | 5762 | // |
mjr | 48:058ace2aed1d | 5763 | class ZBLaunchBall |
mjr | 48:058ace2aed1d | 5764 | { |
mjr | 48:058ace2aed1d | 5765 | public: |
mjr | 48:058ace2aed1d | 5766 | ZBLaunchBall() |
mjr | 48:058ace2aed1d | 5767 | { |
mjr | 48:058ace2aed1d | 5768 | // start in the default state |
mjr | 48:058ace2aed1d | 5769 | lbState = 0; |
mjr | 53:9b2611964afc | 5770 | btnState = false; |
mjr | 48:058ace2aed1d | 5771 | } |
mjr | 48:058ace2aed1d | 5772 | |
mjr | 48:058ace2aed1d | 5773 | // Update state. This checks the current plunger position and |
mjr | 48:058ace2aed1d | 5774 | // the timers to see if the plunger is in a position that simulates |
mjr | 48:058ace2aed1d | 5775 | // a Launch Ball button press via the ZB Launch Ball feature. |
mjr | 48:058ace2aed1d | 5776 | // Updates the simulated button vector according to the current |
mjr | 48:058ace2aed1d | 5777 | // launch ball state. The main loop calls this before each |
mjr | 48:058ace2aed1d | 5778 | // joystick update to figure the new simulated button state. |
mjr | 53:9b2611964afc | 5779 | void update() |
mjr | 48:058ace2aed1d | 5780 | { |
mjr | 53:9b2611964afc | 5781 | // If the ZB Launch Ball led wiz output is ON, check for a |
mjr | 53:9b2611964afc | 5782 | // plunger firing event |
mjr | 53:9b2611964afc | 5783 | if (zbLaunchOn) |
mjr | 48:058ace2aed1d | 5784 | { |
mjr | 53:9b2611964afc | 5785 | // note the new position |
mjr | 48:058ace2aed1d | 5786 | int znew = plungerReader.getPosition(); |
mjr | 53:9b2611964afc | 5787 | |
mjr | 53:9b2611964afc | 5788 | // figure the push threshold from the configuration data |
mjr | 51:57eb311faafa | 5789 | const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0); |
mjr | 53:9b2611964afc | 5790 | |
mjr | 53:9b2611964afc | 5791 | // check the state |
mjr | 48:058ace2aed1d | 5792 | switch (lbState) |
mjr | 48:058ace2aed1d | 5793 | { |
mjr | 48:058ace2aed1d | 5794 | case 0: |
mjr | 53:9b2611964afc | 5795 | // Default state. If a launch event has been detected on |
mjr | 53:9b2611964afc | 5796 | // the plunger, activate a timed pulse and switch to state 1. |
mjr | 53:9b2611964afc | 5797 | // If the plunger is pushed forward of the threshold, push |
mjr | 53:9b2611964afc | 5798 | // the button. |
mjr | 53:9b2611964afc | 5799 | if (plungerReader.isFiring()) |
mjr | 53:9b2611964afc | 5800 | { |
mjr | 53:9b2611964afc | 5801 | // firing event - start a timed Launch button pulse |
mjr | 53:9b2611964afc | 5802 | lbTimer.reset(); |
mjr | 53:9b2611964afc | 5803 | lbTimer.start(); |
mjr | 53:9b2611964afc | 5804 | setButton(true); |
mjr | 53:9b2611964afc | 5805 | |
mjr | 53:9b2611964afc | 5806 | // switch to state 1 |
mjr | 53:9b2611964afc | 5807 | lbState = 1; |
mjr | 53:9b2611964afc | 5808 | } |
mjr | 48:058ace2aed1d | 5809 | else if (znew <= pushThreshold) |
mjr | 53:9b2611964afc | 5810 | { |
mjr | 53:9b2611964afc | 5811 | // pushed forward without a firing event - hold the |
mjr | 53:9b2611964afc | 5812 | // button as long as we're pushed forward |
mjr | 53:9b2611964afc | 5813 | setButton(true); |
mjr | 53:9b2611964afc | 5814 | } |
mjr | 53:9b2611964afc | 5815 | else |
mjr | 53:9b2611964afc | 5816 | { |
mjr | 53:9b2611964afc | 5817 | // not pushed forward - turn off the Launch button |
mjr | 53:9b2611964afc | 5818 | setButton(false); |
mjr | 53:9b2611964afc | 5819 | } |
mjr | 48:058ace2aed1d | 5820 | break; |
mjr | 48:058ace2aed1d | 5821 | |
mjr | 48:058ace2aed1d | 5822 | case 1: |
mjr | 53:9b2611964afc | 5823 | // State 1: Timed Launch button pulse in progress after a |
mjr | 53:9b2611964afc | 5824 | // firing event. Wait for the timer to expire. |
mjr | 53:9b2611964afc | 5825 | if (lbTimer.read_us() > 200000UL) |
mjr | 53:9b2611964afc | 5826 | { |
mjr | 53:9b2611964afc | 5827 | // timer expired - turn off the button |
mjr | 53:9b2611964afc | 5828 | setButton(false); |
mjr | 53:9b2611964afc | 5829 | |
mjr | 53:9b2611964afc | 5830 | // switch to state 2 |
mjr | 53:9b2611964afc | 5831 | lbState = 2; |
mjr | 53:9b2611964afc | 5832 | } |
mjr | 48:058ace2aed1d | 5833 | break; |
mjr | 48:058ace2aed1d | 5834 | |
mjr | 48:058ace2aed1d | 5835 | case 2: |
mjr | 53:9b2611964afc | 5836 | // State 2: Timed Launch button pulse done. Wait for the |
mjr | 53:9b2611964afc | 5837 | // plunger launch event to end. |
mjr | 53:9b2611964afc | 5838 | if (!plungerReader.isFiring()) |
mjr | 53:9b2611964afc | 5839 | { |
mjr | 53:9b2611964afc | 5840 | // firing event done - return to default state |
mjr | 53:9b2611964afc | 5841 | lbState = 0; |
mjr | 53:9b2611964afc | 5842 | } |
mjr | 48:058ace2aed1d | 5843 | break; |
mjr | 48:058ace2aed1d | 5844 | } |
mjr | 53:9b2611964afc | 5845 | } |
mjr | 53:9b2611964afc | 5846 | else |
mjr | 53:9b2611964afc | 5847 | { |
mjr | 53:9b2611964afc | 5848 | // ZB Launch Ball disabled - turn off the button if it was on |
mjr | 53:9b2611964afc | 5849 | setButton(false); |
mjr | 48:058ace2aed1d | 5850 | |
mjr | 53:9b2611964afc | 5851 | // return to the default state |
mjr | 53:9b2611964afc | 5852 | lbState = 0; |
mjr | 48:058ace2aed1d | 5853 | } |
mjr | 48:058ace2aed1d | 5854 | } |
mjr | 53:9b2611964afc | 5855 | |
mjr | 53:9b2611964afc | 5856 | // Set the button state |
mjr | 53:9b2611964afc | 5857 | void setButton(bool on) |
mjr | 53:9b2611964afc | 5858 | { |
mjr | 53:9b2611964afc | 5859 | if (btnState != on) |
mjr | 53:9b2611964afc | 5860 | { |
mjr | 53:9b2611964afc | 5861 | // remember the new state |
mjr | 53:9b2611964afc | 5862 | btnState = on; |
mjr | 53:9b2611964afc | 5863 | |
mjr | 53:9b2611964afc | 5864 | // update the virtual button state |
mjr | 65:739875521aae | 5865 | buttonState[zblButtonIndex].virtPress(on); |
mjr | 53:9b2611964afc | 5866 | } |
mjr | 53:9b2611964afc | 5867 | } |
mjr | 53:9b2611964afc | 5868 | |
mjr | 48:058ace2aed1d | 5869 | private: |
mjr | 48:058ace2aed1d | 5870 | // Simulated Launch Ball button state. If a "ZB Launch Ball" port is |
mjr | 48:058ace2aed1d | 5871 | // defined for our LedWiz port mapping, any time that port is turned ON, |
mjr | 48:058ace2aed1d | 5872 | // we'll simulate pushing the Launch Ball button if the player pulls |
mjr | 48:058ace2aed1d | 5873 | // back and releases the plunger, or simply pushes on the plunger from |
mjr | 48:058ace2aed1d | 5874 | // the rest position. This allows the plunger to be used in lieu of a |
mjr | 48:058ace2aed1d | 5875 | // physical Launch Ball button for tables that don't have plungers. |
mjr | 48:058ace2aed1d | 5876 | // |
mjr | 48:058ace2aed1d | 5877 | // States: |
mjr | 48:058ace2aed1d | 5878 | // 0 = default |
mjr | 53:9b2611964afc | 5879 | // 1 = firing (firing event has activated a Launch button pulse) |
mjr | 53:9b2611964afc | 5880 | // 2 = firing done (Launch button pulse ended, waiting for plunger |
mjr | 53:9b2611964afc | 5881 | // firing event to end) |
mjr | 53:9b2611964afc | 5882 | uint8_t lbState; |
mjr | 48:058ace2aed1d | 5883 | |
mjr | 53:9b2611964afc | 5884 | // button state |
mjr | 53:9b2611964afc | 5885 | bool btnState; |
mjr | 48:058ace2aed1d | 5886 | |
mjr | 48:058ace2aed1d | 5887 | // Time since last lbState transition. Some of the states are time- |
mjr | 48:058ace2aed1d | 5888 | // sensitive. In the "uncocked" state, we'll return to state 0 if |
mjr | 48:058ace2aed1d | 5889 | // we remain in this state for more than a few milliseconds, since |
mjr | 48:058ace2aed1d | 5890 | // it indicates that the plunger is being slowly returned to rest |
mjr | 48:058ace2aed1d | 5891 | // rather than released. In the "launching" state, we need to release |
mjr | 48:058ace2aed1d | 5892 | // the Launch Ball button after a moment, and we need to wait for |
mjr | 48:058ace2aed1d | 5893 | // the plunger to come to rest before returning to state 0. |
mjr | 48:058ace2aed1d | 5894 | Timer lbTimer; |
mjr | 48:058ace2aed1d | 5895 | }; |
mjr | 48:058ace2aed1d | 5896 | |
mjr | 35:e959ffba78fd | 5897 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5898 | // |
mjr | 35:e959ffba78fd | 5899 | // Reboot - resets the microcontroller |
mjr | 35:e959ffba78fd | 5900 | // |
mjr | 54:fd77a6b2f76c | 5901 | void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L) |
mjr | 35:e959ffba78fd | 5902 | { |
mjr | 35:e959ffba78fd | 5903 | // disconnect from USB |
mjr | 54:fd77a6b2f76c | 5904 | if (disconnect) |
mjr | 54:fd77a6b2f76c | 5905 | js.disconnect(); |
mjr | 35:e959ffba78fd | 5906 | |
mjr | 35:e959ffba78fd | 5907 | // wait a few seconds to make sure the host notices the disconnect |
mjr | 54:fd77a6b2f76c | 5908 | wait_us(pause_us); |
mjr | 35:e959ffba78fd | 5909 | |
mjr | 35:e959ffba78fd | 5910 | // reset the device |
mjr | 35:e959ffba78fd | 5911 | NVIC_SystemReset(); |
mjr | 35:e959ffba78fd | 5912 | while (true) { } |
mjr | 35:e959ffba78fd | 5913 | } |
mjr | 35:e959ffba78fd | 5914 | |
mjr | 35:e959ffba78fd | 5915 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5916 | // |
mjr | 35:e959ffba78fd | 5917 | // Translate joystick readings from raw values to reported values, based |
mjr | 35:e959ffba78fd | 5918 | // on the orientation of the controller card in the cabinet. |
mjr | 35:e959ffba78fd | 5919 | // |
mjr | 35:e959ffba78fd | 5920 | void accelRotate(int &x, int &y) |
mjr | 35:e959ffba78fd | 5921 | { |
mjr | 35:e959ffba78fd | 5922 | int tmp; |
mjr | 78:1e00b3fa11af | 5923 | switch (cfg.accel.orientation) |
mjr | 35:e959ffba78fd | 5924 | { |
mjr | 35:e959ffba78fd | 5925 | case OrientationFront: |
mjr | 35:e959ffba78fd | 5926 | tmp = x; |
mjr | 35:e959ffba78fd | 5927 | x = y; |
mjr | 35:e959ffba78fd | 5928 | y = tmp; |
mjr | 35:e959ffba78fd | 5929 | break; |
mjr | 35:e959ffba78fd | 5930 | |
mjr | 35:e959ffba78fd | 5931 | case OrientationLeft: |
mjr | 35:e959ffba78fd | 5932 | x = -x; |
mjr | 35:e959ffba78fd | 5933 | break; |
mjr | 35:e959ffba78fd | 5934 | |
mjr | 35:e959ffba78fd | 5935 | case OrientationRight: |
mjr | 35:e959ffba78fd | 5936 | y = -y; |
mjr | 35:e959ffba78fd | 5937 | break; |
mjr | 35:e959ffba78fd | 5938 | |
mjr | 35:e959ffba78fd | 5939 | case OrientationRear: |
mjr | 35:e959ffba78fd | 5940 | tmp = -x; |
mjr | 35:e959ffba78fd | 5941 | x = -y; |
mjr | 35:e959ffba78fd | 5942 | y = tmp; |
mjr | 35:e959ffba78fd | 5943 | break; |
mjr | 35:e959ffba78fd | 5944 | } |
mjr | 35:e959ffba78fd | 5945 | } |
mjr | 35:e959ffba78fd | 5946 | |
mjr | 35:e959ffba78fd | 5947 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5948 | // |
mjr | 35:e959ffba78fd | 5949 | // Calibration button state: |
mjr | 35:e959ffba78fd | 5950 | // 0 = not pushed |
mjr | 35:e959ffba78fd | 5951 | // 1 = pushed, not yet debounced |
mjr | 35:e959ffba78fd | 5952 | // 2 = pushed, debounced, waiting for hold time |
mjr | 35:e959ffba78fd | 5953 | // 3 = pushed, hold time completed - in calibration mode |
mjr | 35:e959ffba78fd | 5954 | int calBtnState = 0; |
mjr | 35:e959ffba78fd | 5955 | |
mjr | 35:e959ffba78fd | 5956 | // calibration button debounce timer |
mjr | 35:e959ffba78fd | 5957 | Timer calBtnTimer; |
mjr | 35:e959ffba78fd | 5958 | |
mjr | 35:e959ffba78fd | 5959 | // calibration button light state |
mjr | 35:e959ffba78fd | 5960 | int calBtnLit = false; |
mjr | 35:e959ffba78fd | 5961 | |
mjr | 35:e959ffba78fd | 5962 | |
mjr | 35:e959ffba78fd | 5963 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 5964 | // |
mjr | 40:cc0d9814522b | 5965 | // Configuration variable get/set message handling |
mjr | 35:e959ffba78fd | 5966 | // |
mjr | 40:cc0d9814522b | 5967 | |
mjr | 40:cc0d9814522b | 5968 | // Handle SET messages - write configuration variables from USB message data |
mjr | 40:cc0d9814522b | 5969 | #define if_msg_valid(test) if (test) |
mjr | 53:9b2611964afc | 5970 | #define v_byte(var, ofs) cfg.var = data[ofs] |
mjr | 91:ae9be42652bf | 5971 | #define v_byte_wo(var, ofs) cfg.var = data[ofs] |
mjr | 53:9b2611964afc | 5972 | #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs)) |
mjr | 77:0b96f6867312 | 5973 | #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs)) |
mjr | 53:9b2611964afc | 5974 | #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs]) |
mjr | 53:9b2611964afc | 5975 | #define v_byte_ro(val, ofs) // ignore read-only variables on SET |
mjr | 74:822a92bc11d2 | 5976 | #define v_ui32_ro(val, ofs) // ignore read-only variables on SET |
mjr | 74:822a92bc11d2 | 5977 | #define VAR_MODE_SET 1 // we're in SET mode |
mjr | 76:7f5912b6340e | 5978 | #define v_func configVarSet(const uint8_t *data) |
mjr | 40:cc0d9814522b | 5979 | #include "cfgVarMsgMap.h" |
mjr | 35:e959ffba78fd | 5980 | |
mjr | 40:cc0d9814522b | 5981 | // redefine everything for the SET messages |
mjr | 40:cc0d9814522b | 5982 | #undef if_msg_valid |
mjr | 40:cc0d9814522b | 5983 | #undef v_byte |
mjr | 40:cc0d9814522b | 5984 | #undef v_ui16 |
mjr | 77:0b96f6867312 | 5985 | #undef v_ui32 |
mjr | 40:cc0d9814522b | 5986 | #undef v_pin |
mjr | 53:9b2611964afc | 5987 | #undef v_byte_ro |
mjr | 91:ae9be42652bf | 5988 | #undef v_byte_wo |
mjr | 74:822a92bc11d2 | 5989 | #undef v_ui32_ro |
mjr | 74:822a92bc11d2 | 5990 | #undef VAR_MODE_SET |
mjr | 40:cc0d9814522b | 5991 | #undef v_func |
mjr | 38:091e511ce8a0 | 5992 | |
mjr | 91:ae9be42652bf | 5993 | // Handle GET messages - read variable values and return in USB message data |
mjr | 40:cc0d9814522b | 5994 | #define if_msg_valid(test) |
mjr | 53:9b2611964afc | 5995 | #define v_byte(var, ofs) data[ofs] = cfg.var |
mjr | 53:9b2611964afc | 5996 | #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var) |
mjr | 77:0b96f6867312 | 5997 | #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var) |
mjr | 53:9b2611964afc | 5998 | #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var) |
mjr | 73:4e8ce0b18915 | 5999 | #define v_byte_ro(val, ofs) data[ofs] = (val) |
mjr | 74:822a92bc11d2 | 6000 | #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val); |
mjr | 74:822a92bc11d2 | 6001 | #define VAR_MODE_SET 0 // we're in GET mode |
mjr | 91:ae9be42652bf | 6002 | #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode |
mjr | 76:7f5912b6340e | 6003 | #define v_func configVarGet(uint8_t *data) |
mjr | 40:cc0d9814522b | 6004 | #include "cfgVarMsgMap.h" |
mjr | 40:cc0d9814522b | 6005 | |
mjr | 35:e959ffba78fd | 6006 | |
mjr | 35:e959ffba78fd | 6007 | // --------------------------------------------------------------------------- |
mjr | 35:e959ffba78fd | 6008 | // |
mjr | 101:755f44622abc | 6009 | // Timer for timestamping input requests |
mjr | 101:755f44622abc | 6010 | // |
mjr | 101:755f44622abc | 6011 | Timer requestTimestamper; |
mjr | 101:755f44622abc | 6012 | |
mjr | 101:755f44622abc | 6013 | // --------------------------------------------------------------------------- |
mjr | 101:755f44622abc | 6014 | // |
mjr | 35:e959ffba78fd | 6015 | // Handle an input report from the USB host. Input reports use our extended |
mjr | 35:e959ffba78fd | 6016 | // LedWiz protocol. |
mjr | 33:d832bcab089e | 6017 | // |
mjr | 78:1e00b3fa11af | 6018 | void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel) |
mjr | 35:e959ffba78fd | 6019 | { |
mjr | 38:091e511ce8a0 | 6020 | // LedWiz commands come in two varieties: SBA and PBA. An |
mjr | 38:091e511ce8a0 | 6021 | // SBA is marked by the first byte having value 64 (0x40). In |
mjr | 38:091e511ce8a0 | 6022 | // the real LedWiz protocol, any other value in the first byte |
mjr | 38:091e511ce8a0 | 6023 | // means it's a PBA message. However, *valid* PBA messages |
mjr | 38:091e511ce8a0 | 6024 | // always have a first byte (and in fact all 8 bytes) in the |
mjr | 38:091e511ce8a0 | 6025 | // range 0-49 or 129-132. Anything else is invalid. We take |
mjr | 38:091e511ce8a0 | 6026 | // advantage of this to implement private protocol extensions. |
mjr | 38:091e511ce8a0 | 6027 | // So our full protocol is as follows: |
mjr | 38:091e511ce8a0 | 6028 | // |
mjr | 38:091e511ce8a0 | 6029 | // first byte = |
mjr | 74:822a92bc11d2 | 6030 | // 0-48 -> PBA |
mjr | 74:822a92bc11d2 | 6031 | // 64 -> SBA |
mjr | 38:091e511ce8a0 | 6032 | // 65 -> private control message; second byte specifies subtype |
mjr | 74:822a92bc11d2 | 6033 | // 129-132 -> PBA |
mjr | 38:091e511ce8a0 | 6034 | // 200-228 -> extended bank brightness set for outputs N to N+6, where |
mjr | 38:091e511ce8a0 | 6035 | // N is (first byte - 200)*7 |
mjr | 38:091e511ce8a0 | 6036 | // other -> reserved for future use |
mjr | 38:091e511ce8a0 | 6037 | // |
mjr | 39:b3815a1c3802 | 6038 | uint8_t *data = lwm.data; |
mjr | 74:822a92bc11d2 | 6039 | if (data[0] == 64) |
mjr | 35:e959ffba78fd | 6040 | { |
mjr | 74:822a92bc11d2 | 6041 | // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32) |
mjr | 74:822a92bc11d2 | 6042 | //printf("SBA %02x %02x %02x %02x, speed %02x\r\n", |
mjr | 38:091e511ce8a0 | 6043 | // data[1], data[2], data[3], data[4], data[5]); |
mjr | 74:822a92bc11d2 | 6044 | sba_sbx(0, data); |
mjr | 74:822a92bc11d2 | 6045 | |
mjr | 74:822a92bc11d2 | 6046 | // SBA resets the PBA port group counter |
mjr | 38:091e511ce8a0 | 6047 | pbaIdx = 0; |
mjr | 38:091e511ce8a0 | 6048 | } |
mjr | 38:091e511ce8a0 | 6049 | else if (data[0] == 65) |
mjr | 38:091e511ce8a0 | 6050 | { |
mjr | 38:091e511ce8a0 | 6051 | // Private control message. This isn't an LedWiz message - it's |
mjr | 38:091e511ce8a0 | 6052 | // an extension for this device. 65 is an invalid PBA setting, |
mjr | 38:091e511ce8a0 | 6053 | // and isn't used for any other LedWiz message, so we appropriate |
mjr | 38:091e511ce8a0 | 6054 | // it for our own private use. The first byte specifies the |
mjr | 38:091e511ce8a0 | 6055 | // message type. |
mjr | 39:b3815a1c3802 | 6056 | switch (data[1]) |
mjr | 38:091e511ce8a0 | 6057 | { |
mjr | 39:b3815a1c3802 | 6058 | case 0: |
mjr | 39:b3815a1c3802 | 6059 | // No Op |
mjr | 39:b3815a1c3802 | 6060 | break; |
mjr | 39:b3815a1c3802 | 6061 | |
mjr | 39:b3815a1c3802 | 6062 | case 1: |
mjr | 38:091e511ce8a0 | 6063 | // 1 = Old Set Configuration: |
mjr | 38:091e511ce8a0 | 6064 | // data[2] = LedWiz unit number (0x00 to 0x0f) |
mjr | 38:091e511ce8a0 | 6065 | // data[3] = feature enable bit mask: |
mjr | 38:091e511ce8a0 | 6066 | // 0x01 = enable plunger sensor |
mjr | 39:b3815a1c3802 | 6067 | { |
mjr | 39:b3815a1c3802 | 6068 | |
mjr | 39:b3815a1c3802 | 6069 | // get the new LedWiz unit number - this is 0-15, whereas we |
mjr | 39:b3815a1c3802 | 6070 | // we save the *nominal* unit number 1-16 in the config |
mjr | 39:b3815a1c3802 | 6071 | uint8_t newUnitNo = (data[2] & 0x0f) + 1; |
mjr | 39:b3815a1c3802 | 6072 | |
mjr | 86:e30a1f60f783 | 6073 | // we'll need a reboot if the LedWiz unit number is changing |
mjr | 86:e30a1f60f783 | 6074 | bool reboot = (newUnitNo != cfg.psUnitNo); |
mjr | 39:b3815a1c3802 | 6075 | |
mjr | 39:b3815a1c3802 | 6076 | // set the configuration parameters from the message |
mjr | 39:b3815a1c3802 | 6077 | cfg.psUnitNo = newUnitNo; |
mjr | 39:b3815a1c3802 | 6078 | cfg.plunger.enabled = data[3] & 0x01; |
mjr | 39:b3815a1c3802 | 6079 | |
mjr | 77:0b96f6867312 | 6080 | // set the flag to do the save |
mjr | 86:e30a1f60f783 | 6081 | saveConfigToFlash(0, reboot); |
mjr | 39:b3815a1c3802 | 6082 | } |
mjr | 39:b3815a1c3802 | 6083 | break; |
mjr | 38:091e511ce8a0 | 6084 | |
mjr | 39:b3815a1c3802 | 6085 | case 2: |
mjr | 38:091e511ce8a0 | 6086 | // 2 = Calibrate plunger |
mjr | 38:091e511ce8a0 | 6087 | // (No parameters) |
mjr | 38:091e511ce8a0 | 6088 | |
mjr | 38:091e511ce8a0 | 6089 | // enter calibration mode |
mjr | 38:091e511ce8a0 | 6090 | calBtnState = 3; |
mjr | 52:8298b2a73eb2 | 6091 | plungerReader.setCalMode(true); |
mjr | 38:091e511ce8a0 | 6092 | calBtnTimer.reset(); |
mjr | 39:b3815a1c3802 | 6093 | break; |
mjr | 39:b3815a1c3802 | 6094 | |
mjr | 39:b3815a1c3802 | 6095 | case 3: |
mjr | 52:8298b2a73eb2 | 6096 | // 3 = plunger sensor status report |
mjr | 48:058ace2aed1d | 6097 | // data[2] = flag bits |
mjr | 53:9b2611964afc | 6098 | // data[3] = extra exposure time, 100us (.1ms) increments |
mjr | 52:8298b2a73eb2 | 6099 | reportPlungerStat = true; |
mjr | 53:9b2611964afc | 6100 | reportPlungerStatFlags = data[2]; |
mjr | 53:9b2611964afc | 6101 | reportPlungerStatTime = data[3]; |
mjr | 38:091e511ce8a0 | 6102 | |
mjr | 101:755f44622abc | 6103 | // set the extra integration time in the sensor |
mjr | 101:755f44622abc | 6104 | plungerSensor->setExtraIntegrationTime(reportPlungerStatTime * 100); |
mjr | 101:755f44622abc | 6105 | |
mjr | 101:755f44622abc | 6106 | // make a note of the request timestamp |
mjr | 101:755f44622abc | 6107 | tReportPlungerStat = requestTimestamper.read_us(); |
mjr | 101:755f44622abc | 6108 | |
mjr | 38:091e511ce8a0 | 6109 | // show purple until we finish sending the report |
mjr | 38:091e511ce8a0 | 6110 | diagLED(1, 0, 1); |
mjr | 39:b3815a1c3802 | 6111 | break; |
mjr | 39:b3815a1c3802 | 6112 | |
mjr | 39:b3815a1c3802 | 6113 | case 4: |
mjr | 38:091e511ce8a0 | 6114 | // 4 = hardware configuration query |
mjr | 38:091e511ce8a0 | 6115 | // (No parameters) |
mjr | 38:091e511ce8a0 | 6116 | js.reportConfig( |
mjr | 38:091e511ce8a0 | 6117 | numOutputs, |
mjr | 38:091e511ce8a0 | 6118 | cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally) |
mjr | 52:8298b2a73eb2 | 6119 | cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease, |
mjr | 75:677892300e7a | 6120 | nvm.valid(), // a config is loaded if the config memory block is valid |
mjr | 75:677892300e7a | 6121 | true, // we support sbx/pbx extensions |
mjr | 78:1e00b3fa11af | 6122 | true, // we support the new accelerometer settings |
mjr | 82:4f6209cb5c33 | 6123 | true, // we support the "flash write ok" status bit in joystick reports |
mjr | 92:f264fbaa1be5 | 6124 | true, // we support the configurable joystick report timing features |
mjr | 99:8139b0c274f4 | 6125 | true, // chime logic is supported |
mjr | 79:682ae3171a08 | 6126 | mallocBytesFree()); // remaining memory size |
mjr | 39:b3815a1c3802 | 6127 | break; |
mjr | 39:b3815a1c3802 | 6128 | |
mjr | 39:b3815a1c3802 | 6129 | case 5: |
mjr | 38:091e511ce8a0 | 6130 | // 5 = all outputs off, reset to LedWiz defaults |
mjr | 38:091e511ce8a0 | 6131 | allOutputsOff(); |
mjr | 39:b3815a1c3802 | 6132 | break; |
mjr | 39:b3815a1c3802 | 6133 | |
mjr | 39:b3815a1c3802 | 6134 | case 6: |
mjr | 85:3c28aee81cde | 6135 | // 6 = Save configuration to flash. Optionally reboot after the |
mjr | 85:3c28aee81cde | 6136 | // delay time in seconds given in data[2]. |
mjr | 85:3c28aee81cde | 6137 | // |
mjr | 85:3c28aee81cde | 6138 | // data[2] = delay time in seconds |
mjr | 85:3c28aee81cde | 6139 | // data[3] = flags: |
mjr | 85:3c28aee81cde | 6140 | // 0x01 -> do not reboot |
mjr | 86:e30a1f60f783 | 6141 | saveConfigToFlash(data[2], !(data[3] & 0x01)); |
mjr | 39:b3815a1c3802 | 6142 | break; |
mjr | 40:cc0d9814522b | 6143 | |
mjr | 40:cc0d9814522b | 6144 | case 7: |
mjr | 40:cc0d9814522b | 6145 | // 7 = Device ID report |
mjr | 53:9b2611964afc | 6146 | // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID |
mjr | 53:9b2611964afc | 6147 | js.reportID(data[2]); |
mjr | 40:cc0d9814522b | 6148 | break; |
mjr | 40:cc0d9814522b | 6149 | |
mjr | 40:cc0d9814522b | 6150 | case 8: |
mjr | 40:cc0d9814522b | 6151 | // 8 = Engage/disengage night mode. |
mjr | 40:cc0d9814522b | 6152 | // data[2] = 1 to engage, 0 to disengage |
mjr | 40:cc0d9814522b | 6153 | setNightMode(data[2]); |
mjr | 40:cc0d9814522b | 6154 | break; |
mjr | 52:8298b2a73eb2 | 6155 | |
mjr | 52:8298b2a73eb2 | 6156 | case 9: |
mjr | 52:8298b2a73eb2 | 6157 | // 9 = Config variable query. |
mjr | 52:8298b2a73eb2 | 6158 | // data[2] = config var ID |
mjr | 52:8298b2a73eb2 | 6159 | // data[3] = array index (for array vars: button assignments, output ports) |
mjr | 52:8298b2a73eb2 | 6160 | { |
mjr | 53:9b2611964afc | 6161 | // set up the reply buffer with the variable ID data, and zero out |
mjr | 53:9b2611964afc | 6162 | // the rest of the buffer |
mjr | 52:8298b2a73eb2 | 6163 | uint8_t reply[8]; |
mjr | 52:8298b2a73eb2 | 6164 | reply[1] = data[2]; |
mjr | 52:8298b2a73eb2 | 6165 | reply[2] = data[3]; |
mjr | 53:9b2611964afc | 6166 | memset(reply+3, 0, sizeof(reply)-3); |
mjr | 52:8298b2a73eb2 | 6167 | |
mjr | 52:8298b2a73eb2 | 6168 | // query the value |
mjr | 52:8298b2a73eb2 | 6169 | configVarGet(reply); |
mjr | 52:8298b2a73eb2 | 6170 | |
mjr | 52:8298b2a73eb2 | 6171 | // send the reply |
mjr | 52:8298b2a73eb2 | 6172 | js.reportConfigVar(reply + 1); |
mjr | 52:8298b2a73eb2 | 6173 | } |
mjr | 52:8298b2a73eb2 | 6174 | break; |
mjr | 53:9b2611964afc | 6175 | |
mjr | 53:9b2611964afc | 6176 | case 10: |
mjr | 53:9b2611964afc | 6177 | // 10 = Build ID query. |
mjr | 53:9b2611964afc | 6178 | js.reportBuildInfo(getBuildID()); |
mjr | 53:9b2611964afc | 6179 | break; |
mjr | 73:4e8ce0b18915 | 6180 | |
mjr | 73:4e8ce0b18915 | 6181 | case 11: |
mjr | 73:4e8ce0b18915 | 6182 | // 11 = TV ON relay control. |
mjr | 73:4e8ce0b18915 | 6183 | // data[2] = operation: |
mjr | 73:4e8ce0b18915 | 6184 | // 0 = turn relay off |
mjr | 73:4e8ce0b18915 | 6185 | // 1 = turn relay on |
mjr | 73:4e8ce0b18915 | 6186 | // 2 = pulse relay (as though the power-on timer fired) |
mjr | 73:4e8ce0b18915 | 6187 | TVRelay(data[2]); |
mjr | 73:4e8ce0b18915 | 6188 | break; |
mjr | 73:4e8ce0b18915 | 6189 | |
mjr | 73:4e8ce0b18915 | 6190 | case 12: |
mjr | 77:0b96f6867312 | 6191 | // 12 = Learn IR code. This enters IR learning mode. While |
mjr | 77:0b96f6867312 | 6192 | // in learning mode, we report raw IR signals and the first IR |
mjr | 77:0b96f6867312 | 6193 | // command decoded through the special IR report format. IR |
mjr | 77:0b96f6867312 | 6194 | // learning mode automatically ends after a timeout expires if |
mjr | 77:0b96f6867312 | 6195 | // no command can be decoded within the time limit. |
mjr | 77:0b96f6867312 | 6196 | |
mjr | 77:0b96f6867312 | 6197 | // enter IR learning mode |
mjr | 77:0b96f6867312 | 6198 | IRLearningMode = 1; |
mjr | 77:0b96f6867312 | 6199 | |
mjr | 77:0b96f6867312 | 6200 | // cancel any regular IR input in progress |
mjr | 77:0b96f6867312 | 6201 | IRCommandIn = 0; |
mjr | 77:0b96f6867312 | 6202 | |
mjr | 77:0b96f6867312 | 6203 | // reset and start the learning mode timeout timer |
mjr | 77:0b96f6867312 | 6204 | IRTimer.reset(); |
mjr | 73:4e8ce0b18915 | 6205 | break; |
mjr | 73:4e8ce0b18915 | 6206 | |
mjr | 73:4e8ce0b18915 | 6207 | case 13: |
mjr | 73:4e8ce0b18915 | 6208 | // 13 = Send button status report |
mjr | 73:4e8ce0b18915 | 6209 | reportButtonStatus(js); |
mjr | 73:4e8ce0b18915 | 6210 | break; |
mjr | 78:1e00b3fa11af | 6211 | |
mjr | 78:1e00b3fa11af | 6212 | case 14: |
mjr | 78:1e00b3fa11af | 6213 | // 14 = manually center the accelerometer |
mjr | 78:1e00b3fa11af | 6214 | accel.manualCenterRequest(); |
mjr | 78:1e00b3fa11af | 6215 | break; |
mjr | 78:1e00b3fa11af | 6216 | |
mjr | 78:1e00b3fa11af | 6217 | case 15: |
mjr | 78:1e00b3fa11af | 6218 | // 15 = set up ad hoc IR command, part 1. Mark the command |
mjr | 78:1e00b3fa11af | 6219 | // as not ready, and save the partial data from the message. |
mjr | 78:1e00b3fa11af | 6220 | IRAdHocCmd.ready = 0; |
mjr | 78:1e00b3fa11af | 6221 | IRAdHocCmd.protocol = data[2]; |
mjr | 78:1e00b3fa11af | 6222 | IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0; |
mjr | 78:1e00b3fa11af | 6223 | IRAdHocCmd.code = wireUI32(&data[4]); |
mjr | 78:1e00b3fa11af | 6224 | break; |
mjr | 78:1e00b3fa11af | 6225 | |
mjr | 78:1e00b3fa11af | 6226 | case 16: |
mjr | 78:1e00b3fa11af | 6227 | // 16 = send ad hoc IR command, part 2. Fill in the rest |
mjr | 78:1e00b3fa11af | 6228 | // of the data from the message and mark the command as |
mjr | 78:1e00b3fa11af | 6229 | // ready. The IR polling routine will send this as soon |
mjr | 78:1e00b3fa11af | 6230 | // as the IR transmitter is free. |
mjr | 78:1e00b3fa11af | 6231 | IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32); |
mjr | 78:1e00b3fa11af | 6232 | IRAdHocCmd.ready = 1; |
mjr | 78:1e00b3fa11af | 6233 | break; |
mjr | 88:98bce687e6c0 | 6234 | |
mjr | 88:98bce687e6c0 | 6235 | case 17: |
mjr | 88:98bce687e6c0 | 6236 | // 17 = send pre-programmed IR command. This works just like |
mjr | 88:98bce687e6c0 | 6237 | // sending an ad hoc command above, but we get the command data |
mjr | 88:98bce687e6c0 | 6238 | // from an IR slot in the config rather than from the client. |
mjr | 88:98bce687e6c0 | 6239 | // First make sure we have a valid slot number. |
mjr | 88:98bce687e6c0 | 6240 | if (data[2] >= 1 && data[2] <= MAX_IR_CODES) |
mjr | 88:98bce687e6c0 | 6241 | { |
mjr | 88:98bce687e6c0 | 6242 | // get the IR command slot in the config |
mjr | 88:98bce687e6c0 | 6243 | IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1]; |
mjr | 88:98bce687e6c0 | 6244 | |
mjr | 88:98bce687e6c0 | 6245 | // copy the IR command data from the config |
mjr | 88:98bce687e6c0 | 6246 | IRAdHocCmd.protocol = cmd.protocol; |
mjr | 88:98bce687e6c0 | 6247 | IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0; |
mjr | 88:98bce687e6c0 | 6248 | IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo; |
mjr | 88:98bce687e6c0 | 6249 | |
mjr | 88:98bce687e6c0 | 6250 | // mark the command as ready - this will trigger the polling |
mjr | 88:98bce687e6c0 | 6251 | // routine to send the command as soon as the transmitter |
mjr | 88:98bce687e6c0 | 6252 | // is free |
mjr | 88:98bce687e6c0 | 6253 | IRAdHocCmd.ready = 1; |
mjr | 88:98bce687e6c0 | 6254 | } |
mjr | 88:98bce687e6c0 | 6255 | break; |
mjr | 38:091e511ce8a0 | 6256 | } |
mjr | 38:091e511ce8a0 | 6257 | } |
mjr | 38:091e511ce8a0 | 6258 | else if (data[0] == 66) |
mjr | 38:091e511ce8a0 | 6259 | { |
mjr | 38:091e511ce8a0 | 6260 | // Extended protocol - Set configuration variable. |
mjr | 38:091e511ce8a0 | 6261 | // The second byte of the message is the ID of the variable |
mjr | 38:091e511ce8a0 | 6262 | // to update, and the remaining bytes give the new value, |
mjr | 38:091e511ce8a0 | 6263 | // in a variable-dependent format. |
mjr | 40:cc0d9814522b | 6264 | configVarSet(data); |
mjr | 86:e30a1f60f783 | 6265 | |
mjr | 87:8d35c74403af | 6266 | // notify the plunger, so that it can update relevant variables |
mjr | 87:8d35c74403af | 6267 | // dynamically |
mjr | 87:8d35c74403af | 6268 | plungerSensor->onConfigChange(data[1], cfg); |
mjr | 38:091e511ce8a0 | 6269 | } |
mjr | 74:822a92bc11d2 | 6270 | else if (data[0] == 67) |
mjr | 74:822a92bc11d2 | 6271 | { |
mjr | 74:822a92bc11d2 | 6272 | // SBX - extended SBA message. This is the same as SBA, except |
mjr | 74:822a92bc11d2 | 6273 | // that the 7th byte selects a group of 32 ports, to allow access |
mjr | 74:822a92bc11d2 | 6274 | // to ports beyond the first 32. |
mjr | 74:822a92bc11d2 | 6275 | sba_sbx(data[6], data); |
mjr | 74:822a92bc11d2 | 6276 | } |
mjr | 74:822a92bc11d2 | 6277 | else if (data[0] == 68) |
mjr | 74:822a92bc11d2 | 6278 | { |
mjr | 74:822a92bc11d2 | 6279 | // PBX - extended PBA message. This is similar to PBA, but |
mjr | 74:822a92bc11d2 | 6280 | // allows access to more than the first 32 ports by encoding |
mjr | 74:822a92bc11d2 | 6281 | // a port group byte that selects a block of 8 ports. |
mjr | 74:822a92bc11d2 | 6282 | |
mjr | 74:822a92bc11d2 | 6283 | // get the port group - the first port is 8*group |
mjr | 74:822a92bc11d2 | 6284 | int portGroup = data[1]; |
mjr | 74:822a92bc11d2 | 6285 | |
mjr | 74:822a92bc11d2 | 6286 | // unpack the brightness values |
mjr | 74:822a92bc11d2 | 6287 | uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16); |
mjr | 74:822a92bc11d2 | 6288 | uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16); |
mjr | 74:822a92bc11d2 | 6289 | uint8_t bri[8] = { |
mjr | 74:822a92bc11d2 | 6290 | tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F, |
mjr | 74:822a92bc11d2 | 6291 | tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F |
mjr | 74:822a92bc11d2 | 6292 | }; |
mjr | 74:822a92bc11d2 | 6293 | |
mjr | 74:822a92bc11d2 | 6294 | // map the flash levels: 60->129, 61->130, 62->131, 63->132 |
mjr | 74:822a92bc11d2 | 6295 | for (int i = 0 ; i < 8 ; ++i) |
mjr | 74:822a92bc11d2 | 6296 | { |
mjr | 74:822a92bc11d2 | 6297 | if (bri[i] >= 60) |
mjr | 74:822a92bc11d2 | 6298 | bri[i] += 129-60; |
mjr | 74:822a92bc11d2 | 6299 | } |
mjr | 74:822a92bc11d2 | 6300 | |
mjr | 74:822a92bc11d2 | 6301 | // Carry out the PBA |
mjr | 74:822a92bc11d2 | 6302 | pba_pbx(portGroup*8, bri); |
mjr | 74:822a92bc11d2 | 6303 | } |
mjr | 38:091e511ce8a0 | 6304 | else if (data[0] >= 200 && data[0] <= 228) |
mjr | 38:091e511ce8a0 | 6305 | { |
mjr | 38:091e511ce8a0 | 6306 | // Extended protocol - Extended output port brightness update. |
mjr | 38:091e511ce8a0 | 6307 | // data[0]-200 gives us the bank of 7 outputs we're setting: |
mjr | 38:091e511ce8a0 | 6308 | // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc. |
mjr | 38:091e511ce8a0 | 6309 | // The remaining bytes are brightness levels, 0-255, for the |
mjr | 38:091e511ce8a0 | 6310 | // seven outputs in the selected bank. The LedWiz flashing |
mjr | 38:091e511ce8a0 | 6311 | // modes aren't accessible in this message type; we can only |
mjr | 38:091e511ce8a0 | 6312 | // set a fixed brightness, but in exchange we get 8-bit |
mjr | 38:091e511ce8a0 | 6313 | // resolution rather than the paltry 0-48 scale that the real |
mjr | 38:091e511ce8a0 | 6314 | // LedWiz uses. There's no separate on/off status for outputs |
mjr | 38:091e511ce8a0 | 6315 | // adjusted with this message type, either, as there would be |
mjr | 38:091e511ce8a0 | 6316 | // for a PBA message - setting a non-zero value immediately |
mjr | 38:091e511ce8a0 | 6317 | // turns the output, overriding the last SBA setting. |
mjr | 38:091e511ce8a0 | 6318 | // |
mjr | 38:091e511ce8a0 | 6319 | // For outputs 0-31, this overrides any previous PBA/SBA |
mjr | 38:091e511ce8a0 | 6320 | // settings for the port. Any subsequent PBA/SBA message will |
mjr | 38:091e511ce8a0 | 6321 | // in turn override the setting made here. It's simple - the |
mjr | 38:091e511ce8a0 | 6322 | // most recent message of either type takes precedence. For |
mjr | 38:091e511ce8a0 | 6323 | // outputs above the LedWiz range, PBA/SBA messages can't |
mjr | 38:091e511ce8a0 | 6324 | // address those ports anyway. |
mjr | 63:5cd1a5f3a41b | 6325 | |
mjr | 63:5cd1a5f3a41b | 6326 | // figure the block of 7 ports covered in the message |
mjr | 38:091e511ce8a0 | 6327 | int i0 = (data[0] - 200)*7; |
mjr | 38:091e511ce8a0 | 6328 | int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs; |
mjr | 63:5cd1a5f3a41b | 6329 | |
mjr | 63:5cd1a5f3a41b | 6330 | // update each port |
mjr | 38:091e511ce8a0 | 6331 | for (int i = i0 ; i < i1 ; ++i) |
mjr | 38:091e511ce8a0 | 6332 | { |
mjr | 38:091e511ce8a0 | 6333 | // set the brightness level for the output |
mjr | 40:cc0d9814522b | 6334 | uint8_t b = data[i-i0+1]; |
mjr | 38:091e511ce8a0 | 6335 | outLevel[i] = b; |
mjr | 38:091e511ce8a0 | 6336 | |
mjr | 74:822a92bc11d2 | 6337 | // set the port's LedWiz state to the nearest equivalent, so |
mjr | 74:822a92bc11d2 | 6338 | // that it maintains its current setting if we switch back to |
mjr | 74:822a92bc11d2 | 6339 | // LedWiz mode on a future update |
mjr | 76:7f5912b6340e | 6340 | if (b != 0) |
mjr | 76:7f5912b6340e | 6341 | { |
mjr | 76:7f5912b6340e | 6342 | // Non-zero brightness - set the SBA switch on, and set the |
mjr | 76:7f5912b6340e | 6343 | // PBA brightness to the DOF brightness rescaled to the 1..48 |
mjr | 76:7f5912b6340e | 6344 | // LedWiz range. If the port is subsequently addressed by an |
mjr | 76:7f5912b6340e | 6345 | // LedWiz command, this will carry the current DOF setting |
mjr | 76:7f5912b6340e | 6346 | // forward unchanged. |
mjr | 76:7f5912b6340e | 6347 | wizOn[i] = 1; |
mjr | 76:7f5912b6340e | 6348 | wizVal[i] = dof_to_lw[b]; |
mjr | 76:7f5912b6340e | 6349 | } |
mjr | 76:7f5912b6340e | 6350 | else |
mjr | 76:7f5912b6340e | 6351 | { |
mjr | 76:7f5912b6340e | 6352 | // Zero brightness. Set the SBA switch off, and leave the |
mjr | 76:7f5912b6340e | 6353 | // PBA brightness the same as it was. |
mjr | 76:7f5912b6340e | 6354 | wizOn[i] = 0; |
mjr | 76:7f5912b6340e | 6355 | } |
mjr | 74:822a92bc11d2 | 6356 | |
mjr | 38:091e511ce8a0 | 6357 | // set the output |
mjr | 40:cc0d9814522b | 6358 | lwPin[i]->set(b); |
mjr | 38:091e511ce8a0 | 6359 | } |
mjr | 38:091e511ce8a0 | 6360 | |
mjr | 38:091e511ce8a0 | 6361 | // update 74HC595 outputs, if attached |
mjr | 38:091e511ce8a0 | 6362 | if (hc595 != 0) |
mjr | 38:091e511ce8a0 | 6363 | hc595->update(); |
mjr | 38:091e511ce8a0 | 6364 | } |
mjr | 38:091e511ce8a0 | 6365 | else |
mjr | 38:091e511ce8a0 | 6366 | { |
mjr | 74:822a92bc11d2 | 6367 | // Everything else is an LedWiz PBA message. This is a full |
mjr | 74:822a92bc11d2 | 6368 | // "profile" dump from the host for one bank of 8 outputs. Each |
mjr | 74:822a92bc11d2 | 6369 | // byte sets one output in the current bank. The current bank |
mjr | 74:822a92bc11d2 | 6370 | // is implied; the bank starts at 0 and is reset to 0 by any SBA |
mjr | 74:822a92bc11d2 | 6371 | // message, and is incremented to the next bank by each PBA. Our |
mjr | 74:822a92bc11d2 | 6372 | // variable pbaIdx keeps track of the current bank. There's no |
mjr | 74:822a92bc11d2 | 6373 | // direct way for the host to select the bank; it just has to count |
mjr | 74:822a92bc11d2 | 6374 | // on us staying in sync. In practice, clients always send the |
mjr | 74:822a92bc11d2 | 6375 | // full set of 4 PBA messages in a row to set all 32 outputs. |
mjr | 38:091e511ce8a0 | 6376 | // |
mjr | 38:091e511ce8a0 | 6377 | // Note that a PBA implicitly overrides our extended profile |
mjr | 38:091e511ce8a0 | 6378 | // messages (message prefix 200-219), because this sets the |
mjr | 38:091e511ce8a0 | 6379 | // wizVal[] entry for each output, and that takes precedence |
mjr | 63:5cd1a5f3a41b | 6380 | // over the extended protocol settings when we're in LedWiz |
mjr | 63:5cd1a5f3a41b | 6381 | // protocol mode. |
mjr | 38:091e511ce8a0 | 6382 | // |
mjr | 38:091e511ce8a0 | 6383 | //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n", |
mjr | 38:091e511ce8a0 | 6384 | // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); |
mjr | 38:091e511ce8a0 | 6385 | |
mjr | 74:822a92bc11d2 | 6386 | // carry out the PBA |
mjr | 74:822a92bc11d2 | 6387 | pba_pbx(pbaIdx, data); |
mjr | 74:822a92bc11d2 | 6388 | |
mjr | 74:822a92bc11d2 | 6389 | // update the PBX index state for the next message |
mjr | 74:822a92bc11d2 | 6390 | pbaIdx = (pbaIdx + 8) % 32; |
mjr | 38:091e511ce8a0 | 6391 | } |
mjr | 38:091e511ce8a0 | 6392 | } |
mjr | 35:e959ffba78fd | 6393 | |
mjr | 38:091e511ce8a0 | 6394 | // --------------------------------------------------------------------------- |
mjr | 38:091e511ce8a0 | 6395 | // |
mjr | 5:a70c0bce770d | 6396 | // Main program loop. This is invoked on startup and runs forever. Our |
mjr | 5:a70c0bce770d | 6397 | // main work is to read our devices (the accelerometer and the CCD), process |
mjr | 5:a70c0bce770d | 6398 | // the readings into nudge and plunger position data, and send the results |
mjr | 5:a70c0bce770d | 6399 | // to the host computer via the USB joystick interface. We also monitor |
mjr | 5:a70c0bce770d | 6400 | // the USB connection for incoming LedWiz commands and process those into |
mjr | 5:a70c0bce770d | 6401 | // port outputs. |
mjr | 5:a70c0bce770d | 6402 | // |
mjr | 0:5acbbe3f4cf4 | 6403 | int main(void) |
mjr | 0:5acbbe3f4cf4 | 6404 | { |
mjr | 60:f38da020aa13 | 6405 | // say hello to the debug console, in case it's connected |
mjr | 39:b3815a1c3802 | 6406 | printf("\r\nPinscape Controller starting\r\n"); |
mjr | 94:0476b3e2b996 | 6407 | |
mjr | 98:4df3c0f7e707 | 6408 | // Set the default PWM period to 0.5ms = 2 kHz. This will be used |
mjr | 98:4df3c0f7e707 | 6409 | // for PWM channels on PWM units whose periods aren't changed |
mjr | 98:4df3c0f7e707 | 6410 | // explicitly, so it'll apply to LW outputs assigned to GPIO pins. |
mjr | 98:4df3c0f7e707 | 6411 | // The KL25Z only allows the period to be set at the TPM unit |
mjr | 94:0476b3e2b996 | 6412 | // level, not per channel, so all channels on a given unit will |
mjr | 94:0476b3e2b996 | 6413 | // necessarily use the same frequency. We (currently) have two |
mjr | 94:0476b3e2b996 | 6414 | // subsystems that need specific PWM frequencies: TLC5940NT (which |
mjr | 94:0476b3e2b996 | 6415 | // uses PWM to generate the grayscale clock signal) and IR remote |
mjr | 94:0476b3e2b996 | 6416 | // (which uses PWM to generate the IR carrier signal). Since |
mjr | 94:0476b3e2b996 | 6417 | // those require specific PWM frequencies, it's important to assign |
mjr | 94:0476b3e2b996 | 6418 | // those to separate TPM units if both are in use simultaneously; |
mjr | 94:0476b3e2b996 | 6419 | // the Config Tool includes checks to ensure that will happen when |
mjr | 94:0476b3e2b996 | 6420 | // setting a config interactively. In addition, for the greatest |
mjr | 94:0476b3e2b996 | 6421 | // flexibility, we take care NOT to assign explicit PWM frequencies |
mjr | 94:0476b3e2b996 | 6422 | // to pins that don't require special frequences. That way, if a |
mjr | 94:0476b3e2b996 | 6423 | // pin that doesn't need anything special happens to be sharing a |
mjr | 94:0476b3e2b996 | 6424 | // TPM unit with a pin that does require a specific frequency, the |
mjr | 94:0476b3e2b996 | 6425 | // two will co-exist peacefully on the TPM. |
mjr | 94:0476b3e2b996 | 6426 | // |
mjr | 94:0476b3e2b996 | 6427 | // We set this default first, before we create any PWM GPIOs, so |
mjr | 94:0476b3e2b996 | 6428 | // that it will apply to all channels by default but won't override |
mjr | 94:0476b3e2b996 | 6429 | // any channels that need specific frequences. Currently, the only |
mjr | 94:0476b3e2b996 | 6430 | // frequency-agnostic PWM user is the LW outputs, so we can choose |
mjr | 94:0476b3e2b996 | 6431 | // the default to be suitable for those. This is chosen to minimize |
mjr | 94:0476b3e2b996 | 6432 | // flicker on attached LEDs. |
mjr | 94:0476b3e2b996 | 6433 | NewPwmUnit::defaultPeriod = 0.0005f; |
mjr | 82:4f6209cb5c33 | 6434 | |
mjr | 76:7f5912b6340e | 6435 | // clear the I2C connection |
mjr | 35:e959ffba78fd | 6436 | clear_i2c(); |
mjr | 82:4f6209cb5c33 | 6437 | |
mjr | 82:4f6209cb5c33 | 6438 | // Elevate GPIO pin interrupt priorities, so that they can preempt |
mjr | 82:4f6209cb5c33 | 6439 | // other interrupts. This is important for some external peripherals, |
mjr | 82:4f6209cb5c33 | 6440 | // particularly the quadrature plunger sensors, which can generate |
mjr | 82:4f6209cb5c33 | 6441 | // high-speed interrupts that need to be serviced quickly to keep |
mjr | 82:4f6209cb5c33 | 6442 | // proper count of the quadrature position. |
mjr | 82:4f6209cb5c33 | 6443 | FastInterruptIn::elevatePriority(); |
mjr | 38:091e511ce8a0 | 6444 | |
mjr | 76:7f5912b6340e | 6445 | // Load the saved configuration. There are two sources of the |
mjr | 76:7f5912b6340e | 6446 | // configuration data: |
mjr | 76:7f5912b6340e | 6447 | // |
mjr | 76:7f5912b6340e | 6448 | // - Look for an NVM (flash non-volatile memory) configuration. |
mjr | 76:7f5912b6340e | 6449 | // If this is valid, we'll load it. The NVM is config data that can |
mjr | 76:7f5912b6340e | 6450 | // be updated dynamically by the host via USB commands and then stored |
mjr | 76:7f5912b6340e | 6451 | // in the flash by the firmware itself. If this exists, it supersedes |
mjr | 76:7f5912b6340e | 6452 | // any of the other settings stores. The Windows config tool uses this |
mjr | 76:7f5912b6340e | 6453 | // to store user settings updates. |
mjr | 76:7f5912b6340e | 6454 | // |
mjr | 76:7f5912b6340e | 6455 | // - If there's no NVM, we'll load the factory defaults, then we'll |
mjr | 76:7f5912b6340e | 6456 | // load any settings stored in the host-loaded configuration. The |
mjr | 76:7f5912b6340e | 6457 | // host can patch a set of configuration variable settings into the |
mjr | 76:7f5912b6340e | 6458 | // .bin file when loading new firmware, in the host-loaded config |
mjr | 76:7f5912b6340e | 6459 | // area that we reserve for this purpose. This allows the host to |
mjr | 76:7f5912b6340e | 6460 | // restore a configuration at the same time it installs firmware, |
mjr | 76:7f5912b6340e | 6461 | // without a separate download of the config data. |
mjr | 76:7f5912b6340e | 6462 | // |
mjr | 76:7f5912b6340e | 6463 | // The NVM supersedes the host-loaded config, since it can be updated |
mjr | 76:7f5912b6340e | 6464 | // between firmware updated and is thus presumably more recent if it's |
mjr | 76:7f5912b6340e | 6465 | // present. (Note that the NVM and host-loaded config are both in |
mjr | 76:7f5912b6340e | 6466 | // flash, so in principle we could just have a single NVM store that |
mjr | 76:7f5912b6340e | 6467 | // the host patches. The only reason we don't is that the NVM store |
mjr | 76:7f5912b6340e | 6468 | // is an image of our in-memory config structure, which is a native C |
mjr | 76:7f5912b6340e | 6469 | // struct, and we don't want the host to have to know the details of |
mjr | 76:7f5912b6340e | 6470 | // its byte layout, for obvious reasons. The host-loaded config, in |
mjr | 76:7f5912b6340e | 6471 | // contrast, uses the wire protocol format, which has a well-defined |
mjr | 76:7f5912b6340e | 6472 | // byte layout that's independent of the firmware version or the |
mjr | 76:7f5912b6340e | 6473 | // details of how the C compiler arranges the struct memory.) |
mjr | 76:7f5912b6340e | 6474 | if (!loadConfigFromFlash()) |
mjr | 76:7f5912b6340e | 6475 | loadHostLoadedConfig(); |
mjr | 35:e959ffba78fd | 6476 | |
mjr | 38:091e511ce8a0 | 6477 | // initialize the diagnostic LEDs |
mjr | 38:091e511ce8a0 | 6478 | initDiagLEDs(cfg); |
mjr | 38:091e511ce8a0 | 6479 | |
mjr | 33:d832bcab089e | 6480 | // we're not connected/awake yet |
mjr | 33:d832bcab089e | 6481 | bool connected = false; |
mjr | 40:cc0d9814522b | 6482 | Timer connectChangeTimer; |
mjr | 33:d832bcab089e | 6483 | |
mjr | 35:e959ffba78fd | 6484 | // create the plunger sensor interface |
mjr | 35:e959ffba78fd | 6485 | createPlunger(); |
mjr | 76:7f5912b6340e | 6486 | |
mjr | 76:7f5912b6340e | 6487 | // update the plunger reader's cached calibration data |
mjr | 76:7f5912b6340e | 6488 | plungerReader.onUpdateCal(); |
mjr | 33:d832bcab089e | 6489 | |
mjr | 60:f38da020aa13 | 6490 | // set up the TLC5940 interface, if these chips are present |
mjr | 35:e959ffba78fd | 6491 | init_tlc5940(cfg); |
mjr | 34:6b981a2afab7 | 6492 | |
mjr | 87:8d35c74403af | 6493 | // initialize the TLC5916 interface, if these chips are present |
mjr | 87:8d35c74403af | 6494 | init_tlc59116(cfg); |
mjr | 87:8d35c74403af | 6495 | |
mjr | 60:f38da020aa13 | 6496 | // set up 74HC595 interface, if these chips are present |
mjr | 35:e959ffba78fd | 6497 | init_hc595(cfg); |
mjr | 6:cc35eb643e8f | 6498 | |
mjr | 54:fd77a6b2f76c | 6499 | // Initialize the LedWiz ports. Note that the ordering here is important: |
mjr | 54:fd77a6b2f76c | 6500 | // this has to come after we create the TLC5940 and 74HC595 object instances |
mjr | 54:fd77a6b2f76c | 6501 | // (which we just did above), since we need to access those objects to set |
mjr | 54:fd77a6b2f76c | 6502 | // up ports assigned to the respective chips. |
mjr | 35:e959ffba78fd | 6503 | initLwOut(cfg); |
mjr | 48:058ace2aed1d | 6504 | |
mjr | 60:f38da020aa13 | 6505 | // start the TLC5940 refresh cycle clock |
mjr | 35:e959ffba78fd | 6506 | if (tlc5940 != 0) |
mjr | 35:e959ffba78fd | 6507 | tlc5940->start(); |
mjr | 87:8d35c74403af | 6508 | |
mjr | 77:0b96f6867312 | 6509 | // Assume that nothing uses keyboard keys. We'll check for keyboard |
mjr | 77:0b96f6867312 | 6510 | // usage when initializing the various subsystems that can send keys |
mjr | 77:0b96f6867312 | 6511 | // (buttons, IR). If we find anything that does, we'll create the |
mjr | 77:0b96f6867312 | 6512 | // USB keyboard interface. |
mjr | 77:0b96f6867312 | 6513 | bool kbKeys = false; |
mjr | 77:0b96f6867312 | 6514 | |
mjr | 77:0b96f6867312 | 6515 | // set up the IR remote control emitter & receiver, if present |
mjr | 77:0b96f6867312 | 6516 | init_IR(cfg, kbKeys); |
mjr | 77:0b96f6867312 | 6517 | |
mjr | 77:0b96f6867312 | 6518 | // start the power status time, if applicable |
mjr | 77:0b96f6867312 | 6519 | startPowerStatusTimer(cfg); |
mjr | 48:058ace2aed1d | 6520 | |
mjr | 35:e959ffba78fd | 6521 | // initialize the button input ports |
mjr | 35:e959ffba78fd | 6522 | initButtons(cfg, kbKeys); |
mjr | 38:091e511ce8a0 | 6523 | |
mjr | 60:f38da020aa13 | 6524 | // Create the joystick USB client. Note that the USB vendor/product ID |
mjr | 60:f38da020aa13 | 6525 | // information comes from the saved configuration. Also note that we have |
mjr | 60:f38da020aa13 | 6526 | // to wait until after initializing the input buttons (which we just did |
mjr | 60:f38da020aa13 | 6527 | // above) to set up the interface, since the button setup will determine |
mjr | 60:f38da020aa13 | 6528 | // whether or not we need to present a USB keyboard interface in addition |
mjr | 60:f38da020aa13 | 6529 | // to the joystick interface. |
mjr | 51:57eb311faafa | 6530 | MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false, |
mjr | 90:aa4e571da8e8 | 6531 | cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys); |
mjr | 51:57eb311faafa | 6532 | |
mjr | 101:755f44622abc | 6533 | // start the request timestamp timer |
mjr | 101:755f44622abc | 6534 | requestTimestamper.start(); |
mjr | 101:755f44622abc | 6535 | |
mjr | 60:f38da020aa13 | 6536 | // Wait for the USB connection to start up. Show a distinctive diagnostic |
mjr | 60:f38da020aa13 | 6537 | // flash pattern while waiting. |
mjr | 70:9f58735a1732 | 6538 | Timer connTimeoutTimer, connFlashTimer; |
mjr | 70:9f58735a1732 | 6539 | connTimeoutTimer.start(); |
mjr | 70:9f58735a1732 | 6540 | connFlashTimer.start(); |
mjr | 51:57eb311faafa | 6541 | while (!js.configured()) |
mjr | 51:57eb311faafa | 6542 | { |
mjr | 51:57eb311faafa | 6543 | // show one short yellow flash at 2-second intervals |
mjr | 70:9f58735a1732 | 6544 | if (connFlashTimer.read_us() > 2000000) |
mjr | 51:57eb311faafa | 6545 | { |
mjr | 51:57eb311faafa | 6546 | // short yellow flash |
mjr | 51:57eb311faafa | 6547 | diagLED(1, 1, 0); |
mjr | 54:fd77a6b2f76c | 6548 | wait_us(50000); |
mjr | 51:57eb311faafa | 6549 | diagLED(0, 0, 0); |
mjr | 51:57eb311faafa | 6550 | |
mjr | 51:57eb311faafa | 6551 | // reset the flash timer |
mjr | 70:9f58735a1732 | 6552 | connFlashTimer.reset(); |
mjr | 51:57eb311faafa | 6553 | } |
mjr | 70:9f58735a1732 | 6554 | |
mjr | 77:0b96f6867312 | 6555 | // If we've been disconnected for more than the reboot timeout, |
mjr | 77:0b96f6867312 | 6556 | // reboot. Some PCs won't reconnect if we were left plugged in |
mjr | 77:0b96f6867312 | 6557 | // during a power cycle on the PC, but fortunately a reboot on |
mjr | 77:0b96f6867312 | 6558 | // the KL25Z will make the host notice us and trigger a reconnect. |
mjr | 86:e30a1f60f783 | 6559 | // Don't do this if we're in a non-recoverable PSU2 power state. |
mjr | 70:9f58735a1732 | 6560 | if (cfg.disconnectRebootTimeout != 0 |
mjr | 86:e30a1f60f783 | 6561 | && connTimeoutTimer.read() > cfg.disconnectRebootTimeout |
mjr | 86:e30a1f60f783 | 6562 | && powerStatusAllowsReboot()) |
mjr | 70:9f58735a1732 | 6563 | reboot(js, false, 0); |
mjr | 77:0b96f6867312 | 6564 | |
mjr | 77:0b96f6867312 | 6565 | // update the PSU2 power sensing status |
mjr | 77:0b96f6867312 | 6566 | powerStatusUpdate(cfg); |
mjr | 51:57eb311faafa | 6567 | } |
mjr | 60:f38da020aa13 | 6568 | |
mjr | 60:f38da020aa13 | 6569 | // we're now connected to the host |
mjr | 54:fd77a6b2f76c | 6570 | connected = true; |
mjr | 40:cc0d9814522b | 6571 | |
mjr | 92:f264fbaa1be5 | 6572 | // Set up a timer for keeping track of how long it's been since we |
mjr | 92:f264fbaa1be5 | 6573 | // sent the last joystick report. We use this to determine when it's |
mjr | 92:f264fbaa1be5 | 6574 | // time to send the next joystick report. |
mjr | 92:f264fbaa1be5 | 6575 | // |
mjr | 92:f264fbaa1be5 | 6576 | // We have to use a timer for two reasons. The first is that our main |
mjr | 92:f264fbaa1be5 | 6577 | // loop runs too fast (about .25ms to 2.5ms per loop, depending on the |
mjr | 92:f264fbaa1be5 | 6578 | // type of plunger sensor attached and other factors) for us to send |
mjr | 92:f264fbaa1be5 | 6579 | // joystick reports on every iteration. We *could*, but the PC couldn't |
mjr | 92:f264fbaa1be5 | 6580 | // digest them at that pace. So we need to slow down the reports to a |
mjr | 92:f264fbaa1be5 | 6581 | // reasonable pace. The second is that VP has some complicated timing |
mjr | 92:f264fbaa1be5 | 6582 | // issues of its own, so we not only need to slow down the reports from |
mjr | 92:f264fbaa1be5 | 6583 | // our "natural" pace, but also time them to sync up with VP's input |
mjr | 92:f264fbaa1be5 | 6584 | // sampling rate as best we can. |
mjr | 38:091e511ce8a0 | 6585 | Timer jsReportTimer; |
mjr | 38:091e511ce8a0 | 6586 | jsReportTimer.start(); |
mjr | 38:091e511ce8a0 | 6587 | |
mjr | 92:f264fbaa1be5 | 6588 | // Accelerometer sample "stutter" counter. Each time we send a joystick |
mjr | 92:f264fbaa1be5 | 6589 | // report, we increment this counter, and check to see if it has reached |
mjr | 92:f264fbaa1be5 | 6590 | // the threshold set in the configuration. If so, we take a new |
mjr | 92:f264fbaa1be5 | 6591 | // accelerometer sample and send it with the new joystick report. It |
mjr | 92:f264fbaa1be5 | 6592 | // not, we don't take a new sample, but simply repeat the last sample. |
mjr | 92:f264fbaa1be5 | 6593 | // |
mjr | 92:f264fbaa1be5 | 6594 | // This lets us send joystick reports more frequently than accelerometer |
mjr | 92:f264fbaa1be5 | 6595 | // samples. The point is to let us slow down accelerometer reports to |
mjr | 92:f264fbaa1be5 | 6596 | // a pace that matches VP's input sampling frequency, while still sending |
mjr | 92:f264fbaa1be5 | 6597 | // joystick button updates more frequently, so that other programs that |
mjr | 92:f264fbaa1be5 | 6598 | // can read input faster will see button changes with less latency. |
mjr | 92:f264fbaa1be5 | 6599 | int jsAccelStutterCounter = 0; |
mjr | 92:f264fbaa1be5 | 6600 | |
mjr | 92:f264fbaa1be5 | 6601 | // Last accelerometer report, in joystick units. We normally report the |
mjr | 92:f264fbaa1be5 | 6602 | // acceleromter reading via the joystick X and Y axes, per the VP |
mjr | 92:f264fbaa1be5 | 6603 | // convention. We can alternatively report in the RX and RY axes; this |
mjr | 92:f264fbaa1be5 | 6604 | // can be set in the configuration. |
mjr | 92:f264fbaa1be5 | 6605 | int x = 0, y = 0; |
mjr | 92:f264fbaa1be5 | 6606 | |
mjr | 60:f38da020aa13 | 6607 | // Time since we successfully sent a USB report. This is a hacky |
mjr | 60:f38da020aa13 | 6608 | // workaround to deal with any remaining sporadic problems in the USB |
mjr | 60:f38da020aa13 | 6609 | // stack. I've been trying to bulletproof the USB code over time to |
mjr | 60:f38da020aa13 | 6610 | // remove all such problems at their source, but it seems unlikely that |
mjr | 60:f38da020aa13 | 6611 | // we'll ever get them all. Thus this hack. The idea here is that if |
mjr | 60:f38da020aa13 | 6612 | // we go too long without successfully sending a USB report, we'll |
mjr | 60:f38da020aa13 | 6613 | // assume that the connection is broken (and the KL25Z USB hardware |
mjr | 60:f38da020aa13 | 6614 | // hasn't noticed this), and we'll try taking measures to recover. |
mjr | 38:091e511ce8a0 | 6615 | Timer jsOKTimer; |
mjr | 38:091e511ce8a0 | 6616 | jsOKTimer.start(); |
mjr | 35:e959ffba78fd | 6617 | |
mjr | 55:4db125cd11a0 | 6618 | // Initialize the calibration button and lamp, if enabled. To be enabled, |
mjr | 55:4db125cd11a0 | 6619 | // the pin has to be assigned to something other than NC (0xFF), AND the |
mjr | 55:4db125cd11a0 | 6620 | // corresponding feature enable flag has to be set. |
mjr | 55:4db125cd11a0 | 6621 | DigitalIn *calBtn = 0; |
mjr | 55:4db125cd11a0 | 6622 | DigitalOut *calBtnLed = 0; |
mjr | 55:4db125cd11a0 | 6623 | |
mjr | 55:4db125cd11a0 | 6624 | // calibration button input - feature flag 0x01 |
mjr | 55:4db125cd11a0 | 6625 | if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF) |
mjr | 55:4db125cd11a0 | 6626 | calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn)); |
mjr | 55:4db125cd11a0 | 6627 | |
mjr | 55:4db125cd11a0 | 6628 | // calibration button indicator lamp output - feature flag 0x02 |
mjr | 55:4db125cd11a0 | 6629 | if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF) |
mjr | 55:4db125cd11a0 | 6630 | calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led)); |
mjr | 6:cc35eb643e8f | 6631 | |
mjr | 35:e959ffba78fd | 6632 | // initialize the calibration button |
mjr | 1:d913e0afb2ac | 6633 | calBtnTimer.start(); |
mjr | 35:e959ffba78fd | 6634 | calBtnState = 0; |
mjr | 1:d913e0afb2ac | 6635 | |
mjr | 1:d913e0afb2ac | 6636 | // set up a timer for our heartbeat indicator |
mjr | 1:d913e0afb2ac | 6637 | Timer hbTimer; |
mjr | 1:d913e0afb2ac | 6638 | hbTimer.start(); |
mjr | 1:d913e0afb2ac | 6639 | int hb = 0; |
mjr | 5:a70c0bce770d | 6640 | uint16_t hbcnt = 0; |
mjr | 1:d913e0afb2ac | 6641 | |
mjr | 1:d913e0afb2ac | 6642 | // set a timer for accelerometer auto-centering |
mjr | 1:d913e0afb2ac | 6643 | Timer acTimer; |
mjr | 1:d913e0afb2ac | 6644 | acTimer.start(); |
mjr | 1:d913e0afb2ac | 6645 | |
mjr | 0:5acbbe3f4cf4 | 6646 | // create the accelerometer object |
mjr | 77:0b96f6867312 | 6647 | Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, |
mjr | 78:1e00b3fa11af | 6648 | MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime); |
mjr | 76:7f5912b6340e | 6649 | |
mjr | 48:058ace2aed1d | 6650 | // initialize the plunger sensor |
mjr | 35:e959ffba78fd | 6651 | plungerSensor->init(); |
mjr | 10:976666ffa4ef | 6652 | |
mjr | 48:058ace2aed1d | 6653 | // set up the ZB Launch Ball monitor |
mjr | 48:058ace2aed1d | 6654 | ZBLaunchBall zbLaunchBall; |
mjr | 48:058ace2aed1d | 6655 | |
mjr | 54:fd77a6b2f76c | 6656 | // enable the peripheral chips |
mjr | 54:fd77a6b2f76c | 6657 | if (tlc5940 != 0) |
mjr | 54:fd77a6b2f76c | 6658 | tlc5940->enable(true); |
mjr | 54:fd77a6b2f76c | 6659 | if (hc595 != 0) |
mjr | 54:fd77a6b2f76c | 6660 | hc595->enable(true); |
mjr | 87:8d35c74403af | 6661 | if (tlc59116 != 0) |
mjr | 87:8d35c74403af | 6662 | tlc59116->enable(true); |
mjr | 74:822a92bc11d2 | 6663 | |
mjr | 76:7f5912b6340e | 6664 | // start the LedWiz flash cycle timer |
mjr | 74:822a92bc11d2 | 6665 | wizCycleTimer.start(); |
mjr | 74:822a92bc11d2 | 6666 | |
mjr | 74:822a92bc11d2 | 6667 | // start the PWM update polling timer |
mjr | 74:822a92bc11d2 | 6668 | polledPwmTimer.start(); |
mjr | 43:7a6364d82a41 | 6669 | |
mjr | 1:d913e0afb2ac | 6670 | // we're all set up - now just loop, processing sensor reports and |
mjr | 1:d913e0afb2ac | 6671 | // host requests |
mjr | 0:5acbbe3f4cf4 | 6672 | for (;;) |
mjr | 0:5acbbe3f4cf4 | 6673 | { |
mjr | 74:822a92bc11d2 | 6674 | // start the main loop timer for diagnostic data collection |
mjr | 76:7f5912b6340e | 6675 | IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();) |
mjr | 96:68d5621ff49f | 6676 | |
mjr | 48:058ace2aed1d | 6677 | // Process incoming reports on the joystick interface. The joystick |
mjr | 48:058ace2aed1d | 6678 | // "out" (receive) endpoint is used for LedWiz commands and our |
mjr | 48:058ace2aed1d | 6679 | // extended protocol commands. Limit processing time to 5ms to |
mjr | 48:058ace2aed1d | 6680 | // ensure we don't starve the input side. |
mjr | 39:b3815a1c3802 | 6681 | LedWizMsg lwm; |
mjr | 48:058ace2aed1d | 6682 | Timer lwt; |
mjr | 48:058ace2aed1d | 6683 | lwt.start(); |
mjr | 77:0b96f6867312 | 6684 | IF_DIAG(int msgCount = 0;) |
mjr | 48:058ace2aed1d | 6685 | while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000) |
mjr | 74:822a92bc11d2 | 6686 | { |
mjr | 78:1e00b3fa11af | 6687 | handleInputMsg(lwm, js, accel); |
mjr | 74:822a92bc11d2 | 6688 | IF_DIAG(++msgCount;) |
mjr | 74:822a92bc11d2 | 6689 | } |
mjr | 74:822a92bc11d2 | 6690 | |
mjr | 74:822a92bc11d2 | 6691 | // collect performance statistics on the message reader, if desired |
mjr | 74:822a92bc11d2 | 6692 | IF_DIAG( |
mjr | 74:822a92bc11d2 | 6693 | if (msgCount != 0) |
mjr | 74:822a92bc11d2 | 6694 | { |
mjr | 76:7f5912b6340e | 6695 | mainLoopMsgTime += lwt.read_us(); |
mjr | 74:822a92bc11d2 | 6696 | mainLoopMsgCount++; |
mjr | 74:822a92bc11d2 | 6697 | } |
mjr | 74:822a92bc11d2 | 6698 | ) |
mjr | 74:822a92bc11d2 | 6699 | |
mjr | 77:0b96f6867312 | 6700 | // process IR input |
mjr | 77:0b96f6867312 | 6701 | process_IR(cfg, js); |
mjr | 77:0b96f6867312 | 6702 | |
mjr | 77:0b96f6867312 | 6703 | // update the PSU2 power sensing status |
mjr | 77:0b96f6867312 | 6704 | powerStatusUpdate(cfg); |
mjr | 77:0b96f6867312 | 6705 | |
mjr | 74:822a92bc11d2 | 6706 | // update flashing LedWiz outputs periodically |
mjr | 74:822a92bc11d2 | 6707 | wizPulse(); |
mjr | 74:822a92bc11d2 | 6708 | |
mjr | 74:822a92bc11d2 | 6709 | // update PWM outputs |
mjr | 74:822a92bc11d2 | 6710 | pollPwmUpdates(); |
mjr | 77:0b96f6867312 | 6711 | |
mjr | 99:8139b0c274f4 | 6712 | // update Flipper Logic and Chime Logic outputs |
mjr | 89:c43cd923401c | 6713 | LwFlipperLogicOut::poll(); |
mjr | 99:8139b0c274f4 | 6714 | LwChimeLogicOut::poll(); |
mjr | 89:c43cd923401c | 6715 | |
mjr | 77:0b96f6867312 | 6716 | // poll the accelerometer |
mjr | 77:0b96f6867312 | 6717 | accel.poll(); |
mjr | 55:4db125cd11a0 | 6718 | |
mjr | 96:68d5621ff49f | 6719 | // Note the "effective" plunger enabled status. This has two |
mjr | 96:68d5621ff49f | 6720 | // components: the explicit "enabled" bit, and the plunger sensor |
mjr | 96:68d5621ff49f | 6721 | // type setting. For most purposes, a plunger type of NONE is |
mjr | 96:68d5621ff49f | 6722 | // equivalent to disabled. Set this to explicit 0x01 or 0x00 |
mjr | 96:68d5621ff49f | 6723 | // so that we can OR the bit into status reports. |
mjr | 96:68d5621ff49f | 6724 | uint8_t effectivePlungerEnabled = (cfg.plunger.enabled |
mjr | 96:68d5621ff49f | 6725 | && cfg.plunger.sensorType != PlungerType_None) ? 0x01 : 0x00; |
mjr | 96:68d5621ff49f | 6726 | |
mjr | 76:7f5912b6340e | 6727 | // collect diagnostic statistics, checkpoint 0 |
mjr | 76:7f5912b6340e | 6728 | IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6729 | |
mjr | 55:4db125cd11a0 | 6730 | // send TLC5940 data updates if applicable |
mjr | 55:4db125cd11a0 | 6731 | if (tlc5940 != 0) |
mjr | 55:4db125cd11a0 | 6732 | tlc5940->send(); |
mjr | 87:8d35c74403af | 6733 | |
mjr | 87:8d35c74403af | 6734 | // send TLC59116 data updates |
mjr | 87:8d35c74403af | 6735 | if (tlc59116 != 0) |
mjr | 87:8d35c74403af | 6736 | tlc59116->send(); |
mjr | 1:d913e0afb2ac | 6737 | |
mjr | 76:7f5912b6340e | 6738 | // collect diagnostic statistics, checkpoint 1 |
mjr | 76:7f5912b6340e | 6739 | IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();) |
mjr | 77:0b96f6867312 | 6740 | |
mjr | 1:d913e0afb2ac | 6741 | // check for plunger calibration |
mjr | 17:ab3cec0c8bf4 | 6742 | if (calBtn != 0 && !calBtn->read()) |
mjr | 0:5acbbe3f4cf4 | 6743 | { |
mjr | 1:d913e0afb2ac | 6744 | // check the state |
mjr | 1:d913e0afb2ac | 6745 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 6746 | { |
mjr | 1:d913e0afb2ac | 6747 | case 0: |
mjr | 1:d913e0afb2ac | 6748 | // button not yet pushed - start debouncing |
mjr | 1:d913e0afb2ac | 6749 | calBtnTimer.reset(); |
mjr | 1:d913e0afb2ac | 6750 | calBtnState = 1; |
mjr | 1:d913e0afb2ac | 6751 | break; |
mjr | 1:d913e0afb2ac | 6752 | |
mjr | 1:d913e0afb2ac | 6753 | case 1: |
mjr | 1:d913e0afb2ac | 6754 | // pushed, not yet debounced - if the debounce time has |
mjr | 1:d913e0afb2ac | 6755 | // passed, start the hold period |
mjr | 48:058ace2aed1d | 6756 | if (calBtnTimer.read_us() > 50000) |
mjr | 1:d913e0afb2ac | 6757 | calBtnState = 2; |
mjr | 1:d913e0afb2ac | 6758 | break; |
mjr | 1:d913e0afb2ac | 6759 | |
mjr | 1:d913e0afb2ac | 6760 | case 2: |
mjr | 1:d913e0afb2ac | 6761 | // in the hold period - if the button has been held down |
mjr | 1:d913e0afb2ac | 6762 | // for the entire hold period, move to calibration mode |
mjr | 48:058ace2aed1d | 6763 | if (calBtnTimer.read_us() > 2050000) |
mjr | 1:d913e0afb2ac | 6764 | { |
mjr | 1:d913e0afb2ac | 6765 | // enter calibration mode |
mjr | 1:d913e0afb2ac | 6766 | calBtnState = 3; |
mjr | 9:fd65b0a94720 | 6767 | calBtnTimer.reset(); |
mjr | 35:e959ffba78fd | 6768 | |
mjr | 44:b5ac89b9cd5d | 6769 | // begin the plunger calibration limits |
mjr | 52:8298b2a73eb2 | 6770 | plungerReader.setCalMode(true); |
mjr | 1:d913e0afb2ac | 6771 | } |
mjr | 1:d913e0afb2ac | 6772 | break; |
mjr | 2:c174f9ee414a | 6773 | |
mjr | 2:c174f9ee414a | 6774 | case 3: |
mjr | 9:fd65b0a94720 | 6775 | // Already in calibration mode - pushing the button here |
mjr | 9:fd65b0a94720 | 6776 | // doesn't change the current state, but we won't leave this |
mjr | 9:fd65b0a94720 | 6777 | // state as long as it's held down. So nothing changes here. |
mjr | 2:c174f9ee414a | 6778 | break; |
mjr | 0:5acbbe3f4cf4 | 6779 | } |
mjr | 0:5acbbe3f4cf4 | 6780 | } |
mjr | 1:d913e0afb2ac | 6781 | else |
mjr | 1:d913e0afb2ac | 6782 | { |
mjr | 2:c174f9ee414a | 6783 | // Button released. If we're in calibration mode, and |
mjr | 2:c174f9ee414a | 6784 | // the calibration time has elapsed, end the calibration |
mjr | 2:c174f9ee414a | 6785 | // and save the results to flash. |
mjr | 2:c174f9ee414a | 6786 | // |
mjr | 2:c174f9ee414a | 6787 | // Otherwise, return to the base state without saving anything. |
mjr | 2:c174f9ee414a | 6788 | // If the button is released before we make it to calibration |
mjr | 2:c174f9ee414a | 6789 | // mode, it simply cancels the attempt. |
mjr | 48:058ace2aed1d | 6790 | if (calBtnState == 3 && calBtnTimer.read_us() > 15000000) |
mjr | 2:c174f9ee414a | 6791 | { |
mjr | 2:c174f9ee414a | 6792 | // exit calibration mode |
mjr | 1:d913e0afb2ac | 6793 | calBtnState = 0; |
mjr | 52:8298b2a73eb2 | 6794 | plungerReader.setCalMode(false); |
mjr | 2:c174f9ee414a | 6795 | |
mjr | 6:cc35eb643e8f | 6796 | // save the updated configuration |
mjr | 35:e959ffba78fd | 6797 | cfg.plunger.cal.calibrated = 1; |
mjr | 86:e30a1f60f783 | 6798 | saveConfigToFlash(0, false); |
mjr | 2:c174f9ee414a | 6799 | } |
mjr | 2:c174f9ee414a | 6800 | else if (calBtnState != 3) |
mjr | 2:c174f9ee414a | 6801 | { |
mjr | 2:c174f9ee414a | 6802 | // didn't make it to calibration mode - cancel the operation |
mjr | 1:d913e0afb2ac | 6803 | calBtnState = 0; |
mjr | 2:c174f9ee414a | 6804 | } |
mjr | 1:d913e0afb2ac | 6805 | } |
mjr | 1:d913e0afb2ac | 6806 | |
mjr | 1:d913e0afb2ac | 6807 | // light/flash the calibration button light, if applicable |
mjr | 1:d913e0afb2ac | 6808 | int newCalBtnLit = calBtnLit; |
mjr | 1:d913e0afb2ac | 6809 | switch (calBtnState) |
mjr | 0:5acbbe3f4cf4 | 6810 | { |
mjr | 1:d913e0afb2ac | 6811 | case 2: |
mjr | 1:d913e0afb2ac | 6812 | // in the hold period - flash the light |
mjr | 48:058ace2aed1d | 6813 | newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1); |
mjr | 1:d913e0afb2ac | 6814 | break; |
mjr | 1:d913e0afb2ac | 6815 | |
mjr | 1:d913e0afb2ac | 6816 | case 3: |
mjr | 1:d913e0afb2ac | 6817 | // calibration mode - show steady on |
mjr | 1:d913e0afb2ac | 6818 | newCalBtnLit = true; |
mjr | 1:d913e0afb2ac | 6819 | break; |
mjr | 1:d913e0afb2ac | 6820 | |
mjr | 1:d913e0afb2ac | 6821 | default: |
mjr | 1:d913e0afb2ac | 6822 | // not calibrating/holding - show steady off |
mjr | 1:d913e0afb2ac | 6823 | newCalBtnLit = false; |
mjr | 1:d913e0afb2ac | 6824 | break; |
mjr | 1:d913e0afb2ac | 6825 | } |
mjr | 3:3514575d4f86 | 6826 | |
mjr | 3:3514575d4f86 | 6827 | // light or flash the external calibration button LED, and |
mjr | 3:3514575d4f86 | 6828 | // do the same with the on-board blue LED |
mjr | 1:d913e0afb2ac | 6829 | if (calBtnLit != newCalBtnLit) |
mjr | 1:d913e0afb2ac | 6830 | { |
mjr | 1:d913e0afb2ac | 6831 | calBtnLit = newCalBtnLit; |
mjr | 2:c174f9ee414a | 6832 | if (calBtnLit) { |
mjr | 17:ab3cec0c8bf4 | 6833 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 6834 | calBtnLed->write(1); |
mjr | 38:091e511ce8a0 | 6835 | diagLED(0, 0, 1); // blue |
mjr | 2:c174f9ee414a | 6836 | } |
mjr | 2:c174f9ee414a | 6837 | else { |
mjr | 17:ab3cec0c8bf4 | 6838 | if (calBtnLed != 0) |
mjr | 17:ab3cec0c8bf4 | 6839 | calBtnLed->write(0); |
mjr | 38:091e511ce8a0 | 6840 | diagLED(0, 0, 0); // off |
mjr | 2:c174f9ee414a | 6841 | } |
mjr | 1:d913e0afb2ac | 6842 | } |
mjr | 35:e959ffba78fd | 6843 | |
mjr | 76:7f5912b6340e | 6844 | // collect diagnostic statistics, checkpoint 2 |
mjr | 76:7f5912b6340e | 6845 | IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6846 | |
mjr | 48:058ace2aed1d | 6847 | // read the plunger sensor |
mjr | 48:058ace2aed1d | 6848 | plungerReader.read(); |
mjr | 48:058ace2aed1d | 6849 | |
mjr | 76:7f5912b6340e | 6850 | // collect diagnostic statistics, checkpoint 3 |
mjr | 76:7f5912b6340e | 6851 | IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6852 | |
mjr | 53:9b2611964afc | 6853 | // update the ZB Launch Ball status |
mjr | 53:9b2611964afc | 6854 | zbLaunchBall.update(); |
mjr | 37:ed52738445fc | 6855 | |
mjr | 76:7f5912b6340e | 6856 | // collect diagnostic statistics, checkpoint 4 |
mjr | 76:7f5912b6340e | 6857 | IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6858 | |
mjr | 53:9b2611964afc | 6859 | // process button updates |
mjr | 53:9b2611964afc | 6860 | processButtons(cfg); |
mjr | 53:9b2611964afc | 6861 | |
mjr | 76:7f5912b6340e | 6862 | // collect diagnostic statistics, checkpoint 5 |
mjr | 76:7f5912b6340e | 6863 | IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6864 | |
mjr | 38:091e511ce8a0 | 6865 | // send a keyboard report if we have new data |
mjr | 37:ed52738445fc | 6866 | if (kbState.changed) |
mjr | 37:ed52738445fc | 6867 | { |
mjr | 38:091e511ce8a0 | 6868 | // send a keyboard report |
mjr | 37:ed52738445fc | 6869 | js.kbUpdate(kbState.data); |
mjr | 37:ed52738445fc | 6870 | kbState.changed = false; |
mjr | 37:ed52738445fc | 6871 | } |
mjr | 38:091e511ce8a0 | 6872 | |
mjr | 38:091e511ce8a0 | 6873 | // likewise for the media controller |
mjr | 37:ed52738445fc | 6874 | if (mediaState.changed) |
mjr | 37:ed52738445fc | 6875 | { |
mjr | 38:091e511ce8a0 | 6876 | // send a media report |
mjr | 37:ed52738445fc | 6877 | js.mediaUpdate(mediaState.data); |
mjr | 37:ed52738445fc | 6878 | mediaState.changed = false; |
mjr | 37:ed52738445fc | 6879 | } |
mjr | 38:091e511ce8a0 | 6880 | |
mjr | 76:7f5912b6340e | 6881 | // collect diagnostic statistics, checkpoint 6 |
mjr | 76:7f5912b6340e | 6882 | IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6883 | |
mjr | 38:091e511ce8a0 | 6884 | // flag: did we successfully send a joystick report on this round? |
mjr | 38:091e511ce8a0 | 6885 | bool jsOK = false; |
mjr | 55:4db125cd11a0 | 6886 | |
mjr | 55:4db125cd11a0 | 6887 | // figure the current status flags for joystick reports |
mjr | 77:0b96f6867312 | 6888 | uint16_t statusFlags = |
mjr | 96:68d5621ff49f | 6889 | effectivePlungerEnabled // 0x01 |
mjr | 77:0b96f6867312 | 6890 | | nightMode // 0x02 |
mjr | 79:682ae3171a08 | 6891 | | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10 |
mjr | 79:682ae3171a08 | 6892 | | saveConfigSucceededFlag; // 0x40 |
mjr | 77:0b96f6867312 | 6893 | if (IRLearningMode != 0) |
mjr | 77:0b96f6867312 | 6894 | statusFlags |= 0x20; |
mjr | 17:ab3cec0c8bf4 | 6895 | |
mjr | 50:40015764bbe6 | 6896 | // If it's been long enough since our last USB status report, send |
mjr | 50:40015764bbe6 | 6897 | // the new report. VP only polls for input in 10ms intervals, so |
mjr | 50:40015764bbe6 | 6898 | // there's no benefit in sending reports more frequently than this. |
mjr | 50:40015764bbe6 | 6899 | // More frequent reporting would only add USB I/O overhead. |
mjr | 92:f264fbaa1be5 | 6900 | if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us) |
mjr | 17:ab3cec0c8bf4 | 6901 | { |
mjr | 92:f264fbaa1be5 | 6902 | // Increment the "stutter" counter. If it has reached the |
mjr | 92:f264fbaa1be5 | 6903 | // stutter threshold, read a new accelerometer sample. If |
mjr | 92:f264fbaa1be5 | 6904 | // not, repeat the last sample. |
mjr | 92:f264fbaa1be5 | 6905 | if (++jsAccelStutterCounter >= cfg.accel.stutter) |
mjr | 92:f264fbaa1be5 | 6906 | { |
mjr | 92:f264fbaa1be5 | 6907 | // read the accelerometer |
mjr | 92:f264fbaa1be5 | 6908 | int xa, ya; |
mjr | 92:f264fbaa1be5 | 6909 | accel.get(xa, ya); |
mjr | 17:ab3cec0c8bf4 | 6910 | |
mjr | 92:f264fbaa1be5 | 6911 | // confine the results to our joystick axis range |
mjr | 92:f264fbaa1be5 | 6912 | if (xa < -JOYMAX) xa = -JOYMAX; |
mjr | 92:f264fbaa1be5 | 6913 | if (xa > JOYMAX) xa = JOYMAX; |
mjr | 92:f264fbaa1be5 | 6914 | if (ya < -JOYMAX) ya = -JOYMAX; |
mjr | 92:f264fbaa1be5 | 6915 | if (ya > JOYMAX) ya = JOYMAX; |
mjr | 92:f264fbaa1be5 | 6916 | |
mjr | 92:f264fbaa1be5 | 6917 | // store the updated accelerometer coordinates |
mjr | 92:f264fbaa1be5 | 6918 | x = xa; |
mjr | 92:f264fbaa1be5 | 6919 | y = ya; |
mjr | 92:f264fbaa1be5 | 6920 | |
mjr | 95:8eca8acbb82c | 6921 | // rotate X and Y according to the device orientation in the cabinet |
mjr | 95:8eca8acbb82c | 6922 | accelRotate(x, y); |
mjr | 95:8eca8acbb82c | 6923 | |
mjr | 92:f264fbaa1be5 | 6924 | // reset the stutter counter |
mjr | 92:f264fbaa1be5 | 6925 | jsAccelStutterCounter = 0; |
mjr | 92:f264fbaa1be5 | 6926 | } |
mjr | 17:ab3cec0c8bf4 | 6927 | |
mjr | 48:058ace2aed1d | 6928 | // Report the current plunger position unless the plunger is |
mjr | 48:058ace2aed1d | 6929 | // disabled, or the ZB Launch Ball signal is on. In either of |
mjr | 48:058ace2aed1d | 6930 | // those cases, just report a constant 0 value. ZB Launch Ball |
mjr | 48:058ace2aed1d | 6931 | // temporarily disables mechanical plunger reporting because it |
mjr | 21:5048e16cc9ef | 6932 | // tells us that the table has a Launch Ball button instead of |
mjr | 48:058ace2aed1d | 6933 | // a traditional plunger, so we don't want to confuse VP with |
mjr | 48:058ace2aed1d | 6934 | // regular plunger inputs. |
mjr | 92:f264fbaa1be5 | 6935 | int zActual = plungerReader.getPosition(); |
mjr | 96:68d5621ff49f | 6936 | int zReported = (!effectivePlungerEnabled || zbLaunchOn ? 0 : zActual); |
mjr | 35:e959ffba78fd | 6937 | |
mjr | 35:e959ffba78fd | 6938 | // send the joystick report |
mjr | 92:f264fbaa1be5 | 6939 | jsOK = js.update(x, y, zReported, jsButtons, statusFlags); |
mjr | 21:5048e16cc9ef | 6940 | |
mjr | 17:ab3cec0c8bf4 | 6941 | // we've just started a new report interval, so reset the timer |
mjr | 38:091e511ce8a0 | 6942 | jsReportTimer.reset(); |
mjr | 17:ab3cec0c8bf4 | 6943 | } |
mjr | 21:5048e16cc9ef | 6944 | |
mjr | 52:8298b2a73eb2 | 6945 | // If we're in sensor status mode, report all pixel exposure values |
mjr | 101:755f44622abc | 6946 | if (reportPlungerStat && plungerSensor->ready()) |
mjr | 10:976666ffa4ef | 6947 | { |
mjr | 17:ab3cec0c8bf4 | 6948 | // send the report |
mjr | 101:755f44622abc | 6949 | plungerSensor->sendStatusReport(js, reportPlungerStatFlags); |
mjr | 17:ab3cec0c8bf4 | 6950 | |
mjr | 10:976666ffa4ef | 6951 | // we have satisfied this request |
mjr | 52:8298b2a73eb2 | 6952 | reportPlungerStat = false; |
mjr | 10:976666ffa4ef | 6953 | } |
mjr | 10:976666ffa4ef | 6954 | |
mjr | 101:755f44622abc | 6955 | // Reset the plunger status report extra timer after enough time has |
mjr | 101:755f44622abc | 6956 | // elapsed to satisfy the request. We don't just do this immediately |
mjr | 101:755f44622abc | 6957 | // because of the complexities of the pixel frame buffer pipelines in |
mjr | 101:755f44622abc | 6958 | // most of the image sensors. The pipelines delay the effect of the |
mjr | 101:755f44622abc | 6959 | // exposure time request by a couple of frames, so we can't be sure |
mjr | 101:755f44622abc | 6960 | // exactly when they're applied - meaning we can't consider the |
mjr | 101:755f44622abc | 6961 | // delay time to be consumed after a fixed number of frames. Instead, |
mjr | 101:755f44622abc | 6962 | // we'll consider it consumed after a long enough time to be sure |
mjr | 101:755f44622abc | 6963 | // we've sent a few frames. The extra time value is meant to be an |
mjr | 101:755f44622abc | 6964 | // interactive tool for debugging, so it's not important to reset it |
mjr | 101:755f44622abc | 6965 | // immediately - the user will probably want to see the effect over |
mjr | 101:755f44622abc | 6966 | // many frames, so they're likely to keep sending requests with the |
mjr | 101:755f44622abc | 6967 | // time value over and over. They'll eventually shut down the frame |
mjr | 101:755f44622abc | 6968 | // viewer and return to normal operation, at which point the requests |
mjr | 101:755f44622abc | 6969 | // will stop. So we just have to clear things out after we haven't |
mjr | 101:755f44622abc | 6970 | // seen a request with extra time for a little while. |
mjr | 101:755f44622abc | 6971 | if (reportPlungerStatTime != 0 |
mjr | 101:755f44622abc | 6972 | && static_cast<uint32_t>(requestTimestamper.read_us() - tReportPlungerStat) > 1000000) |
mjr | 101:755f44622abc | 6973 | { |
mjr | 101:755f44622abc | 6974 | reportPlungerStatTime = 0; |
mjr | 101:755f44622abc | 6975 | plungerSensor->setExtraIntegrationTime(0); |
mjr | 101:755f44622abc | 6976 | } |
mjr | 101:755f44622abc | 6977 | |
mjr | 35:e959ffba78fd | 6978 | // If joystick reports are turned off, send a generic status report |
mjr | 35:e959ffba78fd | 6979 | // periodically for the sake of the Windows config tool. |
mjr | 77:0b96f6867312 | 6980 | if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL) |
mjr | 21:5048e16cc9ef | 6981 | { |
mjr | 55:4db125cd11a0 | 6982 | jsOK = js.updateStatus(statusFlags); |
mjr | 38:091e511ce8a0 | 6983 | jsReportTimer.reset(); |
mjr | 38:091e511ce8a0 | 6984 | } |
mjr | 38:091e511ce8a0 | 6985 | |
mjr | 38:091e511ce8a0 | 6986 | // if we successfully sent a joystick report, reset the watchdog timer |
mjr | 38:091e511ce8a0 | 6987 | if (jsOK) |
mjr | 38:091e511ce8a0 | 6988 | { |
mjr | 38:091e511ce8a0 | 6989 | jsOKTimer.reset(); |
mjr | 38:091e511ce8a0 | 6990 | jsOKTimer.start(); |
mjr | 21:5048e16cc9ef | 6991 | } |
mjr | 21:5048e16cc9ef | 6992 | |
mjr | 76:7f5912b6340e | 6993 | // collect diagnostic statistics, checkpoint 7 |
mjr | 76:7f5912b6340e | 6994 | IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();) |
mjr | 76:7f5912b6340e | 6995 | |
mjr | 6:cc35eb643e8f | 6996 | #ifdef DEBUG_PRINTF |
mjr | 6:cc35eb643e8f | 6997 | if (x != 0 || y != 0) |
mjr | 6:cc35eb643e8f | 6998 | printf("%d,%d\r\n", x, y); |
mjr | 6:cc35eb643e8f | 6999 | #endif |
mjr | 6:cc35eb643e8f | 7000 | |
mjr | 33:d832bcab089e | 7001 | // check for connection status changes |
mjr | 54:fd77a6b2f76c | 7002 | bool newConnected = js.isConnected() && !js.isSleeping(); |
mjr | 33:d832bcab089e | 7003 | if (newConnected != connected) |
mjr | 33:d832bcab089e | 7004 | { |
mjr | 54:fd77a6b2f76c | 7005 | // give it a moment to stabilize |
mjr | 40:cc0d9814522b | 7006 | connectChangeTimer.start(); |
mjr | 55:4db125cd11a0 | 7007 | if (connectChangeTimer.read_us() > 1000000) |
mjr | 33:d832bcab089e | 7008 | { |
mjr | 33:d832bcab089e | 7009 | // note the new status |
mjr | 33:d832bcab089e | 7010 | connected = newConnected; |
mjr | 40:cc0d9814522b | 7011 | |
mjr | 40:cc0d9814522b | 7012 | // done with the change timer for this round - reset it for next time |
mjr | 40:cc0d9814522b | 7013 | connectChangeTimer.stop(); |
mjr | 40:cc0d9814522b | 7014 | connectChangeTimer.reset(); |
mjr | 33:d832bcab089e | 7015 | |
mjr | 54:fd77a6b2f76c | 7016 | // if we're newly disconnected, clean up for PC suspend mode or power off |
mjr | 54:fd77a6b2f76c | 7017 | if (!connected) |
mjr | 40:cc0d9814522b | 7018 | { |
mjr | 54:fd77a6b2f76c | 7019 | // turn off all outputs |
mjr | 33:d832bcab089e | 7020 | allOutputsOff(); |
mjr | 40:cc0d9814522b | 7021 | |
mjr | 40:cc0d9814522b | 7022 | // The KL25Z runs off of USB power, so we might (depending on the PC |
mjr | 40:cc0d9814522b | 7023 | // and OS configuration) continue to receive power even when the main |
mjr | 40:cc0d9814522b | 7024 | // PC power supply is turned off, such as in soft-off or suspend/sleep |
mjr | 40:cc0d9814522b | 7025 | // mode. Any external output controller chips (TLC5940, 74HC595) might |
mjr | 40:cc0d9814522b | 7026 | // be powered from the PC power supply directly rather than from our |
mjr | 40:cc0d9814522b | 7027 | // USB power, so they might be powered off even when we're still running. |
mjr | 40:cc0d9814522b | 7028 | // To ensure cleaner startup when the power comes back on, globally |
mjr | 40:cc0d9814522b | 7029 | // disable the outputs. The global disable signals come from GPIO lines |
mjr | 40:cc0d9814522b | 7030 | // that remain powered as long as the KL25Z is powered, so these modes |
mjr | 40:cc0d9814522b | 7031 | // will apply smoothly across power state transitions in the external |
mjr | 40:cc0d9814522b | 7032 | // hardware. That is, when the external chips are powered up, they'll |
mjr | 40:cc0d9814522b | 7033 | // see the global disable signals as stable voltage inputs immediately, |
mjr | 40:cc0d9814522b | 7034 | // which will cause them to suppress any output triggering. This ensures |
mjr | 40:cc0d9814522b | 7035 | // that we don't fire any solenoids or flash any lights spuriously when |
mjr | 40:cc0d9814522b | 7036 | // the power first comes on. |
mjr | 40:cc0d9814522b | 7037 | if (tlc5940 != 0) |
mjr | 40:cc0d9814522b | 7038 | tlc5940->enable(false); |
mjr | 87:8d35c74403af | 7039 | if (tlc59116 != 0) |
mjr | 87:8d35c74403af | 7040 | tlc59116->enable(false); |
mjr | 40:cc0d9814522b | 7041 | if (hc595 != 0) |
mjr | 40:cc0d9814522b | 7042 | hc595->enable(false); |
mjr | 40:cc0d9814522b | 7043 | } |
mjr | 33:d832bcab089e | 7044 | } |
mjr | 33:d832bcab089e | 7045 | } |
mjr | 48:058ace2aed1d | 7046 | |
mjr | 53:9b2611964afc | 7047 | // if we have a reboot timer pending, check for completion |
mjr | 86:e30a1f60f783 | 7048 | if (saveConfigFollowupTimer.isRunning() |
mjr | 87:8d35c74403af | 7049 | && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL) |
mjr | 85:3c28aee81cde | 7050 | { |
mjr | 85:3c28aee81cde | 7051 | // if a reboot is pending, execute it now |
mjr | 86:e30a1f60f783 | 7052 | if (saveConfigRebootPending) |
mjr | 82:4f6209cb5c33 | 7053 | { |
mjr | 86:e30a1f60f783 | 7054 | // Only reboot if the PSU2 power state allows it. If it |
mjr | 86:e30a1f60f783 | 7055 | // doesn't, suppress the reboot for now, but leave the boot |
mjr | 86:e30a1f60f783 | 7056 | // flags set so that we keep checking on future rounds. |
mjr | 86:e30a1f60f783 | 7057 | // That way we should eventually reboot when the power |
mjr | 86:e30a1f60f783 | 7058 | // status allows it. |
mjr | 86:e30a1f60f783 | 7059 | if (powerStatusAllowsReboot()) |
mjr | 86:e30a1f60f783 | 7060 | reboot(js); |
mjr | 82:4f6209cb5c33 | 7061 | } |
mjr | 85:3c28aee81cde | 7062 | else |
mjr | 85:3c28aee81cde | 7063 | { |
mjr | 86:e30a1f60f783 | 7064 | // No reboot required. Exit the timed post-save state. |
mjr | 86:e30a1f60f783 | 7065 | |
mjr | 86:e30a1f60f783 | 7066 | // stop and reset the post-save timer |
mjr | 86:e30a1f60f783 | 7067 | saveConfigFollowupTimer.stop(); |
mjr | 86:e30a1f60f783 | 7068 | saveConfigFollowupTimer.reset(); |
mjr | 86:e30a1f60f783 | 7069 | |
mjr | 86:e30a1f60f783 | 7070 | // clear the post-save success flag |
mjr | 86:e30a1f60f783 | 7071 | saveConfigSucceededFlag = 0; |
mjr | 85:3c28aee81cde | 7072 | } |
mjr | 77:0b96f6867312 | 7073 | } |
mjr | 86:e30a1f60f783 | 7074 | |
mjr | 48:058ace2aed1d | 7075 | // if we're disconnected, initiate a new connection |
mjr | 51:57eb311faafa | 7076 | if (!connected) |
mjr | 48:058ace2aed1d | 7077 | { |
mjr | 54:fd77a6b2f76c | 7078 | // show USB HAL debug events |
mjr | 54:fd77a6b2f76c | 7079 | extern void HAL_DEBUG_PRINTEVENTS(const char *prefix); |
mjr | 54:fd77a6b2f76c | 7080 | HAL_DEBUG_PRINTEVENTS(">DISC"); |
mjr | 54:fd77a6b2f76c | 7081 | |
mjr | 54:fd77a6b2f76c | 7082 | // show immediate diagnostic feedback |
mjr | 54:fd77a6b2f76c | 7083 | js.diagFlash(); |
mjr | 54:fd77a6b2f76c | 7084 | |
mjr | 54:fd77a6b2f76c | 7085 | // clear any previous diagnostic LED display |
mjr | 54:fd77a6b2f76c | 7086 | diagLED(0, 0, 0); |
mjr | 51:57eb311faafa | 7087 | |
mjr | 51:57eb311faafa | 7088 | // set up a timer to monitor the reboot timeout |
mjr | 70:9f58735a1732 | 7089 | Timer reconnTimeoutTimer; |
mjr | 70:9f58735a1732 | 7090 | reconnTimeoutTimer.start(); |
mjr | 48:058ace2aed1d | 7091 | |
mjr | 54:fd77a6b2f76c | 7092 | // set up a timer for diagnostic displays |
mjr | 54:fd77a6b2f76c | 7093 | Timer diagTimer; |
mjr | 54:fd77a6b2f76c | 7094 | diagTimer.reset(); |
mjr | 54:fd77a6b2f76c | 7095 | diagTimer.start(); |
mjr | 74:822a92bc11d2 | 7096 | |
mjr | 74:822a92bc11d2 | 7097 | // turn off the main loop timer while spinning |
mjr | 74:822a92bc11d2 | 7098 | IF_DIAG(mainLoopTimer.stop();) |
mjr | 54:fd77a6b2f76c | 7099 | |
mjr | 54:fd77a6b2f76c | 7100 | // loop until we get our connection back |
mjr | 54:fd77a6b2f76c | 7101 | while (!js.isConnected() || js.isSleeping()) |
mjr | 51:57eb311faafa | 7102 | { |
mjr | 54:fd77a6b2f76c | 7103 | // try to recover the connection |
mjr | 54:fd77a6b2f76c | 7104 | js.recoverConnection(); |
mjr | 54:fd77a6b2f76c | 7105 | |
mjr | 99:8139b0c274f4 | 7106 | // update Flipper Logic and Chime Logic outputs |
mjr | 89:c43cd923401c | 7107 | LwFlipperLogicOut::poll(); |
mjr | 99:8139b0c274f4 | 7108 | LwChimeLogicOut::poll(); |
mjr | 89:c43cd923401c | 7109 | |
mjr | 55:4db125cd11a0 | 7110 | // send TLC5940 data if necessary |
mjr | 55:4db125cd11a0 | 7111 | if (tlc5940 != 0) |
mjr | 55:4db125cd11a0 | 7112 | tlc5940->send(); |
mjr | 87:8d35c74403af | 7113 | |
mjr | 87:8d35c74403af | 7114 | // update TLC59116 outputs |
mjr | 87:8d35c74403af | 7115 | if (tlc59116 != 0) |
mjr | 87:8d35c74403af | 7116 | tlc59116->send(); |
mjr | 55:4db125cd11a0 | 7117 | |
mjr | 54:fd77a6b2f76c | 7118 | // show a diagnostic flash every couple of seconds |
mjr | 54:fd77a6b2f76c | 7119 | if (diagTimer.read_us() > 2000000) |
mjr | 51:57eb311faafa | 7120 | { |
mjr | 54:fd77a6b2f76c | 7121 | // flush the USB HAL debug events, if in debug mode |
mjr | 54:fd77a6b2f76c | 7122 | HAL_DEBUG_PRINTEVENTS(">NC"); |
mjr | 54:fd77a6b2f76c | 7123 | |
mjr | 54:fd77a6b2f76c | 7124 | // show diagnostic feedback |
mjr | 54:fd77a6b2f76c | 7125 | js.diagFlash(); |
mjr | 51:57eb311faafa | 7126 | |
mjr | 51:57eb311faafa | 7127 | // reset the flash timer |
mjr | 54:fd77a6b2f76c | 7128 | diagTimer.reset(); |
mjr | 51:57eb311faafa | 7129 | } |
mjr | 51:57eb311faafa | 7130 | |
mjr | 77:0b96f6867312 | 7131 | // If the disconnect reboot timeout has expired, reboot. |
mjr | 77:0b96f6867312 | 7132 | // Some PC hosts won't reconnect to a device that's left |
mjr | 77:0b96f6867312 | 7133 | // plugged in through various events on the PC side, such as |
mjr | 77:0b96f6867312 | 7134 | // rebooting Windows, cycling power on the PC, or just a lost |
mjr | 77:0b96f6867312 | 7135 | // USB connection. Rebooting the KL25Z seems to be the most |
mjr | 77:0b96f6867312 | 7136 | // reliable way to get Windows to notice us again after one |
mjr | 86:e30a1f60f783 | 7137 | // of these events and make it reconnect. Only reboot if |
mjr | 86:e30a1f60f783 | 7138 | // the PSU2 power status allows it - if not, skip it on this |
mjr | 86:e30a1f60f783 | 7139 | // round and keep waiting. |
mjr | 51:57eb311faafa | 7140 | if (cfg.disconnectRebootTimeout != 0 |
mjr | 86:e30a1f60f783 | 7141 | && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout |
mjr | 86:e30a1f60f783 | 7142 | && powerStatusAllowsReboot()) |
mjr | 54:fd77a6b2f76c | 7143 | reboot(js, false, 0); |
mjr | 77:0b96f6867312 | 7144 | |
mjr | 77:0b96f6867312 | 7145 | // update the PSU2 power sensing status |
mjr | 77:0b96f6867312 | 7146 | powerStatusUpdate(cfg); |
mjr | 54:fd77a6b2f76c | 7147 | } |
mjr | 54:fd77a6b2f76c | 7148 | |
mjr | 74:822a92bc11d2 | 7149 | // resume the main loop timer |
mjr | 74:822a92bc11d2 | 7150 | IF_DIAG(mainLoopTimer.start();) |
mjr | 74:822a92bc11d2 | 7151 | |
mjr | 54:fd77a6b2f76c | 7152 | // if we made it out of that loop alive, we're connected again! |
mjr | 54:fd77a6b2f76c | 7153 | connected = true; |
mjr | 54:fd77a6b2f76c | 7154 | HAL_DEBUG_PRINTEVENTS(">C"); |
mjr | 54:fd77a6b2f76c | 7155 | |
mjr | 54:fd77a6b2f76c | 7156 | // Enable peripheral chips and update them with current output data |
mjr | 54:fd77a6b2f76c | 7157 | if (tlc5940 != 0) |
mjr | 55:4db125cd11a0 | 7158 | tlc5940->enable(true); |
mjr | 87:8d35c74403af | 7159 | if (tlc59116 != 0) |
mjr | 87:8d35c74403af | 7160 | tlc59116->enable(true); |
mjr | 54:fd77a6b2f76c | 7161 | if (hc595 != 0) |
mjr | 54:fd77a6b2f76c | 7162 | { |
mjr | 55:4db125cd11a0 | 7163 | hc595->enable(true); |
mjr | 54:fd77a6b2f76c | 7164 | hc595->update(true); |
mjr | 51:57eb311faafa | 7165 | } |
mjr | 48:058ace2aed1d | 7166 | } |
mjr | 43:7a6364d82a41 | 7167 | |
mjr | 6:cc35eb643e8f | 7168 | // provide a visual status indication on the on-board LED |
mjr | 48:058ace2aed1d | 7169 | if (calBtnState < 2 && hbTimer.read_us() > 1000000) |
mjr | 1:d913e0afb2ac | 7170 | { |
mjr | 54:fd77a6b2f76c | 7171 | if (jsOKTimer.read_us() > 1000000) |
mjr | 38:091e511ce8a0 | 7172 | { |
mjr | 39:b3815a1c3802 | 7173 | // USB freeze - show red/yellow. |
mjr | 40:cc0d9814522b | 7174 | // |
mjr | 54:fd77a6b2f76c | 7175 | // It's been more than a second since we successfully sent a joystick |
mjr | 54:fd77a6b2f76c | 7176 | // update message. This must mean that something's wrong on the USB |
mjr | 54:fd77a6b2f76c | 7177 | // connection, even though we haven't detected an outright disconnect. |
mjr | 54:fd77a6b2f76c | 7178 | // Show a distinctive diagnostic LED pattern when this occurs. |
mjr | 38:091e511ce8a0 | 7179 | hb = !hb; |
mjr | 38:091e511ce8a0 | 7180 | diagLED(1, hb, 0); |
mjr | 54:fd77a6b2f76c | 7181 | |
mjr | 54:fd77a6b2f76c | 7182 | // If the reboot-on-disconnect option is in effect, treat this condition |
mjr | 54:fd77a6b2f76c | 7183 | // as equivalent to a disconnect, since something is obviously wrong |
mjr | 54:fd77a6b2f76c | 7184 | // with the USB connection. |
mjr | 54:fd77a6b2f76c | 7185 | if (cfg.disconnectRebootTimeout != 0) |
mjr | 54:fd77a6b2f76c | 7186 | { |
mjr | 54:fd77a6b2f76c | 7187 | // The reboot timeout is in effect. If we've been incommunicado for |
mjr | 54:fd77a6b2f76c | 7188 | // longer than the timeout, reboot. If we haven't reached the time |
mjr | 54:fd77a6b2f76c | 7189 | // limit, keep running for now, and leave the OK timer running so |
mjr | 86:e30a1f60f783 | 7190 | // that we can continue to monitor this. Only reboot if the PSU2 |
mjr | 86:e30a1f60f783 | 7191 | // power status allows it. |
mjr | 86:e30a1f60f783 | 7192 | if (jsOKTimer.read() > cfg.disconnectRebootTimeout |
mjr | 86:e30a1f60f783 | 7193 | && powerStatusAllowsReboot()) |
mjr | 54:fd77a6b2f76c | 7194 | reboot(js, false, 0); |
mjr | 54:fd77a6b2f76c | 7195 | } |
mjr | 54:fd77a6b2f76c | 7196 | else |
mjr | 54:fd77a6b2f76c | 7197 | { |
mjr | 54:fd77a6b2f76c | 7198 | // There's no reboot timer, so just keep running with the diagnostic |
mjr | 54:fd77a6b2f76c | 7199 | // pattern displayed. Since we're not waiting for any other timed |
mjr | 54:fd77a6b2f76c | 7200 | // conditions in this state, stop the timer so that it doesn't |
mjr | 54:fd77a6b2f76c | 7201 | // overflow if this condition persists for a long time. |
mjr | 54:fd77a6b2f76c | 7202 | jsOKTimer.stop(); |
mjr | 54:fd77a6b2f76c | 7203 | } |
mjr | 38:091e511ce8a0 | 7204 | } |
mjr | 73:4e8ce0b18915 | 7205 | else if (psu2_state >= 4) |
mjr | 73:4e8ce0b18915 | 7206 | { |
mjr | 73:4e8ce0b18915 | 7207 | // We're in the TV timer countdown. Skip the normal heartbeat |
mjr | 73:4e8ce0b18915 | 7208 | // flashes and show the TV timer flashes instead. |
mjr | 73:4e8ce0b18915 | 7209 | diagLED(0, 0, 0); |
mjr | 73:4e8ce0b18915 | 7210 | } |
mjr | 96:68d5621ff49f | 7211 | else if (effectivePlungerEnabled && !cfg.plunger.cal.calibrated) |
mjr | 6:cc35eb643e8f | 7212 | { |
mjr | 6:cc35eb643e8f | 7213 | // connected, plunger calibration needed - flash yellow/green |
mjr | 6:cc35eb643e8f | 7214 | hb = !hb; |
mjr | 38:091e511ce8a0 | 7215 | diagLED(hb, 1, 0); |
mjr | 6:cc35eb643e8f | 7216 | } |
mjr | 6:cc35eb643e8f | 7217 | else |
mjr | 6:cc35eb643e8f | 7218 | { |
mjr | 6:cc35eb643e8f | 7219 | // connected - flash blue/green |
mjr | 2:c174f9ee414a | 7220 | hb = !hb; |
mjr | 38:091e511ce8a0 | 7221 | diagLED(0, hb, !hb); |
mjr | 2:c174f9ee414a | 7222 | } |
mjr | 1:d913e0afb2ac | 7223 | |
mjr | 1:d913e0afb2ac | 7224 | // reset the heartbeat timer |
mjr | 1:d913e0afb2ac | 7225 | hbTimer.reset(); |
mjr | 5:a70c0bce770d | 7226 | ++hbcnt; |
mjr | 1:d913e0afb2ac | 7227 | } |
mjr | 74:822a92bc11d2 | 7228 | |
mjr | 74:822a92bc11d2 | 7229 | // collect statistics on the main loop time, if desired |
mjr | 74:822a92bc11d2 | 7230 | IF_DIAG( |
mjr | 76:7f5912b6340e | 7231 | mainLoopIterTime += mainLoopTimer.read_us(); |
mjr | 74:822a92bc11d2 | 7232 | mainLoopIterCount++; |
mjr | 74:822a92bc11d2 | 7233 | ) |
mjr | 1:d913e0afb2ac | 7234 | } |
mjr | 0:5acbbe3f4cf4 | 7235 | } |