An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Sun Jan 28 00:33:38 2018 +0000
Revision:
93:177832c29041
Parent:
92:f264fbaa1be5
Child:
94:0476b3e2b996
Change PWM cycle in GPIO feedback device outputs to 5ms/200Hz to reduce LED flicker

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 89:c43cd923401c 838 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 839 // top of a physical pin output.
mjr 89:c43cd923401c 840 //
mjr 89:c43cd923401c 841 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 842 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 843 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 844 // level is ON.
mjr 89:c43cd923401c 845 //
mjr 89:c43cd923401c 846 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 847 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 848 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 849 //
mjr 89:c43cd923401c 850 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 851 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 852 // power and start a timer.
mjr 89:c43cd923401c 853 //
mjr 89:c43cd923401c 854 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 855 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 856 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 857 //
mjr 89:c43cd923401c 858 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 859 {
mjr 89:c43cd923401c 860 public:
mjr 89:c43cd923401c 861 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 862 // the configuration.
mjr 89:c43cd923401c 863 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 864 : out(o), params(params)
mjr 89:c43cd923401c 865 {
mjr 89:c43cd923401c 866 // initially OFF
mjr 89:c43cd923401c 867 state = 0;
mjr 89:c43cd923401c 868 }
mjr 89:c43cd923401c 869
mjr 89:c43cd923401c 870 virtual void set(uint8_t level)
mjr 89:c43cd923401c 871 {
mjr 89:c43cd923401c 872 // remebmber the new nominal level set by the client
mjr 89:c43cd923401c 873 val = level;
mjr 89:c43cd923401c 874
mjr 89:c43cd923401c 875 // update the physical output according to our current timing state
mjr 89:c43cd923401c 876 switch (state)
mjr 89:c43cd923401c 877 {
mjr 89:c43cd923401c 878 case 0:
mjr 89:c43cd923401c 879 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 880 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 881 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 882 // off, so there's no change.
mjr 89:c43cd923401c 883 if (level != 0)
mjr 89:c43cd923401c 884 {
mjr 89:c43cd923401c 885 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 886 state = 1;
mjr 89:c43cd923401c 887
mjr 89:c43cd923401c 888 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 889 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 890 // requested
mjr 89:c43cd923401c 891 out->set(level);
mjr 89:c43cd923401c 892
mjr 89:c43cd923401c 893 // add myself to the pending timer list
mjr 89:c43cd923401c 894 pending[nPending++] = this;
mjr 89:c43cd923401c 895
mjr 89:c43cd923401c 896 // note the starting time
mjr 89:c43cd923401c 897 t0 = timer.read_us();
mjr 89:c43cd923401c 898 }
mjr 89:c43cd923401c 899 break;
mjr 89:c43cd923401c 900
mjr 89:c43cd923401c 901 case 1:
mjr 89:c43cd923401c 902 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 903 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 904 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 905 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 906 out->set(level);
mjr 89:c43cd923401c 907 if (level == 0)
mjr 89:c43cd923401c 908 {
mjr 89:c43cd923401c 909 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 910 // so we need to remove it from the list.
mjr 89:c43cd923401c 911 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 912 {
mjr 89:c43cd923401c 913 // is this us?
mjr 89:c43cd923401c 914 if (pending[i] == this)
mjr 89:c43cd923401c 915 {
mjr 89:c43cd923401c 916 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 917 // last list entry
mjr 89:c43cd923401c 918 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 919
mjr 89:c43cd923401c 920 // no need to look any further
mjr 89:c43cd923401c 921 break;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923 }
mjr 89:c43cd923401c 924
mjr 89:c43cd923401c 925 // switch to state 0 (off)
mjr 89:c43cd923401c 926 state = 0;
mjr 89:c43cd923401c 927 }
mjr 89:c43cd923401c 928 break;
mjr 89:c43cd923401c 929
mjr 89:c43cd923401c 930 case 2:
mjr 89:c43cd923401c 931 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 932 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 933 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 934 // as the upper bound.
mjr 89:c43cd923401c 935 if (level == 0)
mjr 89:c43cd923401c 936 {
mjr 89:c43cd923401c 937 // switching off - turn off the physical output
mjr 89:c43cd923401c 938 out->set(0);
mjr 89:c43cd923401c 939
mjr 89:c43cd923401c 940 // go to state 0 (off)
mjr 89:c43cd923401c 941 state = 0;
mjr 89:c43cd923401c 942 }
mjr 89:c43cd923401c 943 else
mjr 89:c43cd923401c 944 {
mjr 89:c43cd923401c 945 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 946 // lower of the requested power and the hold power
mjr 89:c43cd923401c 947 uint8_t hold = holdPower();
mjr 89:c43cd923401c 948 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953
mjr 89:c43cd923401c 954 // Class initialization
mjr 89:c43cd923401c 955 static void classInit(Config &cfg)
mjr 89:c43cd923401c 956 {
mjr 89:c43cd923401c 957 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 958 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 959 // all of these outputs.
mjr 89:c43cd923401c 960 int n = 0;
mjr 89:c43cd923401c 961 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 964 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 965 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 966 ++n;
mjr 89:c43cd923401c 967 }
mjr 89:c43cd923401c 968
mjr 89:c43cd923401c 969 // allocate space for the pending timer list
mjr 89:c43cd923401c 970 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 971
mjr 89:c43cd923401c 972 // there's nothing in the pending list yet
mjr 89:c43cd923401c 973 nPending = 0;
mjr 89:c43cd923401c 974
mjr 89:c43cd923401c 975 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 976 // use it to figure elapsed times.
mjr 89:c43cd923401c 977 timer.start();
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979
mjr 89:c43cd923401c 980 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 981 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 982 static void poll()
mjr 89:c43cd923401c 983 {
mjr 89:c43cd923401c 984 // note the current time
mjr 89:c43cd923401c 985 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 986
mjr 89:c43cd923401c 987 // go through the timer list
mjr 89:c43cd923401c 988 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 989 {
mjr 89:c43cd923401c 990 // get the port
mjr 89:c43cd923401c 991 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 992
mjr 89:c43cd923401c 993 // assume we'll keep it
mjr 89:c43cd923401c 994 bool remove = false;
mjr 89:c43cd923401c 995
mjr 89:c43cd923401c 996 // check if the port is still on
mjr 89:c43cd923401c 997 if (port->state != 0)
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1000 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1001 {
mjr 89:c43cd923401c 1002 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1003 port->state = 2;
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1006 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1007 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1008 uint8_t val = port->val;
mjr 89:c43cd923401c 1009 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1010
mjr 89:c43cd923401c 1011 // we're done with the timer
mjr 89:c43cd923401c 1012 remove = true;
mjr 89:c43cd923401c 1013 }
mjr 89:c43cd923401c 1014 }
mjr 89:c43cd923401c 1015 else
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1018 // it from the timer list
mjr 89:c43cd923401c 1019 remove = true;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021
mjr 89:c43cd923401c 1022 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1023 if (remove)
mjr 89:c43cd923401c 1024 {
mjr 89:c43cd923401c 1025 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1026 // the last entry in the list.
mjr 89:c43cd923401c 1027 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1030 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1031 }
mjr 89:c43cd923401c 1032 else
mjr 89:c43cd923401c 1033 {
mjr 89:c43cd923401c 1034 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1035 ++i;
mjr 89:c43cd923401c 1036 }
mjr 89:c43cd923401c 1037 }
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039
mjr 89:c43cd923401c 1040 protected:
mjr 89:c43cd923401c 1041 // underlying physical output
mjr 89:c43cd923401c 1042 LwOut *out;
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1045 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1046 uint32_t t0;
mjr 89:c43cd923401c 1047
mjr 89:c43cd923401c 1048 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1049 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1050 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1051 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1052 // if it's lower.
mjr 89:c43cd923401c 1053 uint8_t val;
mjr 89:c43cd923401c 1054
mjr 89:c43cd923401c 1055 // Current port state:
mjr 89:c43cd923401c 1056 //
mjr 89:c43cd923401c 1057 // 0 = off
mjr 89:c43cd923401c 1058 // 1 = on at initial full power
mjr 89:c43cd923401c 1059 // 2 = on at hold power
mjr 89:c43cd923401c 1060 uint8_t state;
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1063 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1064 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1065 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1066 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1067 uint8_t params;
mjr 89:c43cd923401c 1068
mjr 89:c43cd923401c 1069 // Figure the initial full-power time in microseconds
mjr 89:c43cd923401c 1070 inline uint32_t fullPowerTime_us() const { return ((params >> 4) + 1)*50000; }
mjr 89:c43cd923401c 1071
mjr 89:c43cd923401c 1072 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1073 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1074
mjr 89:c43cd923401c 1075 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1076 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1077 // (which runs continuously).
mjr 89:c43cd923401c 1078 static Timer timer;
mjr 89:c43cd923401c 1079
mjr 89:c43cd923401c 1080 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 89:c43cd923401c 1081 // transitions from OFF to ON, tis timer
mjr 89:c43cd923401c 1082 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1083 static uint8_t nPending;
mjr 89:c43cd923401c 1084 };
mjr 89:c43cd923401c 1085
mjr 89:c43cd923401c 1086 // Flipper Logic statics
mjr 89:c43cd923401c 1087 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1088 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1089 uint8_t LwFlipperLogicOut::nPending;
mjr 89:c43cd923401c 1090
mjr 35:e959ffba78fd 1091 //
mjr 35:e959ffba78fd 1092 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1093 // assignments set in config.h.
mjr 33:d832bcab089e 1094 //
mjr 35:e959ffba78fd 1095 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1096 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1097 {
mjr 35:e959ffba78fd 1098 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1099 {
mjr 53:9b2611964afc 1100 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1101 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1102 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1103 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1104 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1105 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1106 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1107 }
mjr 35:e959ffba78fd 1108 }
mjr 26:cb71c4af2912 1109
mjr 40:cc0d9814522b 1110 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1111 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1112 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1113 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1114 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1115 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1116 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1117 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1118 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1119 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1120 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1121 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1122 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1123 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1124 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1125 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1126 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1127 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1128 };
mjr 40:cc0d9814522b 1129
mjr 40:cc0d9814522b 1130 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1131 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1132 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1133 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1134 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1135 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1136 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1137 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1138 // are always 8 bits.
mjr 40:cc0d9814522b 1139 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1140 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1141 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1142 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1143 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1144 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1145 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1146 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1147 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1148 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1149 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1150 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1151 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1152 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1153 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1154 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1155 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1156 };
mjr 40:cc0d9814522b 1157
mjr 26:cb71c4af2912 1158 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1159 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1160 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1161 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1162 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1163 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1164 {
mjr 26:cb71c4af2912 1165 public:
mjr 60:f38da020aa13 1166 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1167 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1168 {
mjr 26:cb71c4af2912 1169 if (val != prv)
mjr 40:cc0d9814522b 1170 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1171 }
mjr 60:f38da020aa13 1172 uint8_t idx;
mjr 40:cc0d9814522b 1173 uint8_t prv;
mjr 26:cb71c4af2912 1174 };
mjr 26:cb71c4af2912 1175
mjr 40:cc0d9814522b 1176 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1177 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1178 {
mjr 40:cc0d9814522b 1179 public:
mjr 60:f38da020aa13 1180 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1181 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1182 {
mjr 40:cc0d9814522b 1183 if (val != prv)
mjr 40:cc0d9814522b 1184 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1185 }
mjr 60:f38da020aa13 1186 uint8_t idx;
mjr 40:cc0d9814522b 1187 uint8_t prv;
mjr 40:cc0d9814522b 1188 };
mjr 40:cc0d9814522b 1189
mjr 87:8d35c74403af 1190 //
mjr 87:8d35c74403af 1191 // TLC59116 interface object
mjr 87:8d35c74403af 1192 //
mjr 87:8d35c74403af 1193 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1194 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1195 {
mjr 87:8d35c74403af 1196 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1197 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1198 {
mjr 87:8d35c74403af 1199 // set up the interface
mjr 87:8d35c74403af 1200 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1201 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1202 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1203 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1204
mjr 87:8d35c74403af 1205 // initialize the chips
mjr 87:8d35c74403af 1206 tlc59116->init();
mjr 87:8d35c74403af 1207 }
mjr 87:8d35c74403af 1208 }
mjr 87:8d35c74403af 1209
mjr 87:8d35c74403af 1210 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1211 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1212 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1213 // (0-15).
mjr 87:8d35c74403af 1214 //
mjr 87:8d35c74403af 1215 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1216 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1217 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1218 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1219 {
mjr 87:8d35c74403af 1220 public:
mjr 87:8d35c74403af 1221 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1222 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1223 {
mjr 87:8d35c74403af 1224 if (val != prv)
mjr 87:8d35c74403af 1225 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1226 }
mjr 87:8d35c74403af 1227
mjr 87:8d35c74403af 1228 protected:
mjr 87:8d35c74403af 1229 uint8_t addr;
mjr 87:8d35c74403af 1230 uint8_t port;
mjr 87:8d35c74403af 1231 uint8_t prv;
mjr 87:8d35c74403af 1232 };
mjr 87:8d35c74403af 1233
mjr 87:8d35c74403af 1234
mjr 87:8d35c74403af 1235 //
mjr 34:6b981a2afab7 1236 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1237 // config.h.
mjr 87:8d35c74403af 1238 //
mjr 35:e959ffba78fd 1239 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1240
mjr 35:e959ffba78fd 1241 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1242 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1243 {
mjr 35:e959ffba78fd 1244 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1245 {
mjr 53:9b2611964afc 1246 hc595 = new HC595(
mjr 53:9b2611964afc 1247 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1248 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1249 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1250 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1251 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1252 hc595->init();
mjr 35:e959ffba78fd 1253 hc595->update();
mjr 35:e959ffba78fd 1254 }
mjr 35:e959ffba78fd 1255 }
mjr 34:6b981a2afab7 1256
mjr 34:6b981a2afab7 1257 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1258 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1259 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1260 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1261 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1262 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1263 {
mjr 33:d832bcab089e 1264 public:
mjr 60:f38da020aa13 1265 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1266 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1267 {
mjr 34:6b981a2afab7 1268 if (val != prv)
mjr 40:cc0d9814522b 1269 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1270 }
mjr 60:f38da020aa13 1271 uint8_t idx;
mjr 40:cc0d9814522b 1272 uint8_t prv;
mjr 33:d832bcab089e 1273 };
mjr 33:d832bcab089e 1274
mjr 26:cb71c4af2912 1275
mjr 40:cc0d9814522b 1276
mjr 64:ef7ca92dff36 1277 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1278 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1279 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1280 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1281 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1282 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1283 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1284 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1285 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1286 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1287 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1288 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1289 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1290 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1291 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1292 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1293 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1294 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1295 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1296 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1297 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1298 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1299 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1300 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1301 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1302 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1303 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1304 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1305 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1306 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1307 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1308 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1309 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1310 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1311 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1312 };
mjr 26:cb71c4af2912 1313
mjr 64:ef7ca92dff36 1314
mjr 92:f264fbaa1be5 1315 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1316 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1317 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1318 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1319 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1320 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1321 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1322 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1323 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1324 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1325 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1326 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1327 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1328 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1329 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1330 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1331 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1332 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1333 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1334 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1335 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1336 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1337 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1338 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1339 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1340 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1341 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1342 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1343 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1344 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1345 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1346 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1347 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1348 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1349 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1350 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1351 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1352 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1353 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1354 };
mjr 64:ef7ca92dff36 1355
mjr 77:0b96f6867312 1356 // Polled-update PWM output list
mjr 74:822a92bc11d2 1357 //
mjr 77:0b96f6867312 1358 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1359 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1360 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1361 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1362 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1363 //
mjr 92:f264fbaa1be5 1364 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1365 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1366 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1367 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1368 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1369 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1370 //
mjr 92:f264fbaa1be5 1371 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1372 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1373 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1374 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1375 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1376 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1377 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1378 // enough to become noticeable.
mjr 92:f264fbaa1be5 1379 //
mjr 92:f264fbaa1be5 1380 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1381 // mbed solution isn't really a solution at all because it creates a separate
mjr 92:f264fbaa1be5 1382 // problem of its own. The mbed approach is reset the TPM "count" register
mjr 92:f264fbaa1be5 1383 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1384 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1385 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1386 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1387 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1388 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1389 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1390 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1391 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1392 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1393 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1394 //
mjr 92:f264fbaa1be5 1395 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1396 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1397 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1398 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1399 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1400 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1401 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1402 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1403 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1404 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1405 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1406 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1407 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1408 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1409 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1410 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1411 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1412 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1413 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1414 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1415 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1416 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1417 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1418 //
mjr 77:0b96f6867312 1419 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1420 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1421 // of polled items.
mjr 74:822a92bc11d2 1422 static int numPolledPwm;
mjr 74:822a92bc11d2 1423 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1424
mjr 74:822a92bc11d2 1425 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1426 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1427 {
mjr 6:cc35eb643e8f 1428 public:
mjr 43:7a6364d82a41 1429 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1430 {
mjr 77:0b96f6867312 1431 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1432 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1433 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1434
mjr 93:177832c29041 1435 // set 5ms (200Hz) cycle time
mjr 93:177832c29041 1436 p.getUnit()->period(0.005f);
mjr 77:0b96f6867312 1437
mjr 77:0b96f6867312 1438 // set the initial value
mjr 77:0b96f6867312 1439 set(initVal);
mjr 43:7a6364d82a41 1440 }
mjr 74:822a92bc11d2 1441
mjr 40:cc0d9814522b 1442 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1443 {
mjr 77:0b96f6867312 1444 // save the new value
mjr 74:822a92bc11d2 1445 this->val = val;
mjr 77:0b96f6867312 1446
mjr 77:0b96f6867312 1447 // commit it to the hardware
mjr 77:0b96f6867312 1448 commit();
mjr 13:72dda449c3c0 1449 }
mjr 74:822a92bc11d2 1450
mjr 74:822a92bc11d2 1451 // handle periodic update polling
mjr 74:822a92bc11d2 1452 void poll()
mjr 74:822a92bc11d2 1453 {
mjr 77:0b96f6867312 1454 commit();
mjr 74:822a92bc11d2 1455 }
mjr 74:822a92bc11d2 1456
mjr 74:822a92bc11d2 1457 protected:
mjr 77:0b96f6867312 1458 virtual void commit()
mjr 74:822a92bc11d2 1459 {
mjr 74:822a92bc11d2 1460 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1461 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1462 }
mjr 74:822a92bc11d2 1463
mjr 77:0b96f6867312 1464 NewPwmOut p;
mjr 77:0b96f6867312 1465 uint8_t val;
mjr 6:cc35eb643e8f 1466 };
mjr 26:cb71c4af2912 1467
mjr 74:822a92bc11d2 1468 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1469 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1470 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1471 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1472 {
mjr 64:ef7ca92dff36 1473 public:
mjr 64:ef7ca92dff36 1474 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1475 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1476 {
mjr 64:ef7ca92dff36 1477 }
mjr 74:822a92bc11d2 1478
mjr 74:822a92bc11d2 1479 protected:
mjr 77:0b96f6867312 1480 virtual void commit()
mjr 64:ef7ca92dff36 1481 {
mjr 74:822a92bc11d2 1482 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1483 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1484 }
mjr 64:ef7ca92dff36 1485 };
mjr 64:ef7ca92dff36 1486
mjr 74:822a92bc11d2 1487 // poll the PWM outputs
mjr 74:822a92bc11d2 1488 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1489 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1490 void pollPwmUpdates()
mjr 74:822a92bc11d2 1491 {
mjr 93:177832c29041 1492 // if it's been at least 7.5ms since the last update, do another update
mjr 93:177832c29041 1493 if (polledPwmTimer.read_us() >= 7500)
mjr 74:822a92bc11d2 1494 {
mjr 74:822a92bc11d2 1495 // time the run for statistics collection
mjr 74:822a92bc11d2 1496 IF_DIAG(
mjr 74:822a92bc11d2 1497 Timer t;
mjr 74:822a92bc11d2 1498 t.start();
mjr 74:822a92bc11d2 1499 )
mjr 74:822a92bc11d2 1500
mjr 74:822a92bc11d2 1501 // poll each output
mjr 74:822a92bc11d2 1502 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1503 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1504
mjr 74:822a92bc11d2 1505 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1506 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1507
mjr 74:822a92bc11d2 1508 // collect statistics
mjr 74:822a92bc11d2 1509 IF_DIAG(
mjr 76:7f5912b6340e 1510 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1511 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1512 )
mjr 74:822a92bc11d2 1513 }
mjr 74:822a92bc11d2 1514 }
mjr 64:ef7ca92dff36 1515
mjr 26:cb71c4af2912 1516 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1517 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1518 {
mjr 6:cc35eb643e8f 1519 public:
mjr 43:7a6364d82a41 1520 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1521 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1522 {
mjr 13:72dda449c3c0 1523 if (val != prv)
mjr 40:cc0d9814522b 1524 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1525 }
mjr 6:cc35eb643e8f 1526 DigitalOut p;
mjr 40:cc0d9814522b 1527 uint8_t prv;
mjr 6:cc35eb643e8f 1528 };
mjr 26:cb71c4af2912 1529
mjr 29:582472d0bc57 1530 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1531 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1532 // port n (0-based).
mjr 35:e959ffba78fd 1533 //
mjr 35:e959ffba78fd 1534 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1535 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1536 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1537 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1538 // 74HC595 ports).
mjr 33:d832bcab089e 1539 static int numOutputs;
mjr 33:d832bcab089e 1540 static LwOut **lwPin;
mjr 33:d832bcab089e 1541
mjr 38:091e511ce8a0 1542 // create a single output pin
mjr 53:9b2611964afc 1543 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1544 {
mjr 38:091e511ce8a0 1545 // get this item's values
mjr 38:091e511ce8a0 1546 int typ = pc.typ;
mjr 38:091e511ce8a0 1547 int pin = pc.pin;
mjr 38:091e511ce8a0 1548 int flags = pc.flags;
mjr 40:cc0d9814522b 1549 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1550 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1551 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1552 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 89:c43cd923401c 1553
mjr 89:c43cd923401c 1554 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1555 if (flipperLogic)
mjr 89:c43cd923401c 1556 gamma = false;
mjr 38:091e511ce8a0 1557
mjr 38:091e511ce8a0 1558 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1559 LwOut *lwp;
mjr 38:091e511ce8a0 1560 switch (typ)
mjr 38:091e511ce8a0 1561 {
mjr 38:091e511ce8a0 1562 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1563 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1564 if (pin != 0)
mjr 64:ef7ca92dff36 1565 {
mjr 64:ef7ca92dff36 1566 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1567 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1568 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1569 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1570 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1571 {
mjr 64:ef7ca92dff36 1572 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1573 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1574
mjr 64:ef7ca92dff36 1575 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1576 gamma = false;
mjr 64:ef7ca92dff36 1577 }
mjr 64:ef7ca92dff36 1578 else
mjr 64:ef7ca92dff36 1579 {
mjr 64:ef7ca92dff36 1580 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1581 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1582 }
mjr 64:ef7ca92dff36 1583 }
mjr 48:058ace2aed1d 1584 else
mjr 48:058ace2aed1d 1585 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1586 break;
mjr 38:091e511ce8a0 1587
mjr 38:091e511ce8a0 1588 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1589 // Digital GPIO port
mjr 48:058ace2aed1d 1590 if (pin != 0)
mjr 48:058ace2aed1d 1591 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1592 else
mjr 48:058ace2aed1d 1593 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1594 break;
mjr 38:091e511ce8a0 1595
mjr 38:091e511ce8a0 1596 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1597 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1598 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1599 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1600 {
mjr 40:cc0d9814522b 1601 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1602 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1603 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1604 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1605 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1606 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1607 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1608 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1609 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1610 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1611 // for this unlikely case.
mjr 40:cc0d9814522b 1612 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1613 {
mjr 40:cc0d9814522b 1614 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1615 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1616
mjr 40:cc0d9814522b 1617 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1618 gamma = false;
mjr 40:cc0d9814522b 1619 }
mjr 40:cc0d9814522b 1620 else
mjr 40:cc0d9814522b 1621 {
mjr 40:cc0d9814522b 1622 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1623 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1624 }
mjr 40:cc0d9814522b 1625 }
mjr 38:091e511ce8a0 1626 else
mjr 40:cc0d9814522b 1627 {
mjr 40:cc0d9814522b 1628 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1629 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1630 }
mjr 38:091e511ce8a0 1631 break;
mjr 38:091e511ce8a0 1632
mjr 38:091e511ce8a0 1633 case PortType74HC595:
mjr 87:8d35c74403af 1634 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1635 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1636 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1637 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1638 else
mjr 38:091e511ce8a0 1639 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1640 break;
mjr 87:8d35c74403af 1641
mjr 87:8d35c74403af 1642 case PortTypeTLC59116:
mjr 87:8d35c74403af 1643 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1644 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1645 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1646 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1647 if (tlc59116 != 0)
mjr 87:8d35c74403af 1648 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1649 break;
mjr 38:091e511ce8a0 1650
mjr 38:091e511ce8a0 1651 case PortTypeVirtual:
mjr 43:7a6364d82a41 1652 case PortTypeDisabled:
mjr 38:091e511ce8a0 1653 default:
mjr 38:091e511ce8a0 1654 // virtual or unknown
mjr 38:091e511ce8a0 1655 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1656 break;
mjr 38:091e511ce8a0 1657 }
mjr 38:091e511ce8a0 1658
mjr 40:cc0d9814522b 1659 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1660 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1661 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1662 if (activeLow)
mjr 38:091e511ce8a0 1663 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1664
mjr 89:c43cd923401c 1665 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 1666 if (flipperLogic)
mjr 89:c43cd923401c 1667 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 1668
mjr 89:c43cd923401c 1669 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 1670 if (noisy)
mjr 40:cc0d9814522b 1671 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1672
mjr 40:cc0d9814522b 1673 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1674 if (gamma)
mjr 40:cc0d9814522b 1675 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1676
mjr 53:9b2611964afc 1677 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1678 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1679 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1680 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1681 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1682
mjr 53:9b2611964afc 1683 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1684 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1685 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1686
mjr 38:091e511ce8a0 1687 // turn it off initially
mjr 38:091e511ce8a0 1688 lwp->set(0);
mjr 38:091e511ce8a0 1689
mjr 38:091e511ce8a0 1690 // return the pin
mjr 38:091e511ce8a0 1691 return lwp;
mjr 38:091e511ce8a0 1692 }
mjr 38:091e511ce8a0 1693
mjr 6:cc35eb643e8f 1694 // initialize the output pin array
mjr 35:e959ffba78fd 1695 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1696 {
mjr 89:c43cd923401c 1697 // Initialize the Flipper Logic outputs
mjr 89:c43cd923401c 1698 LwFlipperLogicOut::classInit(cfg);
mjr 89:c43cd923401c 1699
mjr 35:e959ffba78fd 1700 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1701 // total number of ports.
mjr 35:e959ffba78fd 1702 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1703 int i;
mjr 35:e959ffba78fd 1704 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1705 {
mjr 35:e959ffba78fd 1706 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1707 {
mjr 35:e959ffba78fd 1708 numOutputs = i;
mjr 34:6b981a2afab7 1709 break;
mjr 34:6b981a2afab7 1710 }
mjr 33:d832bcab089e 1711 }
mjr 33:d832bcab089e 1712
mjr 73:4e8ce0b18915 1713 // allocate the pin array
mjr 73:4e8ce0b18915 1714 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1715
mjr 73:4e8ce0b18915 1716 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1717 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1718
mjr 73:4e8ce0b18915 1719 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1720 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1721 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1722
mjr 73:4e8ce0b18915 1723 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1724 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1725 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1726
mjr 73:4e8ce0b18915 1727 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1728 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1729 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1730
mjr 35:e959ffba78fd 1731 // create the pin interface object for each port
mjr 35:e959ffba78fd 1732 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1733 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1734 }
mjr 6:cc35eb643e8f 1735
mjr 76:7f5912b6340e 1736 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1737 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1738 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1739 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1740 // equivalent to 48.
mjr 40:cc0d9814522b 1741 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1742 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1743 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1744 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1745 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1746 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1747 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1748 255, 255
mjr 40:cc0d9814522b 1749 };
mjr 40:cc0d9814522b 1750
mjr 76:7f5912b6340e 1751 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1752 // level (1..48)
mjr 76:7f5912b6340e 1753 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1754 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1755 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1756 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1757 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1758 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1759 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1760 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1761 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1762 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1763 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1764 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1765 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1766 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1767 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1768 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1769 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1770 };
mjr 76:7f5912b6340e 1771
mjr 74:822a92bc11d2 1772 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1773 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1774 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1775 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1776 //
mjr 74:822a92bc11d2 1777 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1778 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1779 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1780 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1781 //
mjr 74:822a92bc11d2 1782 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1783 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1784 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1785 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1786 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1787 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1788 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1789 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1790 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1791 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1792 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1793 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1794 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1795 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1796 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1797 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1798 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1799 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1800 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1801 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1802
mjr 74:822a92bc11d2 1803 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1804 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1805 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1806 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1807 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1808 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1809 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1810 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1811 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1812 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1813 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1814 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1815 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1816 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1817 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1818 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1819 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1820
mjr 74:822a92bc11d2 1821 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1822 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1823 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1824 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1825 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1826 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1827 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1828 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1829 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1830 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1831 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1832 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1833 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1834 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1835 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1836 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1837 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1838
mjr 74:822a92bc11d2 1839 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1840 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1841 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1842 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1843 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1844 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1845 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1846 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1847 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1848 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1849 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1850 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1851 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1852 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1853 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1854 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1855 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1856 };
mjr 74:822a92bc11d2 1857
mjr 74:822a92bc11d2 1858 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1859 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1860 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1861
mjr 76:7f5912b6340e 1862 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1863 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1864
mjr 76:7f5912b6340e 1865 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1866 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1867 // outputs on each cycle.
mjr 29:582472d0bc57 1868 static void wizPulse()
mjr 29:582472d0bc57 1869 {
mjr 76:7f5912b6340e 1870 // current bank
mjr 76:7f5912b6340e 1871 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1872
mjr 76:7f5912b6340e 1873 // start a timer for statistics collection
mjr 76:7f5912b6340e 1874 IF_DIAG(
mjr 76:7f5912b6340e 1875 Timer t;
mjr 76:7f5912b6340e 1876 t.start();
mjr 76:7f5912b6340e 1877 )
mjr 76:7f5912b6340e 1878
mjr 76:7f5912b6340e 1879 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1880 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1881 //
mjr 76:7f5912b6340e 1882 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1883 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1884 //
mjr 76:7f5912b6340e 1885 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1886 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1887 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1888 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1889 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1890 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1891 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1892 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1893 // current cycle.
mjr 76:7f5912b6340e 1894 //
mjr 76:7f5912b6340e 1895 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1896 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1897 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1898 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1899 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1900 //
mjr 76:7f5912b6340e 1901 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1902 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1903 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1904 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1905 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1906 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1907 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1908 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1909 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1910 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1911 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1912 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1913 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1914 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1915 // bit counts.
mjr 76:7f5912b6340e 1916 //
mjr 76:7f5912b6340e 1917 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1918 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1919 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1920 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1921 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1922 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1923 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1924 // one division for another!
mjr 76:7f5912b6340e 1925 //
mjr 76:7f5912b6340e 1926 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1927 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1928 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1929 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1930 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1931 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1932 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1933 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1934 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1935 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1936 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1937 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1938 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1939 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1940 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1941 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1942 // remainder calculation anyway.
mjr 76:7f5912b6340e 1943 //
mjr 76:7f5912b6340e 1944 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1945 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1946 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1947 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1948 //
mjr 76:7f5912b6340e 1949 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1950 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1951 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1952 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1953 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1954 // the result, since we started with 32.
mjr 76:7f5912b6340e 1955 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1956 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1957 };
mjr 76:7f5912b6340e 1958 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1959
mjr 76:7f5912b6340e 1960 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1961 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1962 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1963 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1964 toPort = numOutputs;
mjr 76:7f5912b6340e 1965
mjr 76:7f5912b6340e 1966 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1967 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1968 {
mjr 76:7f5912b6340e 1969 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1970 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1971 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1972 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1973 if (wizOn[i])
mjr 29:582472d0bc57 1974 {
mjr 76:7f5912b6340e 1975 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1976 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1977 {
mjr 76:7f5912b6340e 1978 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1979 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1980 }
mjr 29:582472d0bc57 1981 }
mjr 76:7f5912b6340e 1982 }
mjr 76:7f5912b6340e 1983
mjr 34:6b981a2afab7 1984 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1985 if (hc595 != 0)
mjr 35:e959ffba78fd 1986 hc595->update();
mjr 76:7f5912b6340e 1987
mjr 76:7f5912b6340e 1988 // switch to the next bank
mjr 76:7f5912b6340e 1989 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1990 wizPulseBank = 0;
mjr 76:7f5912b6340e 1991
mjr 76:7f5912b6340e 1992 // collect timing statistics
mjr 76:7f5912b6340e 1993 IF_DIAG(
mjr 76:7f5912b6340e 1994 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1995 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1996 )
mjr 1:d913e0afb2ac 1997 }
mjr 38:091e511ce8a0 1998
mjr 76:7f5912b6340e 1999 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2000 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2001 {
mjr 76:7f5912b6340e 2002 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2003 if (wizOn[port])
mjr 76:7f5912b6340e 2004 {
mjr 76:7f5912b6340e 2005 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2006 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2007 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2008 // it on the next cycle.
mjr 76:7f5912b6340e 2009 int val = wizVal[port];
mjr 76:7f5912b6340e 2010 if (val <= 49)
mjr 76:7f5912b6340e 2011 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2012 }
mjr 76:7f5912b6340e 2013 else
mjr 76:7f5912b6340e 2014 {
mjr 76:7f5912b6340e 2015 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2016 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2017 }
mjr 73:4e8ce0b18915 2018 }
mjr 73:4e8ce0b18915 2019
mjr 73:4e8ce0b18915 2020 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2021 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2022 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2023 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2024 //
mjr 73:4e8ce0b18915 2025 void allOutputsOff()
mjr 73:4e8ce0b18915 2026 {
mjr 92:f264fbaa1be5 2027 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2028 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2029 {
mjr 73:4e8ce0b18915 2030 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2031 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2032 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2033 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2034 }
mjr 73:4e8ce0b18915 2035
mjr 73:4e8ce0b18915 2036 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2037 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2038 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2039
mjr 73:4e8ce0b18915 2040 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2041 if (hc595 != 0)
mjr 38:091e511ce8a0 2042 hc595->update();
mjr 38:091e511ce8a0 2043 }
mjr 38:091e511ce8a0 2044
mjr 74:822a92bc11d2 2045 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2046 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2047 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2048 // address any port group.
mjr 74:822a92bc11d2 2049 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2050 {
mjr 76:7f5912b6340e 2051 // update all on/off states in the group
mjr 74:822a92bc11d2 2052 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2053 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2054 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2055 {
mjr 74:822a92bc11d2 2056 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2057 if (bit == 0x100) {
mjr 74:822a92bc11d2 2058 bit = 1;
mjr 74:822a92bc11d2 2059 ++imsg;
mjr 74:822a92bc11d2 2060 }
mjr 74:822a92bc11d2 2061
mjr 74:822a92bc11d2 2062 // set the on/off state
mjr 76:7f5912b6340e 2063 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2064
mjr 76:7f5912b6340e 2065 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2066 updateLwPort(port);
mjr 74:822a92bc11d2 2067 }
mjr 74:822a92bc11d2 2068
mjr 74:822a92bc11d2 2069 // set the flash speed for the port group
mjr 74:822a92bc11d2 2070 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2071 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2072
mjr 76:7f5912b6340e 2073 // update 74HC959 outputs
mjr 76:7f5912b6340e 2074 if (hc595 != 0)
mjr 76:7f5912b6340e 2075 hc595->update();
mjr 74:822a92bc11d2 2076 }
mjr 74:822a92bc11d2 2077
mjr 74:822a92bc11d2 2078 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2079 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2080 {
mjr 74:822a92bc11d2 2081 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2082 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2083 {
mjr 74:822a92bc11d2 2084 // get the value
mjr 74:822a92bc11d2 2085 uint8_t v = data[i];
mjr 74:822a92bc11d2 2086
mjr 74:822a92bc11d2 2087 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2088 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2089 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2090 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2091 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2092 // as such.
mjr 74:822a92bc11d2 2093 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2094 v = 48;
mjr 74:822a92bc11d2 2095
mjr 74:822a92bc11d2 2096 // store it
mjr 76:7f5912b6340e 2097 wizVal[port] = v;
mjr 76:7f5912b6340e 2098
mjr 76:7f5912b6340e 2099 // update the port
mjr 76:7f5912b6340e 2100 updateLwPort(port);
mjr 74:822a92bc11d2 2101 }
mjr 74:822a92bc11d2 2102
mjr 76:7f5912b6340e 2103 // update 74HC595 outputs
mjr 76:7f5912b6340e 2104 if (hc595 != 0)
mjr 76:7f5912b6340e 2105 hc595->update();
mjr 74:822a92bc11d2 2106 }
mjr 74:822a92bc11d2 2107
mjr 77:0b96f6867312 2108 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2109 //
mjr 77:0b96f6867312 2110 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2111 //
mjr 77:0b96f6867312 2112
mjr 77:0b96f6867312 2113 // receiver
mjr 77:0b96f6867312 2114 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2115
mjr 77:0b96f6867312 2116 // transmitter
mjr 77:0b96f6867312 2117 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2118
mjr 77:0b96f6867312 2119 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2120 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2121 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2122 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2123 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2124 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2125 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2126 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2127 // configuration slot n
mjr 77:0b96f6867312 2128 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2129
mjr 78:1e00b3fa11af 2130 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2131 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2132 // protocol.
mjr 78:1e00b3fa11af 2133 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2134
mjr 78:1e00b3fa11af 2135 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2136 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2137 // while waiting for the rest.
mjr 78:1e00b3fa11af 2138 static struct
mjr 78:1e00b3fa11af 2139 {
mjr 78:1e00b3fa11af 2140 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2141 uint64_t code; // code
mjr 78:1e00b3fa11af 2142 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2143 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2144 } IRAdHocCmd;
mjr 88:98bce687e6c0 2145
mjr 77:0b96f6867312 2146
mjr 77:0b96f6867312 2147 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2148 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2149 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2150 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2151 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2152 // amount of time.
mjr 77:0b96f6867312 2153 Timer IRTimer;
mjr 77:0b96f6867312 2154
mjr 77:0b96f6867312 2155 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2156 // The states are:
mjr 77:0b96f6867312 2157 //
mjr 77:0b96f6867312 2158 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2159 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2160 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2161 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2162 //
mjr 77:0b96f6867312 2163 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2164 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2165 // received within a reasonable time.
mjr 77:0b96f6867312 2166 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2167
mjr 77:0b96f6867312 2168 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2169 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2170 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2171 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2172 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2173 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2174 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2175 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2176 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2177
mjr 78:1e00b3fa11af 2178 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2179 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2180 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2181 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2182 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2183 // index; 0 represents no command.
mjr 77:0b96f6867312 2184 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2185
mjr 77:0b96f6867312 2186 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2187 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2188 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2189 // command we received.
mjr 77:0b96f6867312 2190 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2191
mjr 77:0b96f6867312 2192 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2193 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2194 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2195 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2196 // distinct key press.
mjr 77:0b96f6867312 2197 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2198
mjr 78:1e00b3fa11af 2199
mjr 77:0b96f6867312 2200 // initialize
mjr 77:0b96f6867312 2201 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2202 {
mjr 77:0b96f6867312 2203 PinName pin;
mjr 77:0b96f6867312 2204
mjr 77:0b96f6867312 2205 // start the IR timer
mjr 77:0b96f6867312 2206 IRTimer.start();
mjr 77:0b96f6867312 2207
mjr 77:0b96f6867312 2208 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2209 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2210 {
mjr 77:0b96f6867312 2211 // no virtual buttons yet
mjr 77:0b96f6867312 2212 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2213 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2214
mjr 77:0b96f6867312 2215 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2216 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2217 {
mjr 77:0b96f6867312 2218 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2219 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2220 }
mjr 77:0b96f6867312 2221
mjr 77:0b96f6867312 2222 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2223 // real button inputs
mjr 77:0b96f6867312 2224 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2225 {
mjr 77:0b96f6867312 2226 // get the button
mjr 77:0b96f6867312 2227 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2228
mjr 77:0b96f6867312 2229 // check the unshifted button
mjr 77:0b96f6867312 2230 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2231 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2232 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2233 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2234
mjr 77:0b96f6867312 2235 // check the shifted button
mjr 77:0b96f6867312 2236 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2237 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2238 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2239 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2240 }
mjr 77:0b96f6867312 2241
mjr 77:0b96f6867312 2242 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2243 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2244 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2245
mjr 77:0b96f6867312 2246 // create the transmitter
mjr 77:0b96f6867312 2247 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2248
mjr 77:0b96f6867312 2249 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2250 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2251 {
mjr 77:0b96f6867312 2252 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2253 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2254 if (vb != 0xFF)
mjr 77:0b96f6867312 2255 {
mjr 77:0b96f6867312 2256 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2257 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2258 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2259 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2260 }
mjr 77:0b96f6867312 2261 }
mjr 77:0b96f6867312 2262 }
mjr 77:0b96f6867312 2263
mjr 77:0b96f6867312 2264 // if there's a receiver, set it up
mjr 77:0b96f6867312 2265 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2266 {
mjr 77:0b96f6867312 2267 // create the receiver
mjr 77:0b96f6867312 2268 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2269
mjr 77:0b96f6867312 2270 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2271 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2272 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2273
mjr 77:0b96f6867312 2274 // enable it
mjr 77:0b96f6867312 2275 ir_rx->enable();
mjr 77:0b96f6867312 2276
mjr 77:0b96f6867312 2277 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2278 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2279 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2280 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2281 {
mjr 77:0b96f6867312 2282 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2283 if (cb.protocol != 0
mjr 77:0b96f6867312 2284 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2285 {
mjr 77:0b96f6867312 2286 kbKeys = true;
mjr 77:0b96f6867312 2287 break;
mjr 77:0b96f6867312 2288 }
mjr 77:0b96f6867312 2289 }
mjr 77:0b96f6867312 2290 }
mjr 77:0b96f6867312 2291 }
mjr 77:0b96f6867312 2292
mjr 77:0b96f6867312 2293 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2294 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2295 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2296 {
mjr 77:0b96f6867312 2297 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2298 if (ir_tx != 0)
mjr 77:0b96f6867312 2299 {
mjr 77:0b96f6867312 2300 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2301 int slot = cmd - 1;
mjr 77:0b96f6867312 2302
mjr 77:0b96f6867312 2303 // press or release the virtual button
mjr 77:0b96f6867312 2304 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2305 }
mjr 77:0b96f6867312 2306 }
mjr 77:0b96f6867312 2307
mjr 78:1e00b3fa11af 2308 // Process IR input and output
mjr 77:0b96f6867312 2309 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2310 {
mjr 78:1e00b3fa11af 2311 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2312 if (ir_tx != 0)
mjr 77:0b96f6867312 2313 {
mjr 78:1e00b3fa11af 2314 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2315 // is ready to send, send it.
mjr 78:1e00b3fa11af 2316 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2317 {
mjr 78:1e00b3fa11af 2318 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2319 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2320 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2321 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2322
mjr 78:1e00b3fa11af 2323 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2324 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2325 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2326
mjr 78:1e00b3fa11af 2327 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2328 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2329 }
mjr 77:0b96f6867312 2330 }
mjr 78:1e00b3fa11af 2331
mjr 78:1e00b3fa11af 2332 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2333 if (ir_rx != 0)
mjr 77:0b96f6867312 2334 {
mjr 78:1e00b3fa11af 2335 // Time out any received command
mjr 78:1e00b3fa11af 2336 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2337 {
mjr 80:94dc2946871b 2338 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2339 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2340 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2341 if (t > 200000)
mjr 78:1e00b3fa11af 2342 IRCommandIn = 0;
mjr 80:94dc2946871b 2343 else if (t > 50000)
mjr 78:1e00b3fa11af 2344 IRKeyGap = false;
mjr 78:1e00b3fa11af 2345 }
mjr 78:1e00b3fa11af 2346
mjr 78:1e00b3fa11af 2347 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2348 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2349 {
mjr 78:1e00b3fa11af 2350 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2351 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2352 // limit.
mjr 78:1e00b3fa11af 2353 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2354 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2355 int n;
mjr 78:1e00b3fa11af 2356 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2357
mjr 78:1e00b3fa11af 2358 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2359 if (n != 0)
mjr 78:1e00b3fa11af 2360 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2361
mjr 78:1e00b3fa11af 2362 // check for a command
mjr 78:1e00b3fa11af 2363 IRCommand c;
mjr 78:1e00b3fa11af 2364 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2365 {
mjr 78:1e00b3fa11af 2366 // check the current learning state
mjr 78:1e00b3fa11af 2367 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2368 {
mjr 78:1e00b3fa11af 2369 case 1:
mjr 78:1e00b3fa11af 2370 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2371 // This is it.
mjr 78:1e00b3fa11af 2372 learnedIRCode = c;
mjr 78:1e00b3fa11af 2373
mjr 78:1e00b3fa11af 2374 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2375 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2376 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2377 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2378 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2379 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2380 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2381 break;
mjr 78:1e00b3fa11af 2382
mjr 78:1e00b3fa11af 2383 case 2:
mjr 78:1e00b3fa11af 2384 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2385 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2386 //
mjr 78:1e00b3fa11af 2387 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2388 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2389 //
mjr 78:1e00b3fa11af 2390 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2391 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2392 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2393 // them.
mjr 78:1e00b3fa11af 2394 //
mjr 78:1e00b3fa11af 2395 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2396 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2397 // over.
mjr 78:1e00b3fa11af 2398 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2399 && c.hasDittos
mjr 78:1e00b3fa11af 2400 && c.ditto)
mjr 78:1e00b3fa11af 2401 {
mjr 78:1e00b3fa11af 2402 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2403 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2404 }
mjr 78:1e00b3fa11af 2405 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2406 && c.hasDittos
mjr 78:1e00b3fa11af 2407 && !c.ditto
mjr 78:1e00b3fa11af 2408 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2409 {
mjr 78:1e00b3fa11af 2410 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2411 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2412 // protocol supports them
mjr 78:1e00b3fa11af 2413 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2414 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2415 }
mjr 78:1e00b3fa11af 2416 else
mjr 78:1e00b3fa11af 2417 {
mjr 78:1e00b3fa11af 2418 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2419 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2420 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2421 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2422 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2423 }
mjr 78:1e00b3fa11af 2424 break;
mjr 78:1e00b3fa11af 2425 }
mjr 77:0b96f6867312 2426
mjr 78:1e00b3fa11af 2427 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2428 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2429 // learning mode.
mjr 78:1e00b3fa11af 2430 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2431 {
mjr 78:1e00b3fa11af 2432 // figure the flags:
mjr 78:1e00b3fa11af 2433 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2434 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2435 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2436 flags |= 0x02;
mjr 78:1e00b3fa11af 2437
mjr 78:1e00b3fa11af 2438 // report the code
mjr 78:1e00b3fa11af 2439 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2440
mjr 78:1e00b3fa11af 2441 // exit learning mode
mjr 78:1e00b3fa11af 2442 IRLearningMode = 0;
mjr 77:0b96f6867312 2443 }
mjr 77:0b96f6867312 2444 }
mjr 77:0b96f6867312 2445
mjr 78:1e00b3fa11af 2446 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2447 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2448 {
mjr 78:1e00b3fa11af 2449 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2450 // zero data elements
mjr 78:1e00b3fa11af 2451 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2452
mjr 78:1e00b3fa11af 2453
mjr 78:1e00b3fa11af 2454 // cancel learning mode
mjr 77:0b96f6867312 2455 IRLearningMode = 0;
mjr 77:0b96f6867312 2456 }
mjr 77:0b96f6867312 2457 }
mjr 78:1e00b3fa11af 2458 else
mjr 77:0b96f6867312 2459 {
mjr 78:1e00b3fa11af 2460 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2461 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2462 ir_rx->process();
mjr 78:1e00b3fa11af 2463
mjr 78:1e00b3fa11af 2464 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2465 // have been read.
mjr 78:1e00b3fa11af 2466 IRCommand c;
mjr 78:1e00b3fa11af 2467 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2468 {
mjr 78:1e00b3fa11af 2469 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2470 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2471 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2472 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2473 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2474 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2475 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2476 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2477 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2478 //
mjr 78:1e00b3fa11af 2479 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2480 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2481 // command.
mjr 78:1e00b3fa11af 2482 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2483 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2484 {
mjr 78:1e00b3fa11af 2485 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2486 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2487 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2488 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2489 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2490 if (c.ditto)
mjr 78:1e00b3fa11af 2491 {
mjr 78:1e00b3fa11af 2492 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2493 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2494 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2495 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2496 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2497 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2498 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2499 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2500 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2501 }
mjr 78:1e00b3fa11af 2502 else
mjr 78:1e00b3fa11af 2503 {
mjr 78:1e00b3fa11af 2504 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2505 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2506 // prior command.
mjr 78:1e00b3fa11af 2507 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2508 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2509 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2510
mjr 78:1e00b3fa11af 2511 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2512 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2513 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2514 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2515 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2516 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2517 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2518 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2519 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2520 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2521 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2522 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2523 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2524 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2525 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2526 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2527 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2528 autoRepeat =
mjr 78:1e00b3fa11af 2529 repeat
mjr 78:1e00b3fa11af 2530 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2531 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2532 }
mjr 78:1e00b3fa11af 2533 }
mjr 78:1e00b3fa11af 2534
mjr 78:1e00b3fa11af 2535 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2536 if (repeat)
mjr 78:1e00b3fa11af 2537 {
mjr 78:1e00b3fa11af 2538 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2539 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2540 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2541 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2542 // key press event.
mjr 78:1e00b3fa11af 2543 if (!autoRepeat)
mjr 78:1e00b3fa11af 2544 IRKeyGap = true;
mjr 78:1e00b3fa11af 2545
mjr 78:1e00b3fa11af 2546 // restart the key-up timer
mjr 78:1e00b3fa11af 2547 IRTimer.reset();
mjr 78:1e00b3fa11af 2548 }
mjr 78:1e00b3fa11af 2549 else if (c.ditto)
mjr 78:1e00b3fa11af 2550 {
mjr 78:1e00b3fa11af 2551 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2552 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2553 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2554 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2555 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2556 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2557 // a full command for a new key press.
mjr 78:1e00b3fa11af 2558 IRCommandIn = 0;
mjr 77:0b96f6867312 2559 }
mjr 77:0b96f6867312 2560 else
mjr 77:0b96f6867312 2561 {
mjr 78:1e00b3fa11af 2562 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2563 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2564 // the new command).
mjr 78:1e00b3fa11af 2565 IRCommandIn = 0;
mjr 77:0b96f6867312 2566
mjr 78:1e00b3fa11af 2567 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2568 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2569 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2570 {
mjr 78:1e00b3fa11af 2571 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2572 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2573 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2574 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2575 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2576 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2577 {
mjr 78:1e00b3fa11af 2578 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2579 // remember the starting time.
mjr 78:1e00b3fa11af 2580 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2581 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2582 IRTimer.reset();
mjr 78:1e00b3fa11af 2583
mjr 78:1e00b3fa11af 2584 // no need to keep searching
mjr 78:1e00b3fa11af 2585 break;
mjr 78:1e00b3fa11af 2586 }
mjr 77:0b96f6867312 2587 }
mjr 77:0b96f6867312 2588 }
mjr 77:0b96f6867312 2589 }
mjr 77:0b96f6867312 2590 }
mjr 77:0b96f6867312 2591 }
mjr 77:0b96f6867312 2592 }
mjr 77:0b96f6867312 2593
mjr 74:822a92bc11d2 2594
mjr 11:bd9da7088e6e 2595 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2596 //
mjr 11:bd9da7088e6e 2597 // Button input
mjr 11:bd9da7088e6e 2598 //
mjr 11:bd9da7088e6e 2599
mjr 18:5e890ebd0023 2600 // button state
mjr 18:5e890ebd0023 2601 struct ButtonState
mjr 18:5e890ebd0023 2602 {
mjr 38:091e511ce8a0 2603 ButtonState()
mjr 38:091e511ce8a0 2604 {
mjr 53:9b2611964afc 2605 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2606 virtState = 0;
mjr 53:9b2611964afc 2607 dbState = 0;
mjr 38:091e511ce8a0 2608 pulseState = 0;
mjr 53:9b2611964afc 2609 pulseTime = 0;
mjr 38:091e511ce8a0 2610 }
mjr 35:e959ffba78fd 2611
mjr 53:9b2611964afc 2612 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2613 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2614 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2615 //
mjr 53:9b2611964afc 2616 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2617 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2618 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2619 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2620 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2621 void virtPress(bool on)
mjr 53:9b2611964afc 2622 {
mjr 53:9b2611964afc 2623 // Increment or decrement the current state
mjr 53:9b2611964afc 2624 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2625 }
mjr 53:9b2611964afc 2626
mjr 53:9b2611964afc 2627 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2628 TinyDigitalIn di;
mjr 38:091e511ce8a0 2629
mjr 65:739875521aae 2630 // Time of last pulse state transition.
mjr 65:739875521aae 2631 //
mjr 65:739875521aae 2632 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2633 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2634 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2635 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2636 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2637 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2638 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2639 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2640 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2641 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2642 // This software system can't be fooled that way.)
mjr 65:739875521aae 2643 uint32_t pulseTime;
mjr 18:5e890ebd0023 2644
mjr 65:739875521aae 2645 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2646 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2647 uint8_t cfgIndex;
mjr 53:9b2611964afc 2648
mjr 53:9b2611964afc 2649 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2650 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2651 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2652 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2653 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2654 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2655 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2656 // and physical source states.
mjr 53:9b2611964afc 2657 uint8_t virtState;
mjr 38:091e511ce8a0 2658
mjr 38:091e511ce8a0 2659 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2660 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2661 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2662 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2663 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2664 uint8_t dbState;
mjr 38:091e511ce8a0 2665
mjr 65:739875521aae 2666 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2667 uint8_t physState : 1;
mjr 65:739875521aae 2668
mjr 65:739875521aae 2669 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2670 uint8_t logState : 1;
mjr 65:739875521aae 2671
mjr 79:682ae3171a08 2672 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2673 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2674 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2675 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2676 uint8_t prevLogState : 1;
mjr 65:739875521aae 2677
mjr 65:739875521aae 2678 // Pulse state
mjr 65:739875521aae 2679 //
mjr 65:739875521aae 2680 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2681 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2682 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2683 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2684 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2685 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2686 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2687 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2688 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2689 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2690 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2691 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2692 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2693 //
mjr 38:091e511ce8a0 2694 // Pulse state:
mjr 38:091e511ce8a0 2695 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2696 // 1 -> off
mjr 38:091e511ce8a0 2697 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2698 // 3 -> on
mjr 38:091e511ce8a0 2699 // 4 -> transitioning on-off
mjr 65:739875521aae 2700 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2701
mjr 65:739875521aae 2702 } __attribute__((packed));
mjr 65:739875521aae 2703
mjr 65:739875521aae 2704 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2705 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2706 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2707
mjr 66:2e3583fbd2f4 2708 // Shift button state
mjr 66:2e3583fbd2f4 2709 struct
mjr 66:2e3583fbd2f4 2710 {
mjr 66:2e3583fbd2f4 2711 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2712 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2713 // 0 = not shifted
mjr 66:2e3583fbd2f4 2714 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2715 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2716 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2717 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2718 }
mjr 66:2e3583fbd2f4 2719 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2720
mjr 38:091e511ce8a0 2721 // Button data
mjr 38:091e511ce8a0 2722 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2723
mjr 38:091e511ce8a0 2724 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2725 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2726 // modifier keys.
mjr 38:091e511ce8a0 2727 struct
mjr 38:091e511ce8a0 2728 {
mjr 38:091e511ce8a0 2729 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2730 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2731 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2732 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2733 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2734
mjr 38:091e511ce8a0 2735 // Media key state
mjr 38:091e511ce8a0 2736 struct
mjr 38:091e511ce8a0 2737 {
mjr 38:091e511ce8a0 2738 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2739 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2740 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2741
mjr 79:682ae3171a08 2742 // button scan interrupt timer
mjr 79:682ae3171a08 2743 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2744
mjr 38:091e511ce8a0 2745 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2746 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2747 void scanButtons()
mjr 38:091e511ce8a0 2748 {
mjr 79:682ae3171a08 2749 // schedule the next interrupt
mjr 79:682ae3171a08 2750 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2751
mjr 38:091e511ce8a0 2752 // scan all button input pins
mjr 73:4e8ce0b18915 2753 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2754 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2755 {
mjr 73:4e8ce0b18915 2756 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2757 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2758 bs->dbState = db;
mjr 73:4e8ce0b18915 2759
mjr 73:4e8ce0b18915 2760 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2761 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2762 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2763 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2764 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2765 db &= stable;
mjr 73:4e8ce0b18915 2766 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2767 bs->physState = !db;
mjr 38:091e511ce8a0 2768 }
mjr 38:091e511ce8a0 2769 }
mjr 38:091e511ce8a0 2770
mjr 38:091e511ce8a0 2771 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2772 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2773 // in the physical button state.
mjr 38:091e511ce8a0 2774 Timer buttonTimer;
mjr 12:669df364a565 2775
mjr 65:739875521aae 2776 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2777 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2778 {
mjr 65:739875521aae 2779 // count it
mjr 65:739875521aae 2780 ++nButtons;
mjr 65:739875521aae 2781
mjr 67:c39e66c4e000 2782 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2783 // keyboard interface
mjr 72:884207c0aab0 2784 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2785 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2786 kbKeys = true;
mjr 65:739875521aae 2787 }
mjr 65:739875521aae 2788
mjr 11:bd9da7088e6e 2789 // initialize the button inputs
mjr 35:e959ffba78fd 2790 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2791 {
mjr 66:2e3583fbd2f4 2792 // presume no shift key
mjr 66:2e3583fbd2f4 2793 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2794 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2795
mjr 65:739875521aae 2796 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2797 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2798 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2799 nButtons = 0;
mjr 65:739875521aae 2800 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2801 {
mjr 65:739875521aae 2802 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2803 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2804 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2805 }
mjr 65:739875521aae 2806
mjr 65:739875521aae 2807 // Count virtual buttons
mjr 65:739875521aae 2808
mjr 65:739875521aae 2809 // ZB Launch
mjr 65:739875521aae 2810 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2811 {
mjr 65:739875521aae 2812 // valid - remember the live button index
mjr 65:739875521aae 2813 zblButtonIndex = nButtons;
mjr 65:739875521aae 2814
mjr 65:739875521aae 2815 // count it
mjr 72:884207c0aab0 2816 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2817 }
mjr 65:739875521aae 2818
mjr 65:739875521aae 2819 // Allocate the live button slots
mjr 65:739875521aae 2820 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2821
mjr 65:739875521aae 2822 // Configure the physical inputs
mjr 65:739875521aae 2823 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2824 {
mjr 65:739875521aae 2825 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2826 if (pin != NC)
mjr 65:739875521aae 2827 {
mjr 65:739875521aae 2828 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2829 bs->cfgIndex = i;
mjr 65:739875521aae 2830
mjr 65:739875521aae 2831 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2832 bs->di.assignPin(pin);
mjr 65:739875521aae 2833
mjr 65:739875521aae 2834 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2835 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2836 bs->pulseState = 1;
mjr 65:739875521aae 2837
mjr 66:2e3583fbd2f4 2838 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2839 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2840 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2841 // config slots are left unused.
mjr 78:1e00b3fa11af 2842 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2843 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2844
mjr 65:739875521aae 2845 // advance to the next button
mjr 65:739875521aae 2846 ++bs;
mjr 65:739875521aae 2847 }
mjr 65:739875521aae 2848 }
mjr 65:739875521aae 2849
mjr 53:9b2611964afc 2850 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2851 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2852 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2853 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2854
mjr 53:9b2611964afc 2855 // ZB Launch Ball button
mjr 65:739875521aae 2856 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2857 {
mjr 65:739875521aae 2858 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2859 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2860 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2861 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2862 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2863 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2864 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2865 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2866
mjr 66:2e3583fbd2f4 2867 // advance to the next button
mjr 65:739875521aae 2868 ++bs;
mjr 11:bd9da7088e6e 2869 }
mjr 12:669df364a565 2870
mjr 38:091e511ce8a0 2871 // start the button scan thread
mjr 79:682ae3171a08 2872 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2873
mjr 38:091e511ce8a0 2874 // start the button state transition timer
mjr 12:669df364a565 2875 buttonTimer.start();
mjr 11:bd9da7088e6e 2876 }
mjr 11:bd9da7088e6e 2877
mjr 67:c39e66c4e000 2878 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2879 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2880 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2881 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2882 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2883 //
mjr 67:c39e66c4e000 2884 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2885 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2886 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2887 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2888 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2889 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2890 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2891 //
mjr 67:c39e66c4e000 2892 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2893 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2894 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2895 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2896 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2897 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2898 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2899 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2900 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2901 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2902 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2903 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2904 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2905 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2906 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2907 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2908 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2909 };
mjr 77:0b96f6867312 2910
mjr 77:0b96f6867312 2911 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2912 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2913 // states of the button iputs.
mjr 77:0b96f6867312 2914 struct KeyState
mjr 77:0b96f6867312 2915 {
mjr 77:0b96f6867312 2916 KeyState()
mjr 77:0b96f6867312 2917 {
mjr 77:0b96f6867312 2918 // zero all members
mjr 77:0b96f6867312 2919 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2920 }
mjr 77:0b96f6867312 2921
mjr 77:0b96f6867312 2922 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2923 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2924 uint8_t mediakeys;
mjr 77:0b96f6867312 2925
mjr 77:0b96f6867312 2926 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2927 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2928 // USBJoystick.cpp).
mjr 77:0b96f6867312 2929 uint8_t modkeys;
mjr 77:0b96f6867312 2930
mjr 77:0b96f6867312 2931 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2932 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2933 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2934 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2935 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2936 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2937 uint8_t keys[7];
mjr 77:0b96f6867312 2938
mjr 77:0b96f6867312 2939 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2940 int nkeys;
mjr 77:0b96f6867312 2941
mjr 77:0b96f6867312 2942 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2943 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2944 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2945 uint32_t js;
mjr 77:0b96f6867312 2946
mjr 77:0b96f6867312 2947
mjr 77:0b96f6867312 2948 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2949 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2950 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2951 {
mjr 77:0b96f6867312 2952 // add the key according to the type
mjr 77:0b96f6867312 2953 switch (typ)
mjr 77:0b96f6867312 2954 {
mjr 77:0b96f6867312 2955 case BtnTypeJoystick:
mjr 77:0b96f6867312 2956 // joystick button
mjr 77:0b96f6867312 2957 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2958 break;
mjr 77:0b96f6867312 2959
mjr 77:0b96f6867312 2960 case BtnTypeKey:
mjr 77:0b96f6867312 2961 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2962 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2963 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2964 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2965 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2966 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2967 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2968 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2969 {
mjr 77:0b96f6867312 2970 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2971 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2972 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2973 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 2974 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 2975 }
mjr 77:0b96f6867312 2976 else
mjr 77:0b96f6867312 2977 {
mjr 77:0b96f6867312 2978 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 2979 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 2980 // apply, add the key to the key array.
mjr 77:0b96f6867312 2981 if (nkeys < 7)
mjr 77:0b96f6867312 2982 {
mjr 77:0b96f6867312 2983 bool found = false;
mjr 77:0b96f6867312 2984 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 2985 {
mjr 77:0b96f6867312 2986 if (keys[i] == val)
mjr 77:0b96f6867312 2987 {
mjr 77:0b96f6867312 2988 found = true;
mjr 77:0b96f6867312 2989 break;
mjr 77:0b96f6867312 2990 }
mjr 77:0b96f6867312 2991 }
mjr 77:0b96f6867312 2992 if (!found)
mjr 77:0b96f6867312 2993 keys[nkeys++] = val;
mjr 77:0b96f6867312 2994 }
mjr 77:0b96f6867312 2995 }
mjr 77:0b96f6867312 2996 break;
mjr 77:0b96f6867312 2997
mjr 77:0b96f6867312 2998 case BtnTypeMedia:
mjr 77:0b96f6867312 2999 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3000 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3001 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3002 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3003 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3004 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3005 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3006 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3007 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3008 break;
mjr 77:0b96f6867312 3009 }
mjr 77:0b96f6867312 3010 }
mjr 77:0b96f6867312 3011 };
mjr 67:c39e66c4e000 3012
mjr 67:c39e66c4e000 3013
mjr 38:091e511ce8a0 3014 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3015 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3016 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3017 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3018 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3019 {
mjr 77:0b96f6867312 3020 // key state
mjr 77:0b96f6867312 3021 KeyState ks;
mjr 38:091e511ce8a0 3022
mjr 38:091e511ce8a0 3023 // calculate the time since the last run
mjr 53:9b2611964afc 3024 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3025 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3026
mjr 66:2e3583fbd2f4 3027 // check the shift button state
mjr 66:2e3583fbd2f4 3028 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3029 {
mjr 78:1e00b3fa11af 3030 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3031 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3032
mjr 78:1e00b3fa11af 3033 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3034 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3035 {
mjr 66:2e3583fbd2f4 3036 case 0:
mjr 78:1e00b3fa11af 3037 default:
mjr 78:1e00b3fa11af 3038 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3039 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3040 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3041 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3042 {
mjr 78:1e00b3fa11af 3043 case 0:
mjr 78:1e00b3fa11af 3044 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3045 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3046 if (sbs->physState)
mjr 78:1e00b3fa11af 3047 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3048 break;
mjr 78:1e00b3fa11af 3049
mjr 78:1e00b3fa11af 3050 case 1:
mjr 78:1e00b3fa11af 3051 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3052 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3053 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3054 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3055 // pulse event.
mjr 78:1e00b3fa11af 3056 if (!sbs->physState)
mjr 78:1e00b3fa11af 3057 {
mjr 78:1e00b3fa11af 3058 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3059 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3060 }
mjr 78:1e00b3fa11af 3061 break;
mjr 78:1e00b3fa11af 3062
mjr 78:1e00b3fa11af 3063 case 2:
mjr 78:1e00b3fa11af 3064 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3065 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3066 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3067 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3068 // suppressed.
mjr 78:1e00b3fa11af 3069 if (!sbs->physState)
mjr 78:1e00b3fa11af 3070 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3071 break;
mjr 78:1e00b3fa11af 3072
mjr 78:1e00b3fa11af 3073 case 3:
mjr 78:1e00b3fa11af 3074 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3075 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3076 // has expired.
mjr 78:1e00b3fa11af 3077 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3078 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3079 else
mjr 78:1e00b3fa11af 3080 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3081 break;
mjr 78:1e00b3fa11af 3082 }
mjr 66:2e3583fbd2f4 3083 break;
mjr 66:2e3583fbd2f4 3084
mjr 66:2e3583fbd2f4 3085 case 1:
mjr 78:1e00b3fa11af 3086 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3087 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3088 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3089 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3090 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3091 break;
mjr 66:2e3583fbd2f4 3092 }
mjr 66:2e3583fbd2f4 3093 }
mjr 38:091e511ce8a0 3094
mjr 11:bd9da7088e6e 3095 // scan the button list
mjr 18:5e890ebd0023 3096 ButtonState *bs = buttonState;
mjr 65:739875521aae 3097 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3098 {
mjr 77:0b96f6867312 3099 // get the config entry for the button
mjr 77:0b96f6867312 3100 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3101
mjr 66:2e3583fbd2f4 3102 // Check the button type:
mjr 66:2e3583fbd2f4 3103 // - shift button
mjr 66:2e3583fbd2f4 3104 // - pulsed button
mjr 66:2e3583fbd2f4 3105 // - regular button
mjr 66:2e3583fbd2f4 3106 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3107 {
mjr 78:1e00b3fa11af 3108 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3109 // depends on the mode.
mjr 78:1e00b3fa11af 3110 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3111 {
mjr 78:1e00b3fa11af 3112 case 0:
mjr 78:1e00b3fa11af 3113 default:
mjr 78:1e00b3fa11af 3114 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3115 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3116 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3117 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3118 break;
mjr 78:1e00b3fa11af 3119
mjr 78:1e00b3fa11af 3120 case 1:
mjr 78:1e00b3fa11af 3121 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3122 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3123 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3124 break;
mjr 66:2e3583fbd2f4 3125 }
mjr 66:2e3583fbd2f4 3126 }
mjr 66:2e3583fbd2f4 3127 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3128 {
mjr 38:091e511ce8a0 3129 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3130 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3131 {
mjr 53:9b2611964afc 3132 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3133 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3134 }
mjr 53:9b2611964afc 3135 else
mjr 53:9b2611964afc 3136 {
mjr 53:9b2611964afc 3137 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3138 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3139 switch (bs->pulseState)
mjr 18:5e890ebd0023 3140 {
mjr 38:091e511ce8a0 3141 case 1:
mjr 38:091e511ce8a0 3142 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3143 if (bs->physState)
mjr 53:9b2611964afc 3144 {
mjr 38:091e511ce8a0 3145 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3146 bs->pulseState = 2;
mjr 53:9b2611964afc 3147 bs->logState = 1;
mjr 38:091e511ce8a0 3148 }
mjr 38:091e511ce8a0 3149 break;
mjr 18:5e890ebd0023 3150
mjr 38:091e511ce8a0 3151 case 2:
mjr 38:091e511ce8a0 3152 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3153 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3154 // change in state in the logical button
mjr 38:091e511ce8a0 3155 bs->pulseState = 3;
mjr 38:091e511ce8a0 3156 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3157 bs->logState = 0;
mjr 38:091e511ce8a0 3158 break;
mjr 38:091e511ce8a0 3159
mjr 38:091e511ce8a0 3160 case 3:
mjr 38:091e511ce8a0 3161 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3162 if (!bs->physState)
mjr 53:9b2611964afc 3163 {
mjr 38:091e511ce8a0 3164 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3165 bs->pulseState = 4;
mjr 53:9b2611964afc 3166 bs->logState = 1;
mjr 38:091e511ce8a0 3167 }
mjr 38:091e511ce8a0 3168 break;
mjr 38:091e511ce8a0 3169
mjr 38:091e511ce8a0 3170 case 4:
mjr 38:091e511ce8a0 3171 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3172 bs->pulseState = 1;
mjr 38:091e511ce8a0 3173 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3174 bs->logState = 0;
mjr 38:091e511ce8a0 3175 break;
mjr 18:5e890ebd0023 3176 }
mjr 18:5e890ebd0023 3177 }
mjr 38:091e511ce8a0 3178 }
mjr 38:091e511ce8a0 3179 else
mjr 38:091e511ce8a0 3180 {
mjr 38:091e511ce8a0 3181 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3182 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3183 }
mjr 77:0b96f6867312 3184
mjr 77:0b96f6867312 3185 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3186 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3187 //
mjr 78:1e00b3fa11af 3188 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3189 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3190 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3191 //
mjr 78:1e00b3fa11af 3192 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3193 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3194 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3195 //
mjr 78:1e00b3fa11af 3196 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3197 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3198 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3199 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3200 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3201 bool useShift =
mjr 77:0b96f6867312 3202 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3203 && shiftButton.index != i
mjr 77:0b96f6867312 3204 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3205 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3206 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3207
mjr 77:0b96f6867312 3208 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3209 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3210 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3211 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3212 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3213 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3214 shiftButton.state = 2;
mjr 35:e959ffba78fd 3215
mjr 38:091e511ce8a0 3216 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3217 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3218 {
mjr 77:0b96f6867312 3219 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3220 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3221 {
mjr 77:0b96f6867312 3222 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3223 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3224 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3225 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3226 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3227 // the night mode state.
mjr 77:0b96f6867312 3228 //
mjr 77:0b96f6867312 3229 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3230 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3231 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3232 {
mjr 77:0b96f6867312 3233 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3234 // current switch state.
mjr 53:9b2611964afc 3235 setNightMode(bs->logState);
mjr 53:9b2611964afc 3236 }
mjr 82:4f6209cb5c33 3237 else if (bs->logState)
mjr 53:9b2611964afc 3238 {
mjr 77:0b96f6867312 3239 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3240 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3241 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3242 // OFF to ON.
mjr 66:2e3583fbd2f4 3243 //
mjr 77:0b96f6867312 3244 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3245 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3246 // button.
mjr 77:0b96f6867312 3247 bool pressed;
mjr 66:2e3583fbd2f4 3248 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3249 {
mjr 77:0b96f6867312 3250 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3251 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3252 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3253 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3254 }
mjr 77:0b96f6867312 3255 else
mjr 77:0b96f6867312 3256 {
mjr 77:0b96f6867312 3257 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3258 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3259 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3260 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3261 }
mjr 66:2e3583fbd2f4 3262
mjr 66:2e3583fbd2f4 3263 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3264 // toggle night mode
mjr 66:2e3583fbd2f4 3265 if (pressed)
mjr 53:9b2611964afc 3266 toggleNightMode();
mjr 53:9b2611964afc 3267 }
mjr 35:e959ffba78fd 3268 }
mjr 38:091e511ce8a0 3269
mjr 77:0b96f6867312 3270 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3271 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3272 if (irc != 0)
mjr 77:0b96f6867312 3273 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3274
mjr 38:091e511ce8a0 3275 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3276 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3277 }
mjr 38:091e511ce8a0 3278
mjr 53:9b2611964afc 3279 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3280 // key state list
mjr 53:9b2611964afc 3281 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3282 {
mjr 70:9f58735a1732 3283 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3284 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3285 uint8_t typ, val;
mjr 77:0b96f6867312 3286 if (useShift)
mjr 66:2e3583fbd2f4 3287 {
mjr 77:0b96f6867312 3288 typ = bc->typ2;
mjr 77:0b96f6867312 3289 val = bc->val2;
mjr 66:2e3583fbd2f4 3290 }
mjr 77:0b96f6867312 3291 else
mjr 77:0b96f6867312 3292 {
mjr 77:0b96f6867312 3293 typ = bc->typ;
mjr 77:0b96f6867312 3294 val = bc->val;
mjr 77:0b96f6867312 3295 }
mjr 77:0b96f6867312 3296
mjr 70:9f58735a1732 3297 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3298 // the keyboard or joystick event.
mjr 77:0b96f6867312 3299 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3300 }
mjr 11:bd9da7088e6e 3301 }
mjr 77:0b96f6867312 3302
mjr 77:0b96f6867312 3303 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3304 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3305 // the IR key.
mjr 77:0b96f6867312 3306 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3307 {
mjr 77:0b96f6867312 3308 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3309 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3310 }
mjr 77:0b96f6867312 3311
mjr 77:0b96f6867312 3312 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3313 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3314
mjr 77:0b96f6867312 3315 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3316 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3317 jsButtons = ks.js;
mjr 77:0b96f6867312 3318
mjr 77:0b96f6867312 3319 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3320 // something changes)
mjr 77:0b96f6867312 3321 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3322 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3323 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3324 {
mjr 35:e959ffba78fd 3325 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3326 kbState.changed = true;
mjr 77:0b96f6867312 3327 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3328 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3329 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3330 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3331 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3332 }
mjr 35:e959ffba78fd 3333 else {
mjr 35:e959ffba78fd 3334 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3335 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3336 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3337 }
mjr 35:e959ffba78fd 3338 }
mjr 35:e959ffba78fd 3339
mjr 77:0b96f6867312 3340 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3341 // something changes)
mjr 77:0b96f6867312 3342 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3343 {
mjr 77:0b96f6867312 3344 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3345 mediaState.changed = true;
mjr 77:0b96f6867312 3346 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3347 }
mjr 11:bd9da7088e6e 3348 }
mjr 11:bd9da7088e6e 3349
mjr 73:4e8ce0b18915 3350 // Send a button status report
mjr 73:4e8ce0b18915 3351 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3352 {
mjr 73:4e8ce0b18915 3353 // start with all buttons off
mjr 73:4e8ce0b18915 3354 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3355 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3356
mjr 73:4e8ce0b18915 3357 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3358 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3359 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3360 {
mjr 73:4e8ce0b18915 3361 // get the physical state
mjr 73:4e8ce0b18915 3362 int b = bs->physState;
mjr 73:4e8ce0b18915 3363
mjr 73:4e8ce0b18915 3364 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3365 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3366 int si = idx / 8;
mjr 73:4e8ce0b18915 3367 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3368 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3369 }
mjr 73:4e8ce0b18915 3370
mjr 73:4e8ce0b18915 3371 // send the report
mjr 73:4e8ce0b18915 3372 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3373 }
mjr 73:4e8ce0b18915 3374
mjr 5:a70c0bce770d 3375 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3376 //
mjr 5:a70c0bce770d 3377 // Customization joystick subbclass
mjr 5:a70c0bce770d 3378 //
mjr 5:a70c0bce770d 3379
mjr 5:a70c0bce770d 3380 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3381 {
mjr 5:a70c0bce770d 3382 public:
mjr 35:e959ffba78fd 3383 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3384 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3385 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3386 {
mjr 54:fd77a6b2f76c 3387 sleeping_ = false;
mjr 54:fd77a6b2f76c 3388 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3389 timer_.start();
mjr 54:fd77a6b2f76c 3390 }
mjr 54:fd77a6b2f76c 3391
mjr 54:fd77a6b2f76c 3392 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3393 void diagFlash()
mjr 54:fd77a6b2f76c 3394 {
mjr 54:fd77a6b2f76c 3395 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3396 {
mjr 54:fd77a6b2f76c 3397 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3398 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3399 {
mjr 54:fd77a6b2f76c 3400 // short red flash
mjr 54:fd77a6b2f76c 3401 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3402 wait_us(50000);
mjr 54:fd77a6b2f76c 3403 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3404 wait_us(50000);
mjr 54:fd77a6b2f76c 3405 }
mjr 54:fd77a6b2f76c 3406 }
mjr 5:a70c0bce770d 3407 }
mjr 5:a70c0bce770d 3408
mjr 5:a70c0bce770d 3409 // are we connected?
mjr 5:a70c0bce770d 3410 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3411
mjr 54:fd77a6b2f76c 3412 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3413 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3414 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3415 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3416 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3417
mjr 54:fd77a6b2f76c 3418 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3419 //
mjr 54:fd77a6b2f76c 3420 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3421 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3422 // other way.
mjr 54:fd77a6b2f76c 3423 //
mjr 54:fd77a6b2f76c 3424 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3425 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3426 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3427 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3428 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3429 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3430 //
mjr 54:fd77a6b2f76c 3431 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3432 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3433 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3434 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3435 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3436 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3437 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3438 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3439 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3440 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3441 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3442 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3443 // is effectively dead.
mjr 54:fd77a6b2f76c 3444 //
mjr 54:fd77a6b2f76c 3445 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3446 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3447 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3448 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3449 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3450 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3451 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3452 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3453 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3454 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3455 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3456 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3457 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3458 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3459 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3460 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3461 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3462 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3463 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3464 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3465 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3466 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3467 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3468 // a disconnect.
mjr 54:fd77a6b2f76c 3469 //
mjr 54:fd77a6b2f76c 3470 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3471 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3472 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3473 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3474 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3475 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3476 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3477 //
mjr 54:fd77a6b2f76c 3478 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3479 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3480 //
mjr 54:fd77a6b2f76c 3481 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3482 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3483 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3484 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3485 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3486 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3487 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3488 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3489 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3490 // reliable in practice.
mjr 54:fd77a6b2f76c 3491 //
mjr 54:fd77a6b2f76c 3492 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3493 //
mjr 54:fd77a6b2f76c 3494 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3495 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3496 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3497 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3498 // return.
mjr 54:fd77a6b2f76c 3499 //
mjr 54:fd77a6b2f76c 3500 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3501 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3502 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3503 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3504 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3505 //
mjr 54:fd77a6b2f76c 3506 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3507 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3508 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3509 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3510 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3511 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3512 //
mjr 54:fd77a6b2f76c 3513 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3514 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3515 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3516 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3517 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3518 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3519 // freezes over.
mjr 54:fd77a6b2f76c 3520 //
mjr 54:fd77a6b2f76c 3521 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3522 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3523 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3524 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3525 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3526 void recoverConnection()
mjr 54:fd77a6b2f76c 3527 {
mjr 54:fd77a6b2f76c 3528 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3529 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3530 {
mjr 54:fd77a6b2f76c 3531 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3532 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3533 {
mjr 54:fd77a6b2f76c 3534 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3535 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3536 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3537 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3538 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3539 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3540 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3541 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3542 __disable_irq();
mjr 54:fd77a6b2f76c 3543 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3544 {
mjr 54:fd77a6b2f76c 3545 connect(false);
mjr 54:fd77a6b2f76c 3546 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3547 done = true;
mjr 54:fd77a6b2f76c 3548 }
mjr 54:fd77a6b2f76c 3549 __enable_irq();
mjr 54:fd77a6b2f76c 3550 }
mjr 54:fd77a6b2f76c 3551 }
mjr 54:fd77a6b2f76c 3552 }
mjr 5:a70c0bce770d 3553
mjr 5:a70c0bce770d 3554 protected:
mjr 54:fd77a6b2f76c 3555 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3556 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3557 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3558 //
mjr 54:fd77a6b2f76c 3559 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3560 //
mjr 54:fd77a6b2f76c 3561 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3562 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3563 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3564 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3565 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3566 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3567 {
mjr 54:fd77a6b2f76c 3568 // note the new state
mjr 54:fd77a6b2f76c 3569 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3570
mjr 54:fd77a6b2f76c 3571 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3572 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3573 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3574 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3575 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3576 {
mjr 54:fd77a6b2f76c 3577 disconnect();
mjr 54:fd77a6b2f76c 3578 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3579 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3580 }
mjr 54:fd77a6b2f76c 3581 }
mjr 54:fd77a6b2f76c 3582
mjr 54:fd77a6b2f76c 3583 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3584 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3585
mjr 54:fd77a6b2f76c 3586 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3587 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3588
mjr 54:fd77a6b2f76c 3589 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3590 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3591
mjr 54:fd77a6b2f76c 3592 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3593 Timer timer_;
mjr 5:a70c0bce770d 3594 };
mjr 5:a70c0bce770d 3595
mjr 5:a70c0bce770d 3596 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3597 //
mjr 5:a70c0bce770d 3598 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3599 //
mjr 5:a70c0bce770d 3600
mjr 5:a70c0bce770d 3601 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3602 //
mjr 5:a70c0bce770d 3603 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3604 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3605 // automatic calibration.
mjr 5:a70c0bce770d 3606 //
mjr 77:0b96f6867312 3607 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3608 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3609 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3610 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3611 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3612 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3613 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3614 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3615 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3616 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3617 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3618 //
mjr 77:0b96f6867312 3619 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3620 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3621 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3622 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3623 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3624 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3625 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3626 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3627 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3628 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3629 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3630 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3631 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3632 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3633 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3634 // rather than change it across the board.
mjr 5:a70c0bce770d 3635 //
mjr 6:cc35eb643e8f 3636 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3637 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3638 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3639 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3640 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3641 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3642 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3643 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3644 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3645 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3646 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3647 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3648 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3649 // of nudging, say).
mjr 5:a70c0bce770d 3650 //
mjr 5:a70c0bce770d 3651
mjr 17:ab3cec0c8bf4 3652 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3653 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3654
mjr 17:ab3cec0c8bf4 3655 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3656 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3657 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3658
mjr 17:ab3cec0c8bf4 3659 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3660 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3661 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3662 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3663
mjr 17:ab3cec0c8bf4 3664
mjr 6:cc35eb643e8f 3665 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3666 struct AccHist
mjr 5:a70c0bce770d 3667 {
mjr 77:0b96f6867312 3668 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3669 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3670 {
mjr 6:cc35eb643e8f 3671 // save the raw position
mjr 6:cc35eb643e8f 3672 this->x = x;
mjr 6:cc35eb643e8f 3673 this->y = y;
mjr 77:0b96f6867312 3674 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3675 }
mjr 6:cc35eb643e8f 3676
mjr 6:cc35eb643e8f 3677 // reading for this entry
mjr 77:0b96f6867312 3678 int x, y;
mjr 77:0b96f6867312 3679
mjr 77:0b96f6867312 3680 // (distance from previous entry) squared
mjr 77:0b96f6867312 3681 int dsq;
mjr 5:a70c0bce770d 3682
mjr 6:cc35eb643e8f 3683 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3684 int xtot, ytot;
mjr 6:cc35eb643e8f 3685 int cnt;
mjr 6:cc35eb643e8f 3686
mjr 77:0b96f6867312 3687 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3688 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3689 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3690 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3691
mjr 77:0b96f6867312 3692 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3693 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3694 };
mjr 5:a70c0bce770d 3695
mjr 5:a70c0bce770d 3696 // accelerometer wrapper class
mjr 3:3514575d4f86 3697 class Accel
mjr 3:3514575d4f86 3698 {
mjr 3:3514575d4f86 3699 public:
mjr 78:1e00b3fa11af 3700 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3701 int range, int autoCenterMode)
mjr 77:0b96f6867312 3702 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3703 {
mjr 5:a70c0bce770d 3704 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3705 irqPin_ = irqPin;
mjr 77:0b96f6867312 3706
mjr 77:0b96f6867312 3707 // remember the range
mjr 77:0b96f6867312 3708 range_ = range;
mjr 78:1e00b3fa11af 3709
mjr 78:1e00b3fa11af 3710 // set the auto-centering mode
mjr 78:1e00b3fa11af 3711 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3712
mjr 78:1e00b3fa11af 3713 // no manual centering request has been received
mjr 78:1e00b3fa11af 3714 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3715
mjr 5:a70c0bce770d 3716 // reset and initialize
mjr 5:a70c0bce770d 3717 reset();
mjr 5:a70c0bce770d 3718 }
mjr 5:a70c0bce770d 3719
mjr 78:1e00b3fa11af 3720 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3721 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3722 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3723 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3724
mjr 78:1e00b3fa11af 3725 // set the auto-centering mode
mjr 78:1e00b3fa11af 3726 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3727 {
mjr 78:1e00b3fa11af 3728 // remember the mode
mjr 78:1e00b3fa11af 3729 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3730
mjr 78:1e00b3fa11af 3731 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3732 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3733 if (mode == 0)
mjr 78:1e00b3fa11af 3734 {
mjr 78:1e00b3fa11af 3735 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3736 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3737 }
mjr 78:1e00b3fa11af 3738 else if (mode <= 60)
mjr 78:1e00b3fa11af 3739 {
mjr 78:1e00b3fa11af 3740 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3741 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3742 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3743 }
mjr 78:1e00b3fa11af 3744 else
mjr 78:1e00b3fa11af 3745 {
mjr 78:1e00b3fa11af 3746 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3747 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3748 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3749 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3750 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3751 // includes recent data.
mjr 78:1e00b3fa11af 3752 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3753 }
mjr 78:1e00b3fa11af 3754 }
mjr 78:1e00b3fa11af 3755
mjr 5:a70c0bce770d 3756 void reset()
mjr 5:a70c0bce770d 3757 {
mjr 6:cc35eb643e8f 3758 // clear the center point
mjr 77:0b96f6867312 3759 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3760
mjr 77:0b96f6867312 3761 // start the auto-centering timer
mjr 5:a70c0bce770d 3762 tCenter_.start();
mjr 5:a70c0bce770d 3763 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3764
mjr 5:a70c0bce770d 3765 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3766 mma_.init();
mjr 77:0b96f6867312 3767
mjr 77:0b96f6867312 3768 // set the range
mjr 77:0b96f6867312 3769 mma_.setRange(
mjr 77:0b96f6867312 3770 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3771 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3772 2);
mjr 6:cc35eb643e8f 3773
mjr 77:0b96f6867312 3774 // set the average accumulators to zero
mjr 77:0b96f6867312 3775 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3776 nSum_ = 0;
mjr 3:3514575d4f86 3777
mjr 3:3514575d4f86 3778 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3779 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3780 }
mjr 3:3514575d4f86 3781
mjr 77:0b96f6867312 3782 void poll()
mjr 76:7f5912b6340e 3783 {
mjr 77:0b96f6867312 3784 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3785 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3786 {
mjr 77:0b96f6867312 3787 int x, y, z;
mjr 77:0b96f6867312 3788 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3789
mjr 77:0b96f6867312 3790 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3791 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3792 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3793 ++nSum_;
mjr 77:0b96f6867312 3794
mjr 77:0b96f6867312 3795 // store the updates
mjr 77:0b96f6867312 3796 ax_ = x;
mjr 77:0b96f6867312 3797 ay_ = y;
mjr 77:0b96f6867312 3798 az_ = z;
mjr 77:0b96f6867312 3799 }
mjr 76:7f5912b6340e 3800 }
mjr 77:0b96f6867312 3801
mjr 9:fd65b0a94720 3802 void get(int &x, int &y)
mjr 3:3514575d4f86 3803 {
mjr 77:0b96f6867312 3804 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3805 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3806 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3807 int nSum = nSum_;
mjr 6:cc35eb643e8f 3808
mjr 77:0b96f6867312 3809 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3810 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3811 nSum_ = 0;
mjr 77:0b96f6867312 3812
mjr 77:0b96f6867312 3813 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3814 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3815 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3816
mjr 78:1e00b3fa11af 3817 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3818 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3819 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3820 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3821 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3822 {
mjr 77:0b96f6867312 3823 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3824 AccHist *prv = p;
mjr 77:0b96f6867312 3825 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3826 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3827 iAccPrv_ = 0;
mjr 77:0b96f6867312 3828 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3829 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3830
mjr 78:1e00b3fa11af 3831 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3832 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3833 {
mjr 78:1e00b3fa11af 3834 // Center if:
mjr 78:1e00b3fa11af 3835 //
mjr 78:1e00b3fa11af 3836 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3837 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3838 //
mjr 78:1e00b3fa11af 3839 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3840 //
mjr 77:0b96f6867312 3841 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3842 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3843 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3844 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3845 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3846 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3847 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3848 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3849 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3850 {
mjr 77:0b96f6867312 3851 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3852 // the samples over the rest period
mjr 77:0b96f6867312 3853 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3854 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3855
mjr 78:1e00b3fa11af 3856 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3857 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3858 }
mjr 77:0b96f6867312 3859 }
mjr 77:0b96f6867312 3860 else
mjr 77:0b96f6867312 3861 {
mjr 77:0b96f6867312 3862 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3863 ++nAccPrv_;
mjr 77:0b96f6867312 3864 }
mjr 6:cc35eb643e8f 3865
mjr 77:0b96f6867312 3866 // clear the new item's running totals
mjr 77:0b96f6867312 3867 p->clearAvg();
mjr 5:a70c0bce770d 3868
mjr 77:0b96f6867312 3869 // reset the timer
mjr 77:0b96f6867312 3870 tCenter_.reset();
mjr 77:0b96f6867312 3871 }
mjr 5:a70c0bce770d 3872
mjr 77:0b96f6867312 3873 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3874 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3875 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3876
mjr 6:cc35eb643e8f 3877 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3878 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3879 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3880 #endif
mjr 77:0b96f6867312 3881 }
mjr 29:582472d0bc57 3882
mjr 3:3514575d4f86 3883 private:
mjr 6:cc35eb643e8f 3884 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3885 int rawToReport(int v)
mjr 5:a70c0bce770d 3886 {
mjr 77:0b96f6867312 3887 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3888 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3889 // so their scale is 2^13.
mjr 77:0b96f6867312 3890 //
mjr 77:0b96f6867312 3891 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3892 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3893 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3894 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3895 int i = v*JOYMAX;
mjr 77:0b96f6867312 3896 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3897
mjr 6:cc35eb643e8f 3898 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3899 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3900 static const int filter[] = {
mjr 6:cc35eb643e8f 3901 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3902 0,
mjr 6:cc35eb643e8f 3903 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3904 };
mjr 6:cc35eb643e8f 3905 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3906 }
mjr 5:a70c0bce770d 3907
mjr 3:3514575d4f86 3908 // underlying accelerometer object
mjr 3:3514575d4f86 3909 MMA8451Q mma_;
mjr 3:3514575d4f86 3910
mjr 77:0b96f6867312 3911 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3912 // scale -8192..+8191
mjr 77:0b96f6867312 3913 int ax_, ay_, az_;
mjr 77:0b96f6867312 3914
mjr 77:0b96f6867312 3915 // running sum of readings since last get()
mjr 77:0b96f6867312 3916 int xSum_, ySum_;
mjr 77:0b96f6867312 3917
mjr 77:0b96f6867312 3918 // number of readings since last get()
mjr 77:0b96f6867312 3919 int nSum_;
mjr 6:cc35eb643e8f 3920
mjr 6:cc35eb643e8f 3921 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3922 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3923 // at rest.
mjr 77:0b96f6867312 3924 int cx_, cy_;
mjr 77:0b96f6867312 3925
mjr 77:0b96f6867312 3926 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3927 uint8_t range_;
mjr 78:1e00b3fa11af 3928
mjr 78:1e00b3fa11af 3929 // auto-center mode:
mjr 78:1e00b3fa11af 3930 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3931 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3932 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3933 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3934
mjr 78:1e00b3fa11af 3935 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3936 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3937
mjr 78:1e00b3fa11af 3938 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3939 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3940
mjr 77:0b96f6867312 3941 // atuo-centering timer
mjr 5:a70c0bce770d 3942 Timer tCenter_;
mjr 6:cc35eb643e8f 3943
mjr 6:cc35eb643e8f 3944 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3945 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3946 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3947 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3948 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3949 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3950 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3951 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3952 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3953 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3954 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3955 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3956 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3957 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3958 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3959
mjr 5:a70c0bce770d 3960 // interurupt pin name
mjr 5:a70c0bce770d 3961 PinName irqPin_;
mjr 3:3514575d4f86 3962 };
mjr 3:3514575d4f86 3963
mjr 5:a70c0bce770d 3964 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3965 //
mjr 14:df700b22ca08 3966 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3967 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3968 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3969 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3970 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3971 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3972 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3973 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3974 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3975 //
mjr 14:df700b22ca08 3976 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3977 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3978 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3979 //
mjr 5:a70c0bce770d 3980 void clear_i2c()
mjr 5:a70c0bce770d 3981 {
mjr 38:091e511ce8a0 3982 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3983 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3984 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3985
mjr 5:a70c0bce770d 3986 // clock the SCL 9 times
mjr 5:a70c0bce770d 3987 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3988 {
mjr 5:a70c0bce770d 3989 scl = 1;
mjr 5:a70c0bce770d 3990 wait_us(20);
mjr 5:a70c0bce770d 3991 scl = 0;
mjr 5:a70c0bce770d 3992 wait_us(20);
mjr 5:a70c0bce770d 3993 }
mjr 5:a70c0bce770d 3994 }
mjr 76:7f5912b6340e 3995
mjr 76:7f5912b6340e 3996
mjr 14:df700b22ca08 3997 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3998 //
mjr 33:d832bcab089e 3999 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4000 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4001 //
mjr 33:d832bcab089e 4002 class Debouncer
mjr 33:d832bcab089e 4003 {
mjr 33:d832bcab089e 4004 public:
mjr 33:d832bcab089e 4005 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4006 {
mjr 33:d832bcab089e 4007 t.start();
mjr 33:d832bcab089e 4008 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4009 this->tmin = tmin;
mjr 33:d832bcab089e 4010 }
mjr 33:d832bcab089e 4011
mjr 33:d832bcab089e 4012 // Get the current stable value
mjr 33:d832bcab089e 4013 bool val() const { return stable; }
mjr 33:d832bcab089e 4014
mjr 33:d832bcab089e 4015 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4016 // input device.
mjr 33:d832bcab089e 4017 void sampleIn(bool val)
mjr 33:d832bcab089e 4018 {
mjr 33:d832bcab089e 4019 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4020 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4021 // on the sample reader.
mjr 33:d832bcab089e 4022 if (val != prv)
mjr 33:d832bcab089e 4023 {
mjr 33:d832bcab089e 4024 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4025 t.reset();
mjr 33:d832bcab089e 4026
mjr 33:d832bcab089e 4027 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4028 prv = val;
mjr 33:d832bcab089e 4029 }
mjr 33:d832bcab089e 4030 else if (val != stable)
mjr 33:d832bcab089e 4031 {
mjr 33:d832bcab089e 4032 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4033 // and different from the stable value. This means that
mjr 33:d832bcab089e 4034 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4035 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4036 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4037 if (t.read() > tmin)
mjr 33:d832bcab089e 4038 stable = val;
mjr 33:d832bcab089e 4039 }
mjr 33:d832bcab089e 4040 }
mjr 33:d832bcab089e 4041
mjr 33:d832bcab089e 4042 private:
mjr 33:d832bcab089e 4043 // current stable value
mjr 33:d832bcab089e 4044 bool stable;
mjr 33:d832bcab089e 4045
mjr 33:d832bcab089e 4046 // last raw sample value
mjr 33:d832bcab089e 4047 bool prv;
mjr 33:d832bcab089e 4048
mjr 33:d832bcab089e 4049 // elapsed time since last raw input change
mjr 33:d832bcab089e 4050 Timer t;
mjr 33:d832bcab089e 4051
mjr 33:d832bcab089e 4052 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4053 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4054 float tmin;
mjr 33:d832bcab089e 4055 };
mjr 33:d832bcab089e 4056
mjr 33:d832bcab089e 4057
mjr 33:d832bcab089e 4058 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4059 //
mjr 33:d832bcab089e 4060 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4061 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4062 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4063 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4064 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4065 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4066 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4067 //
mjr 33:d832bcab089e 4068 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4069 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4070 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4071 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4072 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4073 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4074 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4075 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4076 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4077 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4078 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4079 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4080 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4081 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4082 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4083 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4084 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4085 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4086 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4087 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4088 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4089 //
mjr 40:cc0d9814522b 4090 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4091 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4092 //
mjr 33:d832bcab089e 4093 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4094 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4095 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4096 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4097 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4098 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4099 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4100 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4101 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4102 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4103 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4104 //
mjr 33:d832bcab089e 4105 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4106 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4107 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4108 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4109 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4110 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4111 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4112 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4113 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4114 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4115 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4116 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4117 // first check.
mjr 33:d832bcab089e 4118 //
mjr 33:d832bcab089e 4119 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4120 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4121 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4122 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4123 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4124 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4125 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4126 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4127 //
mjr 33:d832bcab089e 4128
mjr 77:0b96f6867312 4129 // Current PSU2 power state:
mjr 33:d832bcab089e 4130 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4131 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4132 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4133 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4134 // 5 -> TV relay on
mjr 77:0b96f6867312 4135 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4136 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4137
mjr 73:4e8ce0b18915 4138 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4139 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4140 // separate state for each:
mjr 73:4e8ce0b18915 4141 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4142 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4143 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4144 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4145 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4146
mjr 79:682ae3171a08 4147 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4148 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4149
mjr 77:0b96f6867312 4150 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4151 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4152 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4153 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4154 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4155 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4156 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4157 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4158 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4159 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4160 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4161
mjr 77:0b96f6867312 4162 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4163 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4164
mjr 35:e959ffba78fd 4165 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4166 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4167 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4168
mjr 73:4e8ce0b18915 4169 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4170 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4171 {
mjr 73:4e8ce0b18915 4172 // update the state
mjr 73:4e8ce0b18915 4173 if (state)
mjr 73:4e8ce0b18915 4174 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4175 else
mjr 73:4e8ce0b18915 4176 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4177
mjr 73:4e8ce0b18915 4178 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4179 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4180 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4181 }
mjr 35:e959ffba78fd 4182
mjr 86:e30a1f60f783 4183 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4184 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4185 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4186 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4187 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4188 // we say it's okay.
mjr 86:e30a1f60f783 4189 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4190 {
mjr 86:e30a1f60f783 4191 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4192 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4193 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4194 // to the same state later.
mjr 86:e30a1f60f783 4195 return psu2_state == 1;
mjr 86:e30a1f60f783 4196 }
mjr 86:e30a1f60f783 4197
mjr 77:0b96f6867312 4198 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4199 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4200 // functions.
mjr 77:0b96f6867312 4201 Timer powerStatusTimer;
mjr 77:0b96f6867312 4202 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4203 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4204 {
mjr 79:682ae3171a08 4205 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4206 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4207 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4208 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4209 {
mjr 79:682ae3171a08 4210 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4211 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4212 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4213 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4214 }
mjr 79:682ae3171a08 4215
mjr 77:0b96f6867312 4216 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4217 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4218 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4219 // skip this whole routine.
mjr 77:0b96f6867312 4220 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4221 return;
mjr 77:0b96f6867312 4222
mjr 77:0b96f6867312 4223 // reset the update timer for next time
mjr 77:0b96f6867312 4224 powerStatusTimer.reset();
mjr 77:0b96f6867312 4225
mjr 77:0b96f6867312 4226 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4227 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4228 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4229 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4230 static Timer tv_timer;
mjr 35:e959ffba78fd 4231
mjr 33:d832bcab089e 4232 // Check our internal state
mjr 33:d832bcab089e 4233 switch (psu2_state)
mjr 33:d832bcab089e 4234 {
mjr 33:d832bcab089e 4235 case 1:
mjr 33:d832bcab089e 4236 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4237 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4238 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4239 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4240 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4241 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4242 {
mjr 33:d832bcab089e 4243 // switch to OFF state
mjr 33:d832bcab089e 4244 psu2_state = 2;
mjr 33:d832bcab089e 4245
mjr 33:d832bcab089e 4246 // try setting the latch
mjr 35:e959ffba78fd 4247 psu2_status_set->write(1);
mjr 33:d832bcab089e 4248 }
mjr 77:0b96f6867312 4249 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4250 break;
mjr 33:d832bcab089e 4251
mjr 33:d832bcab089e 4252 case 2:
mjr 33:d832bcab089e 4253 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4254 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4255 psu2_status_set->write(0);
mjr 33:d832bcab089e 4256 psu2_state = 3;
mjr 77:0b96f6867312 4257 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4258 break;
mjr 33:d832bcab089e 4259
mjr 33:d832bcab089e 4260 case 3:
mjr 33:d832bcab089e 4261 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4262 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4263 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4264 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4265 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4266 {
mjr 33:d832bcab089e 4267 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4268 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4269 tv_timer.reset();
mjr 33:d832bcab089e 4270 tv_timer.start();
mjr 33:d832bcab089e 4271 psu2_state = 4;
mjr 73:4e8ce0b18915 4272
mjr 73:4e8ce0b18915 4273 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4274 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4275 }
mjr 33:d832bcab089e 4276 else
mjr 33:d832bcab089e 4277 {
mjr 33:d832bcab089e 4278 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4279 // our last check. Return to idle state.
mjr 87:8d35c74403af 4280 psu2_state = 1;
mjr 33:d832bcab089e 4281 }
mjr 33:d832bcab089e 4282 break;
mjr 33:d832bcab089e 4283
mjr 33:d832bcab089e 4284 case 4:
mjr 77:0b96f6867312 4285 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4286 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4287 // off again before the countdown finished.
mjr 77:0b96f6867312 4288 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4289 {
mjr 77:0b96f6867312 4290 // power is off - start a new check cycle
mjr 77:0b96f6867312 4291 psu2_status_set->write(1);
mjr 77:0b96f6867312 4292 psu2_state = 2;
mjr 77:0b96f6867312 4293 break;
mjr 77:0b96f6867312 4294 }
mjr 77:0b96f6867312 4295
mjr 77:0b96f6867312 4296 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4297 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4298
mjr 77:0b96f6867312 4299 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4300 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4301 {
mjr 33:d832bcab089e 4302 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4303 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4304 psu2_state = 5;
mjr 77:0b96f6867312 4305
mjr 77:0b96f6867312 4306 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4307 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4308 }
mjr 33:d832bcab089e 4309 break;
mjr 33:d832bcab089e 4310
mjr 33:d832bcab089e 4311 case 5:
mjr 33:d832bcab089e 4312 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4313 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4314 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4315
mjr 77:0b96f6867312 4316 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4317 psu2_state = 6;
mjr 77:0b96f6867312 4318 tvon_ir_state = 0;
mjr 77:0b96f6867312 4319
mjr 77:0b96f6867312 4320 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4321 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4322 break;
mjr 77:0b96f6867312 4323
mjr 77:0b96f6867312 4324 case 6:
mjr 77:0b96f6867312 4325 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4326 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4327 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4328 psu2_state = 1;
mjr 77:0b96f6867312 4329 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4330
mjr 77:0b96f6867312 4331 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4332 if (ir_tx != 0)
mjr 77:0b96f6867312 4333 {
mjr 77:0b96f6867312 4334 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4335 if (ir_tx->isSending())
mjr 77:0b96f6867312 4336 {
mjr 77:0b96f6867312 4337 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4338 // state 6.
mjr 77:0b96f6867312 4339 psu2_state = 6;
mjr 77:0b96f6867312 4340 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4341 break;
mjr 77:0b96f6867312 4342 }
mjr 77:0b96f6867312 4343
mjr 77:0b96f6867312 4344 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4345 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4346 // number.
mjr 77:0b96f6867312 4347 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4348 {
mjr 77:0b96f6867312 4349 // is this a TV ON command?
mjr 77:0b96f6867312 4350 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4351 {
mjr 77:0b96f6867312 4352 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4353 // looking for.
mjr 77:0b96f6867312 4354 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4355 {
mjr 77:0b96f6867312 4356 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4357 // pushing its virtual button.
mjr 77:0b96f6867312 4358 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4359 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4360
mjr 77:0b96f6867312 4361 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4362 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4363 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4364 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4365 // to send the code once.
mjr 77:0b96f6867312 4366 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4367
mjr 77:0b96f6867312 4368 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4369 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4370 // the next one.
mjr 77:0b96f6867312 4371 psu2_state = 6;
mjr 77:0b96f6867312 4372 tvon_ir_state++;
mjr 77:0b96f6867312 4373 break;
mjr 77:0b96f6867312 4374 }
mjr 77:0b96f6867312 4375
mjr 77:0b96f6867312 4376 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4377 ++n;
mjr 77:0b96f6867312 4378 }
mjr 77:0b96f6867312 4379 }
mjr 77:0b96f6867312 4380 }
mjr 33:d832bcab089e 4381 break;
mjr 33:d832bcab089e 4382 }
mjr 77:0b96f6867312 4383
mjr 77:0b96f6867312 4384 // update the diagnostic LEDs
mjr 77:0b96f6867312 4385 diagLED();
mjr 33:d832bcab089e 4386 }
mjr 33:d832bcab089e 4387
mjr 77:0b96f6867312 4388 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4389 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4390 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4391 // are configured as NC.
mjr 77:0b96f6867312 4392 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4393 {
mjr 55:4db125cd11a0 4394 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4395 // time is nonzero
mjr 77:0b96f6867312 4396 powerStatusTimer.reset();
mjr 77:0b96f6867312 4397 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4398 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4399 {
mjr 77:0b96f6867312 4400 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4401 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4402 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4403
mjr 77:0b96f6867312 4404 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4405 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4406 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4407
mjr 77:0b96f6867312 4408 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4409 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4410 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4411 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4412
mjr 77:0b96f6867312 4413 // Start the TV timer
mjr 77:0b96f6867312 4414 powerStatusTimer.start();
mjr 35:e959ffba78fd 4415 }
mjr 35:e959ffba78fd 4416 }
mjr 35:e959ffba78fd 4417
mjr 73:4e8ce0b18915 4418 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4419 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4420 //
mjr 73:4e8ce0b18915 4421 // Mode:
mjr 73:4e8ce0b18915 4422 // 0 = turn relay off
mjr 73:4e8ce0b18915 4423 // 1 = turn relay on
mjr 73:4e8ce0b18915 4424 // 2 = pulse relay
mjr 73:4e8ce0b18915 4425 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4426 {
mjr 73:4e8ce0b18915 4427 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4428 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4429 return;
mjr 73:4e8ce0b18915 4430
mjr 73:4e8ce0b18915 4431 switch (mode)
mjr 73:4e8ce0b18915 4432 {
mjr 73:4e8ce0b18915 4433 case 0:
mjr 73:4e8ce0b18915 4434 // relay off
mjr 73:4e8ce0b18915 4435 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4436 break;
mjr 73:4e8ce0b18915 4437
mjr 73:4e8ce0b18915 4438 case 1:
mjr 73:4e8ce0b18915 4439 // relay on
mjr 73:4e8ce0b18915 4440 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4441 break;
mjr 73:4e8ce0b18915 4442
mjr 73:4e8ce0b18915 4443 case 2:
mjr 79:682ae3171a08 4444 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4445 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4446 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4447 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4448 break;
mjr 73:4e8ce0b18915 4449 }
mjr 73:4e8ce0b18915 4450 }
mjr 73:4e8ce0b18915 4451
mjr 73:4e8ce0b18915 4452
mjr 35:e959ffba78fd 4453 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4454 //
mjr 35:e959ffba78fd 4455 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4456 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4457 //
mjr 35:e959ffba78fd 4458 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4459 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4460 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4461 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4462 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4463 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4464 //
mjr 35:e959ffba78fd 4465 NVM nvm;
mjr 35:e959ffba78fd 4466
mjr 86:e30a1f60f783 4467 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4468 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4469 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4470 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4471
mjr 86:e30a1f60f783 4472 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4473 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4474
mjr 79:682ae3171a08 4475 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4476 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4477
mjr 86:e30a1f60f783 4478 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4479 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4480
mjr 86:e30a1f60f783 4481
mjr 35:e959ffba78fd 4482 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4483 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4484
mjr 35:e959ffba78fd 4485 // flash memory controller interface
mjr 35:e959ffba78fd 4486 FreescaleIAP iap;
mjr 35:e959ffba78fd 4487
mjr 79:682ae3171a08 4488 // figure the flash address for the config data
mjr 79:682ae3171a08 4489 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4490 {
mjr 79:682ae3171a08 4491 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4492 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4493
mjr 79:682ae3171a08 4494 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4495 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4496
mjr 79:682ae3171a08 4497 // locate it at the top of memory
mjr 79:682ae3171a08 4498 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4499
mjr 79:682ae3171a08 4500 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4501 return (const NVM *)addr;
mjr 35:e959ffba78fd 4502 }
mjr 35:e959ffba78fd 4503
mjr 76:7f5912b6340e 4504 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4505 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4506 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4507 // in either case.
mjr 76:7f5912b6340e 4508 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4509 {
mjr 35:e959ffba78fd 4510 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4511 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4512 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4513 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4514 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4515 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4516 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4517 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4518 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4519 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4520 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4521 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4522 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4523 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4524 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4525 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4526
mjr 35:e959ffba78fd 4527 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4528 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4529
mjr 35:e959ffba78fd 4530 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4531 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4532 if (nvm_valid)
mjr 35:e959ffba78fd 4533 {
mjr 35:e959ffba78fd 4534 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4535 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4536 }
mjr 35:e959ffba78fd 4537 else
mjr 35:e959ffba78fd 4538 {
mjr 76:7f5912b6340e 4539 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4540 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4541 }
mjr 76:7f5912b6340e 4542
mjr 76:7f5912b6340e 4543 // tell the caller what happened
mjr 76:7f5912b6340e 4544 return nvm_valid;
mjr 35:e959ffba78fd 4545 }
mjr 35:e959ffba78fd 4546
mjr 86:e30a1f60f783 4547 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4548 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4549 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4550 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4551 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4552 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4553 {
mjr 76:7f5912b6340e 4554 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4555 waitPlungerIdle();
mjr 76:7f5912b6340e 4556
mjr 76:7f5912b6340e 4557 // get the config block location in the flash memory
mjr 77:0b96f6867312 4558 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4559
mjr 79:682ae3171a08 4560 // save the data
mjr 86:e30a1f60f783 4561 if (nvm.save(iap, addr))
mjr 86:e30a1f60f783 4562 {
mjr 86:e30a1f60f783 4563 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4564 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4565
mjr 86:e30a1f60f783 4566 // start the followup timer
mjr 87:8d35c74403af 4567 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4568 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4569 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4570
mjr 86:e30a1f60f783 4571 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4572 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 4573
mjr 86:e30a1f60f783 4574 // return success
mjr 86:e30a1f60f783 4575 return true;
mjr 86:e30a1f60f783 4576 }
mjr 86:e30a1f60f783 4577 else
mjr 86:e30a1f60f783 4578 {
mjr 86:e30a1f60f783 4579 // return failure
mjr 86:e30a1f60f783 4580 return false;
mjr 86:e30a1f60f783 4581 }
mjr 76:7f5912b6340e 4582 }
mjr 76:7f5912b6340e 4583
mjr 76:7f5912b6340e 4584 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4585 //
mjr 76:7f5912b6340e 4586 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4587 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4588 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4589 // downloading it to the device.
mjr 76:7f5912b6340e 4590 //
mjr 76:7f5912b6340e 4591 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4592 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4593 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4594 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4595 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4596 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4597 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4598 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4599 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4600 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4601 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4602 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4603 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4604 //
mjr 76:7f5912b6340e 4605 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4606 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4607 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4608 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4609 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4610 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4611 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4612 //
mjr 76:7f5912b6340e 4613 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4614 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4615 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4616 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4617 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4618 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4619 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4620 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4621 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4622 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4623
mjr 76:7f5912b6340e 4624 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4625 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4626 {
mjr 76:7f5912b6340e 4627 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4628 // 32-byte signature header
mjr 76:7f5912b6340e 4629 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4630 };
mjr 76:7f5912b6340e 4631
mjr 76:7f5912b6340e 4632 // forward reference to config var store function
mjr 76:7f5912b6340e 4633 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4634
mjr 76:7f5912b6340e 4635 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4636 // configuration object.
mjr 76:7f5912b6340e 4637 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4638 {
mjr 76:7f5912b6340e 4639 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4640 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4641 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4642 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4643 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4644 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4645 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4646 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4647 {
mjr 76:7f5912b6340e 4648 // load this variable
mjr 76:7f5912b6340e 4649 configVarSet(p);
mjr 76:7f5912b6340e 4650 }
mjr 35:e959ffba78fd 4651 }
mjr 35:e959ffba78fd 4652
mjr 35:e959ffba78fd 4653 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4654 //
mjr 55:4db125cd11a0 4655 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4656 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4657 //
mjr 55:4db125cd11a0 4658 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4659 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4660 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4661
mjr 55:4db125cd11a0 4662
mjr 55:4db125cd11a0 4663
mjr 55:4db125cd11a0 4664 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4665 //
mjr 40:cc0d9814522b 4666 // Night mode setting updates
mjr 40:cc0d9814522b 4667 //
mjr 38:091e511ce8a0 4668
mjr 38:091e511ce8a0 4669 // Turn night mode on or off
mjr 38:091e511ce8a0 4670 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4671 {
mjr 77:0b96f6867312 4672 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4673 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4674 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4675 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4676
mjr 40:cc0d9814522b 4677 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4678 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4679 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4680 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4681
mjr 76:7f5912b6340e 4682 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4683 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4684 // mode change.
mjr 76:7f5912b6340e 4685 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4686 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4687
mjr 76:7f5912b6340e 4688 // update 74HC595 outputs
mjr 76:7f5912b6340e 4689 if (hc595 != 0)
mjr 76:7f5912b6340e 4690 hc595->update();
mjr 38:091e511ce8a0 4691 }
mjr 38:091e511ce8a0 4692
mjr 38:091e511ce8a0 4693 // Toggle night mode
mjr 38:091e511ce8a0 4694 static void toggleNightMode()
mjr 38:091e511ce8a0 4695 {
mjr 53:9b2611964afc 4696 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4697 }
mjr 38:091e511ce8a0 4698
mjr 38:091e511ce8a0 4699
mjr 38:091e511ce8a0 4700 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4701 //
mjr 35:e959ffba78fd 4702 // Plunger Sensor
mjr 35:e959ffba78fd 4703 //
mjr 35:e959ffba78fd 4704
mjr 35:e959ffba78fd 4705 // the plunger sensor interface object
mjr 35:e959ffba78fd 4706 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4707
mjr 87:8d35c74403af 4708 // wait for the plunger sensor to complete any outstanding DMA transfer
mjr 76:7f5912b6340e 4709 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4710 {
mjr 87:8d35c74403af 4711 while (plungerSensor->dmaBusy()) { }
mjr 76:7f5912b6340e 4712 }
mjr 76:7f5912b6340e 4713
mjr 35:e959ffba78fd 4714 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4715 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4716 void createPlunger()
mjr 35:e959ffba78fd 4717 {
mjr 35:e959ffba78fd 4718 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4719 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4720 {
mjr 82:4f6209cb5c33 4721 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 4722 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 4723 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4724 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4725 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4726 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4727 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4728 break;
mjr 35:e959ffba78fd 4729
mjr 82:4f6209cb5c33 4730 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 4731 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 4732 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4733 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4734 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4735 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4736 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4737 break;
mjr 35:e959ffba78fd 4738
mjr 35:e959ffba78fd 4739 case PlungerType_Pot:
mjr 82:4f6209cb5c33 4740 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 4741 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 4742 // pins are: AO (analog in)
mjr 53:9b2611964afc 4743 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4744 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4745 break;
mjr 82:4f6209cb5c33 4746
mjr 82:4f6209cb5c33 4747 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 4748 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 4749 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 4750 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 4751 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 4752 300,
mjr 82:4f6209cb5c33 4753 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4754 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 4755 break;
mjr 82:4f6209cb5c33 4756
mjr 82:4f6209cb5c33 4757 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 4758 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 4759 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 4760 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 4761 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4762 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4763 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4764 break;
mjr 82:4f6209cb5c33 4765
mjr 82:4f6209cb5c33 4766 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 4767 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 4768 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 4769 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 4770 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4771 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4772 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4773 break;
mjr 82:4f6209cb5c33 4774
mjr 35:e959ffba78fd 4775 case PlungerType_None:
mjr 35:e959ffba78fd 4776 default:
mjr 35:e959ffba78fd 4777 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4778 break;
mjr 35:e959ffba78fd 4779 }
mjr 86:e30a1f60f783 4780
mjr 87:8d35c74403af 4781 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 4782 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 4783 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 4784 }
mjr 33:d832bcab089e 4785
mjr 52:8298b2a73eb2 4786 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4787 bool plungerCalMode;
mjr 52:8298b2a73eb2 4788
mjr 48:058ace2aed1d 4789 // Plunger reader
mjr 51:57eb311faafa 4790 //
mjr 51:57eb311faafa 4791 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4792 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4793 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4794 //
mjr 51:57eb311faafa 4795 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4796 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4797 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4798 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4799 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4800 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4801 // firing motion.
mjr 51:57eb311faafa 4802 //
mjr 51:57eb311faafa 4803 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4804 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4805 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4806 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4807 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4808 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4809 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4810 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4811 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4812 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4813 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4814 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4815 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4816 //
mjr 51:57eb311faafa 4817 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4818 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4819 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4820 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4821 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4822 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4823 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4824 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4825 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4826 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4827 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4828 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4829 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4830 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4831 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4832 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4833 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4834 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4835 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4836 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4837 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4838 //
mjr 48:058ace2aed1d 4839 class PlungerReader
mjr 48:058ace2aed1d 4840 {
mjr 48:058ace2aed1d 4841 public:
mjr 48:058ace2aed1d 4842 PlungerReader()
mjr 48:058ace2aed1d 4843 {
mjr 48:058ace2aed1d 4844 // not in a firing event yet
mjr 48:058ace2aed1d 4845 firing = 0;
mjr 48:058ace2aed1d 4846 }
mjr 76:7f5912b6340e 4847
mjr 48:058ace2aed1d 4848 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4849 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4850 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4851 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4852 void read()
mjr 48:058ace2aed1d 4853 {
mjr 76:7f5912b6340e 4854 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4855 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4856 return;
mjr 76:7f5912b6340e 4857
mjr 48:058ace2aed1d 4858 // Read a sample from the sensor
mjr 48:058ace2aed1d 4859 PlungerReading r;
mjr 48:058ace2aed1d 4860 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4861 {
mjr 53:9b2611964afc 4862 // check for calibration mode
mjr 53:9b2611964afc 4863 if (plungerCalMode)
mjr 53:9b2611964afc 4864 {
mjr 53:9b2611964afc 4865 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4866 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4867 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4868 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4869 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4870 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4871 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4872
mjr 76:7f5912b6340e 4873 // update our cached calibration data
mjr 76:7f5912b6340e 4874 onUpdateCal();
mjr 50:40015764bbe6 4875
mjr 53:9b2611964afc 4876 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4877 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4878 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4879 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4880 if (calState == 0)
mjr 53:9b2611964afc 4881 {
mjr 53:9b2611964afc 4882 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4883 {
mjr 53:9b2611964afc 4884 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4885 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4886 {
mjr 53:9b2611964afc 4887 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4888 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4889 calZeroPosN += 1;
mjr 53:9b2611964afc 4890
mjr 53:9b2611964afc 4891 // update the zero position from the new average
mjr 53:9b2611964afc 4892 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4893 onUpdateCal();
mjr 53:9b2611964afc 4894
mjr 53:9b2611964afc 4895 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4896 calState = 1;
mjr 53:9b2611964afc 4897 }
mjr 53:9b2611964afc 4898 }
mjr 53:9b2611964afc 4899 else
mjr 53:9b2611964afc 4900 {
mjr 53:9b2611964afc 4901 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4902 calZeroStart = r;
mjr 53:9b2611964afc 4903 }
mjr 53:9b2611964afc 4904 }
mjr 53:9b2611964afc 4905
mjr 53:9b2611964afc 4906 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4907 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4908 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4909 r.pos = int(
mjr 53:9b2611964afc 4910 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4911 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4912 }
mjr 53:9b2611964afc 4913 else
mjr 53:9b2611964afc 4914 {
mjr 53:9b2611964afc 4915 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4916 // rescale to the joystick range.
mjr 76:7f5912b6340e 4917 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4918
mjr 53:9b2611964afc 4919 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4920 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4921 r.pos = JOYMAX;
mjr 53:9b2611964afc 4922 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4923 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4924 }
mjr 50:40015764bbe6 4925
mjr 87:8d35c74403af 4926 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 4927 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 4928 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 4929 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 4930 //
mjr 87:8d35c74403af 4931 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 4932 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 4933 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 4934 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 4935 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 4936 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 4937 // 25-50ms.
mjr 87:8d35c74403af 4938 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 4939 return;
mjr 87:8d35c74403af 4940
mjr 87:8d35c74403af 4941 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 4942 z = r.pos;
mjr 87:8d35c74403af 4943
mjr 87:8d35c74403af 4944 // Firing event detection.
mjr 87:8d35c74403af 4945 //
mjr 87:8d35c74403af 4946 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 4947 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 4948 // spring tension.
mjr 50:40015764bbe6 4949 //
mjr 87:8d35c74403af 4950 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 4951 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 4952 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 4953 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 4954 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 4955 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 4956 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 4957 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 4958 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 4959 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 4960 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 4961 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 4962 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 4963 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 4964 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 4965 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 4966 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 4967 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 4968 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 4969 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 4970 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 4971 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 4972 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 4973 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 4974 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 4975 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 4976 // forward position for a short time.
mjr 76:7f5912b6340e 4977 //
mjr 87:8d35c74403af 4978 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 4979 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 4980 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 4981 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 4982 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 4983 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 4984 //
mjr 87:8d35c74403af 4985 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 4986 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 4987 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 4988 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 4989 // to the park position.
mjr 87:8d35c74403af 4990 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 4991 switch (firing)
mjr 50:40015764bbe6 4992 {
mjr 50:40015764bbe6 4993 case 0:
mjr 87:8d35c74403af 4994 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 4995 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 4996 // release, enter firing mode.
mjr 87:8d35c74403af 4997 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4998 {
mjr 87:8d35c74403af 4999 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5000 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5001 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5002 {
mjr 87:8d35c74403af 5003 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5004 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5005 firingMode(1);
mjr 87:8d35c74403af 5006 f0 = prv;
mjr 87:8d35c74403af 5007 z = f0.pos;
mjr 87:8d35c74403af 5008
mjr 87:8d35c74403af 5009 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5010 // state 2 (not at rest)
mjr 87:8d35c74403af 5011 if (calState == 1)
mjr 87:8d35c74403af 5012 calState = 2;
mjr 87:8d35c74403af 5013 }
mjr 50:40015764bbe6 5014 }
mjr 50:40015764bbe6 5015 break;
mjr 50:40015764bbe6 5016
mjr 50:40015764bbe6 5017 case 1:
mjr 87:8d35c74403af 5018 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5019 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5020 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5021 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5022 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5023 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5024 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5025 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5026 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5027 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5028 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5029 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5030 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5031 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5032 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5033 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5034 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5035 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5036 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5037 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5038 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5039 if (r.pos <= 0)
mjr 50:40015764bbe6 5040 {
mjr 87:8d35c74403af 5041 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5042 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5043 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5044 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5045 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5046 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5047 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5048 // physics.
mjr 50:40015764bbe6 5049 firingMode(2);
mjr 53:9b2611964afc 5050
mjr 53:9b2611964afc 5051 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5052 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5053 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5054 {
mjr 53:9b2611964afc 5055 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5056 // come to rest
mjr 53:9b2611964afc 5057 calState = 0;
mjr 53:9b2611964afc 5058
mjr 87:8d35c74403af 5059 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5060 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5061 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5062 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5063 {
mjr 53:9b2611964afc 5064 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5065 calRlsTimeN += 1;
mjr 53:9b2611964afc 5066 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5067 }
mjr 53:9b2611964afc 5068 }
mjr 87:8d35c74403af 5069
mjr 87:8d35c74403af 5070 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5071 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5072 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5073 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5074 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5075 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5076 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5077 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5078 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5079 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5080 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5081 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5082 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5083 // small in any case.)
mjr 87:8d35c74403af 5084 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5085
mjr 87:8d35c74403af 5086 // reset the starting time for this phase
mjr 87:8d35c74403af 5087 f0.t = r.t;
mjr 50:40015764bbe6 5088 }
mjr 50:40015764bbe6 5089 else
mjr 50:40015764bbe6 5090 {
mjr 87:8d35c74403af 5091 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5092 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5093 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5094 if (dt < 50000
mjr 87:8d35c74403af 5095 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5096 {
mjr 87:8d35c74403af 5097 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5098 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5099 // stay in the first release phase.
mjr 87:8d35c74403af 5100 z = f0.pos;
mjr 87:8d35c74403af 5101 }
mjr 87:8d35c74403af 5102 else
mjr 87:8d35c74403af 5103 {
mjr 87:8d35c74403af 5104 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5105 // motion. Return to the default state.
mjr 87:8d35c74403af 5106 firingMode(0);
mjr 87:8d35c74403af 5107 calState = 1;
mjr 87:8d35c74403af 5108 }
mjr 50:40015764bbe6 5109 }
mjr 50:40015764bbe6 5110 break;
mjr 50:40015764bbe6 5111
mjr 50:40015764bbe6 5112 case 2:
mjr 87:8d35c74403af 5113 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5114 // Hold here for 25ms.
mjr 87:8d35c74403af 5115 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5116 {
mjr 87:8d35c74403af 5117 // stay here for now
mjr 87:8d35c74403af 5118 z = f0.pos;
mjr 50:40015764bbe6 5119 }
mjr 50:40015764bbe6 5120 else
mjr 50:40015764bbe6 5121 {
mjr 87:8d35c74403af 5122 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5123 // position until the plunger comes to rest
mjr 50:40015764bbe6 5124 firingMode(3);
mjr 50:40015764bbe6 5125 z = 0;
mjr 87:8d35c74403af 5126
mjr 87:8d35c74403af 5127 // remember when we started
mjr 87:8d35c74403af 5128 f0.t = r.t;
mjr 50:40015764bbe6 5129 }
mjr 50:40015764bbe6 5130 break;
mjr 50:40015764bbe6 5131
mjr 50:40015764bbe6 5132 case 3:
mjr 87:8d35c74403af 5133 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5134 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5135 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5136 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5137 {
mjr 87:8d35c74403af 5138 // stay here a while longer
mjr 87:8d35c74403af 5139 z = 0;
mjr 50:40015764bbe6 5140 }
mjr 50:40015764bbe6 5141 else
mjr 50:40015764bbe6 5142 {
mjr 87:8d35c74403af 5143 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5144 firingMode(0);
mjr 50:40015764bbe6 5145 }
mjr 50:40015764bbe6 5146 break;
mjr 50:40015764bbe6 5147 }
mjr 50:40015764bbe6 5148
mjr 82:4f6209cb5c33 5149 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5150 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5151 {
mjr 82:4f6209cb5c33 5152 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5153 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5154 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5155 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5156 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5157 {
mjr 82:4f6209cb5c33 5158 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5159 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5160 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5161 }
mjr 82:4f6209cb5c33 5162 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5163 {
mjr 82:4f6209cb5c33 5164 // auto-zero now
mjr 82:4f6209cb5c33 5165 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5166
mjr 82:4f6209cb5c33 5167 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5168 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5169 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5170 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5171 }
mjr 82:4f6209cb5c33 5172 }
mjr 82:4f6209cb5c33 5173
mjr 87:8d35c74403af 5174 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5175 prv = r;
mjr 48:058ace2aed1d 5176 }
mjr 48:058ace2aed1d 5177 }
mjr 48:058ace2aed1d 5178
mjr 48:058ace2aed1d 5179 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5180 int16_t getPosition()
mjr 58:523fdcffbe6d 5181 {
mjr 86:e30a1f60f783 5182 // return the last reading
mjr 86:e30a1f60f783 5183 return z;
mjr 55:4db125cd11a0 5184 }
mjr 58:523fdcffbe6d 5185
mjr 48:058ace2aed1d 5186 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5187 void setCalMode(bool f)
mjr 48:058ace2aed1d 5188 {
mjr 52:8298b2a73eb2 5189 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5190 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5191 {
mjr 52:8298b2a73eb2 5192 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5193 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5194
mjr 52:8298b2a73eb2 5195 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5196 calState = 0;
mjr 52:8298b2a73eb2 5197 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5198 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5199 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5200 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5201
mjr 82:4f6209cb5c33 5202 // tell the plunger we're starting calibration
mjr 82:4f6209cb5c33 5203 plungerSensor->beginCalibration();
mjr 82:4f6209cb5c33 5204
mjr 52:8298b2a73eb2 5205 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5206 PlungerReading r;
mjr 52:8298b2a73eb2 5207 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5208 {
mjr 52:8298b2a73eb2 5209 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5210 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5211 onUpdateCal();
mjr 52:8298b2a73eb2 5212
mjr 52:8298b2a73eb2 5213 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5214 calZeroStart = r;
mjr 52:8298b2a73eb2 5215 }
mjr 52:8298b2a73eb2 5216 else
mjr 52:8298b2a73eb2 5217 {
mjr 52:8298b2a73eb2 5218 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5219 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5220 onUpdateCal();
mjr 52:8298b2a73eb2 5221
mjr 52:8298b2a73eb2 5222 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5223 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5224 calZeroStart.t = 0;
mjr 53:9b2611964afc 5225 }
mjr 53:9b2611964afc 5226 }
mjr 53:9b2611964afc 5227 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5228 {
mjr 53:9b2611964afc 5229 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5230 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5231 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5232 // physically meaningless.
mjr 53:9b2611964afc 5233 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5234 {
mjr 53:9b2611964afc 5235 // bad settings - reset to defaults
mjr 53:9b2611964afc 5236 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5237 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5238 onUpdateCal();
mjr 52:8298b2a73eb2 5239 }
mjr 52:8298b2a73eb2 5240 }
mjr 52:8298b2a73eb2 5241
mjr 48:058ace2aed1d 5242 // remember the new mode
mjr 52:8298b2a73eb2 5243 plungerCalMode = f;
mjr 48:058ace2aed1d 5244 }
mjr 48:058ace2aed1d 5245
mjr 76:7f5912b6340e 5246 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5247 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5248 // cached inverse is calculated as
mjr 76:7f5912b6340e 5249 //
mjr 76:7f5912b6340e 5250 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5251 //
mjr 76:7f5912b6340e 5252 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5253 //
mjr 76:7f5912b6340e 5254 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5255 //
mjr 76:7f5912b6340e 5256 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5257 int invCalRange;
mjr 76:7f5912b6340e 5258
mjr 76:7f5912b6340e 5259 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5260 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5261 {
mjr 76:7f5912b6340e 5262 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5263 }
mjr 76:7f5912b6340e 5264
mjr 76:7f5912b6340e 5265 void onUpdateCal()
mjr 76:7f5912b6340e 5266 {
mjr 76:7f5912b6340e 5267 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5268 }
mjr 76:7f5912b6340e 5269
mjr 48:058ace2aed1d 5270 // is a firing event in progress?
mjr 53:9b2611964afc 5271 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5272
mjr 48:058ace2aed1d 5273 private:
mjr 87:8d35c74403af 5274 // current reported joystick reading
mjr 87:8d35c74403af 5275 int z;
mjr 87:8d35c74403af 5276
mjr 87:8d35c74403af 5277 // previous reading
mjr 87:8d35c74403af 5278 PlungerReading prv;
mjr 87:8d35c74403af 5279
mjr 52:8298b2a73eb2 5280 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5281 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5282 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5283 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5284 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5285 // 1 = at rest
mjr 52:8298b2a73eb2 5286 // 2 = retracting
mjr 52:8298b2a73eb2 5287 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5288 uint8_t calState;
mjr 52:8298b2a73eb2 5289
mjr 52:8298b2a73eb2 5290 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5291 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5292 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5293 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5294 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5295 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5296 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5297 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5298 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5299 long calZeroPosSum;
mjr 52:8298b2a73eb2 5300 int calZeroPosN;
mjr 52:8298b2a73eb2 5301
mjr 52:8298b2a73eb2 5302 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5303 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5304 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5305 int calRlsTimeN;
mjr 52:8298b2a73eb2 5306
mjr 85:3c28aee81cde 5307 // Auto-zeroing timer
mjr 85:3c28aee81cde 5308 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5309
mjr 48:058ace2aed1d 5310 // set a firing mode
mjr 48:058ace2aed1d 5311 inline void firingMode(int m)
mjr 48:058ace2aed1d 5312 {
mjr 48:058ace2aed1d 5313 firing = m;
mjr 48:058ace2aed1d 5314 }
mjr 48:058ace2aed1d 5315
mjr 48:058ace2aed1d 5316 // Firing event state.
mjr 48:058ace2aed1d 5317 //
mjr 87:8d35c74403af 5318 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5319 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5320 //
mjr 87:8d35c74403af 5321 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5322 //
mjr 87:8d35c74403af 5323 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5324 //
mjr 87:8d35c74403af 5325 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5326 //
mjr 48:058ace2aed1d 5327 int firing;
mjr 48:058ace2aed1d 5328
mjr 87:8d35c74403af 5329 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5330 PlungerReading f0;
mjr 48:058ace2aed1d 5331 };
mjr 48:058ace2aed1d 5332
mjr 48:058ace2aed1d 5333 // plunger reader singleton
mjr 48:058ace2aed1d 5334 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5335
mjr 48:058ace2aed1d 5336 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5337 //
mjr 48:058ace2aed1d 5338 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5339 //
mjr 48:058ace2aed1d 5340 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5341 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5342 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5343 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5344 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5345 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5346 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5347 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5348 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5349 //
mjr 48:058ace2aed1d 5350 // This feature has two configuration components:
mjr 48:058ace2aed1d 5351 //
mjr 48:058ace2aed1d 5352 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5353 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5354 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5355 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5356 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5357 // plunger/launch button connection.
mjr 48:058ace2aed1d 5358 //
mjr 48:058ace2aed1d 5359 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5360 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5361 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5362 // position.
mjr 48:058ace2aed1d 5363 //
mjr 48:058ace2aed1d 5364 class ZBLaunchBall
mjr 48:058ace2aed1d 5365 {
mjr 48:058ace2aed1d 5366 public:
mjr 48:058ace2aed1d 5367 ZBLaunchBall()
mjr 48:058ace2aed1d 5368 {
mjr 48:058ace2aed1d 5369 // start in the default state
mjr 48:058ace2aed1d 5370 lbState = 0;
mjr 53:9b2611964afc 5371 btnState = false;
mjr 48:058ace2aed1d 5372 }
mjr 48:058ace2aed1d 5373
mjr 48:058ace2aed1d 5374 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5375 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5376 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5377 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5378 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5379 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5380 void update()
mjr 48:058ace2aed1d 5381 {
mjr 53:9b2611964afc 5382 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5383 // plunger firing event
mjr 53:9b2611964afc 5384 if (zbLaunchOn)
mjr 48:058ace2aed1d 5385 {
mjr 53:9b2611964afc 5386 // note the new position
mjr 48:058ace2aed1d 5387 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5388
mjr 53:9b2611964afc 5389 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5390 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5391
mjr 53:9b2611964afc 5392 // check the state
mjr 48:058ace2aed1d 5393 switch (lbState)
mjr 48:058ace2aed1d 5394 {
mjr 48:058ace2aed1d 5395 case 0:
mjr 53:9b2611964afc 5396 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5397 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5398 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5399 // the button.
mjr 53:9b2611964afc 5400 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5401 {
mjr 53:9b2611964afc 5402 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5403 lbTimer.reset();
mjr 53:9b2611964afc 5404 lbTimer.start();
mjr 53:9b2611964afc 5405 setButton(true);
mjr 53:9b2611964afc 5406
mjr 53:9b2611964afc 5407 // switch to state 1
mjr 53:9b2611964afc 5408 lbState = 1;
mjr 53:9b2611964afc 5409 }
mjr 48:058ace2aed1d 5410 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5411 {
mjr 53:9b2611964afc 5412 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5413 // button as long as we're pushed forward
mjr 53:9b2611964afc 5414 setButton(true);
mjr 53:9b2611964afc 5415 }
mjr 53:9b2611964afc 5416 else
mjr 53:9b2611964afc 5417 {
mjr 53:9b2611964afc 5418 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5419 setButton(false);
mjr 53:9b2611964afc 5420 }
mjr 48:058ace2aed1d 5421 break;
mjr 48:058ace2aed1d 5422
mjr 48:058ace2aed1d 5423 case 1:
mjr 53:9b2611964afc 5424 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5425 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5426 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5427 {
mjr 53:9b2611964afc 5428 // timer expired - turn off the button
mjr 53:9b2611964afc 5429 setButton(false);
mjr 53:9b2611964afc 5430
mjr 53:9b2611964afc 5431 // switch to state 2
mjr 53:9b2611964afc 5432 lbState = 2;
mjr 53:9b2611964afc 5433 }
mjr 48:058ace2aed1d 5434 break;
mjr 48:058ace2aed1d 5435
mjr 48:058ace2aed1d 5436 case 2:
mjr 53:9b2611964afc 5437 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5438 // plunger launch event to end.
mjr 53:9b2611964afc 5439 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5440 {
mjr 53:9b2611964afc 5441 // firing event done - return to default state
mjr 53:9b2611964afc 5442 lbState = 0;
mjr 53:9b2611964afc 5443 }
mjr 48:058ace2aed1d 5444 break;
mjr 48:058ace2aed1d 5445 }
mjr 53:9b2611964afc 5446 }
mjr 53:9b2611964afc 5447 else
mjr 53:9b2611964afc 5448 {
mjr 53:9b2611964afc 5449 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5450 setButton(false);
mjr 48:058ace2aed1d 5451
mjr 53:9b2611964afc 5452 // return to the default state
mjr 53:9b2611964afc 5453 lbState = 0;
mjr 48:058ace2aed1d 5454 }
mjr 48:058ace2aed1d 5455 }
mjr 53:9b2611964afc 5456
mjr 53:9b2611964afc 5457 // Set the button state
mjr 53:9b2611964afc 5458 void setButton(bool on)
mjr 53:9b2611964afc 5459 {
mjr 53:9b2611964afc 5460 if (btnState != on)
mjr 53:9b2611964afc 5461 {
mjr 53:9b2611964afc 5462 // remember the new state
mjr 53:9b2611964afc 5463 btnState = on;
mjr 53:9b2611964afc 5464
mjr 53:9b2611964afc 5465 // update the virtual button state
mjr 65:739875521aae 5466 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5467 }
mjr 53:9b2611964afc 5468 }
mjr 53:9b2611964afc 5469
mjr 48:058ace2aed1d 5470 private:
mjr 48:058ace2aed1d 5471 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5472 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5473 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5474 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5475 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5476 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5477 //
mjr 48:058ace2aed1d 5478 // States:
mjr 48:058ace2aed1d 5479 // 0 = default
mjr 53:9b2611964afc 5480 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5481 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5482 // firing event to end)
mjr 53:9b2611964afc 5483 uint8_t lbState;
mjr 48:058ace2aed1d 5484
mjr 53:9b2611964afc 5485 // button state
mjr 53:9b2611964afc 5486 bool btnState;
mjr 48:058ace2aed1d 5487
mjr 48:058ace2aed1d 5488 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5489 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5490 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5491 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5492 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5493 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5494 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5495 Timer lbTimer;
mjr 48:058ace2aed1d 5496 };
mjr 48:058ace2aed1d 5497
mjr 35:e959ffba78fd 5498 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5499 //
mjr 35:e959ffba78fd 5500 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5501 //
mjr 54:fd77a6b2f76c 5502 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5503 {
mjr 35:e959ffba78fd 5504 // disconnect from USB
mjr 54:fd77a6b2f76c 5505 if (disconnect)
mjr 54:fd77a6b2f76c 5506 js.disconnect();
mjr 35:e959ffba78fd 5507
mjr 35:e959ffba78fd 5508 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5509 wait_us(pause_us);
mjr 35:e959ffba78fd 5510
mjr 35:e959ffba78fd 5511 // reset the device
mjr 35:e959ffba78fd 5512 NVIC_SystemReset();
mjr 35:e959ffba78fd 5513 while (true) { }
mjr 35:e959ffba78fd 5514 }
mjr 35:e959ffba78fd 5515
mjr 35:e959ffba78fd 5516 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5517 //
mjr 35:e959ffba78fd 5518 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5519 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5520 //
mjr 35:e959ffba78fd 5521 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5522 {
mjr 35:e959ffba78fd 5523 int tmp;
mjr 78:1e00b3fa11af 5524 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5525 {
mjr 35:e959ffba78fd 5526 case OrientationFront:
mjr 35:e959ffba78fd 5527 tmp = x;
mjr 35:e959ffba78fd 5528 x = y;
mjr 35:e959ffba78fd 5529 y = tmp;
mjr 35:e959ffba78fd 5530 break;
mjr 35:e959ffba78fd 5531
mjr 35:e959ffba78fd 5532 case OrientationLeft:
mjr 35:e959ffba78fd 5533 x = -x;
mjr 35:e959ffba78fd 5534 break;
mjr 35:e959ffba78fd 5535
mjr 35:e959ffba78fd 5536 case OrientationRight:
mjr 35:e959ffba78fd 5537 y = -y;
mjr 35:e959ffba78fd 5538 break;
mjr 35:e959ffba78fd 5539
mjr 35:e959ffba78fd 5540 case OrientationRear:
mjr 35:e959ffba78fd 5541 tmp = -x;
mjr 35:e959ffba78fd 5542 x = -y;
mjr 35:e959ffba78fd 5543 y = tmp;
mjr 35:e959ffba78fd 5544 break;
mjr 35:e959ffba78fd 5545 }
mjr 35:e959ffba78fd 5546 }
mjr 35:e959ffba78fd 5547
mjr 35:e959ffba78fd 5548 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5549 //
mjr 35:e959ffba78fd 5550 // Calibration button state:
mjr 35:e959ffba78fd 5551 // 0 = not pushed
mjr 35:e959ffba78fd 5552 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5553 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5554 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5555 int calBtnState = 0;
mjr 35:e959ffba78fd 5556
mjr 35:e959ffba78fd 5557 // calibration button debounce timer
mjr 35:e959ffba78fd 5558 Timer calBtnTimer;
mjr 35:e959ffba78fd 5559
mjr 35:e959ffba78fd 5560 // calibration button light state
mjr 35:e959ffba78fd 5561 int calBtnLit = false;
mjr 35:e959ffba78fd 5562
mjr 35:e959ffba78fd 5563
mjr 35:e959ffba78fd 5564 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5565 //
mjr 40:cc0d9814522b 5566 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5567 //
mjr 40:cc0d9814522b 5568
mjr 40:cc0d9814522b 5569 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5570 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5571 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 5572 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5573 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5574 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5575 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5576 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5577 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5578 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5579 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5580 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5581
mjr 40:cc0d9814522b 5582 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5583 #undef if_msg_valid
mjr 40:cc0d9814522b 5584 #undef v_byte
mjr 40:cc0d9814522b 5585 #undef v_ui16
mjr 77:0b96f6867312 5586 #undef v_ui32
mjr 40:cc0d9814522b 5587 #undef v_pin
mjr 53:9b2611964afc 5588 #undef v_byte_ro
mjr 91:ae9be42652bf 5589 #undef v_byte_wo
mjr 74:822a92bc11d2 5590 #undef v_ui32_ro
mjr 74:822a92bc11d2 5591 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5592 #undef v_func
mjr 38:091e511ce8a0 5593
mjr 91:ae9be42652bf 5594 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 5595 #define if_msg_valid(test)
mjr 53:9b2611964afc 5596 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5597 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5598 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5599 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5600 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5601 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5602 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 5603 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 5604 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5605 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5606
mjr 35:e959ffba78fd 5607
mjr 35:e959ffba78fd 5608 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5609 //
mjr 35:e959ffba78fd 5610 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5611 // LedWiz protocol.
mjr 33:d832bcab089e 5612 //
mjr 78:1e00b3fa11af 5613 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5614 {
mjr 38:091e511ce8a0 5615 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5616 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5617 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5618 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5619 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5620 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5621 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5622 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5623 //
mjr 38:091e511ce8a0 5624 // first byte =
mjr 74:822a92bc11d2 5625 // 0-48 -> PBA
mjr 74:822a92bc11d2 5626 // 64 -> SBA
mjr 38:091e511ce8a0 5627 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5628 // 129-132 -> PBA
mjr 38:091e511ce8a0 5629 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5630 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5631 // other -> reserved for future use
mjr 38:091e511ce8a0 5632 //
mjr 39:b3815a1c3802 5633 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5634 if (data[0] == 64)
mjr 35:e959ffba78fd 5635 {
mjr 74:822a92bc11d2 5636 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5637 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5638 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5639 sba_sbx(0, data);
mjr 74:822a92bc11d2 5640
mjr 74:822a92bc11d2 5641 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5642 pbaIdx = 0;
mjr 38:091e511ce8a0 5643 }
mjr 38:091e511ce8a0 5644 else if (data[0] == 65)
mjr 38:091e511ce8a0 5645 {
mjr 38:091e511ce8a0 5646 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5647 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5648 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5649 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5650 // message type.
mjr 39:b3815a1c3802 5651 switch (data[1])
mjr 38:091e511ce8a0 5652 {
mjr 39:b3815a1c3802 5653 case 0:
mjr 39:b3815a1c3802 5654 // No Op
mjr 39:b3815a1c3802 5655 break;
mjr 39:b3815a1c3802 5656
mjr 39:b3815a1c3802 5657 case 1:
mjr 38:091e511ce8a0 5658 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5659 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5660 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5661 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5662 {
mjr 39:b3815a1c3802 5663
mjr 39:b3815a1c3802 5664 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5665 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5666 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5667
mjr 86:e30a1f60f783 5668 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 5669 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5670
mjr 39:b3815a1c3802 5671 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5672 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5673 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5674
mjr 77:0b96f6867312 5675 // set the flag to do the save
mjr 86:e30a1f60f783 5676 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 5677 }
mjr 39:b3815a1c3802 5678 break;
mjr 38:091e511ce8a0 5679
mjr 39:b3815a1c3802 5680 case 2:
mjr 38:091e511ce8a0 5681 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5682 // (No parameters)
mjr 38:091e511ce8a0 5683
mjr 38:091e511ce8a0 5684 // enter calibration mode
mjr 38:091e511ce8a0 5685 calBtnState = 3;
mjr 52:8298b2a73eb2 5686 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5687 calBtnTimer.reset();
mjr 39:b3815a1c3802 5688 break;
mjr 39:b3815a1c3802 5689
mjr 39:b3815a1c3802 5690 case 3:
mjr 52:8298b2a73eb2 5691 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5692 // data[2] = flag bits
mjr 53:9b2611964afc 5693 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5694 reportPlungerStat = true;
mjr 53:9b2611964afc 5695 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5696 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5697
mjr 38:091e511ce8a0 5698 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5699 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5700 break;
mjr 39:b3815a1c3802 5701
mjr 39:b3815a1c3802 5702 case 4:
mjr 38:091e511ce8a0 5703 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5704 // (No parameters)
mjr 38:091e511ce8a0 5705 js.reportConfig(
mjr 38:091e511ce8a0 5706 numOutputs,
mjr 38:091e511ce8a0 5707 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5708 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5709 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5710 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5711 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 5712 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 5713 true, // we support the configurable joystick report timing features
mjr 79:682ae3171a08 5714 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 5715 break;
mjr 39:b3815a1c3802 5716
mjr 39:b3815a1c3802 5717 case 5:
mjr 38:091e511ce8a0 5718 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5719 allOutputsOff();
mjr 39:b3815a1c3802 5720 break;
mjr 39:b3815a1c3802 5721
mjr 39:b3815a1c3802 5722 case 6:
mjr 85:3c28aee81cde 5723 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 5724 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 5725 //
mjr 85:3c28aee81cde 5726 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 5727 // data[3] = flags:
mjr 85:3c28aee81cde 5728 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 5729 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 5730 break;
mjr 40:cc0d9814522b 5731
mjr 40:cc0d9814522b 5732 case 7:
mjr 40:cc0d9814522b 5733 // 7 = Device ID report
mjr 53:9b2611964afc 5734 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5735 js.reportID(data[2]);
mjr 40:cc0d9814522b 5736 break;
mjr 40:cc0d9814522b 5737
mjr 40:cc0d9814522b 5738 case 8:
mjr 40:cc0d9814522b 5739 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5740 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5741 setNightMode(data[2]);
mjr 40:cc0d9814522b 5742 break;
mjr 52:8298b2a73eb2 5743
mjr 52:8298b2a73eb2 5744 case 9:
mjr 52:8298b2a73eb2 5745 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5746 // data[2] = config var ID
mjr 52:8298b2a73eb2 5747 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5748 {
mjr 53:9b2611964afc 5749 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5750 // the rest of the buffer
mjr 52:8298b2a73eb2 5751 uint8_t reply[8];
mjr 52:8298b2a73eb2 5752 reply[1] = data[2];
mjr 52:8298b2a73eb2 5753 reply[2] = data[3];
mjr 53:9b2611964afc 5754 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5755
mjr 52:8298b2a73eb2 5756 // query the value
mjr 52:8298b2a73eb2 5757 configVarGet(reply);
mjr 52:8298b2a73eb2 5758
mjr 52:8298b2a73eb2 5759 // send the reply
mjr 52:8298b2a73eb2 5760 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5761 }
mjr 52:8298b2a73eb2 5762 break;
mjr 53:9b2611964afc 5763
mjr 53:9b2611964afc 5764 case 10:
mjr 53:9b2611964afc 5765 // 10 = Build ID query.
mjr 53:9b2611964afc 5766 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5767 break;
mjr 73:4e8ce0b18915 5768
mjr 73:4e8ce0b18915 5769 case 11:
mjr 73:4e8ce0b18915 5770 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5771 // data[2] = operation:
mjr 73:4e8ce0b18915 5772 // 0 = turn relay off
mjr 73:4e8ce0b18915 5773 // 1 = turn relay on
mjr 73:4e8ce0b18915 5774 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5775 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5776 break;
mjr 73:4e8ce0b18915 5777
mjr 73:4e8ce0b18915 5778 case 12:
mjr 77:0b96f6867312 5779 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5780 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5781 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5782 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5783 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5784
mjr 77:0b96f6867312 5785 // enter IR learning mode
mjr 77:0b96f6867312 5786 IRLearningMode = 1;
mjr 77:0b96f6867312 5787
mjr 77:0b96f6867312 5788 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5789 IRCommandIn = 0;
mjr 77:0b96f6867312 5790
mjr 77:0b96f6867312 5791 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5792 IRTimer.reset();
mjr 73:4e8ce0b18915 5793 break;
mjr 73:4e8ce0b18915 5794
mjr 73:4e8ce0b18915 5795 case 13:
mjr 73:4e8ce0b18915 5796 // 13 = Send button status report
mjr 73:4e8ce0b18915 5797 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5798 break;
mjr 78:1e00b3fa11af 5799
mjr 78:1e00b3fa11af 5800 case 14:
mjr 78:1e00b3fa11af 5801 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5802 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5803 break;
mjr 78:1e00b3fa11af 5804
mjr 78:1e00b3fa11af 5805 case 15:
mjr 78:1e00b3fa11af 5806 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5807 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5808 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5809 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5810 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5811 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5812 break;
mjr 78:1e00b3fa11af 5813
mjr 78:1e00b3fa11af 5814 case 16:
mjr 78:1e00b3fa11af 5815 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5816 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5817 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5818 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5819 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5820 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5821 break;
mjr 88:98bce687e6c0 5822
mjr 88:98bce687e6c0 5823 case 17:
mjr 88:98bce687e6c0 5824 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 5825 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 5826 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 5827 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 5828 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 5829 {
mjr 88:98bce687e6c0 5830 // get the IR command slot in the config
mjr 88:98bce687e6c0 5831 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 5832
mjr 88:98bce687e6c0 5833 // copy the IR command data from the config
mjr 88:98bce687e6c0 5834 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 5835 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 5836 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 5837
mjr 88:98bce687e6c0 5838 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 5839 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 5840 // is free
mjr 88:98bce687e6c0 5841 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 5842 }
mjr 88:98bce687e6c0 5843 break;
mjr 38:091e511ce8a0 5844 }
mjr 38:091e511ce8a0 5845 }
mjr 38:091e511ce8a0 5846 else if (data[0] == 66)
mjr 38:091e511ce8a0 5847 {
mjr 38:091e511ce8a0 5848 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5849 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5850 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5851 // in a variable-dependent format.
mjr 40:cc0d9814522b 5852 configVarSet(data);
mjr 86:e30a1f60f783 5853
mjr 87:8d35c74403af 5854 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 5855 // dynamically
mjr 87:8d35c74403af 5856 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 5857 }
mjr 74:822a92bc11d2 5858 else if (data[0] == 67)
mjr 74:822a92bc11d2 5859 {
mjr 74:822a92bc11d2 5860 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5861 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5862 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5863 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5864 }
mjr 74:822a92bc11d2 5865 else if (data[0] == 68)
mjr 74:822a92bc11d2 5866 {
mjr 74:822a92bc11d2 5867 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5868 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5869 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5870
mjr 74:822a92bc11d2 5871 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5872 int portGroup = data[1];
mjr 74:822a92bc11d2 5873
mjr 74:822a92bc11d2 5874 // unpack the brightness values
mjr 74:822a92bc11d2 5875 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5876 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5877 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5878 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5879 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5880 };
mjr 74:822a92bc11d2 5881
mjr 74:822a92bc11d2 5882 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5883 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5884 {
mjr 74:822a92bc11d2 5885 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5886 bri[i] += 129-60;
mjr 74:822a92bc11d2 5887 }
mjr 74:822a92bc11d2 5888
mjr 74:822a92bc11d2 5889 // Carry out the PBA
mjr 74:822a92bc11d2 5890 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5891 }
mjr 38:091e511ce8a0 5892 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5893 {
mjr 38:091e511ce8a0 5894 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5895 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5896 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5897 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5898 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5899 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5900 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5901 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5902 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5903 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5904 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5905 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5906 //
mjr 38:091e511ce8a0 5907 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5908 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5909 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5910 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5911 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5912 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5913
mjr 63:5cd1a5f3a41b 5914 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5915 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5916 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5917
mjr 63:5cd1a5f3a41b 5918 // update each port
mjr 38:091e511ce8a0 5919 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5920 {
mjr 38:091e511ce8a0 5921 // set the brightness level for the output
mjr 40:cc0d9814522b 5922 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5923 outLevel[i] = b;
mjr 38:091e511ce8a0 5924
mjr 74:822a92bc11d2 5925 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5926 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5927 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5928 if (b != 0)
mjr 76:7f5912b6340e 5929 {
mjr 76:7f5912b6340e 5930 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5931 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5932 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5933 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5934 // forward unchanged.
mjr 76:7f5912b6340e 5935 wizOn[i] = 1;
mjr 76:7f5912b6340e 5936 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5937 }
mjr 76:7f5912b6340e 5938 else
mjr 76:7f5912b6340e 5939 {
mjr 76:7f5912b6340e 5940 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5941 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5942 wizOn[i] = 0;
mjr 76:7f5912b6340e 5943 }
mjr 74:822a92bc11d2 5944
mjr 38:091e511ce8a0 5945 // set the output
mjr 40:cc0d9814522b 5946 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5947 }
mjr 38:091e511ce8a0 5948
mjr 38:091e511ce8a0 5949 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5950 if (hc595 != 0)
mjr 38:091e511ce8a0 5951 hc595->update();
mjr 38:091e511ce8a0 5952 }
mjr 38:091e511ce8a0 5953 else
mjr 38:091e511ce8a0 5954 {
mjr 74:822a92bc11d2 5955 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5956 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5957 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5958 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5959 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5960 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5961 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5962 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5963 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5964 //
mjr 38:091e511ce8a0 5965 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5966 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5967 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5968 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5969 // protocol mode.
mjr 38:091e511ce8a0 5970 //
mjr 38:091e511ce8a0 5971 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5972 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5973
mjr 74:822a92bc11d2 5974 // carry out the PBA
mjr 74:822a92bc11d2 5975 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5976
mjr 74:822a92bc11d2 5977 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5978 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5979 }
mjr 38:091e511ce8a0 5980 }
mjr 35:e959ffba78fd 5981
mjr 38:091e511ce8a0 5982 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5983 //
mjr 5:a70c0bce770d 5984 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5985 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5986 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5987 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5988 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5989 // port outputs.
mjr 5:a70c0bce770d 5990 //
mjr 0:5acbbe3f4cf4 5991 int main(void)
mjr 0:5acbbe3f4cf4 5992 {
mjr 60:f38da020aa13 5993 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5994 printf("\r\nPinscape Controller starting\r\n");
mjr 82:4f6209cb5c33 5995
mjr 76:7f5912b6340e 5996 // clear the I2C connection
mjr 35:e959ffba78fd 5997 clear_i2c();
mjr 82:4f6209cb5c33 5998
mjr 82:4f6209cb5c33 5999 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6000 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6001 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6002 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6003 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6004 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6005
mjr 76:7f5912b6340e 6006 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6007 // configuration data:
mjr 76:7f5912b6340e 6008 //
mjr 76:7f5912b6340e 6009 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6010 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6011 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6012 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6013 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6014 // to store user settings updates.
mjr 76:7f5912b6340e 6015 //
mjr 76:7f5912b6340e 6016 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6017 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6018 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6019 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6020 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6021 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6022 // without a separate download of the config data.
mjr 76:7f5912b6340e 6023 //
mjr 76:7f5912b6340e 6024 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6025 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6026 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6027 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6028 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6029 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6030 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6031 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6032 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6033 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6034 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6035 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6036 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6037
mjr 38:091e511ce8a0 6038 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6039 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6040
mjr 33:d832bcab089e 6041 // we're not connected/awake yet
mjr 33:d832bcab089e 6042 bool connected = false;
mjr 40:cc0d9814522b 6043 Timer connectChangeTimer;
mjr 33:d832bcab089e 6044
mjr 35:e959ffba78fd 6045 // create the plunger sensor interface
mjr 35:e959ffba78fd 6046 createPlunger();
mjr 76:7f5912b6340e 6047
mjr 76:7f5912b6340e 6048 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6049 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6050
mjr 60:f38da020aa13 6051 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6052 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6053
mjr 87:8d35c74403af 6054 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6055 init_tlc59116(cfg);
mjr 87:8d35c74403af 6056
mjr 60:f38da020aa13 6057 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6058 init_hc595(cfg);
mjr 6:cc35eb643e8f 6059
mjr 54:fd77a6b2f76c 6060 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6061 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6062 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6063 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6064 initLwOut(cfg);
mjr 48:058ace2aed1d 6065
mjr 60:f38da020aa13 6066 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6067 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6068 tlc5940->start();
mjr 87:8d35c74403af 6069
mjr 77:0b96f6867312 6070 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6071 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6072 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6073 // USB keyboard interface.
mjr 77:0b96f6867312 6074 bool kbKeys = false;
mjr 77:0b96f6867312 6075
mjr 77:0b96f6867312 6076 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6077 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6078
mjr 77:0b96f6867312 6079 // start the power status time, if applicable
mjr 77:0b96f6867312 6080 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6081
mjr 35:e959ffba78fd 6082 // initialize the button input ports
mjr 35:e959ffba78fd 6083 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6084
mjr 60:f38da020aa13 6085 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6086 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6087 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6088 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6089 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6090 // to the joystick interface.
mjr 51:57eb311faafa 6091 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6092 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6093
mjr 60:f38da020aa13 6094 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6095 // flash pattern while waiting.
mjr 70:9f58735a1732 6096 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6097 connTimeoutTimer.start();
mjr 70:9f58735a1732 6098 connFlashTimer.start();
mjr 51:57eb311faafa 6099 while (!js.configured())
mjr 51:57eb311faafa 6100 {
mjr 51:57eb311faafa 6101 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6102 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6103 {
mjr 51:57eb311faafa 6104 // short yellow flash
mjr 51:57eb311faafa 6105 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6106 wait_us(50000);
mjr 51:57eb311faafa 6107 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6108
mjr 51:57eb311faafa 6109 // reset the flash timer
mjr 70:9f58735a1732 6110 connFlashTimer.reset();
mjr 51:57eb311faafa 6111 }
mjr 70:9f58735a1732 6112
mjr 77:0b96f6867312 6113 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6114 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6115 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6116 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6117 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6118 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6119 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6120 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6121 reboot(js, false, 0);
mjr 77:0b96f6867312 6122
mjr 77:0b96f6867312 6123 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6124 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6125 }
mjr 60:f38da020aa13 6126
mjr 60:f38da020aa13 6127 // we're now connected to the host
mjr 54:fd77a6b2f76c 6128 connected = true;
mjr 40:cc0d9814522b 6129
mjr 92:f264fbaa1be5 6130 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6131 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6132 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6133 //
mjr 92:f264fbaa1be5 6134 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6135 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6136 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6137 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6138 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6139 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6140 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6141 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6142 // sampling rate as best we can.
mjr 38:091e511ce8a0 6143 Timer jsReportTimer;
mjr 38:091e511ce8a0 6144 jsReportTimer.start();
mjr 38:091e511ce8a0 6145
mjr 92:f264fbaa1be5 6146 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6147 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6148 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6149 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6150 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6151 //
mjr 92:f264fbaa1be5 6152 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6153 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6154 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6155 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6156 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6157 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6158
mjr 92:f264fbaa1be5 6159 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6160 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6161 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6162 // can be set in the configuration.
mjr 92:f264fbaa1be5 6163 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6164
mjr 60:f38da020aa13 6165 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6166 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6167 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6168 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6169 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6170 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6171 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6172 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6173 Timer jsOKTimer;
mjr 38:091e511ce8a0 6174 jsOKTimer.start();
mjr 35:e959ffba78fd 6175
mjr 55:4db125cd11a0 6176 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6177 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6178 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6179 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6180 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6181
mjr 55:4db125cd11a0 6182 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6183 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6184 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6185
mjr 55:4db125cd11a0 6186 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6187 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6188 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6189
mjr 35:e959ffba78fd 6190 // initialize the calibration button
mjr 1:d913e0afb2ac 6191 calBtnTimer.start();
mjr 35:e959ffba78fd 6192 calBtnState = 0;
mjr 1:d913e0afb2ac 6193
mjr 1:d913e0afb2ac 6194 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6195 Timer hbTimer;
mjr 1:d913e0afb2ac 6196 hbTimer.start();
mjr 1:d913e0afb2ac 6197 int hb = 0;
mjr 5:a70c0bce770d 6198 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6199
mjr 1:d913e0afb2ac 6200 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6201 Timer acTimer;
mjr 1:d913e0afb2ac 6202 acTimer.start();
mjr 1:d913e0afb2ac 6203
mjr 0:5acbbe3f4cf4 6204 // create the accelerometer object
mjr 77:0b96f6867312 6205 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6206 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6207
mjr 48:058ace2aed1d 6208 // initialize the plunger sensor
mjr 35:e959ffba78fd 6209 plungerSensor->init();
mjr 10:976666ffa4ef 6210
mjr 48:058ace2aed1d 6211 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6212 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6213
mjr 54:fd77a6b2f76c 6214 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6215 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6216 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6217 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6218 hc595->enable(true);
mjr 87:8d35c74403af 6219 if (tlc59116 != 0)
mjr 87:8d35c74403af 6220 tlc59116->enable(true);
mjr 74:822a92bc11d2 6221
mjr 76:7f5912b6340e 6222 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6223 wizCycleTimer.start();
mjr 74:822a92bc11d2 6224
mjr 74:822a92bc11d2 6225 // start the PWM update polling timer
mjr 74:822a92bc11d2 6226 polledPwmTimer.start();
mjr 43:7a6364d82a41 6227
mjr 1:d913e0afb2ac 6228 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6229 // host requests
mjr 0:5acbbe3f4cf4 6230 for (;;)
mjr 0:5acbbe3f4cf4 6231 {
mjr 74:822a92bc11d2 6232 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6233 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 6234
mjr 48:058ace2aed1d 6235 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6236 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6237 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6238 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6239 LedWizMsg lwm;
mjr 48:058ace2aed1d 6240 Timer lwt;
mjr 48:058ace2aed1d 6241 lwt.start();
mjr 77:0b96f6867312 6242 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6243 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6244 {
mjr 78:1e00b3fa11af 6245 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6246 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6247 }
mjr 74:822a92bc11d2 6248
mjr 74:822a92bc11d2 6249 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6250 IF_DIAG(
mjr 74:822a92bc11d2 6251 if (msgCount != 0)
mjr 74:822a92bc11d2 6252 {
mjr 76:7f5912b6340e 6253 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6254 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6255 }
mjr 74:822a92bc11d2 6256 )
mjr 74:822a92bc11d2 6257
mjr 77:0b96f6867312 6258 // process IR input
mjr 77:0b96f6867312 6259 process_IR(cfg, js);
mjr 77:0b96f6867312 6260
mjr 77:0b96f6867312 6261 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6262 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6263
mjr 74:822a92bc11d2 6264 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6265 wizPulse();
mjr 74:822a92bc11d2 6266
mjr 74:822a92bc11d2 6267 // update PWM outputs
mjr 74:822a92bc11d2 6268 pollPwmUpdates();
mjr 77:0b96f6867312 6269
mjr 89:c43cd923401c 6270 // update Flipper Logic outputs
mjr 89:c43cd923401c 6271 LwFlipperLogicOut::poll();
mjr 89:c43cd923401c 6272
mjr 77:0b96f6867312 6273 // poll the accelerometer
mjr 77:0b96f6867312 6274 accel.poll();
mjr 55:4db125cd11a0 6275
mjr 76:7f5912b6340e 6276 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6277 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6278
mjr 55:4db125cd11a0 6279 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6280 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6281 tlc5940->send();
mjr 87:8d35c74403af 6282
mjr 87:8d35c74403af 6283 // send TLC59116 data updates
mjr 87:8d35c74403af 6284 if (tlc59116 != 0)
mjr 87:8d35c74403af 6285 tlc59116->send();
mjr 1:d913e0afb2ac 6286
mjr 76:7f5912b6340e 6287 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6288 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6289
mjr 1:d913e0afb2ac 6290 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6291 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6292 {
mjr 1:d913e0afb2ac 6293 // check the state
mjr 1:d913e0afb2ac 6294 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6295 {
mjr 1:d913e0afb2ac 6296 case 0:
mjr 1:d913e0afb2ac 6297 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6298 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6299 calBtnState = 1;
mjr 1:d913e0afb2ac 6300 break;
mjr 1:d913e0afb2ac 6301
mjr 1:d913e0afb2ac 6302 case 1:
mjr 1:d913e0afb2ac 6303 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6304 // passed, start the hold period
mjr 48:058ace2aed1d 6305 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6306 calBtnState = 2;
mjr 1:d913e0afb2ac 6307 break;
mjr 1:d913e0afb2ac 6308
mjr 1:d913e0afb2ac 6309 case 2:
mjr 1:d913e0afb2ac 6310 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6311 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6312 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6313 {
mjr 1:d913e0afb2ac 6314 // enter calibration mode
mjr 1:d913e0afb2ac 6315 calBtnState = 3;
mjr 9:fd65b0a94720 6316 calBtnTimer.reset();
mjr 35:e959ffba78fd 6317
mjr 44:b5ac89b9cd5d 6318 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6319 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6320 }
mjr 1:d913e0afb2ac 6321 break;
mjr 2:c174f9ee414a 6322
mjr 2:c174f9ee414a 6323 case 3:
mjr 9:fd65b0a94720 6324 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6325 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6326 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6327 break;
mjr 0:5acbbe3f4cf4 6328 }
mjr 0:5acbbe3f4cf4 6329 }
mjr 1:d913e0afb2ac 6330 else
mjr 1:d913e0afb2ac 6331 {
mjr 2:c174f9ee414a 6332 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6333 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6334 // and save the results to flash.
mjr 2:c174f9ee414a 6335 //
mjr 2:c174f9ee414a 6336 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6337 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6338 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6339 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6340 {
mjr 2:c174f9ee414a 6341 // exit calibration mode
mjr 1:d913e0afb2ac 6342 calBtnState = 0;
mjr 52:8298b2a73eb2 6343 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6344
mjr 6:cc35eb643e8f 6345 // save the updated configuration
mjr 35:e959ffba78fd 6346 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6347 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6348 }
mjr 2:c174f9ee414a 6349 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6350 {
mjr 2:c174f9ee414a 6351 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6352 calBtnState = 0;
mjr 2:c174f9ee414a 6353 }
mjr 1:d913e0afb2ac 6354 }
mjr 1:d913e0afb2ac 6355
mjr 1:d913e0afb2ac 6356 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6357 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6358 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6359 {
mjr 1:d913e0afb2ac 6360 case 2:
mjr 1:d913e0afb2ac 6361 // in the hold period - flash the light
mjr 48:058ace2aed1d 6362 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6363 break;
mjr 1:d913e0afb2ac 6364
mjr 1:d913e0afb2ac 6365 case 3:
mjr 1:d913e0afb2ac 6366 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6367 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6368 break;
mjr 1:d913e0afb2ac 6369
mjr 1:d913e0afb2ac 6370 default:
mjr 1:d913e0afb2ac 6371 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6372 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6373 break;
mjr 1:d913e0afb2ac 6374 }
mjr 3:3514575d4f86 6375
mjr 3:3514575d4f86 6376 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6377 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6378 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6379 {
mjr 1:d913e0afb2ac 6380 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6381 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6382 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6383 calBtnLed->write(1);
mjr 38:091e511ce8a0 6384 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6385 }
mjr 2:c174f9ee414a 6386 else {
mjr 17:ab3cec0c8bf4 6387 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6388 calBtnLed->write(0);
mjr 38:091e511ce8a0 6389 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6390 }
mjr 1:d913e0afb2ac 6391 }
mjr 35:e959ffba78fd 6392
mjr 76:7f5912b6340e 6393 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6394 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6395
mjr 48:058ace2aed1d 6396 // read the plunger sensor
mjr 48:058ace2aed1d 6397 plungerReader.read();
mjr 48:058ace2aed1d 6398
mjr 76:7f5912b6340e 6399 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6400 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6401
mjr 53:9b2611964afc 6402 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6403 zbLaunchBall.update();
mjr 37:ed52738445fc 6404
mjr 76:7f5912b6340e 6405 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6406 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6407
mjr 53:9b2611964afc 6408 // process button updates
mjr 53:9b2611964afc 6409 processButtons(cfg);
mjr 53:9b2611964afc 6410
mjr 76:7f5912b6340e 6411 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6412 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6413
mjr 38:091e511ce8a0 6414 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6415 if (kbState.changed)
mjr 37:ed52738445fc 6416 {
mjr 38:091e511ce8a0 6417 // send a keyboard report
mjr 37:ed52738445fc 6418 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6419 kbState.changed = false;
mjr 37:ed52738445fc 6420 }
mjr 38:091e511ce8a0 6421
mjr 38:091e511ce8a0 6422 // likewise for the media controller
mjr 37:ed52738445fc 6423 if (mediaState.changed)
mjr 37:ed52738445fc 6424 {
mjr 38:091e511ce8a0 6425 // send a media report
mjr 37:ed52738445fc 6426 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6427 mediaState.changed = false;
mjr 37:ed52738445fc 6428 }
mjr 38:091e511ce8a0 6429
mjr 76:7f5912b6340e 6430 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6431 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6432
mjr 38:091e511ce8a0 6433 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6434 bool jsOK = false;
mjr 55:4db125cd11a0 6435
mjr 55:4db125cd11a0 6436 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6437 uint16_t statusFlags =
mjr 77:0b96f6867312 6438 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6439 | nightMode // 0x02
mjr 79:682ae3171a08 6440 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6441 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6442 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6443 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6444
mjr 50:40015764bbe6 6445 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6446 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6447 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6448 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 6449 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 6450 {
mjr 92:f264fbaa1be5 6451 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 6452 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 6453 // not, repeat the last sample.
mjr 92:f264fbaa1be5 6454 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 6455 {
mjr 92:f264fbaa1be5 6456 // read the accelerometer
mjr 92:f264fbaa1be5 6457 int xa, ya;
mjr 92:f264fbaa1be5 6458 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6459
mjr 92:f264fbaa1be5 6460 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 6461 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 6462 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 6463 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 6464 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 6465
mjr 92:f264fbaa1be5 6466 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 6467 x = xa;
mjr 92:f264fbaa1be5 6468 y = ya;
mjr 92:f264fbaa1be5 6469
mjr 92:f264fbaa1be5 6470 // reset the stutter counter
mjr 92:f264fbaa1be5 6471 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6472 }
mjr 17:ab3cec0c8bf4 6473
mjr 48:058ace2aed1d 6474 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6475 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6476 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6477 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6478 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6479 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6480 // regular plunger inputs.
mjr 92:f264fbaa1be5 6481 int zActual = plungerReader.getPosition();
mjr 92:f264fbaa1be5 6482 int zReported = (!cfg.plunger.enabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 6483
mjr 35:e959ffba78fd 6484 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6485 accelRotate(x, y);
mjr 35:e959ffba78fd 6486
mjr 35:e959ffba78fd 6487 // send the joystick report
mjr 92:f264fbaa1be5 6488 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6489
mjr 17:ab3cec0c8bf4 6490 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6491 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6492 }
mjr 21:5048e16cc9ef 6493
mjr 52:8298b2a73eb2 6494 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6495 if (reportPlungerStat)
mjr 10:976666ffa4ef 6496 {
mjr 17:ab3cec0c8bf4 6497 // send the report
mjr 53:9b2611964afc 6498 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6499
mjr 10:976666ffa4ef 6500 // we have satisfied this request
mjr 52:8298b2a73eb2 6501 reportPlungerStat = false;
mjr 10:976666ffa4ef 6502 }
mjr 10:976666ffa4ef 6503
mjr 35:e959ffba78fd 6504 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6505 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6506 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6507 {
mjr 55:4db125cd11a0 6508 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6509 jsReportTimer.reset();
mjr 38:091e511ce8a0 6510 }
mjr 38:091e511ce8a0 6511
mjr 38:091e511ce8a0 6512 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6513 if (jsOK)
mjr 38:091e511ce8a0 6514 {
mjr 38:091e511ce8a0 6515 jsOKTimer.reset();
mjr 38:091e511ce8a0 6516 jsOKTimer.start();
mjr 21:5048e16cc9ef 6517 }
mjr 21:5048e16cc9ef 6518
mjr 76:7f5912b6340e 6519 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6520 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6521
mjr 6:cc35eb643e8f 6522 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6523 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6524 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6525 #endif
mjr 6:cc35eb643e8f 6526
mjr 33:d832bcab089e 6527 // check for connection status changes
mjr 54:fd77a6b2f76c 6528 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6529 if (newConnected != connected)
mjr 33:d832bcab089e 6530 {
mjr 54:fd77a6b2f76c 6531 // give it a moment to stabilize
mjr 40:cc0d9814522b 6532 connectChangeTimer.start();
mjr 55:4db125cd11a0 6533 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6534 {
mjr 33:d832bcab089e 6535 // note the new status
mjr 33:d832bcab089e 6536 connected = newConnected;
mjr 40:cc0d9814522b 6537
mjr 40:cc0d9814522b 6538 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6539 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6540 connectChangeTimer.reset();
mjr 33:d832bcab089e 6541
mjr 54:fd77a6b2f76c 6542 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6543 if (!connected)
mjr 40:cc0d9814522b 6544 {
mjr 54:fd77a6b2f76c 6545 // turn off all outputs
mjr 33:d832bcab089e 6546 allOutputsOff();
mjr 40:cc0d9814522b 6547
mjr 40:cc0d9814522b 6548 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6549 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6550 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6551 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6552 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6553 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6554 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6555 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6556 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6557 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6558 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6559 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6560 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6561 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6562 // the power first comes on.
mjr 40:cc0d9814522b 6563 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6564 tlc5940->enable(false);
mjr 87:8d35c74403af 6565 if (tlc59116 != 0)
mjr 87:8d35c74403af 6566 tlc59116->enable(false);
mjr 40:cc0d9814522b 6567 if (hc595 != 0)
mjr 40:cc0d9814522b 6568 hc595->enable(false);
mjr 40:cc0d9814522b 6569 }
mjr 33:d832bcab089e 6570 }
mjr 33:d832bcab089e 6571 }
mjr 48:058ace2aed1d 6572
mjr 53:9b2611964afc 6573 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 6574 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 6575 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 6576 {
mjr 85:3c28aee81cde 6577 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 6578 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 6579 {
mjr 86:e30a1f60f783 6580 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 6581 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 6582 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 6583 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 6584 // status allows it.
mjr 86:e30a1f60f783 6585 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 6586 reboot(js);
mjr 82:4f6209cb5c33 6587 }
mjr 85:3c28aee81cde 6588 else
mjr 85:3c28aee81cde 6589 {
mjr 86:e30a1f60f783 6590 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 6591
mjr 86:e30a1f60f783 6592 // stop and reset the post-save timer
mjr 86:e30a1f60f783 6593 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 6594 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 6595
mjr 86:e30a1f60f783 6596 // clear the post-save success flag
mjr 86:e30a1f60f783 6597 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 6598 }
mjr 77:0b96f6867312 6599 }
mjr 86:e30a1f60f783 6600
mjr 48:058ace2aed1d 6601 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6602 if (!connected)
mjr 48:058ace2aed1d 6603 {
mjr 54:fd77a6b2f76c 6604 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6605 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6606 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6607
mjr 54:fd77a6b2f76c 6608 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6609 js.diagFlash();
mjr 54:fd77a6b2f76c 6610
mjr 54:fd77a6b2f76c 6611 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6612 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6613
mjr 51:57eb311faafa 6614 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6615 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6616 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6617
mjr 54:fd77a6b2f76c 6618 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6619 Timer diagTimer;
mjr 54:fd77a6b2f76c 6620 diagTimer.reset();
mjr 54:fd77a6b2f76c 6621 diagTimer.start();
mjr 74:822a92bc11d2 6622
mjr 74:822a92bc11d2 6623 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6624 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6625
mjr 54:fd77a6b2f76c 6626 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6627 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6628 {
mjr 54:fd77a6b2f76c 6629 // try to recover the connection
mjr 54:fd77a6b2f76c 6630 js.recoverConnection();
mjr 54:fd77a6b2f76c 6631
mjr 89:c43cd923401c 6632 // update Flipper Logic outputs
mjr 89:c43cd923401c 6633 LwFlipperLogicOut::poll();
mjr 89:c43cd923401c 6634
mjr 55:4db125cd11a0 6635 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6636 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6637 tlc5940->send();
mjr 87:8d35c74403af 6638
mjr 87:8d35c74403af 6639 // update TLC59116 outputs
mjr 87:8d35c74403af 6640 if (tlc59116 != 0)
mjr 87:8d35c74403af 6641 tlc59116->send();
mjr 55:4db125cd11a0 6642
mjr 54:fd77a6b2f76c 6643 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6644 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6645 {
mjr 54:fd77a6b2f76c 6646 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6647 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6648
mjr 54:fd77a6b2f76c 6649 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6650 js.diagFlash();
mjr 51:57eb311faafa 6651
mjr 51:57eb311faafa 6652 // reset the flash timer
mjr 54:fd77a6b2f76c 6653 diagTimer.reset();
mjr 51:57eb311faafa 6654 }
mjr 51:57eb311faafa 6655
mjr 77:0b96f6867312 6656 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6657 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6658 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6659 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6660 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6661 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 6662 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 6663 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 6664 // round and keep waiting.
mjr 51:57eb311faafa 6665 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6666 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6667 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6668 reboot(js, false, 0);
mjr 77:0b96f6867312 6669
mjr 77:0b96f6867312 6670 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6671 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6672 }
mjr 54:fd77a6b2f76c 6673
mjr 74:822a92bc11d2 6674 // resume the main loop timer
mjr 74:822a92bc11d2 6675 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6676
mjr 54:fd77a6b2f76c 6677 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6678 connected = true;
mjr 54:fd77a6b2f76c 6679 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6680
mjr 54:fd77a6b2f76c 6681 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6682 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6683 tlc5940->enable(true);
mjr 87:8d35c74403af 6684 if (tlc59116 != 0)
mjr 87:8d35c74403af 6685 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 6686 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6687 {
mjr 55:4db125cd11a0 6688 hc595->enable(true);
mjr 54:fd77a6b2f76c 6689 hc595->update(true);
mjr 51:57eb311faafa 6690 }
mjr 48:058ace2aed1d 6691 }
mjr 43:7a6364d82a41 6692
mjr 6:cc35eb643e8f 6693 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6694 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6695 {
mjr 54:fd77a6b2f76c 6696 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6697 {
mjr 39:b3815a1c3802 6698 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6699 //
mjr 54:fd77a6b2f76c 6700 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6701 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6702 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6703 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6704 hb = !hb;
mjr 38:091e511ce8a0 6705 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6706
mjr 54:fd77a6b2f76c 6707 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6708 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6709 // with the USB connection.
mjr 54:fd77a6b2f76c 6710 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6711 {
mjr 54:fd77a6b2f76c 6712 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6713 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6714 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 6715 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 6716 // power status allows it.
mjr 86:e30a1f60f783 6717 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6718 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6719 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6720 }
mjr 54:fd77a6b2f76c 6721 else
mjr 54:fd77a6b2f76c 6722 {
mjr 54:fd77a6b2f76c 6723 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6724 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6725 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6726 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6727 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6728 }
mjr 38:091e511ce8a0 6729 }
mjr 73:4e8ce0b18915 6730 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6731 {
mjr 73:4e8ce0b18915 6732 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6733 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6734 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6735 }
mjr 35:e959ffba78fd 6736 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6737 {
mjr 6:cc35eb643e8f 6738 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6739 hb = !hb;
mjr 38:091e511ce8a0 6740 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6741 }
mjr 6:cc35eb643e8f 6742 else
mjr 6:cc35eb643e8f 6743 {
mjr 6:cc35eb643e8f 6744 // connected - flash blue/green
mjr 2:c174f9ee414a 6745 hb = !hb;
mjr 38:091e511ce8a0 6746 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6747 }
mjr 1:d913e0afb2ac 6748
mjr 1:d913e0afb2ac 6749 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6750 hbTimer.reset();
mjr 5:a70c0bce770d 6751 ++hbcnt;
mjr 1:d913e0afb2ac 6752 }
mjr 74:822a92bc11d2 6753
mjr 74:822a92bc11d2 6754 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6755 IF_DIAG(
mjr 76:7f5912b6340e 6756 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6757 mainLoopIterCount++;
mjr 74:822a92bc11d2 6758 )
mjr 1:d913e0afb2ac 6759 }
mjr 0:5acbbe3f4cf4 6760 }