An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Wed Dec 22 21:48:24 2021 +0000
Revision:
116:80ebb41bad94
Parent:
114:c2410d2cfaf1
Add Arnoz RigMaster and KLShield boards

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 111:42dc75fbe623 1 /* Copyright 2014, 2021 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 111:42dc75fbe623 69 // - TCD1103 optical linear imaging array. This is a CCD-based optical
mjr 111:42dc75fbe623 70 // imaging sensor, essentially an optical camera sensor, with a linear
mjr 111:42dc75fbe623 71 // (single-row) pixel file. This is similar to the venerable TSL1410R,
mjr 111:42dc75fbe623 72 // the original Pinscape plunger sensor. By arranging the sensor's
mjr 111:42dc75fbe623 73 // linear pixel array parallel to the plunger's axis of travel, we can
mjr 111:42dc75fbe623 74 // use the sensor to take pictures of the plunger, and then analyze the
mjr 111:42dc75fbe623 75 // images in software to determine the position by looking for the edge
mjr 111:42dc75fbe623 76 // between the tip of the plunger and the background. The TCD1103 is
mjr 111:42dc75fbe623 77 // produces low-noise images with 1500 pixels of resolution, and with
mjr 111:42dc75fbe623 78 // a small focusing lens, the software can reliably determine the
mjr 111:42dc75fbe623 79 // plunger position to a single pixel, which translates to about
mjr 111:42dc75fbe623 80 // 1/400" precision. The sensor can take these images (and we can
mjr 111:42dc75fbe623 81 // analyze them) at about 400 frames per second. Between the high
mjr 111:42dc75fbe623 82 // spatial resolution and fast update rate, this is the best sensor
mjr 111:42dc75fbe623 83 // I've found for this job.
mjr 111:42dc75fbe623 84 //
mjr 111:42dc75fbe623 85 // - VCNL4010 IR proximity sensor. This is an optical distance sensor that
mjr 111:42dc75fbe623 86 // estimates the distance to a target by measuring the intensity of a
mjr 111:42dc75fbe623 87 // reflected IR light signal that the sensor bounces off the target.
mjr 111:42dc75fbe623 88 // This is the sensor that's used in the commercial VirtuaPin "v3"
mjr 111:42dc75fbe623 89 // plunger kit. Since the VirtuaPin kit also uses a KL25Z as its
mjr 111:42dc75fbe623 90 // microcontroller, some users of that product have asked for support
mjr 111:42dc75fbe623 91 // for this sensor in the Pinscape code, so that they have the option
mjr 111:42dc75fbe623 92 // to use their hardware from that kit with the Pinscape software.
mjr 111:42dc75fbe623 93 // IR proximity sensors aren't very accurate or precise, so I don't
mjr 111:42dc75fbe623 94 // recommend it to people setting up a new system from scratch - it's
mjr 111:42dc75fbe623 95 // mostly for people who already have the VirtuaPin kit and don't want
mjr 111:42dc75fbe623 96 // to change their hardware to migrate to Pinscape. However, Adafruit
mjr 111:42dc75fbe623 97 // makes a breakout board for the sensor that you can use to set up a
mjr 111:42dc75fbe623 98 // new system if you want to try it - it only requires a few wires to
mjr 111:42dc75fbe623 99 // connect to the KL25Z. (In fact, it appears that VirtuaPin buys the
mjr 111:42dc75fbe623 100 // Adafruit breakout board and repackages it for their kit, so you'll
mjr 111:42dc75fbe623 101 // be using the same thing that VirtuaPin customers have.)
mjr 111:42dc75fbe623 102 //
mjr 87:8d35c74403af 103 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 104 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 105 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 106 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 107 // low precision.
mjr 6:cc35eb643e8f 108 //
mjr 87:8d35c74403af 109 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 110 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 111 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 112 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 113 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 114 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 115 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 116 // supported, and works very well, but unfortunately the sensor is difficult
mjr 111:42dc75fbe623 117 // to find now since it's been discontinued by the manufacturer. Happily,
mjr 111:42dc75fbe623 118 // a good alternative is available: the Toshiba TCD1103, which is another
mjr 111:42dc75fbe623 119 // linear imaging sensor that works on a similar principle, but produces
mjr 111:42dc75fbe623 120 // even better results.
mjr 87:8d35c74403af 121 //
mjr 87:8d35c74403af 122 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 123 // sensor options.
mjr 87:8d35c74403af 124 //
mjr 87:8d35c74403af 125 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 126 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 127 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 128 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 129 //
mjr 77:0b96f6867312 130 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 131 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 132 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 133 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 134 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 135 //
mjr 53:9b2611964afc 136 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 137 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 138 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 139 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 140 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 141 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 142 // attached devices without any modifications.
mjr 5:a70c0bce770d 143 //
mjr 53:9b2611964afc 144 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 145 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 146 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 147 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 148 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 149 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 150 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 151 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 152 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 153 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 154 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 155 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 156 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 157 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 158 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 159 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 160 //
mjr 87:8d35c74403af 161 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 162 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 163 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 164 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 165 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 166 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 167 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 168 // virtual pinball project.
mjr 53:9b2611964afc 169 //
mjr 53:9b2611964afc 170 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 171 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 172 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 173 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 174 // built in to the boards.
mjr 87:8d35c74403af 175 //
mjr 87:8d35c74403af 176 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 177 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 178 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 179 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 180 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 181 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 182 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 183 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 184 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 185 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 186 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 187 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 188 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 189 //
mjr 38:091e511ce8a0 190 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 191 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 192 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 193 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 194 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 195 //
mjr 38:091e511ce8a0 196 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 197 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 198 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 199 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 200 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 201 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 202 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 203 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 204 // remote control transmitter feature below.
mjr 77:0b96f6867312 205 //
mjr 77:0b96f6867312 206 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 207 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 208 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 209 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 210 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 211 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 212 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 213 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 214 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 215 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 216 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 217 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 218 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 219 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 220 //
mjr 35:e959ffba78fd 221 //
mjr 35:e959ffba78fd 222 //
mjr 33:d832bcab089e 223 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 224 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 225 //
mjr 48:058ace2aed1d 226 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 227 //
mjr 48:058ace2aed1d 228 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 229 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 230 // has been established)
mjr 48:058ace2aed1d 231 //
mjr 48:058ace2aed1d 232 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 233 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 234 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 235 //
mjr 38:091e511ce8a0 236 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 237 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 238 // transmissions are failing.
mjr 38:091e511ce8a0 239 //
mjr 73:4e8ce0b18915 240 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 241 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 242 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 243 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 244 // enabled.
mjr 73:4e8ce0b18915 245 //
mjr 6:cc35eb643e8f 246 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 247 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 248 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 249 // no plunger sensor configured.
mjr 6:cc35eb643e8f 250 //
mjr 38:091e511ce8a0 251 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 252 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 253 //
mjr 48:058ace2aed1d 254 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 255 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 256 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 257 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 258 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 259 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 260 //
mjr 48:058ace2aed1d 261 //
mjr 48:058ace2aed1d 262 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 263 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 264 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 265 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 266 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 267 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 268 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 269 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 270
mjr 33:d832bcab089e 271
mjr 0:5acbbe3f4cf4 272 #include "mbed.h"
mjr 6:cc35eb643e8f 273 #include "math.h"
mjr 74:822a92bc11d2 274 #include "diags.h"
mjr 48:058ace2aed1d 275 #include "pinscape.h"
mjr 79:682ae3171a08 276 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 277 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 278 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 279 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 280 #include "crc32.h"
mjr 26:cb71c4af2912 281 #include "TLC5940.h"
mjr 87:8d35c74403af 282 #include "TLC59116.h"
mjr 34:6b981a2afab7 283 #include "74HC595.h"
mjr 35:e959ffba78fd 284 #include "nvm.h"
mjr 48:058ace2aed1d 285 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 286 #include "IRReceiver.h"
mjr 77:0b96f6867312 287 #include "IRTransmitter.h"
mjr 77:0b96f6867312 288 #include "NewPwm.h"
mjr 74:822a92bc11d2 289
mjr 82:4f6209cb5c33 290 // plunger sensors
mjr 82:4f6209cb5c33 291 #include "plunger.h"
mjr 82:4f6209cb5c33 292 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 293 #include "potSensor.h"
mjr 82:4f6209cb5c33 294 #include "quadSensor.h"
mjr 82:4f6209cb5c33 295 #include "nullSensor.h"
mjr 82:4f6209cb5c33 296 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 297 #include "distanceSensor.h"
mjr 87:8d35c74403af 298 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 299 #include "rotarySensor.h"
mjr 100:1ff35c07217c 300 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 301
mjr 2:c174f9ee414a 302
mjr 21:5048e16cc9ef 303 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 304 #include "config.h"
mjr 17:ab3cec0c8bf4 305
mjr 53:9b2611964afc 306
mjr 53:9b2611964afc 307 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 308 //
mjr 112:8ed709f455c0 309 // placement new
mjr 112:8ed709f455c0 310 //
mjr 112:8ed709f455c0 311 void* operator new (size_t, void *p) { return p; }
mjr 112:8ed709f455c0 312
mjr 112:8ed709f455c0 313
mjr 112:8ed709f455c0 314 // --------------------------------------------------------------------------
mjr 112:8ed709f455c0 315 //
mjr 53:9b2611964afc 316 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 317 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 318 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 319 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 320 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 321 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 322 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 323 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 324 // interface.
mjr 53:9b2611964afc 325 //
mjr 53:9b2611964afc 326 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 327 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 328 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 329 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 330 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 331 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 332 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 333 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 334 //
mjr 53:9b2611964afc 335 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 336 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 337 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 338 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 339 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 340 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 341 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 342 //
mjr 53:9b2611964afc 343 const char *getOpenSDAID()
mjr 53:9b2611964afc 344 {
mjr 53:9b2611964afc 345 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 346 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 347 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 348
mjr 53:9b2611964afc 349 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 350 }
mjr 53:9b2611964afc 351
mjr 53:9b2611964afc 352 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 353 //
mjr 53:9b2611964afc 354 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 355 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 356 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 357 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 358 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 359 // want from this.
mjr 53:9b2611964afc 360 //
mjr 53:9b2611964afc 361 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 362 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 363 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 364 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 365 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 366 // macros.
mjr 53:9b2611964afc 367 //
mjr 53:9b2611964afc 368 const char *getBuildID()
mjr 53:9b2611964afc 369 {
mjr 53:9b2611964afc 370 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 371 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 372 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 373
mjr 53:9b2611964afc 374 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 375 }
mjr 53:9b2611964afc 376
mjr 74:822a92bc11d2 377 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 378 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 379 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 380 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 381 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 382 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 383 Timer mainLoopTimer;
mjr 76:7f5912b6340e 384 #endif
mjr 76:7f5912b6340e 385
mjr 53:9b2611964afc 386
mjr 5:a70c0bce770d 387 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 388 //
mjr 38:091e511ce8a0 389 // Forward declarations
mjr 38:091e511ce8a0 390 //
mjr 38:091e511ce8a0 391 void setNightMode(bool on);
mjr 38:091e511ce8a0 392 void toggleNightMode();
mjr 38:091e511ce8a0 393
mjr 38:091e511ce8a0 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 // utilities
mjr 17:ab3cec0c8bf4 396
mjr 77:0b96f6867312 397 // int/float point square of a number
mjr 77:0b96f6867312 398 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 399 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 400
mjr 26:cb71c4af2912 401 // floating point rounding
mjr 26:cb71c4af2912 402 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 403
mjr 17:ab3cec0c8bf4 404
mjr 33:d832bcab089e 405 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 406 //
mjr 40:cc0d9814522b 407 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 408 // the running state.
mjr 40:cc0d9814522b 409 //
mjr 77:0b96f6867312 410 class ExtTimer: public Timer
mjr 40:cc0d9814522b 411 {
mjr 40:cc0d9814522b 412 public:
mjr 77:0b96f6867312 413 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 414
mjr 40:cc0d9814522b 415 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 416 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 417
mjr 40:cc0d9814522b 418 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 419
mjr 40:cc0d9814522b 420 private:
mjr 40:cc0d9814522b 421 bool running;
mjr 40:cc0d9814522b 422 };
mjr 40:cc0d9814522b 423
mjr 53:9b2611964afc 424
mjr 53:9b2611964afc 425 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 426 //
mjr 33:d832bcab089e 427 // USB product version number
mjr 5:a70c0bce770d 428 //
mjr 47:df7a88cd249c 429 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 430
mjr 33:d832bcab089e 431 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 432 //
mjr 6:cc35eb643e8f 433 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 434 //
mjr 6:cc35eb643e8f 435 #define JOYMAX 4096
mjr 6:cc35eb643e8f 436
mjr 9:fd65b0a94720 437
mjr 17:ab3cec0c8bf4 438 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 439 //
mjr 40:cc0d9814522b 440 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 441 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 442 //
mjr 35:e959ffba78fd 443
mjr 35:e959ffba78fd 444 // unsigned 16-bit integer
mjr 35:e959ffba78fd 445 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 446 {
mjr 35:e959ffba78fd 447 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 448 }
mjr 40:cc0d9814522b 449 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 450 {
mjr 40:cc0d9814522b 451 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 452 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 453 }
mjr 35:e959ffba78fd 454
mjr 35:e959ffba78fd 455 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 456 {
mjr 35:e959ffba78fd 457 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 458 }
mjr 40:cc0d9814522b 459 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 460 {
mjr 40:cc0d9814522b 461 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 462 }
mjr 35:e959ffba78fd 463
mjr 35:e959ffba78fd 464 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 465 {
mjr 35:e959ffba78fd 466 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 467 }
mjr 40:cc0d9814522b 468 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 469 {
mjr 40:cc0d9814522b 470 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 471 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 472 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 473 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 474 }
mjr 35:e959ffba78fd 475
mjr 35:e959ffba78fd 476 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 477 {
mjr 35:e959ffba78fd 478 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 479 }
mjr 35:e959ffba78fd 480
mjr 53:9b2611964afc 481 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 482 //
mjr 53:9b2611964afc 483 // The internal mbed PinName format is
mjr 53:9b2611964afc 484 //
mjr 53:9b2611964afc 485 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 486 //
mjr 53:9b2611964afc 487 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 488 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 489 //
mjr 53:9b2611964afc 490 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 491 // pin name fits in 8 bits:
mjr 53:9b2611964afc 492 //
mjr 53:9b2611964afc 493 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 494 //
mjr 53:9b2611964afc 495 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 496 //
mjr 53:9b2611964afc 497 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 498 //
mjr 53:9b2611964afc 499 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 500 {
mjr 53:9b2611964afc 501 if (c == 0xFF)
mjr 53:9b2611964afc 502 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 503 else
mjr 53:9b2611964afc 504 return PinName(
mjr 53:9b2611964afc 505 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 506 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 507 }
mjr 40:cc0d9814522b 508 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 509 {
mjr 53:9b2611964afc 510 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 511 }
mjr 35:e959ffba78fd 512
mjr 35:e959ffba78fd 513
mjr 35:e959ffba78fd 514 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 515 //
mjr 38:091e511ce8a0 516 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 517 //
mjr 38:091e511ce8a0 518 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 519 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 520 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 521 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 522 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 523 // SPI capability.
mjr 38:091e511ce8a0 524 //
mjr 38:091e511ce8a0 525 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 526
mjr 73:4e8ce0b18915 527 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 528 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 529 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 530 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 531
mjr 38:091e511ce8a0 532 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 533 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 534 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 535 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 536 {
mjr 73:4e8ce0b18915 537 // remember the new state
mjr 73:4e8ce0b18915 538 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 539
mjr 73:4e8ce0b18915 540 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 541 // applying it to the blue LED
mjr 73:4e8ce0b18915 542 if (diagLEDState == 0)
mjr 77:0b96f6867312 543 {
mjr 77:0b96f6867312 544 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 545 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 546 }
mjr 73:4e8ce0b18915 547
mjr 73:4e8ce0b18915 548 // set the new state
mjr 38:091e511ce8a0 549 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 550 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 551 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 552 }
mjr 38:091e511ce8a0 553
mjr 73:4e8ce0b18915 554 // update the LEDs with the current state
mjr 73:4e8ce0b18915 555 void diagLED(void)
mjr 73:4e8ce0b18915 556 {
mjr 73:4e8ce0b18915 557 diagLED(
mjr 73:4e8ce0b18915 558 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 559 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 560 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 561 }
mjr 73:4e8ce0b18915 562
mjr 106:e9e3b46132c1 563 // check an output port or pin assignment to see if it conflicts with
mjr 38:091e511ce8a0 564 // an on-board LED segment
mjr 38:091e511ce8a0 565 struct LedSeg
mjr 38:091e511ce8a0 566 {
mjr 38:091e511ce8a0 567 bool r, g, b;
mjr 38:091e511ce8a0 568 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 569
mjr 106:e9e3b46132c1 570 // check an output port to see if it conflicts with one of the LED ports
mjr 38:091e511ce8a0 571 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 572 {
mjr 38:091e511ce8a0 573 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 574 // our on-board LED segments
mjr 38:091e511ce8a0 575 int t = pc.typ;
mjr 38:091e511ce8a0 576 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 106:e9e3b46132c1 577 check(pc.pin);
mjr 106:e9e3b46132c1 578 }
mjr 106:e9e3b46132c1 579
mjr 106:e9e3b46132c1 580 // check a pin to see if it conflicts with one of the diagnostic LED ports
mjr 106:e9e3b46132c1 581 void check(uint8_t pinId)
mjr 106:e9e3b46132c1 582 {
mjr 106:e9e3b46132c1 583 PinName pin = wirePinName(pinId);
mjr 106:e9e3b46132c1 584 if (pin == LED1)
mjr 106:e9e3b46132c1 585 r = true;
mjr 106:e9e3b46132c1 586 else if (pin == LED2)
mjr 106:e9e3b46132c1 587 g = true;
mjr 106:e9e3b46132c1 588 else if (pin == LED3)
mjr 106:e9e3b46132c1 589 b = true;
mjr 38:091e511ce8a0 590 }
mjr 38:091e511ce8a0 591 };
mjr 38:091e511ce8a0 592
mjr 38:091e511ce8a0 593 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 594 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 595 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 596 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 597 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 598 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 599 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 600 {
mjr 38:091e511ce8a0 601 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 602 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 603 LedSeg l;
mjr 38:091e511ce8a0 604 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 605 l.check(cfg.outPort[i]);
mjr 106:e9e3b46132c1 606
mjr 106:e9e3b46132c1 607 // check the button inputs
mjr 106:e9e3b46132c1 608 for (int i = 0 ; i < countof(cfg.button) ; ++i)
mjr 106:e9e3b46132c1 609 l.check(cfg.button[i].pin);
mjr 106:e9e3b46132c1 610
mjr 106:e9e3b46132c1 611 // check plunger inputs
mjr 106:e9e3b46132c1 612 if (cfg.plunger.enabled && cfg.plunger.sensorType != PlungerType_None)
mjr 106:e9e3b46132c1 613 {
mjr 106:e9e3b46132c1 614 for (int i = 0 ; i < countof(cfg.plunger.sensorPin) ; ++i)
mjr 106:e9e3b46132c1 615 l.check(cfg.plunger.sensorPin[i]);
mjr 107:8f3c7aeae7e0 616
mjr 107:8f3c7aeae7e0 617 l.check(cfg.plunger.cal.btn);
mjr 107:8f3c7aeae7e0 618 l.check(cfg.plunger.cal.led);
mjr 106:e9e3b46132c1 619 }
mjr 106:e9e3b46132c1 620
mjr 106:e9e3b46132c1 621 // check the TV ON pin assignments
mjr 106:e9e3b46132c1 622 l.check(cfg.TVON.statusPin);
mjr 106:e9e3b46132c1 623 l.check(cfg.TVON.latchPin);
mjr 106:e9e3b46132c1 624 l.check(cfg.TVON.relayPin);
mjr 106:e9e3b46132c1 625
mjr 106:e9e3b46132c1 626 // check the TLC5940 pins
mjr 106:e9e3b46132c1 627 if (cfg.tlc5940.nchips != 0)
mjr 106:e9e3b46132c1 628 {
mjr 106:e9e3b46132c1 629 l.check(cfg.tlc5940.sin);
mjr 106:e9e3b46132c1 630 l.check(cfg.tlc5940.sclk);
mjr 106:e9e3b46132c1 631 l.check(cfg.tlc5940.xlat);
mjr 106:e9e3b46132c1 632 l.check(cfg.tlc5940.blank);
mjr 106:e9e3b46132c1 633 l.check(cfg.tlc5940.gsclk);
mjr 106:e9e3b46132c1 634 }
mjr 106:e9e3b46132c1 635
mjr 106:e9e3b46132c1 636 // check 74HC595 pin assignments
mjr 106:e9e3b46132c1 637 if (cfg.hc595.nchips != 0)
mjr 106:e9e3b46132c1 638 {
mjr 106:e9e3b46132c1 639 l.check(cfg.hc595.sin);
mjr 106:e9e3b46132c1 640 l.check(cfg.hc595.sclk);
mjr 106:e9e3b46132c1 641 l.check(cfg.hc595.latch);
mjr 106:e9e3b46132c1 642 l.check(cfg.hc595.ena);
mjr 106:e9e3b46132c1 643 }
mjr 106:e9e3b46132c1 644
mjr 106:e9e3b46132c1 645 // check TLC59116 pin assignments
mjr 106:e9e3b46132c1 646 if (cfg.tlc59116.chipMask != 0)
mjr 106:e9e3b46132c1 647 {
mjr 106:e9e3b46132c1 648 l.check(cfg.tlc59116.sda);
mjr 106:e9e3b46132c1 649 l.check(cfg.tlc59116.scl);
mjr 106:e9e3b46132c1 650 l.check(cfg.tlc59116.reset);
mjr 106:e9e3b46132c1 651 }
mjr 106:e9e3b46132c1 652
mjr 106:e9e3b46132c1 653 // check the IR remove control hardware
mjr 106:e9e3b46132c1 654 l.check(cfg.IR.sensor);
mjr 106:e9e3b46132c1 655 l.check(cfg.IR.emitter);
mjr 106:e9e3b46132c1 656
mjr 106:e9e3b46132c1 657 // We now know which segments are taken for other uses and which
mjr 38:091e511ce8a0 658 // are free. Create diagnostic ports for the ones not claimed for
mjr 106:e9e3b46132c1 659 // other purposes.
mjr 38:091e511ce8a0 660 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 661 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 662 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 663 }
mjr 38:091e511ce8a0 664
mjr 38:091e511ce8a0 665
mjr 38:091e511ce8a0 666 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 667 //
mjr 76:7f5912b6340e 668 // LedWiz emulation
mjr 76:7f5912b6340e 669 //
mjr 76:7f5912b6340e 670
mjr 76:7f5912b6340e 671 // LedWiz output states.
mjr 76:7f5912b6340e 672 //
mjr 76:7f5912b6340e 673 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 674 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 675 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 676 // The two axes are independent.
mjr 76:7f5912b6340e 677 //
mjr 76:7f5912b6340e 678 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 679 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 680 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 681 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 682 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 683 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 684 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 685 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 686
mjr 76:7f5912b6340e 687 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 688 static uint8_t *wizOn;
mjr 76:7f5912b6340e 689
mjr 76:7f5912b6340e 690 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 691 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 692 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 693 //
mjr 76:7f5912b6340e 694 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 695 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 696 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 697 // 130 = flash on / off
mjr 76:7f5912b6340e 698 // 131 = on / ramp down
mjr 76:7f5912b6340e 699 // 132 = ramp up / on
mjr 5:a70c0bce770d 700 //
mjr 76:7f5912b6340e 701 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 702 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 703 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 704 static uint8_t *wizVal;
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 707 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 708 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 709 // by the extended protocol:
mjr 76:7f5912b6340e 710 //
mjr 76:7f5912b6340e 711 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 712 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 713 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 714 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 715 // if the brightness is non-zero.
mjr 76:7f5912b6340e 716 //
mjr 76:7f5912b6340e 717 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 718 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 719 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 720 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 721 // 0..255 range.
mjr 26:cb71c4af2912 722 //
mjr 76:7f5912b6340e 723 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 724 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 725 // level.
mjr 26:cb71c4af2912 726 //
mjr 76:7f5912b6340e 727 static uint8_t *outLevel;
mjr 76:7f5912b6340e 728
mjr 76:7f5912b6340e 729
mjr 76:7f5912b6340e 730 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 731 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 732 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 733 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 734 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 735 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 736 //
mjr 76:7f5912b6340e 737 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 738 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 739 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 740 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 741 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 742 // at the maximum size.
mjr 76:7f5912b6340e 743 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 744 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 745
mjr 26:cb71c4af2912 746 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 747 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 748 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 749 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 750 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 751
mjr 76:7f5912b6340e 752
mjr 76:7f5912b6340e 753 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 754 //
mjr 76:7f5912b6340e 755 // Output Ports
mjr 76:7f5912b6340e 756 //
mjr 76:7f5912b6340e 757 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 758 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 759 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 760 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 761 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 762 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 763 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 764 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 765 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 766 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 767 // you have to ration pins among features.
mjr 76:7f5912b6340e 768 //
mjr 87:8d35c74403af 769 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 770 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 771 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 772 //
mjr 87:8d35c74403af 773 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 774 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 775 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 776 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 777 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 778 //
mjr 87:8d35c74403af 779 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 780 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 781 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 782 //
mjr 87:8d35c74403af 783 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 784 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 785 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 786 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 787 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 788 // for the chime board outputs.
mjr 76:7f5912b6340e 789 //
mjr 76:7f5912b6340e 790 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 791 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 792 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 793 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 794 //
mjr 76:7f5912b6340e 795 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 796 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 797 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 798 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 799 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 800 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 801 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 802 // of physical devices they're connected to.
mjr 76:7f5912b6340e 803
mjr 76:7f5912b6340e 804
mjr 26:cb71c4af2912 805 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 806 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 807 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 808 class LwOut
mjr 6:cc35eb643e8f 809 {
mjr 6:cc35eb643e8f 810 public:
mjr 40:cc0d9814522b 811 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 812 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 814 };
mjr 26:cb71c4af2912 815
mjr 35:e959ffba78fd 816 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 817 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 818 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 819 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 820 // numbering.
mjr 35:e959ffba78fd 821 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 822 {
mjr 33:d832bcab089e 823 public:
mjr 35:e959ffba78fd 824 LwVirtualOut() { }
mjr 40:cc0d9814522b 825 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 826 };
mjr 26:cb71c4af2912 827
mjr 34:6b981a2afab7 828 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 829 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 830 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 831 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 832 {
mjr 34:6b981a2afab7 833 public:
mjr 34:6b981a2afab7 834 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 835 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 836
mjr 34:6b981a2afab7 837 private:
mjr 53:9b2611964afc 838 // underlying physical output
mjr 34:6b981a2afab7 839 LwOut *out;
mjr 34:6b981a2afab7 840 };
mjr 34:6b981a2afab7 841
mjr 53:9b2611964afc 842 // Global ZB Launch Ball state
mjr 53:9b2611964afc 843 bool zbLaunchOn = false;
mjr 53:9b2611964afc 844
mjr 53:9b2611964afc 845 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 846 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 847 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 848 {
mjr 53:9b2611964afc 849 public:
mjr 53:9b2611964afc 850 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 851 virtual void set(uint8_t val)
mjr 53:9b2611964afc 852 {
mjr 53:9b2611964afc 853 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 854 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 855
mjr 53:9b2611964afc 856 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 857 out->set(val);
mjr 53:9b2611964afc 858 }
mjr 53:9b2611964afc 859
mjr 53:9b2611964afc 860 private:
mjr 53:9b2611964afc 861 // underlying physical or virtual output
mjr 53:9b2611964afc 862 LwOut *out;
mjr 53:9b2611964afc 863 };
mjr 53:9b2611964afc 864
mjr 53:9b2611964afc 865
mjr 40:cc0d9814522b 866 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 867 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 868 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 869 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 870 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 871 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 872 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 873 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 874 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 875 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 876 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 877 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 878 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 879 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 880 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 881 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 882 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 883 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 884 };
mjr 40:cc0d9814522b 885
mjr 40:cc0d9814522b 886 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 887 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 888 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 889 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 890 {
mjr 40:cc0d9814522b 891 public:
mjr 40:cc0d9814522b 892 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 893 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 894
mjr 40:cc0d9814522b 895 private:
mjr 40:cc0d9814522b 896 LwOut *out;
mjr 40:cc0d9814522b 897 };
mjr 40:cc0d9814522b 898
mjr 77:0b96f6867312 899 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 900 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 901 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 902 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 903
mjr 40:cc0d9814522b 904 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 905 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 906 // mode is engaged.
mjr 40:cc0d9814522b 907 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 908 {
mjr 40:cc0d9814522b 909 public:
mjr 40:cc0d9814522b 910 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 911 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 912
mjr 53:9b2611964afc 913 private:
mjr 53:9b2611964afc 914 LwOut *out;
mjr 53:9b2611964afc 915 };
mjr 53:9b2611964afc 916
mjr 53:9b2611964afc 917 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 918 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 919 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 920 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 921 {
mjr 53:9b2611964afc 922 public:
mjr 53:9b2611964afc 923 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 924 virtual void set(uint8_t)
mjr 53:9b2611964afc 925 {
mjr 53:9b2611964afc 926 // ignore the host value and simply show the current
mjr 53:9b2611964afc 927 // night mode setting
mjr 53:9b2611964afc 928 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 929 }
mjr 40:cc0d9814522b 930
mjr 40:cc0d9814522b 931 private:
mjr 40:cc0d9814522b 932 LwOut *out;
mjr 40:cc0d9814522b 933 };
mjr 40:cc0d9814522b 934
mjr 26:cb71c4af2912 935
mjr 89:c43cd923401c 936 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 937 // top of a physical pin output.
mjr 89:c43cd923401c 938 //
mjr 89:c43cd923401c 939 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 940 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 941 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 942 // level is ON.
mjr 89:c43cd923401c 943 //
mjr 89:c43cd923401c 944 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 945 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 946 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 947 //
mjr 89:c43cd923401c 948 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 949 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 950 // power and start a timer.
mjr 89:c43cd923401c 951 //
mjr 89:c43cd923401c 952 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 953 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 954 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 955 //
mjr 89:c43cd923401c 956 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 957 {
mjr 89:c43cd923401c 958 public:
mjr 89:c43cd923401c 959 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 960 // the configuration.
mjr 89:c43cd923401c 961 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 962 : out(o), params(params)
mjr 89:c43cd923401c 963 {
mjr 89:c43cd923401c 964 // initially OFF
mjr 89:c43cd923401c 965 state = 0;
mjr 89:c43cd923401c 966 }
mjr 89:c43cd923401c 967
mjr 89:c43cd923401c 968 virtual void set(uint8_t level)
mjr 89:c43cd923401c 969 {
mjr 98:4df3c0f7e707 970 // remember the new nominal level set by the client
mjr 89:c43cd923401c 971 val = level;
mjr 89:c43cd923401c 972
mjr 89:c43cd923401c 973 // update the physical output according to our current timing state
mjr 89:c43cd923401c 974 switch (state)
mjr 89:c43cd923401c 975 {
mjr 89:c43cd923401c 976 case 0:
mjr 89:c43cd923401c 977 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 978 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 979 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 980 // off, so there's no change.
mjr 89:c43cd923401c 981 if (level != 0)
mjr 89:c43cd923401c 982 {
mjr 89:c43cd923401c 983 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 984 state = 1;
mjr 89:c43cd923401c 985
mjr 89:c43cd923401c 986 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 987 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 988 // requested
mjr 89:c43cd923401c 989 out->set(level);
mjr 89:c43cd923401c 990
mjr 89:c43cd923401c 991 // add myself to the pending timer list
mjr 89:c43cd923401c 992 pending[nPending++] = this;
mjr 89:c43cd923401c 993
mjr 89:c43cd923401c 994 // note the starting time
mjr 89:c43cd923401c 995 t0 = timer.read_us();
mjr 89:c43cd923401c 996 }
mjr 89:c43cd923401c 997 break;
mjr 89:c43cd923401c 998
mjr 89:c43cd923401c 999 case 1:
mjr 89:c43cd923401c 1000 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 1001 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 1002 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 1003 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 1004 out->set(level);
mjr 89:c43cd923401c 1005 if (level == 0)
mjr 89:c43cd923401c 1006 {
mjr 89:c43cd923401c 1007 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 1008 // so we need to remove it from the list.
mjr 89:c43cd923401c 1009 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 1010 {
mjr 89:c43cd923401c 1011 // is this us?
mjr 89:c43cd923401c 1012 if (pending[i] == this)
mjr 89:c43cd923401c 1013 {
mjr 89:c43cd923401c 1014 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 1015 // last list entry
mjr 89:c43cd923401c 1016 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1017
mjr 89:c43cd923401c 1018 // no need to look any further
mjr 89:c43cd923401c 1019 break;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021 }
mjr 89:c43cd923401c 1022
mjr 89:c43cd923401c 1023 // switch to state 0 (off)
mjr 89:c43cd923401c 1024 state = 0;
mjr 89:c43cd923401c 1025 }
mjr 89:c43cd923401c 1026 break;
mjr 89:c43cd923401c 1027
mjr 89:c43cd923401c 1028 case 2:
mjr 89:c43cd923401c 1029 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 1030 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 1031 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 1032 // as the upper bound.
mjr 89:c43cd923401c 1033 if (level == 0)
mjr 89:c43cd923401c 1034 {
mjr 89:c43cd923401c 1035 // switching off - turn off the physical output
mjr 89:c43cd923401c 1036 out->set(0);
mjr 89:c43cd923401c 1037
mjr 89:c43cd923401c 1038 // go to state 0 (off)
mjr 89:c43cd923401c 1039 state = 0;
mjr 89:c43cd923401c 1040 }
mjr 89:c43cd923401c 1041 else
mjr 89:c43cd923401c 1042 {
mjr 89:c43cd923401c 1043 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 1044 // lower of the requested power and the hold power
mjr 89:c43cd923401c 1045 uint8_t hold = holdPower();
mjr 89:c43cd923401c 1046 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 1047 }
mjr 89:c43cd923401c 1048 break;
mjr 89:c43cd923401c 1049 }
mjr 89:c43cd923401c 1050 }
mjr 89:c43cd923401c 1051
mjr 89:c43cd923401c 1052 // Class initialization
mjr 89:c43cd923401c 1053 static void classInit(Config &cfg)
mjr 89:c43cd923401c 1054 {
mjr 89:c43cd923401c 1055 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 1056 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 1057 // all of these outputs.
mjr 89:c43cd923401c 1058 int n = 0;
mjr 89:c43cd923401c 1059 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 1060 {
mjr 89:c43cd923401c 1061 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 1062 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 1063 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 1064 ++n;
mjr 89:c43cd923401c 1065 }
mjr 89:c43cd923401c 1066
mjr 89:c43cd923401c 1067 // allocate space for the pending timer list
mjr 89:c43cd923401c 1068 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 1069
mjr 89:c43cd923401c 1070 // there's nothing in the pending list yet
mjr 89:c43cd923401c 1071 nPending = 0;
mjr 89:c43cd923401c 1072
mjr 89:c43cd923401c 1073 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 1074 // use it to figure elapsed times.
mjr 89:c43cd923401c 1075 timer.start();
mjr 89:c43cd923401c 1076 }
mjr 89:c43cd923401c 1077
mjr 89:c43cd923401c 1078 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 1079 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 1080 static void poll()
mjr 89:c43cd923401c 1081 {
mjr 89:c43cd923401c 1082 // note the current time
mjr 89:c43cd923401c 1083 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 1084
mjr 89:c43cd923401c 1085 // go through the timer list
mjr 89:c43cd923401c 1086 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 1087 {
mjr 89:c43cd923401c 1088 // get the port
mjr 89:c43cd923401c 1089 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 1090
mjr 89:c43cd923401c 1091 // assume we'll keep it
mjr 89:c43cd923401c 1092 bool remove = false;
mjr 89:c43cd923401c 1093
mjr 89:c43cd923401c 1094 // check if the port is still on
mjr 89:c43cd923401c 1095 if (port->state != 0)
mjr 89:c43cd923401c 1096 {
mjr 89:c43cd923401c 1097 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1098 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1099 {
mjr 89:c43cd923401c 1100 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1101 port->state = 2;
mjr 89:c43cd923401c 1102
mjr 89:c43cd923401c 1103 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1104 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1105 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1106 uint8_t val = port->val;
mjr 89:c43cd923401c 1107 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1108
mjr 89:c43cd923401c 1109 // we're done with the timer
mjr 89:c43cd923401c 1110 remove = true;
mjr 89:c43cd923401c 1111 }
mjr 89:c43cd923401c 1112 }
mjr 89:c43cd923401c 1113 else
mjr 89:c43cd923401c 1114 {
mjr 89:c43cd923401c 1115 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1116 // it from the timer list
mjr 89:c43cd923401c 1117 remove = true;
mjr 89:c43cd923401c 1118 }
mjr 89:c43cd923401c 1119
mjr 89:c43cd923401c 1120 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1121 if (remove)
mjr 89:c43cd923401c 1122 {
mjr 89:c43cd923401c 1123 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1124 // the last entry in the list.
mjr 89:c43cd923401c 1125 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1126
mjr 89:c43cd923401c 1127 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1128 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1129 }
mjr 89:c43cd923401c 1130 else
mjr 89:c43cd923401c 1131 {
mjr 89:c43cd923401c 1132 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1133 ++i;
mjr 89:c43cd923401c 1134 }
mjr 89:c43cd923401c 1135 }
mjr 89:c43cd923401c 1136 }
mjr 89:c43cd923401c 1137
mjr 89:c43cd923401c 1138 protected:
mjr 89:c43cd923401c 1139 // underlying physical output
mjr 89:c43cd923401c 1140 LwOut *out;
mjr 89:c43cd923401c 1141
mjr 89:c43cd923401c 1142 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1143 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1144 uint32_t t0;
mjr 89:c43cd923401c 1145
mjr 89:c43cd923401c 1146 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1147 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1148 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1149 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1150 // if it's lower.
mjr 89:c43cd923401c 1151 uint8_t val;
mjr 89:c43cd923401c 1152
mjr 89:c43cd923401c 1153 // Current port state:
mjr 89:c43cd923401c 1154 //
mjr 89:c43cd923401c 1155 // 0 = off
mjr 89:c43cd923401c 1156 // 1 = on at initial full power
mjr 89:c43cd923401c 1157 // 2 = on at hold power
mjr 89:c43cd923401c 1158 uint8_t state;
mjr 89:c43cd923401c 1159
mjr 89:c43cd923401c 1160 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1161 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1162 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1163 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1164 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1165 uint8_t params;
mjr 89:c43cd923401c 1166
mjr 99:8139b0c274f4 1167 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1168 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1169 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1170
mjr 89:c43cd923401c 1171 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1172 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1173
mjr 89:c43cd923401c 1174 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1175 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1176 // (which runs continuously).
mjr 89:c43cd923401c 1177 static Timer timer;
mjr 89:c43cd923401c 1178
mjr 89:c43cd923401c 1179 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1180 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1181 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1182 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1183 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1184 static uint8_t nPending;
mjr 89:c43cd923401c 1185 };
mjr 89:c43cd923401c 1186
mjr 89:c43cd923401c 1187 // Flipper Logic statics
mjr 89:c43cd923401c 1188 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1189 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1190 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1191
mjr 99:8139b0c274f4 1192 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1193 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1194 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1195 {
mjr 98:4df3c0f7e707 1196 public:
mjr 99:8139b0c274f4 1197 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1198 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1199 : out(o), params(params)
mjr 98:4df3c0f7e707 1200 {
mjr 98:4df3c0f7e707 1201 // initially OFF
mjr 98:4df3c0f7e707 1202 state = 0;
mjr 98:4df3c0f7e707 1203 }
mjr 98:4df3c0f7e707 1204
mjr 98:4df3c0f7e707 1205 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1206 {
mjr 98:4df3c0f7e707 1207 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1208 switch (state)
mjr 98:4df3c0f7e707 1209 {
mjr 98:4df3c0f7e707 1210 case 0:
mjr 98:4df3c0f7e707 1211 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1212 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1213 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1214 // off, so there's no change.
mjr 98:4df3c0f7e707 1215 if (level != 0)
mjr 98:4df3c0f7e707 1216 {
mjr 98:4df3c0f7e707 1217 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1218 // logically on)
mjr 98:4df3c0f7e707 1219 state = 1;
mjr 98:4df3c0f7e707 1220
mjr 98:4df3c0f7e707 1221 // set the requested output level
mjr 98:4df3c0f7e707 1222 out->set(level);
mjr 98:4df3c0f7e707 1223
mjr 98:4df3c0f7e707 1224 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1225 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1226
mjr 98:4df3c0f7e707 1227 // note the starting time
mjr 98:4df3c0f7e707 1228 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1229 }
mjr 98:4df3c0f7e707 1230 break;
mjr 98:4df3c0f7e707 1231
mjr 98:4df3c0f7e707 1232 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1233 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1234 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1235 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1236 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1237 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1238 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1239 //
mjr 98:4df3c0f7e707 1240 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1241 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1242 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1243 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1244 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1245 if (level != 0)
mjr 98:4df3c0f7e707 1246 {
mjr 98:4df3c0f7e707 1247 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1248 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1249 out->set(level);
mjr 98:4df3c0f7e707 1250 state = 1;
mjr 98:4df3c0f7e707 1251 }
mjr 98:4df3c0f7e707 1252 else
mjr 98:4df3c0f7e707 1253 {
mjr 98:4df3c0f7e707 1254 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1255 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1256 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1257 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1258 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1259 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1260 // time requirement.
mjr 98:4df3c0f7e707 1261 state = 2;
mjr 98:4df3c0f7e707 1262 }
mjr 98:4df3c0f7e707 1263 break;
mjr 98:4df3c0f7e707 1264
mjr 98:4df3c0f7e707 1265 case 3:
mjr 99:8139b0c274f4 1266 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1267 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1268 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1269 out->set(level);
mjr 98:4df3c0f7e707 1270
mjr 98:4df3c0f7e707 1271 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1272 if (level == 0)
mjr 99:8139b0c274f4 1273 {
mjr 99:8139b0c274f4 1274 // return to the OFF state
mjr 99:8139b0c274f4 1275 state = 0;
mjr 99:8139b0c274f4 1276
mjr 99:8139b0c274f4 1277 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1278 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1279 // port.
mjr 99:8139b0c274f4 1280 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1281 {
mjr 99:8139b0c274f4 1282 // is this us?
mjr 99:8139b0c274f4 1283 if (pending[i] == this)
mjr 99:8139b0c274f4 1284 {
mjr 99:8139b0c274f4 1285 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1286 // last list entry
mjr 99:8139b0c274f4 1287 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1288
mjr 99:8139b0c274f4 1289 // no need to look any further
mjr 99:8139b0c274f4 1290 break;
mjr 99:8139b0c274f4 1291 }
mjr 99:8139b0c274f4 1292 }
mjr 99:8139b0c274f4 1293 }
mjr 99:8139b0c274f4 1294 break;
mjr 99:8139b0c274f4 1295
mjr 99:8139b0c274f4 1296 case 4:
mjr 99:8139b0c274f4 1297 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1298 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1299 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1300 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1301 if (level == 0)
mjr 98:4df3c0f7e707 1302 state = 0;
mjr 98:4df3c0f7e707 1303 break;
mjr 98:4df3c0f7e707 1304 }
mjr 98:4df3c0f7e707 1305 }
mjr 98:4df3c0f7e707 1306
mjr 98:4df3c0f7e707 1307 // Class initialization
mjr 98:4df3c0f7e707 1308 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1309 {
mjr 98:4df3c0f7e707 1310 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1311 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1312 // all of these outputs.
mjr 98:4df3c0f7e707 1313 int n = 0;
mjr 98:4df3c0f7e707 1314 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1315 {
mjr 98:4df3c0f7e707 1316 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1317 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1318 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1319 ++n;
mjr 98:4df3c0f7e707 1320 }
mjr 98:4df3c0f7e707 1321
mjr 98:4df3c0f7e707 1322 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1323 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1324
mjr 98:4df3c0f7e707 1325 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1326 nPending = 0;
mjr 98:4df3c0f7e707 1327
mjr 98:4df3c0f7e707 1328 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1329 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1330 timer.start();
mjr 98:4df3c0f7e707 1331 }
mjr 98:4df3c0f7e707 1332
mjr 98:4df3c0f7e707 1333 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1334 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1335 static void poll()
mjr 98:4df3c0f7e707 1336 {
mjr 98:4df3c0f7e707 1337 // note the current time
mjr 98:4df3c0f7e707 1338 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1339
mjr 98:4df3c0f7e707 1340 // go through the timer list
mjr 98:4df3c0f7e707 1341 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1342 {
mjr 98:4df3c0f7e707 1343 // get the port
mjr 99:8139b0c274f4 1344 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1345
mjr 98:4df3c0f7e707 1346 // assume we'll keep it
mjr 98:4df3c0f7e707 1347 bool remove = false;
mjr 98:4df3c0f7e707 1348
mjr 99:8139b0c274f4 1349 // check our state
mjr 99:8139b0c274f4 1350 switch (port->state)
mjr 98:4df3c0f7e707 1351 {
mjr 99:8139b0c274f4 1352 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1353 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1354 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1355 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1356 {
mjr 98:4df3c0f7e707 1357 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1358 // it advances to the next state.
mjr 98:4df3c0f7e707 1359 if (port->state == 1)
mjr 98:4df3c0f7e707 1360 {
mjr 99:8139b0c274f4 1361 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1362 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1363 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1364 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1365 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1366 port->state = 3;
mjr 99:8139b0c274f4 1367
mjr 99:8139b0c274f4 1368 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1369 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1370 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1371 // port off.
mjr 99:8139b0c274f4 1372 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1373 remove = true;
mjr 98:4df3c0f7e707 1374 }
mjr 98:4df3c0f7e707 1375 else
mjr 98:4df3c0f7e707 1376 {
mjr 98:4df3c0f7e707 1377 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1378 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1379 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1380 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1381 // the port off now.
mjr 98:4df3c0f7e707 1382 port->out->set(0);
mjr 98:4df3c0f7e707 1383
mjr 98:4df3c0f7e707 1384 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1385 port->state = 0;
mjr 99:8139b0c274f4 1386
mjr 99:8139b0c274f4 1387 // we're done with the timer
mjr 99:8139b0c274f4 1388 remove = true;
mjr 98:4df3c0f7e707 1389 }
mjr 99:8139b0c274f4 1390 }
mjr 99:8139b0c274f4 1391 break;
mjr 99:8139b0c274f4 1392
mjr 99:8139b0c274f4 1393 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1394 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1395 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1396 {
mjr 99:8139b0c274f4 1397 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1398 // port.
mjr 99:8139b0c274f4 1399 port->out->set(0);
mjr 98:4df3c0f7e707 1400
mjr 99:8139b0c274f4 1401 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1402 port->state = 4;
mjr 99:8139b0c274f4 1403
mjr 99:8139b0c274f4 1404 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1405 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1406 remove = true;
mjr 98:4df3c0f7e707 1407 }
mjr 99:8139b0c274f4 1408 break;
mjr 98:4df3c0f7e707 1409 }
mjr 98:4df3c0f7e707 1410
mjr 98:4df3c0f7e707 1411 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1412 if (remove)
mjr 98:4df3c0f7e707 1413 {
mjr 98:4df3c0f7e707 1414 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1415 // the last entry in the list.
mjr 98:4df3c0f7e707 1416 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1417
mjr 98:4df3c0f7e707 1418 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1419 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1420 }
mjr 98:4df3c0f7e707 1421 else
mjr 98:4df3c0f7e707 1422 {
mjr 98:4df3c0f7e707 1423 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1424 ++i;
mjr 98:4df3c0f7e707 1425 }
mjr 98:4df3c0f7e707 1426 }
mjr 98:4df3c0f7e707 1427 }
mjr 98:4df3c0f7e707 1428
mjr 98:4df3c0f7e707 1429 protected:
mjr 98:4df3c0f7e707 1430 // underlying physical output
mjr 98:4df3c0f7e707 1431 LwOut *out;
mjr 98:4df3c0f7e707 1432
mjr 98:4df3c0f7e707 1433 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1434 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1435 uint32_t t0;
mjr 98:4df3c0f7e707 1436
mjr 98:4df3c0f7e707 1437 // Current port state:
mjr 98:4df3c0f7e707 1438 //
mjr 98:4df3c0f7e707 1439 // 0 = off
mjr 99:8139b0c274f4 1440 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1441 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1442 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1443 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1444 //
mjr 99:8139b0c274f4 1445 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1446 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1447 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1448 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1449 //
mjr 99:8139b0c274f4 1450 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1451 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1452 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1453 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1454 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1455 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1456 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1457 //
mjr 99:8139b0c274f4 1458 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1459 // time limit expires:
mjr 99:8139b0c274f4 1460 //
mjr 99:8139b0c274f4 1461 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1462 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1463 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1464 //
mjr 98:4df3c0f7e707 1465 uint8_t state;
mjr 98:4df3c0f7e707 1466
mjr 99:8139b0c274f4 1467 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1468 // ON times.
mjr 99:8139b0c274f4 1469 uint8_t params;
mjr 98:4df3c0f7e707 1470
mjr 98:4df3c0f7e707 1471 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1472 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1473 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1474 static Timer timer;
mjr 98:4df3c0f7e707 1475
mjr 98:4df3c0f7e707 1476 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1477 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1478
mjr 99:8139b0c274f4 1479 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1480 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1481 // into our time table.
mjr 99:8139b0c274f4 1482 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1483
mjr 99:8139b0c274f4 1484 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1485 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1486 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1487 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1488
mjr 98:4df3c0f7e707 1489 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1490 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1491 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1492 // ON intervals.
mjr 99:8139b0c274f4 1493 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1494 static uint8_t nPending;
mjr 98:4df3c0f7e707 1495 };
mjr 98:4df3c0f7e707 1496
mjr 98:4df3c0f7e707 1497 // Min Time Out statics
mjr 99:8139b0c274f4 1498 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1499 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1500 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1501 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1502 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1503 1000,
mjr 98:4df3c0f7e707 1504 2000,
mjr 98:4df3c0f7e707 1505 5000,
mjr 98:4df3c0f7e707 1506 10000,
mjr 98:4df3c0f7e707 1507 20000,
mjr 98:4df3c0f7e707 1508 40000,
mjr 98:4df3c0f7e707 1509 80000,
mjr 98:4df3c0f7e707 1510 100000,
mjr 98:4df3c0f7e707 1511 200000,
mjr 98:4df3c0f7e707 1512 300000,
mjr 98:4df3c0f7e707 1513 400000,
mjr 98:4df3c0f7e707 1514 500000,
mjr 98:4df3c0f7e707 1515 600000,
mjr 98:4df3c0f7e707 1516 700000,
mjr 98:4df3c0f7e707 1517 800000
mjr 98:4df3c0f7e707 1518 };
mjr 89:c43cd923401c 1519
mjr 35:e959ffba78fd 1520 //
mjr 35:e959ffba78fd 1521 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1522 // assignments set in config.h.
mjr 33:d832bcab089e 1523 //
mjr 35:e959ffba78fd 1524 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1525 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1526 {
mjr 35:e959ffba78fd 1527 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1528 {
mjr 53:9b2611964afc 1529 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1530 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1531 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1532 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1533 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1534 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1535 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1536 }
mjr 35:e959ffba78fd 1537 }
mjr 26:cb71c4af2912 1538
mjr 40:cc0d9814522b 1539 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1540 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1541 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1542 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1543 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1544 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1545 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1546 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1547 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1548 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1549 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1550 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1551 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1552 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1553 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1554 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1555 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1556 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1557 };
mjr 40:cc0d9814522b 1558
mjr 40:cc0d9814522b 1559 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1560 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1561 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1562 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1563 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1564 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1565 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1566 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1567 // are always 8 bits.
mjr 40:cc0d9814522b 1568 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1569 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1570 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1571 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1572 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1573 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1574 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1575 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1576 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1577 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1578 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1579 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1580 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1581 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1582 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1583 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1584 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1585 };
mjr 40:cc0d9814522b 1586
mjr 26:cb71c4af2912 1587 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1588 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1589 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1590 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1591 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1592 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1593 {
mjr 26:cb71c4af2912 1594 public:
mjr 60:f38da020aa13 1595 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1596 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1597 {
mjr 26:cb71c4af2912 1598 if (val != prv)
mjr 40:cc0d9814522b 1599 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1600 }
mjr 60:f38da020aa13 1601 uint8_t idx;
mjr 40:cc0d9814522b 1602 uint8_t prv;
mjr 26:cb71c4af2912 1603 };
mjr 26:cb71c4af2912 1604
mjr 40:cc0d9814522b 1605 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1606 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1607 {
mjr 40:cc0d9814522b 1608 public:
mjr 60:f38da020aa13 1609 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1610 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1611 {
mjr 40:cc0d9814522b 1612 if (val != prv)
mjr 40:cc0d9814522b 1613 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1614 }
mjr 60:f38da020aa13 1615 uint8_t idx;
mjr 40:cc0d9814522b 1616 uint8_t prv;
mjr 40:cc0d9814522b 1617 };
mjr 40:cc0d9814522b 1618
mjr 87:8d35c74403af 1619 //
mjr 87:8d35c74403af 1620 // TLC59116 interface object
mjr 87:8d35c74403af 1621 //
mjr 87:8d35c74403af 1622 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1623 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1624 {
mjr 87:8d35c74403af 1625 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1626 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1627 {
mjr 87:8d35c74403af 1628 // set up the interface
mjr 87:8d35c74403af 1629 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1630 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1631 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1632 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1633
mjr 87:8d35c74403af 1634 // initialize the chips
mjr 87:8d35c74403af 1635 tlc59116->init();
mjr 87:8d35c74403af 1636 }
mjr 87:8d35c74403af 1637 }
mjr 87:8d35c74403af 1638
mjr 87:8d35c74403af 1639 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1640 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1641 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1642 // (0-15).
mjr 87:8d35c74403af 1643 //
mjr 87:8d35c74403af 1644 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1645 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1646 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1647 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1648 {
mjr 87:8d35c74403af 1649 public:
mjr 87:8d35c74403af 1650 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1651 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1652 {
mjr 87:8d35c74403af 1653 if (val != prv)
mjr 87:8d35c74403af 1654 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1655 }
mjr 87:8d35c74403af 1656
mjr 87:8d35c74403af 1657 protected:
mjr 87:8d35c74403af 1658 uint8_t addr;
mjr 87:8d35c74403af 1659 uint8_t port;
mjr 87:8d35c74403af 1660 uint8_t prv;
mjr 87:8d35c74403af 1661 };
mjr 87:8d35c74403af 1662
mjr 87:8d35c74403af 1663
mjr 87:8d35c74403af 1664 //
mjr 34:6b981a2afab7 1665 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1666 // config.h.
mjr 87:8d35c74403af 1667 //
mjr 35:e959ffba78fd 1668 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1669
mjr 35:e959ffba78fd 1670 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1671 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1672 {
mjr 35:e959ffba78fd 1673 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1674 {
mjr 53:9b2611964afc 1675 hc595 = new HC595(
mjr 53:9b2611964afc 1676 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1677 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1678 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1679 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1680 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1681 hc595->init();
mjr 35:e959ffba78fd 1682 hc595->update();
mjr 35:e959ffba78fd 1683 }
mjr 35:e959ffba78fd 1684 }
mjr 34:6b981a2afab7 1685
mjr 34:6b981a2afab7 1686 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1687 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1688 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1689 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1690 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1691 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1692 {
mjr 33:d832bcab089e 1693 public:
mjr 60:f38da020aa13 1694 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1695 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1696 {
mjr 34:6b981a2afab7 1697 if (val != prv)
mjr 40:cc0d9814522b 1698 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1699 }
mjr 60:f38da020aa13 1700 uint8_t idx;
mjr 40:cc0d9814522b 1701 uint8_t prv;
mjr 33:d832bcab089e 1702 };
mjr 33:d832bcab089e 1703
mjr 26:cb71c4af2912 1704
mjr 40:cc0d9814522b 1705
mjr 64:ef7ca92dff36 1706 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1707 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1708 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1709 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1710 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1711 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1712 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1713 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1714 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1715 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1716 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1717 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1718 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1719 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1720 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1721 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1722 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1723 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1724 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1725 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1726 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1727 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1728 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1729 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1730 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1731 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1732 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1733 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1734 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1735 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1736 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1737 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1738 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1739 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1740 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1741 };
mjr 26:cb71c4af2912 1742
mjr 64:ef7ca92dff36 1743
mjr 92:f264fbaa1be5 1744 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1745 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1746 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1747 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1748 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1749 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1750 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1751 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1752 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1753 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1754 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1755 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1756 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1757 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1758 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1759 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1760 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1761 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1762 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1763 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1764 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1765 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1766 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1767 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1768 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1769 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1770 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1771 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1772 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1773 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1774 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1775 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1776 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1777 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1778 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1779 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1780 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1781 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1782 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1783 };
mjr 64:ef7ca92dff36 1784
mjr 77:0b96f6867312 1785 // Polled-update PWM output list
mjr 74:822a92bc11d2 1786 //
mjr 77:0b96f6867312 1787 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1788 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1789 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1790 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1791 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1792 //
mjr 92:f264fbaa1be5 1793 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1794 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1795 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1796 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1797 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1798 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1799 //
mjr 92:f264fbaa1be5 1800 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1801 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1802 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1803 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1804 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1805 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1806 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1807 // enough to become noticeable.
mjr 92:f264fbaa1be5 1808 //
mjr 92:f264fbaa1be5 1809 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1810 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1811 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1812 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1813 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1814 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1815 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1816 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1817 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1818 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1819 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1820 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1821 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1822 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1823 //
mjr 92:f264fbaa1be5 1824 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1825 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1826 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1827 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1828 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1829 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1830 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1831 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1832 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1833 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1834 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1835 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1836 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1837 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1838 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1839 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1840 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1841 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1842 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1843 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1844 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1845 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1846 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1847 //
mjr 77:0b96f6867312 1848 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1849 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1850 // of polled items.
mjr 74:822a92bc11d2 1851 static int numPolledPwm;
mjr 74:822a92bc11d2 1852 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1853
mjr 74:822a92bc11d2 1854 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1855 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1856 {
mjr 6:cc35eb643e8f 1857 public:
mjr 43:7a6364d82a41 1858 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1859 {
mjr 77:0b96f6867312 1860 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1861 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1862 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1863
mjr 94:0476b3e2b996 1864 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1865 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1866 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1867 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1868 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1869 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1870 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1871 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1872 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1873 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1874 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1875 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1876 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1877 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1878 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1879 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1880
mjr 94:0476b3e2b996 1881 // set the initial brightness value
mjr 77:0b96f6867312 1882 set(initVal);
mjr 43:7a6364d82a41 1883 }
mjr 74:822a92bc11d2 1884
mjr 40:cc0d9814522b 1885 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1886 {
mjr 77:0b96f6867312 1887 // save the new value
mjr 74:822a92bc11d2 1888 this->val = val;
mjr 77:0b96f6867312 1889
mjr 77:0b96f6867312 1890 // commit it to the hardware
mjr 77:0b96f6867312 1891 commit();
mjr 13:72dda449c3c0 1892 }
mjr 74:822a92bc11d2 1893
mjr 74:822a92bc11d2 1894 // handle periodic update polling
mjr 74:822a92bc11d2 1895 void poll()
mjr 74:822a92bc11d2 1896 {
mjr 77:0b96f6867312 1897 commit();
mjr 74:822a92bc11d2 1898 }
mjr 74:822a92bc11d2 1899
mjr 74:822a92bc11d2 1900 protected:
mjr 77:0b96f6867312 1901 virtual void commit()
mjr 74:822a92bc11d2 1902 {
mjr 74:822a92bc11d2 1903 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1904 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1905 }
mjr 74:822a92bc11d2 1906
mjr 77:0b96f6867312 1907 NewPwmOut p;
mjr 77:0b96f6867312 1908 uint8_t val;
mjr 6:cc35eb643e8f 1909 };
mjr 26:cb71c4af2912 1910
mjr 74:822a92bc11d2 1911 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1912 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1913 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1914 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1915 {
mjr 64:ef7ca92dff36 1916 public:
mjr 64:ef7ca92dff36 1917 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1918 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1919 {
mjr 64:ef7ca92dff36 1920 }
mjr 74:822a92bc11d2 1921
mjr 74:822a92bc11d2 1922 protected:
mjr 77:0b96f6867312 1923 virtual void commit()
mjr 64:ef7ca92dff36 1924 {
mjr 74:822a92bc11d2 1925 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1926 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1927 }
mjr 64:ef7ca92dff36 1928 };
mjr 64:ef7ca92dff36 1929
mjr 74:822a92bc11d2 1930 // poll the PWM outputs
mjr 74:822a92bc11d2 1931 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1932 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1933 void pollPwmUpdates()
mjr 74:822a92bc11d2 1934 {
mjr 94:0476b3e2b996 1935 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1936 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1937 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1938 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1939 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1940 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1941 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1942 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1943 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1944 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1945 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1946 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1947 // viewer.
mjr 94:0476b3e2b996 1948 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1949 {
mjr 74:822a92bc11d2 1950 // time the run for statistics collection
mjr 74:822a92bc11d2 1951 IF_DIAG(
mjr 74:822a92bc11d2 1952 Timer t;
mjr 74:822a92bc11d2 1953 t.start();
mjr 74:822a92bc11d2 1954 )
mjr 74:822a92bc11d2 1955
mjr 74:822a92bc11d2 1956 // poll each output
mjr 74:822a92bc11d2 1957 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1958 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1959
mjr 74:822a92bc11d2 1960 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1961 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1962
mjr 74:822a92bc11d2 1963 // collect statistics
mjr 74:822a92bc11d2 1964 IF_DIAG(
mjr 76:7f5912b6340e 1965 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1966 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1967 )
mjr 74:822a92bc11d2 1968 }
mjr 74:822a92bc11d2 1969 }
mjr 64:ef7ca92dff36 1970
mjr 26:cb71c4af2912 1971 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1972 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1973 {
mjr 6:cc35eb643e8f 1974 public:
mjr 43:7a6364d82a41 1975 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1976 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1977 {
mjr 13:72dda449c3c0 1978 if (val != prv)
mjr 40:cc0d9814522b 1979 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1980 }
mjr 6:cc35eb643e8f 1981 DigitalOut p;
mjr 40:cc0d9814522b 1982 uint8_t prv;
mjr 6:cc35eb643e8f 1983 };
mjr 26:cb71c4af2912 1984
mjr 29:582472d0bc57 1985 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1986 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1987 // port n (0-based).
mjr 35:e959ffba78fd 1988 //
mjr 35:e959ffba78fd 1989 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1990 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1991 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1992 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1993 // 74HC595 ports).
mjr 33:d832bcab089e 1994 static int numOutputs;
mjr 33:d832bcab089e 1995 static LwOut **lwPin;
mjr 33:d832bcab089e 1996
mjr 38:091e511ce8a0 1997 // create a single output pin
mjr 53:9b2611964afc 1998 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1999 {
mjr 38:091e511ce8a0 2000 // get this item's values
mjr 38:091e511ce8a0 2001 int typ = pc.typ;
mjr 38:091e511ce8a0 2002 int pin = pc.pin;
mjr 38:091e511ce8a0 2003 int flags = pc.flags;
mjr 40:cc0d9814522b 2004 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 2005 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 2006 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 2007 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 2008 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 2009
mjr 89:c43cd923401c 2010 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 2011 if (flipperLogic)
mjr 89:c43cd923401c 2012 gamma = false;
mjr 38:091e511ce8a0 2013
mjr 38:091e511ce8a0 2014 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 2015 LwOut *lwp;
mjr 38:091e511ce8a0 2016 switch (typ)
mjr 38:091e511ce8a0 2017 {
mjr 38:091e511ce8a0 2018 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 2019 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 2020 if (pin != 0)
mjr 64:ef7ca92dff36 2021 {
mjr 64:ef7ca92dff36 2022 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 2023 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 2024 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 2025 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 2026 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 2027 {
mjr 64:ef7ca92dff36 2028 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 2029 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 2030
mjr 64:ef7ca92dff36 2031 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 2032 gamma = false;
mjr 64:ef7ca92dff36 2033 }
mjr 64:ef7ca92dff36 2034 else
mjr 64:ef7ca92dff36 2035 {
mjr 64:ef7ca92dff36 2036 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 2037 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 2038 }
mjr 64:ef7ca92dff36 2039 }
mjr 48:058ace2aed1d 2040 else
mjr 48:058ace2aed1d 2041 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2042 break;
mjr 38:091e511ce8a0 2043
mjr 38:091e511ce8a0 2044 case PortTypeGPIODig:
mjr 38:091e511ce8a0 2045 // Digital GPIO port
mjr 48:058ace2aed1d 2046 if (pin != 0)
mjr 48:058ace2aed1d 2047 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 2048 else
mjr 48:058ace2aed1d 2049 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2050 break;
mjr 38:091e511ce8a0 2051
mjr 38:091e511ce8a0 2052 case PortTypeTLC5940:
mjr 38:091e511ce8a0 2053 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 2054 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 2055 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 2056 {
mjr 40:cc0d9814522b 2057 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 2058 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 2059 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 2060 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 2061 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 2062 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 2063 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 2064 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 2065 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 2066 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 2067 // for this unlikely case.
mjr 40:cc0d9814522b 2068 if (gamma && !activeLow)
mjr 40:cc0d9814522b 2069 {
mjr 40:cc0d9814522b 2070 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 2071 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 2072
mjr 40:cc0d9814522b 2073 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 2074 gamma = false;
mjr 40:cc0d9814522b 2075 }
mjr 40:cc0d9814522b 2076 else
mjr 40:cc0d9814522b 2077 {
mjr 40:cc0d9814522b 2078 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 2079 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 2080 }
mjr 40:cc0d9814522b 2081 }
mjr 38:091e511ce8a0 2082 else
mjr 40:cc0d9814522b 2083 {
mjr 40:cc0d9814522b 2084 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 2085 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 2086 }
mjr 38:091e511ce8a0 2087 break;
mjr 38:091e511ce8a0 2088
mjr 38:091e511ce8a0 2089 case PortType74HC595:
mjr 87:8d35c74403af 2090 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 2091 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 2092 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 2093 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 2094 else
mjr 38:091e511ce8a0 2095 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2096 break;
mjr 87:8d35c74403af 2097
mjr 87:8d35c74403af 2098 case PortTypeTLC59116:
mjr 87:8d35c74403af 2099 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2100 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2101 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2102 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2103 if (tlc59116 != 0)
mjr 87:8d35c74403af 2104 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2105 break;
mjr 38:091e511ce8a0 2106
mjr 38:091e511ce8a0 2107 case PortTypeVirtual:
mjr 43:7a6364d82a41 2108 case PortTypeDisabled:
mjr 38:091e511ce8a0 2109 default:
mjr 38:091e511ce8a0 2110 // virtual or unknown
mjr 38:091e511ce8a0 2111 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2112 break;
mjr 38:091e511ce8a0 2113 }
mjr 38:091e511ce8a0 2114
mjr 40:cc0d9814522b 2115 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2116 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2117 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2118 if (activeLow)
mjr 38:091e511ce8a0 2119 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2120
mjr 89:c43cd923401c 2121 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2122 if (flipperLogic)
mjr 89:c43cd923401c 2123 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2124
mjr 99:8139b0c274f4 2125 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2126 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2127 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2128 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2129 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2130
mjr 89:c43cd923401c 2131 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2132 if (noisy)
mjr 40:cc0d9814522b 2133 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2134
mjr 40:cc0d9814522b 2135 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2136 if (gamma)
mjr 40:cc0d9814522b 2137 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2138
mjr 53:9b2611964afc 2139 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2140 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2141 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2142 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2143 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2144
mjr 53:9b2611964afc 2145 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2146 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2147 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2148
mjr 38:091e511ce8a0 2149 // turn it off initially
mjr 38:091e511ce8a0 2150 lwp->set(0);
mjr 38:091e511ce8a0 2151
mjr 38:091e511ce8a0 2152 // return the pin
mjr 38:091e511ce8a0 2153 return lwp;
mjr 38:091e511ce8a0 2154 }
mjr 38:091e511ce8a0 2155
mjr 6:cc35eb643e8f 2156 // initialize the output pin array
mjr 35:e959ffba78fd 2157 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2158 {
mjr 99:8139b0c274f4 2159 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2160 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2161 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2162
mjr 35:e959ffba78fd 2163 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2164 // total number of ports.
mjr 35:e959ffba78fd 2165 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2166 int i;
mjr 35:e959ffba78fd 2167 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2168 {
mjr 35:e959ffba78fd 2169 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2170 {
mjr 35:e959ffba78fd 2171 numOutputs = i;
mjr 34:6b981a2afab7 2172 break;
mjr 34:6b981a2afab7 2173 }
mjr 33:d832bcab089e 2174 }
mjr 33:d832bcab089e 2175
mjr 73:4e8ce0b18915 2176 // allocate the pin array
mjr 73:4e8ce0b18915 2177 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2178
mjr 73:4e8ce0b18915 2179 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2180 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2181
mjr 114:c2410d2cfaf1 2182 // initialize all brightness levels to 0 (off)
mjr 114:c2410d2cfaf1 2183 memset(outLevel, 0, numOutputs);
mjr 114:c2410d2cfaf1 2184
mjr 73:4e8ce0b18915 2185 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2186 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2187 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2188
mjr 73:4e8ce0b18915 2189 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2190 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2191 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2192
mjr 73:4e8ce0b18915 2193 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2194 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2195 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2196
mjr 35:e959ffba78fd 2197 // create the pin interface object for each port
mjr 35:e959ffba78fd 2198 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2199 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2200 }
mjr 6:cc35eb643e8f 2201
mjr 76:7f5912b6340e 2202 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2203 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2204 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2205 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2206 // equivalent to 48.
mjr 40:cc0d9814522b 2207 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2208 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2209 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2210 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2211 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2212 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2213 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2214 255, 255
mjr 40:cc0d9814522b 2215 };
mjr 40:cc0d9814522b 2216
mjr 76:7f5912b6340e 2217 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2218 // level (1..48)
mjr 76:7f5912b6340e 2219 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2220 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2221 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2222 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2223 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2224 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2225 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2226 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2227 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2228 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2229 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2230 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2231 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2232 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2233 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2234 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2235 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2236 };
mjr 76:7f5912b6340e 2237
mjr 74:822a92bc11d2 2238 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2239 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2240 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2241 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2242 //
mjr 74:822a92bc11d2 2243 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2244 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2245 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2246 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2247 //
mjr 74:822a92bc11d2 2248 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2249 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2250 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2251 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2252 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2253 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2254 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2255 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2256 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2257 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2258 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2259 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2260 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2261 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2262 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2263 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2264 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2265 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2266 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2267 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2268
mjr 74:822a92bc11d2 2269 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2270 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2272 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2273 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2274 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2275 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2276 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2277 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2278 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2279 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2280 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2281 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2282 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2283 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2284 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2285 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2286
mjr 74:822a92bc11d2 2287 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2288 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2289 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2290 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2291 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2292 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2293 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2294 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2295 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2296 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2297 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2298 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2299 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2300 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2301 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2302 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2303 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2304
mjr 74:822a92bc11d2 2305 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2306 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2307 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2308 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2309 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2310 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2311 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2312 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2313 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2314 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2315 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2316 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2317 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2318 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2319 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2320 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2321 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2322 };
mjr 74:822a92bc11d2 2323
mjr 74:822a92bc11d2 2324 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2325 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2326 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2327
mjr 76:7f5912b6340e 2328 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2329 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2330
mjr 76:7f5912b6340e 2331 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2332 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2333 // outputs on each cycle.
mjr 29:582472d0bc57 2334 static void wizPulse()
mjr 29:582472d0bc57 2335 {
mjr 76:7f5912b6340e 2336 // current bank
mjr 76:7f5912b6340e 2337 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2338
mjr 76:7f5912b6340e 2339 // start a timer for statistics collection
mjr 76:7f5912b6340e 2340 IF_DIAG(
mjr 76:7f5912b6340e 2341 Timer t;
mjr 76:7f5912b6340e 2342 t.start();
mjr 76:7f5912b6340e 2343 )
mjr 76:7f5912b6340e 2344
mjr 76:7f5912b6340e 2345 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2346 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2347 //
mjr 76:7f5912b6340e 2348 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2349 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2350 //
mjr 76:7f5912b6340e 2351 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2352 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2353 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2354 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2355 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2356 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2357 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2358 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2359 // current cycle.
mjr 76:7f5912b6340e 2360 //
mjr 76:7f5912b6340e 2361 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2362 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2363 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2364 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2365 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2366 //
mjr 76:7f5912b6340e 2367 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2368 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2369 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2370 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2371 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2372 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2373 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2374 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2375 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2376 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2377 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2378 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2379 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2380 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2381 // bit counts.
mjr 76:7f5912b6340e 2382 //
mjr 76:7f5912b6340e 2383 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2384 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2385 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2386 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2387 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2388 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2389 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2390 // one division for another!
mjr 76:7f5912b6340e 2391 //
mjr 76:7f5912b6340e 2392 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2393 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2394 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2395 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2396 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2397 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2398 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2399 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2400 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2401 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2402 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2403 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2404 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2405 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2406 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2407 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2408 // remainder calculation anyway.
mjr 76:7f5912b6340e 2409 //
mjr 76:7f5912b6340e 2410 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2411 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2412 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2413 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2414 //
mjr 76:7f5912b6340e 2415 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2416 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2417 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2418 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2419 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2420 // the result, since we started with 32.
mjr 76:7f5912b6340e 2421 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2422 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2423 };
mjr 76:7f5912b6340e 2424 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2425
mjr 76:7f5912b6340e 2426 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2427 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2428 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2429 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2430 toPort = numOutputs;
mjr 76:7f5912b6340e 2431
mjr 76:7f5912b6340e 2432 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2433 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2434 {
mjr 76:7f5912b6340e 2435 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2436 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2437 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2438 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2439 if (wizOn[i])
mjr 29:582472d0bc57 2440 {
mjr 76:7f5912b6340e 2441 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2442 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2443 {
mjr 76:7f5912b6340e 2444 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2445 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2446 }
mjr 29:582472d0bc57 2447 }
mjr 76:7f5912b6340e 2448 }
mjr 76:7f5912b6340e 2449
mjr 34:6b981a2afab7 2450 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2451 if (hc595 != 0)
mjr 35:e959ffba78fd 2452 hc595->update();
mjr 76:7f5912b6340e 2453
mjr 76:7f5912b6340e 2454 // switch to the next bank
mjr 76:7f5912b6340e 2455 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2456 wizPulseBank = 0;
mjr 76:7f5912b6340e 2457
mjr 76:7f5912b6340e 2458 // collect timing statistics
mjr 76:7f5912b6340e 2459 IF_DIAG(
mjr 76:7f5912b6340e 2460 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2461 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2462 )
mjr 1:d913e0afb2ac 2463 }
mjr 38:091e511ce8a0 2464
mjr 76:7f5912b6340e 2465 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2466 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2467 {
mjr 76:7f5912b6340e 2468 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2469 if (wizOn[port])
mjr 76:7f5912b6340e 2470 {
mjr 76:7f5912b6340e 2471 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2472 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2473 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2474 // it on the next cycle.
mjr 76:7f5912b6340e 2475 int val = wizVal[port];
mjr 76:7f5912b6340e 2476 if (val <= 49)
mjr 76:7f5912b6340e 2477 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2478 }
mjr 76:7f5912b6340e 2479 else
mjr 76:7f5912b6340e 2480 {
mjr 76:7f5912b6340e 2481 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2482 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2483 }
mjr 73:4e8ce0b18915 2484 }
mjr 73:4e8ce0b18915 2485
mjr 73:4e8ce0b18915 2486 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2487 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2488 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2489 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2490 //
mjr 73:4e8ce0b18915 2491 void allOutputsOff()
mjr 73:4e8ce0b18915 2492 {
mjr 92:f264fbaa1be5 2493 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2494 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2495 {
mjr 73:4e8ce0b18915 2496 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2497 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2498 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2499 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2500 }
mjr 73:4e8ce0b18915 2501
mjr 73:4e8ce0b18915 2502 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2503 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2504 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2505
mjr 73:4e8ce0b18915 2506 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2507 if (hc595 != 0)
mjr 38:091e511ce8a0 2508 hc595->update();
mjr 38:091e511ce8a0 2509 }
mjr 38:091e511ce8a0 2510
mjr 74:822a92bc11d2 2511 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2512 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2513 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2514 // address any port group.
mjr 74:822a92bc11d2 2515 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2516 {
mjr 76:7f5912b6340e 2517 // update all on/off states in the group
mjr 74:822a92bc11d2 2518 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2519 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2520 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2521 {
mjr 74:822a92bc11d2 2522 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2523 if (bit == 0x100) {
mjr 74:822a92bc11d2 2524 bit = 1;
mjr 74:822a92bc11d2 2525 ++imsg;
mjr 74:822a92bc11d2 2526 }
mjr 74:822a92bc11d2 2527
mjr 74:822a92bc11d2 2528 // set the on/off state
mjr 76:7f5912b6340e 2529 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2530
mjr 76:7f5912b6340e 2531 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2532 updateLwPort(port);
mjr 74:822a92bc11d2 2533 }
mjr 74:822a92bc11d2 2534
mjr 74:822a92bc11d2 2535 // set the flash speed for the port group
mjr 74:822a92bc11d2 2536 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2537 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2538
mjr 76:7f5912b6340e 2539 // update 74HC959 outputs
mjr 76:7f5912b6340e 2540 if (hc595 != 0)
mjr 76:7f5912b6340e 2541 hc595->update();
mjr 74:822a92bc11d2 2542 }
mjr 74:822a92bc11d2 2543
mjr 74:822a92bc11d2 2544 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2545 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2546 {
mjr 74:822a92bc11d2 2547 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2548 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2549 {
mjr 74:822a92bc11d2 2550 // get the value
mjr 74:822a92bc11d2 2551 uint8_t v = data[i];
mjr 74:822a92bc11d2 2552
mjr 74:822a92bc11d2 2553 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2554 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2555 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2556 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2557 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2558 // as such.
mjr 74:822a92bc11d2 2559 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2560 v = 48;
mjr 74:822a92bc11d2 2561
mjr 74:822a92bc11d2 2562 // store it
mjr 76:7f5912b6340e 2563 wizVal[port] = v;
mjr 76:7f5912b6340e 2564
mjr 76:7f5912b6340e 2565 // update the port
mjr 76:7f5912b6340e 2566 updateLwPort(port);
mjr 74:822a92bc11d2 2567 }
mjr 74:822a92bc11d2 2568
mjr 76:7f5912b6340e 2569 // update 74HC595 outputs
mjr 76:7f5912b6340e 2570 if (hc595 != 0)
mjr 76:7f5912b6340e 2571 hc595->update();
mjr 74:822a92bc11d2 2572 }
mjr 74:822a92bc11d2 2573
mjr 77:0b96f6867312 2574 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2575 //
mjr 77:0b96f6867312 2576 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2577 //
mjr 77:0b96f6867312 2578
mjr 77:0b96f6867312 2579 // receiver
mjr 77:0b96f6867312 2580 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2581
mjr 77:0b96f6867312 2582 // transmitter
mjr 77:0b96f6867312 2583 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2584
mjr 77:0b96f6867312 2585 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2586 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2587 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2588 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2589 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2590 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2591 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2592 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2593 // configuration slot n
mjr 77:0b96f6867312 2594 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2595
mjr 78:1e00b3fa11af 2596 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2597 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2598 // protocol.
mjr 78:1e00b3fa11af 2599 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2600
mjr 78:1e00b3fa11af 2601 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2602 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2603 // while waiting for the rest.
mjr 78:1e00b3fa11af 2604 static struct
mjr 78:1e00b3fa11af 2605 {
mjr 78:1e00b3fa11af 2606 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2607 uint64_t code; // code
mjr 78:1e00b3fa11af 2608 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2609 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2610 } IRAdHocCmd;
mjr 88:98bce687e6c0 2611
mjr 77:0b96f6867312 2612
mjr 77:0b96f6867312 2613 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2614 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2615 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2616 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2617 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2618 // amount of time.
mjr 77:0b96f6867312 2619 Timer IRTimer;
mjr 77:0b96f6867312 2620
mjr 77:0b96f6867312 2621 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2622 // The states are:
mjr 77:0b96f6867312 2623 //
mjr 77:0b96f6867312 2624 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2625 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2626 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2627 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2628 //
mjr 77:0b96f6867312 2629 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2630 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2631 // received within a reasonable time.
mjr 77:0b96f6867312 2632 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2633
mjr 77:0b96f6867312 2634 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2635 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2636 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2637 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2638 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2639 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2640 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2641 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2642 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2643
mjr 78:1e00b3fa11af 2644 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2645 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2646 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2647 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2648 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2649 // index; 0 represents no command.
mjr 77:0b96f6867312 2650 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2651
mjr 77:0b96f6867312 2652 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2653 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2654 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2655 // command we received.
mjr 77:0b96f6867312 2656 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2657
mjr 77:0b96f6867312 2658 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2659 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2660 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2661 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2662 // distinct key press.
mjr 77:0b96f6867312 2663 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2664
mjr 78:1e00b3fa11af 2665
mjr 77:0b96f6867312 2666 // initialize
mjr 77:0b96f6867312 2667 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2668 {
mjr 77:0b96f6867312 2669 PinName pin;
mjr 77:0b96f6867312 2670
mjr 77:0b96f6867312 2671 // start the IR timer
mjr 77:0b96f6867312 2672 IRTimer.start();
mjr 77:0b96f6867312 2673
mjr 77:0b96f6867312 2674 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2675 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2676 {
mjr 77:0b96f6867312 2677 // no virtual buttons yet
mjr 77:0b96f6867312 2678 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2679 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2680
mjr 77:0b96f6867312 2681 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2682 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2683 {
mjr 77:0b96f6867312 2684 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2685 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2686 }
mjr 77:0b96f6867312 2687
mjr 77:0b96f6867312 2688 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2689 // real button inputs
mjr 77:0b96f6867312 2690 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2691 {
mjr 77:0b96f6867312 2692 // get the button
mjr 77:0b96f6867312 2693 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2694
mjr 77:0b96f6867312 2695 // check the unshifted button
mjr 77:0b96f6867312 2696 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2697 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2698 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2699 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2700
mjr 77:0b96f6867312 2701 // check the shifted button
mjr 77:0b96f6867312 2702 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2703 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2704 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2705 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2706 }
mjr 77:0b96f6867312 2707
mjr 77:0b96f6867312 2708 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2709 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2710 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2711
mjr 77:0b96f6867312 2712 // create the transmitter
mjr 77:0b96f6867312 2713 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2714
mjr 77:0b96f6867312 2715 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2716 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2717 {
mjr 77:0b96f6867312 2718 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2719 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2720 if (vb != 0xFF)
mjr 77:0b96f6867312 2721 {
mjr 77:0b96f6867312 2722 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2723 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2724 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2725 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2726 }
mjr 77:0b96f6867312 2727 }
mjr 77:0b96f6867312 2728 }
mjr 77:0b96f6867312 2729
mjr 77:0b96f6867312 2730 // if there's a receiver, set it up
mjr 77:0b96f6867312 2731 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2732 {
mjr 77:0b96f6867312 2733 // create the receiver
mjr 77:0b96f6867312 2734 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2735
mjr 77:0b96f6867312 2736 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2737 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2738 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2739
mjr 77:0b96f6867312 2740 // enable it
mjr 77:0b96f6867312 2741 ir_rx->enable();
mjr 77:0b96f6867312 2742
mjr 77:0b96f6867312 2743 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2744 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2745 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2746 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2747 {
mjr 77:0b96f6867312 2748 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2749 if (cb.protocol != 0
mjr 77:0b96f6867312 2750 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2751 {
mjr 77:0b96f6867312 2752 kbKeys = true;
mjr 77:0b96f6867312 2753 break;
mjr 77:0b96f6867312 2754 }
mjr 77:0b96f6867312 2755 }
mjr 77:0b96f6867312 2756 }
mjr 77:0b96f6867312 2757 }
mjr 77:0b96f6867312 2758
mjr 77:0b96f6867312 2759 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2760 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2761 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2762 {
mjr 77:0b96f6867312 2763 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2764 if (ir_tx != 0)
mjr 77:0b96f6867312 2765 {
mjr 77:0b96f6867312 2766 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2767 int slot = cmd - 1;
mjr 77:0b96f6867312 2768
mjr 77:0b96f6867312 2769 // press or release the virtual button
mjr 77:0b96f6867312 2770 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2771 }
mjr 77:0b96f6867312 2772 }
mjr 77:0b96f6867312 2773
mjr 78:1e00b3fa11af 2774 // Process IR input and output
mjr 77:0b96f6867312 2775 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2776 {
mjr 78:1e00b3fa11af 2777 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2778 if (ir_tx != 0)
mjr 77:0b96f6867312 2779 {
mjr 78:1e00b3fa11af 2780 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2781 // is ready to send, send it.
mjr 78:1e00b3fa11af 2782 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2783 {
mjr 78:1e00b3fa11af 2784 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2785 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2786 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2787 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2788
mjr 78:1e00b3fa11af 2789 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2790 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2791 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2792
mjr 78:1e00b3fa11af 2793 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2794 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2795 }
mjr 77:0b96f6867312 2796 }
mjr 78:1e00b3fa11af 2797
mjr 78:1e00b3fa11af 2798 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2799 if (ir_rx != 0)
mjr 77:0b96f6867312 2800 {
mjr 78:1e00b3fa11af 2801 // Time out any received command
mjr 78:1e00b3fa11af 2802 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2803 {
mjr 80:94dc2946871b 2804 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2805 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2806 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2807 if (t > 200000)
mjr 78:1e00b3fa11af 2808 IRCommandIn = 0;
mjr 80:94dc2946871b 2809 else if (t > 50000)
mjr 78:1e00b3fa11af 2810 IRKeyGap = false;
mjr 78:1e00b3fa11af 2811 }
mjr 78:1e00b3fa11af 2812
mjr 78:1e00b3fa11af 2813 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2814 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2815 {
mjr 78:1e00b3fa11af 2816 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2817 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2818 // limit.
mjr 78:1e00b3fa11af 2819 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2820 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2821 int n;
mjr 78:1e00b3fa11af 2822 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2823
mjr 78:1e00b3fa11af 2824 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2825 if (n != 0)
mjr 78:1e00b3fa11af 2826 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2827
mjr 78:1e00b3fa11af 2828 // check for a command
mjr 78:1e00b3fa11af 2829 IRCommand c;
mjr 78:1e00b3fa11af 2830 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2831 {
mjr 78:1e00b3fa11af 2832 // check the current learning state
mjr 78:1e00b3fa11af 2833 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2834 {
mjr 78:1e00b3fa11af 2835 case 1:
mjr 78:1e00b3fa11af 2836 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2837 // This is it.
mjr 78:1e00b3fa11af 2838 learnedIRCode = c;
mjr 78:1e00b3fa11af 2839
mjr 78:1e00b3fa11af 2840 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2841 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2842 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2843 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2844 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2845 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2846 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2847 break;
mjr 78:1e00b3fa11af 2848
mjr 78:1e00b3fa11af 2849 case 2:
mjr 78:1e00b3fa11af 2850 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2851 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2852 //
mjr 78:1e00b3fa11af 2853 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2854 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2855 //
mjr 78:1e00b3fa11af 2856 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2857 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2858 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2859 // them.
mjr 78:1e00b3fa11af 2860 //
mjr 78:1e00b3fa11af 2861 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2862 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2863 // over.
mjr 78:1e00b3fa11af 2864 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2865 && c.hasDittos
mjr 78:1e00b3fa11af 2866 && c.ditto)
mjr 78:1e00b3fa11af 2867 {
mjr 78:1e00b3fa11af 2868 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2869 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2870 }
mjr 78:1e00b3fa11af 2871 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2872 && c.hasDittos
mjr 78:1e00b3fa11af 2873 && !c.ditto
mjr 78:1e00b3fa11af 2874 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2875 {
mjr 78:1e00b3fa11af 2876 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2877 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2878 // protocol supports them
mjr 78:1e00b3fa11af 2879 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2880 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2881 }
mjr 78:1e00b3fa11af 2882 else
mjr 78:1e00b3fa11af 2883 {
mjr 78:1e00b3fa11af 2884 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2885 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2886 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2887 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2888 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2889 }
mjr 78:1e00b3fa11af 2890 break;
mjr 78:1e00b3fa11af 2891 }
mjr 77:0b96f6867312 2892
mjr 78:1e00b3fa11af 2893 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2894 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2895 // learning mode.
mjr 78:1e00b3fa11af 2896 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2897 {
mjr 78:1e00b3fa11af 2898 // figure the flags:
mjr 78:1e00b3fa11af 2899 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2900 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2901 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2902 flags |= 0x02;
mjr 78:1e00b3fa11af 2903
mjr 78:1e00b3fa11af 2904 // report the code
mjr 78:1e00b3fa11af 2905 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2906
mjr 78:1e00b3fa11af 2907 // exit learning mode
mjr 78:1e00b3fa11af 2908 IRLearningMode = 0;
mjr 77:0b96f6867312 2909 }
mjr 77:0b96f6867312 2910 }
mjr 77:0b96f6867312 2911
mjr 78:1e00b3fa11af 2912 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2913 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2914 {
mjr 78:1e00b3fa11af 2915 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2916 // zero data elements
mjr 78:1e00b3fa11af 2917 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2918
mjr 78:1e00b3fa11af 2919
mjr 78:1e00b3fa11af 2920 // cancel learning mode
mjr 77:0b96f6867312 2921 IRLearningMode = 0;
mjr 77:0b96f6867312 2922 }
mjr 77:0b96f6867312 2923 }
mjr 78:1e00b3fa11af 2924 else
mjr 77:0b96f6867312 2925 {
mjr 78:1e00b3fa11af 2926 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2927 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2928 ir_rx->process();
mjr 78:1e00b3fa11af 2929
mjr 78:1e00b3fa11af 2930 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2931 // have been read.
mjr 78:1e00b3fa11af 2932 IRCommand c;
mjr 78:1e00b3fa11af 2933 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2934 {
mjr 78:1e00b3fa11af 2935 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2936 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2937 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2938 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2939 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2940 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2941 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2942 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2943 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2944 //
mjr 78:1e00b3fa11af 2945 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2946 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2947 // command.
mjr 78:1e00b3fa11af 2948 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2949 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2950 {
mjr 78:1e00b3fa11af 2951 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2952 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2953 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2954 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2955 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2956 if (c.ditto)
mjr 78:1e00b3fa11af 2957 {
mjr 78:1e00b3fa11af 2958 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2959 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2960 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2961 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2962 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2963 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2964 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2965 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2966 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2967 }
mjr 78:1e00b3fa11af 2968 else
mjr 78:1e00b3fa11af 2969 {
mjr 78:1e00b3fa11af 2970 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2971 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2972 // prior command.
mjr 78:1e00b3fa11af 2973 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2974 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2975 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2976
mjr 78:1e00b3fa11af 2977 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2978 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2979 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2980 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2981 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2982 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2983 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2984 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2985 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2986 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2987 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2988 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2989 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2990 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2991 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2992 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2993 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2994 autoRepeat =
mjr 78:1e00b3fa11af 2995 repeat
mjr 78:1e00b3fa11af 2996 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2997 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2998 }
mjr 78:1e00b3fa11af 2999 }
mjr 78:1e00b3fa11af 3000
mjr 78:1e00b3fa11af 3001 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 3002 if (repeat)
mjr 78:1e00b3fa11af 3003 {
mjr 78:1e00b3fa11af 3004 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 3005 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 3006 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 3007 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 3008 // key press event.
mjr 78:1e00b3fa11af 3009 if (!autoRepeat)
mjr 78:1e00b3fa11af 3010 IRKeyGap = true;
mjr 78:1e00b3fa11af 3011
mjr 78:1e00b3fa11af 3012 // restart the key-up timer
mjr 78:1e00b3fa11af 3013 IRTimer.reset();
mjr 78:1e00b3fa11af 3014 }
mjr 78:1e00b3fa11af 3015 else if (c.ditto)
mjr 78:1e00b3fa11af 3016 {
mjr 78:1e00b3fa11af 3017 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 3018 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 3019 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 3020 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 3021 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 3022 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 3023 // a full command for a new key press.
mjr 78:1e00b3fa11af 3024 IRCommandIn = 0;
mjr 77:0b96f6867312 3025 }
mjr 77:0b96f6867312 3026 else
mjr 77:0b96f6867312 3027 {
mjr 78:1e00b3fa11af 3028 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 3029 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 3030 // the new command).
mjr 78:1e00b3fa11af 3031 IRCommandIn = 0;
mjr 77:0b96f6867312 3032
mjr 78:1e00b3fa11af 3033 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 3034 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 3035 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 3036 {
mjr 78:1e00b3fa11af 3037 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 3038 // list both match the input, it's a match
mjr 78:1e00b3fa11af 3039 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 3040 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 3041 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 3042 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 3043 {
mjr 78:1e00b3fa11af 3044 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 3045 // remember the starting time.
mjr 78:1e00b3fa11af 3046 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 3047 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 3048 IRTimer.reset();
mjr 78:1e00b3fa11af 3049
mjr 78:1e00b3fa11af 3050 // no need to keep searching
mjr 78:1e00b3fa11af 3051 break;
mjr 78:1e00b3fa11af 3052 }
mjr 77:0b96f6867312 3053 }
mjr 77:0b96f6867312 3054 }
mjr 77:0b96f6867312 3055 }
mjr 77:0b96f6867312 3056 }
mjr 77:0b96f6867312 3057 }
mjr 77:0b96f6867312 3058 }
mjr 77:0b96f6867312 3059
mjr 74:822a92bc11d2 3060
mjr 11:bd9da7088e6e 3061 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 3062 //
mjr 11:bd9da7088e6e 3063 // Button input
mjr 11:bd9da7088e6e 3064 //
mjr 11:bd9da7088e6e 3065
mjr 18:5e890ebd0023 3066 // button state
mjr 18:5e890ebd0023 3067 struct ButtonState
mjr 18:5e890ebd0023 3068 {
mjr 38:091e511ce8a0 3069 ButtonState()
mjr 38:091e511ce8a0 3070 {
mjr 53:9b2611964afc 3071 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 3072 virtState = 0;
mjr 53:9b2611964afc 3073 dbState = 0;
mjr 38:091e511ce8a0 3074 pulseState = 0;
mjr 53:9b2611964afc 3075 pulseTime = 0;
mjr 38:091e511ce8a0 3076 }
mjr 35:e959ffba78fd 3077
mjr 53:9b2611964afc 3078 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 3079 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 3080 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 3081 //
mjr 53:9b2611964afc 3082 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 3083 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 3084 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 3085 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 3086 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 3087 void virtPress(bool on)
mjr 53:9b2611964afc 3088 {
mjr 53:9b2611964afc 3089 // Increment or decrement the current state
mjr 53:9b2611964afc 3090 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 3091 }
mjr 53:9b2611964afc 3092
mjr 53:9b2611964afc 3093 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 3094 TinyDigitalIn di;
mjr 38:091e511ce8a0 3095
mjr 65:739875521aae 3096 // Time of last pulse state transition.
mjr 65:739875521aae 3097 //
mjr 65:739875521aae 3098 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 3099 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 3100 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 3101 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 3102 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 3103 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 3104 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 3105 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 3106 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 3107 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 3108 // This software system can't be fooled that way.)
mjr 65:739875521aae 3109 uint32_t pulseTime;
mjr 18:5e890ebd0023 3110
mjr 65:739875521aae 3111 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 3112 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 3113 uint8_t cfgIndex;
mjr 53:9b2611964afc 3114
mjr 53:9b2611964afc 3115 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 3116 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 3117 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 3118 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 3119 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 3120 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 3121 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 3122 // and physical source states.
mjr 53:9b2611964afc 3123 uint8_t virtState;
mjr 38:091e511ce8a0 3124
mjr 38:091e511ce8a0 3125 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 3126 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 3127 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 3128 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 3129 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 3130 uint8_t dbState;
mjr 38:091e511ce8a0 3131
mjr 65:739875521aae 3132 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 3133 uint8_t physState : 1;
mjr 65:739875521aae 3134
mjr 65:739875521aae 3135 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 3136 uint8_t logState : 1;
mjr 65:739875521aae 3137
mjr 79:682ae3171a08 3138 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 3139 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 3140 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 3141 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 3142 uint8_t prevLogState : 1;
mjr 65:739875521aae 3143
mjr 65:739875521aae 3144 // Pulse state
mjr 65:739875521aae 3145 //
mjr 65:739875521aae 3146 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 3147 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 3148 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 3149 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 3150 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 3151 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 3152 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 3153 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 3154 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 3155 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 3156 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 3157 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 3158 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 3159 //
mjr 38:091e511ce8a0 3160 // Pulse state:
mjr 38:091e511ce8a0 3161 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 3162 // 1 -> off
mjr 38:091e511ce8a0 3163 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 3164 // 3 -> on
mjr 38:091e511ce8a0 3165 // 4 -> transitioning on-off
mjr 65:739875521aae 3166 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 3167
mjr 65:739875521aae 3168 } __attribute__((packed));
mjr 65:739875521aae 3169
mjr 65:739875521aae 3170 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 3171 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 3172 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 3173
mjr 66:2e3583fbd2f4 3174 // Shift button state
mjr 66:2e3583fbd2f4 3175 struct
mjr 66:2e3583fbd2f4 3176 {
mjr 66:2e3583fbd2f4 3177 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 3178 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 3179 // 0 = not shifted
mjr 66:2e3583fbd2f4 3180 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 3181 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 3182 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 3183 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 3184 }
mjr 66:2e3583fbd2f4 3185 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 3186
mjr 38:091e511ce8a0 3187 // Button data
mjr 38:091e511ce8a0 3188 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 3189
mjr 38:091e511ce8a0 3190 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 3191 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 3192 // modifier keys.
mjr 38:091e511ce8a0 3193 struct
mjr 38:091e511ce8a0 3194 {
mjr 38:091e511ce8a0 3195 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 3196 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 3197 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 3198 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 3199 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 3200
mjr 38:091e511ce8a0 3201 // Media key state
mjr 38:091e511ce8a0 3202 struct
mjr 38:091e511ce8a0 3203 {
mjr 38:091e511ce8a0 3204 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 3205 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 3206 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 3207
mjr 79:682ae3171a08 3208 // button scan interrupt timer
mjr 79:682ae3171a08 3209 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 3210
mjr 38:091e511ce8a0 3211 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 3212 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 3213 void scanButtons()
mjr 38:091e511ce8a0 3214 {
mjr 79:682ae3171a08 3215 // schedule the next interrupt
mjr 79:682ae3171a08 3216 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 3217
mjr 38:091e511ce8a0 3218 // scan all button input pins
mjr 73:4e8ce0b18915 3219 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 3220 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 3221 {
mjr 73:4e8ce0b18915 3222 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 3223 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 3224 bs->dbState = db;
mjr 73:4e8ce0b18915 3225
mjr 73:4e8ce0b18915 3226 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 3227 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 3228 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 3229 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 3230 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 3231 db &= stable;
mjr 73:4e8ce0b18915 3232 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 3233 bs->physState = !db;
mjr 38:091e511ce8a0 3234 }
mjr 38:091e511ce8a0 3235 }
mjr 38:091e511ce8a0 3236
mjr 38:091e511ce8a0 3237 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 3238 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 3239 // in the physical button state.
mjr 38:091e511ce8a0 3240 Timer buttonTimer;
mjr 12:669df364a565 3241
mjr 65:739875521aae 3242 // Count a button during the initial setup scan
mjr 72:884207c0aab0 3243 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 3244 {
mjr 65:739875521aae 3245 // count it
mjr 65:739875521aae 3246 ++nButtons;
mjr 65:739875521aae 3247
mjr 67:c39e66c4e000 3248 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 3249 // keyboard interface
mjr 72:884207c0aab0 3250 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 3251 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 3252 kbKeys = true;
mjr 65:739875521aae 3253 }
mjr 65:739875521aae 3254
mjr 11:bd9da7088e6e 3255 // initialize the button inputs
mjr 35:e959ffba78fd 3256 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 3257 {
mjr 66:2e3583fbd2f4 3258 // presume no shift key
mjr 66:2e3583fbd2f4 3259 shiftButton.index = -1;
mjr 82:4f6209cb5c33 3260 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 3261
mjr 65:739875521aae 3262 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 3263 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 3264 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 3265 nButtons = 0;
mjr 65:739875521aae 3266 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3267 {
mjr 65:739875521aae 3268 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 3269 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 3270 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 3271 }
mjr 65:739875521aae 3272
mjr 65:739875521aae 3273 // Count virtual buttons
mjr 65:739875521aae 3274
mjr 65:739875521aae 3275 // ZB Launch
mjr 65:739875521aae 3276 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 3277 {
mjr 65:739875521aae 3278 // valid - remember the live button index
mjr 65:739875521aae 3279 zblButtonIndex = nButtons;
mjr 65:739875521aae 3280
mjr 65:739875521aae 3281 // count it
mjr 72:884207c0aab0 3282 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 3283 }
mjr 65:739875521aae 3284
mjr 65:739875521aae 3285 // Allocate the live button slots
mjr 65:739875521aae 3286 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 3287
mjr 65:739875521aae 3288 // Configure the physical inputs
mjr 65:739875521aae 3289 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3290 {
mjr 65:739875521aae 3291 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 3292 if (pin != NC)
mjr 65:739875521aae 3293 {
mjr 65:739875521aae 3294 // point back to the config slot for the keyboard data
mjr 65:739875521aae 3295 bs->cfgIndex = i;
mjr 65:739875521aae 3296
mjr 65:739875521aae 3297 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 3298 bs->di.assignPin(pin);
mjr 65:739875521aae 3299
mjr 65:739875521aae 3300 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 3301 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 3302 bs->pulseState = 1;
mjr 65:739875521aae 3303
mjr 66:2e3583fbd2f4 3304 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 3305 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 3306 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 3307 // config slots are left unused.
mjr 78:1e00b3fa11af 3308 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 3309 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 3310
mjr 65:739875521aae 3311 // advance to the next button
mjr 65:739875521aae 3312 ++bs;
mjr 65:739875521aae 3313 }
mjr 65:739875521aae 3314 }
mjr 65:739875521aae 3315
mjr 53:9b2611964afc 3316 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 3317 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 3318 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 3319 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 3320
mjr 53:9b2611964afc 3321 // ZB Launch Ball button
mjr 65:739875521aae 3322 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 3323 {
mjr 65:739875521aae 3324 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 3325 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 3326 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 3327 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 3328 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 3329 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 3330 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 3331 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 3332
mjr 66:2e3583fbd2f4 3333 // advance to the next button
mjr 65:739875521aae 3334 ++bs;
mjr 11:bd9da7088e6e 3335 }
mjr 12:669df364a565 3336
mjr 38:091e511ce8a0 3337 // start the button scan thread
mjr 79:682ae3171a08 3338 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 3339
mjr 38:091e511ce8a0 3340 // start the button state transition timer
mjr 12:669df364a565 3341 buttonTimer.start();
mjr 11:bd9da7088e6e 3342 }
mjr 11:bd9da7088e6e 3343
mjr 67:c39e66c4e000 3344 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 3345 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 3346 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 3347 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 3348 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 3349 //
mjr 67:c39e66c4e000 3350 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 3351 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 3352 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 3353 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 3354 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 3355 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 3356 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 3357 //
mjr 67:c39e66c4e000 3358 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 3359 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 3360 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 3361 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 3362 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 3363 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 3364 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 3365 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 3366 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 3367 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 3368 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 3369 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 3370 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 3371 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 3372 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 3373 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 3374 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 3375 };
mjr 77:0b96f6867312 3376
mjr 77:0b96f6867312 3377 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 3378 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 3379 // states of the button iputs.
mjr 77:0b96f6867312 3380 struct KeyState
mjr 77:0b96f6867312 3381 {
mjr 77:0b96f6867312 3382 KeyState()
mjr 77:0b96f6867312 3383 {
mjr 77:0b96f6867312 3384 // zero all members
mjr 77:0b96f6867312 3385 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 3386 }
mjr 77:0b96f6867312 3387
mjr 77:0b96f6867312 3388 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 3389 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 3390 uint8_t mediakeys;
mjr 77:0b96f6867312 3391
mjr 77:0b96f6867312 3392 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 3393 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 3394 // USBJoystick.cpp).
mjr 77:0b96f6867312 3395 uint8_t modkeys;
mjr 77:0b96f6867312 3396
mjr 77:0b96f6867312 3397 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 3398 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 3399 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 3400 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 3401 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 3402 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 3403 uint8_t keys[7];
mjr 77:0b96f6867312 3404
mjr 77:0b96f6867312 3405 // number of valid entries in keys[] array
mjr 77:0b96f6867312 3406 int nkeys;
mjr 77:0b96f6867312 3407
mjr 77:0b96f6867312 3408 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 3409 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 3410 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 3411 uint32_t js;
mjr 77:0b96f6867312 3412
mjr 77:0b96f6867312 3413
mjr 77:0b96f6867312 3414 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 3415 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 3416 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 3417 {
mjr 77:0b96f6867312 3418 // add the key according to the type
mjr 77:0b96f6867312 3419 switch (typ)
mjr 77:0b96f6867312 3420 {
mjr 77:0b96f6867312 3421 case BtnTypeJoystick:
mjr 77:0b96f6867312 3422 // joystick button
mjr 77:0b96f6867312 3423 js |= (1 << (val - 1));
mjr 77:0b96f6867312 3424 break;
mjr 77:0b96f6867312 3425
mjr 77:0b96f6867312 3426 case BtnTypeKey:
mjr 77:0b96f6867312 3427 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 3428 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 3429 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 3430 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 3431 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 3432 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 3433 // explicitly using media keys if desired.
mjr 77:0b96f6867312 3434 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 3435 {
mjr 77:0b96f6867312 3436 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 3437 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 3438 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 3439 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3440 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3441 }
mjr 77:0b96f6867312 3442 else
mjr 77:0b96f6867312 3443 {
mjr 77:0b96f6867312 3444 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3445 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3446 // apply, add the key to the key array.
mjr 77:0b96f6867312 3447 if (nkeys < 7)
mjr 77:0b96f6867312 3448 {
mjr 77:0b96f6867312 3449 bool found = false;
mjr 77:0b96f6867312 3450 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3451 {
mjr 77:0b96f6867312 3452 if (keys[i] == val)
mjr 77:0b96f6867312 3453 {
mjr 77:0b96f6867312 3454 found = true;
mjr 77:0b96f6867312 3455 break;
mjr 77:0b96f6867312 3456 }
mjr 77:0b96f6867312 3457 }
mjr 77:0b96f6867312 3458 if (!found)
mjr 77:0b96f6867312 3459 keys[nkeys++] = val;
mjr 77:0b96f6867312 3460 }
mjr 77:0b96f6867312 3461 }
mjr 77:0b96f6867312 3462 break;
mjr 77:0b96f6867312 3463
mjr 77:0b96f6867312 3464 case BtnTypeMedia:
mjr 77:0b96f6867312 3465 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3466 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3467 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3468 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3469 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3470 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3471 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3472 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3473 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3474 break;
mjr 77:0b96f6867312 3475 }
mjr 77:0b96f6867312 3476 }
mjr 77:0b96f6867312 3477 };
mjr 67:c39e66c4e000 3478
mjr 67:c39e66c4e000 3479
mjr 38:091e511ce8a0 3480 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3481 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3482 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3483 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3484 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3485 {
mjr 77:0b96f6867312 3486 // key state
mjr 77:0b96f6867312 3487 KeyState ks;
mjr 38:091e511ce8a0 3488
mjr 38:091e511ce8a0 3489 // calculate the time since the last run
mjr 53:9b2611964afc 3490 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3491 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3492
mjr 66:2e3583fbd2f4 3493 // check the shift button state
mjr 66:2e3583fbd2f4 3494 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3495 {
mjr 78:1e00b3fa11af 3496 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3497 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3498
mjr 78:1e00b3fa11af 3499 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3500 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3501 {
mjr 66:2e3583fbd2f4 3502 case 0:
mjr 78:1e00b3fa11af 3503 default:
mjr 78:1e00b3fa11af 3504 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3505 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3506 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3507 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3508 {
mjr 78:1e00b3fa11af 3509 case 0:
mjr 78:1e00b3fa11af 3510 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3511 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3512 if (sbs->physState)
mjr 78:1e00b3fa11af 3513 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3514 break;
mjr 78:1e00b3fa11af 3515
mjr 78:1e00b3fa11af 3516 case 1:
mjr 78:1e00b3fa11af 3517 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3518 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3519 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3520 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3521 // pulse event.
mjr 78:1e00b3fa11af 3522 if (!sbs->physState)
mjr 78:1e00b3fa11af 3523 {
mjr 78:1e00b3fa11af 3524 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3525 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3526 }
mjr 78:1e00b3fa11af 3527 break;
mjr 78:1e00b3fa11af 3528
mjr 78:1e00b3fa11af 3529 case 2:
mjr 78:1e00b3fa11af 3530 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3531 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3532 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3533 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3534 // suppressed.
mjr 78:1e00b3fa11af 3535 if (!sbs->physState)
mjr 78:1e00b3fa11af 3536 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3537 break;
mjr 78:1e00b3fa11af 3538
mjr 78:1e00b3fa11af 3539 case 3:
mjr 78:1e00b3fa11af 3540 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3541 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3542 // has expired.
mjr 78:1e00b3fa11af 3543 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3544 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3545 else
mjr 78:1e00b3fa11af 3546 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3547 break;
mjr 78:1e00b3fa11af 3548 }
mjr 66:2e3583fbd2f4 3549 break;
mjr 66:2e3583fbd2f4 3550
mjr 66:2e3583fbd2f4 3551 case 1:
mjr 78:1e00b3fa11af 3552 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3553 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3554 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3555 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3556 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3557 break;
mjr 66:2e3583fbd2f4 3558 }
mjr 66:2e3583fbd2f4 3559 }
mjr 38:091e511ce8a0 3560
mjr 11:bd9da7088e6e 3561 // scan the button list
mjr 18:5e890ebd0023 3562 ButtonState *bs = buttonState;
mjr 65:739875521aae 3563 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3564 {
mjr 77:0b96f6867312 3565 // get the config entry for the button
mjr 77:0b96f6867312 3566 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3567
mjr 66:2e3583fbd2f4 3568 // Check the button type:
mjr 66:2e3583fbd2f4 3569 // - shift button
mjr 66:2e3583fbd2f4 3570 // - pulsed button
mjr 66:2e3583fbd2f4 3571 // - regular button
mjr 66:2e3583fbd2f4 3572 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3573 {
mjr 78:1e00b3fa11af 3574 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3575 // depends on the mode.
mjr 78:1e00b3fa11af 3576 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3577 {
mjr 78:1e00b3fa11af 3578 case 0:
mjr 78:1e00b3fa11af 3579 default:
mjr 78:1e00b3fa11af 3580 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3581 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3582 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3583 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3584 break;
mjr 78:1e00b3fa11af 3585
mjr 78:1e00b3fa11af 3586 case 1:
mjr 78:1e00b3fa11af 3587 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3588 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3589 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3590 break;
mjr 66:2e3583fbd2f4 3591 }
mjr 66:2e3583fbd2f4 3592 }
mjr 66:2e3583fbd2f4 3593 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3594 {
mjr 38:091e511ce8a0 3595 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3596 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3597 {
mjr 53:9b2611964afc 3598 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3599 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3600 }
mjr 53:9b2611964afc 3601 else
mjr 53:9b2611964afc 3602 {
mjr 53:9b2611964afc 3603 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3604 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3605 switch (bs->pulseState)
mjr 18:5e890ebd0023 3606 {
mjr 38:091e511ce8a0 3607 case 1:
mjr 38:091e511ce8a0 3608 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3609 if (bs->physState)
mjr 53:9b2611964afc 3610 {
mjr 38:091e511ce8a0 3611 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3612 bs->pulseState = 2;
mjr 53:9b2611964afc 3613 bs->logState = 1;
mjr 38:091e511ce8a0 3614 }
mjr 38:091e511ce8a0 3615 break;
mjr 18:5e890ebd0023 3616
mjr 38:091e511ce8a0 3617 case 2:
mjr 38:091e511ce8a0 3618 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3619 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3620 // change in state in the logical button
mjr 38:091e511ce8a0 3621 bs->pulseState = 3;
mjr 38:091e511ce8a0 3622 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3623 bs->logState = 0;
mjr 38:091e511ce8a0 3624 break;
mjr 38:091e511ce8a0 3625
mjr 38:091e511ce8a0 3626 case 3:
mjr 38:091e511ce8a0 3627 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3628 if (!bs->physState)
mjr 53:9b2611964afc 3629 {
mjr 38:091e511ce8a0 3630 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3631 bs->pulseState = 4;
mjr 53:9b2611964afc 3632 bs->logState = 1;
mjr 38:091e511ce8a0 3633 }
mjr 38:091e511ce8a0 3634 break;
mjr 38:091e511ce8a0 3635
mjr 38:091e511ce8a0 3636 case 4:
mjr 38:091e511ce8a0 3637 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3638 bs->pulseState = 1;
mjr 38:091e511ce8a0 3639 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3640 bs->logState = 0;
mjr 38:091e511ce8a0 3641 break;
mjr 18:5e890ebd0023 3642 }
mjr 18:5e890ebd0023 3643 }
mjr 38:091e511ce8a0 3644 }
mjr 38:091e511ce8a0 3645 else
mjr 38:091e511ce8a0 3646 {
mjr 38:091e511ce8a0 3647 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3648 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3649 }
mjr 77:0b96f6867312 3650
mjr 77:0b96f6867312 3651 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3652 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3653 //
mjr 78:1e00b3fa11af 3654 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3655 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3656 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3657 //
mjr 78:1e00b3fa11af 3658 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3659 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3660 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3661 //
mjr 78:1e00b3fa11af 3662 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3663 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3664 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3665 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3666 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3667 bool useShift =
mjr 77:0b96f6867312 3668 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3669 && shiftButton.index != i
mjr 77:0b96f6867312 3670 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3671 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3672 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3673
mjr 77:0b96f6867312 3674 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3675 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3676 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3677 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3678 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3679 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3680 shiftButton.state = 2;
mjr 35:e959ffba78fd 3681
mjr 38:091e511ce8a0 3682 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3683 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3684 {
mjr 77:0b96f6867312 3685 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3686 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3687 {
mjr 77:0b96f6867312 3688 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3689 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3690 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3691 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3692 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3693 // the night mode state.
mjr 77:0b96f6867312 3694 //
mjr 77:0b96f6867312 3695 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3696 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3697 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3698 {
mjr 77:0b96f6867312 3699 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3700 // current switch state.
mjr 53:9b2611964afc 3701 setNightMode(bs->logState);
mjr 53:9b2611964afc 3702 }
mjr 82:4f6209cb5c33 3703 else if (bs->logState)
mjr 53:9b2611964afc 3704 {
mjr 77:0b96f6867312 3705 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3706 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3707 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3708 // OFF to ON.
mjr 66:2e3583fbd2f4 3709 //
mjr 77:0b96f6867312 3710 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3711 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3712 // button.
mjr 77:0b96f6867312 3713 bool pressed;
mjr 98:4df3c0f7e707 3714 if (shiftButton.index == i)
mjr 98:4df3c0f7e707 3715 {
mjr 98:4df3c0f7e707 3716 // This button is both the Shift button AND the Night
mjr 98:4df3c0f7e707 3717 // Mode button. This is a special case in that the
mjr 98:4df3c0f7e707 3718 // Shift status is irrelevant, because it's obviously
mjr 98:4df3c0f7e707 3719 // identical to the Night Mode status. So it doesn't
mjr 98:4df3c0f7e707 3720 // matter whether or not the Night Mode button has the
mjr 98:4df3c0f7e707 3721 // shifted flags; the raw button state is all that
mjr 98:4df3c0f7e707 3722 // counts in this case.
mjr 98:4df3c0f7e707 3723 pressed = true;
mjr 98:4df3c0f7e707 3724 }
mjr 98:4df3c0f7e707 3725 else if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3726 {
mjr 77:0b96f6867312 3727 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3728 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3729 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3730 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3731 }
mjr 77:0b96f6867312 3732 else
mjr 77:0b96f6867312 3733 {
mjr 77:0b96f6867312 3734 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3735 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3736 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3737 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3738 }
mjr 66:2e3583fbd2f4 3739
mjr 66:2e3583fbd2f4 3740 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3741 // toggle night mode
mjr 66:2e3583fbd2f4 3742 if (pressed)
mjr 53:9b2611964afc 3743 toggleNightMode();
mjr 53:9b2611964afc 3744 }
mjr 35:e959ffba78fd 3745 }
mjr 38:091e511ce8a0 3746
mjr 77:0b96f6867312 3747 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3748 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3749 if (irc != 0)
mjr 77:0b96f6867312 3750 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3751
mjr 38:091e511ce8a0 3752 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3753 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3754 }
mjr 38:091e511ce8a0 3755
mjr 53:9b2611964afc 3756 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3757 // key state list
mjr 53:9b2611964afc 3758 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3759 {
mjr 70:9f58735a1732 3760 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3761 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3762 uint8_t typ, val;
mjr 77:0b96f6867312 3763 if (useShift)
mjr 66:2e3583fbd2f4 3764 {
mjr 77:0b96f6867312 3765 typ = bc->typ2;
mjr 77:0b96f6867312 3766 val = bc->val2;
mjr 66:2e3583fbd2f4 3767 }
mjr 77:0b96f6867312 3768 else
mjr 77:0b96f6867312 3769 {
mjr 77:0b96f6867312 3770 typ = bc->typ;
mjr 77:0b96f6867312 3771 val = bc->val;
mjr 77:0b96f6867312 3772 }
mjr 77:0b96f6867312 3773
mjr 70:9f58735a1732 3774 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3775 // the keyboard or joystick event.
mjr 77:0b96f6867312 3776 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3777 }
mjr 11:bd9da7088e6e 3778 }
mjr 77:0b96f6867312 3779
mjr 77:0b96f6867312 3780 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3781 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3782 // the IR key.
mjr 77:0b96f6867312 3783 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3784 {
mjr 77:0b96f6867312 3785 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3786 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3787 }
mjr 77:0b96f6867312 3788
mjr 77:0b96f6867312 3789 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3790 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3791
mjr 77:0b96f6867312 3792 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3793 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3794 jsButtons = ks.js;
mjr 77:0b96f6867312 3795
mjr 77:0b96f6867312 3796 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3797 // something changes)
mjr 77:0b96f6867312 3798 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3799 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3800 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3801 {
mjr 35:e959ffba78fd 3802 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3803 kbState.changed = true;
mjr 77:0b96f6867312 3804 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3805 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3806 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3807 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3808 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3809 }
mjr 35:e959ffba78fd 3810 else {
mjr 35:e959ffba78fd 3811 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3812 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3813 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3814 }
mjr 35:e959ffba78fd 3815 }
mjr 35:e959ffba78fd 3816
mjr 77:0b96f6867312 3817 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3818 // something changes)
mjr 77:0b96f6867312 3819 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3820 {
mjr 77:0b96f6867312 3821 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3822 mediaState.changed = true;
mjr 77:0b96f6867312 3823 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3824 }
mjr 11:bd9da7088e6e 3825 }
mjr 11:bd9da7088e6e 3826
mjr 73:4e8ce0b18915 3827 // Send a button status report
mjr 73:4e8ce0b18915 3828 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3829 {
mjr 73:4e8ce0b18915 3830 // start with all buttons off
mjr 73:4e8ce0b18915 3831 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3832 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3833
mjr 73:4e8ce0b18915 3834 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3835 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3836 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3837 {
mjr 73:4e8ce0b18915 3838 // get the physical state
mjr 73:4e8ce0b18915 3839 int b = bs->physState;
mjr 73:4e8ce0b18915 3840
mjr 73:4e8ce0b18915 3841 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3842 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3843 int si = idx / 8;
mjr 73:4e8ce0b18915 3844 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3845 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3846 }
mjr 73:4e8ce0b18915 3847
mjr 73:4e8ce0b18915 3848 // send the report
mjr 73:4e8ce0b18915 3849 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3850 }
mjr 73:4e8ce0b18915 3851
mjr 5:a70c0bce770d 3852 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3853 //
mjr 5:a70c0bce770d 3854 // Customization joystick subbclass
mjr 5:a70c0bce770d 3855 //
mjr 5:a70c0bce770d 3856
mjr 5:a70c0bce770d 3857 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3858 {
mjr 5:a70c0bce770d 3859 public:
mjr 35:e959ffba78fd 3860 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3861 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3862 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3863 {
mjr 54:fd77a6b2f76c 3864 sleeping_ = false;
mjr 54:fd77a6b2f76c 3865 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3866 timer_.start();
mjr 54:fd77a6b2f76c 3867 }
mjr 54:fd77a6b2f76c 3868
mjr 54:fd77a6b2f76c 3869 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3870 void diagFlash()
mjr 54:fd77a6b2f76c 3871 {
mjr 54:fd77a6b2f76c 3872 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3873 {
mjr 54:fd77a6b2f76c 3874 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3875 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3876 {
mjr 54:fd77a6b2f76c 3877 // short red flash
mjr 54:fd77a6b2f76c 3878 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3879 wait_us(50000);
mjr 54:fd77a6b2f76c 3880 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3881 wait_us(50000);
mjr 54:fd77a6b2f76c 3882 }
mjr 54:fd77a6b2f76c 3883 }
mjr 5:a70c0bce770d 3884 }
mjr 5:a70c0bce770d 3885
mjr 5:a70c0bce770d 3886 // are we connected?
mjr 5:a70c0bce770d 3887 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3888
mjr 54:fd77a6b2f76c 3889 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3890 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3891 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3892 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3893 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3894
mjr 54:fd77a6b2f76c 3895 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3896 //
mjr 54:fd77a6b2f76c 3897 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3898 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3899 // other way.
mjr 54:fd77a6b2f76c 3900 //
mjr 54:fd77a6b2f76c 3901 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3902 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3903 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3904 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3905 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3906 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3907 //
mjr 54:fd77a6b2f76c 3908 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3909 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3910 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3911 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3912 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3913 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3914 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3915 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3916 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3917 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3918 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3919 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3920 // is effectively dead.
mjr 54:fd77a6b2f76c 3921 //
mjr 54:fd77a6b2f76c 3922 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3923 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3924 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3925 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3926 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3927 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3928 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3929 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3930 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3931 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3932 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3933 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3934 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3935 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3936 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3937 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3938 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3939 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3940 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3941 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3942 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3943 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3944 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3945 // a disconnect.
mjr 54:fd77a6b2f76c 3946 //
mjr 54:fd77a6b2f76c 3947 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3948 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3949 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3950 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3951 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3952 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3953 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3954 //
mjr 54:fd77a6b2f76c 3955 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3956 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3957 //
mjr 54:fd77a6b2f76c 3958 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3959 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3960 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3961 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3962 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3963 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3964 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3965 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3966 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3967 // reliable in practice.
mjr 54:fd77a6b2f76c 3968 //
mjr 54:fd77a6b2f76c 3969 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3970 //
mjr 54:fd77a6b2f76c 3971 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3972 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3973 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3974 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3975 // return.
mjr 54:fd77a6b2f76c 3976 //
mjr 54:fd77a6b2f76c 3977 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3978 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3979 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3980 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3981 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3982 //
mjr 54:fd77a6b2f76c 3983 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3984 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3985 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3986 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3987 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3988 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3989 //
mjr 54:fd77a6b2f76c 3990 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3991 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3992 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3993 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3994 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3995 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3996 // freezes over.
mjr 54:fd77a6b2f76c 3997 //
mjr 54:fd77a6b2f76c 3998 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3999 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 4000 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 4001 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 4002 // less than second with this code in place.
mjr 54:fd77a6b2f76c 4003 void recoverConnection()
mjr 54:fd77a6b2f76c 4004 {
mjr 54:fd77a6b2f76c 4005 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 4006 if (reconnectPending_)
mjr 54:fd77a6b2f76c 4007 {
mjr 54:fd77a6b2f76c 4008 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 4009 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 4010 {
mjr 54:fd77a6b2f76c 4011 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 4012 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 4013 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 4014 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 4015 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 4016 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 4017 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 4018 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 4019 __disable_irq();
mjr 54:fd77a6b2f76c 4020 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 4021 {
mjr 54:fd77a6b2f76c 4022 connect(false);
mjr 54:fd77a6b2f76c 4023 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 4024 done = true;
mjr 54:fd77a6b2f76c 4025 }
mjr 54:fd77a6b2f76c 4026 __enable_irq();
mjr 54:fd77a6b2f76c 4027 }
mjr 54:fd77a6b2f76c 4028 }
mjr 54:fd77a6b2f76c 4029 }
mjr 5:a70c0bce770d 4030
mjr 5:a70c0bce770d 4031 protected:
mjr 54:fd77a6b2f76c 4032 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 4033 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 4034 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 4035 //
mjr 54:fd77a6b2f76c 4036 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 4037 //
mjr 54:fd77a6b2f76c 4038 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 4039 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 4040 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 4041 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 4042 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 4043 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 4044 {
mjr 54:fd77a6b2f76c 4045 // note the new state
mjr 54:fd77a6b2f76c 4046 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 4047
mjr 54:fd77a6b2f76c 4048 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 4049 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 4050 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 4051 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 4052 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 4053 {
mjr 54:fd77a6b2f76c 4054 disconnect();
mjr 54:fd77a6b2f76c 4055 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 4056 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 4057 }
mjr 54:fd77a6b2f76c 4058 }
mjr 54:fd77a6b2f76c 4059
mjr 54:fd77a6b2f76c 4060 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 4061 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 4062
mjr 54:fd77a6b2f76c 4063 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 4064 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 4065
mjr 54:fd77a6b2f76c 4066 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 4067 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 4068
mjr 54:fd77a6b2f76c 4069 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 4070 Timer timer_;
mjr 5:a70c0bce770d 4071 };
mjr 5:a70c0bce770d 4072
mjr 5:a70c0bce770d 4073 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4074 //
mjr 5:a70c0bce770d 4075 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 4076 //
mjr 5:a70c0bce770d 4077
mjr 5:a70c0bce770d 4078 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 4079 //
mjr 5:a70c0bce770d 4080 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 4081 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 4082 // automatic calibration.
mjr 5:a70c0bce770d 4083 //
mjr 77:0b96f6867312 4084 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 4085 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 4086 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 4087 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 4088 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 4089 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 4090 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 4091 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 4092 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 4093 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 4094 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 4095 //
mjr 77:0b96f6867312 4096 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 4097 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 4098 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 4099 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 4100 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 4101 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 4102 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 4103 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 4104 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 4105 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 4106 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 4107 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 4108 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 4109 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 4110 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 4111 // rather than change it across the board.
mjr 5:a70c0bce770d 4112 //
mjr 6:cc35eb643e8f 4113 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 4114 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 4115 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 4116 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 4117 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 4118 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 4119 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 4120 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 4121 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 4122 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 4123 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 4124 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 4125 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 4126 // of nudging, say).
mjr 5:a70c0bce770d 4127 //
mjr 5:a70c0bce770d 4128
mjr 17:ab3cec0c8bf4 4129 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 4130 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 4131
mjr 112:8ed709f455c0 4132 // I2C pins for the accelerometer (constant for the KL25Z)
mjr 112:8ed709f455c0 4133 #define MMA8451_SDA_PIN PTE25
mjr 112:8ed709f455c0 4134 #define MMA8451_SCL_PIN PTE24
mjr 17:ab3cec0c8bf4 4135
mjr 17:ab3cec0c8bf4 4136 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 4137 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 4138 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 4139 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 4140
mjr 17:ab3cec0c8bf4 4141
mjr 6:cc35eb643e8f 4142 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 4143 struct AccHist
mjr 5:a70c0bce770d 4144 {
mjr 77:0b96f6867312 4145 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4146 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 4147 {
mjr 6:cc35eb643e8f 4148 // save the raw position
mjr 6:cc35eb643e8f 4149 this->x = x;
mjr 6:cc35eb643e8f 4150 this->y = y;
mjr 77:0b96f6867312 4151 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 4152 }
mjr 6:cc35eb643e8f 4153
mjr 6:cc35eb643e8f 4154 // reading for this entry
mjr 77:0b96f6867312 4155 int x, y;
mjr 77:0b96f6867312 4156
mjr 77:0b96f6867312 4157 // (distance from previous entry) squared
mjr 77:0b96f6867312 4158 int dsq;
mjr 5:a70c0bce770d 4159
mjr 6:cc35eb643e8f 4160 // total and count of samples averaged over this period
mjr 77:0b96f6867312 4161 int xtot, ytot;
mjr 6:cc35eb643e8f 4162 int cnt;
mjr 6:cc35eb643e8f 4163
mjr 77:0b96f6867312 4164 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4165 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 4166 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 4167 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 4168
mjr 77:0b96f6867312 4169 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 4170 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 4171 };
mjr 5:a70c0bce770d 4172
mjr 5:a70c0bce770d 4173 // accelerometer wrapper class
mjr 3:3514575d4f86 4174 class Accel
mjr 3:3514575d4f86 4175 {
mjr 3:3514575d4f86 4176 public:
mjr 112:8ed709f455c0 4177 Accel(const Config &cfg) : mma_(MMA8451_SDA_PIN, MMA8451_SCL_PIN, MMA8451_I2C_ADDRESS)
mjr 3:3514575d4f86 4178 {
mjr 77:0b96f6867312 4179 // remember the range
mjr 112:8ed709f455c0 4180 range_ = cfg.accel.range;
mjr 78:1e00b3fa11af 4181
mjr 78:1e00b3fa11af 4182 // set the auto-centering mode
mjr 112:8ed709f455c0 4183 setAutoCenterMode(cfg.accel.autoCenterTime);
mjr 78:1e00b3fa11af 4184
mjr 78:1e00b3fa11af 4185 // no manual centering request has been received
mjr 78:1e00b3fa11af 4186 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 4187
mjr 5:a70c0bce770d 4188 // reset and initialize
mjr 5:a70c0bce770d 4189 reset();
mjr 5:a70c0bce770d 4190 }
mjr 5:a70c0bce770d 4191
mjr 112:8ed709f455c0 4192 // Do a full reset of the object. This tries to clear the I2C
mjr 112:8ed709f455c0 4193 // bus, and then re-creates the Accel object in place, running
mjr 112:8ed709f455c0 4194 // through all of the constructors again. This is only a "soft"
mjr 112:8ed709f455c0 4195 // reset, since the KL25Z doesn't give us any way to do a power
mjr 112:8ed709f455c0 4196 // cycle on the MMA8451Q from software - its power connection is
mjr 112:8ed709f455c0 4197 // hardwired to the KL25Z's main board power connection, so the
mjr 112:8ed709f455c0 4198 // only way to power cycle the accelerometer is to power cycle
mjr 112:8ed709f455c0 4199 // the whole board.
mjr 112:8ed709f455c0 4200 //
mjr 112:8ed709f455c0 4201 // We use this to try to reset the accelerometer if it stops
mjr 112:8ed709f455c0 4202 // sending us new samples. I've received a few reports from
mjr 112:8ed709f455c0 4203 // people who say their accelerometers seem to stop working even
mjr 112:8ed709f455c0 4204 // though the rest of the firmware is still functioning normally,
mjr 112:8ed709f455c0 4205 // which suggests that there's either a problem in the Accel class
mjr 112:8ed709f455c0 4206 // itself, or that the MMA8451Q can get into a non-responsive state
mjr 112:8ed709f455c0 4207 // under some circumstances. Since the reports have been extremely
mjr 112:8ed709f455c0 4208 // rare and isolated, and since I've never myself seen this happen
mjr 112:8ed709f455c0 4209 // on any of the multiple KL25Z boards I've tested with (even after
mjr 112:8ed709f455c0 4210 // leaving them running for days at a time), my best guess is that
mjr 112:8ed709f455c0 4211 // it's actually a fault in the MMA8451Q. The fact that everyone
mjr 112:8ed709f455c0 4212 // who's experienced the accelerometer freeze says that the rest of
mjr 112:8ed709f455c0 4213 // the firwmare is still working supports this hypothesis - given
mjr 112:8ed709f455c0 4214 // that the firmware is single-threaded, it seems unlikely that a
mjr 112:8ed709f455c0 4215 // "crash" of some kind in the accelerometer code wouldn't crash
mjr 112:8ed709f455c0 4216 // the firmware as a whole. This soft reset code is an attempt to
mjr 112:8ed709f455c0 4217 // recover from a scenario where the MMA8451Q hardware is still
mjr 112:8ed709f455c0 4218 // functioning properly, but its internal state machine is somehow
mjr 112:8ed709f455c0 4219 // out of sync with the host in such a way that it can no longer
mjr 112:8ed709f455c0 4220 // send us samples - either its I2C state machine is stuck in the
mjr 112:8ed709f455c0 4221 // middle of a transaction, or its sample processing state machine
mjr 112:8ed709f455c0 4222 // is no longer taking samples. The soft reset doesn't have any
mjr 112:8ed709f455c0 4223 // hope of rebooting the chip if the freeze is due to some kind
mjr 112:8ed709f455c0 4224 // of hardware fault, because our only connection to the chip is
mjr 112:8ed709f455c0 4225 // the I2C bus, and there's no reason to think its I2C state
mjr 112:8ed709f455c0 4226 // machine would even be running in the event of a hardware fault.
mjr 112:8ed709f455c0 4227 // Hopefully we can find out which it is by testing this fix on
mjr 112:8ed709f455c0 4228 // boards where the problem is known to have occurred, since it
mjr 112:8ed709f455c0 4229 // seems to be readily repeatable for the people who experience
mjr 112:8ed709f455c0 4230 // it at all.
mjr 112:8ed709f455c0 4231 static void softReset(Accel *accel, const Config &config)
mjr 112:8ed709f455c0 4232 {
mjr 112:8ed709f455c0 4233 // save the current centering position, so that the user
mjr 112:8ed709f455c0 4234 // doesn't see a jump across the reset
mjr 112:8ed709f455c0 4235 int cx = accel->cx_, cy = accel->cy_;
mjr 112:8ed709f455c0 4236
mjr 112:8ed709f455c0 4237 // try to reset the I2C bus, in case that's
mjr 112:8ed709f455c0 4238 accel->clear_i2c();
mjr 112:8ed709f455c0 4239
mjr 112:8ed709f455c0 4240 // re-construct the Accel object
mjr 112:8ed709f455c0 4241 new (accel) Accel(config);
mjr 112:8ed709f455c0 4242
mjr 112:8ed709f455c0 4243 // restore the center point
mjr 112:8ed709f455c0 4244 accel->cx_ = cx;
mjr 112:8ed709f455c0 4245 accel->cy_ = cy;
mjr 112:8ed709f455c0 4246 }
mjr 112:8ed709f455c0 4247
mjr 78:1e00b3fa11af 4248 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 4249 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 4250 // as soon as we have enough data.
mjr 78:1e00b3fa11af 4251 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 4252
mjr 78:1e00b3fa11af 4253 // set the auto-centering mode
mjr 78:1e00b3fa11af 4254 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 4255 {
mjr 78:1e00b3fa11af 4256 // remember the mode
mjr 78:1e00b3fa11af 4257 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 4258
mjr 78:1e00b3fa11af 4259 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 4260 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 4261 if (mode == 0)
mjr 78:1e00b3fa11af 4262 {
mjr 78:1e00b3fa11af 4263 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 4264 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 4265 }
mjr 78:1e00b3fa11af 4266 else if (mode <= 60)
mjr 78:1e00b3fa11af 4267 {
mjr 78:1e00b3fa11af 4268 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 4269 // interval is 1/5 of this
mjr 78:1e00b3fa11af 4270 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 4271 }
mjr 78:1e00b3fa11af 4272 else
mjr 78:1e00b3fa11af 4273 {
mjr 78:1e00b3fa11af 4274 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 4275 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 4276 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 4277 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 4278 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 4279 // includes recent data.
mjr 78:1e00b3fa11af 4280 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 4281 }
mjr 78:1e00b3fa11af 4282 }
mjr 78:1e00b3fa11af 4283
mjr 112:8ed709f455c0 4284 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 112:8ed709f455c0 4285 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 112:8ed709f455c0 4286 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 112:8ed709f455c0 4287 // the MMA's SDA line stuck low. Presumably, the MMA8451Q's internal state
mjr 112:8ed709f455c0 4288 // machine is still in the middle of an I2C transaction, and it expects the
mjr 112:8ed709f455c0 4289 // host to clock in/out the rest of the bits for the transaction. Forcing a
mjr 112:8ed709f455c0 4290 // series of clock pulses through SCL is the standard remedy for this type
mjr 112:8ed709f455c0 4291 // of situation, since it should force the state machine to the end of the
mjr 112:8ed709f455c0 4292 // I2C state it's stuck in so that it's ready to start a new transaction.
mjr 112:8ed709f455c0 4293 // This really shouldn't be necessary, because the mbed library I2C code that
mjr 112:8ed709f455c0 4294 // we're using in the MMA8451Q driver appears to do the same thing when it
mjr 112:8ed709f455c0 4295 // sets up the I2C pins, but it should at least be harmless. What we really
mjr 112:8ed709f455c0 4296 // need is a way to power-cycle the MMA8451Q, but the KL25Z simply isn't
mjr 112:8ed709f455c0 4297 // wired to do that from software; the only way is to power-cycle the whole
mjr 112:8ed709f455c0 4298 // board.
mjr 112:8ed709f455c0 4299 //
mjr 112:8ed709f455c0 4300 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 112:8ed709f455c0 4301 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 112:8ed709f455c0 4302 // unplugging both of its USB connections.
mjr 112:8ed709f455c0 4303 //
mjr 112:8ed709f455c0 4304 // The entire Accel object must be re-constructed after calling this,
mjr 112:8ed709f455c0 4305 // because this reconfigures the I2C SDA/SCL pins as plain digital in/out
mjr 112:8ed709f455c0 4306 // pins. They have to be reconfigured as I2C pins again by the I2C
mjr 112:8ed709f455c0 4307 // constructor after this is called.
mjr 112:8ed709f455c0 4308 static bool clear_i2c()
mjr 112:8ed709f455c0 4309 {
mjr 112:8ed709f455c0 4310 // set up both pints as input pins
mjr 112:8ed709f455c0 4311 DigitalInOut pin_sda(MMA8451_SDA_PIN, PIN_INPUT, PullNone, 1);
mjr 112:8ed709f455c0 4312 DigitalInOut pin_scl(MMA8451_SCL_PIN, PIN_INPUT, PullNone, 1);
mjr 112:8ed709f455c0 4313
mjr 112:8ed709f455c0 4314 // if SCL is being held low, the bus is locked by another device;
mjr 112:8ed709f455c0 4315 // wait a couple of milliseconds and then give up
mjr 112:8ed709f455c0 4316 Timer t;
mjr 112:8ed709f455c0 4317 t.start();
mjr 112:8ed709f455c0 4318 while (pin_scl == 0 && t.read_us() < 2000) { }
mjr 112:8ed709f455c0 4319 if (pin_scl == 0)
mjr 112:8ed709f455c0 4320 return false;
mjr 112:8ed709f455c0 4321
mjr 112:8ed709f455c0 4322 // if SDA and SCL are both high, the bus is free
mjr 112:8ed709f455c0 4323 if (pin_sda == 1)
mjr 112:8ed709f455c0 4324 return true;
mjr 112:8ed709f455c0 4325
mjr 112:8ed709f455c0 4326 // Send a series of clock pulses to try to knock the device out
mjr 112:8ed709f455c0 4327 // of whatever I2C transaction it thinks it's in the middle of.
mjr 112:8ed709f455c0 4328 // 9 pulses should be sufficient for a device with byte commands,
mjr 112:8ed709f455c0 4329 // but do some extra for good measure, in case it's in some kind
mjr 112:8ed709f455c0 4330 // of multi-byte transaction.
mjr 112:8ed709f455c0 4331 pin_scl.mode(PullNone);
mjr 112:8ed709f455c0 4332 pin_scl.output();
mjr 112:8ed709f455c0 4333 for (int count = 0; count < 35; count++)
mjr 112:8ed709f455c0 4334 {
mjr 112:8ed709f455c0 4335 pin_scl.mode(PullNone);
mjr 112:8ed709f455c0 4336 pin_scl = 0;
mjr 112:8ed709f455c0 4337 wait_us(5);
mjr 112:8ed709f455c0 4338 pin_scl.mode(PullUp);
mjr 112:8ed709f455c0 4339 pin_scl = 1;
mjr 112:8ed709f455c0 4340 wait_us(5);
mjr 112:8ed709f455c0 4341 }
mjr 112:8ed709f455c0 4342
mjr 112:8ed709f455c0 4343 // Send Stop
mjr 112:8ed709f455c0 4344 pin_sda.output();
mjr 112:8ed709f455c0 4345 pin_sda = 0;
mjr 112:8ed709f455c0 4346 wait_us(5);
mjr 112:8ed709f455c0 4347 pin_scl = 1;
mjr 112:8ed709f455c0 4348 wait_us(5);
mjr 112:8ed709f455c0 4349 pin_sda = 1;
mjr 112:8ed709f455c0 4350 wait_us(5);
mjr 112:8ed709f455c0 4351
mjr 112:8ed709f455c0 4352 // confirm that both SDA and SCL are now high, indicating that
mjr 112:8ed709f455c0 4353 // the bus is free
mjr 112:8ed709f455c0 4354 pin_sda.input();
mjr 112:8ed709f455c0 4355 pin_scl.input();
mjr 112:8ed709f455c0 4356 return (pin_scl != 0 && pin_sda != 0);
mjr 112:8ed709f455c0 4357 }
mjr 112:8ed709f455c0 4358
mjr 5:a70c0bce770d 4359 void reset()
mjr 5:a70c0bce770d 4360 {
mjr 6:cc35eb643e8f 4361 // clear the center point
mjr 77:0b96f6867312 4362 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 4363
mjr 77:0b96f6867312 4364 // start the auto-centering timer
mjr 5:a70c0bce770d 4365 tCenter_.start();
mjr 5:a70c0bce770d 4366 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 4367
mjr 5:a70c0bce770d 4368 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 4369 mma_.init();
mjr 77:0b96f6867312 4370
mjr 77:0b96f6867312 4371 // set the range
mjr 77:0b96f6867312 4372 mma_.setRange(
mjr 77:0b96f6867312 4373 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 4374 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 4375 2);
mjr 6:cc35eb643e8f 4376
mjr 77:0b96f6867312 4377 // set the average accumulators to zero
mjr 77:0b96f6867312 4378 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4379 nSum_ = 0;
mjr 3:3514575d4f86 4380
mjr 3:3514575d4f86 4381 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 4382 mma_.getAccXYZ(ax_, ay_, az_);
mjr 112:8ed709f455c0 4383
mjr 112:8ed709f455c0 4384 // start the FIFO timer
mjr 112:8ed709f455c0 4385 fifoTimer.reset();
mjr 112:8ed709f455c0 4386 fifoTimer.start();
mjr 112:8ed709f455c0 4387 tLastSample = tLastChangedSample = fifoTimer.read_us();
mjr 3:3514575d4f86 4388 }
mjr 3:3514575d4f86 4389
mjr 112:8ed709f455c0 4390 // Poll the accelerometer. Returns true on success, false if the
mjr 112:8ed709f455c0 4391 // device appears to be wedged (because we haven't received a unique
mjr 112:8ed709f455c0 4392 // sample in a long time). The caller can try re-creating the Accel
mjr 112:8ed709f455c0 4393 // object if the device is wedged.
mjr 112:8ed709f455c0 4394 bool poll()
mjr 76:7f5912b6340e 4395 {
mjr 77:0b96f6867312 4396 // read samples until we clear the FIFO
mjr 77:0b96f6867312 4397 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 4398 {
mjr 112:8ed709f455c0 4399 // read the raw data
mjr 77:0b96f6867312 4400 int x, y, z;
mjr 77:0b96f6867312 4401 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 4402
mjr 112:8ed709f455c0 4403 // note the time
mjr 112:8ed709f455c0 4404 tLastSample = fifoTimer.read_us();
mjr 112:8ed709f455c0 4405
mjr 112:8ed709f455c0 4406 // note if this sample differs from the last one, to see if
mjr 112:8ed709f455c0 4407 // the accelerometer appears to be stuck
mjr 112:8ed709f455c0 4408 if (x != ax_ || y != ay_ || z != az_)
mjr 112:8ed709f455c0 4409 tLastChangedSample = tLastSample;
mjr 112:8ed709f455c0 4410
mjr 77:0b96f6867312 4411 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 4412 xSum_ += (x - cx_);
mjr 77:0b96f6867312 4413 ySum_ += (y - cy_);
mjr 77:0b96f6867312 4414 ++nSum_;
mjr 77:0b96f6867312 4415
mjr 77:0b96f6867312 4416 // store the updates
mjr 77:0b96f6867312 4417 ax_ = x;
mjr 77:0b96f6867312 4418 ay_ = y;
mjr 77:0b96f6867312 4419 az_ = z;
mjr 77:0b96f6867312 4420 }
mjr 112:8ed709f455c0 4421
mjr 112:8ed709f455c0 4422 // If we haven't seen a new sample in a while, the device
mjr 112:8ed709f455c0 4423 // might be stuck. Some people have observed an apparent
mjr 112:8ed709f455c0 4424 // freeze in the accelerometer readings even while the
mjr 112:8ed709f455c0 4425 // pluger and key inputs continue working, which seems
mjr 112:8ed709f455c0 4426 // like it must be due to something stuck on the MMA8451Q.
mjr 112:8ed709f455c0 4427 // The caller can try a software reset in that case, by
mjr 112:8ed709f455c0 4428 // re-creating the Accel object. That will go through
mjr 112:8ed709f455c0 4429 // all of the I2C and MMA8451Q intialization code again
mjr 112:8ed709f455c0 4430 // to try to get things back to a good state.
mjr 112:8ed709f455c0 4431 //
mjr 112:8ed709f455c0 4432 // We poll about every 2.5ms (or more often, depending on
mjr 112:8ed709f455c0 4433 // the plunger sensor type), and we have the accelerometer
mjr 112:8ed709f455c0 4434 // set to generate samples at 800 Hz = every 1.25ms, so it
mjr 112:8ed709f455c0 4435 // would definitely indicate trouble if the last samples
mjr 112:8ed709f455c0 4436 // from the device are older than 5ms. As for *unique*
mjr 112:8ed709f455c0 4437 // samples, that's a harder call, since it depends on how
mjr 112:8ed709f455c0 4438 // much background noise there is. Given the sensitivity
mjr 112:8ed709f455c0 4439 // of the device, though, my experience is that nearly
mjr 112:8ed709f455c0 4440 // every sample will have at least one bit of difference
mjr 112:8ed709f455c0 4441 // from the last, so it's unlikely to see more than a few
mjr 112:8ed709f455c0 4442 // identical samples in a row, and extremely unlikely to
mjr 112:8ed709f455c0 4443 // see, say, 10 or 20 consecutive identical readings. To
mjr 112:8ed709f455c0 4444 // be conservative, we'll time out the existence of a
mjr 112:8ed709f455c0 4445 // reading at 100ms, and unique readings at 2s. This
mjr 112:8ed709f455c0 4446 // should reset a non-responsive device well before the
mjr 112:8ed709f455c0 4447 // freeze becomes apparent to the user (unless they're
mjr 112:8ed709f455c0 4448 // deliberately looking for it), but should also ensure
mjr 112:8ed709f455c0 4449 // that we don't reset unnecessarily - 2s represents 1600
mjr 112:8ed709f455c0 4450 // consecutive identical samples, and I think the odds of
mjr 112:8ed709f455c0 4451 // that happening for real are practically zero, barring
mjr 112:8ed709f455c0 4452 // some kind of test bed with extreme vibration suppression.
mjr 112:8ed709f455c0 4453 uint32_t tNow = fifoTimer.read_us();
mjr 112:8ed709f455c0 4454 if (static_cast<uint32_t>(tNow - tLastSample) > 100000 // 100 ms
mjr 112:8ed709f455c0 4455 || static_cast<uint32_t>(tNow - tLastChangedSample) > 2000000) // 2 seconds
mjr 112:8ed709f455c0 4456 {
mjr 112:8ed709f455c0 4457 // appears to be wedged
mjr 112:8ed709f455c0 4458 return false;
mjr 112:8ed709f455c0 4459 }
mjr 112:8ed709f455c0 4460
mjr 112:8ed709f455c0 4461 // okay
mjr 112:8ed709f455c0 4462 return true;
mjr 76:7f5912b6340e 4463 }
mjr 112:8ed709f455c0 4464
mjr 112:8ed709f455c0 4465 // timer, for monitoring incoming FIFO samples
mjr 112:8ed709f455c0 4466 Timer fifoTimer;
mjr 112:8ed709f455c0 4467
mjr 112:8ed709f455c0 4468 // time of last sample from FIFO
mjr 112:8ed709f455c0 4469 uint32_t tLastSample;
mjr 112:8ed709f455c0 4470
mjr 112:8ed709f455c0 4471 // time of last *different* sample from FIFO
mjr 112:8ed709f455c0 4472 uint32_t tLastChangedSample;
mjr 112:8ed709f455c0 4473
mjr 9:fd65b0a94720 4474 void get(int &x, int &y)
mjr 3:3514575d4f86 4475 {
mjr 77:0b96f6867312 4476 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 4477 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 4478 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 4479 int nSum = nSum_;
mjr 6:cc35eb643e8f 4480
mjr 77:0b96f6867312 4481 // reset the average accumulators for the next run
mjr 77:0b96f6867312 4482 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4483 nSum_ = 0;
mjr 77:0b96f6867312 4484
mjr 77:0b96f6867312 4485 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 4486 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4487 p->addAvg(ax, ay);
mjr 77:0b96f6867312 4488
mjr 78:1e00b3fa11af 4489 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 4490 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 4491 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 4492 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 4493 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 4494 {
mjr 77:0b96f6867312 4495 // add the latest raw sample to the history list
mjr 77:0b96f6867312 4496 AccHist *prv = p;
mjr 77:0b96f6867312 4497 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 4498 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4499 iAccPrv_ = 0;
mjr 77:0b96f6867312 4500 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4501 p->set(ax, ay, prv);
mjr 77:0b96f6867312 4502
mjr 78:1e00b3fa11af 4503 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 4504 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4505 {
mjr 78:1e00b3fa11af 4506 // Center if:
mjr 78:1e00b3fa11af 4507 //
mjr 78:1e00b3fa11af 4508 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 4509 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 4510 //
mjr 78:1e00b3fa11af 4511 // - A manual centering request is pending
mjr 78:1e00b3fa11af 4512 //
mjr 77:0b96f6867312 4513 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 4514 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 4515 if (manualCenterRequest_
mjr 78:1e00b3fa11af 4516 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 4517 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 4518 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 4519 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 4520 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 4521 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 4522 {
mjr 77:0b96f6867312 4523 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 4524 // the samples over the rest period
mjr 77:0b96f6867312 4525 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 4526 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 4527
mjr 78:1e00b3fa11af 4528 // clear any pending manual centering request
mjr 78:1e00b3fa11af 4529 manualCenterRequest_ = false;
mjr 77:0b96f6867312 4530 }
mjr 77:0b96f6867312 4531 }
mjr 77:0b96f6867312 4532 else
mjr 77:0b96f6867312 4533 {
mjr 77:0b96f6867312 4534 // not enough samples yet; just up the count
mjr 77:0b96f6867312 4535 ++nAccPrv_;
mjr 77:0b96f6867312 4536 }
mjr 6:cc35eb643e8f 4537
mjr 77:0b96f6867312 4538 // clear the new item's running totals
mjr 77:0b96f6867312 4539 p->clearAvg();
mjr 5:a70c0bce770d 4540
mjr 77:0b96f6867312 4541 // reset the timer
mjr 77:0b96f6867312 4542 tCenter_.reset();
mjr 77:0b96f6867312 4543 }
mjr 5:a70c0bce770d 4544
mjr 77:0b96f6867312 4545 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 4546 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 4547 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 4548
mjr 6:cc35eb643e8f 4549 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 4550 if (x != 0 || y != 0)
mjr 77:0b96f6867312 4551 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 4552 #endif
mjr 77:0b96f6867312 4553 }
mjr 29:582472d0bc57 4554
mjr 3:3514575d4f86 4555 private:
mjr 6:cc35eb643e8f 4556 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 4557 int rawToReport(int v)
mjr 5:a70c0bce770d 4558 {
mjr 77:0b96f6867312 4559 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 4560 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 4561 // so their scale is 2^13.
mjr 77:0b96f6867312 4562 //
mjr 77:0b96f6867312 4563 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 4564 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 4565 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 4566 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 4567 int i = v*JOYMAX;
mjr 77:0b96f6867312 4568 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 4569
mjr 6:cc35eb643e8f 4570 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 4571 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 4572 static const int filter[] = {
mjr 6:cc35eb643e8f 4573 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 4574 0,
mjr 6:cc35eb643e8f 4575 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 4576 };
mjr 6:cc35eb643e8f 4577 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 4578 }
mjr 5:a70c0bce770d 4579
mjr 3:3514575d4f86 4580 // underlying accelerometer object
mjr 3:3514575d4f86 4581 MMA8451Q mma_;
mjr 3:3514575d4f86 4582
mjr 77:0b96f6867312 4583 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 4584 // scale -8192..+8191
mjr 77:0b96f6867312 4585 int ax_, ay_, az_;
mjr 77:0b96f6867312 4586
mjr 77:0b96f6867312 4587 // running sum of readings since last get()
mjr 77:0b96f6867312 4588 int xSum_, ySum_;
mjr 77:0b96f6867312 4589
mjr 77:0b96f6867312 4590 // number of readings since last get()
mjr 77:0b96f6867312 4591 int nSum_;
mjr 6:cc35eb643e8f 4592
mjr 6:cc35eb643e8f 4593 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 4594 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 4595 // at rest.
mjr 77:0b96f6867312 4596 int cx_, cy_;
mjr 77:0b96f6867312 4597
mjr 77:0b96f6867312 4598 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 4599 uint8_t range_;
mjr 78:1e00b3fa11af 4600
mjr 78:1e00b3fa11af 4601 // auto-center mode:
mjr 78:1e00b3fa11af 4602 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 4603 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 4604 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 4605 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 4606
mjr 78:1e00b3fa11af 4607 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 4608 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 4609
mjr 78:1e00b3fa11af 4610 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 4611 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 4612
mjr 77:0b96f6867312 4613 // atuo-centering timer
mjr 5:a70c0bce770d 4614 Timer tCenter_;
mjr 112:8ed709f455c0 4615
mjr 6:cc35eb643e8f 4616 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 4617 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 4618 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 4619 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 4620 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 4621 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 4622 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 4623 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 4624 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 4625 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 4626 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 4627 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 4628 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 4629 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 4630 AccHist accPrv_[maxAccPrv];
mjr 3:3514575d4f86 4631 };
mjr 3:3514575d4f86 4632
mjr 76:7f5912b6340e 4633
mjr 14:df700b22ca08 4634 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4635 //
mjr 33:d832bcab089e 4636 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4637 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4638 //
mjr 33:d832bcab089e 4639 class Debouncer
mjr 33:d832bcab089e 4640 {
mjr 33:d832bcab089e 4641 public:
mjr 33:d832bcab089e 4642 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4643 {
mjr 33:d832bcab089e 4644 t.start();
mjr 33:d832bcab089e 4645 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4646 this->tmin = tmin;
mjr 33:d832bcab089e 4647 }
mjr 33:d832bcab089e 4648
mjr 33:d832bcab089e 4649 // Get the current stable value
mjr 33:d832bcab089e 4650 bool val() const { return stable; }
mjr 33:d832bcab089e 4651
mjr 33:d832bcab089e 4652 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4653 // input device.
mjr 33:d832bcab089e 4654 void sampleIn(bool val)
mjr 33:d832bcab089e 4655 {
mjr 33:d832bcab089e 4656 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4657 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4658 // on the sample reader.
mjr 33:d832bcab089e 4659 if (val != prv)
mjr 33:d832bcab089e 4660 {
mjr 33:d832bcab089e 4661 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4662 t.reset();
mjr 33:d832bcab089e 4663
mjr 33:d832bcab089e 4664 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4665 prv = val;
mjr 33:d832bcab089e 4666 }
mjr 33:d832bcab089e 4667 else if (val != stable)
mjr 33:d832bcab089e 4668 {
mjr 33:d832bcab089e 4669 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4670 // and different from the stable value. This means that
mjr 33:d832bcab089e 4671 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4672 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4673 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4674 if (t.read() > tmin)
mjr 33:d832bcab089e 4675 stable = val;
mjr 33:d832bcab089e 4676 }
mjr 33:d832bcab089e 4677 }
mjr 33:d832bcab089e 4678
mjr 33:d832bcab089e 4679 private:
mjr 33:d832bcab089e 4680 // current stable value
mjr 33:d832bcab089e 4681 bool stable;
mjr 33:d832bcab089e 4682
mjr 33:d832bcab089e 4683 // last raw sample value
mjr 33:d832bcab089e 4684 bool prv;
mjr 33:d832bcab089e 4685
mjr 33:d832bcab089e 4686 // elapsed time since last raw input change
mjr 33:d832bcab089e 4687 Timer t;
mjr 33:d832bcab089e 4688
mjr 33:d832bcab089e 4689 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4690 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4691 float tmin;
mjr 33:d832bcab089e 4692 };
mjr 33:d832bcab089e 4693
mjr 33:d832bcab089e 4694
mjr 33:d832bcab089e 4695 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4696 //
mjr 33:d832bcab089e 4697 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4698 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4699 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4700 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4701 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4702 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4703 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4704 //
mjr 33:d832bcab089e 4705 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4706 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4707 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4708 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4709 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4710 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4711 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4712 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4713 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4714 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4715 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4716 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4717 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4718 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4719 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4720 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4721 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4722 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4723 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4724 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4725 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4726 //
mjr 40:cc0d9814522b 4727 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4728 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4729 //
mjr 33:d832bcab089e 4730 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4731 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4732 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4733 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4734 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4735 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4736 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4737 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4738 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4739 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4740 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4741 //
mjr 33:d832bcab089e 4742 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4743 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4744 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4745 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4746 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4747 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4748 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4749 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4750 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4751 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4752 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4753 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4754 // first check.
mjr 33:d832bcab089e 4755 //
mjr 33:d832bcab089e 4756 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4757 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4758 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4759 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4760 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4761 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4762 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4763 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4764 //
mjr 33:d832bcab089e 4765
mjr 77:0b96f6867312 4766 // Current PSU2 power state:
mjr 33:d832bcab089e 4767 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4768 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4769 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4770 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4771 // 5 -> TV relay on
mjr 77:0b96f6867312 4772 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4773 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4774
mjr 73:4e8ce0b18915 4775 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4776 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4777 // separate state for each:
mjr 73:4e8ce0b18915 4778 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4779 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4780 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4781 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4782 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4783
mjr 79:682ae3171a08 4784 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4785 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4786
mjr 77:0b96f6867312 4787 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4788 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4789 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4790 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4791 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4792 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4793 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4794 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4795 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4796 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4797 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4798
mjr 77:0b96f6867312 4799 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4800 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4801
mjr 35:e959ffba78fd 4802 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4803 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4804 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4805
mjr 73:4e8ce0b18915 4806 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4807 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4808 {
mjr 73:4e8ce0b18915 4809 // update the state
mjr 73:4e8ce0b18915 4810 if (state)
mjr 73:4e8ce0b18915 4811 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4812 else
mjr 73:4e8ce0b18915 4813 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4814
mjr 73:4e8ce0b18915 4815 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4816 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4817 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4818 }
mjr 35:e959ffba78fd 4819
mjr 86:e30a1f60f783 4820 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4821 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4822 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4823 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4824 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4825 // we say it's okay.
mjr 86:e30a1f60f783 4826 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4827 {
mjr 86:e30a1f60f783 4828 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4829 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4830 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4831 // to the same state later.
mjr 86:e30a1f60f783 4832 return psu2_state == 1;
mjr 86:e30a1f60f783 4833 }
mjr 86:e30a1f60f783 4834
mjr 77:0b96f6867312 4835 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4836 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4837 // functions.
mjr 77:0b96f6867312 4838 Timer powerStatusTimer;
mjr 77:0b96f6867312 4839 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4840 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4841 {
mjr 79:682ae3171a08 4842 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4843 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4844 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4845 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4846 {
mjr 79:682ae3171a08 4847 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4848 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4849 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4850 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4851 }
mjr 79:682ae3171a08 4852
mjr 77:0b96f6867312 4853 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4854 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4855 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4856 // skip this whole routine.
mjr 77:0b96f6867312 4857 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4858 return;
mjr 77:0b96f6867312 4859
mjr 77:0b96f6867312 4860 // reset the update timer for next time
mjr 77:0b96f6867312 4861 powerStatusTimer.reset();
mjr 77:0b96f6867312 4862
mjr 77:0b96f6867312 4863 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4864 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4865 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4866 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4867 static Timer tv_timer;
mjr 35:e959ffba78fd 4868
mjr 33:d832bcab089e 4869 // Check our internal state
mjr 33:d832bcab089e 4870 switch (psu2_state)
mjr 33:d832bcab089e 4871 {
mjr 33:d832bcab089e 4872 case 1:
mjr 33:d832bcab089e 4873 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4874 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4875 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4876 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4877 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4878 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4879 {
mjr 33:d832bcab089e 4880 // switch to OFF state
mjr 33:d832bcab089e 4881 psu2_state = 2;
mjr 33:d832bcab089e 4882
mjr 33:d832bcab089e 4883 // try setting the latch
mjr 35:e959ffba78fd 4884 psu2_status_set->write(1);
mjr 33:d832bcab089e 4885 }
mjr 77:0b96f6867312 4886 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4887 break;
mjr 33:d832bcab089e 4888
mjr 33:d832bcab089e 4889 case 2:
mjr 33:d832bcab089e 4890 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4891 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4892 psu2_status_set->write(0);
mjr 33:d832bcab089e 4893 psu2_state = 3;
mjr 77:0b96f6867312 4894 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4895 break;
mjr 33:d832bcab089e 4896
mjr 33:d832bcab089e 4897 case 3:
mjr 33:d832bcab089e 4898 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4899 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4900 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4901 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4902 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4903 {
mjr 33:d832bcab089e 4904 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4905 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4906 tv_timer.reset();
mjr 33:d832bcab089e 4907 tv_timer.start();
mjr 33:d832bcab089e 4908 psu2_state = 4;
mjr 73:4e8ce0b18915 4909
mjr 73:4e8ce0b18915 4910 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4911 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4912 }
mjr 33:d832bcab089e 4913 else
mjr 33:d832bcab089e 4914 {
mjr 33:d832bcab089e 4915 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4916 // our last check. Return to idle state.
mjr 87:8d35c74403af 4917 psu2_state = 1;
mjr 33:d832bcab089e 4918 }
mjr 33:d832bcab089e 4919 break;
mjr 33:d832bcab089e 4920
mjr 33:d832bcab089e 4921 case 4:
mjr 77:0b96f6867312 4922 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4923 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4924 // off again before the countdown finished.
mjr 77:0b96f6867312 4925 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4926 {
mjr 77:0b96f6867312 4927 // power is off - start a new check cycle
mjr 77:0b96f6867312 4928 psu2_status_set->write(1);
mjr 77:0b96f6867312 4929 psu2_state = 2;
mjr 77:0b96f6867312 4930 break;
mjr 77:0b96f6867312 4931 }
mjr 77:0b96f6867312 4932
mjr 77:0b96f6867312 4933 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4934 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4935
mjr 77:0b96f6867312 4936 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4937 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4938 {
mjr 33:d832bcab089e 4939 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4940 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4941 psu2_state = 5;
mjr 77:0b96f6867312 4942
mjr 77:0b96f6867312 4943 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4944 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4945 }
mjr 33:d832bcab089e 4946 break;
mjr 33:d832bcab089e 4947
mjr 33:d832bcab089e 4948 case 5:
mjr 33:d832bcab089e 4949 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4950 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4951 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4952
mjr 77:0b96f6867312 4953 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4954 psu2_state = 6;
mjr 77:0b96f6867312 4955 tvon_ir_state = 0;
mjr 77:0b96f6867312 4956
mjr 77:0b96f6867312 4957 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4958 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4959 break;
mjr 77:0b96f6867312 4960
mjr 77:0b96f6867312 4961 case 6:
mjr 77:0b96f6867312 4962 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4963 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4964 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4965 psu2_state = 1;
mjr 77:0b96f6867312 4966 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4967
mjr 77:0b96f6867312 4968 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4969 if (ir_tx != 0)
mjr 77:0b96f6867312 4970 {
mjr 77:0b96f6867312 4971 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4972 if (ir_tx->isSending())
mjr 77:0b96f6867312 4973 {
mjr 77:0b96f6867312 4974 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4975 // state 6.
mjr 77:0b96f6867312 4976 psu2_state = 6;
mjr 77:0b96f6867312 4977 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4978 break;
mjr 77:0b96f6867312 4979 }
mjr 77:0b96f6867312 4980
mjr 77:0b96f6867312 4981 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4982 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4983 // number.
mjr 77:0b96f6867312 4984 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4985 {
mjr 77:0b96f6867312 4986 // is this a TV ON command?
mjr 77:0b96f6867312 4987 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4988 {
mjr 77:0b96f6867312 4989 // It's a TV ON command - check if it's the one we're
mjr 109:310ac82cbbee 4990 // looking for. We can match any code starting at the
mjr 109:310ac82cbbee 4991 // current state. (We ignore codes BEFORE the current
mjr 109:310ac82cbbee 4992 // state, because we've already processed them on past
mjr 109:310ac82cbbee 4993 // iterations.)
mjr 109:310ac82cbbee 4994 if (n >= tvon_ir_state)
mjr 77:0b96f6867312 4995 {
mjr 77:0b96f6867312 4996 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4997 // pushing its virtual button.
mjr 77:0b96f6867312 4998 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4999 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 5000
mjr 77:0b96f6867312 5001 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 5002 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 5003 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 5004 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 5005 // to send the code once.
mjr 77:0b96f6867312 5006 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 5007
mjr 77:0b96f6867312 5008 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 5009 // await the end of this transmission and move on to
mjr 77:0b96f6867312 5010 // the next one.
mjr 77:0b96f6867312 5011 psu2_state = 6;
mjr 77:0b96f6867312 5012 tvon_ir_state++;
mjr 77:0b96f6867312 5013 break;
mjr 77:0b96f6867312 5014 }
mjr 77:0b96f6867312 5015
mjr 77:0b96f6867312 5016 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 5017 ++n;
mjr 77:0b96f6867312 5018 }
mjr 77:0b96f6867312 5019 }
mjr 77:0b96f6867312 5020 }
mjr 33:d832bcab089e 5021 break;
mjr 33:d832bcab089e 5022 }
mjr 77:0b96f6867312 5023
mjr 77:0b96f6867312 5024 // update the diagnostic LEDs
mjr 77:0b96f6867312 5025 diagLED();
mjr 33:d832bcab089e 5026 }
mjr 33:d832bcab089e 5027
mjr 77:0b96f6867312 5028 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 5029 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 5030 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 5031 // are configured as NC.
mjr 77:0b96f6867312 5032 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 5033 {
mjr 55:4db125cd11a0 5034 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 5035 // time is nonzero
mjr 77:0b96f6867312 5036 powerStatusTimer.reset();
mjr 77:0b96f6867312 5037 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 5038 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 5039 {
mjr 77:0b96f6867312 5040 // set up the power sensing circuit connections
mjr 53:9b2611964afc 5041 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 5042 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 5043
mjr 77:0b96f6867312 5044 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 5045 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 5046 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 5047
mjr 77:0b96f6867312 5048 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 5049 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 5050 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 5051 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 5052
mjr 77:0b96f6867312 5053 // Start the TV timer
mjr 77:0b96f6867312 5054 powerStatusTimer.start();
mjr 35:e959ffba78fd 5055 }
mjr 35:e959ffba78fd 5056 }
mjr 35:e959ffba78fd 5057
mjr 73:4e8ce0b18915 5058 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 5059 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 5060 //
mjr 73:4e8ce0b18915 5061 // Mode:
mjr 73:4e8ce0b18915 5062 // 0 = turn relay off
mjr 73:4e8ce0b18915 5063 // 1 = turn relay on
mjr 73:4e8ce0b18915 5064 // 2 = pulse relay
mjr 73:4e8ce0b18915 5065 void TVRelay(int mode)
mjr 73:4e8ce0b18915 5066 {
mjr 73:4e8ce0b18915 5067 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 5068 if (tv_relay == 0)
mjr 73:4e8ce0b18915 5069 return;
mjr 73:4e8ce0b18915 5070
mjr 73:4e8ce0b18915 5071 switch (mode)
mjr 73:4e8ce0b18915 5072 {
mjr 73:4e8ce0b18915 5073 case 0:
mjr 73:4e8ce0b18915 5074 // relay off
mjr 73:4e8ce0b18915 5075 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 5076 break;
mjr 73:4e8ce0b18915 5077
mjr 73:4e8ce0b18915 5078 case 1:
mjr 73:4e8ce0b18915 5079 // relay on
mjr 73:4e8ce0b18915 5080 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 5081 break;
mjr 73:4e8ce0b18915 5082
mjr 73:4e8ce0b18915 5083 case 2:
mjr 79:682ae3171a08 5084 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 5085 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 5086 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 5087 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 5088 break;
mjr 73:4e8ce0b18915 5089 }
mjr 73:4e8ce0b18915 5090 }
mjr 73:4e8ce0b18915 5091
mjr 73:4e8ce0b18915 5092
mjr 35:e959ffba78fd 5093 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5094 //
mjr 35:e959ffba78fd 5095 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 5096 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 5097 //
mjr 35:e959ffba78fd 5098 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 5099 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 5100 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 5101 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 5102 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 5103 // again each time the firmware is updated.
mjr 35:e959ffba78fd 5104 //
mjr 35:e959ffba78fd 5105 NVM nvm;
mjr 35:e959ffba78fd 5106
mjr 86:e30a1f60f783 5107 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 5108 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 5109 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 5110 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 5111
mjr 86:e30a1f60f783 5112 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 5113 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 5114
mjr 79:682ae3171a08 5115 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 5116 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 5117
mjr 86:e30a1f60f783 5118 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 5119 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 5120
mjr 86:e30a1f60f783 5121
mjr 35:e959ffba78fd 5122 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 5123 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 5124
mjr 35:e959ffba78fd 5125 // flash memory controller interface
mjr 35:e959ffba78fd 5126 FreescaleIAP iap;
mjr 35:e959ffba78fd 5127
mjr 79:682ae3171a08 5128 // figure the flash address for the config data
mjr 79:682ae3171a08 5129 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 5130 {
mjr 79:682ae3171a08 5131 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 5132 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 5133
mjr 79:682ae3171a08 5134 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 5135 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 5136
mjr 79:682ae3171a08 5137 // locate it at the top of memory
mjr 79:682ae3171a08 5138 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 5139
mjr 79:682ae3171a08 5140 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 5141 return (const NVM *)addr;
mjr 35:e959ffba78fd 5142 }
mjr 35:e959ffba78fd 5143
mjr 76:7f5912b6340e 5144 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 5145 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 5146 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 5147 // in either case.
mjr 76:7f5912b6340e 5148 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 5149 {
mjr 35:e959ffba78fd 5150 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 5151 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 5152 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 5153 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 5154 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 5155 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 5156 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 5157 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 5158 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 5159 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 5160 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 5161 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 5162 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 5163 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 5164 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 5165 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 5166
mjr 35:e959ffba78fd 5167 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 5168 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 5169
mjr 35:e959ffba78fd 5170 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 5171 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 5172 if (nvm_valid)
mjr 35:e959ffba78fd 5173 {
mjr 35:e959ffba78fd 5174 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 5175 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 5176 }
mjr 35:e959ffba78fd 5177 else
mjr 35:e959ffba78fd 5178 {
mjr 76:7f5912b6340e 5179 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 5180 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 5181 }
mjr 76:7f5912b6340e 5182
mjr 76:7f5912b6340e 5183 // tell the caller what happened
mjr 76:7f5912b6340e 5184 return nvm_valid;
mjr 35:e959ffba78fd 5185 }
mjr 35:e959ffba78fd 5186
mjr 86:e30a1f60f783 5187 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 5188 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 5189 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 5190 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 5191 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 5192 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 5193 {
mjr 76:7f5912b6340e 5194 // get the config block location in the flash memory
mjr 77:0b96f6867312 5195 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 5196
mjr 101:755f44622abc 5197 // save the data
mjr 101:755f44622abc 5198 bool ok = nvm.save(iap, addr);
mjr 101:755f44622abc 5199
mjr 101:755f44622abc 5200 // if the save succeeded, do post-save work
mjr 101:755f44622abc 5201 if (ok)
mjr 86:e30a1f60f783 5202 {
mjr 86:e30a1f60f783 5203 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 5204 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 5205
mjr 86:e30a1f60f783 5206 // start the followup timer
mjr 87:8d35c74403af 5207 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 5208 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 5209 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 5210
mjr 86:e30a1f60f783 5211 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 5212 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 5213 }
mjr 101:755f44622abc 5214
mjr 101:755f44622abc 5215 // return the success indication
mjr 101:755f44622abc 5216 return ok;
mjr 76:7f5912b6340e 5217 }
mjr 76:7f5912b6340e 5218
mjr 76:7f5912b6340e 5219 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 5220 //
mjr 76:7f5912b6340e 5221 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 5222 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 5223 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 5224 // downloading it to the device.
mjr 76:7f5912b6340e 5225 //
mjr 100:1ff35c07217c 5226 // Ideally, we'd use the host-loaded memory for all configuration updates
mjr 100:1ff35c07217c 5227 // from the host - that is, any time the host wants to update config settings,
mjr 100:1ff35c07217c 5228 // such as via user input in the config tool. In the past, I wanted to do
mjr 100:1ff35c07217c 5229 // it this way because it seemed to be unreliable to write flash memory via
mjr 100:1ff35c07217c 5230 // the device. But that turned out to be due to a bug in the mbed Ticker
mjr 100:1ff35c07217c 5231 // code (of all things!), which we've fixed - since then, flash writing on
mjr 100:1ff35c07217c 5232 // the device has been bulletproof. Even so, doing host-to-device flash
mjr 100:1ff35c07217c 5233 // writing for config updates would be nice just for the sake of speed, as
mjr 100:1ff35c07217c 5234 // the alternative is that we send the variables one at a time by USB, which
mjr 100:1ff35c07217c 5235 // takes noticeable time when reprogramming the whole config set. But
mjr 100:1ff35c07217c 5236 // there's no way to accomplish a single-sector flash write via OpenSDA; you
mjr 100:1ff35c07217c 5237 // can only rewrite the entire flash memory as a unit.
mjr 100:1ff35c07217c 5238 //
mjr 100:1ff35c07217c 5239 // We can at least use this approach to do a fast configuration restore
mjr 100:1ff35c07217c 5240 // when downloading new firmware. In that case, we're rewriting all of
mjr 100:1ff35c07217c 5241 // flash memory anyway, so we might as well include the config data.
mjr 76:7f5912b6340e 5242 //
mjr 76:7f5912b6340e 5243 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 5244 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 5245 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 5246 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 5247 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 5248 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 5249 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 5250 //
mjr 76:7f5912b6340e 5251 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 5252 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 5253 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 5254 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 5255 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 5256 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 5257 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 5258 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 5259 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 5260 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 5261
mjr 76:7f5912b6340e 5262 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 5263 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 5264 {
mjr 76:7f5912b6340e 5265 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 5266 // 32-byte signature header
mjr 76:7f5912b6340e 5267 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 5268 };
mjr 76:7f5912b6340e 5269
mjr 76:7f5912b6340e 5270 // forward reference to config var store function
mjr 76:7f5912b6340e 5271 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 5272
mjr 76:7f5912b6340e 5273 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 5274 // configuration object.
mjr 76:7f5912b6340e 5275 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 5276 {
mjr 76:7f5912b6340e 5277 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 5278 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 5279 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 5280 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 5281 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 5282 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 5283 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 5284 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 5285 {
mjr 76:7f5912b6340e 5286 // load this variable
mjr 76:7f5912b6340e 5287 configVarSet(p);
mjr 76:7f5912b6340e 5288 }
mjr 35:e959ffba78fd 5289 }
mjr 35:e959ffba78fd 5290
mjr 35:e959ffba78fd 5291 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5292 //
mjr 55:4db125cd11a0 5293 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 5294 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 5295 //
mjr 55:4db125cd11a0 5296 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 5297 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 5298 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 101:755f44622abc 5299 uint8_t tReportPlungerStat; // timestamp of most recent plunger status request
mjr 55:4db125cd11a0 5300
mjr 55:4db125cd11a0 5301
mjr 55:4db125cd11a0 5302 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 5303 //
mjr 40:cc0d9814522b 5304 // Night mode setting updates
mjr 40:cc0d9814522b 5305 //
mjr 38:091e511ce8a0 5306
mjr 38:091e511ce8a0 5307 // Turn night mode on or off
mjr 38:091e511ce8a0 5308 static void setNightMode(bool on)
mjr 38:091e511ce8a0 5309 {
mjr 77:0b96f6867312 5310 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 5311 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 5312 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 5313 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 5314
mjr 40:cc0d9814522b 5315 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 5316 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 5317 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 5318 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 5319
mjr 76:7f5912b6340e 5320 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 5321 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 5322 // mode change.
mjr 76:7f5912b6340e 5323 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 5324 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 5325
mjr 76:7f5912b6340e 5326 // update 74HC595 outputs
mjr 76:7f5912b6340e 5327 if (hc595 != 0)
mjr 76:7f5912b6340e 5328 hc595->update();
mjr 38:091e511ce8a0 5329 }
mjr 38:091e511ce8a0 5330
mjr 38:091e511ce8a0 5331 // Toggle night mode
mjr 38:091e511ce8a0 5332 static void toggleNightMode()
mjr 38:091e511ce8a0 5333 {
mjr 53:9b2611964afc 5334 setNightMode(!nightMode);
mjr 38:091e511ce8a0 5335 }
mjr 38:091e511ce8a0 5336
mjr 38:091e511ce8a0 5337
mjr 38:091e511ce8a0 5338 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5339 //
mjr 35:e959ffba78fd 5340 // Plunger Sensor
mjr 35:e959ffba78fd 5341 //
mjr 35:e959ffba78fd 5342
mjr 35:e959ffba78fd 5343 // the plunger sensor interface object
mjr 35:e959ffba78fd 5344 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 5345
mjr 76:7f5912b6340e 5346
mjr 35:e959ffba78fd 5347 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 5348 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 5349 void createPlunger()
mjr 35:e959ffba78fd 5350 {
mjr 35:e959ffba78fd 5351 // create the new sensor object according to the type
mjr 35:e959ffba78fd 5352 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 5353 {
mjr 82:4f6209cb5c33 5354 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 5355 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 5356 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5357 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 5358 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5359 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5360 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5361 break;
mjr 35:e959ffba78fd 5362
mjr 82:4f6209cb5c33 5363 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 5364 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 5365 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5366 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 5367 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5368 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5369 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5370 break;
mjr 35:e959ffba78fd 5371
mjr 35:e959ffba78fd 5372 case PlungerType_Pot:
mjr 82:4f6209cb5c33 5373 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 5374 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 5375 // pins are: AO (analog in)
mjr 53:9b2611964afc 5376 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 5377 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 5378 break;
mjr 82:4f6209cb5c33 5379
mjr 82:4f6209cb5c33 5380 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 5381 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 5382 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 5383 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 5384 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 5385 300,
mjr 82:4f6209cb5c33 5386 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5387 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 5388 break;
mjr 82:4f6209cb5c33 5389
mjr 82:4f6209cb5c33 5390 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 5391 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 5392 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 5393 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 5394 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5395 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5396 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5397 break;
mjr 82:4f6209cb5c33 5398
mjr 82:4f6209cb5c33 5399 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 5400 // VL6180X time-of-flight IR distance sensor
mjr 111:42dc75fbe623 5401 // pins are: SDA, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 5402 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 5403 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5404 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5405 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5406 break;
mjr 82:4f6209cb5c33 5407
mjr 100:1ff35c07217c 5408 case PlungerType_AEAT6012:
mjr 100:1ff35c07217c 5409 // Broadcom AEAT-6012-A06 magnetic rotary encoder
mjr 100:1ff35c07217c 5410 // pins are: CS (chip select, dig out), CLK (dig out), DO (data, dig in)
mjr 100:1ff35c07217c 5411 plungerSensor = new PlungerSensorAEAT601X<12>(
mjr 100:1ff35c07217c 5412 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5413 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5414 wirePinName(cfg.plunger.sensorPin[2]));
mjr 100:1ff35c07217c 5415 break;
mjr 100:1ff35c07217c 5416
mjr 100:1ff35c07217c 5417 case PlungerType_TCD1103:
mjr 100:1ff35c07217c 5418 // Toshiba TCD1103GFG linear CCD, optical edge detection, with
mjr 100:1ff35c07217c 5419 // inverted logic gates.
mjr 100:1ff35c07217c 5420 // Pins are: fM (master clock, PWM), OS (sample data, analog in),
mjr 100:1ff35c07217c 5421 // ICG (integration clear gate, dig out), SH (shift gate, dig out)
mjr 100:1ff35c07217c 5422 plungerSensor = new PlungerSensorTCD1103<true>(
mjr 100:1ff35c07217c 5423 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5424 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5425 wirePinName(cfg.plunger.sensorPin[2]),
mjr 100:1ff35c07217c 5426 wirePinName(cfg.plunger.sensorPin[3]));
mjr 100:1ff35c07217c 5427 break;
mjr 100:1ff35c07217c 5428
mjr 111:42dc75fbe623 5429 case PlungerType_VCNL4010:
mjr 111:42dc75fbe623 5430 // VCNL4010 IR proximity sensor pins are: SDA, SCL
mjr 111:42dc75fbe623 5431 plungerSensor = new PlungerSensorVCNL4010(
mjr 111:42dc75fbe623 5432 wirePinName(cfg.plunger.sensorPin[0]),
mjr 113:7330439f2ffc 5433 wirePinName(cfg.plunger.sensorPin[1]),
mjr 113:7330439f2ffc 5434 cfg.plunger.param1);
mjr 111:42dc75fbe623 5435 break;
mjr 111:42dc75fbe623 5436
mjr 35:e959ffba78fd 5437 case PlungerType_None:
mjr 35:e959ffba78fd 5438 default:
mjr 35:e959ffba78fd 5439 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 5440 break;
mjr 35:e959ffba78fd 5441 }
mjr 100:1ff35c07217c 5442
mjr 100:1ff35c07217c 5443 // initialize the plunger from the saved configuration
mjr 100:1ff35c07217c 5444 plungerSensor->restoreCalibration(cfg);
mjr 86:e30a1f60f783 5445
mjr 87:8d35c74403af 5446 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 5447 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 5448 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 5449 }
mjr 33:d832bcab089e 5450
mjr 52:8298b2a73eb2 5451 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 5452 bool plungerCalMode;
mjr 52:8298b2a73eb2 5453
mjr 48:058ace2aed1d 5454 // Plunger reader
mjr 51:57eb311faafa 5455 //
mjr 51:57eb311faafa 5456 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 5457 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 5458 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 5459 //
mjr 51:57eb311faafa 5460 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 5461 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 5462 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 5463 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 5464 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 5465 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 5466 // firing motion.
mjr 51:57eb311faafa 5467 //
mjr 51:57eb311faafa 5468 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 5469 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 5470 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 5471 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 5472 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 5473 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 5474 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 5475 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 5476 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 5477 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 5478 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 5479 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 5480 // a classic digital aliasing effect.
mjr 51:57eb311faafa 5481 //
mjr 51:57eb311faafa 5482 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 5483 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 5484 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 5485 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 5486 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 5487 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 5488 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 5489 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 5490 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 5491 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 5492 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 5493 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 5494 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 5495 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 5496 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 5497 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 5498 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 5499 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 5500 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 5501 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 5502 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 5503 //
mjr 48:058ace2aed1d 5504 class PlungerReader
mjr 48:058ace2aed1d 5505 {
mjr 48:058ace2aed1d 5506 public:
mjr 48:058ace2aed1d 5507 PlungerReader()
mjr 48:058ace2aed1d 5508 {
mjr 48:058ace2aed1d 5509 // not in a firing event yet
mjr 48:058ace2aed1d 5510 firing = 0;
mjr 48:058ace2aed1d 5511 }
mjr 76:7f5912b6340e 5512
mjr 48:058ace2aed1d 5513 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 5514 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 5515 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 5516 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 5517 void read()
mjr 48:058ace2aed1d 5518 {
mjr 76:7f5912b6340e 5519 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 5520 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 5521 return;
mjr 76:7f5912b6340e 5522
mjr 48:058ace2aed1d 5523 // Read a sample from the sensor
mjr 48:058ace2aed1d 5524 PlungerReading r;
mjr 48:058ace2aed1d 5525 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 5526 {
mjr 53:9b2611964afc 5527 // check for calibration mode
mjr 53:9b2611964afc 5528 if (plungerCalMode)
mjr 53:9b2611964afc 5529 {
mjr 53:9b2611964afc 5530 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 5531 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 5532 // expand the envelope to include this new value.
mjr 53:9b2611964afc 5533 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 5534 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 5535 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 5536 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 5537
mjr 76:7f5912b6340e 5538 // update our cached calibration data
mjr 76:7f5912b6340e 5539 onUpdateCal();
mjr 50:40015764bbe6 5540
mjr 53:9b2611964afc 5541 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 5542 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 5543 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 5544 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 5545 if (calState == 0)
mjr 53:9b2611964afc 5546 {
mjr 53:9b2611964afc 5547 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 5548 {
mjr 53:9b2611964afc 5549 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 5550 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 5551 {
mjr 53:9b2611964afc 5552 // we've been at rest long enough - count it
mjr 53:9b2611964afc 5553 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 5554 calZeroPosN += 1;
mjr 53:9b2611964afc 5555
mjr 53:9b2611964afc 5556 // update the zero position from the new average
mjr 53:9b2611964afc 5557 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 5558 onUpdateCal();
mjr 53:9b2611964afc 5559
mjr 53:9b2611964afc 5560 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 5561 calState = 1;
mjr 53:9b2611964afc 5562 }
mjr 53:9b2611964afc 5563 }
mjr 53:9b2611964afc 5564 else
mjr 53:9b2611964afc 5565 {
mjr 53:9b2611964afc 5566 // we're not close to the last position - start again here
mjr 53:9b2611964afc 5567 calZeroStart = r;
mjr 53:9b2611964afc 5568 }
mjr 53:9b2611964afc 5569 }
mjr 53:9b2611964afc 5570
mjr 53:9b2611964afc 5571 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 5572 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 5573 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 5574 r.pos = int(
mjr 53:9b2611964afc 5575 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 5576 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 5577 }
mjr 53:9b2611964afc 5578 else
mjr 53:9b2611964afc 5579 {
mjr 53:9b2611964afc 5580 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 5581 // rescale to the joystick range.
mjr 76:7f5912b6340e 5582 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 5583
mjr 53:9b2611964afc 5584 // limit the result to the valid joystick range
mjr 53:9b2611964afc 5585 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 5586 r.pos = JOYMAX;
mjr 53:9b2611964afc 5587 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 5588 r.pos = -JOYMAX;
mjr 53:9b2611964afc 5589 }
mjr 50:40015764bbe6 5590
mjr 87:8d35c74403af 5591 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 5592 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 5593 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 5594 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 5595 //
mjr 87:8d35c74403af 5596 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 5597 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 5598 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 5599 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 5600 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 5601 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 5602 // 25-50ms.
mjr 87:8d35c74403af 5603 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 5604 return;
mjr 87:8d35c74403af 5605
mjr 87:8d35c74403af 5606 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 5607 z = r.pos;
mjr 87:8d35c74403af 5608
mjr 87:8d35c74403af 5609 // Firing event detection.
mjr 87:8d35c74403af 5610 //
mjr 87:8d35c74403af 5611 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 5612 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 5613 // spring tension.
mjr 50:40015764bbe6 5614 //
mjr 87:8d35c74403af 5615 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 5616 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 5617 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 5618 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 5619 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 5620 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 5621 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 5622 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 5623 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 5624 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 5625 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 5626 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 5627 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 5628 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 5629 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 5630 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 5631 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 5632 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 5633 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 5634 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 5635 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 5636 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 5637 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 5638 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5639 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5640 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5641 // forward position for a short time.
mjr 76:7f5912b6340e 5642 //
mjr 87:8d35c74403af 5643 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5644 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5645 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5646 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5647 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5648 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5649 //
mjr 87:8d35c74403af 5650 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5651 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5652 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5653 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5654 // to the park position.
mjr 87:8d35c74403af 5655 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5656 switch (firing)
mjr 50:40015764bbe6 5657 {
mjr 50:40015764bbe6 5658 case 0:
mjr 87:8d35c74403af 5659 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5660 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5661 // release, enter firing mode.
mjr 87:8d35c74403af 5662 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5663 {
mjr 87:8d35c74403af 5664 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5665 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5666 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5667 {
mjr 87:8d35c74403af 5668 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5669 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5670 firingMode(1);
mjr 87:8d35c74403af 5671 f0 = prv;
mjr 87:8d35c74403af 5672 z = f0.pos;
mjr 87:8d35c74403af 5673
mjr 87:8d35c74403af 5674 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5675 // state 2 (not at rest)
mjr 87:8d35c74403af 5676 if (calState == 1)
mjr 87:8d35c74403af 5677 calState = 2;
mjr 87:8d35c74403af 5678 }
mjr 50:40015764bbe6 5679 }
mjr 50:40015764bbe6 5680 break;
mjr 50:40015764bbe6 5681
mjr 50:40015764bbe6 5682 case 1:
mjr 87:8d35c74403af 5683 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5684 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5685 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5686 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5687 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5688 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5689 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5690 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5691 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5692 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5693 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5694 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5695 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5696 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5697 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5698 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5699 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5700 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5701 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5702 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5703 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5704 if (r.pos <= 0)
mjr 50:40015764bbe6 5705 {
mjr 87:8d35c74403af 5706 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5707 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5708 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5709 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5710 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5711 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5712 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5713 // physics.
mjr 50:40015764bbe6 5714 firingMode(2);
mjr 53:9b2611964afc 5715
mjr 53:9b2611964afc 5716 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5717 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5718 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5719 {
mjr 53:9b2611964afc 5720 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5721 // come to rest
mjr 53:9b2611964afc 5722 calState = 0;
mjr 53:9b2611964afc 5723
mjr 87:8d35c74403af 5724 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5725 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5726 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5727 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5728 {
mjr 53:9b2611964afc 5729 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5730 calRlsTimeN += 1;
mjr 53:9b2611964afc 5731 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5732 }
mjr 53:9b2611964afc 5733 }
mjr 87:8d35c74403af 5734
mjr 87:8d35c74403af 5735 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5736 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5737 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5738 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5739 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5740 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5741 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5742 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5743 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5744 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5745 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5746 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5747 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5748 // small in any case.)
mjr 87:8d35c74403af 5749 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5750
mjr 87:8d35c74403af 5751 // reset the starting time for this phase
mjr 87:8d35c74403af 5752 f0.t = r.t;
mjr 50:40015764bbe6 5753 }
mjr 50:40015764bbe6 5754 else
mjr 50:40015764bbe6 5755 {
mjr 87:8d35c74403af 5756 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5757 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5758 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5759 if (dt < 50000
mjr 87:8d35c74403af 5760 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5761 {
mjr 87:8d35c74403af 5762 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5763 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5764 // stay in the first release phase.
mjr 87:8d35c74403af 5765 z = f0.pos;
mjr 87:8d35c74403af 5766 }
mjr 87:8d35c74403af 5767 else
mjr 87:8d35c74403af 5768 {
mjr 87:8d35c74403af 5769 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5770 // motion. Return to the default state.
mjr 87:8d35c74403af 5771 firingMode(0);
mjr 87:8d35c74403af 5772 calState = 1;
mjr 87:8d35c74403af 5773 }
mjr 50:40015764bbe6 5774 }
mjr 50:40015764bbe6 5775 break;
mjr 50:40015764bbe6 5776
mjr 50:40015764bbe6 5777 case 2:
mjr 87:8d35c74403af 5778 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5779 // Hold here for 25ms.
mjr 87:8d35c74403af 5780 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5781 {
mjr 87:8d35c74403af 5782 // stay here for now
mjr 87:8d35c74403af 5783 z = f0.pos;
mjr 50:40015764bbe6 5784 }
mjr 50:40015764bbe6 5785 else
mjr 50:40015764bbe6 5786 {
mjr 87:8d35c74403af 5787 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5788 // position until the plunger comes to rest
mjr 50:40015764bbe6 5789 firingMode(3);
mjr 50:40015764bbe6 5790 z = 0;
mjr 87:8d35c74403af 5791
mjr 87:8d35c74403af 5792 // remember when we started
mjr 87:8d35c74403af 5793 f0.t = r.t;
mjr 50:40015764bbe6 5794 }
mjr 50:40015764bbe6 5795 break;
mjr 50:40015764bbe6 5796
mjr 50:40015764bbe6 5797 case 3:
mjr 87:8d35c74403af 5798 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5799 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5800 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5801 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5802 {
mjr 87:8d35c74403af 5803 // stay here a while longer
mjr 87:8d35c74403af 5804 z = 0;
mjr 50:40015764bbe6 5805 }
mjr 50:40015764bbe6 5806 else
mjr 50:40015764bbe6 5807 {
mjr 87:8d35c74403af 5808 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5809 firingMode(0);
mjr 50:40015764bbe6 5810 }
mjr 50:40015764bbe6 5811 break;
mjr 50:40015764bbe6 5812 }
mjr 50:40015764bbe6 5813
mjr 82:4f6209cb5c33 5814 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5815 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5816 {
mjr 82:4f6209cb5c33 5817 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5818 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5819 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5820 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5821 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5822 {
mjr 82:4f6209cb5c33 5823 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5824 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5825 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5826 }
mjr 82:4f6209cb5c33 5827 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5828 {
mjr 82:4f6209cb5c33 5829 // auto-zero now
mjr 82:4f6209cb5c33 5830 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5831
mjr 82:4f6209cb5c33 5832 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5833 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5834 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5835 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5836 }
mjr 82:4f6209cb5c33 5837 }
mjr 82:4f6209cb5c33 5838
mjr 87:8d35c74403af 5839 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5840 prv = r;
mjr 48:058ace2aed1d 5841 }
mjr 48:058ace2aed1d 5842 }
mjr 48:058ace2aed1d 5843
mjr 48:058ace2aed1d 5844 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5845 int16_t getPosition()
mjr 58:523fdcffbe6d 5846 {
mjr 86:e30a1f60f783 5847 // return the last reading
mjr 86:e30a1f60f783 5848 return z;
mjr 55:4db125cd11a0 5849 }
mjr 58:523fdcffbe6d 5850
mjr 48:058ace2aed1d 5851 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5852 void setCalMode(bool f)
mjr 48:058ace2aed1d 5853 {
mjr 52:8298b2a73eb2 5854 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5855 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5856 {
mjr 52:8298b2a73eb2 5857 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5858 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5859
mjr 52:8298b2a73eb2 5860 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5861 calState = 0;
mjr 52:8298b2a73eb2 5862 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5863 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5864 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5865 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5866
mjr 82:4f6209cb5c33 5867 // tell the plunger we're starting calibration
mjr 100:1ff35c07217c 5868 plungerSensor->beginCalibration(cfg);
mjr 82:4f6209cb5c33 5869
mjr 52:8298b2a73eb2 5870 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5871 PlungerReading r;
mjr 52:8298b2a73eb2 5872 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5873 {
mjr 52:8298b2a73eb2 5874 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5875 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5876 onUpdateCal();
mjr 52:8298b2a73eb2 5877
mjr 52:8298b2a73eb2 5878 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5879 calZeroStart = r;
mjr 52:8298b2a73eb2 5880 }
mjr 52:8298b2a73eb2 5881 else
mjr 52:8298b2a73eb2 5882 {
mjr 52:8298b2a73eb2 5883 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5884 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5885 onUpdateCal();
mjr 52:8298b2a73eb2 5886
mjr 52:8298b2a73eb2 5887 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5888 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5889 calZeroStart.t = 0;
mjr 53:9b2611964afc 5890 }
mjr 53:9b2611964afc 5891 }
mjr 53:9b2611964afc 5892 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5893 {
mjr 53:9b2611964afc 5894 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5895 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5896 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5897 // physically meaningless.
mjr 53:9b2611964afc 5898 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5899 {
mjr 53:9b2611964afc 5900 // bad settings - reset to defaults
mjr 53:9b2611964afc 5901 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5902 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 5903 }
mjr 100:1ff35c07217c 5904
mjr 100:1ff35c07217c 5905 // finalize the configuration in the plunger object
mjr 100:1ff35c07217c 5906 plungerSensor->endCalibration(cfg);
mjr 100:1ff35c07217c 5907
mjr 100:1ff35c07217c 5908 // update our internal cached information for the new calibration
mjr 100:1ff35c07217c 5909 onUpdateCal();
mjr 52:8298b2a73eb2 5910 }
mjr 52:8298b2a73eb2 5911
mjr 48:058ace2aed1d 5912 // remember the new mode
mjr 52:8298b2a73eb2 5913 plungerCalMode = f;
mjr 48:058ace2aed1d 5914 }
mjr 48:058ace2aed1d 5915
mjr 76:7f5912b6340e 5916 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5917 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5918 // cached inverse is calculated as
mjr 76:7f5912b6340e 5919 //
mjr 76:7f5912b6340e 5920 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5921 //
mjr 76:7f5912b6340e 5922 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5923 //
mjr 76:7f5912b6340e 5924 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5925 //
mjr 76:7f5912b6340e 5926 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5927 int invCalRange;
mjr 76:7f5912b6340e 5928
mjr 76:7f5912b6340e 5929 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5930 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5931 {
mjr 76:7f5912b6340e 5932 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5933 }
mjr 76:7f5912b6340e 5934
mjr 76:7f5912b6340e 5935 void onUpdateCal()
mjr 76:7f5912b6340e 5936 {
mjr 76:7f5912b6340e 5937 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5938 }
mjr 76:7f5912b6340e 5939
mjr 48:058ace2aed1d 5940 // is a firing event in progress?
mjr 53:9b2611964afc 5941 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5942
mjr 48:058ace2aed1d 5943 private:
mjr 87:8d35c74403af 5944 // current reported joystick reading
mjr 87:8d35c74403af 5945 int z;
mjr 87:8d35c74403af 5946
mjr 87:8d35c74403af 5947 // previous reading
mjr 87:8d35c74403af 5948 PlungerReading prv;
mjr 87:8d35c74403af 5949
mjr 52:8298b2a73eb2 5950 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5951 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5952 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5953 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5954 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5955 // 1 = at rest
mjr 52:8298b2a73eb2 5956 // 2 = retracting
mjr 52:8298b2a73eb2 5957 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5958 uint8_t calState;
mjr 52:8298b2a73eb2 5959
mjr 52:8298b2a73eb2 5960 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5961 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5962 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5963 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5964 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5965 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5966 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5967 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5968 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5969 long calZeroPosSum;
mjr 52:8298b2a73eb2 5970 int calZeroPosN;
mjr 52:8298b2a73eb2 5971
mjr 52:8298b2a73eb2 5972 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5973 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5974 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5975 int calRlsTimeN;
mjr 52:8298b2a73eb2 5976
mjr 85:3c28aee81cde 5977 // Auto-zeroing timer
mjr 85:3c28aee81cde 5978 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5979
mjr 48:058ace2aed1d 5980 // set a firing mode
mjr 48:058ace2aed1d 5981 inline void firingMode(int m)
mjr 48:058ace2aed1d 5982 {
mjr 48:058ace2aed1d 5983 firing = m;
mjr 48:058ace2aed1d 5984 }
mjr 48:058ace2aed1d 5985
mjr 48:058ace2aed1d 5986 // Firing event state.
mjr 48:058ace2aed1d 5987 //
mjr 87:8d35c74403af 5988 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5989 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5990 //
mjr 87:8d35c74403af 5991 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5992 //
mjr 87:8d35c74403af 5993 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5994 //
mjr 87:8d35c74403af 5995 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5996 //
mjr 48:058ace2aed1d 5997 int firing;
mjr 48:058ace2aed1d 5998
mjr 87:8d35c74403af 5999 // Starting position for current firing mode phase
mjr 87:8d35c74403af 6000 PlungerReading f0;
mjr 48:058ace2aed1d 6001 };
mjr 48:058ace2aed1d 6002
mjr 48:058ace2aed1d 6003 // plunger reader singleton
mjr 48:058ace2aed1d 6004 PlungerReader plungerReader;
mjr 48:058ace2aed1d 6005
mjr 48:058ace2aed1d 6006 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 6007 //
mjr 48:058ace2aed1d 6008 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 6009 //
mjr 48:058ace2aed1d 6010 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 6011 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 6012 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 6013 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 6014 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 6015 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 6016 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 6017 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 6018 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 6019 //
mjr 48:058ace2aed1d 6020 // This feature has two configuration components:
mjr 48:058ace2aed1d 6021 //
mjr 48:058ace2aed1d 6022 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 6023 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 6024 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 6025 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 6026 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 6027 // plunger/launch button connection.
mjr 48:058ace2aed1d 6028 //
mjr 48:058ace2aed1d 6029 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 6030 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 6031 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 6032 // position.
mjr 48:058ace2aed1d 6033 //
mjr 48:058ace2aed1d 6034 class ZBLaunchBall
mjr 48:058ace2aed1d 6035 {
mjr 48:058ace2aed1d 6036 public:
mjr 48:058ace2aed1d 6037 ZBLaunchBall()
mjr 48:058ace2aed1d 6038 {
mjr 48:058ace2aed1d 6039 // start in the default state
mjr 48:058ace2aed1d 6040 lbState = 0;
mjr 53:9b2611964afc 6041 btnState = false;
mjr 48:058ace2aed1d 6042 }
mjr 48:058ace2aed1d 6043
mjr 48:058ace2aed1d 6044 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 6045 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 6046 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 6047 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 6048 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 6049 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 6050 void update()
mjr 48:058ace2aed1d 6051 {
mjr 53:9b2611964afc 6052 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 6053 // plunger firing event
mjr 53:9b2611964afc 6054 if (zbLaunchOn)
mjr 48:058ace2aed1d 6055 {
mjr 53:9b2611964afc 6056 // note the new position
mjr 48:058ace2aed1d 6057 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 6058
mjr 53:9b2611964afc 6059 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 6060 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 6061
mjr 53:9b2611964afc 6062 // check the state
mjr 48:058ace2aed1d 6063 switch (lbState)
mjr 48:058ace2aed1d 6064 {
mjr 48:058ace2aed1d 6065 case 0:
mjr 53:9b2611964afc 6066 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 6067 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 6068 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 6069 // the button.
mjr 53:9b2611964afc 6070 if (plungerReader.isFiring())
mjr 53:9b2611964afc 6071 {
mjr 53:9b2611964afc 6072 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 6073 lbTimer.reset();
mjr 53:9b2611964afc 6074 lbTimer.start();
mjr 53:9b2611964afc 6075 setButton(true);
mjr 53:9b2611964afc 6076
mjr 53:9b2611964afc 6077 // switch to state 1
mjr 53:9b2611964afc 6078 lbState = 1;
mjr 53:9b2611964afc 6079 }
mjr 48:058ace2aed1d 6080 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 6081 {
mjr 53:9b2611964afc 6082 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 6083 // button as long as we're pushed forward
mjr 53:9b2611964afc 6084 setButton(true);
mjr 53:9b2611964afc 6085 }
mjr 53:9b2611964afc 6086 else
mjr 53:9b2611964afc 6087 {
mjr 53:9b2611964afc 6088 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 6089 setButton(false);
mjr 53:9b2611964afc 6090 }
mjr 48:058ace2aed1d 6091 break;
mjr 48:058ace2aed1d 6092
mjr 48:058ace2aed1d 6093 case 1:
mjr 53:9b2611964afc 6094 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 6095 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 6096 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 6097 {
mjr 53:9b2611964afc 6098 // timer expired - turn off the button
mjr 53:9b2611964afc 6099 setButton(false);
mjr 53:9b2611964afc 6100
mjr 53:9b2611964afc 6101 // switch to state 2
mjr 53:9b2611964afc 6102 lbState = 2;
mjr 53:9b2611964afc 6103 }
mjr 48:058ace2aed1d 6104 break;
mjr 48:058ace2aed1d 6105
mjr 48:058ace2aed1d 6106 case 2:
mjr 53:9b2611964afc 6107 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 6108 // plunger launch event to end.
mjr 53:9b2611964afc 6109 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 6110 {
mjr 53:9b2611964afc 6111 // firing event done - return to default state
mjr 53:9b2611964afc 6112 lbState = 0;
mjr 53:9b2611964afc 6113 }
mjr 48:058ace2aed1d 6114 break;
mjr 48:058ace2aed1d 6115 }
mjr 53:9b2611964afc 6116 }
mjr 53:9b2611964afc 6117 else
mjr 53:9b2611964afc 6118 {
mjr 53:9b2611964afc 6119 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 6120 setButton(false);
mjr 48:058ace2aed1d 6121
mjr 53:9b2611964afc 6122 // return to the default state
mjr 53:9b2611964afc 6123 lbState = 0;
mjr 48:058ace2aed1d 6124 }
mjr 48:058ace2aed1d 6125 }
mjr 53:9b2611964afc 6126
mjr 53:9b2611964afc 6127 // Set the button state
mjr 53:9b2611964afc 6128 void setButton(bool on)
mjr 53:9b2611964afc 6129 {
mjr 53:9b2611964afc 6130 if (btnState != on)
mjr 53:9b2611964afc 6131 {
mjr 53:9b2611964afc 6132 // remember the new state
mjr 53:9b2611964afc 6133 btnState = on;
mjr 53:9b2611964afc 6134
mjr 53:9b2611964afc 6135 // update the virtual button state
mjr 65:739875521aae 6136 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 6137 }
mjr 53:9b2611964afc 6138 }
mjr 53:9b2611964afc 6139
mjr 48:058ace2aed1d 6140 private:
mjr 48:058ace2aed1d 6141 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 6142 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 6143 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 6144 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 6145 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 6146 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 6147 //
mjr 48:058ace2aed1d 6148 // States:
mjr 48:058ace2aed1d 6149 // 0 = default
mjr 53:9b2611964afc 6150 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 6151 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 6152 // firing event to end)
mjr 53:9b2611964afc 6153 uint8_t lbState;
mjr 48:058ace2aed1d 6154
mjr 53:9b2611964afc 6155 // button state
mjr 53:9b2611964afc 6156 bool btnState;
mjr 48:058ace2aed1d 6157
mjr 48:058ace2aed1d 6158 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 6159 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 6160 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 6161 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 6162 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 6163 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 6164 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 6165 Timer lbTimer;
mjr 48:058ace2aed1d 6166 };
mjr 48:058ace2aed1d 6167
mjr 35:e959ffba78fd 6168 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6169 //
mjr 35:e959ffba78fd 6170 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 6171 //
mjr 54:fd77a6b2f76c 6172 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 6173 {
mjr 35:e959ffba78fd 6174 // disconnect from USB
mjr 54:fd77a6b2f76c 6175 if (disconnect)
mjr 54:fd77a6b2f76c 6176 js.disconnect();
mjr 35:e959ffba78fd 6177
mjr 35:e959ffba78fd 6178 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 6179 wait_us(pause_us);
mjr 35:e959ffba78fd 6180
mjr 35:e959ffba78fd 6181 // reset the device
mjr 35:e959ffba78fd 6182 NVIC_SystemReset();
mjr 35:e959ffba78fd 6183 while (true) { }
mjr 35:e959ffba78fd 6184 }
mjr 35:e959ffba78fd 6185
mjr 35:e959ffba78fd 6186 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6187 //
mjr 35:e959ffba78fd 6188 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 6189 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 6190 //
mjr 35:e959ffba78fd 6191 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 6192 {
mjr 35:e959ffba78fd 6193 int tmp;
mjr 78:1e00b3fa11af 6194 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 6195 {
mjr 35:e959ffba78fd 6196 case OrientationFront:
mjr 35:e959ffba78fd 6197 tmp = x;
mjr 35:e959ffba78fd 6198 x = y;
mjr 35:e959ffba78fd 6199 y = tmp;
mjr 35:e959ffba78fd 6200 break;
mjr 35:e959ffba78fd 6201
mjr 35:e959ffba78fd 6202 case OrientationLeft:
mjr 35:e959ffba78fd 6203 x = -x;
mjr 35:e959ffba78fd 6204 break;
mjr 35:e959ffba78fd 6205
mjr 35:e959ffba78fd 6206 case OrientationRight:
mjr 35:e959ffba78fd 6207 y = -y;
mjr 35:e959ffba78fd 6208 break;
mjr 35:e959ffba78fd 6209
mjr 35:e959ffba78fd 6210 case OrientationRear:
mjr 35:e959ffba78fd 6211 tmp = -x;
mjr 35:e959ffba78fd 6212 x = -y;
mjr 35:e959ffba78fd 6213 y = tmp;
mjr 35:e959ffba78fd 6214 break;
mjr 35:e959ffba78fd 6215 }
mjr 35:e959ffba78fd 6216 }
mjr 35:e959ffba78fd 6217
mjr 35:e959ffba78fd 6218 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6219 //
mjr 35:e959ffba78fd 6220 // Calibration button state:
mjr 35:e959ffba78fd 6221 // 0 = not pushed
mjr 35:e959ffba78fd 6222 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 6223 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 6224 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 6225 int calBtnState = 0;
mjr 35:e959ffba78fd 6226
mjr 35:e959ffba78fd 6227 // calibration button debounce timer
mjr 35:e959ffba78fd 6228 Timer calBtnTimer;
mjr 35:e959ffba78fd 6229
mjr 35:e959ffba78fd 6230 // calibration button light state
mjr 35:e959ffba78fd 6231 int calBtnLit = false;
mjr 35:e959ffba78fd 6232
mjr 35:e959ffba78fd 6233
mjr 35:e959ffba78fd 6234 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6235 //
mjr 40:cc0d9814522b 6236 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 6237 //
mjr 40:cc0d9814522b 6238
mjr 40:cc0d9814522b 6239 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 6240 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 6241 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 6242 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 6243 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 6244 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 6245 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 6246 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6247 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6248 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 6249 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 6250 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 6251
mjr 40:cc0d9814522b 6252 // redefine everything for the SET messages
mjr 40:cc0d9814522b 6253 #undef if_msg_valid
mjr 40:cc0d9814522b 6254 #undef v_byte
mjr 40:cc0d9814522b 6255 #undef v_ui16
mjr 77:0b96f6867312 6256 #undef v_ui32
mjr 40:cc0d9814522b 6257 #undef v_pin
mjr 53:9b2611964afc 6258 #undef v_byte_ro
mjr 91:ae9be42652bf 6259 #undef v_byte_wo
mjr 74:822a92bc11d2 6260 #undef v_ui32_ro
mjr 74:822a92bc11d2 6261 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 6262 #undef v_func
mjr 38:091e511ce8a0 6263
mjr 91:ae9be42652bf 6264 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 6265 #define if_msg_valid(test)
mjr 53:9b2611964afc 6266 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 6267 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 6268 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 6269 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 6270 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 6271 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 6272 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 6273 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 6274 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 6275 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 6276
mjr 35:e959ffba78fd 6277
mjr 35:e959ffba78fd 6278 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6279 //
mjr 101:755f44622abc 6280 // Timer for timestamping input requests
mjr 101:755f44622abc 6281 //
mjr 101:755f44622abc 6282 Timer requestTimestamper;
mjr 101:755f44622abc 6283
mjr 101:755f44622abc 6284 // ---------------------------------------------------------------------------
mjr 101:755f44622abc 6285 //
mjr 35:e959ffba78fd 6286 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 6287 // LedWiz protocol.
mjr 33:d832bcab089e 6288 //
mjr 78:1e00b3fa11af 6289 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 6290 {
mjr 38:091e511ce8a0 6291 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 6292 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 6293 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 6294 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 6295 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 6296 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 6297 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 6298 // So our full protocol is as follows:
mjr 38:091e511ce8a0 6299 //
mjr 38:091e511ce8a0 6300 // first byte =
mjr 74:822a92bc11d2 6301 // 0-48 -> PBA
mjr 74:822a92bc11d2 6302 // 64 -> SBA
mjr 38:091e511ce8a0 6303 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 6304 // 129-132 -> PBA
mjr 38:091e511ce8a0 6305 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 6306 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 6307 // other -> reserved for future use
mjr 38:091e511ce8a0 6308 //
mjr 39:b3815a1c3802 6309 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 6310 if (data[0] == 64)
mjr 35:e959ffba78fd 6311 {
mjr 74:822a92bc11d2 6312 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 6313 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 6314 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 6315 sba_sbx(0, data);
mjr 74:822a92bc11d2 6316
mjr 74:822a92bc11d2 6317 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 6318 pbaIdx = 0;
mjr 38:091e511ce8a0 6319 }
mjr 38:091e511ce8a0 6320 else if (data[0] == 65)
mjr 38:091e511ce8a0 6321 {
mjr 38:091e511ce8a0 6322 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 6323 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 6324 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 6325 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 6326 // message type.
mjr 39:b3815a1c3802 6327 switch (data[1])
mjr 38:091e511ce8a0 6328 {
mjr 39:b3815a1c3802 6329 case 0:
mjr 39:b3815a1c3802 6330 // No Op
mjr 39:b3815a1c3802 6331 break;
mjr 39:b3815a1c3802 6332
mjr 39:b3815a1c3802 6333 case 1:
mjr 38:091e511ce8a0 6334 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 6335 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 6336 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 6337 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 6338 {
mjr 39:b3815a1c3802 6339
mjr 39:b3815a1c3802 6340 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 6341 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 6342 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 6343
mjr 86:e30a1f60f783 6344 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 6345 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 6346
mjr 39:b3815a1c3802 6347 // set the configuration parameters from the message
mjr 39:b3815a1c3802 6348 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 6349 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 6350
mjr 77:0b96f6867312 6351 // set the flag to do the save
mjr 86:e30a1f60f783 6352 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 6353 }
mjr 39:b3815a1c3802 6354 break;
mjr 38:091e511ce8a0 6355
mjr 39:b3815a1c3802 6356 case 2:
mjr 38:091e511ce8a0 6357 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 6358 // (No parameters)
mjr 38:091e511ce8a0 6359
mjr 38:091e511ce8a0 6360 // enter calibration mode
mjr 38:091e511ce8a0 6361 calBtnState = 3;
mjr 52:8298b2a73eb2 6362 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 6363 calBtnTimer.reset();
mjr 39:b3815a1c3802 6364 break;
mjr 39:b3815a1c3802 6365
mjr 39:b3815a1c3802 6366 case 3:
mjr 52:8298b2a73eb2 6367 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 6368 // data[2] = flag bits
mjr 53:9b2611964afc 6369 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 6370 reportPlungerStat = true;
mjr 53:9b2611964afc 6371 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 6372 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 6373
mjr 101:755f44622abc 6374 // set the extra integration time in the sensor
mjr 101:755f44622abc 6375 plungerSensor->setExtraIntegrationTime(reportPlungerStatTime * 100);
mjr 101:755f44622abc 6376
mjr 101:755f44622abc 6377 // make a note of the request timestamp
mjr 101:755f44622abc 6378 tReportPlungerStat = requestTimestamper.read_us();
mjr 101:755f44622abc 6379
mjr 38:091e511ce8a0 6380 // show purple until we finish sending the report
mjr 38:091e511ce8a0 6381 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 6382 break;
mjr 39:b3815a1c3802 6383
mjr 39:b3815a1c3802 6384 case 4:
mjr 38:091e511ce8a0 6385 // 4 = hardware configuration query
mjr 38:091e511ce8a0 6386 // (No parameters)
mjr 38:091e511ce8a0 6387 js.reportConfig(
mjr 38:091e511ce8a0 6388 numOutputs,
mjr 38:091e511ce8a0 6389 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 6390 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 6391 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 6392 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 6393 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 6394 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 6395 true, // we support the configurable joystick report timing features
mjr 99:8139b0c274f4 6396 true, // chime logic is supported
mjr 79:682ae3171a08 6397 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 6398 break;
mjr 39:b3815a1c3802 6399
mjr 39:b3815a1c3802 6400 case 5:
mjr 38:091e511ce8a0 6401 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 6402 allOutputsOff();
mjr 39:b3815a1c3802 6403 break;
mjr 39:b3815a1c3802 6404
mjr 39:b3815a1c3802 6405 case 6:
mjr 85:3c28aee81cde 6406 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 6407 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 6408 //
mjr 85:3c28aee81cde 6409 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 6410 // data[3] = flags:
mjr 85:3c28aee81cde 6411 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 6412 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 6413 break;
mjr 40:cc0d9814522b 6414
mjr 40:cc0d9814522b 6415 case 7:
mjr 40:cc0d9814522b 6416 // 7 = Device ID report
mjr 53:9b2611964afc 6417 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 6418 js.reportID(data[2]);
mjr 40:cc0d9814522b 6419 break;
mjr 40:cc0d9814522b 6420
mjr 40:cc0d9814522b 6421 case 8:
mjr 40:cc0d9814522b 6422 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 6423 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 6424 setNightMode(data[2]);
mjr 40:cc0d9814522b 6425 break;
mjr 52:8298b2a73eb2 6426
mjr 52:8298b2a73eb2 6427 case 9:
mjr 52:8298b2a73eb2 6428 // 9 = Config variable query.
mjr 52:8298b2a73eb2 6429 // data[2] = config var ID
mjr 52:8298b2a73eb2 6430 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 6431 {
mjr 53:9b2611964afc 6432 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 6433 // the rest of the buffer
mjr 52:8298b2a73eb2 6434 uint8_t reply[8];
mjr 52:8298b2a73eb2 6435 reply[1] = data[2];
mjr 52:8298b2a73eb2 6436 reply[2] = data[3];
mjr 53:9b2611964afc 6437 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 6438
mjr 52:8298b2a73eb2 6439 // query the value
mjr 52:8298b2a73eb2 6440 configVarGet(reply);
mjr 52:8298b2a73eb2 6441
mjr 52:8298b2a73eb2 6442 // send the reply
mjr 52:8298b2a73eb2 6443 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 6444 }
mjr 52:8298b2a73eb2 6445 break;
mjr 53:9b2611964afc 6446
mjr 53:9b2611964afc 6447 case 10:
mjr 53:9b2611964afc 6448 // 10 = Build ID query.
mjr 53:9b2611964afc 6449 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 6450 break;
mjr 73:4e8ce0b18915 6451
mjr 73:4e8ce0b18915 6452 case 11:
mjr 73:4e8ce0b18915 6453 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 6454 // data[2] = operation:
mjr 73:4e8ce0b18915 6455 // 0 = turn relay off
mjr 73:4e8ce0b18915 6456 // 1 = turn relay on
mjr 73:4e8ce0b18915 6457 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 6458 TVRelay(data[2]);
mjr 73:4e8ce0b18915 6459 break;
mjr 73:4e8ce0b18915 6460
mjr 73:4e8ce0b18915 6461 case 12:
mjr 77:0b96f6867312 6462 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 6463 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 6464 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 6465 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 6466 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 6467
mjr 77:0b96f6867312 6468 // enter IR learning mode
mjr 77:0b96f6867312 6469 IRLearningMode = 1;
mjr 77:0b96f6867312 6470
mjr 77:0b96f6867312 6471 // cancel any regular IR input in progress
mjr 77:0b96f6867312 6472 IRCommandIn = 0;
mjr 77:0b96f6867312 6473
mjr 77:0b96f6867312 6474 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 6475 IRTimer.reset();
mjr 73:4e8ce0b18915 6476 break;
mjr 73:4e8ce0b18915 6477
mjr 73:4e8ce0b18915 6478 case 13:
mjr 73:4e8ce0b18915 6479 // 13 = Send button status report
mjr 73:4e8ce0b18915 6480 reportButtonStatus(js);
mjr 73:4e8ce0b18915 6481 break;
mjr 78:1e00b3fa11af 6482
mjr 78:1e00b3fa11af 6483 case 14:
mjr 78:1e00b3fa11af 6484 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 6485 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 6486 break;
mjr 78:1e00b3fa11af 6487
mjr 78:1e00b3fa11af 6488 case 15:
mjr 78:1e00b3fa11af 6489 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 6490 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 6491 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 6492 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 6493 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 6494 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 6495 break;
mjr 78:1e00b3fa11af 6496
mjr 78:1e00b3fa11af 6497 case 16:
mjr 78:1e00b3fa11af 6498 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 6499 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 6500 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 6501 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 6502 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 6503 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 6504 break;
mjr 88:98bce687e6c0 6505
mjr 88:98bce687e6c0 6506 case 17:
mjr 88:98bce687e6c0 6507 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 6508 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 6509 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 6510 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 6511 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 6512 {
mjr 88:98bce687e6c0 6513 // get the IR command slot in the config
mjr 88:98bce687e6c0 6514 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 6515
mjr 88:98bce687e6c0 6516 // copy the IR command data from the config
mjr 88:98bce687e6c0 6517 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 6518 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 6519 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 6520
mjr 88:98bce687e6c0 6521 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 6522 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 6523 // is free
mjr 88:98bce687e6c0 6524 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 6525 }
mjr 88:98bce687e6c0 6526 break;
mjr 38:091e511ce8a0 6527 }
mjr 38:091e511ce8a0 6528 }
mjr 38:091e511ce8a0 6529 else if (data[0] == 66)
mjr 38:091e511ce8a0 6530 {
mjr 38:091e511ce8a0 6531 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 6532 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 6533 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 6534 // in a variable-dependent format.
mjr 40:cc0d9814522b 6535 configVarSet(data);
mjr 86:e30a1f60f783 6536
mjr 87:8d35c74403af 6537 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 6538 // dynamically
mjr 87:8d35c74403af 6539 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 6540 }
mjr 74:822a92bc11d2 6541 else if (data[0] == 67)
mjr 74:822a92bc11d2 6542 {
mjr 74:822a92bc11d2 6543 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 6544 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 6545 // to ports beyond the first 32.
mjr 74:822a92bc11d2 6546 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 6547 }
mjr 74:822a92bc11d2 6548 else if (data[0] == 68)
mjr 74:822a92bc11d2 6549 {
mjr 74:822a92bc11d2 6550 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 6551 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 6552 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 6553
mjr 74:822a92bc11d2 6554 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 6555 int portGroup = data[1];
mjr 74:822a92bc11d2 6556
mjr 74:822a92bc11d2 6557 // unpack the brightness values
mjr 74:822a92bc11d2 6558 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 6559 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 6560 uint8_t bri[8] = {
mjr 74:822a92bc11d2 6561 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 6562 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 6563 };
mjr 74:822a92bc11d2 6564
mjr 74:822a92bc11d2 6565 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 6566 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 6567 {
mjr 74:822a92bc11d2 6568 if (bri[i] >= 60)
mjr 74:822a92bc11d2 6569 bri[i] += 129-60;
mjr 74:822a92bc11d2 6570 }
mjr 74:822a92bc11d2 6571
mjr 74:822a92bc11d2 6572 // Carry out the PBA
mjr 74:822a92bc11d2 6573 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 6574 }
mjr 38:091e511ce8a0 6575 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 6576 {
mjr 38:091e511ce8a0 6577 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 6578 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 6579 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 6580 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 6581 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 6582 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 6583 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 6584 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 6585 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 6586 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 6587 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 6588 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 6589 //
mjr 38:091e511ce8a0 6590 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 6591 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 6592 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 6593 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 6594 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 6595 // address those ports anyway.
mjr 63:5cd1a5f3a41b 6596
mjr 63:5cd1a5f3a41b 6597 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 6598 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 6599 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 6600
mjr 63:5cd1a5f3a41b 6601 // update each port
mjr 38:091e511ce8a0 6602 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 6603 {
mjr 38:091e511ce8a0 6604 // set the brightness level for the output
mjr 40:cc0d9814522b 6605 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 6606 outLevel[i] = b;
mjr 38:091e511ce8a0 6607
mjr 74:822a92bc11d2 6608 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 6609 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 6610 // LedWiz mode on a future update
mjr 76:7f5912b6340e 6611 if (b != 0)
mjr 76:7f5912b6340e 6612 {
mjr 76:7f5912b6340e 6613 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 6614 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 6615 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 6616 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 6617 // forward unchanged.
mjr 76:7f5912b6340e 6618 wizOn[i] = 1;
mjr 76:7f5912b6340e 6619 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 6620 }
mjr 76:7f5912b6340e 6621 else
mjr 76:7f5912b6340e 6622 {
mjr 76:7f5912b6340e 6623 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 6624 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 6625 wizOn[i] = 0;
mjr 76:7f5912b6340e 6626 }
mjr 74:822a92bc11d2 6627
mjr 38:091e511ce8a0 6628 // set the output
mjr 40:cc0d9814522b 6629 lwPin[i]->set(b);
mjr 38:091e511ce8a0 6630 }
mjr 38:091e511ce8a0 6631
mjr 38:091e511ce8a0 6632 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 6633 if (hc595 != 0)
mjr 38:091e511ce8a0 6634 hc595->update();
mjr 38:091e511ce8a0 6635 }
mjr 38:091e511ce8a0 6636 else
mjr 38:091e511ce8a0 6637 {
mjr 74:822a92bc11d2 6638 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 6639 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 6640 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 6641 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 6642 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 6643 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 6644 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 6645 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 6646 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 6647 //
mjr 38:091e511ce8a0 6648 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 6649 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 6650 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 6651 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 6652 // protocol mode.
mjr 38:091e511ce8a0 6653 //
mjr 38:091e511ce8a0 6654 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 6655 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 6656
mjr 74:822a92bc11d2 6657 // carry out the PBA
mjr 74:822a92bc11d2 6658 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6659
mjr 74:822a92bc11d2 6660 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6661 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6662 }
mjr 38:091e511ce8a0 6663 }
mjr 35:e959ffba78fd 6664
mjr 38:091e511ce8a0 6665 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6666 //
mjr 5:a70c0bce770d 6667 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6668 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6669 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6670 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6671 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6672 // port outputs.
mjr 5:a70c0bce770d 6673 //
mjr 0:5acbbe3f4cf4 6674 int main(void)
mjr 0:5acbbe3f4cf4 6675 {
mjr 60:f38da020aa13 6676 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6677 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6678
mjr 98:4df3c0f7e707 6679 // Set the default PWM period to 0.5ms = 2 kHz. This will be used
mjr 98:4df3c0f7e707 6680 // for PWM channels on PWM units whose periods aren't changed
mjr 98:4df3c0f7e707 6681 // explicitly, so it'll apply to LW outputs assigned to GPIO pins.
mjr 98:4df3c0f7e707 6682 // The KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6683 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6684 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6685 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6686 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6687 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6688 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6689 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6690 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6691 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6692 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6693 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6694 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6695 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6696 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6697 //
mjr 94:0476b3e2b996 6698 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6699 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6700 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6701 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6702 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6703 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6704 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6705
mjr 76:7f5912b6340e 6706 // clear the I2C connection
mjr 112:8ed709f455c0 6707 Accel::clear_i2c();
mjr 82:4f6209cb5c33 6708
mjr 82:4f6209cb5c33 6709 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6710 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6711 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6712 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6713 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6714 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6715
mjr 76:7f5912b6340e 6716 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6717 // configuration data:
mjr 76:7f5912b6340e 6718 //
mjr 76:7f5912b6340e 6719 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6720 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6721 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6722 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6723 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6724 // to store user settings updates.
mjr 76:7f5912b6340e 6725 //
mjr 76:7f5912b6340e 6726 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6727 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6728 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6729 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6730 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6731 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6732 // without a separate download of the config data.
mjr 76:7f5912b6340e 6733 //
mjr 76:7f5912b6340e 6734 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6735 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6736 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6737 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6738 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6739 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6740 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6741 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6742 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6743 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6744 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6745 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6746 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6747
mjr 38:091e511ce8a0 6748 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6749 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6750
mjr 33:d832bcab089e 6751 // we're not connected/awake yet
mjr 33:d832bcab089e 6752 bool connected = false;
mjr 40:cc0d9814522b 6753 Timer connectChangeTimer;
mjr 33:d832bcab089e 6754
mjr 35:e959ffba78fd 6755 // create the plunger sensor interface
mjr 35:e959ffba78fd 6756 createPlunger();
mjr 76:7f5912b6340e 6757
mjr 76:7f5912b6340e 6758 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6759 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6760
mjr 60:f38da020aa13 6761 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6762 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6763
mjr 87:8d35c74403af 6764 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6765 init_tlc59116(cfg);
mjr 87:8d35c74403af 6766
mjr 60:f38da020aa13 6767 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6768 init_hc595(cfg);
mjr 6:cc35eb643e8f 6769
mjr 54:fd77a6b2f76c 6770 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6771 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6772 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6773 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6774 initLwOut(cfg);
mjr 48:058ace2aed1d 6775
mjr 60:f38da020aa13 6776 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6777 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6778 tlc5940->start();
mjr 87:8d35c74403af 6779
mjr 77:0b96f6867312 6780 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6781 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6782 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6783 // USB keyboard interface.
mjr 77:0b96f6867312 6784 bool kbKeys = false;
mjr 77:0b96f6867312 6785
mjr 77:0b96f6867312 6786 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6787 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6788
mjr 77:0b96f6867312 6789 // start the power status time, if applicable
mjr 77:0b96f6867312 6790 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6791
mjr 35:e959ffba78fd 6792 // initialize the button input ports
mjr 35:e959ffba78fd 6793 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6794
mjr 60:f38da020aa13 6795 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6796 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6797 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6798 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6799 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6800 // to the joystick interface.
mjr 51:57eb311faafa 6801 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6802 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6803
mjr 101:755f44622abc 6804 // start the request timestamp timer
mjr 101:755f44622abc 6805 requestTimestamper.start();
mjr 101:755f44622abc 6806
mjr 60:f38da020aa13 6807 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6808 // flash pattern while waiting.
mjr 70:9f58735a1732 6809 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6810 connTimeoutTimer.start();
mjr 70:9f58735a1732 6811 connFlashTimer.start();
mjr 51:57eb311faafa 6812 while (!js.configured())
mjr 51:57eb311faafa 6813 {
mjr 51:57eb311faafa 6814 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6815 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6816 {
mjr 51:57eb311faafa 6817 // short yellow flash
mjr 51:57eb311faafa 6818 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6819 wait_us(50000);
mjr 51:57eb311faafa 6820 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6821
mjr 51:57eb311faafa 6822 // reset the flash timer
mjr 70:9f58735a1732 6823 connFlashTimer.reset();
mjr 51:57eb311faafa 6824 }
mjr 70:9f58735a1732 6825
mjr 77:0b96f6867312 6826 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6827 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6828 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6829 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6830 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6831 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6832 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6833 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6834 reboot(js, false, 0);
mjr 77:0b96f6867312 6835
mjr 77:0b96f6867312 6836 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6837 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6838 }
mjr 60:f38da020aa13 6839
mjr 60:f38da020aa13 6840 // we're now connected to the host
mjr 54:fd77a6b2f76c 6841 connected = true;
mjr 40:cc0d9814522b 6842
mjr 92:f264fbaa1be5 6843 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6844 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6845 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6846 //
mjr 92:f264fbaa1be5 6847 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6848 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6849 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6850 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6851 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6852 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6853 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6854 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6855 // sampling rate as best we can.
mjr 38:091e511ce8a0 6856 Timer jsReportTimer;
mjr 38:091e511ce8a0 6857 jsReportTimer.start();
mjr 38:091e511ce8a0 6858
mjr 92:f264fbaa1be5 6859 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6860 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6861 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6862 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6863 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6864 //
mjr 92:f264fbaa1be5 6865 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6866 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6867 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6868 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6869 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6870 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6871
mjr 92:f264fbaa1be5 6872 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6873 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6874 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6875 // can be set in the configuration.
mjr 92:f264fbaa1be5 6876 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6877
mjr 60:f38da020aa13 6878 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6879 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6880 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6881 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6882 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6883 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6884 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6885 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6886 Timer jsOKTimer;
mjr 38:091e511ce8a0 6887 jsOKTimer.start();
mjr 35:e959ffba78fd 6888
mjr 55:4db125cd11a0 6889 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6890 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6891 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6892 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6893 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6894
mjr 55:4db125cd11a0 6895 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6896 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6897 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6898
mjr 55:4db125cd11a0 6899 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6900 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6901 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6902
mjr 35:e959ffba78fd 6903 // initialize the calibration button
mjr 1:d913e0afb2ac 6904 calBtnTimer.start();
mjr 35:e959ffba78fd 6905 calBtnState = 0;
mjr 1:d913e0afb2ac 6906
mjr 1:d913e0afb2ac 6907 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6908 Timer hbTimer;
mjr 1:d913e0afb2ac 6909 hbTimer.start();
mjr 1:d913e0afb2ac 6910 int hb = 0;
mjr 5:a70c0bce770d 6911 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6912
mjr 1:d913e0afb2ac 6913 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6914 Timer acTimer;
mjr 1:d913e0afb2ac 6915 acTimer.start();
mjr 1:d913e0afb2ac 6916
mjr 0:5acbbe3f4cf4 6917 // create the accelerometer object
mjr 112:8ed709f455c0 6918 Accel accel(cfg);
mjr 76:7f5912b6340e 6919
mjr 48:058ace2aed1d 6920 // initialize the plunger sensor
mjr 35:e959ffba78fd 6921 plungerSensor->init();
mjr 10:976666ffa4ef 6922
mjr 48:058ace2aed1d 6923 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6924 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6925
mjr 54:fd77a6b2f76c 6926 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6927 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6928 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6929 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6930 hc595->enable(true);
mjr 87:8d35c74403af 6931 if (tlc59116 != 0)
mjr 87:8d35c74403af 6932 tlc59116->enable(true);
mjr 74:822a92bc11d2 6933
mjr 76:7f5912b6340e 6934 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6935 wizCycleTimer.start();
mjr 74:822a92bc11d2 6936
mjr 74:822a92bc11d2 6937 // start the PWM update polling timer
mjr 74:822a92bc11d2 6938 polledPwmTimer.start();
mjr 43:7a6364d82a41 6939
mjr 1:d913e0afb2ac 6940 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6941 // host requests
mjr 0:5acbbe3f4cf4 6942 for (;;)
mjr 0:5acbbe3f4cf4 6943 {
mjr 74:822a92bc11d2 6944 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6945 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 96:68d5621ff49f 6946
mjr 48:058ace2aed1d 6947 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6948 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6949 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6950 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6951 LedWizMsg lwm;
mjr 48:058ace2aed1d 6952 Timer lwt;
mjr 48:058ace2aed1d 6953 lwt.start();
mjr 77:0b96f6867312 6954 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6955 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6956 {
mjr 78:1e00b3fa11af 6957 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6958 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6959 }
mjr 74:822a92bc11d2 6960
mjr 74:822a92bc11d2 6961 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6962 IF_DIAG(
mjr 74:822a92bc11d2 6963 if (msgCount != 0)
mjr 74:822a92bc11d2 6964 {
mjr 76:7f5912b6340e 6965 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6966 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6967 }
mjr 74:822a92bc11d2 6968 )
mjr 74:822a92bc11d2 6969
mjr 77:0b96f6867312 6970 // process IR input
mjr 77:0b96f6867312 6971 process_IR(cfg, js);
mjr 77:0b96f6867312 6972
mjr 77:0b96f6867312 6973 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6974 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6975
mjr 74:822a92bc11d2 6976 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6977 wizPulse();
mjr 74:822a92bc11d2 6978
mjr 74:822a92bc11d2 6979 // update PWM outputs
mjr 74:822a92bc11d2 6980 pollPwmUpdates();
mjr 77:0b96f6867312 6981
mjr 99:8139b0c274f4 6982 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 6983 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 6984 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 6985
mjr 77:0b96f6867312 6986 // poll the accelerometer
mjr 112:8ed709f455c0 6987 if (!accel.poll())
mjr 112:8ed709f455c0 6988 Accel::softReset(&accel, cfg);
mjr 55:4db125cd11a0 6989
mjr 96:68d5621ff49f 6990 // Note the "effective" plunger enabled status. This has two
mjr 96:68d5621ff49f 6991 // components: the explicit "enabled" bit, and the plunger sensor
mjr 96:68d5621ff49f 6992 // type setting. For most purposes, a plunger type of NONE is
mjr 96:68d5621ff49f 6993 // equivalent to disabled. Set this to explicit 0x01 or 0x00
mjr 96:68d5621ff49f 6994 // so that we can OR the bit into status reports.
mjr 96:68d5621ff49f 6995 uint8_t effectivePlungerEnabled = (cfg.plunger.enabled
mjr 96:68d5621ff49f 6996 && cfg.plunger.sensorType != PlungerType_None) ? 0x01 : 0x00;
mjr 96:68d5621ff49f 6997
mjr 76:7f5912b6340e 6998 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6999 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7000
mjr 55:4db125cd11a0 7001 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 7002 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7003 tlc5940->send();
mjr 87:8d35c74403af 7004
mjr 87:8d35c74403af 7005 // send TLC59116 data updates
mjr 87:8d35c74403af 7006 if (tlc59116 != 0)
mjr 87:8d35c74403af 7007 tlc59116->send();
mjr 1:d913e0afb2ac 7008
mjr 76:7f5912b6340e 7009 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 7010 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 7011
mjr 1:d913e0afb2ac 7012 // check for plunger calibration
mjr 17:ab3cec0c8bf4 7013 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 7014 {
mjr 1:d913e0afb2ac 7015 // check the state
mjr 1:d913e0afb2ac 7016 switch (calBtnState)
mjr 0:5acbbe3f4cf4 7017 {
mjr 1:d913e0afb2ac 7018 case 0:
mjr 1:d913e0afb2ac 7019 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 7020 calBtnTimer.reset();
mjr 1:d913e0afb2ac 7021 calBtnState = 1;
mjr 1:d913e0afb2ac 7022 break;
mjr 1:d913e0afb2ac 7023
mjr 1:d913e0afb2ac 7024 case 1:
mjr 1:d913e0afb2ac 7025 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 7026 // passed, start the hold period
mjr 48:058ace2aed1d 7027 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 7028 calBtnState = 2;
mjr 1:d913e0afb2ac 7029 break;
mjr 1:d913e0afb2ac 7030
mjr 1:d913e0afb2ac 7031 case 2:
mjr 1:d913e0afb2ac 7032 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 7033 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 7034 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 7035 {
mjr 1:d913e0afb2ac 7036 // enter calibration mode
mjr 1:d913e0afb2ac 7037 calBtnState = 3;
mjr 9:fd65b0a94720 7038 calBtnTimer.reset();
mjr 35:e959ffba78fd 7039
mjr 44:b5ac89b9cd5d 7040 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 7041 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 7042 }
mjr 1:d913e0afb2ac 7043 break;
mjr 2:c174f9ee414a 7044
mjr 2:c174f9ee414a 7045 case 3:
mjr 9:fd65b0a94720 7046 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 7047 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 7048 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 7049 break;
mjr 0:5acbbe3f4cf4 7050 }
mjr 0:5acbbe3f4cf4 7051 }
mjr 1:d913e0afb2ac 7052 else
mjr 1:d913e0afb2ac 7053 {
mjr 2:c174f9ee414a 7054 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 7055 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 7056 // and save the results to flash.
mjr 2:c174f9ee414a 7057 //
mjr 2:c174f9ee414a 7058 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 7059 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 7060 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 7061 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 7062 {
mjr 2:c174f9ee414a 7063 // exit calibration mode
mjr 1:d913e0afb2ac 7064 calBtnState = 0;
mjr 52:8298b2a73eb2 7065 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 7066
mjr 6:cc35eb643e8f 7067 // save the updated configuration
mjr 35:e959ffba78fd 7068 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 7069 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 7070 }
mjr 2:c174f9ee414a 7071 else if (calBtnState != 3)
mjr 2:c174f9ee414a 7072 {
mjr 2:c174f9ee414a 7073 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 7074 calBtnState = 0;
mjr 2:c174f9ee414a 7075 }
mjr 1:d913e0afb2ac 7076 }
mjr 1:d913e0afb2ac 7077
mjr 1:d913e0afb2ac 7078 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 7079 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 7080 switch (calBtnState)
mjr 0:5acbbe3f4cf4 7081 {
mjr 1:d913e0afb2ac 7082 case 2:
mjr 1:d913e0afb2ac 7083 // in the hold period - flash the light
mjr 48:058ace2aed1d 7084 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 7085 break;
mjr 1:d913e0afb2ac 7086
mjr 1:d913e0afb2ac 7087 case 3:
mjr 1:d913e0afb2ac 7088 // calibration mode - show steady on
mjr 1:d913e0afb2ac 7089 newCalBtnLit = true;
mjr 1:d913e0afb2ac 7090 break;
mjr 1:d913e0afb2ac 7091
mjr 1:d913e0afb2ac 7092 default:
mjr 1:d913e0afb2ac 7093 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 7094 newCalBtnLit = false;
mjr 1:d913e0afb2ac 7095 break;
mjr 1:d913e0afb2ac 7096 }
mjr 3:3514575d4f86 7097
mjr 3:3514575d4f86 7098 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 7099 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 7100 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 7101 {
mjr 1:d913e0afb2ac 7102 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 7103 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 7104 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 7105 calBtnLed->write(1);
mjr 38:091e511ce8a0 7106 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 7107 }
mjr 2:c174f9ee414a 7108 else {
mjr 17:ab3cec0c8bf4 7109 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 7110 calBtnLed->write(0);
mjr 38:091e511ce8a0 7111 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 7112 }
mjr 1:d913e0afb2ac 7113 }
mjr 35:e959ffba78fd 7114
mjr 76:7f5912b6340e 7115 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 7116 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7117
mjr 48:058ace2aed1d 7118 // read the plunger sensor
mjr 48:058ace2aed1d 7119 plungerReader.read();
mjr 48:058ace2aed1d 7120
mjr 76:7f5912b6340e 7121 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 7122 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7123
mjr 53:9b2611964afc 7124 // update the ZB Launch Ball status
mjr 53:9b2611964afc 7125 zbLaunchBall.update();
mjr 37:ed52738445fc 7126
mjr 76:7f5912b6340e 7127 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 7128 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7129
mjr 53:9b2611964afc 7130 // process button updates
mjr 53:9b2611964afc 7131 processButtons(cfg);
mjr 53:9b2611964afc 7132
mjr 76:7f5912b6340e 7133 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 7134 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7135
mjr 38:091e511ce8a0 7136 // send a keyboard report if we have new data
mjr 37:ed52738445fc 7137 if (kbState.changed)
mjr 37:ed52738445fc 7138 {
mjr 38:091e511ce8a0 7139 // send a keyboard report
mjr 37:ed52738445fc 7140 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 7141 kbState.changed = false;
mjr 37:ed52738445fc 7142 }
mjr 38:091e511ce8a0 7143
mjr 38:091e511ce8a0 7144 // likewise for the media controller
mjr 37:ed52738445fc 7145 if (mediaState.changed)
mjr 37:ed52738445fc 7146 {
mjr 38:091e511ce8a0 7147 // send a media report
mjr 37:ed52738445fc 7148 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 7149 mediaState.changed = false;
mjr 37:ed52738445fc 7150 }
mjr 38:091e511ce8a0 7151
mjr 76:7f5912b6340e 7152 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 7153 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7154
mjr 38:091e511ce8a0 7155 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 7156 bool jsOK = false;
mjr 55:4db125cd11a0 7157
mjr 55:4db125cd11a0 7158 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 7159 uint16_t statusFlags =
mjr 96:68d5621ff49f 7160 effectivePlungerEnabled // 0x01
mjr 77:0b96f6867312 7161 | nightMode // 0x02
mjr 79:682ae3171a08 7162 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 7163 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 7164 if (IRLearningMode != 0)
mjr 77:0b96f6867312 7165 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 7166
mjr 50:40015764bbe6 7167 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 7168 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 7169 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 7170 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 7171 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 7172 {
mjr 92:f264fbaa1be5 7173 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 7174 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 7175 // not, repeat the last sample.
mjr 92:f264fbaa1be5 7176 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 7177 {
mjr 92:f264fbaa1be5 7178 // read the accelerometer
mjr 92:f264fbaa1be5 7179 int xa, ya;
mjr 92:f264fbaa1be5 7180 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 7181
mjr 92:f264fbaa1be5 7182 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 7183 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 7184 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 7185 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 7186 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 7187
mjr 92:f264fbaa1be5 7188 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 7189 x = xa;
mjr 92:f264fbaa1be5 7190 y = ya;
mjr 92:f264fbaa1be5 7191
mjr 95:8eca8acbb82c 7192 // rotate X and Y according to the device orientation in the cabinet
mjr 95:8eca8acbb82c 7193 accelRotate(x, y);
mjr 95:8eca8acbb82c 7194
mjr 92:f264fbaa1be5 7195 // reset the stutter counter
mjr 92:f264fbaa1be5 7196 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 7197 }
mjr 17:ab3cec0c8bf4 7198
mjr 48:058ace2aed1d 7199 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 7200 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 7201 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 7202 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 7203 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 7204 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 7205 // regular plunger inputs.
mjr 92:f264fbaa1be5 7206 int zActual = plungerReader.getPosition();
mjr 96:68d5621ff49f 7207 int zReported = (!effectivePlungerEnabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 7208
mjr 35:e959ffba78fd 7209 // send the joystick report
mjr 92:f264fbaa1be5 7210 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 7211
mjr 17:ab3cec0c8bf4 7212 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 7213 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 7214 }
mjr 21:5048e16cc9ef 7215
mjr 52:8298b2a73eb2 7216 // If we're in sensor status mode, report all pixel exposure values
mjr 101:755f44622abc 7217 if (reportPlungerStat && plungerSensor->ready())
mjr 10:976666ffa4ef 7218 {
mjr 17:ab3cec0c8bf4 7219 // send the report
mjr 101:755f44622abc 7220 plungerSensor->sendStatusReport(js, reportPlungerStatFlags);
mjr 17:ab3cec0c8bf4 7221
mjr 10:976666ffa4ef 7222 // we have satisfied this request
mjr 52:8298b2a73eb2 7223 reportPlungerStat = false;
mjr 10:976666ffa4ef 7224 }
mjr 10:976666ffa4ef 7225
mjr 101:755f44622abc 7226 // Reset the plunger status report extra timer after enough time has
mjr 101:755f44622abc 7227 // elapsed to satisfy the request. We don't just do this immediately
mjr 101:755f44622abc 7228 // because of the complexities of the pixel frame buffer pipelines in
mjr 101:755f44622abc 7229 // most of the image sensors. The pipelines delay the effect of the
mjr 101:755f44622abc 7230 // exposure time request by a couple of frames, so we can't be sure
mjr 101:755f44622abc 7231 // exactly when they're applied - meaning we can't consider the
mjr 101:755f44622abc 7232 // delay time to be consumed after a fixed number of frames. Instead,
mjr 101:755f44622abc 7233 // we'll consider it consumed after a long enough time to be sure
mjr 101:755f44622abc 7234 // we've sent a few frames. The extra time value is meant to be an
mjr 101:755f44622abc 7235 // interactive tool for debugging, so it's not important to reset it
mjr 101:755f44622abc 7236 // immediately - the user will probably want to see the effect over
mjr 101:755f44622abc 7237 // many frames, so they're likely to keep sending requests with the
mjr 101:755f44622abc 7238 // time value over and over. They'll eventually shut down the frame
mjr 101:755f44622abc 7239 // viewer and return to normal operation, at which point the requests
mjr 101:755f44622abc 7240 // will stop. So we just have to clear things out after we haven't
mjr 101:755f44622abc 7241 // seen a request with extra time for a little while.
mjr 101:755f44622abc 7242 if (reportPlungerStatTime != 0
mjr 101:755f44622abc 7243 && static_cast<uint32_t>(requestTimestamper.read_us() - tReportPlungerStat) > 1000000)
mjr 101:755f44622abc 7244 {
mjr 101:755f44622abc 7245 reportPlungerStatTime = 0;
mjr 101:755f44622abc 7246 plungerSensor->setExtraIntegrationTime(0);
mjr 101:755f44622abc 7247 }
mjr 101:755f44622abc 7248
mjr 35:e959ffba78fd 7249 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 7250 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 7251 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 7252 {
mjr 55:4db125cd11a0 7253 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 7254 jsReportTimer.reset();
mjr 38:091e511ce8a0 7255 }
mjr 38:091e511ce8a0 7256
mjr 38:091e511ce8a0 7257 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 7258 if (jsOK)
mjr 38:091e511ce8a0 7259 {
mjr 38:091e511ce8a0 7260 jsOKTimer.reset();
mjr 38:091e511ce8a0 7261 jsOKTimer.start();
mjr 21:5048e16cc9ef 7262 }
mjr 21:5048e16cc9ef 7263
mjr 76:7f5912b6340e 7264 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 7265 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7266
mjr 6:cc35eb643e8f 7267 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 7268 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 7269 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 7270 #endif
mjr 6:cc35eb643e8f 7271
mjr 33:d832bcab089e 7272 // check for connection status changes
mjr 54:fd77a6b2f76c 7273 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 7274 if (newConnected != connected)
mjr 33:d832bcab089e 7275 {
mjr 54:fd77a6b2f76c 7276 // give it a moment to stabilize
mjr 40:cc0d9814522b 7277 connectChangeTimer.start();
mjr 55:4db125cd11a0 7278 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 7279 {
mjr 33:d832bcab089e 7280 // note the new status
mjr 33:d832bcab089e 7281 connected = newConnected;
mjr 40:cc0d9814522b 7282
mjr 40:cc0d9814522b 7283 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 7284 connectChangeTimer.stop();
mjr 40:cc0d9814522b 7285 connectChangeTimer.reset();
mjr 33:d832bcab089e 7286
mjr 54:fd77a6b2f76c 7287 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 7288 if (!connected)
mjr 40:cc0d9814522b 7289 {
mjr 54:fd77a6b2f76c 7290 // turn off all outputs
mjr 33:d832bcab089e 7291 allOutputsOff();
mjr 40:cc0d9814522b 7292
mjr 40:cc0d9814522b 7293 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 7294 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 7295 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 7296 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 7297 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 7298 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 7299 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 7300 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 7301 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 7302 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 7303 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 7304 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 7305 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 7306 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 7307 // the power first comes on.
mjr 40:cc0d9814522b 7308 if (tlc5940 != 0)
mjr 40:cc0d9814522b 7309 tlc5940->enable(false);
mjr 87:8d35c74403af 7310 if (tlc59116 != 0)
mjr 87:8d35c74403af 7311 tlc59116->enable(false);
mjr 40:cc0d9814522b 7312 if (hc595 != 0)
mjr 40:cc0d9814522b 7313 hc595->enable(false);
mjr 40:cc0d9814522b 7314 }
mjr 33:d832bcab089e 7315 }
mjr 33:d832bcab089e 7316 }
mjr 48:058ace2aed1d 7317
mjr 53:9b2611964afc 7318 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 7319 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 7320 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 7321 {
mjr 85:3c28aee81cde 7322 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 7323 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 7324 {
mjr 86:e30a1f60f783 7325 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 7326 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 7327 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 7328 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 7329 // status allows it.
mjr 86:e30a1f60f783 7330 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 7331 reboot(js);
mjr 82:4f6209cb5c33 7332 }
mjr 85:3c28aee81cde 7333 else
mjr 85:3c28aee81cde 7334 {
mjr 86:e30a1f60f783 7335 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 7336
mjr 86:e30a1f60f783 7337 // stop and reset the post-save timer
mjr 86:e30a1f60f783 7338 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 7339 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 7340
mjr 86:e30a1f60f783 7341 // clear the post-save success flag
mjr 86:e30a1f60f783 7342 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 7343 }
mjr 77:0b96f6867312 7344 }
mjr 86:e30a1f60f783 7345
mjr 48:058ace2aed1d 7346 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 7347 if (!connected)
mjr 48:058ace2aed1d 7348 {
mjr 54:fd77a6b2f76c 7349 // show USB HAL debug events
mjr 54:fd77a6b2f76c 7350 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 7351 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 7352
mjr 54:fd77a6b2f76c 7353 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 7354 js.diagFlash();
mjr 54:fd77a6b2f76c 7355
mjr 54:fd77a6b2f76c 7356 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 7357 diagLED(0, 0, 0);
mjr 51:57eb311faafa 7358
mjr 51:57eb311faafa 7359 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 7360 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 7361 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 7362
mjr 54:fd77a6b2f76c 7363 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 7364 Timer diagTimer;
mjr 54:fd77a6b2f76c 7365 diagTimer.reset();
mjr 54:fd77a6b2f76c 7366 diagTimer.start();
mjr 74:822a92bc11d2 7367
mjr 74:822a92bc11d2 7368 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 7369 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 7370
mjr 54:fd77a6b2f76c 7371 // loop until we get our connection back
mjr 54:fd77a6b2f76c 7372 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 7373 {
mjr 54:fd77a6b2f76c 7374 // try to recover the connection
mjr 54:fd77a6b2f76c 7375 js.recoverConnection();
mjr 54:fd77a6b2f76c 7376
mjr 99:8139b0c274f4 7377 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 7378 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 7379 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 7380
mjr 55:4db125cd11a0 7381 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 7382 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7383 tlc5940->send();
mjr 87:8d35c74403af 7384
mjr 87:8d35c74403af 7385 // update TLC59116 outputs
mjr 87:8d35c74403af 7386 if (tlc59116 != 0)
mjr 87:8d35c74403af 7387 tlc59116->send();
mjr 55:4db125cd11a0 7388
mjr 54:fd77a6b2f76c 7389 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 7390 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 7391 {
mjr 54:fd77a6b2f76c 7392 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 7393 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 7394
mjr 54:fd77a6b2f76c 7395 // show diagnostic feedback
mjr 54:fd77a6b2f76c 7396 js.diagFlash();
mjr 51:57eb311faafa 7397
mjr 51:57eb311faafa 7398 // reset the flash timer
mjr 54:fd77a6b2f76c 7399 diagTimer.reset();
mjr 51:57eb311faafa 7400 }
mjr 51:57eb311faafa 7401
mjr 77:0b96f6867312 7402 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 7403 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 7404 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 7405 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 7406 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 7407 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 7408 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 7409 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 7410 // round and keep waiting.
mjr 51:57eb311faafa 7411 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 7412 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7413 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7414 reboot(js, false, 0);
mjr 77:0b96f6867312 7415
mjr 77:0b96f6867312 7416 // update the PSU2 power sensing status
mjr 77:0b96f6867312 7417 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 7418 }
mjr 54:fd77a6b2f76c 7419
mjr 74:822a92bc11d2 7420 // resume the main loop timer
mjr 74:822a92bc11d2 7421 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 7422
mjr 54:fd77a6b2f76c 7423 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 7424 connected = true;
mjr 54:fd77a6b2f76c 7425 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 7426
mjr 54:fd77a6b2f76c 7427 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 7428 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7429 tlc5940->enable(true);
mjr 87:8d35c74403af 7430 if (tlc59116 != 0)
mjr 87:8d35c74403af 7431 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 7432 if (hc595 != 0)
mjr 54:fd77a6b2f76c 7433 {
mjr 55:4db125cd11a0 7434 hc595->enable(true);
mjr 54:fd77a6b2f76c 7435 hc595->update(true);
mjr 51:57eb311faafa 7436 }
mjr 48:058ace2aed1d 7437 }
mjr 43:7a6364d82a41 7438
mjr 6:cc35eb643e8f 7439 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 7440 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 7441 {
mjr 54:fd77a6b2f76c 7442 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 7443 {
mjr 39:b3815a1c3802 7444 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 7445 //
mjr 54:fd77a6b2f76c 7446 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 7447 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 7448 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 7449 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 7450 hb = !hb;
mjr 38:091e511ce8a0 7451 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 7452
mjr 54:fd77a6b2f76c 7453 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 7454 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 7455 // with the USB connection.
mjr 54:fd77a6b2f76c 7456 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 7457 {
mjr 54:fd77a6b2f76c 7458 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 7459 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 7460 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 7461 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 7462 // power status allows it.
mjr 86:e30a1f60f783 7463 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7464 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7465 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 7466 }
mjr 54:fd77a6b2f76c 7467 else
mjr 54:fd77a6b2f76c 7468 {
mjr 54:fd77a6b2f76c 7469 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 7470 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 7471 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 7472 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 7473 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 7474 }
mjr 38:091e511ce8a0 7475 }
mjr 73:4e8ce0b18915 7476 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 7477 {
mjr 73:4e8ce0b18915 7478 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 7479 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 7480 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 7481 }
mjr 96:68d5621ff49f 7482 else if (effectivePlungerEnabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 7483 {
mjr 6:cc35eb643e8f 7484 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 7485 hb = !hb;
mjr 38:091e511ce8a0 7486 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 7487 }
mjr 6:cc35eb643e8f 7488 else
mjr 6:cc35eb643e8f 7489 {
mjr 6:cc35eb643e8f 7490 // connected - flash blue/green
mjr 2:c174f9ee414a 7491 hb = !hb;
mjr 38:091e511ce8a0 7492 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 7493 }
mjr 1:d913e0afb2ac 7494
mjr 1:d913e0afb2ac 7495 // reset the heartbeat timer
mjr 1:d913e0afb2ac 7496 hbTimer.reset();
mjr 5:a70c0bce770d 7497 ++hbcnt;
mjr 1:d913e0afb2ac 7498 }
mjr 74:822a92bc11d2 7499
mjr 74:822a92bc11d2 7500 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 7501 IF_DIAG(
mjr 76:7f5912b6340e 7502 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 7503 mainLoopIterCount++;
mjr 74:822a92bc11d2 7504 )
mjr 1:d913e0afb2ac 7505 }
mjr 0:5acbbe3f4cf4 7506 }