An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Mar 17 22:02:08 2017 +0000
Revision:
77:0b96f6867312
Parent:
76:7f5912b6340e
Child:
78:1e00b3fa11af
New memory pool management; keeping old ones as #ifdefs for now for reference.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 77:0b96f6867312 55 // Note that VP has built-in support for plunger devices like this one, but
mjr 77:0b96f6867312 56 // some VP tables can't use it without some additional scripting work. The
mjr 77:0b96f6867312 57 // Build Guide has advice on adjusting tables to add plunger support when
mjr 77:0b96f6867312 58 // necessary.
mjr 5:a70c0bce770d 59 //
mjr 6:cc35eb643e8f 60 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 61 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 62 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 63 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 64 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 65 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 66 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 67 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 68 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 69 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 70 //
mjr 17:ab3cec0c8bf4 71 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 72 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 73 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 74 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 75 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 76 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 77 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 78 //
mjr 77:0b96f6867312 79 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 80 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 81 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 82 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 83 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 143 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 144 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 145 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 146 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 147 // remote control transmitter feature below.
mjr 77:0b96f6867312 148 //
mjr 77:0b96f6867312 149 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 150 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 151 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 152 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 153 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 154 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 155 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 156 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 157 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 158 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 159 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 160 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 161 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 162 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 163 //
mjr 35:e959ffba78fd 164 //
mjr 35:e959ffba78fd 165 //
mjr 33:d832bcab089e 166 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 167 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 168 //
mjr 48:058ace2aed1d 169 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 170 //
mjr 48:058ace2aed1d 171 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 172 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 173 // has been established)
mjr 48:058ace2aed1d 174 //
mjr 48:058ace2aed1d 175 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 176 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 177 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 178 //
mjr 38:091e511ce8a0 179 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 180 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 181 // transmissions are failing.
mjr 38:091e511ce8a0 182 //
mjr 73:4e8ce0b18915 183 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 184 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 185 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 186 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 187 // enabled.
mjr 73:4e8ce0b18915 188 //
mjr 6:cc35eb643e8f 189 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 190 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 191 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 192 // no plunger sensor configured.
mjr 6:cc35eb643e8f 193 //
mjr 38:091e511ce8a0 194 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 195 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 196 //
mjr 48:058ace2aed1d 197 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 198 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 199 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 200 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 201 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 202 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 203 //
mjr 48:058ace2aed1d 204 //
mjr 48:058ace2aed1d 205 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 206 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 207 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 208 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 209 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 210 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 211 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 212 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 213
mjr 33:d832bcab089e 214
mjr 0:5acbbe3f4cf4 215 #include "mbed.h"
mjr 6:cc35eb643e8f 216 #include "math.h"
mjr 74:822a92bc11d2 217 #include "diags.h"
mjr 48:058ace2aed1d 218 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 219 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 220 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 221 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 222 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 223 #include "crc32.h"
mjr 26:cb71c4af2912 224 #include "TLC5940.h"
mjr 34:6b981a2afab7 225 #include "74HC595.h"
mjr 35:e959ffba78fd 226 #include "nvm.h"
mjr 35:e959ffba78fd 227 #include "plunger.h"
mjr 35:e959ffba78fd 228 #include "ccdSensor.h"
mjr 35:e959ffba78fd 229 #include "potSensor.h"
mjr 35:e959ffba78fd 230 #include "nullSensor.h"
mjr 48:058ace2aed1d 231 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 232 #include "IRReceiver.h"
mjr 77:0b96f6867312 233 #include "IRTransmitter.h"
mjr 77:0b96f6867312 234 #include "NewPwm.h"
mjr 74:822a92bc11d2 235
mjr 2:c174f9ee414a 236
mjr 21:5048e16cc9ef 237 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 238 #include "config.h"
mjr 17:ab3cec0c8bf4 239
mjr 76:7f5912b6340e 240 // forward declarations
mjr 76:7f5912b6340e 241 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 242
mjr 53:9b2611964afc 243 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 244 //
mjr 53:9b2611964afc 245 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 246 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 247 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 248 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 249 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 250 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 251 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 252 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 253 // interface.
mjr 53:9b2611964afc 254 //
mjr 53:9b2611964afc 255 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 256 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 257 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 258 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 259 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 260 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 261 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 262 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 263 //
mjr 53:9b2611964afc 264 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 265 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 266 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 267 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 268 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 269 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 270 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 const char *getOpenSDAID()
mjr 53:9b2611964afc 273 {
mjr 53:9b2611964afc 274 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 275 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 276 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 277
mjr 53:9b2611964afc 278 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 279 }
mjr 53:9b2611964afc 280
mjr 53:9b2611964afc 281 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 282 //
mjr 53:9b2611964afc 283 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 284 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 285 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 286 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 287 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 288 // want from this.
mjr 53:9b2611964afc 289 //
mjr 53:9b2611964afc 290 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 291 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 292 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 293 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 294 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 295 // macros.
mjr 53:9b2611964afc 296 //
mjr 53:9b2611964afc 297 const char *getBuildID()
mjr 53:9b2611964afc 298 {
mjr 53:9b2611964afc 299 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 300 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 301 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 302
mjr 53:9b2611964afc 303 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 304 }
mjr 53:9b2611964afc 305
mjr 74:822a92bc11d2 306 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 307 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 308 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 309 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 310 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 311 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 312 Timer mainLoopTimer;
mjr 76:7f5912b6340e 313 #endif
mjr 76:7f5912b6340e 314
mjr 53:9b2611964afc 315
mjr 48:058ace2aed1d 316 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 317 //
mjr 59:94eb9265b6d7 318 // Custom memory allocator. We use our own version of malloc() for more
mjr 59:94eb9265b6d7 319 // efficient memory usage, and to provide diagnostics if we run out of heap.
mjr 48:058ace2aed1d 320 //
mjr 59:94eb9265b6d7 321 // We can implement a more efficient malloc than the library can because we
mjr 59:94eb9265b6d7 322 // can make an assumption that the library can't: allocations are permanent.
mjr 59:94eb9265b6d7 323 // The normal malloc has to assume that allocations can be freed, so it has
mjr 59:94eb9265b6d7 324 // to track blocks individually. For the purposes of this program, though,
mjr 59:94eb9265b6d7 325 // we don't have to do this because virtually all of our allocations are
mjr 59:94eb9265b6d7 326 // de facto permanent. We only allocate dyanmic memory during setup, and
mjr 59:94eb9265b6d7 327 // once we set things up, we never delete anything. This means that we can
mjr 59:94eb9265b6d7 328 // allocate memory in bare blocks without any bookkeeping overhead.
mjr 59:94eb9265b6d7 329 //
mjr 59:94eb9265b6d7 330 // In addition, we can make a much larger overall pool of memory available
mjr 59:94eb9265b6d7 331 // in a custom allocator. The mbed library malloc() seems to have a pool
mjr 59:94eb9265b6d7 332 // of about 3K to work with, even though there's really about 9K of RAM
mjr 59:94eb9265b6d7 333 // left over after counting the static writable data and reserving space
mjr 59:94eb9265b6d7 334 // for a reasonable stack. I haven't looked at the mbed malloc to see why
mjr 59:94eb9265b6d7 335 // they're so stingy, but it appears from empirical testing that we can
mjr 77:0b96f6867312 336 // create a static array up to about 8K before things get crashy.
mjr 77:0b96f6867312 337
mjr 77:0b96f6867312 338
mjr 77:0b96f6867312 339 // halt with a diagnostic display if we run out of memory
mjr 77:0b96f6867312 340 void HaltOutOfMem()
mjr 77:0b96f6867312 341 {
mjr 77:0b96f6867312 342 printf("\r\nOut Of Memory\r\n");
mjr 77:0b96f6867312 343 // halt with the diagnostic display (by looping forever)
mjr 77:0b96f6867312 344 for (;;)
mjr 77:0b96f6867312 345 {
mjr 77:0b96f6867312 346 diagLED(1, 0, 0);
mjr 77:0b96f6867312 347 wait_us(200000);
mjr 77:0b96f6867312 348 diagLED(1, 0, 1);
mjr 77:0b96f6867312 349 wait_us(200000);
mjr 77:0b96f6867312 350 }
mjr 77:0b96f6867312 351 }
mjr 77:0b96f6867312 352
mjr 77:0b96f6867312 353 #if 0//$$$
mjr 77:0b96f6867312 354 // Memory pool. We allocate two blocks at fixed addresses: one for
mjr 77:0b96f6867312 355 // the malloc heap, and one for the native stack.
mjr 73:4e8ce0b18915 356 //
mjr 77:0b96f6867312 357 // We allocate the stack block at the very top of memory. This is what
mjr 77:0b96f6867312 358 // the mbed startup code does anyway, so we don't actually ever move the
mjr 77:0b96f6867312 359 // stack pointer into this area ourselves. The point of this block is
mjr 77:0b96f6867312 360 // to reserve space with the linker, so that it won't put any other static
mjr 77:0b96f6867312 361 // data here in this region.
mjr 73:4e8ce0b18915 362 //
mjr 77:0b96f6867312 363 // The heap block goes just below the stack block. This is a contiguous
mjr 77:0b96f6867312 364 // block of bytes from which we allocate blocks for malloc() and 'operator
mjr 77:0b96f6867312 365 // new' requests.
mjr 73:4e8ce0b18915 366 //
mjr 77:0b96f6867312 367 // WARNING! When adding static data, be sure to check the build statistics
mjr 77:0b96f6867312 368 // to ensure that static data fits in the available RAM. The linker doesn't
mjr 77:0b96f6867312 369 // seem to make such a check on its own, so you might not see an error if
mjr 77:0b96f6867312 370 // added data pushes us past the 16K limit.
mjr 77:0b96f6867312 371
mjr 77:0b96f6867312 372 // KL25Z address of top of RAM (one byte past end of RAM)
mjr 77:0b96f6867312 373 const uint32_t TOP_OF_RAM = 0x20003000UL;
mjr 77:0b96f6867312 374
mjr 77:0b96f6867312 375 // malloc pool size
mjr 77:0b96f6867312 376 const size_t XMALLOC_POOL_SIZE = 8*1024;
mjr 77:0b96f6867312 377
mjr 77:0b96f6867312 378 // stack size
mjr 77:0b96f6867312 379 const size_t XMALLOC_STACK_SIZE = 2*1024;
mjr 77:0b96f6867312 380
mjr 77:0b96f6867312 381 // figure the fixed locations of the malloc pool and stack: the stack goes
mjr 77:0b96f6867312 382 // at the very top of RAM, and the malloc pool goes just below the stack
mjr 77:0b96f6867312 383 const uint32_t XMALLOC_STACK_BASE = TOP_OF_RAM - XMALLOC_STACK_SIZE;
mjr 77:0b96f6867312 384 const uint32_t XMALLOC_POOL_BASE = XMALLOC_STACK_BASE - XMALLOC_POOL_SIZE;
mjr 77:0b96f6867312 385
mjr 77:0b96f6867312 386 // allocate the pools - use __attribute__((at)) to give them fixed addresses
mjr 77:0b96f6867312 387 static char xmalloc_stack[XMALLOC_STACK_SIZE] __attribute__((at(XMALLOC_STACK_BASE)));
mjr 77:0b96f6867312 388 static char xmalloc_pool[XMALLOC_POOL_SIZE] __attribute__((at(XMALLOC_POOL_BASE)));
mjr 77:0b96f6867312 389
mjr 77:0b96f6867312 390 // malloc pool free pointer and space remaining
mjr 73:4e8ce0b18915 391 static char *xmalloc_nxt = xmalloc_pool;
mjr 73:4e8ce0b18915 392 static size_t xmalloc_rem = XMALLOC_POOL_SIZE;
mjr 73:4e8ce0b18915 393
mjr 77:0b96f6867312 394 // allocate from our pool
mjr 48:058ace2aed1d 395 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 396 {
mjr 59:94eb9265b6d7 397 // align to a 4-byte increment
mjr 59:94eb9265b6d7 398 siz = (siz + 3) & ~3;
mjr 59:94eb9265b6d7 399
mjr 77:0b96f6867312 400 // if we're out of memory, halt with a diagnostic display
mjr 73:4e8ce0b18915 401 if (siz > xmalloc_rem)
mjr 77:0b96f6867312 402 HaltOutOfMem();
mjr 48:058ace2aed1d 403
mjr 59:94eb9265b6d7 404 // get the next free location from the pool to return
mjr 73:4e8ce0b18915 405 char *ret = xmalloc_nxt;
mjr 59:94eb9265b6d7 406
mjr 59:94eb9265b6d7 407 // advance the pool pointer and decrement the remaining size counter
mjr 73:4e8ce0b18915 408 xmalloc_nxt += siz;
mjr 73:4e8ce0b18915 409 xmalloc_rem -= siz;
mjr 59:94eb9265b6d7 410
mjr 59:94eb9265b6d7 411 // return the allocated block
mjr 59:94eb9265b6d7 412 return ret;
mjr 73:4e8ce0b18915 413 };
mjr 77:0b96f6867312 414 #elif 1//$$$
mjr 77:0b96f6867312 415 // For our custom malloc, we take advantage of the known layout of the
mjr 77:0b96f6867312 416 // mbed library memory management. The mbed library puts all of the
mjr 77:0b96f6867312 417 // static read/write data at the low end of RAM; this includes the
mjr 77:0b96f6867312 418 // initialized statics and the "ZI" (zero-initialized) statics. The
mjr 77:0b96f6867312 419 // malloc heap starts just after the last static, growing upwards as
mjr 77:0b96f6867312 420 // memory is allocated. The stack starts at the top of RAM and grows
mjr 77:0b96f6867312 421 // downwards.
mjr 77:0b96f6867312 422 //
mjr 77:0b96f6867312 423 // To figure out where the free memory starts, we simply call the system
mjr 77:0b96f6867312 424 // malloc() to make a dummy allocation the first time we're called, and
mjr 77:0b96f6867312 425 // use the address it returns as the start of our free memory pool. The
mjr 77:0b96f6867312 426 // first malloc() call presumably returns the lowest byte of the pool in
mjr 77:0b96f6867312 427 // the compiler RTL's way of thinking, and from what we know about the
mjr 77:0b96f6867312 428 // mbed heap layout, we know everything above this point should be free,
mjr 77:0b96f6867312 429 // at least until we reach the lowest address used by the stack.
mjr 77:0b96f6867312 430 //
mjr 77:0b96f6867312 431 // The ultimate size of the stack is of course dynamic and unpredictable.
mjr 77:0b96f6867312 432 // In testing, it appears that we currently need a little over 1K. To be
mjr 77:0b96f6867312 433 // conservative, we'll reserve 2K for the stack, by taking it out of the
mjr 77:0b96f6867312 434 // space at top of memory we consider fair game for malloc.
mjr 77:0b96f6867312 435 //
mjr 77:0b96f6867312 436 // Note that we could do this a little more low-level-ly if we wanted.
mjr 77:0b96f6867312 437 // The ARM linker provides a pre-defined extern char[] variable named
mjr 77:0b96f6867312 438 // Image$$RW_IRAM1$$ZI$$Limit, which is always placed just after the
mjr 77:0b96f6867312 439 // last static data variable. In principle, this tells us the start
mjr 77:0b96f6867312 440 // of the available malloc pool. However, in testing, it doesn't seem
mjr 77:0b96f6867312 441 // safe to use this as the start of our malloc pool. I'm not sure why,
mjr 77:0b96f6867312 442 // but probably something in the startup code (either in the C RTL or
mjr 77:0b96f6867312 443 // the mbed library) is allocating from the pool before we get control.
mjr 77:0b96f6867312 444 // So we won't use that approach. Besides, that would tie us even more
mjr 77:0b96f6867312 445 // closely to the ARM compiler. With our malloc() probe approach, we're
mjr 77:0b96f6867312 446 // at least portable to any compiler that uses the same basic memory
mjr 77:0b96f6867312 447 // layout, with the heap above the statics and the stack at top of
mjr 77:0b96f6867312 448 // memory; this isn't universal, but it's very typical.
mjr 77:0b96f6867312 449
mjr 77:0b96f6867312 450 static char *xmalloc_nxt = 0;
mjr 77:0b96f6867312 451 size_t xmalloc_rem = 0;
mjr 77:0b96f6867312 452 void *xmalloc(size_t siz)
mjr 77:0b96f6867312 453 {
mjr 77:0b96f6867312 454 if (xmalloc_nxt == 0)
mjr 77:0b96f6867312 455 {
mjr 77:0b96f6867312 456 xmalloc_nxt = (char *)malloc(4);
mjr 77:0b96f6867312 457 xmalloc_rem = 0x20003000UL - 2*1024 - uint32_t(xmalloc_nxt);
mjr 77:0b96f6867312 458 }
mjr 77:0b96f6867312 459
mjr 77:0b96f6867312 460 siz = (siz + 3) & ~3;
mjr 77:0b96f6867312 461 if (siz > xmalloc_rem)
mjr 77:0b96f6867312 462 HaltOutOfMem();
mjr 77:0b96f6867312 463
mjr 77:0b96f6867312 464 char *ret = xmalloc_nxt;
mjr 77:0b96f6867312 465 xmalloc_nxt += siz;
mjr 77:0b96f6867312 466 xmalloc_rem -= siz;
mjr 77:0b96f6867312 467
mjr 77:0b96f6867312 468 return ret;
mjr 77:0b96f6867312 469 }
mjr 77:0b96f6867312 470 #else //$$$
mjr 77:0b96f6867312 471 extern char Image$$RW_IRAM1$$ZI$$Limit[]; // linker marker for top of ZI region
mjr 77:0b96f6867312 472 static char *xmalloc_nxt = Image$$RW_IRAM1$$ZI$$Limit;
mjr 77:0b96f6867312 473 const uint32_t xmallocMinStack = 2*1024;
mjr 77:0b96f6867312 474 char *const TopOfRAM = (char *)0x20003000UL;
mjr 77:0b96f6867312 475 uint16_t xmalloc_rem = uint16_t(TopOfRAM - Image$$RW_IRAM1$$ZI$$Limit - xmallocMinStack);
mjr 77:0b96f6867312 476 void *xmalloc(size_t siz)
mjr 77:0b96f6867312 477 {
mjr 77:0b96f6867312 478 // align to a 4-byte increment
mjr 77:0b96f6867312 479 siz = (siz + 3) & ~3;
mjr 77:0b96f6867312 480
mjr 77:0b96f6867312 481 // check to ensure we're leaving enough stack free
mjr 77:0b96f6867312 482 if (xmalloc_nxt + siz > TopOfRAM - xmallocMinStack)
mjr 77:0b96f6867312 483 HaltOutOfMem();
mjr 77:0b96f6867312 484
mjr 77:0b96f6867312 485 // get the next free location from the pool to return
mjr 77:0b96f6867312 486 char *ret = xmalloc_nxt;
mjr 77:0b96f6867312 487
mjr 77:0b96f6867312 488 // advance past the allocated memory
mjr 77:0b96f6867312 489 xmalloc_nxt += siz;
mjr 77:0b96f6867312 490 xmalloc_rem -= siz;
mjr 77:0b96f6867312 491
mjr 77:0b96f6867312 492 // return the allocated block
mjr 77:0b96f6867312 493 printf("malloc(%d) -> %lx\r\n", siz, ret);
mjr 77:0b96f6867312 494 return ret;
mjr 77:0b96f6867312 495 }
mjr 77:0b96f6867312 496 #endif//$$$
mjr 48:058ace2aed1d 497
mjr 59:94eb9265b6d7 498 // Overload operator new to call our custom malloc. This ensures that
mjr 59:94eb9265b6d7 499 // all 'new' allocations throughout the program (including library code)
mjr 59:94eb9265b6d7 500 // go through our private allocator.
mjr 48:058ace2aed1d 501 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 502 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 503
mjr 59:94eb9265b6d7 504 // Since we don't do bookkeeping to track released memory, 'delete' does
mjr 59:94eb9265b6d7 505 // nothing. In actual testing, this routine appears to never be called.
mjr 59:94eb9265b6d7 506 // If it *is* ever called, it will simply leave the block in place, which
mjr 59:94eb9265b6d7 507 // will make it unavailable for re-use but will otherwise be harmless.
mjr 59:94eb9265b6d7 508 void operator delete(void *ptr) { }
mjr 59:94eb9265b6d7 509
mjr 59:94eb9265b6d7 510
mjr 5:a70c0bce770d 511 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 512 //
mjr 38:091e511ce8a0 513 // Forward declarations
mjr 38:091e511ce8a0 514 //
mjr 38:091e511ce8a0 515 void setNightMode(bool on);
mjr 38:091e511ce8a0 516 void toggleNightMode();
mjr 38:091e511ce8a0 517
mjr 38:091e511ce8a0 518 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 519 // utilities
mjr 17:ab3cec0c8bf4 520
mjr 77:0b96f6867312 521 // int/float point square of a number
mjr 77:0b96f6867312 522 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 523 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 524
mjr 26:cb71c4af2912 525 // floating point rounding
mjr 26:cb71c4af2912 526 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 527
mjr 17:ab3cec0c8bf4 528
mjr 33:d832bcab089e 529 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 530 //
mjr 40:cc0d9814522b 531 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 532 // the running state.
mjr 40:cc0d9814522b 533 //
mjr 77:0b96f6867312 534 class ExtTimer: public Timer
mjr 40:cc0d9814522b 535 {
mjr 40:cc0d9814522b 536 public:
mjr 77:0b96f6867312 537 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 538
mjr 40:cc0d9814522b 539 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 540 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 541
mjr 40:cc0d9814522b 542 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 543
mjr 40:cc0d9814522b 544 private:
mjr 40:cc0d9814522b 545 bool running;
mjr 40:cc0d9814522b 546 };
mjr 40:cc0d9814522b 547
mjr 53:9b2611964afc 548
mjr 53:9b2611964afc 549 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 550 //
mjr 33:d832bcab089e 551 // USB product version number
mjr 5:a70c0bce770d 552 //
mjr 47:df7a88cd249c 553 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 554
mjr 33:d832bcab089e 555 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 556 //
mjr 6:cc35eb643e8f 557 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 558 //
mjr 6:cc35eb643e8f 559 #define JOYMAX 4096
mjr 6:cc35eb643e8f 560
mjr 9:fd65b0a94720 561
mjr 17:ab3cec0c8bf4 562 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 563 //
mjr 40:cc0d9814522b 564 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 565 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 566 //
mjr 35:e959ffba78fd 567
mjr 35:e959ffba78fd 568 // unsigned 16-bit integer
mjr 35:e959ffba78fd 569 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 570 {
mjr 35:e959ffba78fd 571 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 572 }
mjr 40:cc0d9814522b 573 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 574 {
mjr 40:cc0d9814522b 575 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 576 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 577 }
mjr 35:e959ffba78fd 578
mjr 35:e959ffba78fd 579 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 580 {
mjr 35:e959ffba78fd 581 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 582 }
mjr 40:cc0d9814522b 583 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 584 {
mjr 40:cc0d9814522b 585 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 586 }
mjr 35:e959ffba78fd 587
mjr 35:e959ffba78fd 588 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 589 {
mjr 35:e959ffba78fd 590 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 591 }
mjr 40:cc0d9814522b 592 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 593 {
mjr 40:cc0d9814522b 594 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 595 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 596 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 597 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 598 }
mjr 35:e959ffba78fd 599
mjr 35:e959ffba78fd 600 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 601 {
mjr 35:e959ffba78fd 602 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 603 }
mjr 35:e959ffba78fd 604
mjr 53:9b2611964afc 605 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 606 //
mjr 53:9b2611964afc 607 // The internal mbed PinName format is
mjr 53:9b2611964afc 608 //
mjr 53:9b2611964afc 609 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 610 //
mjr 53:9b2611964afc 611 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 612 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 613 //
mjr 53:9b2611964afc 614 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 615 // pin name fits in 8 bits:
mjr 53:9b2611964afc 616 //
mjr 53:9b2611964afc 617 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 618 //
mjr 53:9b2611964afc 619 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 620 //
mjr 53:9b2611964afc 621 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 622 //
mjr 53:9b2611964afc 623 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 624 {
mjr 53:9b2611964afc 625 if (c == 0xFF)
mjr 53:9b2611964afc 626 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 627 else
mjr 53:9b2611964afc 628 return PinName(
mjr 53:9b2611964afc 629 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 630 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 631 }
mjr 40:cc0d9814522b 632 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 633 {
mjr 53:9b2611964afc 634 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 635 }
mjr 35:e959ffba78fd 636
mjr 35:e959ffba78fd 637
mjr 35:e959ffba78fd 638 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 639 //
mjr 38:091e511ce8a0 640 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 641 //
mjr 38:091e511ce8a0 642 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 643 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 644 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 645 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 646 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 647 // SPI capability.
mjr 38:091e511ce8a0 648 //
mjr 38:091e511ce8a0 649 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 650
mjr 73:4e8ce0b18915 651 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 652 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 653 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 654 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 655
mjr 38:091e511ce8a0 656 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 657 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 658 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 659 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 660 {
mjr 73:4e8ce0b18915 661 // remember the new state
mjr 73:4e8ce0b18915 662 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 663
mjr 73:4e8ce0b18915 664 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 665 // applying it to the blue LED
mjr 73:4e8ce0b18915 666 if (diagLEDState == 0)
mjr 77:0b96f6867312 667 {
mjr 77:0b96f6867312 668 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 669 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 670 }
mjr 73:4e8ce0b18915 671
mjr 73:4e8ce0b18915 672 // set the new state
mjr 38:091e511ce8a0 673 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 674 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 675 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 676 }
mjr 38:091e511ce8a0 677
mjr 73:4e8ce0b18915 678 // update the LEDs with the current state
mjr 73:4e8ce0b18915 679 void diagLED(void)
mjr 73:4e8ce0b18915 680 {
mjr 73:4e8ce0b18915 681 diagLED(
mjr 73:4e8ce0b18915 682 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 683 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 684 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 685 }
mjr 73:4e8ce0b18915 686
mjr 38:091e511ce8a0 687 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 688 // an on-board LED segment
mjr 38:091e511ce8a0 689 struct LedSeg
mjr 38:091e511ce8a0 690 {
mjr 38:091e511ce8a0 691 bool r, g, b;
mjr 38:091e511ce8a0 692 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 693
mjr 38:091e511ce8a0 694 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 695 {
mjr 38:091e511ce8a0 696 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 697 // our on-board LED segments
mjr 38:091e511ce8a0 698 int t = pc.typ;
mjr 38:091e511ce8a0 699 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 700 {
mjr 38:091e511ce8a0 701 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 702 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 703 if (pin == LED1)
mjr 38:091e511ce8a0 704 r = true;
mjr 38:091e511ce8a0 705 else if (pin == LED2)
mjr 38:091e511ce8a0 706 g = true;
mjr 38:091e511ce8a0 707 else if (pin == LED3)
mjr 38:091e511ce8a0 708 b = true;
mjr 38:091e511ce8a0 709 }
mjr 38:091e511ce8a0 710 }
mjr 38:091e511ce8a0 711 };
mjr 38:091e511ce8a0 712
mjr 38:091e511ce8a0 713 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 714 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 715 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 716 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 717 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 718 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 719 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 720 {
mjr 38:091e511ce8a0 721 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 722 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 723 LedSeg l;
mjr 38:091e511ce8a0 724 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 725 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 726
mjr 38:091e511ce8a0 727 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 728 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 729 // LedWiz use.
mjr 38:091e511ce8a0 730 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 731 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 732 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 733 }
mjr 38:091e511ce8a0 734
mjr 38:091e511ce8a0 735
mjr 38:091e511ce8a0 736 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 737 //
mjr 76:7f5912b6340e 738 // LedWiz emulation
mjr 76:7f5912b6340e 739 //
mjr 76:7f5912b6340e 740
mjr 76:7f5912b6340e 741 // LedWiz output states.
mjr 76:7f5912b6340e 742 //
mjr 76:7f5912b6340e 743 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 744 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 745 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 746 // The two axes are independent.
mjr 76:7f5912b6340e 747 //
mjr 76:7f5912b6340e 748 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 749 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 750 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 751 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 752 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 753 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 754 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 755 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 756
mjr 76:7f5912b6340e 757 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 758 static uint8_t *wizOn;
mjr 76:7f5912b6340e 759
mjr 76:7f5912b6340e 760 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 761 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 762 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 763 //
mjr 76:7f5912b6340e 764 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 765 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 766 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 767 // 130 = flash on / off
mjr 76:7f5912b6340e 768 // 131 = on / ramp down
mjr 76:7f5912b6340e 769 // 132 = ramp up / on
mjr 5:a70c0bce770d 770 //
mjr 76:7f5912b6340e 771 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 772 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 773 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 774 static uint8_t *wizVal;
mjr 76:7f5912b6340e 775
mjr 76:7f5912b6340e 776 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 777 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 778 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 779 // by the extended protocol:
mjr 76:7f5912b6340e 780 //
mjr 76:7f5912b6340e 781 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 782 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 783 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 784 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 785 // if the brightness is non-zero.
mjr 76:7f5912b6340e 786 //
mjr 76:7f5912b6340e 787 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 788 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 789 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 790 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 791 // 0..255 range.
mjr 26:cb71c4af2912 792 //
mjr 76:7f5912b6340e 793 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 794 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 795 // level.
mjr 26:cb71c4af2912 796 //
mjr 76:7f5912b6340e 797 static uint8_t *outLevel;
mjr 76:7f5912b6340e 798
mjr 76:7f5912b6340e 799
mjr 76:7f5912b6340e 800 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 801 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 802 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 803 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 804 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 805 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 806 //
mjr 76:7f5912b6340e 807 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 808 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 809 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 810 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 811 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 812 // at the maximum size.
mjr 76:7f5912b6340e 813 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 814 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 815
mjr 26:cb71c4af2912 816 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 817 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 818 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 819 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 820 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 821
mjr 76:7f5912b6340e 822
mjr 76:7f5912b6340e 823 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 824 //
mjr 76:7f5912b6340e 825 // Output Ports
mjr 76:7f5912b6340e 826 //
mjr 76:7f5912b6340e 827 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 828 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 829 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 830 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 831 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 832 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 833 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 834 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 835 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 836 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 837 // you have to ration pins among features.
mjr 76:7f5912b6340e 838 //
mjr 76:7f5912b6340e 839 // To overcome some of these limitations, we also provide two types of
mjr 76:7f5912b6340e 840 // peripheral controllers that allow adding many more outputs, using only
mjr 76:7f5912b6340e 841 // a small number of GPIO pins to interface with the peripherals. First,
mjr 76:7f5912b6340e 842 // we support TLC5940 PWM controller chips. Each TLC5940 provides 16 ports
mjr 76:7f5912b6340e 843 // with full PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 76:7f5912b6340e 844 // chip only requires 5 GPIO pins for the interface, no matter how many
mjr 76:7f5912b6340e 845 // chips are in the chain, so it effectively converts 5 GPIO pins into
mjr 76:7f5912b6340e 846 // almost any number of PWM outputs. Second, we support 74HC595 chips.
mjr 76:7f5912b6340e 847 // These provide only digital outputs, but like the TLC5940 they can be
mjr 76:7f5912b6340e 848 // daisy-chained to provide almost unlimited outputs with a few GPIO pins
mjr 76:7f5912b6340e 849 // to control the whole chain.
mjr 76:7f5912b6340e 850 //
mjr 76:7f5912b6340e 851 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 852 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 853 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 854 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 855 //
mjr 76:7f5912b6340e 856 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 857 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 858 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 859 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 860 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 861 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 862 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 863 // of physical devices they're connected to.
mjr 76:7f5912b6340e 864
mjr 76:7f5912b6340e 865
mjr 26:cb71c4af2912 866 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 867 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 868 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 869 class LwOut
mjr 6:cc35eb643e8f 870 {
mjr 6:cc35eb643e8f 871 public:
mjr 40:cc0d9814522b 872 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 873 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 874 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 875 };
mjr 26:cb71c4af2912 876
mjr 35:e959ffba78fd 877 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 878 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 879 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 880 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 881 // numbering.
mjr 35:e959ffba78fd 882 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 883 {
mjr 33:d832bcab089e 884 public:
mjr 35:e959ffba78fd 885 LwVirtualOut() { }
mjr 40:cc0d9814522b 886 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 887 };
mjr 26:cb71c4af2912 888
mjr 34:6b981a2afab7 889 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 890 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 891 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 892 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 893 {
mjr 34:6b981a2afab7 894 public:
mjr 34:6b981a2afab7 895 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 896 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 897
mjr 34:6b981a2afab7 898 private:
mjr 53:9b2611964afc 899 // underlying physical output
mjr 34:6b981a2afab7 900 LwOut *out;
mjr 34:6b981a2afab7 901 };
mjr 34:6b981a2afab7 902
mjr 53:9b2611964afc 903 // Global ZB Launch Ball state
mjr 53:9b2611964afc 904 bool zbLaunchOn = false;
mjr 53:9b2611964afc 905
mjr 53:9b2611964afc 906 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 907 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 908 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 909 {
mjr 53:9b2611964afc 910 public:
mjr 53:9b2611964afc 911 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 912 virtual void set(uint8_t val)
mjr 53:9b2611964afc 913 {
mjr 53:9b2611964afc 914 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 915 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 916
mjr 53:9b2611964afc 917 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 918 out->set(val);
mjr 53:9b2611964afc 919 }
mjr 53:9b2611964afc 920
mjr 53:9b2611964afc 921 private:
mjr 53:9b2611964afc 922 // underlying physical or virtual output
mjr 53:9b2611964afc 923 LwOut *out;
mjr 53:9b2611964afc 924 };
mjr 53:9b2611964afc 925
mjr 53:9b2611964afc 926
mjr 40:cc0d9814522b 927 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 928 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 929 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 930 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 931 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 932 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 933 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 934 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 935 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 936 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 937 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 938 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 939 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 940 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 941 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 942 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 943 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 944 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 945 };
mjr 40:cc0d9814522b 946
mjr 40:cc0d9814522b 947 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 948 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 949 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 950 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 951 {
mjr 40:cc0d9814522b 952 public:
mjr 40:cc0d9814522b 953 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 954 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 955
mjr 40:cc0d9814522b 956 private:
mjr 40:cc0d9814522b 957 LwOut *out;
mjr 40:cc0d9814522b 958 };
mjr 40:cc0d9814522b 959
mjr 77:0b96f6867312 960 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 961 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 962 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 963 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 964
mjr 40:cc0d9814522b 965 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 966 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 967 // mode is engaged.
mjr 40:cc0d9814522b 968 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 969 {
mjr 40:cc0d9814522b 970 public:
mjr 40:cc0d9814522b 971 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 972 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 973
mjr 53:9b2611964afc 974 private:
mjr 53:9b2611964afc 975 LwOut *out;
mjr 53:9b2611964afc 976 };
mjr 53:9b2611964afc 977
mjr 53:9b2611964afc 978 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 979 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 980 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 981 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 982 {
mjr 53:9b2611964afc 983 public:
mjr 53:9b2611964afc 984 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 985 virtual void set(uint8_t)
mjr 53:9b2611964afc 986 {
mjr 53:9b2611964afc 987 // ignore the host value and simply show the current
mjr 53:9b2611964afc 988 // night mode setting
mjr 53:9b2611964afc 989 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 990 }
mjr 40:cc0d9814522b 991
mjr 40:cc0d9814522b 992 private:
mjr 40:cc0d9814522b 993 LwOut *out;
mjr 40:cc0d9814522b 994 };
mjr 40:cc0d9814522b 995
mjr 26:cb71c4af2912 996
mjr 35:e959ffba78fd 997 //
mjr 35:e959ffba78fd 998 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 999 // assignments set in config.h.
mjr 33:d832bcab089e 1000 //
mjr 35:e959ffba78fd 1001 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1002 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1003 {
mjr 35:e959ffba78fd 1004 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1005 {
mjr 53:9b2611964afc 1006 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1007 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1008 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1009 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1010 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1011 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1012 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1013 }
mjr 35:e959ffba78fd 1014 }
mjr 26:cb71c4af2912 1015
mjr 40:cc0d9814522b 1016 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1017 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1018 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1019 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1020 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1021 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1022 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1023 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1024 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1025 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1026 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1027 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1028 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1029 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1030 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1031 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1032 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1033 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1034 };
mjr 40:cc0d9814522b 1035
mjr 40:cc0d9814522b 1036 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1037 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1038 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1039 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1040 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1041 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1042 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1043 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1044 // are always 8 bits.
mjr 40:cc0d9814522b 1045 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1046 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1047 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1048 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1049 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1050 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1051 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1052 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1053 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1054 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1055 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1056 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1057 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1058 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1059 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1060 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1061 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1062 };
mjr 40:cc0d9814522b 1063
mjr 26:cb71c4af2912 1064 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1065 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1066 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1067 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1068 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1069 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1070 {
mjr 26:cb71c4af2912 1071 public:
mjr 60:f38da020aa13 1072 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1073 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1074 {
mjr 26:cb71c4af2912 1075 if (val != prv)
mjr 40:cc0d9814522b 1076 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1077 }
mjr 60:f38da020aa13 1078 uint8_t idx;
mjr 40:cc0d9814522b 1079 uint8_t prv;
mjr 26:cb71c4af2912 1080 };
mjr 26:cb71c4af2912 1081
mjr 40:cc0d9814522b 1082 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1083 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1084 {
mjr 40:cc0d9814522b 1085 public:
mjr 60:f38da020aa13 1086 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1087 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1088 {
mjr 40:cc0d9814522b 1089 if (val != prv)
mjr 40:cc0d9814522b 1090 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1091 }
mjr 60:f38da020aa13 1092 uint8_t idx;
mjr 40:cc0d9814522b 1093 uint8_t prv;
mjr 40:cc0d9814522b 1094 };
mjr 40:cc0d9814522b 1095
mjr 40:cc0d9814522b 1096
mjr 33:d832bcab089e 1097
mjr 34:6b981a2afab7 1098 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1099 // config.h.
mjr 35:e959ffba78fd 1100 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1101
mjr 35:e959ffba78fd 1102 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1103 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1104 {
mjr 35:e959ffba78fd 1105 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1106 {
mjr 53:9b2611964afc 1107 hc595 = new HC595(
mjr 53:9b2611964afc 1108 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1109 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1110 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1111 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1112 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1113 hc595->init();
mjr 35:e959ffba78fd 1114 hc595->update();
mjr 35:e959ffba78fd 1115 }
mjr 35:e959ffba78fd 1116 }
mjr 34:6b981a2afab7 1117
mjr 34:6b981a2afab7 1118 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1119 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1120 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1121 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1122 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1123 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1124 {
mjr 33:d832bcab089e 1125 public:
mjr 60:f38da020aa13 1126 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1127 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1128 {
mjr 34:6b981a2afab7 1129 if (val != prv)
mjr 40:cc0d9814522b 1130 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1131 }
mjr 60:f38da020aa13 1132 uint8_t idx;
mjr 40:cc0d9814522b 1133 uint8_t prv;
mjr 33:d832bcab089e 1134 };
mjr 33:d832bcab089e 1135
mjr 26:cb71c4af2912 1136
mjr 40:cc0d9814522b 1137
mjr 64:ef7ca92dff36 1138 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1139 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1140 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1141 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1142 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1143 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1144 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1145 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1146 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1147 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1148 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1149 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1150 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1151 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1152 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1153 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1154 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1155 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1156 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1157 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1158 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1159 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1160 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1161 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1162 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1163 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1164 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1165 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1166 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1167 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1168 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1169 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1170 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1171 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1172 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1173 };
mjr 26:cb71c4af2912 1174
mjr 64:ef7ca92dff36 1175
mjr 64:ef7ca92dff36 1176 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 1177 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 1178 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 1179 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 1180 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 1181 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1182 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1183 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1184 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1185 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1186 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1187 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1188 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1189 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1190 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1191 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1192 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1193 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1194 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1195 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1196 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1197 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1198 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1199 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1200 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1201 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1202 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1203 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1204 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1205 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1206 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1207 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1208 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1209 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1210 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1211 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1212 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1213 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1214 };
mjr 64:ef7ca92dff36 1215
mjr 77:0b96f6867312 1216 // Polled-update PWM output list
mjr 74:822a92bc11d2 1217 //
mjr 77:0b96f6867312 1218 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1219 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1220 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1221 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1222 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1223 //
mjr 77:0b96f6867312 1224 // Our solution is to simply repeat all PWM updates periodically. If a write
mjr 77:0b96f6867312 1225 // is lost on one cycle, it'll eventually be applied on a subseuqent periodic
mjr 77:0b96f6867312 1226 // update. For low overhead, we do these repeat updates periodically during
mjr 77:0b96f6867312 1227 // the main loop.
mjr 74:822a92bc11d2 1228 //
mjr 77:0b96f6867312 1229 // The mbed library has its own solution to this bug, but it creates a
mjr 77:0b96f6867312 1230 // separate problem of its own. The mbed solution is to write the value
mjr 77:0b96f6867312 1231 // register immediately, and then also reset the "count" register in the
mjr 77:0b96f6867312 1232 // TPM unit containing the output. The count reset truncates the current
mjr 77:0b96f6867312 1233 // PWM cycle, which avoids the hardware problem with more than one write per
mjr 77:0b96f6867312 1234 // cycle. The problem is that the truncated cycle causes visible flicker if
mjr 77:0b96f6867312 1235 // the output is connected to an LED. This is particularly noticeable during
mjr 77:0b96f6867312 1236 // fades, when we're updating the value register repeatedly and rapidly: an
mjr 77:0b96f6867312 1237 // attempt to fade from fully on to fully off causes rapid fluttering and
mjr 77:0b96f6867312 1238 // flashing rather than a smooth brightness fade.
mjr 74:822a92bc11d2 1239 //
mjr 77:0b96f6867312 1240 // The hardware bug is a case of good intentions gone bad. The hardware is
mjr 77:0b96f6867312 1241 // *supposed* to make it easy for software to avoid glitching during PWM
mjr 77:0b96f6867312 1242 // updates, by providing a staging register in front of the real value
mjr 77:0b96f6867312 1243 // register. The software actually writes to the staging register, which
mjr 77:0b96f6867312 1244 // holds updates until the end of the cycle, at which point the hardware
mjr 77:0b96f6867312 1245 // automatically moves the value from the staging register into the real
mjr 77:0b96f6867312 1246 // register. This ensures that the real register is always updated exactly
mjr 77:0b96f6867312 1247 // at a cycle boundary, which in turn ensures that there's no flicker when
mjr 77:0b96f6867312 1248 // values are updated. A great design - except that it doesn't quite work.
mjr 77:0b96f6867312 1249 // The problem is that the staging register actually seems to be implemented
mjr 77:0b96f6867312 1250 // as a one-element FIFO in "stop when full" mode. That is, when you write
mjr 77:0b96f6867312 1251 // the FIFO, it becomes full. When the cycle ends and the hardware reads it
mjr 77:0b96f6867312 1252 // to move the staged value into the real register, the FIFO becomes empty.
mjr 77:0b96f6867312 1253 // But if you try to write the FIFO twice before the hardware reads it and
mjr 77:0b96f6867312 1254 // empties it, the second write fails, leaving the first value in the queue.
mjr 77:0b96f6867312 1255 // There doesn't seem to be any way to clear the FIFO from software, so you
mjr 77:0b96f6867312 1256 // just have to wait for the cycle to end before writing another update.
mjr 77:0b96f6867312 1257 // That more or less defeats the purpose of the staging register, whose whole
mjr 77:0b96f6867312 1258 // point is to free software from worrying about timing considerations with
mjr 77:0b96f6867312 1259 // updates. It frees us of the need to align our timing on cycle boundaries,
mjr 77:0b96f6867312 1260 // but it leaves us with the need to limit writes to once per cycle.
mjr 74:822a92bc11d2 1261 //
mjr 77:0b96f6867312 1262 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1263 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1264 // of polled items.
mjr 74:822a92bc11d2 1265 static int numPolledPwm;
mjr 74:822a92bc11d2 1266 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1267
mjr 74:822a92bc11d2 1268 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1269 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1270 {
mjr 6:cc35eb643e8f 1271 public:
mjr 43:7a6364d82a41 1272 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1273 {
mjr 77:0b96f6867312 1274 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1275 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1276 polledPwm[numPolledPwm++] = this;
mjr 77:0b96f6867312 1277
mjr 77:0b96f6867312 1278 // set the initial value
mjr 77:0b96f6867312 1279 set(initVal);
mjr 43:7a6364d82a41 1280 }
mjr 74:822a92bc11d2 1281
mjr 40:cc0d9814522b 1282 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1283 {
mjr 77:0b96f6867312 1284 // save the new value
mjr 74:822a92bc11d2 1285 this->val = val;
mjr 77:0b96f6867312 1286
mjr 77:0b96f6867312 1287 // commit it to the hardware
mjr 77:0b96f6867312 1288 commit();
mjr 13:72dda449c3c0 1289 }
mjr 74:822a92bc11d2 1290
mjr 74:822a92bc11d2 1291 // handle periodic update polling
mjr 74:822a92bc11d2 1292 void poll()
mjr 74:822a92bc11d2 1293 {
mjr 77:0b96f6867312 1294 commit();
mjr 74:822a92bc11d2 1295 }
mjr 74:822a92bc11d2 1296
mjr 74:822a92bc11d2 1297 protected:
mjr 77:0b96f6867312 1298 virtual void commit()
mjr 74:822a92bc11d2 1299 {
mjr 74:822a92bc11d2 1300 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1301 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1302 }
mjr 74:822a92bc11d2 1303
mjr 77:0b96f6867312 1304 NewPwmOut p;
mjr 77:0b96f6867312 1305 uint8_t val;
mjr 6:cc35eb643e8f 1306 };
mjr 26:cb71c4af2912 1307
mjr 74:822a92bc11d2 1308 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1309 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1310 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1311 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1312 {
mjr 64:ef7ca92dff36 1313 public:
mjr 64:ef7ca92dff36 1314 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1315 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1316 {
mjr 64:ef7ca92dff36 1317 }
mjr 74:822a92bc11d2 1318
mjr 74:822a92bc11d2 1319 protected:
mjr 77:0b96f6867312 1320 virtual void commit()
mjr 64:ef7ca92dff36 1321 {
mjr 74:822a92bc11d2 1322 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1323 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1324 }
mjr 64:ef7ca92dff36 1325 };
mjr 64:ef7ca92dff36 1326
mjr 74:822a92bc11d2 1327 // poll the PWM outputs
mjr 74:822a92bc11d2 1328 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1329 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1330 void pollPwmUpdates()
mjr 74:822a92bc11d2 1331 {
mjr 74:822a92bc11d2 1332 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1333 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1334 {
mjr 74:822a92bc11d2 1335 // time the run for statistics collection
mjr 74:822a92bc11d2 1336 IF_DIAG(
mjr 74:822a92bc11d2 1337 Timer t;
mjr 74:822a92bc11d2 1338 t.start();
mjr 74:822a92bc11d2 1339 )
mjr 74:822a92bc11d2 1340
mjr 74:822a92bc11d2 1341 // poll each output
mjr 74:822a92bc11d2 1342 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1343 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1344
mjr 74:822a92bc11d2 1345 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1346 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1347
mjr 74:822a92bc11d2 1348 // collect statistics
mjr 74:822a92bc11d2 1349 IF_DIAG(
mjr 76:7f5912b6340e 1350 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1351 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1352 )
mjr 74:822a92bc11d2 1353 }
mjr 74:822a92bc11d2 1354 }
mjr 64:ef7ca92dff36 1355
mjr 26:cb71c4af2912 1356 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1357 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1358 {
mjr 6:cc35eb643e8f 1359 public:
mjr 43:7a6364d82a41 1360 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1361 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1362 {
mjr 13:72dda449c3c0 1363 if (val != prv)
mjr 40:cc0d9814522b 1364 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1365 }
mjr 6:cc35eb643e8f 1366 DigitalOut p;
mjr 40:cc0d9814522b 1367 uint8_t prv;
mjr 6:cc35eb643e8f 1368 };
mjr 26:cb71c4af2912 1369
mjr 29:582472d0bc57 1370 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1371 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1372 // port n (0-based).
mjr 35:e959ffba78fd 1373 //
mjr 35:e959ffba78fd 1374 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1375 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1376 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1377 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1378 // 74HC595 ports).
mjr 33:d832bcab089e 1379 static int numOutputs;
mjr 33:d832bcab089e 1380 static LwOut **lwPin;
mjr 33:d832bcab089e 1381
mjr 38:091e511ce8a0 1382 // create a single output pin
mjr 53:9b2611964afc 1383 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1384 {
mjr 38:091e511ce8a0 1385 // get this item's values
mjr 38:091e511ce8a0 1386 int typ = pc.typ;
mjr 38:091e511ce8a0 1387 int pin = pc.pin;
mjr 38:091e511ce8a0 1388 int flags = pc.flags;
mjr 40:cc0d9814522b 1389 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1390 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1391 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1392
mjr 38:091e511ce8a0 1393 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1394 LwOut *lwp;
mjr 38:091e511ce8a0 1395 switch (typ)
mjr 38:091e511ce8a0 1396 {
mjr 38:091e511ce8a0 1397 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1398 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1399 if (pin != 0)
mjr 64:ef7ca92dff36 1400 {
mjr 64:ef7ca92dff36 1401 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1402 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1403 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1404 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1405 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1406 {
mjr 64:ef7ca92dff36 1407 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1408 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1409
mjr 64:ef7ca92dff36 1410 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1411 gamma = false;
mjr 64:ef7ca92dff36 1412 }
mjr 64:ef7ca92dff36 1413 else
mjr 64:ef7ca92dff36 1414 {
mjr 64:ef7ca92dff36 1415 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1416 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1417 }
mjr 64:ef7ca92dff36 1418 }
mjr 48:058ace2aed1d 1419 else
mjr 48:058ace2aed1d 1420 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1421 break;
mjr 38:091e511ce8a0 1422
mjr 38:091e511ce8a0 1423 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1424 // Digital GPIO port
mjr 48:058ace2aed1d 1425 if (pin != 0)
mjr 48:058ace2aed1d 1426 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1427 else
mjr 48:058ace2aed1d 1428 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1429 break;
mjr 38:091e511ce8a0 1430
mjr 38:091e511ce8a0 1431 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1432 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1433 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1434 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1435 {
mjr 40:cc0d9814522b 1436 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1437 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1438 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1439 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1440 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1441 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1442 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1443 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1444 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1445 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1446 // for this unlikely case.
mjr 40:cc0d9814522b 1447 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1448 {
mjr 40:cc0d9814522b 1449 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1450 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1451
mjr 40:cc0d9814522b 1452 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1453 gamma = false;
mjr 40:cc0d9814522b 1454 }
mjr 40:cc0d9814522b 1455 else
mjr 40:cc0d9814522b 1456 {
mjr 40:cc0d9814522b 1457 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1458 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1459 }
mjr 40:cc0d9814522b 1460 }
mjr 38:091e511ce8a0 1461 else
mjr 40:cc0d9814522b 1462 {
mjr 40:cc0d9814522b 1463 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1464 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1465 }
mjr 38:091e511ce8a0 1466 break;
mjr 38:091e511ce8a0 1467
mjr 38:091e511ce8a0 1468 case PortType74HC595:
mjr 38:091e511ce8a0 1469 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1470 // output number, create a virtual port)
mjr 38:091e511ce8a0 1471 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1472 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1473 else
mjr 38:091e511ce8a0 1474 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1475 break;
mjr 38:091e511ce8a0 1476
mjr 38:091e511ce8a0 1477 case PortTypeVirtual:
mjr 43:7a6364d82a41 1478 case PortTypeDisabled:
mjr 38:091e511ce8a0 1479 default:
mjr 38:091e511ce8a0 1480 // virtual or unknown
mjr 38:091e511ce8a0 1481 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1482 break;
mjr 38:091e511ce8a0 1483 }
mjr 38:091e511ce8a0 1484
mjr 40:cc0d9814522b 1485 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1486 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1487 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1488 if (activeLow)
mjr 38:091e511ce8a0 1489 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1490
mjr 40:cc0d9814522b 1491 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1492 // needs to be
mjr 40:cc0d9814522b 1493 if (noisy)
mjr 40:cc0d9814522b 1494 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1495
mjr 40:cc0d9814522b 1496 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1497 if (gamma)
mjr 40:cc0d9814522b 1498 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1499
mjr 53:9b2611964afc 1500 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1501 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1502 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1503 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1504 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1505
mjr 53:9b2611964afc 1506 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1507 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1508 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1509
mjr 38:091e511ce8a0 1510 // turn it off initially
mjr 38:091e511ce8a0 1511 lwp->set(0);
mjr 38:091e511ce8a0 1512
mjr 38:091e511ce8a0 1513 // return the pin
mjr 38:091e511ce8a0 1514 return lwp;
mjr 38:091e511ce8a0 1515 }
mjr 38:091e511ce8a0 1516
mjr 6:cc35eb643e8f 1517 // initialize the output pin array
mjr 35:e959ffba78fd 1518 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1519 {
mjr 35:e959ffba78fd 1520 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1521 // total number of ports.
mjr 35:e959ffba78fd 1522 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1523 int i;
mjr 35:e959ffba78fd 1524 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1525 {
mjr 35:e959ffba78fd 1526 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1527 {
mjr 35:e959ffba78fd 1528 numOutputs = i;
mjr 34:6b981a2afab7 1529 break;
mjr 34:6b981a2afab7 1530 }
mjr 33:d832bcab089e 1531 }
mjr 33:d832bcab089e 1532
mjr 73:4e8ce0b18915 1533 // allocate the pin array
mjr 73:4e8ce0b18915 1534 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1535
mjr 73:4e8ce0b18915 1536 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1537 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1538
mjr 73:4e8ce0b18915 1539 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1540 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1541 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1542
mjr 73:4e8ce0b18915 1543 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1544 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1545 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1546
mjr 73:4e8ce0b18915 1547 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1548 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1549 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1550
mjr 35:e959ffba78fd 1551 // create the pin interface object for each port
mjr 35:e959ffba78fd 1552 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1553 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1554 }
mjr 6:cc35eb643e8f 1555
mjr 76:7f5912b6340e 1556 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1557 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1558 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1559 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1560 // equivalent to 48.
mjr 40:cc0d9814522b 1561 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1562 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1563 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1564 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1565 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1566 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1567 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1568 255, 255
mjr 40:cc0d9814522b 1569 };
mjr 40:cc0d9814522b 1570
mjr 76:7f5912b6340e 1571 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1572 // level (1..48)
mjr 76:7f5912b6340e 1573 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1574 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1575 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1576 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1577 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1578 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1579 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1580 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1581 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1582 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1583 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1584 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1585 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1586 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1587 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1588 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1589 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1590 };
mjr 76:7f5912b6340e 1591
mjr 74:822a92bc11d2 1592 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1593 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1594 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1595 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1596 //
mjr 74:822a92bc11d2 1597 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1598 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1599 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1600 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1601 //
mjr 74:822a92bc11d2 1602 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1603 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1604 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1605 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1606 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1607 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1608 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1609 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1610 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1611 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1612 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1613 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1614 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1615 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1616 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1617 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1618 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1619 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1620 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1621 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1622
mjr 74:822a92bc11d2 1623 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1624 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1625 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1626 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1627 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1628 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1629 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1630 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1631 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1632 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1633 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1634 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1635 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1636 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1637 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1638 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1639 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1640
mjr 74:822a92bc11d2 1641 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1642 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1643 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1644 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1645 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1646 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1647 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1648 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1649 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1650 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1651 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1652 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1653 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1654 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1655 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1656 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1657 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1658
mjr 74:822a92bc11d2 1659 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1660 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1661 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1662 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1663 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1664 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1665 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1666 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1667 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1668 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1669 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1670 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1671 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1672 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1673 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1674 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1675 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1676 };
mjr 74:822a92bc11d2 1677
mjr 74:822a92bc11d2 1678 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1679 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1680 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1681
mjr 76:7f5912b6340e 1682 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1683 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1684
mjr 76:7f5912b6340e 1685 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1686 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1687 // outputs on each cycle.
mjr 29:582472d0bc57 1688 static void wizPulse()
mjr 29:582472d0bc57 1689 {
mjr 76:7f5912b6340e 1690 // current bank
mjr 76:7f5912b6340e 1691 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1692
mjr 76:7f5912b6340e 1693 // start a timer for statistics collection
mjr 76:7f5912b6340e 1694 IF_DIAG(
mjr 76:7f5912b6340e 1695 Timer t;
mjr 76:7f5912b6340e 1696 t.start();
mjr 76:7f5912b6340e 1697 )
mjr 76:7f5912b6340e 1698
mjr 76:7f5912b6340e 1699 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1700 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1701 //
mjr 76:7f5912b6340e 1702 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1703 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1704 //
mjr 76:7f5912b6340e 1705 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1706 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1707 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1708 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1709 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1710 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1711 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1712 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1713 // current cycle.
mjr 76:7f5912b6340e 1714 //
mjr 76:7f5912b6340e 1715 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1716 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1717 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1718 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1719 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1720 //
mjr 76:7f5912b6340e 1721 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1722 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1723 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1724 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1725 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1726 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1727 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1728 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1729 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1730 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1731 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1732 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1733 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1734 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1735 // bit counts.
mjr 76:7f5912b6340e 1736 //
mjr 76:7f5912b6340e 1737 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1738 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1739 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1740 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1741 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1742 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1743 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1744 // one division for another!
mjr 76:7f5912b6340e 1745 //
mjr 76:7f5912b6340e 1746 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1747 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1748 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1749 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1750 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1751 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1752 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1753 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1754 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1755 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1756 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1757 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1758 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1759 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1760 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1761 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1762 // remainder calculation anyway.
mjr 76:7f5912b6340e 1763 //
mjr 76:7f5912b6340e 1764 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1765 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1766 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1767 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1768 //
mjr 76:7f5912b6340e 1769 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1770 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1771 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1772 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1773 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1774 // the result, since we started with 32.
mjr 76:7f5912b6340e 1775 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1776 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1777 };
mjr 76:7f5912b6340e 1778 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1779
mjr 76:7f5912b6340e 1780 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1781 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1782 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1783 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1784 toPort = numOutputs;
mjr 76:7f5912b6340e 1785
mjr 76:7f5912b6340e 1786 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1787 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1788 {
mjr 76:7f5912b6340e 1789 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1790 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1791 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1792 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1793 if (wizOn[i])
mjr 29:582472d0bc57 1794 {
mjr 76:7f5912b6340e 1795 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 1796 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 1797 {
mjr 76:7f5912b6340e 1798 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 1799 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 1800 }
mjr 29:582472d0bc57 1801 }
mjr 76:7f5912b6340e 1802 }
mjr 76:7f5912b6340e 1803
mjr 34:6b981a2afab7 1804 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1805 if (hc595 != 0)
mjr 35:e959ffba78fd 1806 hc595->update();
mjr 76:7f5912b6340e 1807
mjr 76:7f5912b6340e 1808 // switch to the next bank
mjr 76:7f5912b6340e 1809 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 1810 wizPulseBank = 0;
mjr 76:7f5912b6340e 1811
mjr 76:7f5912b6340e 1812 // collect timing statistics
mjr 76:7f5912b6340e 1813 IF_DIAG(
mjr 76:7f5912b6340e 1814 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 1815 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 1816 )
mjr 1:d913e0afb2ac 1817 }
mjr 38:091e511ce8a0 1818
mjr 76:7f5912b6340e 1819 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 1820 static void updateLwPort(int port)
mjr 38:091e511ce8a0 1821 {
mjr 76:7f5912b6340e 1822 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 1823 if (wizOn[port])
mjr 76:7f5912b6340e 1824 {
mjr 76:7f5912b6340e 1825 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 1826 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 1827 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 1828 // it on the next cycle.
mjr 76:7f5912b6340e 1829 int val = wizVal[port];
mjr 76:7f5912b6340e 1830 if (val <= 49)
mjr 76:7f5912b6340e 1831 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 1832 }
mjr 76:7f5912b6340e 1833 else
mjr 76:7f5912b6340e 1834 {
mjr 76:7f5912b6340e 1835 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 1836 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 1837 }
mjr 73:4e8ce0b18915 1838 }
mjr 73:4e8ce0b18915 1839
mjr 73:4e8ce0b18915 1840 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1841 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1842 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1843 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1844 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1845 //
mjr 73:4e8ce0b18915 1846 void allOutputsOff()
mjr 73:4e8ce0b18915 1847 {
mjr 73:4e8ce0b18915 1848 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1849 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1850 {
mjr 73:4e8ce0b18915 1851 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1852 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1853 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1854 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1855 }
mjr 73:4e8ce0b18915 1856
mjr 73:4e8ce0b18915 1857 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1858 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1859 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1860
mjr 73:4e8ce0b18915 1861 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1862 if (hc595 != 0)
mjr 38:091e511ce8a0 1863 hc595->update();
mjr 38:091e511ce8a0 1864 }
mjr 38:091e511ce8a0 1865
mjr 74:822a92bc11d2 1866 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1867 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1868 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1869 // address any port group.
mjr 74:822a92bc11d2 1870 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1871 {
mjr 76:7f5912b6340e 1872 // update all on/off states in the group
mjr 74:822a92bc11d2 1873 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1874 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1875 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1876 {
mjr 74:822a92bc11d2 1877 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1878 if (bit == 0x100) {
mjr 74:822a92bc11d2 1879 bit = 1;
mjr 74:822a92bc11d2 1880 ++imsg;
mjr 74:822a92bc11d2 1881 }
mjr 74:822a92bc11d2 1882
mjr 74:822a92bc11d2 1883 // set the on/off state
mjr 76:7f5912b6340e 1884 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 1885
mjr 76:7f5912b6340e 1886 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 1887 updateLwPort(port);
mjr 74:822a92bc11d2 1888 }
mjr 74:822a92bc11d2 1889
mjr 74:822a92bc11d2 1890 // set the flash speed for the port group
mjr 74:822a92bc11d2 1891 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1892 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1893
mjr 76:7f5912b6340e 1894 // update 74HC959 outputs
mjr 76:7f5912b6340e 1895 if (hc595 != 0)
mjr 76:7f5912b6340e 1896 hc595->update();
mjr 74:822a92bc11d2 1897 }
mjr 74:822a92bc11d2 1898
mjr 74:822a92bc11d2 1899 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1900 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1901 {
mjr 74:822a92bc11d2 1902 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 1903 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 1904 {
mjr 74:822a92bc11d2 1905 // get the value
mjr 74:822a92bc11d2 1906 uint8_t v = data[i];
mjr 74:822a92bc11d2 1907
mjr 74:822a92bc11d2 1908 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1909 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1910 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1911 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1912 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1913 // as such.
mjr 74:822a92bc11d2 1914 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1915 v = 48;
mjr 74:822a92bc11d2 1916
mjr 74:822a92bc11d2 1917 // store it
mjr 76:7f5912b6340e 1918 wizVal[port] = v;
mjr 76:7f5912b6340e 1919
mjr 76:7f5912b6340e 1920 // update the port
mjr 76:7f5912b6340e 1921 updateLwPort(port);
mjr 74:822a92bc11d2 1922 }
mjr 74:822a92bc11d2 1923
mjr 76:7f5912b6340e 1924 // update 74HC595 outputs
mjr 76:7f5912b6340e 1925 if (hc595 != 0)
mjr 76:7f5912b6340e 1926 hc595->update();
mjr 74:822a92bc11d2 1927 }
mjr 74:822a92bc11d2 1928
mjr 77:0b96f6867312 1929 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 1930 //
mjr 77:0b96f6867312 1931 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 1932 //
mjr 77:0b96f6867312 1933
mjr 77:0b96f6867312 1934 // receiver
mjr 77:0b96f6867312 1935 IRReceiver *ir_rx;
mjr 77:0b96f6867312 1936
mjr 77:0b96f6867312 1937 // transmitter
mjr 77:0b96f6867312 1938 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 1939
mjr 77:0b96f6867312 1940 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 1941 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 1942 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 1943 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 1944 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 1945 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 1946 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 1947 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 1948 // configuration slot n
mjr 77:0b96f6867312 1949 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 77:0b96f6867312 1950 uint8_t IRAdHocSlot;
mjr 77:0b96f6867312 1951
mjr 77:0b96f6867312 1952 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 1953 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 1954 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 1955 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 1956 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 1957 // amount of time.
mjr 77:0b96f6867312 1958 Timer IRTimer;
mjr 77:0b96f6867312 1959
mjr 77:0b96f6867312 1960 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 1961 // The states are:
mjr 77:0b96f6867312 1962 //
mjr 77:0b96f6867312 1963 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 1964 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 1965 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 1966 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 1967 //
mjr 77:0b96f6867312 1968 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 1969 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 1970 // received within a reasonable time.
mjr 77:0b96f6867312 1971 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 1972
mjr 77:0b96f6867312 1973 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 1974 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 1975 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 1976 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 1977 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 1978 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 1979 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 1980 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 1981 IRCommand learnedIRCode;
mjr 77:0b96f6867312 1982
mjr 77:0b96f6867312 1983 // IR comkmand received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 1984 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 1985 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 1986 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 1987 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 1988 // index; 0 represents no command.
mjr 77:0b96f6867312 1989 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 1990
mjr 77:0b96f6867312 1991 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 1992 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 1993 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 1994 // command we received.
mjr 77:0b96f6867312 1995 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 1996
mjr 77:0b96f6867312 1997 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 1998 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 1999 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2000 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2001 // distinct key press.
mjr 77:0b96f6867312 2002 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2003
mjr 77:0b96f6867312 2004 // initialize
mjr 77:0b96f6867312 2005 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2006 {
mjr 77:0b96f6867312 2007 PinName pin;
mjr 77:0b96f6867312 2008
mjr 77:0b96f6867312 2009 // start the IR timer
mjr 77:0b96f6867312 2010 IRTimer.start();
mjr 77:0b96f6867312 2011
mjr 77:0b96f6867312 2012 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2013 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2014 {
mjr 77:0b96f6867312 2015 // no virtual buttons yet
mjr 77:0b96f6867312 2016 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2017 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2018
mjr 77:0b96f6867312 2019 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2020 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2021 {
mjr 77:0b96f6867312 2022 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2023 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2024 }
mjr 77:0b96f6867312 2025
mjr 77:0b96f6867312 2026 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2027 // real button inputs
mjr 77:0b96f6867312 2028 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2029 {
mjr 77:0b96f6867312 2030 // get the button
mjr 77:0b96f6867312 2031 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2032
mjr 77:0b96f6867312 2033 // check the unshifted button
mjr 77:0b96f6867312 2034 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2035 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2036 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2037 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2038
mjr 77:0b96f6867312 2039 // check the shifted button
mjr 77:0b96f6867312 2040 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2041 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2042 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2043 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2044 }
mjr 77:0b96f6867312 2045
mjr 77:0b96f6867312 2046 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2047 // codes, such as for the "send code" USB API function
mjr 77:0b96f6867312 2048 IRAdHocSlot = nVirtualButtons++;
mjr 77:0b96f6867312 2049
mjr 77:0b96f6867312 2050 // create the transmitter
mjr 77:0b96f6867312 2051 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2052
mjr 77:0b96f6867312 2053 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2054 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2055 {
mjr 77:0b96f6867312 2056 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2057 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2058 if (vb != 0xFF)
mjr 77:0b96f6867312 2059 {
mjr 77:0b96f6867312 2060 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2061 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2062 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2063 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2064 }
mjr 77:0b96f6867312 2065 }
mjr 77:0b96f6867312 2066 }
mjr 77:0b96f6867312 2067
mjr 77:0b96f6867312 2068 // if there's a receiver, set it up
mjr 77:0b96f6867312 2069 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2070 {
mjr 77:0b96f6867312 2071 // create the receiver
mjr 77:0b96f6867312 2072 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2073
mjr 77:0b96f6867312 2074 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2075 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2076 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2077
mjr 77:0b96f6867312 2078 // enable it
mjr 77:0b96f6867312 2079 ir_rx->enable();
mjr 77:0b96f6867312 2080
mjr 77:0b96f6867312 2081 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2082 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2083 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2084 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2085 {
mjr 77:0b96f6867312 2086 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2087 if (cb.protocol != 0
mjr 77:0b96f6867312 2088 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2089 {
mjr 77:0b96f6867312 2090 kbKeys = true;
mjr 77:0b96f6867312 2091 break;
mjr 77:0b96f6867312 2092 }
mjr 77:0b96f6867312 2093 }
mjr 77:0b96f6867312 2094 }
mjr 77:0b96f6867312 2095 }
mjr 77:0b96f6867312 2096
mjr 77:0b96f6867312 2097 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2098 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2099 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2100 {
mjr 77:0b96f6867312 2101 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2102 if (ir_tx != 0)
mjr 77:0b96f6867312 2103 {
mjr 77:0b96f6867312 2104 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2105 int slot = cmd - 1;
mjr 77:0b96f6867312 2106
mjr 77:0b96f6867312 2107 // press or release the virtual button
mjr 77:0b96f6867312 2108 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2109 }
mjr 77:0b96f6867312 2110 }
mjr 77:0b96f6867312 2111
mjr 77:0b96f6867312 2112 // Process IR input
mjr 77:0b96f6867312 2113 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2114 {
mjr 77:0b96f6867312 2115 // if there's no IR receiver attached, there's nothing to do
mjr 77:0b96f6867312 2116 if (ir_rx == 0)
mjr 77:0b96f6867312 2117 return;
mjr 77:0b96f6867312 2118
mjr 77:0b96f6867312 2119 // Time out any received command
mjr 77:0b96f6867312 2120 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2121 {
mjr 77:0b96f6867312 2122 // Time out inter-key gap mode after 30ms; time out all
mjr 77:0b96f6867312 2123 // commands after 100ms.
mjr 77:0b96f6867312 2124 uint32_t t = IRTimer.read_us();
mjr 77:0b96f6867312 2125 if (t > 100000)
mjr 77:0b96f6867312 2126 IRCommandIn = 0;
mjr 77:0b96f6867312 2127 else if (t > 30000)
mjr 77:0b96f6867312 2128 IRKeyGap = false;
mjr 77:0b96f6867312 2129 }
mjr 77:0b96f6867312 2130
mjr 77:0b96f6867312 2131 // Check if we're in learning mode
mjr 77:0b96f6867312 2132 if (IRLearningMode != 0)
mjr 77:0b96f6867312 2133 {
mjr 77:0b96f6867312 2134 // Learning mode. Read raw inputs from the IR sensor and
mjr 77:0b96f6867312 2135 // forward them to the PC via USB reports, up to the report
mjr 77:0b96f6867312 2136 // limit.
mjr 77:0b96f6867312 2137 const int nmax = USBJoystick::maxRawIR;
mjr 77:0b96f6867312 2138 uint16_t raw[nmax];
mjr 77:0b96f6867312 2139 int n;
mjr 77:0b96f6867312 2140 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2141
mjr 77:0b96f6867312 2142 // if we read any raw samples, report them
mjr 77:0b96f6867312 2143 if (n != 0)
mjr 77:0b96f6867312 2144 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2145
mjr 77:0b96f6867312 2146 // check for a command
mjr 77:0b96f6867312 2147 IRCommand c;
mjr 77:0b96f6867312 2148 if (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2149 {
mjr 77:0b96f6867312 2150 // check the current learning state
mjr 77:0b96f6867312 2151 switch (IRLearningMode)
mjr 77:0b96f6867312 2152 {
mjr 77:0b96f6867312 2153 case 1:
mjr 77:0b96f6867312 2154 // Initial state, waiting for the first decoded command.
mjr 77:0b96f6867312 2155 // This is it.
mjr 77:0b96f6867312 2156 learnedIRCode = c;
mjr 77:0b96f6867312 2157
mjr 77:0b96f6867312 2158 // Check if we need additional information. If the
mjr 77:0b96f6867312 2159 // protocol supports dittos, we have to wait for a repeat
mjr 77:0b96f6867312 2160 // to see if the remote actually uses the dittos, since
mjr 77:0b96f6867312 2161 // some implementations of such protocols use the dittos
mjr 77:0b96f6867312 2162 // while others just send repeated full codes. Otherwise,
mjr 77:0b96f6867312 2163 // all we need is the initial code, so we're done.
mjr 77:0b96f6867312 2164 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 77:0b96f6867312 2165 break;
mjr 77:0b96f6867312 2166
mjr 77:0b96f6867312 2167 case 2:
mjr 77:0b96f6867312 2168 // Code received, awaiting auto-repeat information. If
mjr 77:0b96f6867312 2169 // the protocol has dittos, check to see if we got a ditto:
mjr 77:0b96f6867312 2170 //
mjr 77:0b96f6867312 2171 // - If we received a ditto in the same protocol as the
mjr 77:0b96f6867312 2172 // prior command, the remote uses dittos.
mjr 77:0b96f6867312 2173 //
mjr 77:0b96f6867312 2174 // - If we received a repeat of the prior command (not a
mjr 77:0b96f6867312 2175 // ditto, but a repeat of the full code), the remote
mjr 77:0b96f6867312 2176 // doesn't use dittos even though the protocol supports
mjr 77:0b96f6867312 2177 // them.
mjr 77:0b96f6867312 2178 //
mjr 77:0b96f6867312 2179 // - Otherwise, it's not an auto-repeat at all, so we
mjr 77:0b96f6867312 2180 // can't decide one way or the other on dittos: start
mjr 77:0b96f6867312 2181 // over.
mjr 77:0b96f6867312 2182 if (c.proId == learnedIRCode.proId
mjr 77:0b96f6867312 2183 && c.hasDittos
mjr 77:0b96f6867312 2184 && c.ditto)
mjr 77:0b96f6867312 2185 {
mjr 77:0b96f6867312 2186 // success - the remote uses dittos
mjr 77:0b96f6867312 2187 IRLearningMode = 3;
mjr 77:0b96f6867312 2188 }
mjr 77:0b96f6867312 2189 else if (c.proId == learnedIRCode.proId
mjr 77:0b96f6867312 2190 && c.hasDittos
mjr 77:0b96f6867312 2191 && !c.ditto
mjr 77:0b96f6867312 2192 && c.code == learnedIRCode.code)
mjr 77:0b96f6867312 2193 {
mjr 77:0b96f6867312 2194 // success - it's a repeat of the last code, so
mjr 77:0b96f6867312 2195 // the remote doesn't use dittos even though the
mjr 77:0b96f6867312 2196 // protocol supports them
mjr 77:0b96f6867312 2197 learnedIRCode.hasDittos = false;
mjr 77:0b96f6867312 2198 IRLearningMode = 3;
mjr 77:0b96f6867312 2199 }
mjr 77:0b96f6867312 2200 else
mjr 77:0b96f6867312 2201 {
mjr 77:0b96f6867312 2202 // It's not a ditto and not a full repeat of the
mjr 77:0b96f6867312 2203 // last code, so it's either a new key, or some kind
mjr 77:0b96f6867312 2204 // of multi-code key encoding that we don't recognize.
mjr 77:0b96f6867312 2205 // We can't use this code, so start over.
mjr 77:0b96f6867312 2206 IRLearningMode = 1;
mjr 77:0b96f6867312 2207 }
mjr 77:0b96f6867312 2208 break;
mjr 77:0b96f6867312 2209 }
mjr 77:0b96f6867312 2210
mjr 77:0b96f6867312 2211 // If we ended in state 3, we've successfully decoded
mjr 77:0b96f6867312 2212 // the transmission. Report the decoded data and terminate
mjr 77:0b96f6867312 2213 // learning mode.
mjr 77:0b96f6867312 2214 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2215 {
mjr 77:0b96f6867312 2216 // figure the flags:
mjr 77:0b96f6867312 2217 // 0x02 -> dittos
mjr 77:0b96f6867312 2218 uint8_t flags = 0;
mjr 77:0b96f6867312 2219 if (learnedIRCode.hasDittos)
mjr 77:0b96f6867312 2220 flags |= 0x02;
mjr 77:0b96f6867312 2221
mjr 77:0b96f6867312 2222 // report the code
mjr 77:0b96f6867312 2223 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 77:0b96f6867312 2224
mjr 77:0b96f6867312 2225 // exit learning mode
mjr 77:0b96f6867312 2226 IRLearningMode = 0;
mjr 77:0b96f6867312 2227 }
mjr 77:0b96f6867312 2228 }
mjr 77:0b96f6867312 2229
mjr 77:0b96f6867312 2230 // time out of IR learning mode if it's been too long
mjr 77:0b96f6867312 2231 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2232 {
mjr 77:0b96f6867312 2233 // report the termination by sending a raw IR report with
mjr 77:0b96f6867312 2234 // zero data elements
mjr 77:0b96f6867312 2235 js.reportRawIR(0, 0);
mjr 77:0b96f6867312 2236
mjr 77:0b96f6867312 2237
mjr 77:0b96f6867312 2238 // cancel learning mode
mjr 77:0b96f6867312 2239 IRLearningMode = 0;
mjr 77:0b96f6867312 2240 }
mjr 77:0b96f6867312 2241 }
mjr 77:0b96f6867312 2242 else
mjr 77:0b96f6867312 2243 {
mjr 77:0b96f6867312 2244 // Not in learning mode. We don't care about the raw signals;
mjr 77:0b96f6867312 2245 // just run them through the protocol decoders.
mjr 77:0b96f6867312 2246 ir_rx->process();
mjr 77:0b96f6867312 2247
mjr 77:0b96f6867312 2248 // Check for decoded commands. Keep going until all commands
mjr 77:0b96f6867312 2249 // have been read.
mjr 77:0b96f6867312 2250 IRCommand c;
mjr 77:0b96f6867312 2251 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2252 {
mjr 77:0b96f6867312 2253 // We received a decoded command. Determine if it's a repeat,
mjr 77:0b96f6867312 2254 // and if so, try to determine whether it's an auto-repeat (due
mjr 77:0b96f6867312 2255 // to the remote key being held down) or a distinct new press
mjr 77:0b96f6867312 2256 // on the same key as last time. The distinction is significant
mjr 77:0b96f6867312 2257 // because it affects the auto-repeat behavior of the PC key
mjr 77:0b96f6867312 2258 // input. An auto-repeat represents a key being held down on
mjr 77:0b96f6867312 2259 // the remote, which we want to translate to a (virtual) key
mjr 77:0b96f6867312 2260 // being held down on the PC keyboard; a distinct key press on
mjr 77:0b96f6867312 2261 // the remote translates to a distinct key press on the PC.
mjr 77:0b96f6867312 2262 //
mjr 77:0b96f6867312 2263 // It can only be a repeat if there's a prior command that
mjr 77:0b96f6867312 2264 // hasn't timed out yet, so start by checking for a previous
mjr 77:0b96f6867312 2265 // command.
mjr 77:0b96f6867312 2266 bool repeat = false, autoRepeat = false;
mjr 77:0b96f6867312 2267 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2268 {
mjr 77:0b96f6867312 2269 // We have a command in progress. Check to see if the
mjr 77:0b96f6867312 2270 // new command is a repeat of the previous command. Check
mjr 77:0b96f6867312 2271 // first to see if it's a "ditto", which explicitly represents
mjr 77:0b96f6867312 2272 // an auto-repeat of the last command.
mjr 77:0b96f6867312 2273 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 2274 if (c.ditto)
mjr 77:0b96f6867312 2275 {
mjr 77:0b96f6867312 2276 // We received a ditto. Dittos are always auto-
mjr 77:0b96f6867312 2277 // repeats, so it's an auto-repeat as long as the
mjr 77:0b96f6867312 2278 // ditto is in the same protocol as the last command.
mjr 77:0b96f6867312 2279 // If the ditto is in a new protocol, the ditto can't
mjr 77:0b96f6867312 2280 // be for the last command we saw, because a ditto
mjr 77:0b96f6867312 2281 // never changes protocols from its antecedent. In
mjr 77:0b96f6867312 2282 // such a case, we must have missed the antecedent
mjr 77:0b96f6867312 2283 // command and thus don't know what's being repeated.
mjr 77:0b96f6867312 2284 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 77:0b96f6867312 2285 }
mjr 77:0b96f6867312 2286 else
mjr 77:0b96f6867312 2287 {
mjr 77:0b96f6867312 2288 // It's not a ditto. The new command is a repeat if
mjr 77:0b96f6867312 2289 // it matches the protocol and command code of the
mjr 77:0b96f6867312 2290 // prior command.
mjr 77:0b96f6867312 2291 repeat = (c.proId == cmdcfg.protocol
mjr 77:0b96f6867312 2292 && uint32_t(c.code) == cmdcfg.code.lo
mjr 77:0b96f6867312 2293 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 77:0b96f6867312 2294
mjr 77:0b96f6867312 2295 // If the command is a repeat, try to determine whether
mjr 77:0b96f6867312 2296 // it's an auto-repeat or a new press on the same key.
mjr 77:0b96f6867312 2297 // If the protocol uses dittos, it's definitely a new
mjr 77:0b96f6867312 2298 // key press, because an auto-repeat would have used a
mjr 77:0b96f6867312 2299 // ditto. For a protocol that doesn't use dittos, both
mjr 77:0b96f6867312 2300 // an auto-repeat and a new key press just send the key
mjr 77:0b96f6867312 2301 // code again, so we can't tell the difference based on
mjr 77:0b96f6867312 2302 // that alone. But if the protocol has a toggle bit, we
mjr 77:0b96f6867312 2303 // can tell by the toggle bit value: a new key press has
mjr 77:0b96f6867312 2304 // the opposite toggle value as the last key press, while
mjr 77:0b96f6867312 2305 // an auto-repeat has the same toggle. Note that if the
mjr 77:0b96f6867312 2306 // protocol doesn't use toggle bits, the toggle value
mjr 77:0b96f6867312 2307 // will always be the same, so we'll simply always treat
mjr 77:0b96f6867312 2308 // any repeat as an auto-repeat. Many protocols simply
mjr 77:0b96f6867312 2309 // provide no way to distinguish the two, so in such
mjr 77:0b96f6867312 2310 // cases it's consistent with the native implementations
mjr 77:0b96f6867312 2311 // to treat any repeat as an auto-repeat.
mjr 77:0b96f6867312 2312 autoRepeat =
mjr 77:0b96f6867312 2313 repeat
mjr 77:0b96f6867312 2314 && !(cmdcfg.flags & IRFlagDittos)
mjr 77:0b96f6867312 2315 && c.toggle == lastIRToggle;
mjr 77:0b96f6867312 2316 }
mjr 77:0b96f6867312 2317 }
mjr 77:0b96f6867312 2318
mjr 77:0b96f6867312 2319 // Check to see if it's a repeat of any kind
mjr 77:0b96f6867312 2320 if (repeat)
mjr 77:0b96f6867312 2321 {
mjr 77:0b96f6867312 2322 // It's a repeat. If it's not an auto-repeat, it's a
mjr 77:0b96f6867312 2323 // new distinct key press, so we need to send the PC a
mjr 77:0b96f6867312 2324 // momentary gap where we're not sending the same key,
mjr 77:0b96f6867312 2325 // so that the PC also recognizes this as a distinct
mjr 77:0b96f6867312 2326 // key press event.
mjr 77:0b96f6867312 2327 if (!autoRepeat)
mjr 77:0b96f6867312 2328 IRKeyGap = true;
mjr 77:0b96f6867312 2329
mjr 77:0b96f6867312 2330 // restart the key-up timer
mjr 77:0b96f6867312 2331 IRTimer.reset();
mjr 77:0b96f6867312 2332 }
mjr 77:0b96f6867312 2333 else if (c.ditto)
mjr 77:0b96f6867312 2334 {
mjr 77:0b96f6867312 2335 // It's a ditto, but not a repeat of the last command.
mjr 77:0b96f6867312 2336 // But a ditto doesn't contain any information of its own
mjr 77:0b96f6867312 2337 // on the command being repeated, so given that it's not
mjr 77:0b96f6867312 2338 // our last command, we can't infer what command the ditto
mjr 77:0b96f6867312 2339 // is for and thus can't make sense of it. We have to
mjr 77:0b96f6867312 2340 // simply ignore it and wait for the sender to start with
mjr 77:0b96f6867312 2341 // a full command for a new key press.
mjr 77:0b96f6867312 2342 IRCommandIn = 0;
mjr 77:0b96f6867312 2343 }
mjr 77:0b96f6867312 2344 else
mjr 77:0b96f6867312 2345 {
mjr 77:0b96f6867312 2346 // It's not a repeat, so the last command is no longer
mjr 77:0b96f6867312 2347 // in effect (regardless of whether we find a match for
mjr 77:0b96f6867312 2348 // the new command).
mjr 77:0b96f6867312 2349 IRCommandIn = 0;
mjr 77:0b96f6867312 2350
mjr 77:0b96f6867312 2351 // Check to see if we recognize the new command, by
mjr 77:0b96f6867312 2352 // searching for a match in our learned code list.
mjr 77:0b96f6867312 2353 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2354 {
mjr 77:0b96f6867312 2355 // if the protocol and command code from the code
mjr 77:0b96f6867312 2356 // list both match the input, it's a match
mjr 77:0b96f6867312 2357 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 77:0b96f6867312 2358 if (cmdcfg.protocol == c.proId
mjr 77:0b96f6867312 2359 && cmdcfg.code.lo == uint32_t(c.code)
mjr 77:0b96f6867312 2360 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 77:0b96f6867312 2361 {
mjr 77:0b96f6867312 2362 // Found it! Make this the last command, and
mjr 77:0b96f6867312 2363 // remember the starting time.
mjr 77:0b96f6867312 2364 IRCommandIn = i + 1;
mjr 77:0b96f6867312 2365 lastIRToggle = c.toggle;
mjr 77:0b96f6867312 2366 IRTimer.reset();
mjr 77:0b96f6867312 2367
mjr 77:0b96f6867312 2368 // no need to keep searching
mjr 77:0b96f6867312 2369 break;
mjr 77:0b96f6867312 2370 }
mjr 77:0b96f6867312 2371 }
mjr 77:0b96f6867312 2372 }
mjr 77:0b96f6867312 2373 }
mjr 77:0b96f6867312 2374 }
mjr 77:0b96f6867312 2375 }
mjr 77:0b96f6867312 2376
mjr 74:822a92bc11d2 2377
mjr 11:bd9da7088e6e 2378 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2379 //
mjr 11:bd9da7088e6e 2380 // Button input
mjr 11:bd9da7088e6e 2381 //
mjr 11:bd9da7088e6e 2382
mjr 18:5e890ebd0023 2383 // button state
mjr 18:5e890ebd0023 2384 struct ButtonState
mjr 18:5e890ebd0023 2385 {
mjr 38:091e511ce8a0 2386 ButtonState()
mjr 38:091e511ce8a0 2387 {
mjr 53:9b2611964afc 2388 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2389 virtState = 0;
mjr 53:9b2611964afc 2390 dbState = 0;
mjr 38:091e511ce8a0 2391 pulseState = 0;
mjr 53:9b2611964afc 2392 pulseTime = 0;
mjr 38:091e511ce8a0 2393 }
mjr 35:e959ffba78fd 2394
mjr 53:9b2611964afc 2395 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2396 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2397 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2398 //
mjr 53:9b2611964afc 2399 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2400 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2401 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2402 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2403 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2404 void virtPress(bool on)
mjr 53:9b2611964afc 2405 {
mjr 53:9b2611964afc 2406 // Increment or decrement the current state
mjr 53:9b2611964afc 2407 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2408 }
mjr 53:9b2611964afc 2409
mjr 53:9b2611964afc 2410 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2411 TinyDigitalIn di;
mjr 38:091e511ce8a0 2412
mjr 65:739875521aae 2413 // Time of last pulse state transition.
mjr 65:739875521aae 2414 //
mjr 65:739875521aae 2415 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2416 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2417 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2418 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2419 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2420 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2421 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2422 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2423 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2424 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2425 // This software system can't be fooled that way.)
mjr 65:739875521aae 2426 uint32_t pulseTime;
mjr 18:5e890ebd0023 2427
mjr 65:739875521aae 2428 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2429 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2430 uint8_t cfgIndex;
mjr 53:9b2611964afc 2431
mjr 53:9b2611964afc 2432 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2433 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2434 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2435 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2436 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2437 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2438 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2439 // and physical source states.
mjr 53:9b2611964afc 2440 uint8_t virtState;
mjr 38:091e511ce8a0 2441
mjr 38:091e511ce8a0 2442 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2443 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2444 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2445 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2446 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2447 uint8_t dbState;
mjr 38:091e511ce8a0 2448
mjr 65:739875521aae 2449 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2450 uint8_t physState : 1;
mjr 65:739875521aae 2451
mjr 65:739875521aae 2452 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2453 uint8_t logState : 1;
mjr 65:739875521aae 2454
mjr 65:739875521aae 2455 // previous logical on/off state, when keys were last processed for USB
mjr 65:739875521aae 2456 // reports and local effects
mjr 65:739875521aae 2457 uint8_t prevLogState : 1;
mjr 65:739875521aae 2458
mjr 65:739875521aae 2459 // Pulse state
mjr 65:739875521aae 2460 //
mjr 65:739875521aae 2461 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2462 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2463 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2464 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2465 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2466 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2467 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2468 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2469 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2470 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2471 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 65:739875521aae 2472 // option brdiges this gap by generating a toggle key event each time
mjr 65:739875521aae 2473 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2474 //
mjr 38:091e511ce8a0 2475 // Pulse state:
mjr 38:091e511ce8a0 2476 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2477 // 1 -> off
mjr 38:091e511ce8a0 2478 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2479 // 3 -> on
mjr 38:091e511ce8a0 2480 // 4 -> transitioning on-off
mjr 65:739875521aae 2481 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2482
mjr 65:739875521aae 2483 } __attribute__((packed));
mjr 65:739875521aae 2484
mjr 65:739875521aae 2485 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2486 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2487 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2488
mjr 66:2e3583fbd2f4 2489 // Shift button state
mjr 66:2e3583fbd2f4 2490 struct
mjr 66:2e3583fbd2f4 2491 {
mjr 66:2e3583fbd2f4 2492 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 66:2e3583fbd2f4 2493 uint8_t state : 2; // current shift state:
mjr 66:2e3583fbd2f4 2494 // 0 = not shifted
mjr 66:2e3583fbd2f4 2495 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2496 // 2 = shift button down, key pressed
mjr 66:2e3583fbd2f4 2497 uint8_t pulse : 1; // sending pulsed keystroke on release
mjr 66:2e3583fbd2f4 2498 uint32_t pulseTime; // time of start of pulsed keystroke
mjr 66:2e3583fbd2f4 2499 }
mjr 66:2e3583fbd2f4 2500 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2501
mjr 38:091e511ce8a0 2502 // Button data
mjr 38:091e511ce8a0 2503 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2504
mjr 38:091e511ce8a0 2505 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2506 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2507 // modifier keys.
mjr 38:091e511ce8a0 2508 struct
mjr 38:091e511ce8a0 2509 {
mjr 38:091e511ce8a0 2510 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2511 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2512 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2513 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2514 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2515
mjr 38:091e511ce8a0 2516 // Media key state
mjr 38:091e511ce8a0 2517 struct
mjr 38:091e511ce8a0 2518 {
mjr 38:091e511ce8a0 2519 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2520 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2521 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2522
mjr 38:091e511ce8a0 2523 // button scan interrupt ticker
mjr 38:091e511ce8a0 2524 Ticker buttonTicker;
mjr 38:091e511ce8a0 2525
mjr 38:091e511ce8a0 2526 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2527 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2528 void scanButtons()
mjr 38:091e511ce8a0 2529 {
mjr 38:091e511ce8a0 2530 // scan all button input pins
mjr 73:4e8ce0b18915 2531 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2532 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2533 {
mjr 73:4e8ce0b18915 2534 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2535 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2536 bs->dbState = db;
mjr 73:4e8ce0b18915 2537
mjr 73:4e8ce0b18915 2538 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2539 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2540 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2541 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2542 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2543 db &= stable;
mjr 73:4e8ce0b18915 2544 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2545 bs->physState = !db;
mjr 38:091e511ce8a0 2546 }
mjr 38:091e511ce8a0 2547 }
mjr 38:091e511ce8a0 2548
mjr 38:091e511ce8a0 2549 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2550 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2551 // in the physical button state.
mjr 38:091e511ce8a0 2552 Timer buttonTimer;
mjr 12:669df364a565 2553
mjr 65:739875521aae 2554 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2555 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2556 {
mjr 65:739875521aae 2557 // count it
mjr 65:739875521aae 2558 ++nButtons;
mjr 65:739875521aae 2559
mjr 67:c39e66c4e000 2560 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2561 // keyboard interface
mjr 72:884207c0aab0 2562 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2563 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2564 kbKeys = true;
mjr 65:739875521aae 2565 }
mjr 65:739875521aae 2566
mjr 11:bd9da7088e6e 2567 // initialize the button inputs
mjr 35:e959ffba78fd 2568 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2569 {
mjr 66:2e3583fbd2f4 2570 // presume no shift key
mjr 66:2e3583fbd2f4 2571 shiftButton.index = -1;
mjr 66:2e3583fbd2f4 2572
mjr 65:739875521aae 2573 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2574 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2575 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2576 nButtons = 0;
mjr 65:739875521aae 2577 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2578 {
mjr 65:739875521aae 2579 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2580 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2581 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2582 }
mjr 65:739875521aae 2583
mjr 65:739875521aae 2584 // Count virtual buttons
mjr 65:739875521aae 2585
mjr 65:739875521aae 2586 // ZB Launch
mjr 65:739875521aae 2587 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2588 {
mjr 65:739875521aae 2589 // valid - remember the live button index
mjr 65:739875521aae 2590 zblButtonIndex = nButtons;
mjr 65:739875521aae 2591
mjr 65:739875521aae 2592 // count it
mjr 72:884207c0aab0 2593 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2594 }
mjr 65:739875521aae 2595
mjr 65:739875521aae 2596 // Allocate the live button slots
mjr 65:739875521aae 2597 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2598
mjr 65:739875521aae 2599 // Configure the physical inputs
mjr 65:739875521aae 2600 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2601 {
mjr 65:739875521aae 2602 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2603 if (pin != NC)
mjr 65:739875521aae 2604 {
mjr 65:739875521aae 2605 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2606 bs->cfgIndex = i;
mjr 65:739875521aae 2607
mjr 65:739875521aae 2608 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2609 bs->di.assignPin(pin);
mjr 65:739875521aae 2610
mjr 65:739875521aae 2611 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2612 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2613 bs->pulseState = 1;
mjr 65:739875521aae 2614
mjr 66:2e3583fbd2f4 2615 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2616 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2617 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2618 // config slots are left unused.
mjr 66:2e3583fbd2f4 2619 if (cfg.shiftButton == i+1)
mjr 66:2e3583fbd2f4 2620 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2621
mjr 65:739875521aae 2622 // advance to the next button
mjr 65:739875521aae 2623 ++bs;
mjr 65:739875521aae 2624 }
mjr 65:739875521aae 2625 }
mjr 65:739875521aae 2626
mjr 53:9b2611964afc 2627 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2628 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2629 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2630 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2631
mjr 53:9b2611964afc 2632 // ZB Launch Ball button
mjr 65:739875521aae 2633 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2634 {
mjr 65:739875521aae 2635 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2636 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2637 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2638 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2639 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2640 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2641 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2642 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2643
mjr 66:2e3583fbd2f4 2644 // advance to the next button
mjr 65:739875521aae 2645 ++bs;
mjr 11:bd9da7088e6e 2646 }
mjr 12:669df364a565 2647
mjr 38:091e511ce8a0 2648 // start the button scan thread
mjr 38:091e511ce8a0 2649 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2650
mjr 38:091e511ce8a0 2651 // start the button state transition timer
mjr 12:669df364a565 2652 buttonTimer.start();
mjr 11:bd9da7088e6e 2653 }
mjr 11:bd9da7088e6e 2654
mjr 67:c39e66c4e000 2655 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2656 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2657 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2658 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2659 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2660 //
mjr 67:c39e66c4e000 2661 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2662 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2663 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2664 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2665 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2666 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2667 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2668 //
mjr 67:c39e66c4e000 2669 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2670 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2671 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2672 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2673 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2674 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2675 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2676 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2677 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2678 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2679 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2680 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2681 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2682 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2683 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2684 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2685 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2686 };
mjr 77:0b96f6867312 2687
mjr 77:0b96f6867312 2688 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2689 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2690 // states of the button iputs.
mjr 77:0b96f6867312 2691 struct KeyState
mjr 77:0b96f6867312 2692 {
mjr 77:0b96f6867312 2693 KeyState()
mjr 77:0b96f6867312 2694 {
mjr 77:0b96f6867312 2695 // zero all members
mjr 77:0b96f6867312 2696 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2697 }
mjr 77:0b96f6867312 2698
mjr 77:0b96f6867312 2699 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2700 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2701 uint8_t mediakeys;
mjr 77:0b96f6867312 2702
mjr 77:0b96f6867312 2703 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2704 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2705 // USBJoystick.cpp).
mjr 77:0b96f6867312 2706 uint8_t modkeys;
mjr 77:0b96f6867312 2707
mjr 77:0b96f6867312 2708 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2709 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2710 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2711 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2712 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2713 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2714 uint8_t keys[7];
mjr 77:0b96f6867312 2715
mjr 77:0b96f6867312 2716 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2717 int nkeys;
mjr 77:0b96f6867312 2718
mjr 77:0b96f6867312 2719 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2720 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2721 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2722 uint32_t js;
mjr 77:0b96f6867312 2723
mjr 77:0b96f6867312 2724
mjr 77:0b96f6867312 2725 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2726 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2727 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2728 {
mjr 77:0b96f6867312 2729 // add the key according to the type
mjr 77:0b96f6867312 2730 switch (typ)
mjr 77:0b96f6867312 2731 {
mjr 77:0b96f6867312 2732 case BtnTypeJoystick:
mjr 77:0b96f6867312 2733 // joystick button
mjr 77:0b96f6867312 2734 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2735 break;
mjr 77:0b96f6867312 2736
mjr 77:0b96f6867312 2737 case BtnTypeKey:
mjr 77:0b96f6867312 2738 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2739 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2740 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2741 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2742 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2743 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2744 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2745 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2746 {
mjr 77:0b96f6867312 2747 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2748 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2749 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2750 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 2751 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 2752 }
mjr 77:0b96f6867312 2753 else
mjr 77:0b96f6867312 2754 {
mjr 77:0b96f6867312 2755 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 2756 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 2757 // apply, add the key to the key array.
mjr 77:0b96f6867312 2758 if (nkeys < 7)
mjr 77:0b96f6867312 2759 {
mjr 77:0b96f6867312 2760 bool found = false;
mjr 77:0b96f6867312 2761 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 2762 {
mjr 77:0b96f6867312 2763 if (keys[i] == val)
mjr 77:0b96f6867312 2764 {
mjr 77:0b96f6867312 2765 found = true;
mjr 77:0b96f6867312 2766 break;
mjr 77:0b96f6867312 2767 }
mjr 77:0b96f6867312 2768 }
mjr 77:0b96f6867312 2769 if (!found)
mjr 77:0b96f6867312 2770 keys[nkeys++] = val;
mjr 77:0b96f6867312 2771 }
mjr 77:0b96f6867312 2772 }
mjr 77:0b96f6867312 2773 break;
mjr 77:0b96f6867312 2774
mjr 77:0b96f6867312 2775 case BtnTypeMedia:
mjr 77:0b96f6867312 2776 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 2777 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 2778 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 2779 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 2780 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 2781 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 2782 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 2783 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 2784 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 2785 break;
mjr 77:0b96f6867312 2786 }
mjr 77:0b96f6867312 2787 }
mjr 77:0b96f6867312 2788 };
mjr 67:c39e66c4e000 2789
mjr 67:c39e66c4e000 2790
mjr 38:091e511ce8a0 2791 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2792 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2793 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2794 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2795 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2796 {
mjr 77:0b96f6867312 2797 // key state
mjr 77:0b96f6867312 2798 KeyState ks;
mjr 38:091e511ce8a0 2799
mjr 38:091e511ce8a0 2800 // calculate the time since the last run
mjr 53:9b2611964afc 2801 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2802 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2803
mjr 66:2e3583fbd2f4 2804 // check the shift button state
mjr 66:2e3583fbd2f4 2805 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2806 {
mjr 66:2e3583fbd2f4 2807 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 66:2e3583fbd2f4 2808 switch (shiftButton.state)
mjr 66:2e3583fbd2f4 2809 {
mjr 66:2e3583fbd2f4 2810 case 0:
mjr 66:2e3583fbd2f4 2811 // Not shifted. Check if the button is now down: if so,
mjr 66:2e3583fbd2f4 2812 // switch to state 1 (shift button down, no key pressed yet).
mjr 66:2e3583fbd2f4 2813 if (sbs->physState)
mjr 66:2e3583fbd2f4 2814 shiftButton.state = 1;
mjr 66:2e3583fbd2f4 2815 break;
mjr 66:2e3583fbd2f4 2816
mjr 66:2e3583fbd2f4 2817 case 1:
mjr 66:2e3583fbd2f4 2818 // Shift button down, no key pressed yet. If the button is
mjr 66:2e3583fbd2f4 2819 // now up, it counts as an ordinary button press instead of
mjr 66:2e3583fbd2f4 2820 // a shift button press, since the shift function was never
mjr 66:2e3583fbd2f4 2821 // used. Return to unshifted state and start a timed key
mjr 66:2e3583fbd2f4 2822 // pulse event.
mjr 66:2e3583fbd2f4 2823 if (!sbs->physState)
mjr 66:2e3583fbd2f4 2824 {
mjr 66:2e3583fbd2f4 2825 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2826 shiftButton.pulse = 1;
mjr 66:2e3583fbd2f4 2827 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 66:2e3583fbd2f4 2828 }
mjr 66:2e3583fbd2f4 2829 break;
mjr 66:2e3583fbd2f4 2830
mjr 66:2e3583fbd2f4 2831 case 2:
mjr 66:2e3583fbd2f4 2832 // Shift button down, other key was pressed. If the button is
mjr 66:2e3583fbd2f4 2833 // now up, simply clear the shift state without sending a key
mjr 66:2e3583fbd2f4 2834 // press for the shift button itself to the PC. The shift
mjr 66:2e3583fbd2f4 2835 // function was used, so its ordinary key press function is
mjr 66:2e3583fbd2f4 2836 // suppressed.
mjr 66:2e3583fbd2f4 2837 if (!sbs->physState)
mjr 66:2e3583fbd2f4 2838 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2839 break;
mjr 66:2e3583fbd2f4 2840 }
mjr 66:2e3583fbd2f4 2841 }
mjr 38:091e511ce8a0 2842
mjr 11:bd9da7088e6e 2843 // scan the button list
mjr 18:5e890ebd0023 2844 ButtonState *bs = buttonState;
mjr 65:739875521aae 2845 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2846 {
mjr 77:0b96f6867312 2847 // get the config entry for the button
mjr 77:0b96f6867312 2848 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 2849
mjr 66:2e3583fbd2f4 2850 // Check the button type:
mjr 66:2e3583fbd2f4 2851 // - shift button
mjr 66:2e3583fbd2f4 2852 // - pulsed button
mjr 66:2e3583fbd2f4 2853 // - regular button
mjr 66:2e3583fbd2f4 2854 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2855 {
mjr 66:2e3583fbd2f4 2856 // This is the shift button. Its logical state for key
mjr 66:2e3583fbd2f4 2857 // reporting purposes is controlled by the shift buttton
mjr 66:2e3583fbd2f4 2858 // pulse timer. If we're in a pulse, its logical state
mjr 66:2e3583fbd2f4 2859 // is pressed.
mjr 66:2e3583fbd2f4 2860 if (shiftButton.pulse)
mjr 66:2e3583fbd2f4 2861 {
mjr 66:2e3583fbd2f4 2862 // deduct the current interval from the pulse time, ending
mjr 66:2e3583fbd2f4 2863 // the pulse if the time has expired
mjr 66:2e3583fbd2f4 2864 if (shiftButton.pulseTime > dt)
mjr 66:2e3583fbd2f4 2865 shiftButton.pulseTime -= dt;
mjr 66:2e3583fbd2f4 2866 else
mjr 66:2e3583fbd2f4 2867 shiftButton.pulse = 0;
mjr 66:2e3583fbd2f4 2868 }
mjr 66:2e3583fbd2f4 2869
mjr 66:2e3583fbd2f4 2870 // the button is logically pressed if we're in a pulse
mjr 66:2e3583fbd2f4 2871 bs->logState = shiftButton.pulse;
mjr 66:2e3583fbd2f4 2872 }
mjr 66:2e3583fbd2f4 2873 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2874 {
mjr 38:091e511ce8a0 2875 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2876 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2877 {
mjr 53:9b2611964afc 2878 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2879 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2880 }
mjr 53:9b2611964afc 2881 else
mjr 53:9b2611964afc 2882 {
mjr 53:9b2611964afc 2883 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2884 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2885 switch (bs->pulseState)
mjr 18:5e890ebd0023 2886 {
mjr 38:091e511ce8a0 2887 case 1:
mjr 38:091e511ce8a0 2888 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2889 if (bs->physState)
mjr 53:9b2611964afc 2890 {
mjr 38:091e511ce8a0 2891 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2892 bs->pulseState = 2;
mjr 53:9b2611964afc 2893 bs->logState = 1;
mjr 38:091e511ce8a0 2894 }
mjr 38:091e511ce8a0 2895 break;
mjr 18:5e890ebd0023 2896
mjr 38:091e511ce8a0 2897 case 2:
mjr 38:091e511ce8a0 2898 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2899 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2900 // change in state in the logical button
mjr 38:091e511ce8a0 2901 bs->pulseState = 3;
mjr 38:091e511ce8a0 2902 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2903 bs->logState = 0;
mjr 38:091e511ce8a0 2904 break;
mjr 38:091e511ce8a0 2905
mjr 38:091e511ce8a0 2906 case 3:
mjr 38:091e511ce8a0 2907 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2908 if (!bs->physState)
mjr 53:9b2611964afc 2909 {
mjr 38:091e511ce8a0 2910 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2911 bs->pulseState = 4;
mjr 53:9b2611964afc 2912 bs->logState = 1;
mjr 38:091e511ce8a0 2913 }
mjr 38:091e511ce8a0 2914 break;
mjr 38:091e511ce8a0 2915
mjr 38:091e511ce8a0 2916 case 4:
mjr 38:091e511ce8a0 2917 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2918 bs->pulseState = 1;
mjr 38:091e511ce8a0 2919 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2920 bs->logState = 0;
mjr 38:091e511ce8a0 2921 break;
mjr 18:5e890ebd0023 2922 }
mjr 18:5e890ebd0023 2923 }
mjr 38:091e511ce8a0 2924 }
mjr 38:091e511ce8a0 2925 else
mjr 38:091e511ce8a0 2926 {
mjr 38:091e511ce8a0 2927 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2928 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2929 }
mjr 77:0b96f6867312 2930
mjr 77:0b96f6867312 2931 // Determine if we're going to use the shifted version of the
mjr 77:0b96f6867312 2932 // button. We're using the shifted version if the shift button
mjr 77:0b96f6867312 2933 // is down AND the button has ANY shifted meaning - a key assignment,
mjr 77:0b96f6867312 2934 // a Night Mode toggle assignment, or an IR code. If the button
mjr 77:0b96f6867312 2935 // doesn't have any meaning at all in shifted mode, the base version
mjr 77:0b96f6867312 2936 // of the button applies whether or not the shift button is down.
mjr 77:0b96f6867312 2937 //
mjr 77:0b96f6867312 2938 // Note that the test for Night Mode is a bit tricky. The shifted
mjr 77:0b96f6867312 2939 // version of the button is the Night Mode toggle if the button matches
mjr 77:0b96f6867312 2940 // the Night Mode button index, AND its flags are set with "toggle
mjr 77:0b96f6867312 2941 // mode ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 77:0b96f6867312 2942 // That means the button flags & 0x03 must equal 0x02.
mjr 77:0b96f6867312 2943 bool useShift =
mjr 77:0b96f6867312 2944 (shiftButton.state != 0
mjr 77:0b96f6867312 2945 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 2946 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 2947 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 2948
mjr 77:0b96f6867312 2949 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 2950 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 2951 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 2952 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 2953 // been used by some other button press that has a shifted meaning").
mjr 77:0b96f6867312 2954 if (useShift && shiftButton.state == 1)
mjr 77:0b96f6867312 2955 shiftButton.state = 2;
mjr 35:e959ffba78fd 2956
mjr 38:091e511ce8a0 2957 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2958 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2959 {
mjr 77:0b96f6867312 2960 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 2961 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2962 {
mjr 77:0b96f6867312 2963 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 2964 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 2965 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 2966 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 2967 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 2968 // the night mode state.
mjr 77:0b96f6867312 2969 //
mjr 77:0b96f6867312 2970 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 2971 // mode. Shifting only works for toggle mode.
mjr 53:9b2611964afc 2972 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 2973 {
mjr 77:0b96f6867312 2974 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 2975 // current switch state.
mjr 53:9b2611964afc 2976 setNightMode(bs->logState);
mjr 53:9b2611964afc 2977 }
mjr 53:9b2611964afc 2978 else
mjr 53:9b2611964afc 2979 {
mjr 77:0b96f6867312 2980 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 2981 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 2982 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 2983 // OFF to ON.
mjr 66:2e3583fbd2f4 2984 //
mjr 77:0b96f6867312 2985 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 2986 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 2987 // button.
mjr 77:0b96f6867312 2988 bool pressed;
mjr 66:2e3583fbd2f4 2989 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2990 {
mjr 77:0b96f6867312 2991 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 2992 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 2993 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 2994 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 2995 }
mjr 77:0b96f6867312 2996 else
mjr 77:0b96f6867312 2997 {
mjr 77:0b96f6867312 2998 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 2999 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3000 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3001 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3002 }
mjr 66:2e3583fbd2f4 3003
mjr 66:2e3583fbd2f4 3004 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3005 // toggle night mode
mjr 66:2e3583fbd2f4 3006 if (pressed)
mjr 53:9b2611964afc 3007 toggleNightMode();
mjr 53:9b2611964afc 3008 }
mjr 35:e959ffba78fd 3009 }
mjr 38:091e511ce8a0 3010
mjr 77:0b96f6867312 3011 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3012 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3013 if (irc != 0)
mjr 77:0b96f6867312 3014 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3015
mjr 38:091e511ce8a0 3016 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3017 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3018 }
mjr 38:091e511ce8a0 3019
mjr 53:9b2611964afc 3020 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3021 // key state list
mjr 53:9b2611964afc 3022 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3023 {
mjr 70:9f58735a1732 3024 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3025 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3026 uint8_t typ, val;
mjr 77:0b96f6867312 3027 if (useShift)
mjr 66:2e3583fbd2f4 3028 {
mjr 77:0b96f6867312 3029 typ = bc->typ2;
mjr 77:0b96f6867312 3030 val = bc->val2;
mjr 66:2e3583fbd2f4 3031 }
mjr 77:0b96f6867312 3032 else
mjr 77:0b96f6867312 3033 {
mjr 77:0b96f6867312 3034 typ = bc->typ;
mjr 77:0b96f6867312 3035 val = bc->val;
mjr 77:0b96f6867312 3036 }
mjr 77:0b96f6867312 3037
mjr 70:9f58735a1732 3038 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3039 // the keyboard or joystick event.
mjr 77:0b96f6867312 3040 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3041 }
mjr 11:bd9da7088e6e 3042 }
mjr 77:0b96f6867312 3043
mjr 77:0b96f6867312 3044 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3045 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3046 // the IR key.
mjr 77:0b96f6867312 3047 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3048 {
mjr 77:0b96f6867312 3049 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3050 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3051 }
mjr 77:0b96f6867312 3052
mjr 77:0b96f6867312 3053 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3054 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3055
mjr 77:0b96f6867312 3056 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3057 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3058 jsButtons = ks.js;
mjr 77:0b96f6867312 3059
mjr 77:0b96f6867312 3060 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3061 // something changes)
mjr 77:0b96f6867312 3062 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3063 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3064 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3065 {
mjr 35:e959ffba78fd 3066 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3067 kbState.changed = true;
mjr 77:0b96f6867312 3068 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3069 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3070 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3071 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3072 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3073 }
mjr 35:e959ffba78fd 3074 else {
mjr 35:e959ffba78fd 3075 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3076 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3077 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3078 }
mjr 35:e959ffba78fd 3079 }
mjr 35:e959ffba78fd 3080
mjr 77:0b96f6867312 3081 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3082 // something changes)
mjr 77:0b96f6867312 3083 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3084 {
mjr 77:0b96f6867312 3085 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3086 mediaState.changed = true;
mjr 77:0b96f6867312 3087 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3088 }
mjr 11:bd9da7088e6e 3089 }
mjr 11:bd9da7088e6e 3090
mjr 73:4e8ce0b18915 3091 // Send a button status report
mjr 73:4e8ce0b18915 3092 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3093 {
mjr 73:4e8ce0b18915 3094 // start with all buttons off
mjr 73:4e8ce0b18915 3095 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3096 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3097
mjr 73:4e8ce0b18915 3098 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3099 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3100 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3101 {
mjr 73:4e8ce0b18915 3102 // get the physical state
mjr 73:4e8ce0b18915 3103 int b = bs->physState;
mjr 73:4e8ce0b18915 3104
mjr 73:4e8ce0b18915 3105 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3106 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3107 int si = idx / 8;
mjr 73:4e8ce0b18915 3108 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3109 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3110 }
mjr 73:4e8ce0b18915 3111
mjr 73:4e8ce0b18915 3112 // send the report
mjr 73:4e8ce0b18915 3113 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3114 }
mjr 73:4e8ce0b18915 3115
mjr 5:a70c0bce770d 3116 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3117 //
mjr 5:a70c0bce770d 3118 // Customization joystick subbclass
mjr 5:a70c0bce770d 3119 //
mjr 5:a70c0bce770d 3120
mjr 5:a70c0bce770d 3121 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3122 {
mjr 5:a70c0bce770d 3123 public:
mjr 35:e959ffba78fd 3124 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 3125 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 3126 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 3127 {
mjr 54:fd77a6b2f76c 3128 sleeping_ = false;
mjr 54:fd77a6b2f76c 3129 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3130 timer_.start();
mjr 54:fd77a6b2f76c 3131 }
mjr 54:fd77a6b2f76c 3132
mjr 54:fd77a6b2f76c 3133 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3134 void diagFlash()
mjr 54:fd77a6b2f76c 3135 {
mjr 54:fd77a6b2f76c 3136 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3137 {
mjr 54:fd77a6b2f76c 3138 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3139 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3140 {
mjr 54:fd77a6b2f76c 3141 // short red flash
mjr 54:fd77a6b2f76c 3142 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3143 wait_us(50000);
mjr 54:fd77a6b2f76c 3144 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3145 wait_us(50000);
mjr 54:fd77a6b2f76c 3146 }
mjr 54:fd77a6b2f76c 3147 }
mjr 5:a70c0bce770d 3148 }
mjr 5:a70c0bce770d 3149
mjr 5:a70c0bce770d 3150 // are we connected?
mjr 5:a70c0bce770d 3151 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3152
mjr 54:fd77a6b2f76c 3153 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3154 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3155 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3156 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3157 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3158
mjr 54:fd77a6b2f76c 3159 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3160 //
mjr 54:fd77a6b2f76c 3161 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3162 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3163 // other way.
mjr 54:fd77a6b2f76c 3164 //
mjr 54:fd77a6b2f76c 3165 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3166 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3167 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3168 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3169 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3170 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3171 //
mjr 54:fd77a6b2f76c 3172 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3173 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3174 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3175 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3176 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3177 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3178 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3179 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3180 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3181 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3182 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3183 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3184 // is effectively dead.
mjr 54:fd77a6b2f76c 3185 //
mjr 54:fd77a6b2f76c 3186 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3187 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3188 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3189 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3190 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3191 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3192 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3193 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3194 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3195 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3196 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3197 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3198 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3199 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3200 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3201 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3202 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3203 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3204 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3205 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3206 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3207 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3208 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3209 // a disconnect.
mjr 54:fd77a6b2f76c 3210 //
mjr 54:fd77a6b2f76c 3211 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3212 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3213 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3214 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3215 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3216 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3217 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3218 //
mjr 54:fd77a6b2f76c 3219 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3220 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3221 //
mjr 54:fd77a6b2f76c 3222 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3223 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3224 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3225 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3226 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3227 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3228 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3229 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3230 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3231 // reliable in practice.
mjr 54:fd77a6b2f76c 3232 //
mjr 54:fd77a6b2f76c 3233 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3234 //
mjr 54:fd77a6b2f76c 3235 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3236 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3237 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3238 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3239 // return.
mjr 54:fd77a6b2f76c 3240 //
mjr 54:fd77a6b2f76c 3241 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3242 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3243 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3244 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3245 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3246 //
mjr 54:fd77a6b2f76c 3247 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3248 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3249 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3250 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3251 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3252 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3253 //
mjr 54:fd77a6b2f76c 3254 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3255 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3256 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3257 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3258 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3259 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3260 // freezes over.
mjr 54:fd77a6b2f76c 3261 //
mjr 54:fd77a6b2f76c 3262 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3263 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3264 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3265 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3266 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3267 void recoverConnection()
mjr 54:fd77a6b2f76c 3268 {
mjr 54:fd77a6b2f76c 3269 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3270 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3271 {
mjr 54:fd77a6b2f76c 3272 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3273 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3274 {
mjr 54:fd77a6b2f76c 3275 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3276 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3277 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3278 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3279 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3280 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3281 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3282 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3283 __disable_irq();
mjr 54:fd77a6b2f76c 3284 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3285 {
mjr 54:fd77a6b2f76c 3286 connect(false);
mjr 54:fd77a6b2f76c 3287 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3288 done = true;
mjr 54:fd77a6b2f76c 3289 }
mjr 54:fd77a6b2f76c 3290 __enable_irq();
mjr 54:fd77a6b2f76c 3291 }
mjr 54:fd77a6b2f76c 3292 }
mjr 54:fd77a6b2f76c 3293 }
mjr 5:a70c0bce770d 3294
mjr 5:a70c0bce770d 3295 protected:
mjr 54:fd77a6b2f76c 3296 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3297 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3298 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3299 //
mjr 54:fd77a6b2f76c 3300 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3301 //
mjr 54:fd77a6b2f76c 3302 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3303 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3304 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3305 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3306 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3307 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3308 {
mjr 54:fd77a6b2f76c 3309 // note the new state
mjr 54:fd77a6b2f76c 3310 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3311
mjr 54:fd77a6b2f76c 3312 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3313 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3314 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3315 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3316 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3317 {
mjr 54:fd77a6b2f76c 3318 disconnect();
mjr 54:fd77a6b2f76c 3319 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3320 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3321 }
mjr 54:fd77a6b2f76c 3322 }
mjr 54:fd77a6b2f76c 3323
mjr 54:fd77a6b2f76c 3324 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3325 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3326
mjr 54:fd77a6b2f76c 3327 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3328 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3329
mjr 54:fd77a6b2f76c 3330 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3331 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3332
mjr 54:fd77a6b2f76c 3333 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3334 Timer timer_;
mjr 5:a70c0bce770d 3335 };
mjr 5:a70c0bce770d 3336
mjr 5:a70c0bce770d 3337 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3338 //
mjr 5:a70c0bce770d 3339 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3340 //
mjr 5:a70c0bce770d 3341
mjr 5:a70c0bce770d 3342 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3343 //
mjr 5:a70c0bce770d 3344 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3345 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3346 // automatic calibration.
mjr 5:a70c0bce770d 3347 //
mjr 77:0b96f6867312 3348 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3349 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3350 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3351 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3352 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3353 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3354 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3355 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3356 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3357 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3358 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3359 //
mjr 77:0b96f6867312 3360 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3361 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3362 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3363 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3364 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3365 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3366 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3367 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3368 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3369 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3370 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3371 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3372 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3373 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3374 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3375 // rather than change it across the board.
mjr 5:a70c0bce770d 3376 //
mjr 6:cc35eb643e8f 3377 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3378 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3379 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3380 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3381 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3382 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3383 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3384 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3385 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3386 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3387 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3388 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3389 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3390 // of nudging, say).
mjr 5:a70c0bce770d 3391 //
mjr 5:a70c0bce770d 3392
mjr 17:ab3cec0c8bf4 3393 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3394 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3395
mjr 17:ab3cec0c8bf4 3396 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3397 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3398 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3399
mjr 17:ab3cec0c8bf4 3400 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3401 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3402 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3403 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3404
mjr 17:ab3cec0c8bf4 3405
mjr 6:cc35eb643e8f 3406 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3407 struct AccHist
mjr 5:a70c0bce770d 3408 {
mjr 77:0b96f6867312 3409 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3410 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3411 {
mjr 6:cc35eb643e8f 3412 // save the raw position
mjr 6:cc35eb643e8f 3413 this->x = x;
mjr 6:cc35eb643e8f 3414 this->y = y;
mjr 77:0b96f6867312 3415 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3416 }
mjr 6:cc35eb643e8f 3417
mjr 6:cc35eb643e8f 3418 // reading for this entry
mjr 77:0b96f6867312 3419 int x, y;
mjr 77:0b96f6867312 3420
mjr 77:0b96f6867312 3421 // (distance from previous entry) squared
mjr 77:0b96f6867312 3422 int dsq;
mjr 5:a70c0bce770d 3423
mjr 6:cc35eb643e8f 3424 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3425 int xtot, ytot;
mjr 6:cc35eb643e8f 3426 int cnt;
mjr 6:cc35eb643e8f 3427
mjr 77:0b96f6867312 3428 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3429 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3430 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3431 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3432
mjr 77:0b96f6867312 3433 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3434 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3435 };
mjr 5:a70c0bce770d 3436
mjr 5:a70c0bce770d 3437 // accelerometer wrapper class
mjr 3:3514575d4f86 3438 class Accel
mjr 3:3514575d4f86 3439 {
mjr 3:3514575d4f86 3440 public:
mjr 77:0b96f6867312 3441 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin, int range)
mjr 77:0b96f6867312 3442 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3443 {
mjr 5:a70c0bce770d 3444 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3445 irqPin_ = irqPin;
mjr 77:0b96f6867312 3446
mjr 77:0b96f6867312 3447 // remember the range
mjr 77:0b96f6867312 3448 range_ = range;
mjr 5:a70c0bce770d 3449
mjr 5:a70c0bce770d 3450 // reset and initialize
mjr 5:a70c0bce770d 3451 reset();
mjr 5:a70c0bce770d 3452 }
mjr 5:a70c0bce770d 3453
mjr 5:a70c0bce770d 3454 void reset()
mjr 5:a70c0bce770d 3455 {
mjr 6:cc35eb643e8f 3456 // clear the center point
mjr 77:0b96f6867312 3457 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3458
mjr 77:0b96f6867312 3459 // start the auto-centering timer
mjr 5:a70c0bce770d 3460 tCenter_.start();
mjr 5:a70c0bce770d 3461 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3462
mjr 5:a70c0bce770d 3463 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3464 mma_.init();
mjr 77:0b96f6867312 3465
mjr 77:0b96f6867312 3466 // set the range
mjr 77:0b96f6867312 3467 mma_.setRange(
mjr 77:0b96f6867312 3468 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3469 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3470 2);
mjr 6:cc35eb643e8f 3471
mjr 77:0b96f6867312 3472 // set the average accumulators to zero
mjr 77:0b96f6867312 3473 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3474 nSum_ = 0;
mjr 3:3514575d4f86 3475
mjr 3:3514575d4f86 3476 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3477 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3478 }
mjr 3:3514575d4f86 3479
mjr 77:0b96f6867312 3480 void poll()
mjr 76:7f5912b6340e 3481 {
mjr 77:0b96f6867312 3482 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3483 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3484 {
mjr 77:0b96f6867312 3485 int x, y, z;
mjr 77:0b96f6867312 3486 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3487
mjr 77:0b96f6867312 3488 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3489 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3490 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3491 ++nSum_;
mjr 77:0b96f6867312 3492
mjr 77:0b96f6867312 3493 // store the updates
mjr 77:0b96f6867312 3494 ax_ = x;
mjr 77:0b96f6867312 3495 ay_ = y;
mjr 77:0b96f6867312 3496 az_ = z;
mjr 77:0b96f6867312 3497 }
mjr 76:7f5912b6340e 3498 }
mjr 77:0b96f6867312 3499
mjr 9:fd65b0a94720 3500 void get(int &x, int &y)
mjr 3:3514575d4f86 3501 {
mjr 77:0b96f6867312 3502 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3503 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3504 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3505 int nSum = nSum_;
mjr 6:cc35eb643e8f 3506
mjr 77:0b96f6867312 3507 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3508 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3509 nSum_ = 0;
mjr 77:0b96f6867312 3510
mjr 77:0b96f6867312 3511 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3512 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3513 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3514
mjr 77:0b96f6867312 3515 // check for auto-centering every so often
mjr 77:0b96f6867312 3516 if (tCenter_.read_us() > 1000000)
mjr 77:0b96f6867312 3517 {
mjr 77:0b96f6867312 3518 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3519 AccHist *prv = p;
mjr 77:0b96f6867312 3520 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3521 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3522 iAccPrv_ = 0;
mjr 77:0b96f6867312 3523 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3524 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3525
mjr 77:0b96f6867312 3526 // if we have a full complement, check for stability
mjr 77:0b96f6867312 3527 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3528 {
mjr 77:0b96f6867312 3529 // check if we've been stable for all recent samples
mjr 77:0b96f6867312 3530 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3531 AccHist *p0 = accPrv_;
mjr 77:0b96f6867312 3532 if (p0[0].dsq < accTol
mjr 77:0b96f6867312 3533 && p0[1].dsq < accTol
mjr 77:0b96f6867312 3534 && p0[2].dsq < accTol
mjr 77:0b96f6867312 3535 && p0[3].dsq < accTol
mjr 77:0b96f6867312 3536 && p0[4].dsq < accTol)
mjr 77:0b96f6867312 3537 {
mjr 77:0b96f6867312 3538 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3539 // the samples over the rest period
mjr 77:0b96f6867312 3540 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3541 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 77:0b96f6867312 3542 }
mjr 77:0b96f6867312 3543 }
mjr 77:0b96f6867312 3544 else
mjr 77:0b96f6867312 3545 {
mjr 77:0b96f6867312 3546 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3547 ++nAccPrv_;
mjr 77:0b96f6867312 3548 }
mjr 6:cc35eb643e8f 3549
mjr 77:0b96f6867312 3550 // clear the new item's running totals
mjr 77:0b96f6867312 3551 p->clearAvg();
mjr 5:a70c0bce770d 3552
mjr 77:0b96f6867312 3553 // reset the timer
mjr 77:0b96f6867312 3554 tCenter_.reset();
mjr 77:0b96f6867312 3555 }
mjr 5:a70c0bce770d 3556
mjr 77:0b96f6867312 3557 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3558 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3559 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3560
mjr 6:cc35eb643e8f 3561 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3562 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3563 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3564 #endif
mjr 77:0b96f6867312 3565 }
mjr 29:582472d0bc57 3566
mjr 3:3514575d4f86 3567 private:
mjr 6:cc35eb643e8f 3568 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3569 int rawToReport(int v)
mjr 5:a70c0bce770d 3570 {
mjr 77:0b96f6867312 3571 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3572 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3573 // so their scale is 2^13.
mjr 77:0b96f6867312 3574 //
mjr 77:0b96f6867312 3575 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3576 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3577 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3578 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3579 int i = v*JOYMAX;
mjr 77:0b96f6867312 3580 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3581
mjr 6:cc35eb643e8f 3582 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3583 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3584 static const int filter[] = {
mjr 6:cc35eb643e8f 3585 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3586 0,
mjr 6:cc35eb643e8f 3587 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3588 };
mjr 6:cc35eb643e8f 3589 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3590 }
mjr 5:a70c0bce770d 3591
mjr 3:3514575d4f86 3592 // underlying accelerometer object
mjr 3:3514575d4f86 3593 MMA8451Q mma_;
mjr 3:3514575d4f86 3594
mjr 77:0b96f6867312 3595 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3596 // scale -8192..+8191
mjr 77:0b96f6867312 3597 int ax_, ay_, az_;
mjr 77:0b96f6867312 3598
mjr 77:0b96f6867312 3599 // running sum of readings since last get()
mjr 77:0b96f6867312 3600 int xSum_, ySum_;
mjr 77:0b96f6867312 3601
mjr 77:0b96f6867312 3602 // number of readings since last get()
mjr 77:0b96f6867312 3603 int nSum_;
mjr 6:cc35eb643e8f 3604
mjr 6:cc35eb643e8f 3605 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3606 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3607 // at rest.
mjr 77:0b96f6867312 3608 int cx_, cy_;
mjr 77:0b96f6867312 3609
mjr 77:0b96f6867312 3610 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3611 uint8_t range_;
mjr 77:0b96f6867312 3612
mjr 77:0b96f6867312 3613 // atuo-centering timer
mjr 5:a70c0bce770d 3614 Timer tCenter_;
mjr 6:cc35eb643e8f 3615
mjr 6:cc35eb643e8f 3616 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3617 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3618 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3619 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3620 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3621 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3622 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3623 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3624 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3625 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3626 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3627 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 3628 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 3629 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 3630 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3631
mjr 5:a70c0bce770d 3632 // interurupt pin name
mjr 5:a70c0bce770d 3633 PinName irqPin_;
mjr 3:3514575d4f86 3634 };
mjr 3:3514575d4f86 3635
mjr 5:a70c0bce770d 3636 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3637 //
mjr 14:df700b22ca08 3638 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3639 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3640 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3641 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3642 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3643 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3644 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3645 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 3646 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 3647 //
mjr 14:df700b22ca08 3648 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 3649 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 3650 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 3651 //
mjr 5:a70c0bce770d 3652 void clear_i2c()
mjr 5:a70c0bce770d 3653 {
mjr 38:091e511ce8a0 3654 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 3655 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 3656 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 3657
mjr 5:a70c0bce770d 3658 // clock the SCL 9 times
mjr 5:a70c0bce770d 3659 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 3660 {
mjr 5:a70c0bce770d 3661 scl = 1;
mjr 5:a70c0bce770d 3662 wait_us(20);
mjr 5:a70c0bce770d 3663 scl = 0;
mjr 5:a70c0bce770d 3664 wait_us(20);
mjr 5:a70c0bce770d 3665 }
mjr 5:a70c0bce770d 3666 }
mjr 76:7f5912b6340e 3667
mjr 76:7f5912b6340e 3668
mjr 14:df700b22ca08 3669 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 3670 //
mjr 33:d832bcab089e 3671 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 3672 // for a given interval before allowing an update.
mjr 33:d832bcab089e 3673 //
mjr 33:d832bcab089e 3674 class Debouncer
mjr 33:d832bcab089e 3675 {
mjr 33:d832bcab089e 3676 public:
mjr 33:d832bcab089e 3677 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 3678 {
mjr 33:d832bcab089e 3679 t.start();
mjr 33:d832bcab089e 3680 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 3681 this->tmin = tmin;
mjr 33:d832bcab089e 3682 }
mjr 33:d832bcab089e 3683
mjr 33:d832bcab089e 3684 // Get the current stable value
mjr 33:d832bcab089e 3685 bool val() const { return stable; }
mjr 33:d832bcab089e 3686
mjr 33:d832bcab089e 3687 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 3688 // input device.
mjr 33:d832bcab089e 3689 void sampleIn(bool val)
mjr 33:d832bcab089e 3690 {
mjr 33:d832bcab089e 3691 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 3692 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 3693 // on the sample reader.
mjr 33:d832bcab089e 3694 if (val != prv)
mjr 33:d832bcab089e 3695 {
mjr 33:d832bcab089e 3696 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 3697 t.reset();
mjr 33:d832bcab089e 3698
mjr 33:d832bcab089e 3699 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 3700 prv = val;
mjr 33:d832bcab089e 3701 }
mjr 33:d832bcab089e 3702 else if (val != stable)
mjr 33:d832bcab089e 3703 {
mjr 33:d832bcab089e 3704 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 3705 // and different from the stable value. This means that
mjr 33:d832bcab089e 3706 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 3707 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 3708 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 3709 if (t.read() > tmin)
mjr 33:d832bcab089e 3710 stable = val;
mjr 33:d832bcab089e 3711 }
mjr 33:d832bcab089e 3712 }
mjr 33:d832bcab089e 3713
mjr 33:d832bcab089e 3714 private:
mjr 33:d832bcab089e 3715 // current stable value
mjr 33:d832bcab089e 3716 bool stable;
mjr 33:d832bcab089e 3717
mjr 33:d832bcab089e 3718 // last raw sample value
mjr 33:d832bcab089e 3719 bool prv;
mjr 33:d832bcab089e 3720
mjr 33:d832bcab089e 3721 // elapsed time since last raw input change
mjr 33:d832bcab089e 3722 Timer t;
mjr 33:d832bcab089e 3723
mjr 33:d832bcab089e 3724 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 3725 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 3726 float tmin;
mjr 33:d832bcab089e 3727 };
mjr 33:d832bcab089e 3728
mjr 33:d832bcab089e 3729
mjr 33:d832bcab089e 3730 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 3731 //
mjr 33:d832bcab089e 3732 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 3733 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 3734 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 3735 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 3736 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 3737 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 3738 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 3739 //
mjr 33:d832bcab089e 3740 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 3741 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 3742 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 3743 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 3744 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 3745 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 3746 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 3747 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 3748 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 3749 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 3750 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 3751 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 3752 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 3753 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 3754 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 3755 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 3756 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 3757 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 3758 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 3759 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 3760 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 3761 //
mjr 40:cc0d9814522b 3762 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 3763 // of tricky but likely scenarios:
mjr 33:d832bcab089e 3764 //
mjr 33:d832bcab089e 3765 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 3766 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 3767 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 3768 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 3769 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 3770 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 3771 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 3772 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 3773 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 3774 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 3775 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 3776 //
mjr 33:d832bcab089e 3777 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 3778 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 3779 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 3780 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 3781 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 3782 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 3783 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 3784 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 3785 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 3786 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 3787 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 3788 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 3789 // first check.
mjr 33:d832bcab089e 3790 //
mjr 33:d832bcab089e 3791 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 3792 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 3793 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 3794 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 3795 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 3796 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 3797 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 3798 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 3799 //
mjr 33:d832bcab089e 3800
mjr 77:0b96f6867312 3801 // Current PSU2 power state:
mjr 33:d832bcab089e 3802 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 3803 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 3804 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 3805 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 3806 // 5 -> TV relay on
mjr 77:0b96f6867312 3807 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 3808 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 3809
mjr 73:4e8ce0b18915 3810 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 3811 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 3812 // separate state for each:
mjr 73:4e8ce0b18915 3813 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 3814 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 3815 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 3816 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 3817 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 3818
mjr 77:0b96f6867312 3819 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 3820 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 3821 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 3822 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 3823 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 3824 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 3825 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 3826 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 3827 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 3828 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 3829 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 3830
mjr 77:0b96f6867312 3831 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 3832 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 3833
mjr 35:e959ffba78fd 3834 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 3835 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 3836 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 3837
mjr 73:4e8ce0b18915 3838 // Apply the current TV relay state
mjr 73:4e8ce0b18915 3839 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 3840 {
mjr 73:4e8ce0b18915 3841 // update the state
mjr 73:4e8ce0b18915 3842 if (state)
mjr 73:4e8ce0b18915 3843 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 3844 else
mjr 73:4e8ce0b18915 3845 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 3846
mjr 73:4e8ce0b18915 3847 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 3848 if (tv_relay != 0)
mjr 73:4e8ce0b18915 3849 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 3850 }
mjr 35:e959ffba78fd 3851
mjr 77:0b96f6867312 3852 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 3853 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 3854 // functions.
mjr 77:0b96f6867312 3855 Timer powerStatusTimer;
mjr 77:0b96f6867312 3856 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 3857 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 3858 {
mjr 77:0b96f6867312 3859 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 3860 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 3861 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 3862 // skip this whole routine.
mjr 77:0b96f6867312 3863 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 3864 return;
mjr 77:0b96f6867312 3865
mjr 77:0b96f6867312 3866 // reset the update timer for next time
mjr 77:0b96f6867312 3867 powerStatusTimer.reset();
mjr 77:0b96f6867312 3868
mjr 77:0b96f6867312 3869 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 3870 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 3871 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 3872 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 3873 static Timer tv_timer;
mjr 35:e959ffba78fd 3874
mjr 33:d832bcab089e 3875 // Check our internal state
mjr 33:d832bcab089e 3876 switch (psu2_state)
mjr 33:d832bcab089e 3877 {
mjr 33:d832bcab089e 3878 case 1:
mjr 33:d832bcab089e 3879 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 3880 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 3881 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 3882 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 3883 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 3884 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 3885 {
mjr 33:d832bcab089e 3886 // switch to OFF state
mjr 33:d832bcab089e 3887 psu2_state = 2;
mjr 33:d832bcab089e 3888
mjr 33:d832bcab089e 3889 // try setting the latch
mjr 35:e959ffba78fd 3890 psu2_status_set->write(1);
mjr 33:d832bcab089e 3891 }
mjr 77:0b96f6867312 3892 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3893 break;
mjr 33:d832bcab089e 3894
mjr 33:d832bcab089e 3895 case 2:
mjr 33:d832bcab089e 3896 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 3897 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 3898 psu2_status_set->write(0);
mjr 33:d832bcab089e 3899 psu2_state = 3;
mjr 77:0b96f6867312 3900 powerTimerDiagState = 0;
mjr 33:d832bcab089e 3901 break;
mjr 33:d832bcab089e 3902
mjr 33:d832bcab089e 3903 case 3:
mjr 33:d832bcab089e 3904 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 3905 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 3906 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 3907 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 3908 if (psu2_status_sense->read())
mjr 33:d832bcab089e 3909 {
mjr 33:d832bcab089e 3910 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 3911 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 3912 tv_timer.reset();
mjr 33:d832bcab089e 3913 tv_timer.start();
mjr 33:d832bcab089e 3914 psu2_state = 4;
mjr 73:4e8ce0b18915 3915
mjr 73:4e8ce0b18915 3916 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 3917 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3918 }
mjr 33:d832bcab089e 3919 else
mjr 33:d832bcab089e 3920 {
mjr 33:d832bcab089e 3921 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 3922 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 3923 // was turned on since the last check.
mjr 35:e959ffba78fd 3924 psu2_status_set->write(1);
mjr 33:d832bcab089e 3925 psu2_state = 2;
mjr 33:d832bcab089e 3926 }
mjr 33:d832bcab089e 3927 break;
mjr 33:d832bcab089e 3928
mjr 33:d832bcab089e 3929 case 4:
mjr 77:0b96f6867312 3930 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 3931 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 3932 // off again before the countdown finished.
mjr 77:0b96f6867312 3933 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 3934 {
mjr 77:0b96f6867312 3935 // power is off - start a new check cycle
mjr 77:0b96f6867312 3936 psu2_status_set->write(1);
mjr 77:0b96f6867312 3937 psu2_state = 2;
mjr 77:0b96f6867312 3938 break;
mjr 77:0b96f6867312 3939 }
mjr 77:0b96f6867312 3940
mjr 77:0b96f6867312 3941 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 3942 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 3943
mjr 77:0b96f6867312 3944 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 3945 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 3946 {
mjr 33:d832bcab089e 3947 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 3948 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 3949 psu2_state = 5;
mjr 77:0b96f6867312 3950
mjr 77:0b96f6867312 3951 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 3952 powerTimerDiagState = 2;
mjr 33:d832bcab089e 3953 }
mjr 33:d832bcab089e 3954 break;
mjr 33:d832bcab089e 3955
mjr 33:d832bcab089e 3956 case 5:
mjr 33:d832bcab089e 3957 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 3958 // it's now time to turn it off.
mjr 73:4e8ce0b18915 3959 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 3960
mjr 77:0b96f6867312 3961 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 3962 psu2_state = 6;
mjr 77:0b96f6867312 3963 tvon_ir_state = 0;
mjr 77:0b96f6867312 3964
mjr 77:0b96f6867312 3965 // diagnostic LEDs off for now
mjr 77:0b96f6867312 3966 powerTimerDiagState = 0;
mjr 77:0b96f6867312 3967 break;
mjr 77:0b96f6867312 3968
mjr 77:0b96f6867312 3969 case 6:
mjr 77:0b96f6867312 3970 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 3971 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 3972 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 3973 psu2_state = 1;
mjr 77:0b96f6867312 3974 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 3975
mjr 77:0b96f6867312 3976 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 3977 if (ir_tx != 0)
mjr 77:0b96f6867312 3978 {
mjr 77:0b96f6867312 3979 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 3980 if (ir_tx->isSending())
mjr 77:0b96f6867312 3981 {
mjr 77:0b96f6867312 3982 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 3983 // state 6.
mjr 77:0b96f6867312 3984 psu2_state = 6;
mjr 77:0b96f6867312 3985 powerTimerDiagState = 4;
mjr 77:0b96f6867312 3986 break;
mjr 77:0b96f6867312 3987 }
mjr 77:0b96f6867312 3988
mjr 77:0b96f6867312 3989 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 3990 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 3991 // number.
mjr 77:0b96f6867312 3992 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 3993 {
mjr 77:0b96f6867312 3994 // is this a TV ON command?
mjr 77:0b96f6867312 3995 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 3996 {
mjr 77:0b96f6867312 3997 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 3998 // looking for.
mjr 77:0b96f6867312 3999 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4000 {
mjr 77:0b96f6867312 4001 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4002 // pushing its virtual button.
mjr 77:0b96f6867312 4003 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4004 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4005
mjr 77:0b96f6867312 4006 // Pushing the button starts transmission, and once
mjr 77:0b96f6867312 4007 // started, the transmission will run to completion
mjr 77:0b96f6867312 4008 // even if the button is no longer pushed. So we
mjr 77:0b96f6867312 4009 // can immediately un-push the button, since we only
mjr 77:0b96f6867312 4010 // need to send the code once.
mjr 77:0b96f6867312 4011 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4012
mjr 77:0b96f6867312 4013 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4014 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4015 // the next one.
mjr 77:0b96f6867312 4016 psu2_state = 6;
mjr 77:0b96f6867312 4017 tvon_ir_state++;
mjr 77:0b96f6867312 4018 break;
mjr 77:0b96f6867312 4019 }
mjr 77:0b96f6867312 4020
mjr 77:0b96f6867312 4021 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4022 ++n;
mjr 77:0b96f6867312 4023 }
mjr 77:0b96f6867312 4024 }
mjr 77:0b96f6867312 4025 }
mjr 33:d832bcab089e 4026 break;
mjr 33:d832bcab089e 4027 }
mjr 77:0b96f6867312 4028
mjr 77:0b96f6867312 4029 // update the diagnostic LEDs
mjr 77:0b96f6867312 4030 diagLED();
mjr 33:d832bcab089e 4031 }
mjr 33:d832bcab089e 4032
mjr 77:0b96f6867312 4033 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4034 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4035 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4036 // are configured as NC.
mjr 77:0b96f6867312 4037 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4038 {
mjr 55:4db125cd11a0 4039 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4040 // time is nonzero
mjr 77:0b96f6867312 4041 powerStatusTimer.reset();
mjr 77:0b96f6867312 4042 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4043 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4044 {
mjr 77:0b96f6867312 4045 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4046 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4047 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4048
mjr 77:0b96f6867312 4049 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4050 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4051 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4052
mjr 77:0b96f6867312 4053 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4054 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4055 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4056 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4057
mjr 77:0b96f6867312 4058 // Start the TV timer
mjr 77:0b96f6867312 4059 powerStatusTimer.start();
mjr 35:e959ffba78fd 4060 }
mjr 35:e959ffba78fd 4061 }
mjr 35:e959ffba78fd 4062
mjr 73:4e8ce0b18915 4063 // TV relay manual control timer. This lets us pulse the TV relay
mjr 73:4e8ce0b18915 4064 // under manual control, separately from the TV ON timer.
mjr 73:4e8ce0b18915 4065 Ticker tv_manualTicker;
mjr 73:4e8ce0b18915 4066 void TVManualInt()
mjr 73:4e8ce0b18915 4067 {
mjr 73:4e8ce0b18915 4068 tv_manualTicker.detach();
mjr 73:4e8ce0b18915 4069 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4070 }
mjr 73:4e8ce0b18915 4071
mjr 73:4e8ce0b18915 4072 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4073 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4074 //
mjr 73:4e8ce0b18915 4075 // Mode:
mjr 73:4e8ce0b18915 4076 // 0 = turn relay off
mjr 73:4e8ce0b18915 4077 // 1 = turn relay on
mjr 73:4e8ce0b18915 4078 // 2 = pulse relay
mjr 73:4e8ce0b18915 4079 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4080 {
mjr 73:4e8ce0b18915 4081 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4082 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4083 return;
mjr 73:4e8ce0b18915 4084
mjr 73:4e8ce0b18915 4085 switch (mode)
mjr 73:4e8ce0b18915 4086 {
mjr 73:4e8ce0b18915 4087 case 0:
mjr 73:4e8ce0b18915 4088 // relay off
mjr 73:4e8ce0b18915 4089 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4090 break;
mjr 73:4e8ce0b18915 4091
mjr 73:4e8ce0b18915 4092 case 1:
mjr 73:4e8ce0b18915 4093 // relay on
mjr 73:4e8ce0b18915 4094 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4095 break;
mjr 73:4e8ce0b18915 4096
mjr 73:4e8ce0b18915 4097 case 2:
mjr 73:4e8ce0b18915 4098 // Pulse the relay. Turn it on, then set our timer for 250ms.
mjr 73:4e8ce0b18915 4099 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4100 tv_manualTicker.attach(&TVManualInt, 0.25);
mjr 73:4e8ce0b18915 4101 break;
mjr 73:4e8ce0b18915 4102 }
mjr 73:4e8ce0b18915 4103 }
mjr 73:4e8ce0b18915 4104
mjr 73:4e8ce0b18915 4105
mjr 35:e959ffba78fd 4106 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4107 //
mjr 35:e959ffba78fd 4108 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4109 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4110 //
mjr 35:e959ffba78fd 4111 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4112 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4113 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4114 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4115 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4116 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4117 //
mjr 35:e959ffba78fd 4118 NVM nvm;
mjr 35:e959ffba78fd 4119
mjr 77:0b96f6867312 4120 // Flag: configuration save requested. The USB command message handler
mjr 77:0b96f6867312 4121 // sets this flag when a command is sent requesting the save. We don't
mjr 77:0b96f6867312 4122 // do the save inline in the command handler, but handle it on the next
mjr 77:0b96f6867312 4123 // main loop iteration.
mjr 77:0b96f6867312 4124 const uint8_t SAVE_CONFIG_ONLY = 1;
mjr 77:0b96f6867312 4125 const uint8_t SAVE_CONFIG_AND_REBOOT = 2;
mjr 77:0b96f6867312 4126 uint8_t saveConfigPending = 0;
mjr 77:0b96f6867312 4127
mjr 77:0b96f6867312 4128 // If saveConfigPending == SAVE_CONFIG_AND_REBOOT, this specifies the
mjr 77:0b96f6867312 4129 // delay time in seconds before rebooting.
mjr 77:0b96f6867312 4130 uint8_t saveConfigRebootTime;
mjr 77:0b96f6867312 4131
mjr 35:e959ffba78fd 4132 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4133 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4134
mjr 35:e959ffba78fd 4135 // flash memory controller interface
mjr 35:e959ffba78fd 4136 FreescaleIAP iap;
mjr 35:e959ffba78fd 4137
mjr 76:7f5912b6340e 4138 // NVM structure in memory. This has to be aliend on a sector boundary,
mjr 76:7f5912b6340e 4139 // since we have to be able to erase its page(s) in order to write it.
mjr 76:7f5912b6340e 4140 // Further, we have to ensure that nothing else occupies any space within
mjr 76:7f5912b6340e 4141 // the same pages, since we'll erase that entire space whenever we write.
mjr 76:7f5912b6340e 4142 static const union
mjr 76:7f5912b6340e 4143 {
mjr 76:7f5912b6340e 4144 NVM nvm; // the NVM structure
mjr 76:7f5912b6340e 4145 char guard[((sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE)*SECTOR_SIZE];
mjr 76:7f5912b6340e 4146 }
mjr 76:7f5912b6340e 4147 flash_nvm_memory __attribute__ ((aligned(SECTOR_SIZE))) = { };
mjr 76:7f5912b6340e 4148
mjr 35:e959ffba78fd 4149 // figure the flash address as a pointer
mjr 35:e959ffba78fd 4150 NVM *configFlashAddr()
mjr 35:e959ffba78fd 4151 {
mjr 77:0b96f6867312 4152 return (NVM *)&flash_nvm_memory;
mjr 35:e959ffba78fd 4153 }
mjr 35:e959ffba78fd 4154
mjr 76:7f5912b6340e 4155 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4156 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4157 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4158 // in either case.
mjr 76:7f5912b6340e 4159 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4160 {
mjr 35:e959ffba78fd 4161 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4162 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4163 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4164 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4165 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4166 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4167 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4168 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4169 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4170 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4171 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4172 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4173 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4174 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4175 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4176 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4177
mjr 35:e959ffba78fd 4178 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 4179 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4180
mjr 35:e959ffba78fd 4181 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4182 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4183 if (nvm_valid)
mjr 35:e959ffba78fd 4184 {
mjr 35:e959ffba78fd 4185 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4186 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4187 }
mjr 35:e959ffba78fd 4188 else
mjr 35:e959ffba78fd 4189 {
mjr 76:7f5912b6340e 4190 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4191 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4192 }
mjr 76:7f5912b6340e 4193
mjr 76:7f5912b6340e 4194 // tell the caller what happened
mjr 76:7f5912b6340e 4195 return nvm_valid;
mjr 35:e959ffba78fd 4196 }
mjr 35:e959ffba78fd 4197
mjr 35:e959ffba78fd 4198 void saveConfigToFlash()
mjr 33:d832bcab089e 4199 {
mjr 76:7f5912b6340e 4200 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4201 waitPlungerIdle();
mjr 76:7f5912b6340e 4202
mjr 76:7f5912b6340e 4203 // get the config block location in the flash memory
mjr 77:0b96f6867312 4204 uint32_t addr = uint32_t(configFlashAddr());
mjr 76:7f5912b6340e 4205
mjr 76:7f5912b6340e 4206 // loop until we save it successfully
mjr 76:7f5912b6340e 4207 for (int i = 0 ; i < 5 ; ++i)
mjr 76:7f5912b6340e 4208 {
mjr 76:7f5912b6340e 4209 // show cyan while writing
mjr 76:7f5912b6340e 4210 diagLED(0, 1, 1);
mjr 76:7f5912b6340e 4211
mjr 76:7f5912b6340e 4212 // save the data
mjr 76:7f5912b6340e 4213 nvm.save(iap, addr);
mjr 76:7f5912b6340e 4214
mjr 76:7f5912b6340e 4215 // diagnostic lights off
mjr 76:7f5912b6340e 4216 diagLED(0, 0, 0);
mjr 76:7f5912b6340e 4217
mjr 76:7f5912b6340e 4218 // verify the data
mjr 76:7f5912b6340e 4219 if (nvm.verify(addr))
mjr 76:7f5912b6340e 4220 {
mjr 77:0b96f6867312 4221 // show a diagnostic success flash (rapid green)
mjr 77:0b96f6867312 4222 for (int j = 0 ; j < 4 ; ++j)
mjr 76:7f5912b6340e 4223 {
mjr 77:0b96f6867312 4224 diagLED(0, 1, 0);
mjr 76:7f5912b6340e 4225 wait_us(50000);
mjr 76:7f5912b6340e 4226 diagLED(0, 0, 0);
mjr 76:7f5912b6340e 4227 wait_us(50000);
mjr 76:7f5912b6340e 4228 }
mjr 76:7f5912b6340e 4229
mjr 76:7f5912b6340e 4230 // success - no need to write again
mjr 76:7f5912b6340e 4231 break;
mjr 76:7f5912b6340e 4232 }
mjr 76:7f5912b6340e 4233 else
mjr 76:7f5912b6340e 4234 {
mjr 76:7f5912b6340e 4235 // Write failed. For diagnostic purposes, flash red a few times.
mjr 76:7f5912b6340e 4236 // Then go back through the loop to make another attempt at the
mjr 76:7f5912b6340e 4237 // write.
mjr 76:7f5912b6340e 4238 for (int j = 0 ; j < 5 ; ++j)
mjr 76:7f5912b6340e 4239 {
mjr 76:7f5912b6340e 4240 diagLED(1, 0, 0);
mjr 76:7f5912b6340e 4241 wait_us(50000);
mjr 76:7f5912b6340e 4242 diagLED(0, 0, 0);
mjr 76:7f5912b6340e 4243 wait_us(50000);
mjr 76:7f5912b6340e 4244 }
mjr 76:7f5912b6340e 4245 }
mjr 76:7f5912b6340e 4246 }
mjr 76:7f5912b6340e 4247 }
mjr 76:7f5912b6340e 4248
mjr 76:7f5912b6340e 4249 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4250 //
mjr 76:7f5912b6340e 4251 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4252 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4253 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4254 // downloading it to the device.
mjr 76:7f5912b6340e 4255 //
mjr 76:7f5912b6340e 4256 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4257 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4258 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4259 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4260 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4261 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4262 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4263 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4264 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4265 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4266 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4267 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4268 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4269 //
mjr 76:7f5912b6340e 4270 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4271 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4272 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4273 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4274 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4275 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4276 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4277 //
mjr 76:7f5912b6340e 4278 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4279 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4280 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4281 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4282 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4283 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4284 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4285 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4286 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4287 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4288
mjr 76:7f5912b6340e 4289 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4290 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4291 {
mjr 76:7f5912b6340e 4292 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4293 // 32-byte signature header
mjr 76:7f5912b6340e 4294 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4295 };
mjr 76:7f5912b6340e 4296
mjr 76:7f5912b6340e 4297 // forward reference to config var store function
mjr 76:7f5912b6340e 4298 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4299
mjr 76:7f5912b6340e 4300 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4301 // configuration object.
mjr 76:7f5912b6340e 4302 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4303 {
mjr 76:7f5912b6340e 4304 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4305 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4306 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4307 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4308 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4309 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4310 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4311 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4312 {
mjr 76:7f5912b6340e 4313 // load this variable
mjr 76:7f5912b6340e 4314 configVarSet(p);
mjr 76:7f5912b6340e 4315 }
mjr 35:e959ffba78fd 4316 }
mjr 35:e959ffba78fd 4317
mjr 35:e959ffba78fd 4318 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4319 //
mjr 55:4db125cd11a0 4320 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4321 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4322 //
mjr 55:4db125cd11a0 4323 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4324 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4325 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4326
mjr 55:4db125cd11a0 4327
mjr 55:4db125cd11a0 4328
mjr 55:4db125cd11a0 4329 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4330 //
mjr 40:cc0d9814522b 4331 // Night mode setting updates
mjr 40:cc0d9814522b 4332 //
mjr 38:091e511ce8a0 4333
mjr 38:091e511ce8a0 4334 // Turn night mode on or off
mjr 38:091e511ce8a0 4335 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4336 {
mjr 77:0b96f6867312 4337 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4338 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4339 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4340 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4341
mjr 40:cc0d9814522b 4342 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4343 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4344 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4345 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4346
mjr 76:7f5912b6340e 4347 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4348 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4349 // mode change.
mjr 76:7f5912b6340e 4350 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4351 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4352
mjr 76:7f5912b6340e 4353 // update 74HC595 outputs
mjr 76:7f5912b6340e 4354 if (hc595 != 0)
mjr 76:7f5912b6340e 4355 hc595->update();
mjr 38:091e511ce8a0 4356 }
mjr 38:091e511ce8a0 4357
mjr 38:091e511ce8a0 4358 // Toggle night mode
mjr 38:091e511ce8a0 4359 static void toggleNightMode()
mjr 38:091e511ce8a0 4360 {
mjr 53:9b2611964afc 4361 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4362 }
mjr 38:091e511ce8a0 4363
mjr 38:091e511ce8a0 4364
mjr 38:091e511ce8a0 4365 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4366 //
mjr 35:e959ffba78fd 4367 // Plunger Sensor
mjr 35:e959ffba78fd 4368 //
mjr 35:e959ffba78fd 4369
mjr 35:e959ffba78fd 4370 // the plunger sensor interface object
mjr 35:e959ffba78fd 4371 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4372
mjr 76:7f5912b6340e 4373 // wait for the plunger sensor to complete any outstanding read
mjr 76:7f5912b6340e 4374 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4375 {
mjr 76:7f5912b6340e 4376 while (!plungerSensor->ready()) { }
mjr 76:7f5912b6340e 4377 }
mjr 76:7f5912b6340e 4378
mjr 35:e959ffba78fd 4379 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4380 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4381 void createPlunger()
mjr 35:e959ffba78fd 4382 {
mjr 35:e959ffba78fd 4383 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4384 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4385 {
mjr 35:e959ffba78fd 4386 case PlungerType_TSL1410RS:
mjr 69:cc5039284fac 4387 // TSL1410R, serial mode (all pixels read in one file)
mjr 35:e959ffba78fd 4388 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4389 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4390 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4391 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4392 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4393 NC);
mjr 35:e959ffba78fd 4394 break;
mjr 35:e959ffba78fd 4395
mjr 35:e959ffba78fd 4396 case PlungerType_TSL1410RP:
mjr 69:cc5039284fac 4397 // TSL1410R, parallel mode (each half-sensor's pixels read separately)
mjr 35:e959ffba78fd 4398 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 4399 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4400 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4401 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4402 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4403 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 4404 break;
mjr 35:e959ffba78fd 4405
mjr 69:cc5039284fac 4406 case PlungerType_TSL1412SS:
mjr 69:cc5039284fac 4407 // TSL1412S, serial mode
mjr 35:e959ffba78fd 4408 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 4409 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4410 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4411 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4412 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4413 NC);
mjr 35:e959ffba78fd 4414 break;
mjr 35:e959ffba78fd 4415
mjr 69:cc5039284fac 4416 case PlungerType_TSL1412SP:
mjr 69:cc5039284fac 4417 // TSL1412S, parallel mode
mjr 35:e959ffba78fd 4418 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 4419 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4420 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4421 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 4422 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 4423 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 4424 break;
mjr 35:e959ffba78fd 4425
mjr 35:e959ffba78fd 4426 case PlungerType_Pot:
mjr 35:e959ffba78fd 4427 // pins are: AO
mjr 53:9b2611964afc 4428 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4429 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4430 break;
mjr 35:e959ffba78fd 4431
mjr 35:e959ffba78fd 4432 case PlungerType_None:
mjr 35:e959ffba78fd 4433 default:
mjr 35:e959ffba78fd 4434 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4435 break;
mjr 35:e959ffba78fd 4436 }
mjr 33:d832bcab089e 4437 }
mjr 33:d832bcab089e 4438
mjr 52:8298b2a73eb2 4439 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4440 bool plungerCalMode;
mjr 52:8298b2a73eb2 4441
mjr 48:058ace2aed1d 4442 // Plunger reader
mjr 51:57eb311faafa 4443 //
mjr 51:57eb311faafa 4444 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4445 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4446 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4447 //
mjr 51:57eb311faafa 4448 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4449 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4450 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4451 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4452 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4453 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4454 // firing motion.
mjr 51:57eb311faafa 4455 //
mjr 51:57eb311faafa 4456 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4457 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4458 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4459 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4460 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4461 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4462 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4463 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4464 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4465 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4466 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4467 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4468 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4469 //
mjr 51:57eb311faafa 4470 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4471 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4472 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4473 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4474 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4475 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4476 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4477 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4478 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4479 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4480 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4481 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4482 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4483 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4484 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4485 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4486 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4487 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4488 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4489 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4490 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4491 //
mjr 48:058ace2aed1d 4492 class PlungerReader
mjr 48:058ace2aed1d 4493 {
mjr 48:058ace2aed1d 4494 public:
mjr 48:058ace2aed1d 4495 PlungerReader()
mjr 48:058ace2aed1d 4496 {
mjr 48:058ace2aed1d 4497 // not in a firing event yet
mjr 48:058ace2aed1d 4498 firing = 0;
mjr 48:058ace2aed1d 4499
mjr 48:058ace2aed1d 4500 // no history yet
mjr 48:058ace2aed1d 4501 histIdx = 0;
mjr 55:4db125cd11a0 4502
mjr 55:4db125cd11a0 4503 // initialize the filter
mjr 55:4db125cd11a0 4504 initFilter();
mjr 48:058ace2aed1d 4505 }
mjr 76:7f5912b6340e 4506
mjr 48:058ace2aed1d 4507 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4508 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4509 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4510 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4511 void read()
mjr 48:058ace2aed1d 4512 {
mjr 76:7f5912b6340e 4513 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4514 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4515 return;
mjr 76:7f5912b6340e 4516
mjr 48:058ace2aed1d 4517 // Read a sample from the sensor
mjr 48:058ace2aed1d 4518 PlungerReading r;
mjr 48:058ace2aed1d 4519 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4520 {
mjr 69:cc5039284fac 4521 // filter the raw sensor reading
mjr 69:cc5039284fac 4522 applyPreFilter(r);
mjr 69:cc5039284fac 4523
mjr 51:57eb311faafa 4524 // Pull the previous reading from the history
mjr 50:40015764bbe6 4525 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 4526
mjr 69:cc5039284fac 4527 // If the new reading is within 1ms of the previous reading,
mjr 48:058ace2aed1d 4528 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 4529 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 4530 // denominator (the time interval) for calculating the plunger
mjr 69:cc5039284fac 4531 // velocity. The CCD sensor hardware takes about 2.5ms to
mjr 69:cc5039284fac 4532 // read, so it will never be affected by this, but other sensor
mjr 69:cc5039284fac 4533 // types don't all have the same hardware cycle time, so we need
mjr 69:cc5039284fac 4534 // to throttle them artificially. E.g., the potentiometer only
mjr 69:cc5039284fac 4535 // needs one ADC sample per reading, which only takes about 15us.
mjr 69:cc5039284fac 4536 // We don't need to check which sensor type we have here; we
mjr 69:cc5039284fac 4537 // just ignore readings until the minimum interval has passed,
mjr 69:cc5039284fac 4538 // so if the sensor is already slower than this, we'll end up
mjr 69:cc5039284fac 4539 // using all of its readings.
mjr 69:cc5039284fac 4540 if (uint32_t(r.t - prv.t) < 1000UL)
mjr 48:058ace2aed1d 4541 return;
mjr 53:9b2611964afc 4542
mjr 53:9b2611964afc 4543 // check for calibration mode
mjr 53:9b2611964afc 4544 if (plungerCalMode)
mjr 53:9b2611964afc 4545 {
mjr 53:9b2611964afc 4546 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4547 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4548 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4549 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4550 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4551 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4552 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4553
mjr 76:7f5912b6340e 4554 // update our cached calibration data
mjr 76:7f5912b6340e 4555 onUpdateCal();
mjr 50:40015764bbe6 4556
mjr 53:9b2611964afc 4557 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4558 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4559 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4560 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4561 if (calState == 0)
mjr 53:9b2611964afc 4562 {
mjr 53:9b2611964afc 4563 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4564 {
mjr 53:9b2611964afc 4565 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4566 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4567 {
mjr 53:9b2611964afc 4568 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4569 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4570 calZeroPosN += 1;
mjr 53:9b2611964afc 4571
mjr 53:9b2611964afc 4572 // update the zero position from the new average
mjr 53:9b2611964afc 4573 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4574 onUpdateCal();
mjr 53:9b2611964afc 4575
mjr 53:9b2611964afc 4576 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4577 calState = 1;
mjr 53:9b2611964afc 4578 }
mjr 53:9b2611964afc 4579 }
mjr 53:9b2611964afc 4580 else
mjr 53:9b2611964afc 4581 {
mjr 53:9b2611964afc 4582 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4583 calZeroStart = r;
mjr 53:9b2611964afc 4584 }
mjr 53:9b2611964afc 4585 }
mjr 53:9b2611964afc 4586
mjr 53:9b2611964afc 4587 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4588 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4589 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4590 r.pos = int(
mjr 53:9b2611964afc 4591 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4592 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4593 }
mjr 53:9b2611964afc 4594 else
mjr 53:9b2611964afc 4595 {
mjr 53:9b2611964afc 4596 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4597 // rescale to the joystick range.
mjr 76:7f5912b6340e 4598 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4599
mjr 53:9b2611964afc 4600 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4601 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4602 r.pos = JOYMAX;
mjr 53:9b2611964afc 4603 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4604 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4605 }
mjr 50:40015764bbe6 4606
mjr 50:40015764bbe6 4607 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 4608 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 4609 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 4610 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 4611 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 4612 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 4613 // large.
mjr 50:40015764bbe6 4614 //
mjr 50:40015764bbe6 4615 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 4616 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 4617 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 4618 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 4619 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 4620 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 4621 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 4622 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 4623 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 4624 //
mjr 50:40015764bbe6 4625 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 4626 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 4627 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 4628 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 4629 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 4630 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 4631 // a little CPU time by using the natural units of our inputs.
mjr 76:7f5912b6340e 4632 //
mjr 76:7f5912b6340e 4633 // We don't care about the absolute velocity; this is a purely
mjr 76:7f5912b6340e 4634 // relative calculation. So to speed things up, calculate it
mjr 76:7f5912b6340e 4635 // in the integer domain, using a fixed-point representation
mjr 76:7f5912b6340e 4636 // with a 64K scale. In other words, with the stored values
mjr 76:7f5912b6340e 4637 // shifted left 16 bits from the actual values: the value 1
mjr 76:7f5912b6340e 4638 // is stored as 1<<16. The position readings are in the range
mjr 76:7f5912b6340e 4639 // -JOYMAX..JOYMAX, which fits in 16 bits, and the time
mjr 76:7f5912b6340e 4640 // differences will generally be on the scale of a few
mjr 76:7f5912b6340e 4641 // milliseconds = thousands of microseconds. So the velocity
mjr 76:7f5912b6340e 4642 // figures will fit nicely into a 32-bit fixed point value with
mjr 76:7f5912b6340e 4643 // a 64K scale factor.
mjr 51:57eb311faafa 4644 const PlungerReading &prv2 = nthHist(1);
mjr 76:7f5912b6340e 4645 int v = ((r.pos - prv2.pos) << 16)/(r.t - prv2.t);
mjr 50:40015764bbe6 4646
mjr 50:40015764bbe6 4647 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 4648 z = r.pos;
mjr 48:058ace2aed1d 4649
mjr 50:40015764bbe6 4650 // Check firing events
mjr 50:40015764bbe6 4651 switch (firing)
mjr 50:40015764bbe6 4652 {
mjr 50:40015764bbe6 4653 case 0:
mjr 50:40015764bbe6 4654 // Default state - not in a firing event.
mjr 50:40015764bbe6 4655
mjr 50:40015764bbe6 4656 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 4657 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 4658 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 4659 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 4660 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 4661 {
mjr 53:9b2611964afc 4662 // enter firing phase 1
mjr 50:40015764bbe6 4663 firingMode(1);
mjr 50:40015764bbe6 4664
mjr 53:9b2611964afc 4665 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 4666 // at rest)
mjr 53:9b2611964afc 4667 if (calState == 1)
mjr 53:9b2611964afc 4668 calState = 2;
mjr 53:9b2611964afc 4669
mjr 50:40015764bbe6 4670 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 4671 f1.pos = 0;
mjr 50:40015764bbe6 4672 f1.t = r.t;
mjr 50:40015764bbe6 4673
mjr 50:40015764bbe6 4674 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 4675 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 4676 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 4677 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 4678 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 4679 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 4680 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 4681 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 4682 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 4683 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 4684 }
mjr 50:40015764bbe6 4685 break;
mjr 50:40015764bbe6 4686
mjr 50:40015764bbe6 4687 case 1:
mjr 50:40015764bbe6 4688 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 4689 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 4690 // see acceleration in the forward direction.
mjr 50:40015764bbe6 4691 if (r.pos <= 0)
mjr 50:40015764bbe6 4692 {
mjr 50:40015764bbe6 4693 // switch to the synthetic firing mode
mjr 50:40015764bbe6 4694 firingMode(2);
mjr 50:40015764bbe6 4695 z = f2.pos;
mjr 50:40015764bbe6 4696
mjr 50:40015764bbe6 4697 // note the start time for the firing phase
mjr 50:40015764bbe6 4698 f2.t = r.t;
mjr 53:9b2611964afc 4699
mjr 53:9b2611964afc 4700 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 4701 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 4702 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 4703 {
mjr 53:9b2611964afc 4704 // collect a new zero point for the average when we
mjr 53:9b2611964afc 4705 // come to rest
mjr 53:9b2611964afc 4706 calState = 0;
mjr 53:9b2611964afc 4707
mjr 53:9b2611964afc 4708 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 4709 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 4710 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 4711 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 4712 {
mjr 53:9b2611964afc 4713 calRlsTimeSum += dt;
mjr 53:9b2611964afc 4714 calRlsTimeN += 1;
mjr 53:9b2611964afc 4715 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 4716 }
mjr 53:9b2611964afc 4717 }
mjr 50:40015764bbe6 4718 }
mjr 50:40015764bbe6 4719 else if (v < vprv2)
mjr 50:40015764bbe6 4720 {
mjr 50:40015764bbe6 4721 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 4722 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 4723 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 4724 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 4725 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 4726 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 4727
mjr 50:40015764bbe6 4728 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 4729 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 4730 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 4731 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 4732 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 4733 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 4734 if (f1.pos != 0)
mjr 50:40015764bbe6 4735 {
mjr 50:40015764bbe6 4736 // we have a reset point - freeze there
mjr 50:40015764bbe6 4737 z = f1.pos;
mjr 50:40015764bbe6 4738 }
mjr 50:40015764bbe6 4739 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 4740 {
mjr 50:40015764bbe6 4741 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 4742 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 4743 }
mjr 50:40015764bbe6 4744 }
mjr 50:40015764bbe6 4745 else
mjr 50:40015764bbe6 4746 {
mjr 50:40015764bbe6 4747 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 4748 firingMode(0);
mjr 53:9b2611964afc 4749 calState = 1;
mjr 50:40015764bbe6 4750 }
mjr 50:40015764bbe6 4751 break;
mjr 50:40015764bbe6 4752
mjr 50:40015764bbe6 4753 case 2:
mjr 50:40015764bbe6 4754 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 4755 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 4756 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 4757 // report at least once.
mjr 50:40015764bbe6 4758 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 4759 {
mjr 50:40015764bbe6 4760 // report the bounce position
mjr 50:40015764bbe6 4761 z = f2.pos;
mjr 50:40015764bbe6 4762 }
mjr 50:40015764bbe6 4763 else
mjr 50:40015764bbe6 4764 {
mjr 50:40015764bbe6 4765 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 4766 // report the park position until the real plunger comes
mjr 50:40015764bbe6 4767 // to rest
mjr 50:40015764bbe6 4768 firingMode(3);
mjr 50:40015764bbe6 4769 z = 0;
mjr 50:40015764bbe6 4770
mjr 50:40015764bbe6 4771 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 4772 f3s.t = r.t;
mjr 50:40015764bbe6 4773 f3s.pos = 0;
mjr 50:40015764bbe6 4774
mjr 50:40015764bbe6 4775 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 4776 f3r = r;
mjr 50:40015764bbe6 4777 }
mjr 50:40015764bbe6 4778 break;
mjr 50:40015764bbe6 4779
mjr 50:40015764bbe6 4780 case 3:
mjr 50:40015764bbe6 4781 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 4782 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 4783 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 4784 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 4785 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 4786 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 4787 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 4788 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 4789 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 4790 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 4791 // for longer.
mjr 50:40015764bbe6 4792 if (v >= 0)
mjr 50:40015764bbe6 4793 {
mjr 50:40015764bbe6 4794 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 4795 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 4796 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 4797 {
mjr 50:40015764bbe6 4798 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 4799 firingMode(0);
mjr 50:40015764bbe6 4800 break;
mjr 50:40015764bbe6 4801 }
mjr 50:40015764bbe6 4802 }
mjr 50:40015764bbe6 4803 else
mjr 50:40015764bbe6 4804 {
mjr 50:40015764bbe6 4805 // forward motion - reset retraction window
mjr 50:40015764bbe6 4806 f3r.t = r.t;
mjr 50:40015764bbe6 4807 }
mjr 50:40015764bbe6 4808
mjr 53:9b2611964afc 4809 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 4810 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 4811 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 4812 // about 100 units.
mjr 53:9b2611964afc 4813 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 4814 {
mjr 53:9b2611964afc 4815 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 4816 // Consider it stable if this has been true for 300ms.
mjr 50:40015764bbe6 4817 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 4818 {
mjr 50:40015764bbe6 4819 // we're done with the firing event
mjr 50:40015764bbe6 4820 firingMode(0);
mjr 50:40015764bbe6 4821 }
mjr 50:40015764bbe6 4822 else
mjr 50:40015764bbe6 4823 {
mjr 50:40015764bbe6 4824 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 4825 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 4826 // to report the park position
mjr 50:40015764bbe6 4827 z = 0;
mjr 50:40015764bbe6 4828 }
mjr 50:40015764bbe6 4829 }
mjr 50:40015764bbe6 4830 else
mjr 50:40015764bbe6 4831 {
mjr 50:40015764bbe6 4832 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 4833 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 4834 f3s = r;
mjr 50:40015764bbe6 4835 z = 0;
mjr 50:40015764bbe6 4836 }
mjr 50:40015764bbe6 4837 break;
mjr 50:40015764bbe6 4838 }
mjr 50:40015764bbe6 4839
mjr 50:40015764bbe6 4840 // save the velocity reading for next time
mjr 50:40015764bbe6 4841 vprv2 = vprv;
mjr 50:40015764bbe6 4842 vprv = v;
mjr 50:40015764bbe6 4843
mjr 50:40015764bbe6 4844 // add the new reading to the history
mjr 76:7f5912b6340e 4845 hist[histIdx] = r;
mjr 76:7f5912b6340e 4846 if (++histIdx > countof(hist))
mjr 76:7f5912b6340e 4847 histIdx = 0;
mjr 58:523fdcffbe6d 4848
mjr 69:cc5039284fac 4849 // apply the post-processing filter
mjr 69:cc5039284fac 4850 zf = applyPostFilter();
mjr 48:058ace2aed1d 4851 }
mjr 48:058ace2aed1d 4852 }
mjr 48:058ace2aed1d 4853
mjr 48:058ace2aed1d 4854 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 4855 int16_t getPosition()
mjr 58:523fdcffbe6d 4856 {
mjr 58:523fdcffbe6d 4857 // return the last filtered reading
mjr 58:523fdcffbe6d 4858 return zf;
mjr 55:4db125cd11a0 4859 }
mjr 58:523fdcffbe6d 4860
mjr 48:058ace2aed1d 4861 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 4862 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 4863
mjr 48:058ace2aed1d 4864 // Set calibration mode on or off
mjr 52:8298b2a73eb2 4865 void setCalMode(bool f)
mjr 48:058ace2aed1d 4866 {
mjr 52:8298b2a73eb2 4867 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 4868 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 4869 {
mjr 52:8298b2a73eb2 4870 // reset the calibration in the configuration
mjr 48:058ace2aed1d 4871 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 4872
mjr 52:8298b2a73eb2 4873 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 4874 calState = 0;
mjr 52:8298b2a73eb2 4875 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 4876 calZeroPosN = 0;
mjr 52:8298b2a73eb2 4877 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 4878 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 4879
mjr 52:8298b2a73eb2 4880 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 4881 PlungerReading r;
mjr 52:8298b2a73eb2 4882 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 4883 {
mjr 52:8298b2a73eb2 4884 // got a reading - use it as the initial zero point
mjr 69:cc5039284fac 4885 applyPreFilter(r);
mjr 52:8298b2a73eb2 4886 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 4887 onUpdateCal();
mjr 52:8298b2a73eb2 4888
mjr 52:8298b2a73eb2 4889 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 4890 calZeroStart = r;
mjr 52:8298b2a73eb2 4891 }
mjr 52:8298b2a73eb2 4892 else
mjr 52:8298b2a73eb2 4893 {
mjr 52:8298b2a73eb2 4894 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 4895 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4896 onUpdateCal();
mjr 52:8298b2a73eb2 4897
mjr 52:8298b2a73eb2 4898 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 4899 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 4900 calZeroStart.t = 0;
mjr 53:9b2611964afc 4901 }
mjr 53:9b2611964afc 4902 }
mjr 53:9b2611964afc 4903 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 4904 {
mjr 53:9b2611964afc 4905 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 4906 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 4907 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 4908 // physically meaningless.
mjr 53:9b2611964afc 4909 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 4910 {
mjr 53:9b2611964afc 4911 // bad settings - reset to defaults
mjr 53:9b2611964afc 4912 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 4913 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 4914 onUpdateCal();
mjr 52:8298b2a73eb2 4915 }
mjr 52:8298b2a73eb2 4916 }
mjr 52:8298b2a73eb2 4917
mjr 48:058ace2aed1d 4918 // remember the new mode
mjr 52:8298b2a73eb2 4919 plungerCalMode = f;
mjr 48:058ace2aed1d 4920 }
mjr 48:058ace2aed1d 4921
mjr 76:7f5912b6340e 4922 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 4923 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 4924 // cached inverse is calculated as
mjr 76:7f5912b6340e 4925 //
mjr 76:7f5912b6340e 4926 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 4927 //
mjr 76:7f5912b6340e 4928 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 4929 //
mjr 76:7f5912b6340e 4930 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 4931 //
mjr 76:7f5912b6340e 4932 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 4933 int invCalRange;
mjr 76:7f5912b6340e 4934
mjr 76:7f5912b6340e 4935 // apply the calibration range to a reading
mjr 76:7f5912b6340e 4936 inline int applyCal(int reading)
mjr 76:7f5912b6340e 4937 {
mjr 76:7f5912b6340e 4938 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 4939 }
mjr 76:7f5912b6340e 4940
mjr 76:7f5912b6340e 4941 void onUpdateCal()
mjr 76:7f5912b6340e 4942 {
mjr 76:7f5912b6340e 4943 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 4944 }
mjr 76:7f5912b6340e 4945
mjr 48:058ace2aed1d 4946 // is a firing event in progress?
mjr 53:9b2611964afc 4947 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 4948
mjr 48:058ace2aed1d 4949 private:
mjr 52:8298b2a73eb2 4950
mjr 74:822a92bc11d2 4951 // Plunger data filtering mode: optionally apply filtering to the raw
mjr 74:822a92bc11d2 4952 // plunger sensor readings to try to reduce noise in the signal. This
mjr 74:822a92bc11d2 4953 // is designed for the TSL1410/12 optical sensors, where essentially all
mjr 74:822a92bc11d2 4954 // of the noise in the signal comes from lack of sharpness in the shadow
mjr 74:822a92bc11d2 4955 // edge. When the shadow is blurry, the edge detector has to pick a pixel,
mjr 74:822a92bc11d2 4956 // even though the edge is actually a gradient spanning several pixels.
mjr 74:822a92bc11d2 4957 // The edge detection algorithm decides on the exact pixel, but whatever
mjr 74:822a92bc11d2 4958 // the algorithm, the choice is going to be somewhat arbitrary given that
mjr 74:822a92bc11d2 4959 // there's really no one pixel that's "the edge" when the edge actually
mjr 74:822a92bc11d2 4960 // covers multiple pixels. This can make the choice of pixel sensitive to
mjr 74:822a92bc11d2 4961 // small changes in exposure and pixel respose from frame to frame, which
mjr 74:822a92bc11d2 4962 // means that the reported edge position can move by a pixel or two from
mjr 74:822a92bc11d2 4963 // one frame to the next even when the physical plunger is perfectly still.
mjr 74:822a92bc11d2 4964 // That's the noise we're talking about.
mjr 74:822a92bc11d2 4965 //
mjr 74:822a92bc11d2 4966 // We previously applied a mild hysteresis filter to the signal to try to
mjr 74:822a92bc11d2 4967 // eliminate this noise. The filter tracked the average over the last
mjr 74:822a92bc11d2 4968 // several samples, and rejected readings that wandered within a few
mjr 74:822a92bc11d2 4969 // pixels of the average. If a certain number of readings moved away from
mjr 74:822a92bc11d2 4970 // the average in the same direction, even by small amounts, the filter
mjr 74:822a92bc11d2 4971 // accepted the changes, on the assumption that they represented actual
mjr 74:822a92bc11d2 4972 // slow movement of the plunger. This filter was applied after the firing
mjr 74:822a92bc11d2 4973 // detection.
mjr 74:822a92bc11d2 4974 //
mjr 74:822a92bc11d2 4975 // I also tried a simpler filter that rejected changes that were too fast
mjr 74:822a92bc11d2 4976 // to be physically possible, as well as changes that were very close to
mjr 74:822a92bc11d2 4977 // the last reported position (i.e., simple hysteresis). The "too fast"
mjr 74:822a92bc11d2 4978 // filter was there to reject spurious readings where the edge detector
mjr 74:822a92bc11d2 4979 // mistook a bad pixel value as an edge.
mjr 74:822a92bc11d2 4980 //
mjr 74:822a92bc11d2 4981 // The new "mode 2" edge detector (see ccdSensor.h) seems to do a better
mjr 74:822a92bc11d2 4982 // job of rejecting pixel-level noise by itself than the older "mode 0"
mjr 74:822a92bc11d2 4983 // algorithm did, so I removed the filtering entirely. Any filtering has
mjr 74:822a92bc11d2 4984 // some downsides, so it's better to reduce noise in the underlying signal
mjr 74:822a92bc11d2 4985 // as much as possible first. It seems possible to get a very stable signal
mjr 74:822a92bc11d2 4986 // now with a combination of the mode 2 edge detector and optimizing the
mjr 74:822a92bc11d2 4987 // physical sensor arrangement, especially optimizing the light source to
mjr 74:822a92bc11d2 4988 // cast as sharp as shadow as possible and adjusting the brightness to
mjr 74:822a92bc11d2 4989 // maximize bright/dark contrast in the image.
mjr 74:822a92bc11d2 4990 //
mjr 74:822a92bc11d2 4991 // 0 = No filtering (current default)
mjr 74:822a92bc11d2 4992 // 1 = Filter the data after firing detection using moving average
mjr 74:822a92bc11d2 4993 // hysteresis filter (old version, used in most 2016 releases)
mjr 74:822a92bc11d2 4994 // 2 = Filter the data before firing detection using simple hysteresis
mjr 74:822a92bc11d2 4995 // plus spurious "too fast" motion rejection
mjr 74:822a92bc11d2 4996 //
mjr 73:4e8ce0b18915 4997 #define PLUNGER_FILTERING_MODE 0
mjr 73:4e8ce0b18915 4998
mjr 73:4e8ce0b18915 4999 #if PLUNGER_FILTERING_MODE == 0
mjr 69:cc5039284fac 5000 // Disable all filtering
mjr 74:822a92bc11d2 5001 inline void applyPreFilter(PlungerReading &r) { }
mjr 74:822a92bc11d2 5002 inline int applyPostFilter() { return z; }
mjr 73:4e8ce0b18915 5003 #elif PLUNGER_FILTERING_MODE == 1
mjr 73:4e8ce0b18915 5004 // Apply pre-processing filter. This filter is applied to the raw
mjr 73:4e8ce0b18915 5005 // value coming off the sensor, before calibration or fire-event
mjr 73:4e8ce0b18915 5006 // processing.
mjr 73:4e8ce0b18915 5007 void applyPreFilter(PlungerReading &r)
mjr 73:4e8ce0b18915 5008 {
mjr 73:4e8ce0b18915 5009 }
mjr 73:4e8ce0b18915 5010
mjr 73:4e8ce0b18915 5011 // Figure the next post-processing filtered value. This applies a
mjr 73:4e8ce0b18915 5012 // hysteresis filter to the last raw z value and returns the
mjr 73:4e8ce0b18915 5013 // filtered result.
mjr 73:4e8ce0b18915 5014 int applyPostFilter()
mjr 73:4e8ce0b18915 5015 {
mjr 73:4e8ce0b18915 5016 if (firing <= 1)
mjr 73:4e8ce0b18915 5017 {
mjr 73:4e8ce0b18915 5018 // Filter limit - 5 samples. Once we've been moving
mjr 73:4e8ce0b18915 5019 // in the same direction for this many samples, we'll
mjr 73:4e8ce0b18915 5020 // clear the history and start over.
mjr 73:4e8ce0b18915 5021 const int filterMask = 0x1f;
mjr 73:4e8ce0b18915 5022
mjr 73:4e8ce0b18915 5023 // figure the last average
mjr 73:4e8ce0b18915 5024 int lastAvg = int(filterSum / filterN);
mjr 73:4e8ce0b18915 5025
mjr 73:4e8ce0b18915 5026 // figure the direction of this sample relative to the average,
mjr 73:4e8ce0b18915 5027 // and shift it in to our bit mask of recent direction data
mjr 73:4e8ce0b18915 5028 if (z != lastAvg)
mjr 73:4e8ce0b18915 5029 {
mjr 73:4e8ce0b18915 5030 // shift the new direction bit into the vector
mjr 73:4e8ce0b18915 5031 filterDir <<= 1;
mjr 73:4e8ce0b18915 5032 if (z > lastAvg) filterDir |= 1;
mjr 73:4e8ce0b18915 5033 }
mjr 73:4e8ce0b18915 5034
mjr 73:4e8ce0b18915 5035 // keep only the last N readings, up to the filter limit
mjr 73:4e8ce0b18915 5036 filterDir &= filterMask;
mjr 73:4e8ce0b18915 5037
mjr 73:4e8ce0b18915 5038 // if we've been moving consistently in one direction (all 1's
mjr 73:4e8ce0b18915 5039 // or all 0's in the direction history vector), reset the average
mjr 73:4e8ce0b18915 5040 if (filterDir == 0x00 || filterDir == filterMask)
mjr 73:4e8ce0b18915 5041 {
mjr 73:4e8ce0b18915 5042 // motion away from the average - reset the average
mjr 73:4e8ce0b18915 5043 filterDir = 0x5555;
mjr 73:4e8ce0b18915 5044 filterN = 1;
mjr 73:4e8ce0b18915 5045 filterSum = (lastAvg + z)/2;
mjr 73:4e8ce0b18915 5046 return int16_t(filterSum);
mjr 73:4e8ce0b18915 5047 }
mjr 73:4e8ce0b18915 5048 else
mjr 73:4e8ce0b18915 5049 {
mjr 73:4e8ce0b18915 5050 // we're directionless - return the new average, with the
mjr 73:4e8ce0b18915 5051 // new sample included
mjr 73:4e8ce0b18915 5052 filterSum += z;
mjr 73:4e8ce0b18915 5053 ++filterN;
mjr 73:4e8ce0b18915 5054 return int16_t(filterSum / filterN);
mjr 73:4e8ce0b18915 5055 }
mjr 73:4e8ce0b18915 5056 }
mjr 73:4e8ce0b18915 5057 else
mjr 73:4e8ce0b18915 5058 {
mjr 73:4e8ce0b18915 5059 // firing mode - skip the filter
mjr 73:4e8ce0b18915 5060 filterN = 1;
mjr 73:4e8ce0b18915 5061 filterSum = z;
mjr 73:4e8ce0b18915 5062 filterDir = 0x5555;
mjr 73:4e8ce0b18915 5063 return z;
mjr 73:4e8ce0b18915 5064 }
mjr 73:4e8ce0b18915 5065 }
mjr 73:4e8ce0b18915 5066 #elif PLUNGER_FILTERING_MODE == 2
mjr 69:cc5039284fac 5067 // Apply pre-processing filter. This filter is applied to the raw
mjr 69:cc5039284fac 5068 // value coming off the sensor, before calibration or fire-event
mjr 69:cc5039284fac 5069 // processing.
mjr 69:cc5039284fac 5070 void applyPreFilter(PlungerReading &r)
mjr 69:cc5039284fac 5071 {
mjr 69:cc5039284fac 5072 // get the previous raw reading
mjr 69:cc5039284fac 5073 PlungerReading prv = pre.raw;
mjr 69:cc5039284fac 5074
mjr 69:cc5039284fac 5075 // the new reading is the previous raw reading next time, no
mjr 69:cc5039284fac 5076 // matter how we end up filtering it
mjr 69:cc5039284fac 5077 pre.raw = r;
mjr 69:cc5039284fac 5078
mjr 69:cc5039284fac 5079 // If it's too big an excursion from the previous raw reading,
mjr 69:cc5039284fac 5080 // ignore it and repeat the previous reported reading. This
mjr 69:cc5039284fac 5081 // filters out anomalous spikes where we suddenly jump to a
mjr 69:cc5039284fac 5082 // level that's too far away to be possible. Real plungers
mjr 69:cc5039284fac 5083 // take about 60ms to travel the full distance when released,
mjr 69:cc5039284fac 5084 // so assuming constant acceleration, the maximum realistic
mjr 69:cc5039284fac 5085 // speed is about 2.200 distance units (on our 0..0xffff scale)
mjr 69:cc5039284fac 5086 // per microsecond.
mjr 69:cc5039284fac 5087 //
mjr 69:cc5039284fac 5088 // On the other hand, if the new reading is too *close* to the
mjr 69:cc5039284fac 5089 // previous reading, use the previous reported reading. This
mjr 69:cc5039284fac 5090 // filters out jitter around a stationary position.
mjr 69:cc5039284fac 5091 const float maxDist = 2.184f*uint32_t(r.t - prv.t);
mjr 69:cc5039284fac 5092 const int minDist = 256;
mjr 69:cc5039284fac 5093 const int delta = abs(r.pos - prv.pos);
mjr 69:cc5039284fac 5094 if (maxDist > minDist && delta > maxDist)
mjr 69:cc5039284fac 5095 {
mjr 69:cc5039284fac 5096 // too big an excursion - discard this reading by reporting
mjr 69:cc5039284fac 5097 // the last reported reading instead
mjr 69:cc5039284fac 5098 r.pos = pre.reported;
mjr 69:cc5039284fac 5099 }
mjr 69:cc5039284fac 5100 else if (delta < minDist)
mjr 69:cc5039284fac 5101 {
mjr 69:cc5039284fac 5102 // too close to the prior reading - apply hysteresis
mjr 69:cc5039284fac 5103 r.pos = pre.reported;
mjr 69:cc5039284fac 5104 }
mjr 69:cc5039284fac 5105 else
mjr 69:cc5039284fac 5106 {
mjr 69:cc5039284fac 5107 // the reading is in range - keep it, and remember it as
mjr 69:cc5039284fac 5108 // the last reported reading
mjr 69:cc5039284fac 5109 pre.reported = r.pos;
mjr 69:cc5039284fac 5110 }
mjr 69:cc5039284fac 5111 }
mjr 69:cc5039284fac 5112
mjr 69:cc5039284fac 5113 // pre-filter data
mjr 69:cc5039284fac 5114 struct PreFilterData {
mjr 69:cc5039284fac 5115 PreFilterData()
mjr 69:cc5039284fac 5116 : reported(0)
mjr 69:cc5039284fac 5117 {
mjr 69:cc5039284fac 5118 raw.t = 0;
mjr 69:cc5039284fac 5119 raw.pos = 0;
mjr 69:cc5039284fac 5120 }
mjr 69:cc5039284fac 5121 PlungerReading raw; // previous raw sensor reading
mjr 69:cc5039284fac 5122 int reported; // previous reported reading
mjr 69:cc5039284fac 5123 } pre;
mjr 69:cc5039284fac 5124
mjr 69:cc5039284fac 5125
mjr 69:cc5039284fac 5126 // Apply the post-processing filter. This filter is applied after
mjr 69:cc5039284fac 5127 // the fire-event processing. In the past, this used hysteresis to
mjr 69:cc5039284fac 5128 // try to smooth out jittering readings for a stationary plunger.
mjr 69:cc5039284fac 5129 // We've switched to a different approach that massages the readings
mjr 69:cc5039284fac 5130 // coming off the sensor before
mjr 69:cc5039284fac 5131 int applyPostFilter()
mjr 69:cc5039284fac 5132 {
mjr 69:cc5039284fac 5133 return z;
mjr 69:cc5039284fac 5134 }
mjr 69:cc5039284fac 5135 #endif
mjr 58:523fdcffbe6d 5136
mjr 58:523fdcffbe6d 5137 void initFilter()
mjr 58:523fdcffbe6d 5138 {
mjr 58:523fdcffbe6d 5139 filterSum = 0;
mjr 58:523fdcffbe6d 5140 filterN = 1;
mjr 58:523fdcffbe6d 5141 filterDir = 0x5555;
mjr 58:523fdcffbe6d 5142 }
mjr 58:523fdcffbe6d 5143 int64_t filterSum;
mjr 58:523fdcffbe6d 5144 int64_t filterN;
mjr 58:523fdcffbe6d 5145 uint16_t filterDir;
mjr 58:523fdcffbe6d 5146
mjr 58:523fdcffbe6d 5147
mjr 52:8298b2a73eb2 5148 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5149 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5150 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5151 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5152 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5153 // 1 = at rest
mjr 52:8298b2a73eb2 5154 // 2 = retracting
mjr 52:8298b2a73eb2 5155 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5156 uint8_t calState;
mjr 52:8298b2a73eb2 5157
mjr 52:8298b2a73eb2 5158 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5159 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5160 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5161 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5162 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5163 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5164 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5165 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5166 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5167 long calZeroPosSum;
mjr 52:8298b2a73eb2 5168 int calZeroPosN;
mjr 52:8298b2a73eb2 5169
mjr 52:8298b2a73eb2 5170 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5171 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5172 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5173 int calRlsTimeN;
mjr 52:8298b2a73eb2 5174
mjr 48:058ace2aed1d 5175 // set a firing mode
mjr 48:058ace2aed1d 5176 inline void firingMode(int m)
mjr 48:058ace2aed1d 5177 {
mjr 48:058ace2aed1d 5178 firing = m;
mjr 48:058ace2aed1d 5179 }
mjr 48:058ace2aed1d 5180
mjr 48:058ace2aed1d 5181 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 5182 // the given time limit.
mjr 48:058ace2aed1d 5183 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 5184 {
mjr 48:058ace2aed1d 5185 // start with the prior entry
mjr 48:058ace2aed1d 5186 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 5187 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 5188
mjr 48:058ace2aed1d 5189 // scan backwards for a local maximum
mjr 48:058ace2aed1d 5190 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 5191 {
mjr 48:058ace2aed1d 5192 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 5193 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 5194 break;
mjr 48:058ace2aed1d 5195
mjr 48:058ace2aed1d 5196 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 5197 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 5198 break;
mjr 48:058ace2aed1d 5199
mjr 48:058ace2aed1d 5200 // this is the new high
mjr 48:058ace2aed1d 5201 hi = hist[idx].pos;
mjr 48:058ace2aed1d 5202 }
mjr 48:058ace2aed1d 5203
mjr 48:058ace2aed1d 5204 // return the local maximum
mjr 48:058ace2aed1d 5205 return hi;
mjr 48:058ace2aed1d 5206 }
mjr 48:058ace2aed1d 5207
mjr 50:40015764bbe6 5208 // velocity at previous reading, and the one before that
mjr 76:7f5912b6340e 5209 int vprv, vprv2;
mjr 48:058ace2aed1d 5210
mjr 48:058ace2aed1d 5211 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 5212 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 5213 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 5214 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 5215 // exactly when it started. We throttle our readings to no more
mjr 74:822a92bc11d2 5216 // than one every 1ms, so we have at least N*1ms of history in this
mjr 48:058ace2aed1d 5217 // array.
mjr 74:822a92bc11d2 5218 PlungerReading hist[32];
mjr 48:058ace2aed1d 5219 int histIdx;
mjr 49:37bd97eb7688 5220
mjr 50:40015764bbe6 5221 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 74:822a92bc11d2 5222 inline const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 5223 {
mjr 50:40015764bbe6 5224 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 5225 n = histIdx - 1 - n;
mjr 50:40015764bbe6 5226
mjr 50:40015764bbe6 5227 // adjust for wrapping
mjr 50:40015764bbe6 5228 if (n < 0)
mjr 50:40015764bbe6 5229 n += countof(hist);
mjr 50:40015764bbe6 5230
mjr 50:40015764bbe6 5231 // return the item
mjr 50:40015764bbe6 5232 return hist[n];
mjr 50:40015764bbe6 5233 }
mjr 48:058ace2aed1d 5234
mjr 48:058ace2aed1d 5235 // Firing event state.
mjr 48:058ace2aed1d 5236 //
mjr 48:058ace2aed1d 5237 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 5238 // position to the joystick interface.
mjr 48:058ace2aed1d 5239 //
mjr 53:9b2611964afc 5240 // 1 - Moving forward
mjr 48:058ace2aed1d 5241 //
mjr 53:9b2611964afc 5242 // 2 - Accelerating
mjr 48:058ace2aed1d 5243 //
mjr 53:9b2611964afc 5244 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 5245 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 5246 //
mjr 48:058ace2aed1d 5247 int firing;
mjr 48:058ace2aed1d 5248
mjr 51:57eb311faafa 5249 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 5250 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 5251 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 5252 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 5253 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 5254 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 5255 PlungerReading f1;
mjr 48:058ace2aed1d 5256
mjr 48:058ace2aed1d 5257 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 5258 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 5259 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 5260 // after enough time elapses.
mjr 48:058ace2aed1d 5261 PlungerReading f2;
mjr 48:058ace2aed1d 5262
mjr 48:058ace2aed1d 5263 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 5264 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 5265 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 5266 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 5267 PlungerReading f3s;
mjr 48:058ace2aed1d 5268
mjr 48:058ace2aed1d 5269 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 5270 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 5271 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 5272 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 5273 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 5274 // freely.
mjr 48:058ace2aed1d 5275 PlungerReading f3r;
mjr 48:058ace2aed1d 5276
mjr 58:523fdcffbe6d 5277 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5278 // (in joystick distance units)
mjr 48:058ace2aed1d 5279 int z;
mjr 48:058ace2aed1d 5280
mjr 58:523fdcffbe6d 5281 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 5282 int zf;
mjr 48:058ace2aed1d 5283 };
mjr 48:058ace2aed1d 5284
mjr 48:058ace2aed1d 5285 // plunger reader singleton
mjr 48:058ace2aed1d 5286 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5287
mjr 48:058ace2aed1d 5288 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5289 //
mjr 48:058ace2aed1d 5290 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5291 //
mjr 48:058ace2aed1d 5292 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5293 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5294 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5295 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5296 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5297 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5298 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5299 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5300 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5301 //
mjr 48:058ace2aed1d 5302 // This feature has two configuration components:
mjr 48:058ace2aed1d 5303 //
mjr 48:058ace2aed1d 5304 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5305 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5306 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5307 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5308 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5309 // plunger/launch button connection.
mjr 48:058ace2aed1d 5310 //
mjr 48:058ace2aed1d 5311 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5312 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5313 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5314 // position.
mjr 48:058ace2aed1d 5315 //
mjr 48:058ace2aed1d 5316 class ZBLaunchBall
mjr 48:058ace2aed1d 5317 {
mjr 48:058ace2aed1d 5318 public:
mjr 48:058ace2aed1d 5319 ZBLaunchBall()
mjr 48:058ace2aed1d 5320 {
mjr 48:058ace2aed1d 5321 // start in the default state
mjr 48:058ace2aed1d 5322 lbState = 0;
mjr 53:9b2611964afc 5323 btnState = false;
mjr 48:058ace2aed1d 5324 }
mjr 48:058ace2aed1d 5325
mjr 48:058ace2aed1d 5326 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5327 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5328 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5329 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5330 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5331 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5332 void update()
mjr 48:058ace2aed1d 5333 {
mjr 53:9b2611964afc 5334 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5335 // plunger firing event
mjr 53:9b2611964afc 5336 if (zbLaunchOn)
mjr 48:058ace2aed1d 5337 {
mjr 53:9b2611964afc 5338 // note the new position
mjr 48:058ace2aed1d 5339 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5340
mjr 53:9b2611964afc 5341 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5342 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5343
mjr 53:9b2611964afc 5344 // check the state
mjr 48:058ace2aed1d 5345 switch (lbState)
mjr 48:058ace2aed1d 5346 {
mjr 48:058ace2aed1d 5347 case 0:
mjr 53:9b2611964afc 5348 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5349 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5350 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5351 // the button.
mjr 53:9b2611964afc 5352 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5353 {
mjr 53:9b2611964afc 5354 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5355 lbTimer.reset();
mjr 53:9b2611964afc 5356 lbTimer.start();
mjr 53:9b2611964afc 5357 setButton(true);
mjr 53:9b2611964afc 5358
mjr 53:9b2611964afc 5359 // switch to state 1
mjr 53:9b2611964afc 5360 lbState = 1;
mjr 53:9b2611964afc 5361 }
mjr 48:058ace2aed1d 5362 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5363 {
mjr 53:9b2611964afc 5364 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5365 // button as long as we're pushed forward
mjr 53:9b2611964afc 5366 setButton(true);
mjr 53:9b2611964afc 5367 }
mjr 53:9b2611964afc 5368 else
mjr 53:9b2611964afc 5369 {
mjr 53:9b2611964afc 5370 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5371 setButton(false);
mjr 53:9b2611964afc 5372 }
mjr 48:058ace2aed1d 5373 break;
mjr 48:058ace2aed1d 5374
mjr 48:058ace2aed1d 5375 case 1:
mjr 53:9b2611964afc 5376 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5377 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5378 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5379 {
mjr 53:9b2611964afc 5380 // timer expired - turn off the button
mjr 53:9b2611964afc 5381 setButton(false);
mjr 53:9b2611964afc 5382
mjr 53:9b2611964afc 5383 // switch to state 2
mjr 53:9b2611964afc 5384 lbState = 2;
mjr 53:9b2611964afc 5385 }
mjr 48:058ace2aed1d 5386 break;
mjr 48:058ace2aed1d 5387
mjr 48:058ace2aed1d 5388 case 2:
mjr 53:9b2611964afc 5389 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5390 // plunger launch event to end.
mjr 53:9b2611964afc 5391 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5392 {
mjr 53:9b2611964afc 5393 // firing event done - return to default state
mjr 53:9b2611964afc 5394 lbState = 0;
mjr 53:9b2611964afc 5395 }
mjr 48:058ace2aed1d 5396 break;
mjr 48:058ace2aed1d 5397 }
mjr 53:9b2611964afc 5398 }
mjr 53:9b2611964afc 5399 else
mjr 53:9b2611964afc 5400 {
mjr 53:9b2611964afc 5401 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5402 setButton(false);
mjr 48:058ace2aed1d 5403
mjr 53:9b2611964afc 5404 // return to the default state
mjr 53:9b2611964afc 5405 lbState = 0;
mjr 48:058ace2aed1d 5406 }
mjr 48:058ace2aed1d 5407 }
mjr 53:9b2611964afc 5408
mjr 53:9b2611964afc 5409 // Set the button state
mjr 53:9b2611964afc 5410 void setButton(bool on)
mjr 53:9b2611964afc 5411 {
mjr 53:9b2611964afc 5412 if (btnState != on)
mjr 53:9b2611964afc 5413 {
mjr 53:9b2611964afc 5414 // remember the new state
mjr 53:9b2611964afc 5415 btnState = on;
mjr 53:9b2611964afc 5416
mjr 53:9b2611964afc 5417 // update the virtual button state
mjr 65:739875521aae 5418 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5419 }
mjr 53:9b2611964afc 5420 }
mjr 53:9b2611964afc 5421
mjr 48:058ace2aed1d 5422 private:
mjr 48:058ace2aed1d 5423 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5424 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5425 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5426 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5427 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5428 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5429 //
mjr 48:058ace2aed1d 5430 // States:
mjr 48:058ace2aed1d 5431 // 0 = default
mjr 53:9b2611964afc 5432 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5433 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5434 // firing event to end)
mjr 53:9b2611964afc 5435 uint8_t lbState;
mjr 48:058ace2aed1d 5436
mjr 53:9b2611964afc 5437 // button state
mjr 53:9b2611964afc 5438 bool btnState;
mjr 48:058ace2aed1d 5439
mjr 48:058ace2aed1d 5440 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5441 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5442 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5443 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5444 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5445 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5446 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5447 Timer lbTimer;
mjr 48:058ace2aed1d 5448 };
mjr 48:058ace2aed1d 5449
mjr 35:e959ffba78fd 5450 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5451 //
mjr 35:e959ffba78fd 5452 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5453 //
mjr 54:fd77a6b2f76c 5454 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5455 {
mjr 35:e959ffba78fd 5456 // disconnect from USB
mjr 54:fd77a6b2f76c 5457 if (disconnect)
mjr 54:fd77a6b2f76c 5458 js.disconnect();
mjr 35:e959ffba78fd 5459
mjr 35:e959ffba78fd 5460 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5461 wait_us(pause_us);
mjr 35:e959ffba78fd 5462
mjr 35:e959ffba78fd 5463 // reset the device
mjr 35:e959ffba78fd 5464 NVIC_SystemReset();
mjr 35:e959ffba78fd 5465 while (true) { }
mjr 35:e959ffba78fd 5466 }
mjr 35:e959ffba78fd 5467
mjr 35:e959ffba78fd 5468 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5469 //
mjr 35:e959ffba78fd 5470 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5471 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5472 //
mjr 35:e959ffba78fd 5473 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5474 {
mjr 35:e959ffba78fd 5475 int tmp;
mjr 35:e959ffba78fd 5476 switch (cfg.orientation)
mjr 35:e959ffba78fd 5477 {
mjr 35:e959ffba78fd 5478 case OrientationFront:
mjr 35:e959ffba78fd 5479 tmp = x;
mjr 35:e959ffba78fd 5480 x = y;
mjr 35:e959ffba78fd 5481 y = tmp;
mjr 35:e959ffba78fd 5482 break;
mjr 35:e959ffba78fd 5483
mjr 35:e959ffba78fd 5484 case OrientationLeft:
mjr 35:e959ffba78fd 5485 x = -x;
mjr 35:e959ffba78fd 5486 break;
mjr 35:e959ffba78fd 5487
mjr 35:e959ffba78fd 5488 case OrientationRight:
mjr 35:e959ffba78fd 5489 y = -y;
mjr 35:e959ffba78fd 5490 break;
mjr 35:e959ffba78fd 5491
mjr 35:e959ffba78fd 5492 case OrientationRear:
mjr 35:e959ffba78fd 5493 tmp = -x;
mjr 35:e959ffba78fd 5494 x = -y;
mjr 35:e959ffba78fd 5495 y = tmp;
mjr 35:e959ffba78fd 5496 break;
mjr 35:e959ffba78fd 5497 }
mjr 35:e959ffba78fd 5498 }
mjr 35:e959ffba78fd 5499
mjr 35:e959ffba78fd 5500 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5501 //
mjr 35:e959ffba78fd 5502 // Calibration button state:
mjr 35:e959ffba78fd 5503 // 0 = not pushed
mjr 35:e959ffba78fd 5504 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5505 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5506 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5507 int calBtnState = 0;
mjr 35:e959ffba78fd 5508
mjr 35:e959ffba78fd 5509 // calibration button debounce timer
mjr 35:e959ffba78fd 5510 Timer calBtnTimer;
mjr 35:e959ffba78fd 5511
mjr 35:e959ffba78fd 5512 // calibration button light state
mjr 35:e959ffba78fd 5513 int calBtnLit = false;
mjr 35:e959ffba78fd 5514
mjr 35:e959ffba78fd 5515
mjr 35:e959ffba78fd 5516 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5517 //
mjr 40:cc0d9814522b 5518 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5519 //
mjr 40:cc0d9814522b 5520
mjr 40:cc0d9814522b 5521 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5522 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5523 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5524 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5525 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5526 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5527 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5528 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5529 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5530 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5531 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5532
mjr 40:cc0d9814522b 5533 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5534 #undef if_msg_valid
mjr 40:cc0d9814522b 5535 #undef v_byte
mjr 40:cc0d9814522b 5536 #undef v_ui16
mjr 77:0b96f6867312 5537 #undef v_ui32
mjr 40:cc0d9814522b 5538 #undef v_pin
mjr 53:9b2611964afc 5539 #undef v_byte_ro
mjr 74:822a92bc11d2 5540 #undef v_ui32_ro
mjr 74:822a92bc11d2 5541 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5542 #undef v_func
mjr 38:091e511ce8a0 5543
mjr 40:cc0d9814522b 5544 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 5545 #define if_msg_valid(test)
mjr 53:9b2611964afc 5546 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5547 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5548 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5549 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5550 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5551 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5552 #define VAR_MODE_SET 0 // we're in GET mode
mjr 76:7f5912b6340e 5553 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5554 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5555
mjr 35:e959ffba78fd 5556
mjr 35:e959ffba78fd 5557 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5558 //
mjr 35:e959ffba78fd 5559 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5560 // LedWiz protocol.
mjr 33:d832bcab089e 5561 //
mjr 48:058ace2aed1d 5562 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js)
mjr 35:e959ffba78fd 5563 {
mjr 38:091e511ce8a0 5564 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5565 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5566 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5567 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5568 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5569 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5570 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5571 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5572 //
mjr 38:091e511ce8a0 5573 // first byte =
mjr 74:822a92bc11d2 5574 // 0-48 -> PBA
mjr 74:822a92bc11d2 5575 // 64 -> SBA
mjr 38:091e511ce8a0 5576 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5577 // 129-132 -> PBA
mjr 38:091e511ce8a0 5578 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5579 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5580 // other -> reserved for future use
mjr 38:091e511ce8a0 5581 //
mjr 39:b3815a1c3802 5582 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5583 if (data[0] == 64)
mjr 35:e959ffba78fd 5584 {
mjr 74:822a92bc11d2 5585 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5586 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5587 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5588 sba_sbx(0, data);
mjr 74:822a92bc11d2 5589
mjr 74:822a92bc11d2 5590 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5591 pbaIdx = 0;
mjr 38:091e511ce8a0 5592 }
mjr 38:091e511ce8a0 5593 else if (data[0] == 65)
mjr 38:091e511ce8a0 5594 {
mjr 38:091e511ce8a0 5595 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5596 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5597 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5598 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5599 // message type.
mjr 39:b3815a1c3802 5600 switch (data[1])
mjr 38:091e511ce8a0 5601 {
mjr 39:b3815a1c3802 5602 case 0:
mjr 39:b3815a1c3802 5603 // No Op
mjr 39:b3815a1c3802 5604 break;
mjr 39:b3815a1c3802 5605
mjr 39:b3815a1c3802 5606 case 1:
mjr 38:091e511ce8a0 5607 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5608 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5609 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5610 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5611 {
mjr 39:b3815a1c3802 5612
mjr 39:b3815a1c3802 5613 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5614 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5615 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5616
mjr 39:b3815a1c3802 5617 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 5618 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5619
mjr 39:b3815a1c3802 5620 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5621 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5622 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5623
mjr 77:0b96f6867312 5624 // set the flag to do the save
mjr 77:0b96f6867312 5625 saveConfigPending = needReset ? SAVE_CONFIG_AND_REBOOT : SAVE_CONFIG_ONLY;
mjr 77:0b96f6867312 5626 saveConfigRebootTime = 0;
mjr 39:b3815a1c3802 5627 }
mjr 39:b3815a1c3802 5628 break;
mjr 38:091e511ce8a0 5629
mjr 39:b3815a1c3802 5630 case 2:
mjr 38:091e511ce8a0 5631 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5632 // (No parameters)
mjr 38:091e511ce8a0 5633
mjr 38:091e511ce8a0 5634 // enter calibration mode
mjr 38:091e511ce8a0 5635 calBtnState = 3;
mjr 52:8298b2a73eb2 5636 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5637 calBtnTimer.reset();
mjr 39:b3815a1c3802 5638 break;
mjr 39:b3815a1c3802 5639
mjr 39:b3815a1c3802 5640 case 3:
mjr 52:8298b2a73eb2 5641 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5642 // data[2] = flag bits
mjr 53:9b2611964afc 5643 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5644 reportPlungerStat = true;
mjr 53:9b2611964afc 5645 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5646 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5647
mjr 38:091e511ce8a0 5648 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5649 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5650 break;
mjr 39:b3815a1c3802 5651
mjr 39:b3815a1c3802 5652 case 4:
mjr 38:091e511ce8a0 5653 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5654 // (No parameters)
mjr 38:091e511ce8a0 5655 js.reportConfig(
mjr 38:091e511ce8a0 5656 numOutputs,
mjr 38:091e511ce8a0 5657 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5658 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5659 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5660 true, // we support sbx/pbx extensions
mjr 75:677892300e7a 5661 xmalloc_rem); // remaining memory size
mjr 39:b3815a1c3802 5662 break;
mjr 39:b3815a1c3802 5663
mjr 39:b3815a1c3802 5664 case 5:
mjr 38:091e511ce8a0 5665 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5666 allOutputsOff();
mjr 39:b3815a1c3802 5667 break;
mjr 39:b3815a1c3802 5668
mjr 39:b3815a1c3802 5669 case 6:
mjr 77:0b96f6867312 5670 // 6 = Save configuration to flash. Reboot after the delay
mjr 77:0b96f6867312 5671 // time in seconds given in data[2].
mjr 77:0b96f6867312 5672 saveConfigPending = SAVE_CONFIG_AND_REBOOT;
mjr 77:0b96f6867312 5673 saveConfigRebootTime = data[2];
mjr 39:b3815a1c3802 5674 break;
mjr 40:cc0d9814522b 5675
mjr 40:cc0d9814522b 5676 case 7:
mjr 40:cc0d9814522b 5677 // 7 = Device ID report
mjr 53:9b2611964afc 5678 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5679 js.reportID(data[2]);
mjr 40:cc0d9814522b 5680 break;
mjr 40:cc0d9814522b 5681
mjr 40:cc0d9814522b 5682 case 8:
mjr 40:cc0d9814522b 5683 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5684 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5685 setNightMode(data[2]);
mjr 40:cc0d9814522b 5686 break;
mjr 52:8298b2a73eb2 5687
mjr 52:8298b2a73eb2 5688 case 9:
mjr 52:8298b2a73eb2 5689 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5690 // data[2] = config var ID
mjr 52:8298b2a73eb2 5691 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5692 {
mjr 53:9b2611964afc 5693 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5694 // the rest of the buffer
mjr 52:8298b2a73eb2 5695 uint8_t reply[8];
mjr 52:8298b2a73eb2 5696 reply[1] = data[2];
mjr 52:8298b2a73eb2 5697 reply[2] = data[3];
mjr 53:9b2611964afc 5698 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5699
mjr 52:8298b2a73eb2 5700 // query the value
mjr 52:8298b2a73eb2 5701 configVarGet(reply);
mjr 52:8298b2a73eb2 5702
mjr 52:8298b2a73eb2 5703 // send the reply
mjr 52:8298b2a73eb2 5704 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5705 }
mjr 52:8298b2a73eb2 5706 break;
mjr 53:9b2611964afc 5707
mjr 53:9b2611964afc 5708 case 10:
mjr 53:9b2611964afc 5709 // 10 = Build ID query.
mjr 53:9b2611964afc 5710 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5711 break;
mjr 73:4e8ce0b18915 5712
mjr 73:4e8ce0b18915 5713 case 11:
mjr 73:4e8ce0b18915 5714 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5715 // data[2] = operation:
mjr 73:4e8ce0b18915 5716 // 0 = turn relay off
mjr 73:4e8ce0b18915 5717 // 1 = turn relay on
mjr 73:4e8ce0b18915 5718 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5719 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5720 break;
mjr 73:4e8ce0b18915 5721
mjr 73:4e8ce0b18915 5722 case 12:
mjr 77:0b96f6867312 5723 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5724 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5725 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5726 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5727 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5728
mjr 77:0b96f6867312 5729 // enter IR learning mode
mjr 77:0b96f6867312 5730 IRLearningMode = 1;
mjr 77:0b96f6867312 5731
mjr 77:0b96f6867312 5732 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5733 IRCommandIn = 0;
mjr 77:0b96f6867312 5734
mjr 77:0b96f6867312 5735 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5736 IRTimer.reset();
mjr 73:4e8ce0b18915 5737 break;
mjr 73:4e8ce0b18915 5738
mjr 73:4e8ce0b18915 5739 case 13:
mjr 73:4e8ce0b18915 5740 // 13 = Send button status report
mjr 73:4e8ce0b18915 5741 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5742 break;
mjr 38:091e511ce8a0 5743 }
mjr 38:091e511ce8a0 5744 }
mjr 38:091e511ce8a0 5745 else if (data[0] == 66)
mjr 38:091e511ce8a0 5746 {
mjr 38:091e511ce8a0 5747 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5748 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5749 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5750 // in a variable-dependent format.
mjr 40:cc0d9814522b 5751 configVarSet(data);
mjr 38:091e511ce8a0 5752 }
mjr 74:822a92bc11d2 5753 else if (data[0] == 67)
mjr 74:822a92bc11d2 5754 {
mjr 74:822a92bc11d2 5755 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5756 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5757 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5758 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5759 }
mjr 74:822a92bc11d2 5760 else if (data[0] == 68)
mjr 74:822a92bc11d2 5761 {
mjr 74:822a92bc11d2 5762 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5763 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5764 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5765
mjr 74:822a92bc11d2 5766 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5767 int portGroup = data[1];
mjr 74:822a92bc11d2 5768
mjr 74:822a92bc11d2 5769 // unpack the brightness values
mjr 74:822a92bc11d2 5770 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5771 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5772 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5773 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5774 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5775 };
mjr 74:822a92bc11d2 5776
mjr 74:822a92bc11d2 5777 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5778 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5779 {
mjr 74:822a92bc11d2 5780 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5781 bri[i] += 129-60;
mjr 74:822a92bc11d2 5782 }
mjr 74:822a92bc11d2 5783
mjr 74:822a92bc11d2 5784 // Carry out the PBA
mjr 74:822a92bc11d2 5785 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5786 }
mjr 38:091e511ce8a0 5787 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5788 {
mjr 38:091e511ce8a0 5789 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5790 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5791 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5792 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5793 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5794 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5795 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5796 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5797 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5798 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5799 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5800 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5801 //
mjr 38:091e511ce8a0 5802 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5803 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5804 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5805 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5806 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5807 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5808
mjr 63:5cd1a5f3a41b 5809 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5810 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5811 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5812
mjr 63:5cd1a5f3a41b 5813 // update each port
mjr 38:091e511ce8a0 5814 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5815 {
mjr 38:091e511ce8a0 5816 // set the brightness level for the output
mjr 40:cc0d9814522b 5817 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5818 outLevel[i] = b;
mjr 38:091e511ce8a0 5819
mjr 74:822a92bc11d2 5820 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5821 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5822 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5823 if (b != 0)
mjr 76:7f5912b6340e 5824 {
mjr 76:7f5912b6340e 5825 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5826 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5827 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5828 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5829 // forward unchanged.
mjr 76:7f5912b6340e 5830 wizOn[i] = 1;
mjr 76:7f5912b6340e 5831 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5832 }
mjr 76:7f5912b6340e 5833 else
mjr 76:7f5912b6340e 5834 {
mjr 76:7f5912b6340e 5835 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5836 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5837 wizOn[i] = 0;
mjr 76:7f5912b6340e 5838 }
mjr 74:822a92bc11d2 5839
mjr 38:091e511ce8a0 5840 // set the output
mjr 40:cc0d9814522b 5841 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5842 }
mjr 38:091e511ce8a0 5843
mjr 38:091e511ce8a0 5844 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5845 if (hc595 != 0)
mjr 38:091e511ce8a0 5846 hc595->update();
mjr 38:091e511ce8a0 5847 }
mjr 38:091e511ce8a0 5848 else
mjr 38:091e511ce8a0 5849 {
mjr 74:822a92bc11d2 5850 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5851 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5852 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5853 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5854 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5855 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5856 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5857 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5858 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5859 //
mjr 38:091e511ce8a0 5860 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5861 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5862 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5863 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5864 // protocol mode.
mjr 38:091e511ce8a0 5865 //
mjr 38:091e511ce8a0 5866 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5867 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5868
mjr 74:822a92bc11d2 5869 // carry out the PBA
mjr 74:822a92bc11d2 5870 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 5871
mjr 74:822a92bc11d2 5872 // update the PBX index state for the next message
mjr 74:822a92bc11d2 5873 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 5874 }
mjr 38:091e511ce8a0 5875 }
mjr 35:e959ffba78fd 5876
mjr 38:091e511ce8a0 5877 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5878 //
mjr 5:a70c0bce770d 5879 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 5880 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 5881 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 5882 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 5883 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 5884 // port outputs.
mjr 5:a70c0bce770d 5885 //
mjr 0:5acbbe3f4cf4 5886 int main(void)
mjr 0:5acbbe3f4cf4 5887 {
mjr 60:f38da020aa13 5888 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 5889 printf("\r\nPinscape Controller starting\r\n");
mjr 77:0b96f6867312 5890
mjr 77:0b96f6867312 5891
mjr 60:f38da020aa13 5892 // debugging: print memory config info
mjr 59:94eb9265b6d7 5893 // -> no longer very useful, since we use our own custom malloc/new allocator (see xmalloc() above)
mjr 60:f38da020aa13 5894 // {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 5895
mjr 76:7f5912b6340e 5896 // clear the I2C connection
mjr 35:e959ffba78fd 5897 clear_i2c();
mjr 38:091e511ce8a0 5898
mjr 76:7f5912b6340e 5899 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 5900 // configuration data:
mjr 76:7f5912b6340e 5901 //
mjr 76:7f5912b6340e 5902 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 5903 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 5904 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 5905 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 5906 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 5907 // to store user settings updates.
mjr 76:7f5912b6340e 5908 //
mjr 76:7f5912b6340e 5909 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 5910 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 5911 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 5912 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 5913 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 5914 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 5915 // without a separate download of the config data.
mjr 76:7f5912b6340e 5916 //
mjr 76:7f5912b6340e 5917 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 5918 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 5919 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 5920 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 5921 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 5922 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 5923 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 5924 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 5925 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 5926 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 5927 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 5928 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 5929 loadHostLoadedConfig();
mjr 35:e959ffba78fd 5930
mjr 38:091e511ce8a0 5931 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 5932 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 5933
mjr 33:d832bcab089e 5934 // we're not connected/awake yet
mjr 33:d832bcab089e 5935 bool connected = false;
mjr 40:cc0d9814522b 5936 Timer connectChangeTimer;
mjr 33:d832bcab089e 5937
mjr 35:e959ffba78fd 5938 // create the plunger sensor interface
mjr 35:e959ffba78fd 5939 createPlunger();
mjr 76:7f5912b6340e 5940
mjr 76:7f5912b6340e 5941 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 5942 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 5943
mjr 60:f38da020aa13 5944 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 5945 init_tlc5940(cfg);
mjr 34:6b981a2afab7 5946
mjr 60:f38da020aa13 5947 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 5948 init_hc595(cfg);
mjr 6:cc35eb643e8f 5949
mjr 54:fd77a6b2f76c 5950 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 5951 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 5952 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 5953 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 5954 initLwOut(cfg);
mjr 48:058ace2aed1d 5955
mjr 60:f38da020aa13 5956 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 5957 if (tlc5940 != 0)
mjr 35:e959ffba78fd 5958 tlc5940->start();
mjr 77:0b96f6867312 5959
mjr 77:0b96f6867312 5960 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 5961 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 5962 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 5963 // USB keyboard interface.
mjr 77:0b96f6867312 5964 bool kbKeys = false;
mjr 77:0b96f6867312 5965
mjr 77:0b96f6867312 5966 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 5967 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 5968
mjr 77:0b96f6867312 5969 // start the power status time, if applicable
mjr 77:0b96f6867312 5970 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 5971
mjr 35:e959ffba78fd 5972 // initialize the button input ports
mjr 35:e959ffba78fd 5973 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 5974
mjr 60:f38da020aa13 5975 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 5976 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 5977 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 5978 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 5979 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 5980 // to the joystick interface.
mjr 51:57eb311faafa 5981 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 5982 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 5983
mjr 60:f38da020aa13 5984 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 5985 // flash pattern while waiting.
mjr 70:9f58735a1732 5986 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 5987 connTimeoutTimer.start();
mjr 70:9f58735a1732 5988 connFlashTimer.start();
mjr 51:57eb311faafa 5989 while (!js.configured())
mjr 51:57eb311faafa 5990 {
mjr 51:57eb311faafa 5991 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 5992 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 5993 {
mjr 51:57eb311faafa 5994 // short yellow flash
mjr 51:57eb311faafa 5995 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 5996 wait_us(50000);
mjr 51:57eb311faafa 5997 diagLED(0, 0, 0);
mjr 51:57eb311faafa 5998
mjr 51:57eb311faafa 5999 // reset the flash timer
mjr 70:9f58735a1732 6000 connFlashTimer.reset();
mjr 51:57eb311faafa 6001 }
mjr 70:9f58735a1732 6002
mjr 77:0b96f6867312 6003 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6004 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6005 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6006 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 70:9f58735a1732 6007 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 6008 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 70:9f58735a1732 6009 reboot(js, false, 0);
mjr 77:0b96f6867312 6010
mjr 77:0b96f6867312 6011 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6012 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6013 }
mjr 60:f38da020aa13 6014
mjr 60:f38da020aa13 6015 // we're now connected to the host
mjr 54:fd77a6b2f76c 6016 connected = true;
mjr 40:cc0d9814522b 6017
mjr 60:f38da020aa13 6018 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 6019 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 6020 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 6021 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 6022 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 6023 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 6024 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 6025 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 6026 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 6027 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 6028 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 6029 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 6030 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 6031 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 6032 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 6033 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 6034 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 6035 // around to polling.
mjr 38:091e511ce8a0 6036 Timer jsReportTimer;
mjr 38:091e511ce8a0 6037 jsReportTimer.start();
mjr 38:091e511ce8a0 6038
mjr 60:f38da020aa13 6039 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6040 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6041 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6042 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6043 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6044 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6045 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6046 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6047 Timer jsOKTimer;
mjr 38:091e511ce8a0 6048 jsOKTimer.start();
mjr 35:e959ffba78fd 6049
mjr 55:4db125cd11a0 6050 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6051 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6052 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6053 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6054 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6055
mjr 55:4db125cd11a0 6056 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6057 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6058 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6059
mjr 55:4db125cd11a0 6060 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6061 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6062 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6063
mjr 35:e959ffba78fd 6064 // initialize the calibration button
mjr 1:d913e0afb2ac 6065 calBtnTimer.start();
mjr 35:e959ffba78fd 6066 calBtnState = 0;
mjr 1:d913e0afb2ac 6067
mjr 1:d913e0afb2ac 6068 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6069 Timer hbTimer;
mjr 1:d913e0afb2ac 6070 hbTimer.start();
mjr 1:d913e0afb2ac 6071 int hb = 0;
mjr 5:a70c0bce770d 6072 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6073
mjr 1:d913e0afb2ac 6074 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6075 Timer acTimer;
mjr 1:d913e0afb2ac 6076 acTimer.start();
mjr 1:d913e0afb2ac 6077
mjr 0:5acbbe3f4cf4 6078 // create the accelerometer object
mjr 77:0b96f6867312 6079 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 77:0b96f6867312 6080 MMA8451_INT_PIN, cfg.accelRange);
mjr 76:7f5912b6340e 6081
mjr 17:ab3cec0c8bf4 6082 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 6083 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 6084 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 6085
mjr 48:058ace2aed1d 6086 // initialize the plunger sensor
mjr 35:e959ffba78fd 6087 plungerSensor->init();
mjr 10:976666ffa4ef 6088
mjr 48:058ace2aed1d 6089 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6090 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6091
mjr 54:fd77a6b2f76c 6092 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6093 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6094 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6095 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6096 hc595->enable(true);
mjr 74:822a92bc11d2 6097
mjr 76:7f5912b6340e 6098 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6099 wizCycleTimer.start();
mjr 74:822a92bc11d2 6100
mjr 74:822a92bc11d2 6101 // start the PWM update polling timer
mjr 74:822a92bc11d2 6102 polledPwmTimer.start();
mjr 43:7a6364d82a41 6103
mjr 77:0b96f6867312 6104 // Timer for configuration change reboots
mjr 77:0b96f6867312 6105 ExtTimer saveConfigRebootTimer;
mjr 77:0b96f6867312 6106
mjr 1:d913e0afb2ac 6107 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6108 // host requests
mjr 0:5acbbe3f4cf4 6109 for (;;)
mjr 0:5acbbe3f4cf4 6110 {
mjr 74:822a92bc11d2 6111 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6112 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 6113
mjr 48:058ace2aed1d 6114 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6115 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6116 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6117 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6118 LedWizMsg lwm;
mjr 48:058ace2aed1d 6119 Timer lwt;
mjr 48:058ace2aed1d 6120 lwt.start();
mjr 77:0b96f6867312 6121 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6122 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6123 {
mjr 48:058ace2aed1d 6124 handleInputMsg(lwm, js);
mjr 74:822a92bc11d2 6125 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6126 }
mjr 74:822a92bc11d2 6127
mjr 74:822a92bc11d2 6128 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6129 IF_DIAG(
mjr 74:822a92bc11d2 6130 if (msgCount != 0)
mjr 74:822a92bc11d2 6131 {
mjr 76:7f5912b6340e 6132 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6133 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6134 }
mjr 74:822a92bc11d2 6135 )
mjr 74:822a92bc11d2 6136
mjr 77:0b96f6867312 6137 // process IR input
mjr 77:0b96f6867312 6138 process_IR(cfg, js);
mjr 77:0b96f6867312 6139
mjr 77:0b96f6867312 6140 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6141 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6142
mjr 74:822a92bc11d2 6143 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6144 wizPulse();
mjr 74:822a92bc11d2 6145
mjr 74:822a92bc11d2 6146 // update PWM outputs
mjr 74:822a92bc11d2 6147 pollPwmUpdates();
mjr 77:0b96f6867312 6148
mjr 77:0b96f6867312 6149 // poll the accelerometer
mjr 77:0b96f6867312 6150 accel.poll();
mjr 55:4db125cd11a0 6151
mjr 76:7f5912b6340e 6152 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6153 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6154
mjr 55:4db125cd11a0 6155 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6156 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6157 tlc5940->send();
mjr 1:d913e0afb2ac 6158
mjr 76:7f5912b6340e 6159 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6160 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6161
mjr 1:d913e0afb2ac 6162 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6163 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6164 {
mjr 1:d913e0afb2ac 6165 // check the state
mjr 1:d913e0afb2ac 6166 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6167 {
mjr 1:d913e0afb2ac 6168 case 0:
mjr 1:d913e0afb2ac 6169 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6170 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6171 calBtnState = 1;
mjr 1:d913e0afb2ac 6172 break;
mjr 1:d913e0afb2ac 6173
mjr 1:d913e0afb2ac 6174 case 1:
mjr 1:d913e0afb2ac 6175 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6176 // passed, start the hold period
mjr 48:058ace2aed1d 6177 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6178 calBtnState = 2;
mjr 1:d913e0afb2ac 6179 break;
mjr 1:d913e0afb2ac 6180
mjr 1:d913e0afb2ac 6181 case 2:
mjr 1:d913e0afb2ac 6182 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6183 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6184 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6185 {
mjr 1:d913e0afb2ac 6186 // enter calibration mode
mjr 1:d913e0afb2ac 6187 calBtnState = 3;
mjr 9:fd65b0a94720 6188 calBtnTimer.reset();
mjr 35:e959ffba78fd 6189
mjr 44:b5ac89b9cd5d 6190 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6191 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6192 }
mjr 1:d913e0afb2ac 6193 break;
mjr 2:c174f9ee414a 6194
mjr 2:c174f9ee414a 6195 case 3:
mjr 9:fd65b0a94720 6196 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6197 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6198 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6199 break;
mjr 0:5acbbe3f4cf4 6200 }
mjr 0:5acbbe3f4cf4 6201 }
mjr 1:d913e0afb2ac 6202 else
mjr 1:d913e0afb2ac 6203 {
mjr 2:c174f9ee414a 6204 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6205 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6206 // and save the results to flash.
mjr 2:c174f9ee414a 6207 //
mjr 2:c174f9ee414a 6208 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6209 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6210 // mode, it simply cancels the attempt.
mjr 77:0b96f6867312 6211 diagLED(1,1,1);
mjr 48:058ace2aed1d 6212 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6213 {
mjr 77:0b96f6867312 6214 diagLED(0,0,0);
mjr 2:c174f9ee414a 6215 // exit calibration mode
mjr 1:d913e0afb2ac 6216 calBtnState = 0;
mjr 52:8298b2a73eb2 6217 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6218
mjr 6:cc35eb643e8f 6219 // save the updated configuration
mjr 35:e959ffba78fd 6220 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 6221 saveConfigToFlash();
mjr 2:c174f9ee414a 6222 }
mjr 2:c174f9ee414a 6223 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6224 {
mjr 77:0b96f6867312 6225 diagLED(0,1,1);
mjr 2:c174f9ee414a 6226 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6227 calBtnState = 0;
mjr 2:c174f9ee414a 6228 }
mjr 1:d913e0afb2ac 6229 }
mjr 1:d913e0afb2ac 6230
mjr 1:d913e0afb2ac 6231 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6232 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6233 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6234 {
mjr 1:d913e0afb2ac 6235 case 2:
mjr 1:d913e0afb2ac 6236 // in the hold period - flash the light
mjr 48:058ace2aed1d 6237 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6238 break;
mjr 1:d913e0afb2ac 6239
mjr 1:d913e0afb2ac 6240 case 3:
mjr 1:d913e0afb2ac 6241 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6242 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6243 break;
mjr 1:d913e0afb2ac 6244
mjr 1:d913e0afb2ac 6245 default:
mjr 1:d913e0afb2ac 6246 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6247 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6248 break;
mjr 1:d913e0afb2ac 6249 }
mjr 3:3514575d4f86 6250
mjr 3:3514575d4f86 6251 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6252 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6253 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6254 {
mjr 1:d913e0afb2ac 6255 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6256 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6257 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6258 calBtnLed->write(1);
mjr 38:091e511ce8a0 6259 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6260 }
mjr 2:c174f9ee414a 6261 else {
mjr 17:ab3cec0c8bf4 6262 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6263 calBtnLed->write(0);
mjr 38:091e511ce8a0 6264 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6265 }
mjr 1:d913e0afb2ac 6266 }
mjr 35:e959ffba78fd 6267
mjr 76:7f5912b6340e 6268 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6269 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6270
mjr 48:058ace2aed1d 6271 // read the plunger sensor
mjr 48:058ace2aed1d 6272 plungerReader.read();
mjr 48:058ace2aed1d 6273
mjr 76:7f5912b6340e 6274 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6275 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6276
mjr 53:9b2611964afc 6277 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6278 zbLaunchBall.update();
mjr 37:ed52738445fc 6279
mjr 76:7f5912b6340e 6280 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6281 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6282
mjr 53:9b2611964afc 6283 // process button updates
mjr 53:9b2611964afc 6284 processButtons(cfg);
mjr 53:9b2611964afc 6285
mjr 76:7f5912b6340e 6286 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6287 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6288
mjr 38:091e511ce8a0 6289 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6290 if (kbState.changed)
mjr 37:ed52738445fc 6291 {
mjr 38:091e511ce8a0 6292 // send a keyboard report
mjr 37:ed52738445fc 6293 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6294 kbState.changed = false;
mjr 37:ed52738445fc 6295 }
mjr 38:091e511ce8a0 6296
mjr 38:091e511ce8a0 6297 // likewise for the media controller
mjr 37:ed52738445fc 6298 if (mediaState.changed)
mjr 37:ed52738445fc 6299 {
mjr 38:091e511ce8a0 6300 // send a media report
mjr 37:ed52738445fc 6301 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6302 mediaState.changed = false;
mjr 37:ed52738445fc 6303 }
mjr 38:091e511ce8a0 6304
mjr 76:7f5912b6340e 6305 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6306 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6307
mjr 38:091e511ce8a0 6308 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6309 bool jsOK = false;
mjr 55:4db125cd11a0 6310
mjr 55:4db125cd11a0 6311 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6312 uint16_t statusFlags =
mjr 77:0b96f6867312 6313 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6314 | nightMode // 0x02
mjr 77:0b96f6867312 6315 | ((psu2_state & 0x07) << 2); // 0x04 0x08 0x10
mjr 77:0b96f6867312 6316 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6317 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6318
mjr 50:40015764bbe6 6319 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6320 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6321 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6322 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 6323 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 6324 {
mjr 17:ab3cec0c8bf4 6325 // read the accelerometer
mjr 17:ab3cec0c8bf4 6326 int xa, ya;
mjr 17:ab3cec0c8bf4 6327 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6328
mjr 17:ab3cec0c8bf4 6329 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 6330 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 6331 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 6332 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 6333 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 6334
mjr 17:ab3cec0c8bf4 6335 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 6336 x = xa;
mjr 17:ab3cec0c8bf4 6337 y = ya;
mjr 17:ab3cec0c8bf4 6338
mjr 48:058ace2aed1d 6339 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6340 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6341 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6342 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6343 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6344 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6345 // regular plunger inputs.
mjr 48:058ace2aed1d 6346 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 6347 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 6348
mjr 35:e959ffba78fd 6349 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6350 accelRotate(x, y);
mjr 35:e959ffba78fd 6351
mjr 35:e959ffba78fd 6352 // send the joystick report
mjr 53:9b2611964afc 6353 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6354
mjr 17:ab3cec0c8bf4 6355 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6356 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6357 }
mjr 21:5048e16cc9ef 6358
mjr 52:8298b2a73eb2 6359 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6360 if (reportPlungerStat)
mjr 10:976666ffa4ef 6361 {
mjr 17:ab3cec0c8bf4 6362 // send the report
mjr 53:9b2611964afc 6363 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6364
mjr 10:976666ffa4ef 6365 // we have satisfied this request
mjr 52:8298b2a73eb2 6366 reportPlungerStat = false;
mjr 10:976666ffa4ef 6367 }
mjr 10:976666ffa4ef 6368
mjr 35:e959ffba78fd 6369 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6370 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6371 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6372 {
mjr 55:4db125cd11a0 6373 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6374 jsReportTimer.reset();
mjr 38:091e511ce8a0 6375 }
mjr 38:091e511ce8a0 6376
mjr 38:091e511ce8a0 6377 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6378 if (jsOK)
mjr 38:091e511ce8a0 6379 {
mjr 38:091e511ce8a0 6380 jsOKTimer.reset();
mjr 38:091e511ce8a0 6381 jsOKTimer.start();
mjr 21:5048e16cc9ef 6382 }
mjr 21:5048e16cc9ef 6383
mjr 76:7f5912b6340e 6384 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6385 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6386
mjr 6:cc35eb643e8f 6387 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6388 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6389 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6390 #endif
mjr 6:cc35eb643e8f 6391
mjr 33:d832bcab089e 6392 // check for connection status changes
mjr 54:fd77a6b2f76c 6393 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6394 if (newConnected != connected)
mjr 33:d832bcab089e 6395 {
mjr 54:fd77a6b2f76c 6396 // give it a moment to stabilize
mjr 40:cc0d9814522b 6397 connectChangeTimer.start();
mjr 55:4db125cd11a0 6398 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6399 {
mjr 33:d832bcab089e 6400 // note the new status
mjr 33:d832bcab089e 6401 connected = newConnected;
mjr 40:cc0d9814522b 6402
mjr 40:cc0d9814522b 6403 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6404 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6405 connectChangeTimer.reset();
mjr 33:d832bcab089e 6406
mjr 54:fd77a6b2f76c 6407 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6408 if (!connected)
mjr 40:cc0d9814522b 6409 {
mjr 54:fd77a6b2f76c 6410 // turn off all outputs
mjr 33:d832bcab089e 6411 allOutputsOff();
mjr 40:cc0d9814522b 6412
mjr 40:cc0d9814522b 6413 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6414 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6415 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6416 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6417 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6418 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6419 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6420 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6421 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6422 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6423 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6424 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6425 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6426 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6427 // the power first comes on.
mjr 40:cc0d9814522b 6428 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6429 tlc5940->enable(false);
mjr 40:cc0d9814522b 6430 if (hc595 != 0)
mjr 40:cc0d9814522b 6431 hc595->enable(false);
mjr 40:cc0d9814522b 6432 }
mjr 33:d832bcab089e 6433 }
mjr 33:d832bcab089e 6434 }
mjr 48:058ace2aed1d 6435
mjr 53:9b2611964afc 6436 // if we have a reboot timer pending, check for completion
mjr 77:0b96f6867312 6437 if (saveConfigRebootTimer.isRunning()
mjr 77:0b96f6867312 6438 && saveConfigRebootTimer.read() > saveConfigRebootTime)
mjr 53:9b2611964afc 6439 reboot(js);
mjr 77:0b96f6867312 6440
mjr 77:0b96f6867312 6441 // if a config save is pending, do it now
mjr 77:0b96f6867312 6442 if (saveConfigPending != 0)
mjr 77:0b96f6867312 6443 {
mjr 77:0b96f6867312 6444 // save the configuration
mjr 77:0b96f6867312 6445 saveConfigToFlash();
mjr 77:0b96f6867312 6446
mjr 77:0b96f6867312 6447 // if desired, reboot after the specified delay
mjr 77:0b96f6867312 6448 if (saveConfigPending == SAVE_CONFIG_AND_REBOOT)
mjr 77:0b96f6867312 6449 saveConfigRebootTimer.start();
mjr 77:0b96f6867312 6450
mjr 77:0b96f6867312 6451 // the save is no longer pending
mjr 77:0b96f6867312 6452 saveConfigPending = 0;
mjr 77:0b96f6867312 6453 }
mjr 53:9b2611964afc 6454
mjr 48:058ace2aed1d 6455 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6456 if (!connected)
mjr 48:058ace2aed1d 6457 {
mjr 54:fd77a6b2f76c 6458 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6459 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6460 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6461
mjr 54:fd77a6b2f76c 6462 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6463 js.diagFlash();
mjr 54:fd77a6b2f76c 6464
mjr 54:fd77a6b2f76c 6465 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6466 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6467
mjr 51:57eb311faafa 6468 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6469 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6470 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6471
mjr 54:fd77a6b2f76c 6472 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6473 Timer diagTimer;
mjr 54:fd77a6b2f76c 6474 diagTimer.reset();
mjr 54:fd77a6b2f76c 6475 diagTimer.start();
mjr 74:822a92bc11d2 6476
mjr 74:822a92bc11d2 6477 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6478 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6479
mjr 54:fd77a6b2f76c 6480 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6481 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6482 {
mjr 54:fd77a6b2f76c 6483 // try to recover the connection
mjr 54:fd77a6b2f76c 6484 js.recoverConnection();
mjr 54:fd77a6b2f76c 6485
mjr 55:4db125cd11a0 6486 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6487 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6488 tlc5940->send();
mjr 55:4db125cd11a0 6489
mjr 54:fd77a6b2f76c 6490 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6491 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6492 {
mjr 54:fd77a6b2f76c 6493 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6494 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6495
mjr 54:fd77a6b2f76c 6496 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6497 js.diagFlash();
mjr 51:57eb311faafa 6498
mjr 51:57eb311faafa 6499 // reset the flash timer
mjr 54:fd77a6b2f76c 6500 diagTimer.reset();
mjr 51:57eb311faafa 6501 }
mjr 51:57eb311faafa 6502
mjr 77:0b96f6867312 6503 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6504 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6505 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6506 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6507 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6508 // reliable way to get Windows to notice us again after one
mjr 77:0b96f6867312 6509 // of these events and make it reconnect.
mjr 51:57eb311faafa 6510 if (cfg.disconnectRebootTimeout != 0
mjr 70:9f58735a1732 6511 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6512 reboot(js, false, 0);
mjr 77:0b96f6867312 6513
mjr 77:0b96f6867312 6514 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6515 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6516 }
mjr 54:fd77a6b2f76c 6517
mjr 74:822a92bc11d2 6518 // resume the main loop timer
mjr 74:822a92bc11d2 6519 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6520
mjr 54:fd77a6b2f76c 6521 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6522 connected = true;
mjr 54:fd77a6b2f76c 6523 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6524
mjr 54:fd77a6b2f76c 6525 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6526 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6527 {
mjr 55:4db125cd11a0 6528 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6529 tlc5940->update(true);
mjr 54:fd77a6b2f76c 6530 }
mjr 54:fd77a6b2f76c 6531 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6532 {
mjr 55:4db125cd11a0 6533 hc595->enable(true);
mjr 54:fd77a6b2f76c 6534 hc595->update(true);
mjr 51:57eb311faafa 6535 }
mjr 48:058ace2aed1d 6536 }
mjr 43:7a6364d82a41 6537
mjr 6:cc35eb643e8f 6538 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6539 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6540 {
mjr 54:fd77a6b2f76c 6541 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6542 {
mjr 39:b3815a1c3802 6543 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6544 //
mjr 54:fd77a6b2f76c 6545 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6546 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6547 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6548 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6549 hb = !hb;
mjr 38:091e511ce8a0 6550 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6551
mjr 54:fd77a6b2f76c 6552 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6553 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6554 // with the USB connection.
mjr 54:fd77a6b2f76c 6555 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6556 {
mjr 54:fd77a6b2f76c 6557 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6558 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6559 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 6560 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 6561 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 6562 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6563 }
mjr 54:fd77a6b2f76c 6564 else
mjr 54:fd77a6b2f76c 6565 {
mjr 54:fd77a6b2f76c 6566 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6567 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6568 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6569 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6570 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6571 }
mjr 38:091e511ce8a0 6572 }
mjr 73:4e8ce0b18915 6573 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6574 {
mjr 73:4e8ce0b18915 6575 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6576 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6577 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6578 }
mjr 35:e959ffba78fd 6579 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6580 {
mjr 6:cc35eb643e8f 6581 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6582 hb = !hb;
mjr 38:091e511ce8a0 6583 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6584 }
mjr 6:cc35eb643e8f 6585 else
mjr 6:cc35eb643e8f 6586 {
mjr 6:cc35eb643e8f 6587 // connected - flash blue/green
mjr 2:c174f9ee414a 6588 hb = !hb;
mjr 38:091e511ce8a0 6589 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6590 }
mjr 1:d913e0afb2ac 6591
mjr 1:d913e0afb2ac 6592 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6593 hbTimer.reset();
mjr 5:a70c0bce770d 6594 ++hbcnt;
mjr 1:d913e0afb2ac 6595 }
mjr 74:822a92bc11d2 6596
mjr 74:822a92bc11d2 6597 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6598 IF_DIAG(
mjr 76:7f5912b6340e 6599 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6600 mainLoopIterCount++;
mjr 74:822a92bc11d2 6601 )
mjr 1:d913e0afb2ac 6602 }
mjr 0:5acbbe3f4cf4 6603 }