An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Nov 29 05:38:07 2019 +0000
Revision:
101:755f44622abc
Parent:
100:1ff35c07217c
Child:
106:e9e3b46132c1
Use continuous asynchronous frame transfers in image sensors

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 262 #include "rotarySensor.h"
mjr 100:1ff35c07217c 263 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 264
mjr 2:c174f9ee414a 265
mjr 21:5048e16cc9ef 266 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 267 #include "config.h"
mjr 17:ab3cec0c8bf4 268
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 89:c43cd923401c 838 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 839 // top of a physical pin output.
mjr 89:c43cd923401c 840 //
mjr 89:c43cd923401c 841 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 842 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 843 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 844 // level is ON.
mjr 89:c43cd923401c 845 //
mjr 89:c43cd923401c 846 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 847 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 848 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 849 //
mjr 89:c43cd923401c 850 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 851 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 852 // power and start a timer.
mjr 89:c43cd923401c 853 //
mjr 89:c43cd923401c 854 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 855 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 856 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 857 //
mjr 89:c43cd923401c 858 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 859 {
mjr 89:c43cd923401c 860 public:
mjr 89:c43cd923401c 861 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 862 // the configuration.
mjr 89:c43cd923401c 863 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 864 : out(o), params(params)
mjr 89:c43cd923401c 865 {
mjr 89:c43cd923401c 866 // initially OFF
mjr 89:c43cd923401c 867 state = 0;
mjr 89:c43cd923401c 868 }
mjr 89:c43cd923401c 869
mjr 89:c43cd923401c 870 virtual void set(uint8_t level)
mjr 89:c43cd923401c 871 {
mjr 98:4df3c0f7e707 872 // remember the new nominal level set by the client
mjr 89:c43cd923401c 873 val = level;
mjr 89:c43cd923401c 874
mjr 89:c43cd923401c 875 // update the physical output according to our current timing state
mjr 89:c43cd923401c 876 switch (state)
mjr 89:c43cd923401c 877 {
mjr 89:c43cd923401c 878 case 0:
mjr 89:c43cd923401c 879 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 880 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 881 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 882 // off, so there's no change.
mjr 89:c43cd923401c 883 if (level != 0)
mjr 89:c43cd923401c 884 {
mjr 89:c43cd923401c 885 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 886 state = 1;
mjr 89:c43cd923401c 887
mjr 89:c43cd923401c 888 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 889 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 890 // requested
mjr 89:c43cd923401c 891 out->set(level);
mjr 89:c43cd923401c 892
mjr 89:c43cd923401c 893 // add myself to the pending timer list
mjr 89:c43cd923401c 894 pending[nPending++] = this;
mjr 89:c43cd923401c 895
mjr 89:c43cd923401c 896 // note the starting time
mjr 89:c43cd923401c 897 t0 = timer.read_us();
mjr 89:c43cd923401c 898 }
mjr 89:c43cd923401c 899 break;
mjr 89:c43cd923401c 900
mjr 89:c43cd923401c 901 case 1:
mjr 89:c43cd923401c 902 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 903 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 904 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 905 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 906 out->set(level);
mjr 89:c43cd923401c 907 if (level == 0)
mjr 89:c43cd923401c 908 {
mjr 89:c43cd923401c 909 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 910 // so we need to remove it from the list.
mjr 89:c43cd923401c 911 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 912 {
mjr 89:c43cd923401c 913 // is this us?
mjr 89:c43cd923401c 914 if (pending[i] == this)
mjr 89:c43cd923401c 915 {
mjr 89:c43cd923401c 916 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 917 // last list entry
mjr 89:c43cd923401c 918 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 919
mjr 89:c43cd923401c 920 // no need to look any further
mjr 89:c43cd923401c 921 break;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923 }
mjr 89:c43cd923401c 924
mjr 89:c43cd923401c 925 // switch to state 0 (off)
mjr 89:c43cd923401c 926 state = 0;
mjr 89:c43cd923401c 927 }
mjr 89:c43cd923401c 928 break;
mjr 89:c43cd923401c 929
mjr 89:c43cd923401c 930 case 2:
mjr 89:c43cd923401c 931 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 932 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 933 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 934 // as the upper bound.
mjr 89:c43cd923401c 935 if (level == 0)
mjr 89:c43cd923401c 936 {
mjr 89:c43cd923401c 937 // switching off - turn off the physical output
mjr 89:c43cd923401c 938 out->set(0);
mjr 89:c43cd923401c 939
mjr 89:c43cd923401c 940 // go to state 0 (off)
mjr 89:c43cd923401c 941 state = 0;
mjr 89:c43cd923401c 942 }
mjr 89:c43cd923401c 943 else
mjr 89:c43cd923401c 944 {
mjr 89:c43cd923401c 945 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 946 // lower of the requested power and the hold power
mjr 89:c43cd923401c 947 uint8_t hold = holdPower();
mjr 89:c43cd923401c 948 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953
mjr 89:c43cd923401c 954 // Class initialization
mjr 89:c43cd923401c 955 static void classInit(Config &cfg)
mjr 89:c43cd923401c 956 {
mjr 89:c43cd923401c 957 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 958 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 959 // all of these outputs.
mjr 89:c43cd923401c 960 int n = 0;
mjr 89:c43cd923401c 961 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 964 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 965 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 966 ++n;
mjr 89:c43cd923401c 967 }
mjr 89:c43cd923401c 968
mjr 89:c43cd923401c 969 // allocate space for the pending timer list
mjr 89:c43cd923401c 970 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 971
mjr 89:c43cd923401c 972 // there's nothing in the pending list yet
mjr 89:c43cd923401c 973 nPending = 0;
mjr 89:c43cd923401c 974
mjr 89:c43cd923401c 975 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 976 // use it to figure elapsed times.
mjr 89:c43cd923401c 977 timer.start();
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979
mjr 89:c43cd923401c 980 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 981 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 982 static void poll()
mjr 89:c43cd923401c 983 {
mjr 89:c43cd923401c 984 // note the current time
mjr 89:c43cd923401c 985 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 986
mjr 89:c43cd923401c 987 // go through the timer list
mjr 89:c43cd923401c 988 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 989 {
mjr 89:c43cd923401c 990 // get the port
mjr 89:c43cd923401c 991 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 992
mjr 89:c43cd923401c 993 // assume we'll keep it
mjr 89:c43cd923401c 994 bool remove = false;
mjr 89:c43cd923401c 995
mjr 89:c43cd923401c 996 // check if the port is still on
mjr 89:c43cd923401c 997 if (port->state != 0)
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1000 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1001 {
mjr 89:c43cd923401c 1002 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1003 port->state = 2;
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1006 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1007 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1008 uint8_t val = port->val;
mjr 89:c43cd923401c 1009 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1010
mjr 89:c43cd923401c 1011 // we're done with the timer
mjr 89:c43cd923401c 1012 remove = true;
mjr 89:c43cd923401c 1013 }
mjr 89:c43cd923401c 1014 }
mjr 89:c43cd923401c 1015 else
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1018 // it from the timer list
mjr 89:c43cd923401c 1019 remove = true;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021
mjr 89:c43cd923401c 1022 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1023 if (remove)
mjr 89:c43cd923401c 1024 {
mjr 89:c43cd923401c 1025 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1026 // the last entry in the list.
mjr 89:c43cd923401c 1027 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1030 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1031 }
mjr 89:c43cd923401c 1032 else
mjr 89:c43cd923401c 1033 {
mjr 89:c43cd923401c 1034 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1035 ++i;
mjr 89:c43cd923401c 1036 }
mjr 89:c43cd923401c 1037 }
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039
mjr 89:c43cd923401c 1040 protected:
mjr 89:c43cd923401c 1041 // underlying physical output
mjr 89:c43cd923401c 1042 LwOut *out;
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1045 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1046 uint32_t t0;
mjr 89:c43cd923401c 1047
mjr 89:c43cd923401c 1048 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1049 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1050 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1051 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1052 // if it's lower.
mjr 89:c43cd923401c 1053 uint8_t val;
mjr 89:c43cd923401c 1054
mjr 89:c43cd923401c 1055 // Current port state:
mjr 89:c43cd923401c 1056 //
mjr 89:c43cd923401c 1057 // 0 = off
mjr 89:c43cd923401c 1058 // 1 = on at initial full power
mjr 89:c43cd923401c 1059 // 2 = on at hold power
mjr 89:c43cd923401c 1060 uint8_t state;
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1063 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1064 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1065 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1066 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1067 uint8_t params;
mjr 89:c43cd923401c 1068
mjr 99:8139b0c274f4 1069 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1070 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1071 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1072
mjr 89:c43cd923401c 1073 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1074 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1075
mjr 89:c43cd923401c 1076 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1077 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1078 // (which runs continuously).
mjr 89:c43cd923401c 1079 static Timer timer;
mjr 89:c43cd923401c 1080
mjr 89:c43cd923401c 1081 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1082 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1083 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1084 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1085 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1086 static uint8_t nPending;
mjr 89:c43cd923401c 1087 };
mjr 89:c43cd923401c 1088
mjr 89:c43cd923401c 1089 // Flipper Logic statics
mjr 89:c43cd923401c 1090 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1091 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1092 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1093
mjr 99:8139b0c274f4 1094 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1095 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1096 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1097 {
mjr 98:4df3c0f7e707 1098 public:
mjr 99:8139b0c274f4 1099 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1100 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1101 : out(o), params(params)
mjr 98:4df3c0f7e707 1102 {
mjr 98:4df3c0f7e707 1103 // initially OFF
mjr 98:4df3c0f7e707 1104 state = 0;
mjr 98:4df3c0f7e707 1105 }
mjr 98:4df3c0f7e707 1106
mjr 98:4df3c0f7e707 1107 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1108 {
mjr 98:4df3c0f7e707 1109 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1110 switch (state)
mjr 98:4df3c0f7e707 1111 {
mjr 98:4df3c0f7e707 1112 case 0:
mjr 98:4df3c0f7e707 1113 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1114 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1115 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1116 // off, so there's no change.
mjr 98:4df3c0f7e707 1117 if (level != 0)
mjr 98:4df3c0f7e707 1118 {
mjr 98:4df3c0f7e707 1119 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1120 // logically on)
mjr 98:4df3c0f7e707 1121 state = 1;
mjr 98:4df3c0f7e707 1122
mjr 98:4df3c0f7e707 1123 // set the requested output level
mjr 98:4df3c0f7e707 1124 out->set(level);
mjr 98:4df3c0f7e707 1125
mjr 98:4df3c0f7e707 1126 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1127 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1128
mjr 98:4df3c0f7e707 1129 // note the starting time
mjr 98:4df3c0f7e707 1130 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1131 }
mjr 98:4df3c0f7e707 1132 break;
mjr 98:4df3c0f7e707 1133
mjr 98:4df3c0f7e707 1134 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1135 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1136 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1137 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1138 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1139 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1140 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1141 //
mjr 98:4df3c0f7e707 1142 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1143 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1144 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1145 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1146 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1147 if (level != 0)
mjr 98:4df3c0f7e707 1148 {
mjr 98:4df3c0f7e707 1149 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1150 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1151 out->set(level);
mjr 98:4df3c0f7e707 1152 state = 1;
mjr 98:4df3c0f7e707 1153 }
mjr 98:4df3c0f7e707 1154 else
mjr 98:4df3c0f7e707 1155 {
mjr 98:4df3c0f7e707 1156 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1157 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1158 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1159 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1160 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1161 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1162 // time requirement.
mjr 98:4df3c0f7e707 1163 state = 2;
mjr 98:4df3c0f7e707 1164 }
mjr 98:4df3c0f7e707 1165 break;
mjr 98:4df3c0f7e707 1166
mjr 98:4df3c0f7e707 1167 case 3:
mjr 99:8139b0c274f4 1168 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1169 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1170 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1171 out->set(level);
mjr 98:4df3c0f7e707 1172
mjr 98:4df3c0f7e707 1173 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1174 if (level == 0)
mjr 99:8139b0c274f4 1175 {
mjr 99:8139b0c274f4 1176 // return to the OFF state
mjr 99:8139b0c274f4 1177 state = 0;
mjr 99:8139b0c274f4 1178
mjr 99:8139b0c274f4 1179 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1180 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1181 // port.
mjr 99:8139b0c274f4 1182 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1183 {
mjr 99:8139b0c274f4 1184 // is this us?
mjr 99:8139b0c274f4 1185 if (pending[i] == this)
mjr 99:8139b0c274f4 1186 {
mjr 99:8139b0c274f4 1187 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1188 // last list entry
mjr 99:8139b0c274f4 1189 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1190
mjr 99:8139b0c274f4 1191 // no need to look any further
mjr 99:8139b0c274f4 1192 break;
mjr 99:8139b0c274f4 1193 }
mjr 99:8139b0c274f4 1194 }
mjr 99:8139b0c274f4 1195 }
mjr 99:8139b0c274f4 1196 break;
mjr 99:8139b0c274f4 1197
mjr 99:8139b0c274f4 1198 case 4:
mjr 99:8139b0c274f4 1199 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1200 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1201 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1202 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1203 if (level == 0)
mjr 98:4df3c0f7e707 1204 state = 0;
mjr 98:4df3c0f7e707 1205 break;
mjr 98:4df3c0f7e707 1206 }
mjr 98:4df3c0f7e707 1207 }
mjr 98:4df3c0f7e707 1208
mjr 98:4df3c0f7e707 1209 // Class initialization
mjr 98:4df3c0f7e707 1210 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1211 {
mjr 98:4df3c0f7e707 1212 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1213 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1214 // all of these outputs.
mjr 98:4df3c0f7e707 1215 int n = 0;
mjr 98:4df3c0f7e707 1216 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1217 {
mjr 98:4df3c0f7e707 1218 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1219 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1220 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1221 ++n;
mjr 98:4df3c0f7e707 1222 }
mjr 98:4df3c0f7e707 1223
mjr 98:4df3c0f7e707 1224 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1225 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1226
mjr 98:4df3c0f7e707 1227 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1228 nPending = 0;
mjr 98:4df3c0f7e707 1229
mjr 98:4df3c0f7e707 1230 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1231 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1232 timer.start();
mjr 98:4df3c0f7e707 1233 }
mjr 98:4df3c0f7e707 1234
mjr 98:4df3c0f7e707 1235 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1236 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1237 static void poll()
mjr 98:4df3c0f7e707 1238 {
mjr 98:4df3c0f7e707 1239 // note the current time
mjr 98:4df3c0f7e707 1240 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1241
mjr 98:4df3c0f7e707 1242 // go through the timer list
mjr 98:4df3c0f7e707 1243 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1244 {
mjr 98:4df3c0f7e707 1245 // get the port
mjr 99:8139b0c274f4 1246 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1247
mjr 98:4df3c0f7e707 1248 // assume we'll keep it
mjr 98:4df3c0f7e707 1249 bool remove = false;
mjr 98:4df3c0f7e707 1250
mjr 99:8139b0c274f4 1251 // check our state
mjr 99:8139b0c274f4 1252 switch (port->state)
mjr 98:4df3c0f7e707 1253 {
mjr 99:8139b0c274f4 1254 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1255 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1256 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1257 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1258 {
mjr 98:4df3c0f7e707 1259 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1260 // it advances to the next state.
mjr 98:4df3c0f7e707 1261 if (port->state == 1)
mjr 98:4df3c0f7e707 1262 {
mjr 99:8139b0c274f4 1263 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1264 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1265 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1266 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1267 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1268 port->state = 3;
mjr 99:8139b0c274f4 1269
mjr 99:8139b0c274f4 1270 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1271 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1272 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1273 // port off.
mjr 99:8139b0c274f4 1274 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1275 remove = true;
mjr 98:4df3c0f7e707 1276 }
mjr 98:4df3c0f7e707 1277 else
mjr 98:4df3c0f7e707 1278 {
mjr 98:4df3c0f7e707 1279 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1280 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1281 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1282 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1283 // the port off now.
mjr 98:4df3c0f7e707 1284 port->out->set(0);
mjr 98:4df3c0f7e707 1285
mjr 98:4df3c0f7e707 1286 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1287 port->state = 0;
mjr 99:8139b0c274f4 1288
mjr 99:8139b0c274f4 1289 // we're done with the timer
mjr 99:8139b0c274f4 1290 remove = true;
mjr 98:4df3c0f7e707 1291 }
mjr 99:8139b0c274f4 1292 }
mjr 99:8139b0c274f4 1293 break;
mjr 99:8139b0c274f4 1294
mjr 99:8139b0c274f4 1295 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1296 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1297 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1298 {
mjr 99:8139b0c274f4 1299 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1300 // port.
mjr 99:8139b0c274f4 1301 port->out->set(0);
mjr 98:4df3c0f7e707 1302
mjr 99:8139b0c274f4 1303 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1304 port->state = 4;
mjr 99:8139b0c274f4 1305
mjr 99:8139b0c274f4 1306 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1307 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1308 remove = true;
mjr 98:4df3c0f7e707 1309 }
mjr 99:8139b0c274f4 1310 break;
mjr 98:4df3c0f7e707 1311 }
mjr 98:4df3c0f7e707 1312
mjr 98:4df3c0f7e707 1313 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1314 if (remove)
mjr 98:4df3c0f7e707 1315 {
mjr 98:4df3c0f7e707 1316 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1317 // the last entry in the list.
mjr 98:4df3c0f7e707 1318 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1319
mjr 98:4df3c0f7e707 1320 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1321 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1322 }
mjr 98:4df3c0f7e707 1323 else
mjr 98:4df3c0f7e707 1324 {
mjr 98:4df3c0f7e707 1325 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1326 ++i;
mjr 98:4df3c0f7e707 1327 }
mjr 98:4df3c0f7e707 1328 }
mjr 98:4df3c0f7e707 1329 }
mjr 98:4df3c0f7e707 1330
mjr 98:4df3c0f7e707 1331 protected:
mjr 98:4df3c0f7e707 1332 // underlying physical output
mjr 98:4df3c0f7e707 1333 LwOut *out;
mjr 98:4df3c0f7e707 1334
mjr 98:4df3c0f7e707 1335 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1336 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1337 uint32_t t0;
mjr 98:4df3c0f7e707 1338
mjr 98:4df3c0f7e707 1339 // Current port state:
mjr 98:4df3c0f7e707 1340 //
mjr 98:4df3c0f7e707 1341 // 0 = off
mjr 99:8139b0c274f4 1342 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1343 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1344 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1345 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1346 //
mjr 99:8139b0c274f4 1347 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1348 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1349 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1350 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1351 //
mjr 99:8139b0c274f4 1352 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1353 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1354 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1355 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1356 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1357 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1358 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1359 //
mjr 99:8139b0c274f4 1360 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1361 // time limit expires:
mjr 99:8139b0c274f4 1362 //
mjr 99:8139b0c274f4 1363 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1364 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1365 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1366 //
mjr 98:4df3c0f7e707 1367 uint8_t state;
mjr 98:4df3c0f7e707 1368
mjr 99:8139b0c274f4 1369 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1370 // ON times.
mjr 99:8139b0c274f4 1371 uint8_t params;
mjr 98:4df3c0f7e707 1372
mjr 98:4df3c0f7e707 1373 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1374 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1375 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1376 static Timer timer;
mjr 98:4df3c0f7e707 1377
mjr 98:4df3c0f7e707 1378 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1379 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1380
mjr 99:8139b0c274f4 1381 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1382 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1383 // into our time table.
mjr 99:8139b0c274f4 1384 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1385
mjr 99:8139b0c274f4 1386 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1387 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1388 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1389 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1390
mjr 98:4df3c0f7e707 1391 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1392 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1393 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1394 // ON intervals.
mjr 99:8139b0c274f4 1395 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1396 static uint8_t nPending;
mjr 98:4df3c0f7e707 1397 };
mjr 98:4df3c0f7e707 1398
mjr 98:4df3c0f7e707 1399 // Min Time Out statics
mjr 99:8139b0c274f4 1400 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1401 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1402 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1403 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1404 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1405 1000,
mjr 98:4df3c0f7e707 1406 2000,
mjr 98:4df3c0f7e707 1407 5000,
mjr 98:4df3c0f7e707 1408 10000,
mjr 98:4df3c0f7e707 1409 20000,
mjr 98:4df3c0f7e707 1410 40000,
mjr 98:4df3c0f7e707 1411 80000,
mjr 98:4df3c0f7e707 1412 100000,
mjr 98:4df3c0f7e707 1413 200000,
mjr 98:4df3c0f7e707 1414 300000,
mjr 98:4df3c0f7e707 1415 400000,
mjr 98:4df3c0f7e707 1416 500000,
mjr 98:4df3c0f7e707 1417 600000,
mjr 98:4df3c0f7e707 1418 700000,
mjr 98:4df3c0f7e707 1419 800000
mjr 98:4df3c0f7e707 1420 };
mjr 89:c43cd923401c 1421
mjr 35:e959ffba78fd 1422 //
mjr 35:e959ffba78fd 1423 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1424 // assignments set in config.h.
mjr 33:d832bcab089e 1425 //
mjr 35:e959ffba78fd 1426 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1427 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1428 {
mjr 35:e959ffba78fd 1429 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1430 {
mjr 53:9b2611964afc 1431 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1432 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1433 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1434 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1435 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1436 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1437 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1438 }
mjr 35:e959ffba78fd 1439 }
mjr 26:cb71c4af2912 1440
mjr 40:cc0d9814522b 1441 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1442 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1443 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1444 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1445 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1446 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1447 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1448 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1449 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1450 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1451 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1452 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1453 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1454 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1455 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1456 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1457 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1458 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1459 };
mjr 40:cc0d9814522b 1460
mjr 40:cc0d9814522b 1461 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1462 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1463 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1464 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1465 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1466 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1467 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1468 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1469 // are always 8 bits.
mjr 40:cc0d9814522b 1470 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1471 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1472 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1473 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1474 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1475 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1476 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1477 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1478 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1479 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1480 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1481 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1482 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1483 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1484 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1485 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1486 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1487 };
mjr 40:cc0d9814522b 1488
mjr 26:cb71c4af2912 1489 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1490 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1491 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1492 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1493 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1494 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1495 {
mjr 26:cb71c4af2912 1496 public:
mjr 60:f38da020aa13 1497 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1498 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1499 {
mjr 26:cb71c4af2912 1500 if (val != prv)
mjr 40:cc0d9814522b 1501 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1502 }
mjr 60:f38da020aa13 1503 uint8_t idx;
mjr 40:cc0d9814522b 1504 uint8_t prv;
mjr 26:cb71c4af2912 1505 };
mjr 26:cb71c4af2912 1506
mjr 40:cc0d9814522b 1507 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1508 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1509 {
mjr 40:cc0d9814522b 1510 public:
mjr 60:f38da020aa13 1511 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1512 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1513 {
mjr 40:cc0d9814522b 1514 if (val != prv)
mjr 40:cc0d9814522b 1515 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1516 }
mjr 60:f38da020aa13 1517 uint8_t idx;
mjr 40:cc0d9814522b 1518 uint8_t prv;
mjr 40:cc0d9814522b 1519 };
mjr 40:cc0d9814522b 1520
mjr 87:8d35c74403af 1521 //
mjr 87:8d35c74403af 1522 // TLC59116 interface object
mjr 87:8d35c74403af 1523 //
mjr 87:8d35c74403af 1524 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1525 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1526 {
mjr 87:8d35c74403af 1527 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1528 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1529 {
mjr 87:8d35c74403af 1530 // set up the interface
mjr 87:8d35c74403af 1531 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1532 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1533 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1534 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1535
mjr 87:8d35c74403af 1536 // initialize the chips
mjr 87:8d35c74403af 1537 tlc59116->init();
mjr 87:8d35c74403af 1538 }
mjr 87:8d35c74403af 1539 }
mjr 87:8d35c74403af 1540
mjr 87:8d35c74403af 1541 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1542 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1543 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1544 // (0-15).
mjr 87:8d35c74403af 1545 //
mjr 87:8d35c74403af 1546 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1547 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1548 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1549 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1550 {
mjr 87:8d35c74403af 1551 public:
mjr 87:8d35c74403af 1552 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1553 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1554 {
mjr 87:8d35c74403af 1555 if (val != prv)
mjr 87:8d35c74403af 1556 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1557 }
mjr 87:8d35c74403af 1558
mjr 87:8d35c74403af 1559 protected:
mjr 87:8d35c74403af 1560 uint8_t addr;
mjr 87:8d35c74403af 1561 uint8_t port;
mjr 87:8d35c74403af 1562 uint8_t prv;
mjr 87:8d35c74403af 1563 };
mjr 87:8d35c74403af 1564
mjr 87:8d35c74403af 1565
mjr 87:8d35c74403af 1566 //
mjr 34:6b981a2afab7 1567 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1568 // config.h.
mjr 87:8d35c74403af 1569 //
mjr 35:e959ffba78fd 1570 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1571
mjr 35:e959ffba78fd 1572 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1573 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1574 {
mjr 35:e959ffba78fd 1575 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1576 {
mjr 53:9b2611964afc 1577 hc595 = new HC595(
mjr 53:9b2611964afc 1578 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1579 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1580 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1581 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1582 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1583 hc595->init();
mjr 35:e959ffba78fd 1584 hc595->update();
mjr 35:e959ffba78fd 1585 }
mjr 35:e959ffba78fd 1586 }
mjr 34:6b981a2afab7 1587
mjr 34:6b981a2afab7 1588 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1589 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1590 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1591 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1592 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1593 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1594 {
mjr 33:d832bcab089e 1595 public:
mjr 60:f38da020aa13 1596 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1597 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1598 {
mjr 34:6b981a2afab7 1599 if (val != prv)
mjr 40:cc0d9814522b 1600 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1601 }
mjr 60:f38da020aa13 1602 uint8_t idx;
mjr 40:cc0d9814522b 1603 uint8_t prv;
mjr 33:d832bcab089e 1604 };
mjr 33:d832bcab089e 1605
mjr 26:cb71c4af2912 1606
mjr 40:cc0d9814522b 1607
mjr 64:ef7ca92dff36 1608 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1609 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1610 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1611 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1612 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1613 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1614 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1615 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1616 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1617 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1618 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1619 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1620 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1621 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1622 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1623 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1624 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1625 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1626 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1627 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1628 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1629 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1630 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1631 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1632 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1633 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1634 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1635 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1636 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1637 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1638 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1639 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1640 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1641 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1642 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1643 };
mjr 26:cb71c4af2912 1644
mjr 64:ef7ca92dff36 1645
mjr 92:f264fbaa1be5 1646 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1647 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1648 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1649 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1650 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1651 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1652 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1653 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1654 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1655 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1656 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1657 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1658 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1659 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1660 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1661 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1662 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1663 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1664 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1665 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1666 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1667 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1668 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1669 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1670 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1671 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1672 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1673 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1674 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1675 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1676 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1677 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1678 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1679 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1680 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1681 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1682 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1683 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1684 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1685 };
mjr 64:ef7ca92dff36 1686
mjr 77:0b96f6867312 1687 // Polled-update PWM output list
mjr 74:822a92bc11d2 1688 //
mjr 77:0b96f6867312 1689 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1690 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1691 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1692 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1693 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1694 //
mjr 92:f264fbaa1be5 1695 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1696 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1697 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1698 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1699 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1700 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1701 //
mjr 92:f264fbaa1be5 1702 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1703 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1704 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1705 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1706 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1707 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1708 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1709 // enough to become noticeable.
mjr 92:f264fbaa1be5 1710 //
mjr 92:f264fbaa1be5 1711 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1712 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1713 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1714 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1715 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1716 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1717 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1718 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1719 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1720 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1721 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1722 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1723 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1724 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1725 //
mjr 92:f264fbaa1be5 1726 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1727 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1728 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1729 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1730 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1731 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1732 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1733 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1734 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1735 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1736 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1737 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1738 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1739 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1740 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1741 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1742 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1743 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1744 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1745 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1746 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1747 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1748 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1749 //
mjr 77:0b96f6867312 1750 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1751 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1752 // of polled items.
mjr 74:822a92bc11d2 1753 static int numPolledPwm;
mjr 74:822a92bc11d2 1754 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1755
mjr 74:822a92bc11d2 1756 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1757 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1758 {
mjr 6:cc35eb643e8f 1759 public:
mjr 43:7a6364d82a41 1760 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1761 {
mjr 77:0b96f6867312 1762 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1763 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1764 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1765
mjr 94:0476b3e2b996 1766 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1767 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1768 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1769 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1770 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1771 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1772 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1773 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1774 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1775 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1776 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1777 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1778 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1779 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1780 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1781 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1782
mjr 94:0476b3e2b996 1783 // set the initial brightness value
mjr 77:0b96f6867312 1784 set(initVal);
mjr 43:7a6364d82a41 1785 }
mjr 74:822a92bc11d2 1786
mjr 40:cc0d9814522b 1787 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1788 {
mjr 77:0b96f6867312 1789 // save the new value
mjr 74:822a92bc11d2 1790 this->val = val;
mjr 77:0b96f6867312 1791
mjr 77:0b96f6867312 1792 // commit it to the hardware
mjr 77:0b96f6867312 1793 commit();
mjr 13:72dda449c3c0 1794 }
mjr 74:822a92bc11d2 1795
mjr 74:822a92bc11d2 1796 // handle periodic update polling
mjr 74:822a92bc11d2 1797 void poll()
mjr 74:822a92bc11d2 1798 {
mjr 77:0b96f6867312 1799 commit();
mjr 74:822a92bc11d2 1800 }
mjr 74:822a92bc11d2 1801
mjr 74:822a92bc11d2 1802 protected:
mjr 77:0b96f6867312 1803 virtual void commit()
mjr 74:822a92bc11d2 1804 {
mjr 74:822a92bc11d2 1805 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1806 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1807 }
mjr 74:822a92bc11d2 1808
mjr 77:0b96f6867312 1809 NewPwmOut p;
mjr 77:0b96f6867312 1810 uint8_t val;
mjr 6:cc35eb643e8f 1811 };
mjr 26:cb71c4af2912 1812
mjr 74:822a92bc11d2 1813 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1814 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1815 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1816 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1817 {
mjr 64:ef7ca92dff36 1818 public:
mjr 64:ef7ca92dff36 1819 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1820 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1821 {
mjr 64:ef7ca92dff36 1822 }
mjr 74:822a92bc11d2 1823
mjr 74:822a92bc11d2 1824 protected:
mjr 77:0b96f6867312 1825 virtual void commit()
mjr 64:ef7ca92dff36 1826 {
mjr 74:822a92bc11d2 1827 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1828 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1829 }
mjr 64:ef7ca92dff36 1830 };
mjr 64:ef7ca92dff36 1831
mjr 74:822a92bc11d2 1832 // poll the PWM outputs
mjr 74:822a92bc11d2 1833 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1834 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1835 void pollPwmUpdates()
mjr 74:822a92bc11d2 1836 {
mjr 94:0476b3e2b996 1837 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1838 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1839 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1840 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1841 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1842 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1843 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1844 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1845 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1846 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1847 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1848 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1849 // viewer.
mjr 94:0476b3e2b996 1850 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1851 {
mjr 74:822a92bc11d2 1852 // time the run for statistics collection
mjr 74:822a92bc11d2 1853 IF_DIAG(
mjr 74:822a92bc11d2 1854 Timer t;
mjr 74:822a92bc11d2 1855 t.start();
mjr 74:822a92bc11d2 1856 )
mjr 74:822a92bc11d2 1857
mjr 74:822a92bc11d2 1858 // poll each output
mjr 74:822a92bc11d2 1859 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1860 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1861
mjr 74:822a92bc11d2 1862 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1863 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1864
mjr 74:822a92bc11d2 1865 // collect statistics
mjr 74:822a92bc11d2 1866 IF_DIAG(
mjr 76:7f5912b6340e 1867 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1868 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1869 )
mjr 74:822a92bc11d2 1870 }
mjr 74:822a92bc11d2 1871 }
mjr 64:ef7ca92dff36 1872
mjr 26:cb71c4af2912 1873 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1874 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1875 {
mjr 6:cc35eb643e8f 1876 public:
mjr 43:7a6364d82a41 1877 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1878 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1879 {
mjr 13:72dda449c3c0 1880 if (val != prv)
mjr 40:cc0d9814522b 1881 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1882 }
mjr 6:cc35eb643e8f 1883 DigitalOut p;
mjr 40:cc0d9814522b 1884 uint8_t prv;
mjr 6:cc35eb643e8f 1885 };
mjr 26:cb71c4af2912 1886
mjr 29:582472d0bc57 1887 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1888 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1889 // port n (0-based).
mjr 35:e959ffba78fd 1890 //
mjr 35:e959ffba78fd 1891 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1892 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1893 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1894 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1895 // 74HC595 ports).
mjr 33:d832bcab089e 1896 static int numOutputs;
mjr 33:d832bcab089e 1897 static LwOut **lwPin;
mjr 33:d832bcab089e 1898
mjr 38:091e511ce8a0 1899 // create a single output pin
mjr 53:9b2611964afc 1900 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1901 {
mjr 38:091e511ce8a0 1902 // get this item's values
mjr 38:091e511ce8a0 1903 int typ = pc.typ;
mjr 38:091e511ce8a0 1904 int pin = pc.pin;
mjr 38:091e511ce8a0 1905 int flags = pc.flags;
mjr 40:cc0d9814522b 1906 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1907 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1908 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1909 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 1910 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 1911
mjr 89:c43cd923401c 1912 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1913 if (flipperLogic)
mjr 89:c43cd923401c 1914 gamma = false;
mjr 38:091e511ce8a0 1915
mjr 38:091e511ce8a0 1916 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1917 LwOut *lwp;
mjr 38:091e511ce8a0 1918 switch (typ)
mjr 38:091e511ce8a0 1919 {
mjr 38:091e511ce8a0 1920 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1921 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1922 if (pin != 0)
mjr 64:ef7ca92dff36 1923 {
mjr 64:ef7ca92dff36 1924 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1925 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1926 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1927 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1928 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1929 {
mjr 64:ef7ca92dff36 1930 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1931 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1932
mjr 64:ef7ca92dff36 1933 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1934 gamma = false;
mjr 64:ef7ca92dff36 1935 }
mjr 64:ef7ca92dff36 1936 else
mjr 64:ef7ca92dff36 1937 {
mjr 64:ef7ca92dff36 1938 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1939 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1940 }
mjr 64:ef7ca92dff36 1941 }
mjr 48:058ace2aed1d 1942 else
mjr 48:058ace2aed1d 1943 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1944 break;
mjr 38:091e511ce8a0 1945
mjr 38:091e511ce8a0 1946 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1947 // Digital GPIO port
mjr 48:058ace2aed1d 1948 if (pin != 0)
mjr 48:058ace2aed1d 1949 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1950 else
mjr 48:058ace2aed1d 1951 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1952 break;
mjr 38:091e511ce8a0 1953
mjr 38:091e511ce8a0 1954 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1955 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1956 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1957 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1958 {
mjr 40:cc0d9814522b 1959 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1960 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1961 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1962 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1963 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1964 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1965 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1966 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1967 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1968 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1969 // for this unlikely case.
mjr 40:cc0d9814522b 1970 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1971 {
mjr 40:cc0d9814522b 1972 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1973 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1974
mjr 40:cc0d9814522b 1975 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1976 gamma = false;
mjr 40:cc0d9814522b 1977 }
mjr 40:cc0d9814522b 1978 else
mjr 40:cc0d9814522b 1979 {
mjr 40:cc0d9814522b 1980 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1981 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1982 }
mjr 40:cc0d9814522b 1983 }
mjr 38:091e511ce8a0 1984 else
mjr 40:cc0d9814522b 1985 {
mjr 40:cc0d9814522b 1986 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1987 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1988 }
mjr 38:091e511ce8a0 1989 break;
mjr 38:091e511ce8a0 1990
mjr 38:091e511ce8a0 1991 case PortType74HC595:
mjr 87:8d35c74403af 1992 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1993 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1994 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1995 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1996 else
mjr 38:091e511ce8a0 1997 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1998 break;
mjr 87:8d35c74403af 1999
mjr 87:8d35c74403af 2000 case PortTypeTLC59116:
mjr 87:8d35c74403af 2001 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2002 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2003 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2004 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2005 if (tlc59116 != 0)
mjr 87:8d35c74403af 2006 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2007 break;
mjr 38:091e511ce8a0 2008
mjr 38:091e511ce8a0 2009 case PortTypeVirtual:
mjr 43:7a6364d82a41 2010 case PortTypeDisabled:
mjr 38:091e511ce8a0 2011 default:
mjr 38:091e511ce8a0 2012 // virtual or unknown
mjr 38:091e511ce8a0 2013 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2014 break;
mjr 38:091e511ce8a0 2015 }
mjr 38:091e511ce8a0 2016
mjr 40:cc0d9814522b 2017 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2018 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2019 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2020 if (activeLow)
mjr 38:091e511ce8a0 2021 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2022
mjr 89:c43cd923401c 2023 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2024 if (flipperLogic)
mjr 89:c43cd923401c 2025 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2026
mjr 99:8139b0c274f4 2027 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2028 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2029 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2030 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2031 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2032
mjr 89:c43cd923401c 2033 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2034 if (noisy)
mjr 40:cc0d9814522b 2035 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2036
mjr 40:cc0d9814522b 2037 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2038 if (gamma)
mjr 40:cc0d9814522b 2039 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2040
mjr 53:9b2611964afc 2041 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2042 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2043 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2044 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2045 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2046
mjr 53:9b2611964afc 2047 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2048 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2049 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2050
mjr 38:091e511ce8a0 2051 // turn it off initially
mjr 38:091e511ce8a0 2052 lwp->set(0);
mjr 38:091e511ce8a0 2053
mjr 38:091e511ce8a0 2054 // return the pin
mjr 38:091e511ce8a0 2055 return lwp;
mjr 38:091e511ce8a0 2056 }
mjr 38:091e511ce8a0 2057
mjr 6:cc35eb643e8f 2058 // initialize the output pin array
mjr 35:e959ffba78fd 2059 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2060 {
mjr 99:8139b0c274f4 2061 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2062 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2063 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2064
mjr 35:e959ffba78fd 2065 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2066 // total number of ports.
mjr 35:e959ffba78fd 2067 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2068 int i;
mjr 35:e959ffba78fd 2069 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2070 {
mjr 35:e959ffba78fd 2071 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2072 {
mjr 35:e959ffba78fd 2073 numOutputs = i;
mjr 34:6b981a2afab7 2074 break;
mjr 34:6b981a2afab7 2075 }
mjr 33:d832bcab089e 2076 }
mjr 33:d832bcab089e 2077
mjr 73:4e8ce0b18915 2078 // allocate the pin array
mjr 73:4e8ce0b18915 2079 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2080
mjr 73:4e8ce0b18915 2081 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2082 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2083
mjr 73:4e8ce0b18915 2084 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2085 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2086 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2087
mjr 73:4e8ce0b18915 2088 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2089 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2090 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2091
mjr 73:4e8ce0b18915 2092 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2093 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2094 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2095
mjr 35:e959ffba78fd 2096 // create the pin interface object for each port
mjr 35:e959ffba78fd 2097 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2098 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2099 }
mjr 6:cc35eb643e8f 2100
mjr 76:7f5912b6340e 2101 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2102 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2103 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2104 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2105 // equivalent to 48.
mjr 40:cc0d9814522b 2106 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2107 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2108 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2109 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2110 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2111 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2112 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2113 255, 255
mjr 40:cc0d9814522b 2114 };
mjr 40:cc0d9814522b 2115
mjr 76:7f5912b6340e 2116 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2117 // level (1..48)
mjr 76:7f5912b6340e 2118 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2119 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2120 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2121 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2122 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2123 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2124 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2125 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2126 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2127 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2128 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2129 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2130 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2131 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2132 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2133 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2134 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2135 };
mjr 76:7f5912b6340e 2136
mjr 74:822a92bc11d2 2137 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2138 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2139 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2140 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2141 //
mjr 74:822a92bc11d2 2142 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2143 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2144 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2145 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2146 //
mjr 74:822a92bc11d2 2147 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2148 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2149 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2150 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2151 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2152 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2153 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2154 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2155 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2156 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2157 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2158 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2159 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2160 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2161 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2162 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2163 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2164 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2165 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2166 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2167
mjr 74:822a92bc11d2 2168 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2169 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2170 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2171 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2172 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2173 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2174 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2175 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2176 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2177 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2179 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2181 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2183 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2185
mjr 74:822a92bc11d2 2186 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2187 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2188 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2191 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2192 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2193 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2194 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2195 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2196 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2197 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2198 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2199 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2200 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2201 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2202 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2203
mjr 74:822a92bc11d2 2204 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2205 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2206 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2207 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2208 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2209 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2210 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2211 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2212 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2213 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2214 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2215 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2216 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2217 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2218 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2219 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2220 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2221 };
mjr 74:822a92bc11d2 2222
mjr 74:822a92bc11d2 2223 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2224 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2225 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2226
mjr 76:7f5912b6340e 2227 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2228 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2229
mjr 76:7f5912b6340e 2230 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2231 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2232 // outputs on each cycle.
mjr 29:582472d0bc57 2233 static void wizPulse()
mjr 29:582472d0bc57 2234 {
mjr 76:7f5912b6340e 2235 // current bank
mjr 76:7f5912b6340e 2236 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2237
mjr 76:7f5912b6340e 2238 // start a timer for statistics collection
mjr 76:7f5912b6340e 2239 IF_DIAG(
mjr 76:7f5912b6340e 2240 Timer t;
mjr 76:7f5912b6340e 2241 t.start();
mjr 76:7f5912b6340e 2242 )
mjr 76:7f5912b6340e 2243
mjr 76:7f5912b6340e 2244 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2245 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2246 //
mjr 76:7f5912b6340e 2247 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2248 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2249 //
mjr 76:7f5912b6340e 2250 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2251 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2252 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2253 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2254 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2255 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2256 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2257 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2258 // current cycle.
mjr 76:7f5912b6340e 2259 //
mjr 76:7f5912b6340e 2260 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2261 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2262 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2263 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2264 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2265 //
mjr 76:7f5912b6340e 2266 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2267 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2268 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2269 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2270 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2271 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2272 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2273 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2274 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2275 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2276 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2277 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2278 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2279 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2280 // bit counts.
mjr 76:7f5912b6340e 2281 //
mjr 76:7f5912b6340e 2282 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2283 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2284 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2285 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2286 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2287 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2288 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2289 // one division for another!
mjr 76:7f5912b6340e 2290 //
mjr 76:7f5912b6340e 2291 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2292 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2293 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2294 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2295 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2296 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2297 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2298 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2299 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2300 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2301 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2302 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2303 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2304 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2305 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2306 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2307 // remainder calculation anyway.
mjr 76:7f5912b6340e 2308 //
mjr 76:7f5912b6340e 2309 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2310 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2311 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2312 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2313 //
mjr 76:7f5912b6340e 2314 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2315 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2316 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2317 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2318 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2319 // the result, since we started with 32.
mjr 76:7f5912b6340e 2320 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2321 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2322 };
mjr 76:7f5912b6340e 2323 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2324
mjr 76:7f5912b6340e 2325 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2326 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2327 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2328 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2329 toPort = numOutputs;
mjr 76:7f5912b6340e 2330
mjr 76:7f5912b6340e 2331 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2332 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2333 {
mjr 76:7f5912b6340e 2334 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2335 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2336 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2337 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2338 if (wizOn[i])
mjr 29:582472d0bc57 2339 {
mjr 76:7f5912b6340e 2340 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2341 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2342 {
mjr 76:7f5912b6340e 2343 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2344 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2345 }
mjr 29:582472d0bc57 2346 }
mjr 76:7f5912b6340e 2347 }
mjr 76:7f5912b6340e 2348
mjr 34:6b981a2afab7 2349 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2350 if (hc595 != 0)
mjr 35:e959ffba78fd 2351 hc595->update();
mjr 76:7f5912b6340e 2352
mjr 76:7f5912b6340e 2353 // switch to the next bank
mjr 76:7f5912b6340e 2354 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2355 wizPulseBank = 0;
mjr 76:7f5912b6340e 2356
mjr 76:7f5912b6340e 2357 // collect timing statistics
mjr 76:7f5912b6340e 2358 IF_DIAG(
mjr 76:7f5912b6340e 2359 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2360 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2361 )
mjr 1:d913e0afb2ac 2362 }
mjr 38:091e511ce8a0 2363
mjr 76:7f5912b6340e 2364 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2365 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2366 {
mjr 76:7f5912b6340e 2367 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2368 if (wizOn[port])
mjr 76:7f5912b6340e 2369 {
mjr 76:7f5912b6340e 2370 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2371 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2372 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2373 // it on the next cycle.
mjr 76:7f5912b6340e 2374 int val = wizVal[port];
mjr 76:7f5912b6340e 2375 if (val <= 49)
mjr 76:7f5912b6340e 2376 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2377 }
mjr 76:7f5912b6340e 2378 else
mjr 76:7f5912b6340e 2379 {
mjr 76:7f5912b6340e 2380 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2381 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2382 }
mjr 73:4e8ce0b18915 2383 }
mjr 73:4e8ce0b18915 2384
mjr 73:4e8ce0b18915 2385 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2386 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2387 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2388 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2389 //
mjr 73:4e8ce0b18915 2390 void allOutputsOff()
mjr 73:4e8ce0b18915 2391 {
mjr 92:f264fbaa1be5 2392 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2393 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2394 {
mjr 73:4e8ce0b18915 2395 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2396 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2397 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2398 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2399 }
mjr 73:4e8ce0b18915 2400
mjr 73:4e8ce0b18915 2401 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2402 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2403 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2404
mjr 73:4e8ce0b18915 2405 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2406 if (hc595 != 0)
mjr 38:091e511ce8a0 2407 hc595->update();
mjr 38:091e511ce8a0 2408 }
mjr 38:091e511ce8a0 2409
mjr 74:822a92bc11d2 2410 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2411 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2412 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2413 // address any port group.
mjr 74:822a92bc11d2 2414 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2415 {
mjr 76:7f5912b6340e 2416 // update all on/off states in the group
mjr 74:822a92bc11d2 2417 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2418 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2419 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2420 {
mjr 74:822a92bc11d2 2421 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2422 if (bit == 0x100) {
mjr 74:822a92bc11d2 2423 bit = 1;
mjr 74:822a92bc11d2 2424 ++imsg;
mjr 74:822a92bc11d2 2425 }
mjr 74:822a92bc11d2 2426
mjr 74:822a92bc11d2 2427 // set the on/off state
mjr 76:7f5912b6340e 2428 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2429
mjr 76:7f5912b6340e 2430 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2431 updateLwPort(port);
mjr 74:822a92bc11d2 2432 }
mjr 74:822a92bc11d2 2433
mjr 74:822a92bc11d2 2434 // set the flash speed for the port group
mjr 74:822a92bc11d2 2435 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2436 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2437
mjr 76:7f5912b6340e 2438 // update 74HC959 outputs
mjr 76:7f5912b6340e 2439 if (hc595 != 0)
mjr 76:7f5912b6340e 2440 hc595->update();
mjr 74:822a92bc11d2 2441 }
mjr 74:822a92bc11d2 2442
mjr 74:822a92bc11d2 2443 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2444 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2445 {
mjr 74:822a92bc11d2 2446 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2447 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2448 {
mjr 74:822a92bc11d2 2449 // get the value
mjr 74:822a92bc11d2 2450 uint8_t v = data[i];
mjr 74:822a92bc11d2 2451
mjr 74:822a92bc11d2 2452 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2453 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2454 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2455 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2456 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2457 // as such.
mjr 74:822a92bc11d2 2458 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2459 v = 48;
mjr 74:822a92bc11d2 2460
mjr 74:822a92bc11d2 2461 // store it
mjr 76:7f5912b6340e 2462 wizVal[port] = v;
mjr 76:7f5912b6340e 2463
mjr 76:7f5912b6340e 2464 // update the port
mjr 76:7f5912b6340e 2465 updateLwPort(port);
mjr 74:822a92bc11d2 2466 }
mjr 74:822a92bc11d2 2467
mjr 76:7f5912b6340e 2468 // update 74HC595 outputs
mjr 76:7f5912b6340e 2469 if (hc595 != 0)
mjr 76:7f5912b6340e 2470 hc595->update();
mjr 74:822a92bc11d2 2471 }
mjr 74:822a92bc11d2 2472
mjr 77:0b96f6867312 2473 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2474 //
mjr 77:0b96f6867312 2475 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2476 //
mjr 77:0b96f6867312 2477
mjr 77:0b96f6867312 2478 // receiver
mjr 77:0b96f6867312 2479 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2480
mjr 77:0b96f6867312 2481 // transmitter
mjr 77:0b96f6867312 2482 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2483
mjr 77:0b96f6867312 2484 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2485 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2486 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2487 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2488 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2489 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2490 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2491 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2492 // configuration slot n
mjr 77:0b96f6867312 2493 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2494
mjr 78:1e00b3fa11af 2495 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2496 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2497 // protocol.
mjr 78:1e00b3fa11af 2498 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2499
mjr 78:1e00b3fa11af 2500 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2501 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2502 // while waiting for the rest.
mjr 78:1e00b3fa11af 2503 static struct
mjr 78:1e00b3fa11af 2504 {
mjr 78:1e00b3fa11af 2505 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2506 uint64_t code; // code
mjr 78:1e00b3fa11af 2507 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2508 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2509 } IRAdHocCmd;
mjr 88:98bce687e6c0 2510
mjr 77:0b96f6867312 2511
mjr 77:0b96f6867312 2512 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2513 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2514 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2515 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2516 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2517 // amount of time.
mjr 77:0b96f6867312 2518 Timer IRTimer;
mjr 77:0b96f6867312 2519
mjr 77:0b96f6867312 2520 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2521 // The states are:
mjr 77:0b96f6867312 2522 //
mjr 77:0b96f6867312 2523 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2524 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2525 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2526 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2527 //
mjr 77:0b96f6867312 2528 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2529 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2530 // received within a reasonable time.
mjr 77:0b96f6867312 2531 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2532
mjr 77:0b96f6867312 2533 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2534 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2535 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2536 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2537 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2538 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2539 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2540 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2541 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2542
mjr 78:1e00b3fa11af 2543 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2544 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2545 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2546 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2547 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2548 // index; 0 represents no command.
mjr 77:0b96f6867312 2549 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2550
mjr 77:0b96f6867312 2551 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2552 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2553 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2554 // command we received.
mjr 77:0b96f6867312 2555 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2556
mjr 77:0b96f6867312 2557 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2558 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2559 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2560 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2561 // distinct key press.
mjr 77:0b96f6867312 2562 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2563
mjr 78:1e00b3fa11af 2564
mjr 77:0b96f6867312 2565 // initialize
mjr 77:0b96f6867312 2566 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2567 {
mjr 77:0b96f6867312 2568 PinName pin;
mjr 77:0b96f6867312 2569
mjr 77:0b96f6867312 2570 // start the IR timer
mjr 77:0b96f6867312 2571 IRTimer.start();
mjr 77:0b96f6867312 2572
mjr 77:0b96f6867312 2573 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2574 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2575 {
mjr 77:0b96f6867312 2576 // no virtual buttons yet
mjr 77:0b96f6867312 2577 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2578 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2579
mjr 77:0b96f6867312 2580 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2581 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2582 {
mjr 77:0b96f6867312 2583 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2584 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2585 }
mjr 77:0b96f6867312 2586
mjr 77:0b96f6867312 2587 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2588 // real button inputs
mjr 77:0b96f6867312 2589 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2590 {
mjr 77:0b96f6867312 2591 // get the button
mjr 77:0b96f6867312 2592 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2593
mjr 77:0b96f6867312 2594 // check the unshifted button
mjr 77:0b96f6867312 2595 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2596 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2597 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2598 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2599
mjr 77:0b96f6867312 2600 // check the shifted button
mjr 77:0b96f6867312 2601 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2602 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2603 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2604 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2605 }
mjr 77:0b96f6867312 2606
mjr 77:0b96f6867312 2607 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2608 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2609 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2610
mjr 77:0b96f6867312 2611 // create the transmitter
mjr 77:0b96f6867312 2612 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2613
mjr 77:0b96f6867312 2614 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2615 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2616 {
mjr 77:0b96f6867312 2617 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2618 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2619 if (vb != 0xFF)
mjr 77:0b96f6867312 2620 {
mjr 77:0b96f6867312 2621 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2622 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2623 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2624 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2625 }
mjr 77:0b96f6867312 2626 }
mjr 77:0b96f6867312 2627 }
mjr 77:0b96f6867312 2628
mjr 77:0b96f6867312 2629 // if there's a receiver, set it up
mjr 77:0b96f6867312 2630 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2631 {
mjr 77:0b96f6867312 2632 // create the receiver
mjr 77:0b96f6867312 2633 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2634
mjr 77:0b96f6867312 2635 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2636 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2637 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2638
mjr 77:0b96f6867312 2639 // enable it
mjr 77:0b96f6867312 2640 ir_rx->enable();
mjr 77:0b96f6867312 2641
mjr 77:0b96f6867312 2642 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2643 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2644 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2645 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2646 {
mjr 77:0b96f6867312 2647 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2648 if (cb.protocol != 0
mjr 77:0b96f6867312 2649 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2650 {
mjr 77:0b96f6867312 2651 kbKeys = true;
mjr 77:0b96f6867312 2652 break;
mjr 77:0b96f6867312 2653 }
mjr 77:0b96f6867312 2654 }
mjr 77:0b96f6867312 2655 }
mjr 77:0b96f6867312 2656 }
mjr 77:0b96f6867312 2657
mjr 77:0b96f6867312 2658 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2659 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2660 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2661 {
mjr 77:0b96f6867312 2662 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2663 if (ir_tx != 0)
mjr 77:0b96f6867312 2664 {
mjr 77:0b96f6867312 2665 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2666 int slot = cmd - 1;
mjr 77:0b96f6867312 2667
mjr 77:0b96f6867312 2668 // press or release the virtual button
mjr 77:0b96f6867312 2669 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2670 }
mjr 77:0b96f6867312 2671 }
mjr 77:0b96f6867312 2672
mjr 78:1e00b3fa11af 2673 // Process IR input and output
mjr 77:0b96f6867312 2674 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2675 {
mjr 78:1e00b3fa11af 2676 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2677 if (ir_tx != 0)
mjr 77:0b96f6867312 2678 {
mjr 78:1e00b3fa11af 2679 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2680 // is ready to send, send it.
mjr 78:1e00b3fa11af 2681 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2682 {
mjr 78:1e00b3fa11af 2683 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2684 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2685 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2686 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2687
mjr 78:1e00b3fa11af 2688 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2689 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2690 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2691
mjr 78:1e00b3fa11af 2692 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2693 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2694 }
mjr 77:0b96f6867312 2695 }
mjr 78:1e00b3fa11af 2696
mjr 78:1e00b3fa11af 2697 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2698 if (ir_rx != 0)
mjr 77:0b96f6867312 2699 {
mjr 78:1e00b3fa11af 2700 // Time out any received command
mjr 78:1e00b3fa11af 2701 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2702 {
mjr 80:94dc2946871b 2703 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2704 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2705 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2706 if (t > 200000)
mjr 78:1e00b3fa11af 2707 IRCommandIn = 0;
mjr 80:94dc2946871b 2708 else if (t > 50000)
mjr 78:1e00b3fa11af 2709 IRKeyGap = false;
mjr 78:1e00b3fa11af 2710 }
mjr 78:1e00b3fa11af 2711
mjr 78:1e00b3fa11af 2712 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2713 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2714 {
mjr 78:1e00b3fa11af 2715 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2716 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2717 // limit.
mjr 78:1e00b3fa11af 2718 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2719 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2720 int n;
mjr 78:1e00b3fa11af 2721 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2722
mjr 78:1e00b3fa11af 2723 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2724 if (n != 0)
mjr 78:1e00b3fa11af 2725 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2726
mjr 78:1e00b3fa11af 2727 // check for a command
mjr 78:1e00b3fa11af 2728 IRCommand c;
mjr 78:1e00b3fa11af 2729 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2730 {
mjr 78:1e00b3fa11af 2731 // check the current learning state
mjr 78:1e00b3fa11af 2732 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2733 {
mjr 78:1e00b3fa11af 2734 case 1:
mjr 78:1e00b3fa11af 2735 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2736 // This is it.
mjr 78:1e00b3fa11af 2737 learnedIRCode = c;
mjr 78:1e00b3fa11af 2738
mjr 78:1e00b3fa11af 2739 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2740 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2741 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2742 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2743 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2744 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2745 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2746 break;
mjr 78:1e00b3fa11af 2747
mjr 78:1e00b3fa11af 2748 case 2:
mjr 78:1e00b3fa11af 2749 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2750 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2751 //
mjr 78:1e00b3fa11af 2752 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2753 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2754 //
mjr 78:1e00b3fa11af 2755 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2756 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2757 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2758 // them.
mjr 78:1e00b3fa11af 2759 //
mjr 78:1e00b3fa11af 2760 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2761 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2762 // over.
mjr 78:1e00b3fa11af 2763 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2764 && c.hasDittos
mjr 78:1e00b3fa11af 2765 && c.ditto)
mjr 78:1e00b3fa11af 2766 {
mjr 78:1e00b3fa11af 2767 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2768 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2769 }
mjr 78:1e00b3fa11af 2770 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2771 && c.hasDittos
mjr 78:1e00b3fa11af 2772 && !c.ditto
mjr 78:1e00b3fa11af 2773 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2774 {
mjr 78:1e00b3fa11af 2775 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2776 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2777 // protocol supports them
mjr 78:1e00b3fa11af 2778 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2779 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2780 }
mjr 78:1e00b3fa11af 2781 else
mjr 78:1e00b3fa11af 2782 {
mjr 78:1e00b3fa11af 2783 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2784 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2785 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2786 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2787 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2788 }
mjr 78:1e00b3fa11af 2789 break;
mjr 78:1e00b3fa11af 2790 }
mjr 77:0b96f6867312 2791
mjr 78:1e00b3fa11af 2792 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2793 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2794 // learning mode.
mjr 78:1e00b3fa11af 2795 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2796 {
mjr 78:1e00b3fa11af 2797 // figure the flags:
mjr 78:1e00b3fa11af 2798 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2799 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2800 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2801 flags |= 0x02;
mjr 78:1e00b3fa11af 2802
mjr 78:1e00b3fa11af 2803 // report the code
mjr 78:1e00b3fa11af 2804 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2805
mjr 78:1e00b3fa11af 2806 // exit learning mode
mjr 78:1e00b3fa11af 2807 IRLearningMode = 0;
mjr 77:0b96f6867312 2808 }
mjr 77:0b96f6867312 2809 }
mjr 77:0b96f6867312 2810
mjr 78:1e00b3fa11af 2811 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2812 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2813 {
mjr 78:1e00b3fa11af 2814 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2815 // zero data elements
mjr 78:1e00b3fa11af 2816 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2817
mjr 78:1e00b3fa11af 2818
mjr 78:1e00b3fa11af 2819 // cancel learning mode
mjr 77:0b96f6867312 2820 IRLearningMode = 0;
mjr 77:0b96f6867312 2821 }
mjr 77:0b96f6867312 2822 }
mjr 78:1e00b3fa11af 2823 else
mjr 77:0b96f6867312 2824 {
mjr 78:1e00b3fa11af 2825 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2826 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2827 ir_rx->process();
mjr 78:1e00b3fa11af 2828
mjr 78:1e00b3fa11af 2829 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2830 // have been read.
mjr 78:1e00b3fa11af 2831 IRCommand c;
mjr 78:1e00b3fa11af 2832 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2833 {
mjr 78:1e00b3fa11af 2834 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2835 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2836 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2837 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2838 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2839 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2840 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2841 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2842 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2843 //
mjr 78:1e00b3fa11af 2844 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2845 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2846 // command.
mjr 78:1e00b3fa11af 2847 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2848 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2849 {
mjr 78:1e00b3fa11af 2850 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2851 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2852 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2853 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2854 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2855 if (c.ditto)
mjr 78:1e00b3fa11af 2856 {
mjr 78:1e00b3fa11af 2857 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2858 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2859 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2860 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2861 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2862 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2863 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2864 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2865 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2866 }
mjr 78:1e00b3fa11af 2867 else
mjr 78:1e00b3fa11af 2868 {
mjr 78:1e00b3fa11af 2869 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2870 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2871 // prior command.
mjr 78:1e00b3fa11af 2872 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2873 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2874 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2875
mjr 78:1e00b3fa11af 2876 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2877 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2878 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2879 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2880 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2881 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2882 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2883 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2884 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2885 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2886 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2887 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2888 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2889 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2890 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2891 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2892 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2893 autoRepeat =
mjr 78:1e00b3fa11af 2894 repeat
mjr 78:1e00b3fa11af 2895 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2896 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2897 }
mjr 78:1e00b3fa11af 2898 }
mjr 78:1e00b3fa11af 2899
mjr 78:1e00b3fa11af 2900 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2901 if (repeat)
mjr 78:1e00b3fa11af 2902 {
mjr 78:1e00b3fa11af 2903 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2904 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2905 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2906 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2907 // key press event.
mjr 78:1e00b3fa11af 2908 if (!autoRepeat)
mjr 78:1e00b3fa11af 2909 IRKeyGap = true;
mjr 78:1e00b3fa11af 2910
mjr 78:1e00b3fa11af 2911 // restart the key-up timer
mjr 78:1e00b3fa11af 2912 IRTimer.reset();
mjr 78:1e00b3fa11af 2913 }
mjr 78:1e00b3fa11af 2914 else if (c.ditto)
mjr 78:1e00b3fa11af 2915 {
mjr 78:1e00b3fa11af 2916 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2917 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2918 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2919 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2920 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2921 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2922 // a full command for a new key press.
mjr 78:1e00b3fa11af 2923 IRCommandIn = 0;
mjr 77:0b96f6867312 2924 }
mjr 77:0b96f6867312 2925 else
mjr 77:0b96f6867312 2926 {
mjr 78:1e00b3fa11af 2927 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2928 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2929 // the new command).
mjr 78:1e00b3fa11af 2930 IRCommandIn = 0;
mjr 77:0b96f6867312 2931
mjr 78:1e00b3fa11af 2932 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2933 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2934 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2935 {
mjr 78:1e00b3fa11af 2936 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2937 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2938 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2939 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2940 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2941 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2942 {
mjr 78:1e00b3fa11af 2943 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2944 // remember the starting time.
mjr 78:1e00b3fa11af 2945 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2946 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2947 IRTimer.reset();
mjr 78:1e00b3fa11af 2948
mjr 78:1e00b3fa11af 2949 // no need to keep searching
mjr 78:1e00b3fa11af 2950 break;
mjr 78:1e00b3fa11af 2951 }
mjr 77:0b96f6867312 2952 }
mjr 77:0b96f6867312 2953 }
mjr 77:0b96f6867312 2954 }
mjr 77:0b96f6867312 2955 }
mjr 77:0b96f6867312 2956 }
mjr 77:0b96f6867312 2957 }
mjr 77:0b96f6867312 2958
mjr 74:822a92bc11d2 2959
mjr 11:bd9da7088e6e 2960 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2961 //
mjr 11:bd9da7088e6e 2962 // Button input
mjr 11:bd9da7088e6e 2963 //
mjr 11:bd9da7088e6e 2964
mjr 18:5e890ebd0023 2965 // button state
mjr 18:5e890ebd0023 2966 struct ButtonState
mjr 18:5e890ebd0023 2967 {
mjr 38:091e511ce8a0 2968 ButtonState()
mjr 38:091e511ce8a0 2969 {
mjr 53:9b2611964afc 2970 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2971 virtState = 0;
mjr 53:9b2611964afc 2972 dbState = 0;
mjr 38:091e511ce8a0 2973 pulseState = 0;
mjr 53:9b2611964afc 2974 pulseTime = 0;
mjr 38:091e511ce8a0 2975 }
mjr 35:e959ffba78fd 2976
mjr 53:9b2611964afc 2977 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2978 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2979 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2980 //
mjr 53:9b2611964afc 2981 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2982 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2983 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2984 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2985 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2986 void virtPress(bool on)
mjr 53:9b2611964afc 2987 {
mjr 53:9b2611964afc 2988 // Increment or decrement the current state
mjr 53:9b2611964afc 2989 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2990 }
mjr 53:9b2611964afc 2991
mjr 53:9b2611964afc 2992 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2993 TinyDigitalIn di;
mjr 38:091e511ce8a0 2994
mjr 65:739875521aae 2995 // Time of last pulse state transition.
mjr 65:739875521aae 2996 //
mjr 65:739875521aae 2997 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2998 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2999 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 3000 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 3001 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 3002 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 3003 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 3004 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 3005 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 3006 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 3007 // This software system can't be fooled that way.)
mjr 65:739875521aae 3008 uint32_t pulseTime;
mjr 18:5e890ebd0023 3009
mjr 65:739875521aae 3010 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 3011 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 3012 uint8_t cfgIndex;
mjr 53:9b2611964afc 3013
mjr 53:9b2611964afc 3014 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 3015 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 3016 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 3017 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 3018 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 3019 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 3020 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 3021 // and physical source states.
mjr 53:9b2611964afc 3022 uint8_t virtState;
mjr 38:091e511ce8a0 3023
mjr 38:091e511ce8a0 3024 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 3025 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 3026 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 3027 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 3028 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 3029 uint8_t dbState;
mjr 38:091e511ce8a0 3030
mjr 65:739875521aae 3031 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 3032 uint8_t physState : 1;
mjr 65:739875521aae 3033
mjr 65:739875521aae 3034 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 3035 uint8_t logState : 1;
mjr 65:739875521aae 3036
mjr 79:682ae3171a08 3037 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 3038 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 3039 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 3040 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 3041 uint8_t prevLogState : 1;
mjr 65:739875521aae 3042
mjr 65:739875521aae 3043 // Pulse state
mjr 65:739875521aae 3044 //
mjr 65:739875521aae 3045 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 3046 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 3047 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 3048 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 3049 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 3050 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 3051 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 3052 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 3053 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 3054 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 3055 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 3056 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 3057 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 3058 //
mjr 38:091e511ce8a0 3059 // Pulse state:
mjr 38:091e511ce8a0 3060 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 3061 // 1 -> off
mjr 38:091e511ce8a0 3062 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 3063 // 3 -> on
mjr 38:091e511ce8a0 3064 // 4 -> transitioning on-off
mjr 65:739875521aae 3065 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 3066
mjr 65:739875521aae 3067 } __attribute__((packed));
mjr 65:739875521aae 3068
mjr 65:739875521aae 3069 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 3070 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 3071 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 3072
mjr 66:2e3583fbd2f4 3073 // Shift button state
mjr 66:2e3583fbd2f4 3074 struct
mjr 66:2e3583fbd2f4 3075 {
mjr 66:2e3583fbd2f4 3076 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 3077 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 3078 // 0 = not shifted
mjr 66:2e3583fbd2f4 3079 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 3080 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 3081 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 3082 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 3083 }
mjr 66:2e3583fbd2f4 3084 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 3085
mjr 38:091e511ce8a0 3086 // Button data
mjr 38:091e511ce8a0 3087 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 3088
mjr 38:091e511ce8a0 3089 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 3090 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 3091 // modifier keys.
mjr 38:091e511ce8a0 3092 struct
mjr 38:091e511ce8a0 3093 {
mjr 38:091e511ce8a0 3094 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 3095 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 3096 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 3097 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 3098 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 3099
mjr 38:091e511ce8a0 3100 // Media key state
mjr 38:091e511ce8a0 3101 struct
mjr 38:091e511ce8a0 3102 {
mjr 38:091e511ce8a0 3103 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 3104 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 3105 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 3106
mjr 79:682ae3171a08 3107 // button scan interrupt timer
mjr 79:682ae3171a08 3108 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 3109
mjr 38:091e511ce8a0 3110 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 3111 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 3112 void scanButtons()
mjr 38:091e511ce8a0 3113 {
mjr 79:682ae3171a08 3114 // schedule the next interrupt
mjr 79:682ae3171a08 3115 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 3116
mjr 38:091e511ce8a0 3117 // scan all button input pins
mjr 73:4e8ce0b18915 3118 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 3119 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 3120 {
mjr 73:4e8ce0b18915 3121 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 3122 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 3123 bs->dbState = db;
mjr 73:4e8ce0b18915 3124
mjr 73:4e8ce0b18915 3125 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 3126 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 3127 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 3128 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 3129 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 3130 db &= stable;
mjr 73:4e8ce0b18915 3131 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 3132 bs->physState = !db;
mjr 38:091e511ce8a0 3133 }
mjr 38:091e511ce8a0 3134 }
mjr 38:091e511ce8a0 3135
mjr 38:091e511ce8a0 3136 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 3137 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 3138 // in the physical button state.
mjr 38:091e511ce8a0 3139 Timer buttonTimer;
mjr 12:669df364a565 3140
mjr 65:739875521aae 3141 // Count a button during the initial setup scan
mjr 72:884207c0aab0 3142 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 3143 {
mjr 65:739875521aae 3144 // count it
mjr 65:739875521aae 3145 ++nButtons;
mjr 65:739875521aae 3146
mjr 67:c39e66c4e000 3147 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 3148 // keyboard interface
mjr 72:884207c0aab0 3149 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 3150 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 3151 kbKeys = true;
mjr 65:739875521aae 3152 }
mjr 65:739875521aae 3153
mjr 11:bd9da7088e6e 3154 // initialize the button inputs
mjr 35:e959ffba78fd 3155 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 3156 {
mjr 66:2e3583fbd2f4 3157 // presume no shift key
mjr 66:2e3583fbd2f4 3158 shiftButton.index = -1;
mjr 82:4f6209cb5c33 3159 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 3160
mjr 65:739875521aae 3161 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 3162 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 3163 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 3164 nButtons = 0;
mjr 65:739875521aae 3165 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3166 {
mjr 65:739875521aae 3167 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 3168 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 3169 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 3170 }
mjr 65:739875521aae 3171
mjr 65:739875521aae 3172 // Count virtual buttons
mjr 65:739875521aae 3173
mjr 65:739875521aae 3174 // ZB Launch
mjr 65:739875521aae 3175 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 3176 {
mjr 65:739875521aae 3177 // valid - remember the live button index
mjr 65:739875521aae 3178 zblButtonIndex = nButtons;
mjr 65:739875521aae 3179
mjr 65:739875521aae 3180 // count it
mjr 72:884207c0aab0 3181 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 3182 }
mjr 65:739875521aae 3183
mjr 65:739875521aae 3184 // Allocate the live button slots
mjr 65:739875521aae 3185 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 3186
mjr 65:739875521aae 3187 // Configure the physical inputs
mjr 65:739875521aae 3188 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3189 {
mjr 65:739875521aae 3190 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 3191 if (pin != NC)
mjr 65:739875521aae 3192 {
mjr 65:739875521aae 3193 // point back to the config slot for the keyboard data
mjr 65:739875521aae 3194 bs->cfgIndex = i;
mjr 65:739875521aae 3195
mjr 65:739875521aae 3196 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 3197 bs->di.assignPin(pin);
mjr 65:739875521aae 3198
mjr 65:739875521aae 3199 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 3200 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 3201 bs->pulseState = 1;
mjr 65:739875521aae 3202
mjr 66:2e3583fbd2f4 3203 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 3204 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 3205 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 3206 // config slots are left unused.
mjr 78:1e00b3fa11af 3207 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 3208 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 3209
mjr 65:739875521aae 3210 // advance to the next button
mjr 65:739875521aae 3211 ++bs;
mjr 65:739875521aae 3212 }
mjr 65:739875521aae 3213 }
mjr 65:739875521aae 3214
mjr 53:9b2611964afc 3215 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 3216 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 3217 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 3218 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 3219
mjr 53:9b2611964afc 3220 // ZB Launch Ball button
mjr 65:739875521aae 3221 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 3222 {
mjr 65:739875521aae 3223 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 3224 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 3225 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 3226 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 3227 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 3228 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 3229 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 3230 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 3231
mjr 66:2e3583fbd2f4 3232 // advance to the next button
mjr 65:739875521aae 3233 ++bs;
mjr 11:bd9da7088e6e 3234 }
mjr 12:669df364a565 3235
mjr 38:091e511ce8a0 3236 // start the button scan thread
mjr 79:682ae3171a08 3237 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 3238
mjr 38:091e511ce8a0 3239 // start the button state transition timer
mjr 12:669df364a565 3240 buttonTimer.start();
mjr 11:bd9da7088e6e 3241 }
mjr 11:bd9da7088e6e 3242
mjr 67:c39e66c4e000 3243 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 3244 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 3245 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 3246 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 3247 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 3248 //
mjr 67:c39e66c4e000 3249 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 3250 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 3251 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 3252 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 3253 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 3254 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 3255 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 3256 //
mjr 67:c39e66c4e000 3257 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 3258 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 3259 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 3260 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 3261 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 3262 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 3263 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 3264 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 3265 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 3266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 3267 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 3268 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 3269 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 3270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 3271 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 3272 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 3273 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 3274 };
mjr 77:0b96f6867312 3275
mjr 77:0b96f6867312 3276 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 3277 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 3278 // states of the button iputs.
mjr 77:0b96f6867312 3279 struct KeyState
mjr 77:0b96f6867312 3280 {
mjr 77:0b96f6867312 3281 KeyState()
mjr 77:0b96f6867312 3282 {
mjr 77:0b96f6867312 3283 // zero all members
mjr 77:0b96f6867312 3284 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 3285 }
mjr 77:0b96f6867312 3286
mjr 77:0b96f6867312 3287 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 3288 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 3289 uint8_t mediakeys;
mjr 77:0b96f6867312 3290
mjr 77:0b96f6867312 3291 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 3292 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 3293 // USBJoystick.cpp).
mjr 77:0b96f6867312 3294 uint8_t modkeys;
mjr 77:0b96f6867312 3295
mjr 77:0b96f6867312 3296 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 3297 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 3298 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 3299 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 3300 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 3301 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 3302 uint8_t keys[7];
mjr 77:0b96f6867312 3303
mjr 77:0b96f6867312 3304 // number of valid entries in keys[] array
mjr 77:0b96f6867312 3305 int nkeys;
mjr 77:0b96f6867312 3306
mjr 77:0b96f6867312 3307 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 3308 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 3309 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 3310 uint32_t js;
mjr 77:0b96f6867312 3311
mjr 77:0b96f6867312 3312
mjr 77:0b96f6867312 3313 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 3314 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 3315 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 3316 {
mjr 77:0b96f6867312 3317 // add the key according to the type
mjr 77:0b96f6867312 3318 switch (typ)
mjr 77:0b96f6867312 3319 {
mjr 77:0b96f6867312 3320 case BtnTypeJoystick:
mjr 77:0b96f6867312 3321 // joystick button
mjr 77:0b96f6867312 3322 js |= (1 << (val - 1));
mjr 77:0b96f6867312 3323 break;
mjr 77:0b96f6867312 3324
mjr 77:0b96f6867312 3325 case BtnTypeKey:
mjr 77:0b96f6867312 3326 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 3327 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 3328 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 3329 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 3330 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 3331 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 3332 // explicitly using media keys if desired.
mjr 77:0b96f6867312 3333 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 3334 {
mjr 77:0b96f6867312 3335 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 3336 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 3337 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 3338 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3339 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3340 }
mjr 77:0b96f6867312 3341 else
mjr 77:0b96f6867312 3342 {
mjr 77:0b96f6867312 3343 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3344 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3345 // apply, add the key to the key array.
mjr 77:0b96f6867312 3346 if (nkeys < 7)
mjr 77:0b96f6867312 3347 {
mjr 77:0b96f6867312 3348 bool found = false;
mjr 77:0b96f6867312 3349 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3350 {
mjr 77:0b96f6867312 3351 if (keys[i] == val)
mjr 77:0b96f6867312 3352 {
mjr 77:0b96f6867312 3353 found = true;
mjr 77:0b96f6867312 3354 break;
mjr 77:0b96f6867312 3355 }
mjr 77:0b96f6867312 3356 }
mjr 77:0b96f6867312 3357 if (!found)
mjr 77:0b96f6867312 3358 keys[nkeys++] = val;
mjr 77:0b96f6867312 3359 }
mjr 77:0b96f6867312 3360 }
mjr 77:0b96f6867312 3361 break;
mjr 77:0b96f6867312 3362
mjr 77:0b96f6867312 3363 case BtnTypeMedia:
mjr 77:0b96f6867312 3364 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3365 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3366 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3367 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3368 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3369 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3370 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3371 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3372 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3373 break;
mjr 77:0b96f6867312 3374 }
mjr 77:0b96f6867312 3375 }
mjr 77:0b96f6867312 3376 };
mjr 67:c39e66c4e000 3377
mjr 67:c39e66c4e000 3378
mjr 38:091e511ce8a0 3379 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3380 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3381 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3382 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3383 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3384 {
mjr 77:0b96f6867312 3385 // key state
mjr 77:0b96f6867312 3386 KeyState ks;
mjr 38:091e511ce8a0 3387
mjr 38:091e511ce8a0 3388 // calculate the time since the last run
mjr 53:9b2611964afc 3389 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3390 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3391
mjr 66:2e3583fbd2f4 3392 // check the shift button state
mjr 66:2e3583fbd2f4 3393 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3394 {
mjr 78:1e00b3fa11af 3395 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3396 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3397
mjr 78:1e00b3fa11af 3398 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3399 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3400 {
mjr 66:2e3583fbd2f4 3401 case 0:
mjr 78:1e00b3fa11af 3402 default:
mjr 78:1e00b3fa11af 3403 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3404 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3405 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3406 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3407 {
mjr 78:1e00b3fa11af 3408 case 0:
mjr 78:1e00b3fa11af 3409 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3410 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3411 if (sbs->physState)
mjr 78:1e00b3fa11af 3412 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3413 break;
mjr 78:1e00b3fa11af 3414
mjr 78:1e00b3fa11af 3415 case 1:
mjr 78:1e00b3fa11af 3416 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3417 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3418 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3419 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3420 // pulse event.
mjr 78:1e00b3fa11af 3421 if (!sbs->physState)
mjr 78:1e00b3fa11af 3422 {
mjr 78:1e00b3fa11af 3423 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3424 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3425 }
mjr 78:1e00b3fa11af 3426 break;
mjr 78:1e00b3fa11af 3427
mjr 78:1e00b3fa11af 3428 case 2:
mjr 78:1e00b3fa11af 3429 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3430 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3431 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3432 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3433 // suppressed.
mjr 78:1e00b3fa11af 3434 if (!sbs->physState)
mjr 78:1e00b3fa11af 3435 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3436 break;
mjr 78:1e00b3fa11af 3437
mjr 78:1e00b3fa11af 3438 case 3:
mjr 78:1e00b3fa11af 3439 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3440 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3441 // has expired.
mjr 78:1e00b3fa11af 3442 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3443 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3444 else
mjr 78:1e00b3fa11af 3445 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3446 break;
mjr 78:1e00b3fa11af 3447 }
mjr 66:2e3583fbd2f4 3448 break;
mjr 66:2e3583fbd2f4 3449
mjr 66:2e3583fbd2f4 3450 case 1:
mjr 78:1e00b3fa11af 3451 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3452 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3453 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3454 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3455 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3456 break;
mjr 66:2e3583fbd2f4 3457 }
mjr 66:2e3583fbd2f4 3458 }
mjr 38:091e511ce8a0 3459
mjr 11:bd9da7088e6e 3460 // scan the button list
mjr 18:5e890ebd0023 3461 ButtonState *bs = buttonState;
mjr 65:739875521aae 3462 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3463 {
mjr 77:0b96f6867312 3464 // get the config entry for the button
mjr 77:0b96f6867312 3465 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3466
mjr 66:2e3583fbd2f4 3467 // Check the button type:
mjr 66:2e3583fbd2f4 3468 // - shift button
mjr 66:2e3583fbd2f4 3469 // - pulsed button
mjr 66:2e3583fbd2f4 3470 // - regular button
mjr 66:2e3583fbd2f4 3471 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3472 {
mjr 78:1e00b3fa11af 3473 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3474 // depends on the mode.
mjr 78:1e00b3fa11af 3475 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3476 {
mjr 78:1e00b3fa11af 3477 case 0:
mjr 78:1e00b3fa11af 3478 default:
mjr 78:1e00b3fa11af 3479 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3480 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3481 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3482 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3483 break;
mjr 78:1e00b3fa11af 3484
mjr 78:1e00b3fa11af 3485 case 1:
mjr 78:1e00b3fa11af 3486 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3487 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3488 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3489 break;
mjr 66:2e3583fbd2f4 3490 }
mjr 66:2e3583fbd2f4 3491 }
mjr 66:2e3583fbd2f4 3492 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3493 {
mjr 38:091e511ce8a0 3494 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3495 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3496 {
mjr 53:9b2611964afc 3497 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3498 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3499 }
mjr 53:9b2611964afc 3500 else
mjr 53:9b2611964afc 3501 {
mjr 53:9b2611964afc 3502 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3503 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3504 switch (bs->pulseState)
mjr 18:5e890ebd0023 3505 {
mjr 38:091e511ce8a0 3506 case 1:
mjr 38:091e511ce8a0 3507 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3508 if (bs->physState)
mjr 53:9b2611964afc 3509 {
mjr 38:091e511ce8a0 3510 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3511 bs->pulseState = 2;
mjr 53:9b2611964afc 3512 bs->logState = 1;
mjr 38:091e511ce8a0 3513 }
mjr 38:091e511ce8a0 3514 break;
mjr 18:5e890ebd0023 3515
mjr 38:091e511ce8a0 3516 case 2:
mjr 38:091e511ce8a0 3517 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3518 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3519 // change in state in the logical button
mjr 38:091e511ce8a0 3520 bs->pulseState = 3;
mjr 38:091e511ce8a0 3521 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3522 bs->logState = 0;
mjr 38:091e511ce8a0 3523 break;
mjr 38:091e511ce8a0 3524
mjr 38:091e511ce8a0 3525 case 3:
mjr 38:091e511ce8a0 3526 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3527 if (!bs->physState)
mjr 53:9b2611964afc 3528 {
mjr 38:091e511ce8a0 3529 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3530 bs->pulseState = 4;
mjr 53:9b2611964afc 3531 bs->logState = 1;
mjr 38:091e511ce8a0 3532 }
mjr 38:091e511ce8a0 3533 break;
mjr 38:091e511ce8a0 3534
mjr 38:091e511ce8a0 3535 case 4:
mjr 38:091e511ce8a0 3536 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3537 bs->pulseState = 1;
mjr 38:091e511ce8a0 3538 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3539 bs->logState = 0;
mjr 38:091e511ce8a0 3540 break;
mjr 18:5e890ebd0023 3541 }
mjr 18:5e890ebd0023 3542 }
mjr 38:091e511ce8a0 3543 }
mjr 38:091e511ce8a0 3544 else
mjr 38:091e511ce8a0 3545 {
mjr 38:091e511ce8a0 3546 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3547 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3548 }
mjr 77:0b96f6867312 3549
mjr 77:0b96f6867312 3550 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3551 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3552 //
mjr 78:1e00b3fa11af 3553 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3554 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3555 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3556 //
mjr 78:1e00b3fa11af 3557 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3558 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3559 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3560 //
mjr 78:1e00b3fa11af 3561 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3562 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3563 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3564 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3565 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3566 bool useShift =
mjr 77:0b96f6867312 3567 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3568 && shiftButton.index != i
mjr 77:0b96f6867312 3569 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3570 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3571 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3572
mjr 77:0b96f6867312 3573 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3574 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3575 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3576 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3577 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3578 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3579 shiftButton.state = 2;
mjr 35:e959ffba78fd 3580
mjr 38:091e511ce8a0 3581 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3582 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3583 {
mjr 77:0b96f6867312 3584 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3585 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3586 {
mjr 77:0b96f6867312 3587 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3588 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3589 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3590 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3591 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3592 // the night mode state.
mjr 77:0b96f6867312 3593 //
mjr 77:0b96f6867312 3594 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3595 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3596 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3597 {
mjr 77:0b96f6867312 3598 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3599 // current switch state.
mjr 53:9b2611964afc 3600 setNightMode(bs->logState);
mjr 53:9b2611964afc 3601 }
mjr 82:4f6209cb5c33 3602 else if (bs->logState)
mjr 53:9b2611964afc 3603 {
mjr 77:0b96f6867312 3604 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3605 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3606 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3607 // OFF to ON.
mjr 66:2e3583fbd2f4 3608 //
mjr 77:0b96f6867312 3609 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3610 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3611 // button.
mjr 77:0b96f6867312 3612 bool pressed;
mjr 98:4df3c0f7e707 3613 if (shiftButton.index == i)
mjr 98:4df3c0f7e707 3614 {
mjr 98:4df3c0f7e707 3615 // This button is both the Shift button AND the Night
mjr 98:4df3c0f7e707 3616 // Mode button. This is a special case in that the
mjr 98:4df3c0f7e707 3617 // Shift status is irrelevant, because it's obviously
mjr 98:4df3c0f7e707 3618 // identical to the Night Mode status. So it doesn't
mjr 98:4df3c0f7e707 3619 // matter whether or not the Night Mode button has the
mjr 98:4df3c0f7e707 3620 // shifted flags; the raw button state is all that
mjr 98:4df3c0f7e707 3621 // counts in this case.
mjr 98:4df3c0f7e707 3622 pressed = true;
mjr 98:4df3c0f7e707 3623 }
mjr 98:4df3c0f7e707 3624 else if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3625 {
mjr 77:0b96f6867312 3626 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3627 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3628 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3629 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3630 }
mjr 77:0b96f6867312 3631 else
mjr 77:0b96f6867312 3632 {
mjr 77:0b96f6867312 3633 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3634 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3635 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3636 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3637 }
mjr 66:2e3583fbd2f4 3638
mjr 66:2e3583fbd2f4 3639 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3640 // toggle night mode
mjr 66:2e3583fbd2f4 3641 if (pressed)
mjr 53:9b2611964afc 3642 toggleNightMode();
mjr 53:9b2611964afc 3643 }
mjr 35:e959ffba78fd 3644 }
mjr 38:091e511ce8a0 3645
mjr 77:0b96f6867312 3646 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3647 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3648 if (irc != 0)
mjr 77:0b96f6867312 3649 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3650
mjr 38:091e511ce8a0 3651 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3652 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3653 }
mjr 38:091e511ce8a0 3654
mjr 53:9b2611964afc 3655 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3656 // key state list
mjr 53:9b2611964afc 3657 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3658 {
mjr 70:9f58735a1732 3659 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3660 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3661 uint8_t typ, val;
mjr 77:0b96f6867312 3662 if (useShift)
mjr 66:2e3583fbd2f4 3663 {
mjr 77:0b96f6867312 3664 typ = bc->typ2;
mjr 77:0b96f6867312 3665 val = bc->val2;
mjr 66:2e3583fbd2f4 3666 }
mjr 77:0b96f6867312 3667 else
mjr 77:0b96f6867312 3668 {
mjr 77:0b96f6867312 3669 typ = bc->typ;
mjr 77:0b96f6867312 3670 val = bc->val;
mjr 77:0b96f6867312 3671 }
mjr 77:0b96f6867312 3672
mjr 70:9f58735a1732 3673 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3674 // the keyboard or joystick event.
mjr 77:0b96f6867312 3675 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3676 }
mjr 11:bd9da7088e6e 3677 }
mjr 77:0b96f6867312 3678
mjr 77:0b96f6867312 3679 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3680 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3681 // the IR key.
mjr 77:0b96f6867312 3682 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3683 {
mjr 77:0b96f6867312 3684 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3685 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3686 }
mjr 77:0b96f6867312 3687
mjr 77:0b96f6867312 3688 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3689 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3690
mjr 77:0b96f6867312 3691 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3692 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3693 jsButtons = ks.js;
mjr 77:0b96f6867312 3694
mjr 77:0b96f6867312 3695 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3696 // something changes)
mjr 77:0b96f6867312 3697 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3698 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3699 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3700 {
mjr 35:e959ffba78fd 3701 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3702 kbState.changed = true;
mjr 77:0b96f6867312 3703 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3704 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3705 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3706 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3707 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3708 }
mjr 35:e959ffba78fd 3709 else {
mjr 35:e959ffba78fd 3710 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3711 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3712 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3713 }
mjr 35:e959ffba78fd 3714 }
mjr 35:e959ffba78fd 3715
mjr 77:0b96f6867312 3716 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3717 // something changes)
mjr 77:0b96f6867312 3718 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3719 {
mjr 77:0b96f6867312 3720 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3721 mediaState.changed = true;
mjr 77:0b96f6867312 3722 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3723 }
mjr 11:bd9da7088e6e 3724 }
mjr 11:bd9da7088e6e 3725
mjr 73:4e8ce0b18915 3726 // Send a button status report
mjr 73:4e8ce0b18915 3727 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3728 {
mjr 73:4e8ce0b18915 3729 // start with all buttons off
mjr 73:4e8ce0b18915 3730 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3731 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3732
mjr 73:4e8ce0b18915 3733 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3734 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3735 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3736 {
mjr 73:4e8ce0b18915 3737 // get the physical state
mjr 73:4e8ce0b18915 3738 int b = bs->physState;
mjr 73:4e8ce0b18915 3739
mjr 73:4e8ce0b18915 3740 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3741 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3742 int si = idx / 8;
mjr 73:4e8ce0b18915 3743 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3744 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3745 }
mjr 73:4e8ce0b18915 3746
mjr 73:4e8ce0b18915 3747 // send the report
mjr 73:4e8ce0b18915 3748 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3749 }
mjr 73:4e8ce0b18915 3750
mjr 5:a70c0bce770d 3751 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3752 //
mjr 5:a70c0bce770d 3753 // Customization joystick subbclass
mjr 5:a70c0bce770d 3754 //
mjr 5:a70c0bce770d 3755
mjr 5:a70c0bce770d 3756 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3757 {
mjr 5:a70c0bce770d 3758 public:
mjr 35:e959ffba78fd 3759 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3760 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3761 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3762 {
mjr 54:fd77a6b2f76c 3763 sleeping_ = false;
mjr 54:fd77a6b2f76c 3764 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3765 timer_.start();
mjr 54:fd77a6b2f76c 3766 }
mjr 54:fd77a6b2f76c 3767
mjr 54:fd77a6b2f76c 3768 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3769 void diagFlash()
mjr 54:fd77a6b2f76c 3770 {
mjr 54:fd77a6b2f76c 3771 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3772 {
mjr 54:fd77a6b2f76c 3773 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3774 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3775 {
mjr 54:fd77a6b2f76c 3776 // short red flash
mjr 54:fd77a6b2f76c 3777 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3778 wait_us(50000);
mjr 54:fd77a6b2f76c 3779 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3780 wait_us(50000);
mjr 54:fd77a6b2f76c 3781 }
mjr 54:fd77a6b2f76c 3782 }
mjr 5:a70c0bce770d 3783 }
mjr 5:a70c0bce770d 3784
mjr 5:a70c0bce770d 3785 // are we connected?
mjr 5:a70c0bce770d 3786 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3787
mjr 54:fd77a6b2f76c 3788 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3789 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3790 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3791 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3792 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3793
mjr 54:fd77a6b2f76c 3794 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3795 //
mjr 54:fd77a6b2f76c 3796 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3797 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3798 // other way.
mjr 54:fd77a6b2f76c 3799 //
mjr 54:fd77a6b2f76c 3800 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3801 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3802 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3803 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3804 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3805 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3806 //
mjr 54:fd77a6b2f76c 3807 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3808 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3809 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3810 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3811 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3812 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3813 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3814 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3815 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3816 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3817 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3818 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3819 // is effectively dead.
mjr 54:fd77a6b2f76c 3820 //
mjr 54:fd77a6b2f76c 3821 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3822 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3823 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3824 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3825 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3826 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3827 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3828 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3829 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3830 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3831 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3832 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3833 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3834 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3835 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3836 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3837 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3838 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3839 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3840 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3841 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3842 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3843 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3844 // a disconnect.
mjr 54:fd77a6b2f76c 3845 //
mjr 54:fd77a6b2f76c 3846 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3847 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3848 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3849 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3850 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3851 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3852 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3853 //
mjr 54:fd77a6b2f76c 3854 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3855 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3856 //
mjr 54:fd77a6b2f76c 3857 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3858 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3859 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3860 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3861 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3862 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3863 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3864 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3865 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3866 // reliable in practice.
mjr 54:fd77a6b2f76c 3867 //
mjr 54:fd77a6b2f76c 3868 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3869 //
mjr 54:fd77a6b2f76c 3870 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3871 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3872 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3873 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3874 // return.
mjr 54:fd77a6b2f76c 3875 //
mjr 54:fd77a6b2f76c 3876 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3877 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3878 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3879 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3880 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3881 //
mjr 54:fd77a6b2f76c 3882 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3883 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3884 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3885 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3886 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3887 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3888 //
mjr 54:fd77a6b2f76c 3889 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3890 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3891 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3892 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3893 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3894 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3895 // freezes over.
mjr 54:fd77a6b2f76c 3896 //
mjr 54:fd77a6b2f76c 3897 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3898 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3899 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3900 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3901 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3902 void recoverConnection()
mjr 54:fd77a6b2f76c 3903 {
mjr 54:fd77a6b2f76c 3904 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3905 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3906 {
mjr 54:fd77a6b2f76c 3907 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3908 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3909 {
mjr 54:fd77a6b2f76c 3910 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3911 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3912 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3913 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3914 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3915 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3916 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3917 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3918 __disable_irq();
mjr 54:fd77a6b2f76c 3919 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3920 {
mjr 54:fd77a6b2f76c 3921 connect(false);
mjr 54:fd77a6b2f76c 3922 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3923 done = true;
mjr 54:fd77a6b2f76c 3924 }
mjr 54:fd77a6b2f76c 3925 __enable_irq();
mjr 54:fd77a6b2f76c 3926 }
mjr 54:fd77a6b2f76c 3927 }
mjr 54:fd77a6b2f76c 3928 }
mjr 5:a70c0bce770d 3929
mjr 5:a70c0bce770d 3930 protected:
mjr 54:fd77a6b2f76c 3931 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3932 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3933 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3934 //
mjr 54:fd77a6b2f76c 3935 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3936 //
mjr 54:fd77a6b2f76c 3937 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3938 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3939 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3940 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3941 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3942 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3943 {
mjr 54:fd77a6b2f76c 3944 // note the new state
mjr 54:fd77a6b2f76c 3945 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3946
mjr 54:fd77a6b2f76c 3947 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3948 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3949 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3950 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3951 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3952 {
mjr 54:fd77a6b2f76c 3953 disconnect();
mjr 54:fd77a6b2f76c 3954 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3955 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3956 }
mjr 54:fd77a6b2f76c 3957 }
mjr 54:fd77a6b2f76c 3958
mjr 54:fd77a6b2f76c 3959 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3960 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3961
mjr 54:fd77a6b2f76c 3962 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3963 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3964
mjr 54:fd77a6b2f76c 3965 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3966 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3967
mjr 54:fd77a6b2f76c 3968 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3969 Timer timer_;
mjr 5:a70c0bce770d 3970 };
mjr 5:a70c0bce770d 3971
mjr 5:a70c0bce770d 3972 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3973 //
mjr 5:a70c0bce770d 3974 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3975 //
mjr 5:a70c0bce770d 3976
mjr 5:a70c0bce770d 3977 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3978 //
mjr 5:a70c0bce770d 3979 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3980 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3981 // automatic calibration.
mjr 5:a70c0bce770d 3982 //
mjr 77:0b96f6867312 3983 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3984 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3985 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3986 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3987 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3988 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3989 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3990 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3991 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3992 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3993 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3994 //
mjr 77:0b96f6867312 3995 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3996 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3997 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3998 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3999 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 4000 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 4001 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 4002 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 4003 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 4004 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 4005 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 4006 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 4007 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 4008 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 4009 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 4010 // rather than change it across the board.
mjr 5:a70c0bce770d 4011 //
mjr 6:cc35eb643e8f 4012 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 4013 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 4014 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 4015 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 4016 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 4017 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 4018 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 4019 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 4020 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 4021 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 4022 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 4023 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 4024 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 4025 // of nudging, say).
mjr 5:a70c0bce770d 4026 //
mjr 5:a70c0bce770d 4027
mjr 17:ab3cec0c8bf4 4028 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 4029 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 4030
mjr 17:ab3cec0c8bf4 4031 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 4032 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 4033 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 4034
mjr 17:ab3cec0c8bf4 4035 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 4036 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 4037 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 4038 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 4039
mjr 17:ab3cec0c8bf4 4040
mjr 6:cc35eb643e8f 4041 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 4042 struct AccHist
mjr 5:a70c0bce770d 4043 {
mjr 77:0b96f6867312 4044 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4045 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 4046 {
mjr 6:cc35eb643e8f 4047 // save the raw position
mjr 6:cc35eb643e8f 4048 this->x = x;
mjr 6:cc35eb643e8f 4049 this->y = y;
mjr 77:0b96f6867312 4050 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 4051 }
mjr 6:cc35eb643e8f 4052
mjr 6:cc35eb643e8f 4053 // reading for this entry
mjr 77:0b96f6867312 4054 int x, y;
mjr 77:0b96f6867312 4055
mjr 77:0b96f6867312 4056 // (distance from previous entry) squared
mjr 77:0b96f6867312 4057 int dsq;
mjr 5:a70c0bce770d 4058
mjr 6:cc35eb643e8f 4059 // total and count of samples averaged over this period
mjr 77:0b96f6867312 4060 int xtot, ytot;
mjr 6:cc35eb643e8f 4061 int cnt;
mjr 6:cc35eb643e8f 4062
mjr 77:0b96f6867312 4063 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4064 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 4065 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 4066 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 4067
mjr 77:0b96f6867312 4068 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 4069 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 4070 };
mjr 5:a70c0bce770d 4071
mjr 5:a70c0bce770d 4072 // accelerometer wrapper class
mjr 3:3514575d4f86 4073 class Accel
mjr 3:3514575d4f86 4074 {
mjr 3:3514575d4f86 4075 public:
mjr 78:1e00b3fa11af 4076 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 4077 int range, int autoCenterMode)
mjr 77:0b96f6867312 4078 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 4079 {
mjr 5:a70c0bce770d 4080 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 4081 irqPin_ = irqPin;
mjr 77:0b96f6867312 4082
mjr 77:0b96f6867312 4083 // remember the range
mjr 77:0b96f6867312 4084 range_ = range;
mjr 78:1e00b3fa11af 4085
mjr 78:1e00b3fa11af 4086 // set the auto-centering mode
mjr 78:1e00b3fa11af 4087 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 4088
mjr 78:1e00b3fa11af 4089 // no manual centering request has been received
mjr 78:1e00b3fa11af 4090 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 4091
mjr 5:a70c0bce770d 4092 // reset and initialize
mjr 5:a70c0bce770d 4093 reset();
mjr 5:a70c0bce770d 4094 }
mjr 5:a70c0bce770d 4095
mjr 78:1e00b3fa11af 4096 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 4097 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 4098 // as soon as we have enough data.
mjr 78:1e00b3fa11af 4099 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 4100
mjr 78:1e00b3fa11af 4101 // set the auto-centering mode
mjr 78:1e00b3fa11af 4102 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 4103 {
mjr 78:1e00b3fa11af 4104 // remember the mode
mjr 78:1e00b3fa11af 4105 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 4106
mjr 78:1e00b3fa11af 4107 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 4108 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 4109 if (mode == 0)
mjr 78:1e00b3fa11af 4110 {
mjr 78:1e00b3fa11af 4111 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 4112 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 4113 }
mjr 78:1e00b3fa11af 4114 else if (mode <= 60)
mjr 78:1e00b3fa11af 4115 {
mjr 78:1e00b3fa11af 4116 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 4117 // interval is 1/5 of this
mjr 78:1e00b3fa11af 4118 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 4119 }
mjr 78:1e00b3fa11af 4120 else
mjr 78:1e00b3fa11af 4121 {
mjr 78:1e00b3fa11af 4122 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 4123 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 4124 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 4125 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 4126 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 4127 // includes recent data.
mjr 78:1e00b3fa11af 4128 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 4129 }
mjr 78:1e00b3fa11af 4130 }
mjr 78:1e00b3fa11af 4131
mjr 5:a70c0bce770d 4132 void reset()
mjr 5:a70c0bce770d 4133 {
mjr 6:cc35eb643e8f 4134 // clear the center point
mjr 77:0b96f6867312 4135 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 4136
mjr 77:0b96f6867312 4137 // start the auto-centering timer
mjr 5:a70c0bce770d 4138 tCenter_.start();
mjr 5:a70c0bce770d 4139 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 4140
mjr 5:a70c0bce770d 4141 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 4142 mma_.init();
mjr 77:0b96f6867312 4143
mjr 77:0b96f6867312 4144 // set the range
mjr 77:0b96f6867312 4145 mma_.setRange(
mjr 77:0b96f6867312 4146 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 4147 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 4148 2);
mjr 6:cc35eb643e8f 4149
mjr 77:0b96f6867312 4150 // set the average accumulators to zero
mjr 77:0b96f6867312 4151 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4152 nSum_ = 0;
mjr 3:3514575d4f86 4153
mjr 3:3514575d4f86 4154 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 4155 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 4156 }
mjr 3:3514575d4f86 4157
mjr 77:0b96f6867312 4158 void poll()
mjr 76:7f5912b6340e 4159 {
mjr 77:0b96f6867312 4160 // read samples until we clear the FIFO
mjr 77:0b96f6867312 4161 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 4162 {
mjr 77:0b96f6867312 4163 int x, y, z;
mjr 77:0b96f6867312 4164 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 4165
mjr 77:0b96f6867312 4166 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 4167 xSum_ += (x - cx_);
mjr 77:0b96f6867312 4168 ySum_ += (y - cy_);
mjr 77:0b96f6867312 4169 ++nSum_;
mjr 77:0b96f6867312 4170
mjr 77:0b96f6867312 4171 // store the updates
mjr 77:0b96f6867312 4172 ax_ = x;
mjr 77:0b96f6867312 4173 ay_ = y;
mjr 77:0b96f6867312 4174 az_ = z;
mjr 77:0b96f6867312 4175 }
mjr 76:7f5912b6340e 4176 }
mjr 77:0b96f6867312 4177
mjr 9:fd65b0a94720 4178 void get(int &x, int &y)
mjr 3:3514575d4f86 4179 {
mjr 77:0b96f6867312 4180 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 4181 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 4182 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 4183 int nSum = nSum_;
mjr 6:cc35eb643e8f 4184
mjr 77:0b96f6867312 4185 // reset the average accumulators for the next run
mjr 77:0b96f6867312 4186 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4187 nSum_ = 0;
mjr 77:0b96f6867312 4188
mjr 77:0b96f6867312 4189 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 4190 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4191 p->addAvg(ax, ay);
mjr 77:0b96f6867312 4192
mjr 78:1e00b3fa11af 4193 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 4194 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 4195 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 4196 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 4197 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 4198 {
mjr 77:0b96f6867312 4199 // add the latest raw sample to the history list
mjr 77:0b96f6867312 4200 AccHist *prv = p;
mjr 77:0b96f6867312 4201 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 4202 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4203 iAccPrv_ = 0;
mjr 77:0b96f6867312 4204 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4205 p->set(ax, ay, prv);
mjr 77:0b96f6867312 4206
mjr 78:1e00b3fa11af 4207 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 4208 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4209 {
mjr 78:1e00b3fa11af 4210 // Center if:
mjr 78:1e00b3fa11af 4211 //
mjr 78:1e00b3fa11af 4212 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 4213 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 4214 //
mjr 78:1e00b3fa11af 4215 // - A manual centering request is pending
mjr 78:1e00b3fa11af 4216 //
mjr 77:0b96f6867312 4217 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 4218 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 4219 if (manualCenterRequest_
mjr 78:1e00b3fa11af 4220 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 4221 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 4222 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 4223 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 4224 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 4225 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 4226 {
mjr 77:0b96f6867312 4227 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 4228 // the samples over the rest period
mjr 77:0b96f6867312 4229 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 4230 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 4231
mjr 78:1e00b3fa11af 4232 // clear any pending manual centering request
mjr 78:1e00b3fa11af 4233 manualCenterRequest_ = false;
mjr 77:0b96f6867312 4234 }
mjr 77:0b96f6867312 4235 }
mjr 77:0b96f6867312 4236 else
mjr 77:0b96f6867312 4237 {
mjr 77:0b96f6867312 4238 // not enough samples yet; just up the count
mjr 77:0b96f6867312 4239 ++nAccPrv_;
mjr 77:0b96f6867312 4240 }
mjr 6:cc35eb643e8f 4241
mjr 77:0b96f6867312 4242 // clear the new item's running totals
mjr 77:0b96f6867312 4243 p->clearAvg();
mjr 5:a70c0bce770d 4244
mjr 77:0b96f6867312 4245 // reset the timer
mjr 77:0b96f6867312 4246 tCenter_.reset();
mjr 77:0b96f6867312 4247 }
mjr 5:a70c0bce770d 4248
mjr 77:0b96f6867312 4249 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 4250 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 4251 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 4252
mjr 6:cc35eb643e8f 4253 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 4254 if (x != 0 || y != 0)
mjr 77:0b96f6867312 4255 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 4256 #endif
mjr 77:0b96f6867312 4257 }
mjr 29:582472d0bc57 4258
mjr 3:3514575d4f86 4259 private:
mjr 6:cc35eb643e8f 4260 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 4261 int rawToReport(int v)
mjr 5:a70c0bce770d 4262 {
mjr 77:0b96f6867312 4263 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 4264 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 4265 // so their scale is 2^13.
mjr 77:0b96f6867312 4266 //
mjr 77:0b96f6867312 4267 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 4268 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 4269 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 4270 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 4271 int i = v*JOYMAX;
mjr 77:0b96f6867312 4272 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 4273
mjr 6:cc35eb643e8f 4274 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 4275 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 4276 static const int filter[] = {
mjr 6:cc35eb643e8f 4277 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 4278 0,
mjr 6:cc35eb643e8f 4279 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 4280 };
mjr 6:cc35eb643e8f 4281 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 4282 }
mjr 5:a70c0bce770d 4283
mjr 3:3514575d4f86 4284 // underlying accelerometer object
mjr 3:3514575d4f86 4285 MMA8451Q mma_;
mjr 3:3514575d4f86 4286
mjr 77:0b96f6867312 4287 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 4288 // scale -8192..+8191
mjr 77:0b96f6867312 4289 int ax_, ay_, az_;
mjr 77:0b96f6867312 4290
mjr 77:0b96f6867312 4291 // running sum of readings since last get()
mjr 77:0b96f6867312 4292 int xSum_, ySum_;
mjr 77:0b96f6867312 4293
mjr 77:0b96f6867312 4294 // number of readings since last get()
mjr 77:0b96f6867312 4295 int nSum_;
mjr 6:cc35eb643e8f 4296
mjr 6:cc35eb643e8f 4297 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 4298 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 4299 // at rest.
mjr 77:0b96f6867312 4300 int cx_, cy_;
mjr 77:0b96f6867312 4301
mjr 77:0b96f6867312 4302 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 4303 uint8_t range_;
mjr 78:1e00b3fa11af 4304
mjr 78:1e00b3fa11af 4305 // auto-center mode:
mjr 78:1e00b3fa11af 4306 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 4307 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 4308 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 4309 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 4310
mjr 78:1e00b3fa11af 4311 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 4312 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 4313
mjr 78:1e00b3fa11af 4314 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 4315 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 4316
mjr 77:0b96f6867312 4317 // atuo-centering timer
mjr 5:a70c0bce770d 4318 Timer tCenter_;
mjr 6:cc35eb643e8f 4319
mjr 6:cc35eb643e8f 4320 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 4321 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 4322 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 4323 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 4324 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 4325 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 4326 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 4327 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 4328 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 4329 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 4330 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 4331 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 4332 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 4333 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 4334 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 4335
mjr 5:a70c0bce770d 4336 // interurupt pin name
mjr 5:a70c0bce770d 4337 PinName irqPin_;
mjr 3:3514575d4f86 4338 };
mjr 3:3514575d4f86 4339
mjr 5:a70c0bce770d 4340 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4341 //
mjr 14:df700b22ca08 4342 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 4343 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 4344 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 4345 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 4346 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 4347 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 4348 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 4349 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 4350 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 4351 //
mjr 14:df700b22ca08 4352 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 4353 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 4354 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 4355 //
mjr 5:a70c0bce770d 4356 void clear_i2c()
mjr 5:a70c0bce770d 4357 {
mjr 38:091e511ce8a0 4358 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 4359 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 4360 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 4361
mjr 5:a70c0bce770d 4362 // clock the SCL 9 times
mjr 5:a70c0bce770d 4363 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 4364 {
mjr 5:a70c0bce770d 4365 scl = 1;
mjr 5:a70c0bce770d 4366 wait_us(20);
mjr 5:a70c0bce770d 4367 scl = 0;
mjr 5:a70c0bce770d 4368 wait_us(20);
mjr 5:a70c0bce770d 4369 }
mjr 5:a70c0bce770d 4370 }
mjr 76:7f5912b6340e 4371
mjr 76:7f5912b6340e 4372
mjr 14:df700b22ca08 4373 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4374 //
mjr 33:d832bcab089e 4375 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4376 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4377 //
mjr 33:d832bcab089e 4378 class Debouncer
mjr 33:d832bcab089e 4379 {
mjr 33:d832bcab089e 4380 public:
mjr 33:d832bcab089e 4381 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4382 {
mjr 33:d832bcab089e 4383 t.start();
mjr 33:d832bcab089e 4384 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4385 this->tmin = tmin;
mjr 33:d832bcab089e 4386 }
mjr 33:d832bcab089e 4387
mjr 33:d832bcab089e 4388 // Get the current stable value
mjr 33:d832bcab089e 4389 bool val() const { return stable; }
mjr 33:d832bcab089e 4390
mjr 33:d832bcab089e 4391 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4392 // input device.
mjr 33:d832bcab089e 4393 void sampleIn(bool val)
mjr 33:d832bcab089e 4394 {
mjr 33:d832bcab089e 4395 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4396 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4397 // on the sample reader.
mjr 33:d832bcab089e 4398 if (val != prv)
mjr 33:d832bcab089e 4399 {
mjr 33:d832bcab089e 4400 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4401 t.reset();
mjr 33:d832bcab089e 4402
mjr 33:d832bcab089e 4403 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4404 prv = val;
mjr 33:d832bcab089e 4405 }
mjr 33:d832bcab089e 4406 else if (val != stable)
mjr 33:d832bcab089e 4407 {
mjr 33:d832bcab089e 4408 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4409 // and different from the stable value. This means that
mjr 33:d832bcab089e 4410 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4411 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4412 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4413 if (t.read() > tmin)
mjr 33:d832bcab089e 4414 stable = val;
mjr 33:d832bcab089e 4415 }
mjr 33:d832bcab089e 4416 }
mjr 33:d832bcab089e 4417
mjr 33:d832bcab089e 4418 private:
mjr 33:d832bcab089e 4419 // current stable value
mjr 33:d832bcab089e 4420 bool stable;
mjr 33:d832bcab089e 4421
mjr 33:d832bcab089e 4422 // last raw sample value
mjr 33:d832bcab089e 4423 bool prv;
mjr 33:d832bcab089e 4424
mjr 33:d832bcab089e 4425 // elapsed time since last raw input change
mjr 33:d832bcab089e 4426 Timer t;
mjr 33:d832bcab089e 4427
mjr 33:d832bcab089e 4428 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4429 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4430 float tmin;
mjr 33:d832bcab089e 4431 };
mjr 33:d832bcab089e 4432
mjr 33:d832bcab089e 4433
mjr 33:d832bcab089e 4434 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4435 //
mjr 33:d832bcab089e 4436 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4437 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4438 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4439 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4440 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4441 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4442 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4443 //
mjr 33:d832bcab089e 4444 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4445 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4446 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4447 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4448 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4449 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4450 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4451 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4452 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4453 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4454 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4455 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4456 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4457 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4458 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4459 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4460 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4461 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4462 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4463 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4464 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4465 //
mjr 40:cc0d9814522b 4466 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4467 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4468 //
mjr 33:d832bcab089e 4469 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4470 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4471 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4472 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4473 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4474 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4475 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4476 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4477 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4478 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4479 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4480 //
mjr 33:d832bcab089e 4481 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4482 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4483 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4484 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4485 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4486 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4487 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4488 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4489 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4490 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4491 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4492 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4493 // first check.
mjr 33:d832bcab089e 4494 //
mjr 33:d832bcab089e 4495 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4496 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4497 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4498 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4499 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4500 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4501 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4502 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4503 //
mjr 33:d832bcab089e 4504
mjr 77:0b96f6867312 4505 // Current PSU2 power state:
mjr 33:d832bcab089e 4506 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4507 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4508 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4509 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4510 // 5 -> TV relay on
mjr 77:0b96f6867312 4511 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4512 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4513
mjr 73:4e8ce0b18915 4514 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4515 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4516 // separate state for each:
mjr 73:4e8ce0b18915 4517 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4518 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4519 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4520 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4521 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4522
mjr 79:682ae3171a08 4523 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4524 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4525
mjr 77:0b96f6867312 4526 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4527 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4528 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4529 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4530 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4531 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4532 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4533 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4534 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4535 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4536 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4537
mjr 77:0b96f6867312 4538 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4539 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4540
mjr 35:e959ffba78fd 4541 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4542 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4543 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4544
mjr 73:4e8ce0b18915 4545 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4546 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4547 {
mjr 73:4e8ce0b18915 4548 // update the state
mjr 73:4e8ce0b18915 4549 if (state)
mjr 73:4e8ce0b18915 4550 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4551 else
mjr 73:4e8ce0b18915 4552 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4553
mjr 73:4e8ce0b18915 4554 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4555 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4556 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4557 }
mjr 35:e959ffba78fd 4558
mjr 86:e30a1f60f783 4559 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4560 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4561 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4562 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4563 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4564 // we say it's okay.
mjr 86:e30a1f60f783 4565 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4566 {
mjr 86:e30a1f60f783 4567 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4568 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4569 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4570 // to the same state later.
mjr 86:e30a1f60f783 4571 return psu2_state == 1;
mjr 86:e30a1f60f783 4572 }
mjr 86:e30a1f60f783 4573
mjr 77:0b96f6867312 4574 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4575 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4576 // functions.
mjr 77:0b96f6867312 4577 Timer powerStatusTimer;
mjr 77:0b96f6867312 4578 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4579 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4580 {
mjr 79:682ae3171a08 4581 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4582 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4583 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4584 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4585 {
mjr 79:682ae3171a08 4586 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4587 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4588 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4589 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4590 }
mjr 79:682ae3171a08 4591
mjr 77:0b96f6867312 4592 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4593 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4594 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4595 // skip this whole routine.
mjr 77:0b96f6867312 4596 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4597 return;
mjr 77:0b96f6867312 4598
mjr 77:0b96f6867312 4599 // reset the update timer for next time
mjr 77:0b96f6867312 4600 powerStatusTimer.reset();
mjr 77:0b96f6867312 4601
mjr 77:0b96f6867312 4602 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4603 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4604 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4605 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4606 static Timer tv_timer;
mjr 35:e959ffba78fd 4607
mjr 33:d832bcab089e 4608 // Check our internal state
mjr 33:d832bcab089e 4609 switch (psu2_state)
mjr 33:d832bcab089e 4610 {
mjr 33:d832bcab089e 4611 case 1:
mjr 33:d832bcab089e 4612 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4613 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4614 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4615 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4616 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4617 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4618 {
mjr 33:d832bcab089e 4619 // switch to OFF state
mjr 33:d832bcab089e 4620 psu2_state = 2;
mjr 33:d832bcab089e 4621
mjr 33:d832bcab089e 4622 // try setting the latch
mjr 35:e959ffba78fd 4623 psu2_status_set->write(1);
mjr 33:d832bcab089e 4624 }
mjr 77:0b96f6867312 4625 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4626 break;
mjr 33:d832bcab089e 4627
mjr 33:d832bcab089e 4628 case 2:
mjr 33:d832bcab089e 4629 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4630 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4631 psu2_status_set->write(0);
mjr 33:d832bcab089e 4632 psu2_state = 3;
mjr 77:0b96f6867312 4633 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4634 break;
mjr 33:d832bcab089e 4635
mjr 33:d832bcab089e 4636 case 3:
mjr 33:d832bcab089e 4637 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4638 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4639 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4640 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4641 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4642 {
mjr 33:d832bcab089e 4643 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4644 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4645 tv_timer.reset();
mjr 33:d832bcab089e 4646 tv_timer.start();
mjr 33:d832bcab089e 4647 psu2_state = 4;
mjr 73:4e8ce0b18915 4648
mjr 73:4e8ce0b18915 4649 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4650 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4651 }
mjr 33:d832bcab089e 4652 else
mjr 33:d832bcab089e 4653 {
mjr 33:d832bcab089e 4654 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4655 // our last check. Return to idle state.
mjr 87:8d35c74403af 4656 psu2_state = 1;
mjr 33:d832bcab089e 4657 }
mjr 33:d832bcab089e 4658 break;
mjr 33:d832bcab089e 4659
mjr 33:d832bcab089e 4660 case 4:
mjr 77:0b96f6867312 4661 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4662 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4663 // off again before the countdown finished.
mjr 77:0b96f6867312 4664 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4665 {
mjr 77:0b96f6867312 4666 // power is off - start a new check cycle
mjr 77:0b96f6867312 4667 psu2_status_set->write(1);
mjr 77:0b96f6867312 4668 psu2_state = 2;
mjr 77:0b96f6867312 4669 break;
mjr 77:0b96f6867312 4670 }
mjr 77:0b96f6867312 4671
mjr 77:0b96f6867312 4672 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4673 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4674
mjr 77:0b96f6867312 4675 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4676 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4677 {
mjr 33:d832bcab089e 4678 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4679 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4680 psu2_state = 5;
mjr 77:0b96f6867312 4681
mjr 77:0b96f6867312 4682 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4683 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4684 }
mjr 33:d832bcab089e 4685 break;
mjr 33:d832bcab089e 4686
mjr 33:d832bcab089e 4687 case 5:
mjr 33:d832bcab089e 4688 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4689 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4690 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4691
mjr 77:0b96f6867312 4692 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4693 psu2_state = 6;
mjr 77:0b96f6867312 4694 tvon_ir_state = 0;
mjr 77:0b96f6867312 4695
mjr 77:0b96f6867312 4696 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4697 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4698 break;
mjr 77:0b96f6867312 4699
mjr 77:0b96f6867312 4700 case 6:
mjr 77:0b96f6867312 4701 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4702 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4703 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4704 psu2_state = 1;
mjr 77:0b96f6867312 4705 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4706
mjr 77:0b96f6867312 4707 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4708 if (ir_tx != 0)
mjr 77:0b96f6867312 4709 {
mjr 77:0b96f6867312 4710 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4711 if (ir_tx->isSending())
mjr 77:0b96f6867312 4712 {
mjr 77:0b96f6867312 4713 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4714 // state 6.
mjr 77:0b96f6867312 4715 psu2_state = 6;
mjr 77:0b96f6867312 4716 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4717 break;
mjr 77:0b96f6867312 4718 }
mjr 77:0b96f6867312 4719
mjr 77:0b96f6867312 4720 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4721 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4722 // number.
mjr 77:0b96f6867312 4723 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4724 {
mjr 77:0b96f6867312 4725 // is this a TV ON command?
mjr 77:0b96f6867312 4726 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4727 {
mjr 77:0b96f6867312 4728 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4729 // looking for.
mjr 77:0b96f6867312 4730 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4731 {
mjr 77:0b96f6867312 4732 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4733 // pushing its virtual button.
mjr 77:0b96f6867312 4734 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4735 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4736
mjr 77:0b96f6867312 4737 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4738 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4739 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4740 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4741 // to send the code once.
mjr 77:0b96f6867312 4742 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4743
mjr 77:0b96f6867312 4744 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4745 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4746 // the next one.
mjr 77:0b96f6867312 4747 psu2_state = 6;
mjr 77:0b96f6867312 4748 tvon_ir_state++;
mjr 77:0b96f6867312 4749 break;
mjr 77:0b96f6867312 4750 }
mjr 77:0b96f6867312 4751
mjr 77:0b96f6867312 4752 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4753 ++n;
mjr 77:0b96f6867312 4754 }
mjr 77:0b96f6867312 4755 }
mjr 77:0b96f6867312 4756 }
mjr 33:d832bcab089e 4757 break;
mjr 33:d832bcab089e 4758 }
mjr 77:0b96f6867312 4759
mjr 77:0b96f6867312 4760 // update the diagnostic LEDs
mjr 77:0b96f6867312 4761 diagLED();
mjr 33:d832bcab089e 4762 }
mjr 33:d832bcab089e 4763
mjr 77:0b96f6867312 4764 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4765 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4766 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4767 // are configured as NC.
mjr 77:0b96f6867312 4768 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4769 {
mjr 55:4db125cd11a0 4770 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4771 // time is nonzero
mjr 77:0b96f6867312 4772 powerStatusTimer.reset();
mjr 77:0b96f6867312 4773 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4774 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4775 {
mjr 77:0b96f6867312 4776 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4777 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4778 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4779
mjr 77:0b96f6867312 4780 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4781 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4782 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4783
mjr 77:0b96f6867312 4784 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4785 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4786 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4787 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4788
mjr 77:0b96f6867312 4789 // Start the TV timer
mjr 77:0b96f6867312 4790 powerStatusTimer.start();
mjr 35:e959ffba78fd 4791 }
mjr 35:e959ffba78fd 4792 }
mjr 35:e959ffba78fd 4793
mjr 73:4e8ce0b18915 4794 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4795 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4796 //
mjr 73:4e8ce0b18915 4797 // Mode:
mjr 73:4e8ce0b18915 4798 // 0 = turn relay off
mjr 73:4e8ce0b18915 4799 // 1 = turn relay on
mjr 73:4e8ce0b18915 4800 // 2 = pulse relay
mjr 73:4e8ce0b18915 4801 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4802 {
mjr 73:4e8ce0b18915 4803 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4804 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4805 return;
mjr 73:4e8ce0b18915 4806
mjr 73:4e8ce0b18915 4807 switch (mode)
mjr 73:4e8ce0b18915 4808 {
mjr 73:4e8ce0b18915 4809 case 0:
mjr 73:4e8ce0b18915 4810 // relay off
mjr 73:4e8ce0b18915 4811 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4812 break;
mjr 73:4e8ce0b18915 4813
mjr 73:4e8ce0b18915 4814 case 1:
mjr 73:4e8ce0b18915 4815 // relay on
mjr 73:4e8ce0b18915 4816 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4817 break;
mjr 73:4e8ce0b18915 4818
mjr 73:4e8ce0b18915 4819 case 2:
mjr 79:682ae3171a08 4820 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4821 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4822 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4823 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4824 break;
mjr 73:4e8ce0b18915 4825 }
mjr 73:4e8ce0b18915 4826 }
mjr 73:4e8ce0b18915 4827
mjr 73:4e8ce0b18915 4828
mjr 35:e959ffba78fd 4829 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4830 //
mjr 35:e959ffba78fd 4831 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4832 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4833 //
mjr 35:e959ffba78fd 4834 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4835 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4836 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4837 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4838 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4839 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4840 //
mjr 35:e959ffba78fd 4841 NVM nvm;
mjr 35:e959ffba78fd 4842
mjr 86:e30a1f60f783 4843 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4844 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4845 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4846 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4847
mjr 86:e30a1f60f783 4848 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4849 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4850
mjr 79:682ae3171a08 4851 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4852 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4853
mjr 86:e30a1f60f783 4854 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4855 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4856
mjr 86:e30a1f60f783 4857
mjr 35:e959ffba78fd 4858 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4859 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4860
mjr 35:e959ffba78fd 4861 // flash memory controller interface
mjr 35:e959ffba78fd 4862 FreescaleIAP iap;
mjr 35:e959ffba78fd 4863
mjr 79:682ae3171a08 4864 // figure the flash address for the config data
mjr 79:682ae3171a08 4865 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4866 {
mjr 79:682ae3171a08 4867 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4868 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4869
mjr 79:682ae3171a08 4870 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4871 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4872
mjr 79:682ae3171a08 4873 // locate it at the top of memory
mjr 79:682ae3171a08 4874 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4875
mjr 79:682ae3171a08 4876 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4877 return (const NVM *)addr;
mjr 35:e959ffba78fd 4878 }
mjr 35:e959ffba78fd 4879
mjr 76:7f5912b6340e 4880 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4881 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4882 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4883 // in either case.
mjr 76:7f5912b6340e 4884 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4885 {
mjr 35:e959ffba78fd 4886 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4887 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4888 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4889 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4890 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4891 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4892 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4893 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4894 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4895 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4896 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4897 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4898 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4899 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4900 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4901 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4902
mjr 35:e959ffba78fd 4903 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4904 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4905
mjr 35:e959ffba78fd 4906 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4907 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4908 if (nvm_valid)
mjr 35:e959ffba78fd 4909 {
mjr 35:e959ffba78fd 4910 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4911 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4912 }
mjr 35:e959ffba78fd 4913 else
mjr 35:e959ffba78fd 4914 {
mjr 76:7f5912b6340e 4915 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4916 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4917 }
mjr 76:7f5912b6340e 4918
mjr 76:7f5912b6340e 4919 // tell the caller what happened
mjr 76:7f5912b6340e 4920 return nvm_valid;
mjr 35:e959ffba78fd 4921 }
mjr 35:e959ffba78fd 4922
mjr 86:e30a1f60f783 4923 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4924 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4925 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4926 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4927 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4928 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4929 {
mjr 76:7f5912b6340e 4930 // get the config block location in the flash memory
mjr 77:0b96f6867312 4931 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4932
mjr 101:755f44622abc 4933 // save the data
mjr 101:755f44622abc 4934 bool ok = nvm.save(iap, addr);
mjr 101:755f44622abc 4935
mjr 101:755f44622abc 4936 // if the save succeeded, do post-save work
mjr 101:755f44622abc 4937 if (ok)
mjr 86:e30a1f60f783 4938 {
mjr 86:e30a1f60f783 4939 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4940 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4941
mjr 86:e30a1f60f783 4942 // start the followup timer
mjr 87:8d35c74403af 4943 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4944 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4945 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4946
mjr 86:e30a1f60f783 4947 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4948 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 4949 }
mjr 101:755f44622abc 4950
mjr 101:755f44622abc 4951 // return the success indication
mjr 101:755f44622abc 4952 return ok;
mjr 76:7f5912b6340e 4953 }
mjr 76:7f5912b6340e 4954
mjr 76:7f5912b6340e 4955 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4956 //
mjr 76:7f5912b6340e 4957 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4958 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4959 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4960 // downloading it to the device.
mjr 76:7f5912b6340e 4961 //
mjr 100:1ff35c07217c 4962 // Ideally, we'd use the host-loaded memory for all configuration updates
mjr 100:1ff35c07217c 4963 // from the host - that is, any time the host wants to update config settings,
mjr 100:1ff35c07217c 4964 // such as via user input in the config tool. In the past, I wanted to do
mjr 100:1ff35c07217c 4965 // it this way because it seemed to be unreliable to write flash memory via
mjr 100:1ff35c07217c 4966 // the device. But that turned out to be due to a bug in the mbed Ticker
mjr 100:1ff35c07217c 4967 // code (of all things!), which we've fixed - since then, flash writing on
mjr 100:1ff35c07217c 4968 // the device has been bulletproof. Even so, doing host-to-device flash
mjr 100:1ff35c07217c 4969 // writing for config updates would be nice just for the sake of speed, as
mjr 100:1ff35c07217c 4970 // the alternative is that we send the variables one at a time by USB, which
mjr 100:1ff35c07217c 4971 // takes noticeable time when reprogramming the whole config set. But
mjr 100:1ff35c07217c 4972 // there's no way to accomplish a single-sector flash write via OpenSDA; you
mjr 100:1ff35c07217c 4973 // can only rewrite the entire flash memory as a unit.
mjr 100:1ff35c07217c 4974 //
mjr 100:1ff35c07217c 4975 // We can at least use this approach to do a fast configuration restore
mjr 100:1ff35c07217c 4976 // when downloading new firmware. In that case, we're rewriting all of
mjr 100:1ff35c07217c 4977 // flash memory anyway, so we might as well include the config data.
mjr 76:7f5912b6340e 4978 //
mjr 76:7f5912b6340e 4979 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4980 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4981 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4982 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4983 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4984 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4985 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4986 //
mjr 76:7f5912b6340e 4987 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4988 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4989 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4990 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4991 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4992 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4993 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4994 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4995 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4996 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4997
mjr 76:7f5912b6340e 4998 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4999 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 5000 {
mjr 76:7f5912b6340e 5001 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 5002 // 32-byte signature header
mjr 76:7f5912b6340e 5003 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 5004 };
mjr 76:7f5912b6340e 5005
mjr 76:7f5912b6340e 5006 // forward reference to config var store function
mjr 76:7f5912b6340e 5007 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 5008
mjr 76:7f5912b6340e 5009 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 5010 // configuration object.
mjr 76:7f5912b6340e 5011 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 5012 {
mjr 76:7f5912b6340e 5013 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 5014 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 5015 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 5016 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 5017 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 5018 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 5019 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 5020 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 5021 {
mjr 76:7f5912b6340e 5022 // load this variable
mjr 76:7f5912b6340e 5023 configVarSet(p);
mjr 76:7f5912b6340e 5024 }
mjr 35:e959ffba78fd 5025 }
mjr 35:e959ffba78fd 5026
mjr 35:e959ffba78fd 5027 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5028 //
mjr 55:4db125cd11a0 5029 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 5030 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 5031 //
mjr 55:4db125cd11a0 5032 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 5033 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 5034 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 101:755f44622abc 5035 uint8_t tReportPlungerStat; // timestamp of most recent plunger status request
mjr 55:4db125cd11a0 5036
mjr 55:4db125cd11a0 5037
mjr 55:4db125cd11a0 5038 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 5039 //
mjr 40:cc0d9814522b 5040 // Night mode setting updates
mjr 40:cc0d9814522b 5041 //
mjr 38:091e511ce8a0 5042
mjr 38:091e511ce8a0 5043 // Turn night mode on or off
mjr 38:091e511ce8a0 5044 static void setNightMode(bool on)
mjr 38:091e511ce8a0 5045 {
mjr 77:0b96f6867312 5046 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 5047 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 5048 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 5049 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 5050
mjr 40:cc0d9814522b 5051 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 5052 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 5053 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 5054 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 5055
mjr 76:7f5912b6340e 5056 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 5057 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 5058 // mode change.
mjr 76:7f5912b6340e 5059 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 5060 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 5061
mjr 76:7f5912b6340e 5062 // update 74HC595 outputs
mjr 76:7f5912b6340e 5063 if (hc595 != 0)
mjr 76:7f5912b6340e 5064 hc595->update();
mjr 38:091e511ce8a0 5065 }
mjr 38:091e511ce8a0 5066
mjr 38:091e511ce8a0 5067 // Toggle night mode
mjr 38:091e511ce8a0 5068 static void toggleNightMode()
mjr 38:091e511ce8a0 5069 {
mjr 53:9b2611964afc 5070 setNightMode(!nightMode);
mjr 38:091e511ce8a0 5071 }
mjr 38:091e511ce8a0 5072
mjr 38:091e511ce8a0 5073
mjr 38:091e511ce8a0 5074 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5075 //
mjr 35:e959ffba78fd 5076 // Plunger Sensor
mjr 35:e959ffba78fd 5077 //
mjr 35:e959ffba78fd 5078
mjr 35:e959ffba78fd 5079 // the plunger sensor interface object
mjr 35:e959ffba78fd 5080 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 5081
mjr 76:7f5912b6340e 5082
mjr 35:e959ffba78fd 5083 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 5084 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 5085 void createPlunger()
mjr 35:e959ffba78fd 5086 {
mjr 35:e959ffba78fd 5087 // create the new sensor object according to the type
mjr 35:e959ffba78fd 5088 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 5089 {
mjr 82:4f6209cb5c33 5090 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 5091 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 5092 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5093 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 5094 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5095 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5096 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5097 break;
mjr 35:e959ffba78fd 5098
mjr 82:4f6209cb5c33 5099 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 5100 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 5101 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5102 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 5103 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5104 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5105 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5106 break;
mjr 35:e959ffba78fd 5107
mjr 35:e959ffba78fd 5108 case PlungerType_Pot:
mjr 82:4f6209cb5c33 5109 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 5110 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 5111 // pins are: AO (analog in)
mjr 53:9b2611964afc 5112 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 5113 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 5114 break;
mjr 82:4f6209cb5c33 5115
mjr 82:4f6209cb5c33 5116 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 5117 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 5118 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 5119 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 5120 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 5121 300,
mjr 82:4f6209cb5c33 5122 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5123 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 5124 break;
mjr 82:4f6209cb5c33 5125
mjr 82:4f6209cb5c33 5126 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 5127 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 5128 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 5129 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 5130 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5131 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5132 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5133 break;
mjr 82:4f6209cb5c33 5134
mjr 82:4f6209cb5c33 5135 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 5136 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 5137 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 5138 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 5139 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5140 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5141 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5142 break;
mjr 82:4f6209cb5c33 5143
mjr 100:1ff35c07217c 5144 case PlungerType_AEAT6012:
mjr 100:1ff35c07217c 5145 // Broadcom AEAT-6012-A06 magnetic rotary encoder
mjr 100:1ff35c07217c 5146 // pins are: CS (chip select, dig out), CLK (dig out), DO (data, dig in)
mjr 100:1ff35c07217c 5147 plungerSensor = new PlungerSensorAEAT601X<12>(
mjr 100:1ff35c07217c 5148 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5149 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5150 wirePinName(cfg.plunger.sensorPin[2]));
mjr 100:1ff35c07217c 5151 break;
mjr 100:1ff35c07217c 5152
mjr 100:1ff35c07217c 5153 case PlungerType_TCD1103:
mjr 100:1ff35c07217c 5154 // Toshiba TCD1103GFG linear CCD, optical edge detection, with
mjr 100:1ff35c07217c 5155 // inverted logic gates.
mjr 100:1ff35c07217c 5156 //
mjr 100:1ff35c07217c 5157 // Pins are: fM (master clock, PWM), OS (sample data, analog in),
mjr 100:1ff35c07217c 5158 // ICG (integration clear gate, dig out), SH (shift gate, dig out)
mjr 100:1ff35c07217c 5159 plungerSensor = new PlungerSensorTCD1103<true>(
mjr 100:1ff35c07217c 5160 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5161 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5162 wirePinName(cfg.plunger.sensorPin[2]),
mjr 100:1ff35c07217c 5163 wirePinName(cfg.plunger.sensorPin[3]));
mjr 100:1ff35c07217c 5164 break;
mjr 100:1ff35c07217c 5165
mjr 35:e959ffba78fd 5166 case PlungerType_None:
mjr 35:e959ffba78fd 5167 default:
mjr 35:e959ffba78fd 5168 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 5169 break;
mjr 35:e959ffba78fd 5170 }
mjr 100:1ff35c07217c 5171
mjr 100:1ff35c07217c 5172 // initialize the plunger from the saved configuration
mjr 100:1ff35c07217c 5173 plungerSensor->restoreCalibration(cfg);
mjr 86:e30a1f60f783 5174
mjr 87:8d35c74403af 5175 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 5176 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 5177 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 5178 }
mjr 33:d832bcab089e 5179
mjr 52:8298b2a73eb2 5180 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 5181 bool plungerCalMode;
mjr 52:8298b2a73eb2 5182
mjr 48:058ace2aed1d 5183 // Plunger reader
mjr 51:57eb311faafa 5184 //
mjr 51:57eb311faafa 5185 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 5186 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 5187 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 5188 //
mjr 51:57eb311faafa 5189 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 5190 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 5191 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 5192 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 5193 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 5194 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 5195 // firing motion.
mjr 51:57eb311faafa 5196 //
mjr 51:57eb311faafa 5197 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 5198 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 5199 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 5200 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 5201 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 5202 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 5203 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 5204 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 5205 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 5206 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 5207 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 5208 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 5209 // a classic digital aliasing effect.
mjr 51:57eb311faafa 5210 //
mjr 51:57eb311faafa 5211 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 5212 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 5213 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 5214 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 5215 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 5216 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 5217 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 5218 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 5219 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 5220 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 5221 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 5222 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 5223 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 5224 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 5225 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 5226 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 5227 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 5228 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 5229 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 5230 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 5231 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 5232 //
mjr 48:058ace2aed1d 5233 class PlungerReader
mjr 48:058ace2aed1d 5234 {
mjr 48:058ace2aed1d 5235 public:
mjr 48:058ace2aed1d 5236 PlungerReader()
mjr 48:058ace2aed1d 5237 {
mjr 48:058ace2aed1d 5238 // not in a firing event yet
mjr 48:058ace2aed1d 5239 firing = 0;
mjr 48:058ace2aed1d 5240 }
mjr 76:7f5912b6340e 5241
mjr 48:058ace2aed1d 5242 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 5243 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 5244 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 5245 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 5246 void read()
mjr 48:058ace2aed1d 5247 {
mjr 76:7f5912b6340e 5248 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 5249 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 5250 return;
mjr 76:7f5912b6340e 5251
mjr 48:058ace2aed1d 5252 // Read a sample from the sensor
mjr 48:058ace2aed1d 5253 PlungerReading r;
mjr 48:058ace2aed1d 5254 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 5255 {
mjr 53:9b2611964afc 5256 // check for calibration mode
mjr 53:9b2611964afc 5257 if (plungerCalMode)
mjr 53:9b2611964afc 5258 {
mjr 53:9b2611964afc 5259 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 5260 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 5261 // expand the envelope to include this new value.
mjr 53:9b2611964afc 5262 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 5263 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 5264 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 5265 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 5266
mjr 76:7f5912b6340e 5267 // update our cached calibration data
mjr 76:7f5912b6340e 5268 onUpdateCal();
mjr 50:40015764bbe6 5269
mjr 53:9b2611964afc 5270 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 5271 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 5272 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 5273 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 5274 if (calState == 0)
mjr 53:9b2611964afc 5275 {
mjr 53:9b2611964afc 5276 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 5277 {
mjr 53:9b2611964afc 5278 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 5279 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 5280 {
mjr 53:9b2611964afc 5281 // we've been at rest long enough - count it
mjr 53:9b2611964afc 5282 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 5283 calZeroPosN += 1;
mjr 53:9b2611964afc 5284
mjr 53:9b2611964afc 5285 // update the zero position from the new average
mjr 53:9b2611964afc 5286 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 5287 onUpdateCal();
mjr 53:9b2611964afc 5288
mjr 53:9b2611964afc 5289 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 5290 calState = 1;
mjr 53:9b2611964afc 5291 }
mjr 53:9b2611964afc 5292 }
mjr 53:9b2611964afc 5293 else
mjr 53:9b2611964afc 5294 {
mjr 53:9b2611964afc 5295 // we're not close to the last position - start again here
mjr 53:9b2611964afc 5296 calZeroStart = r;
mjr 53:9b2611964afc 5297 }
mjr 53:9b2611964afc 5298 }
mjr 53:9b2611964afc 5299
mjr 53:9b2611964afc 5300 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 5301 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 5302 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 5303 r.pos = int(
mjr 53:9b2611964afc 5304 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 5305 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 5306 }
mjr 53:9b2611964afc 5307 else
mjr 53:9b2611964afc 5308 {
mjr 53:9b2611964afc 5309 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 5310 // rescale to the joystick range.
mjr 76:7f5912b6340e 5311 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 5312
mjr 53:9b2611964afc 5313 // limit the result to the valid joystick range
mjr 53:9b2611964afc 5314 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 5315 r.pos = JOYMAX;
mjr 53:9b2611964afc 5316 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 5317 r.pos = -JOYMAX;
mjr 53:9b2611964afc 5318 }
mjr 50:40015764bbe6 5319
mjr 87:8d35c74403af 5320 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 5321 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 5322 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 5323 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 5324 //
mjr 87:8d35c74403af 5325 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 5326 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 5327 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 5328 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 5329 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 5330 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 5331 // 25-50ms.
mjr 87:8d35c74403af 5332 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 5333 return;
mjr 87:8d35c74403af 5334
mjr 87:8d35c74403af 5335 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 5336 z = r.pos;
mjr 87:8d35c74403af 5337
mjr 87:8d35c74403af 5338 // Firing event detection.
mjr 87:8d35c74403af 5339 //
mjr 87:8d35c74403af 5340 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 5341 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 5342 // spring tension.
mjr 50:40015764bbe6 5343 //
mjr 87:8d35c74403af 5344 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 5345 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 5346 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 5347 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 5348 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 5349 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 5350 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 5351 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 5352 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 5353 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 5354 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 5355 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 5356 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 5357 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 5358 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 5359 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 5360 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 5361 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 5362 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 5363 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 5364 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 5365 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 5366 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 5367 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5368 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5369 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5370 // forward position for a short time.
mjr 76:7f5912b6340e 5371 //
mjr 87:8d35c74403af 5372 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5373 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5374 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5375 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5376 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5377 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5378 //
mjr 87:8d35c74403af 5379 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5380 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5381 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5382 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5383 // to the park position.
mjr 87:8d35c74403af 5384 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5385 switch (firing)
mjr 50:40015764bbe6 5386 {
mjr 50:40015764bbe6 5387 case 0:
mjr 87:8d35c74403af 5388 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5389 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5390 // release, enter firing mode.
mjr 87:8d35c74403af 5391 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5392 {
mjr 87:8d35c74403af 5393 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5394 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5395 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5396 {
mjr 87:8d35c74403af 5397 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5398 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5399 firingMode(1);
mjr 87:8d35c74403af 5400 f0 = prv;
mjr 87:8d35c74403af 5401 z = f0.pos;
mjr 87:8d35c74403af 5402
mjr 87:8d35c74403af 5403 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5404 // state 2 (not at rest)
mjr 87:8d35c74403af 5405 if (calState == 1)
mjr 87:8d35c74403af 5406 calState = 2;
mjr 87:8d35c74403af 5407 }
mjr 50:40015764bbe6 5408 }
mjr 50:40015764bbe6 5409 break;
mjr 50:40015764bbe6 5410
mjr 50:40015764bbe6 5411 case 1:
mjr 87:8d35c74403af 5412 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5413 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5414 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5415 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5416 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5417 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5418 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5419 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5420 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5421 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5422 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5423 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5424 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5425 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5426 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5427 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5428 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5429 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5430 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5431 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5432 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5433 if (r.pos <= 0)
mjr 50:40015764bbe6 5434 {
mjr 87:8d35c74403af 5435 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5436 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5437 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5438 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5439 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5440 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5441 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5442 // physics.
mjr 50:40015764bbe6 5443 firingMode(2);
mjr 53:9b2611964afc 5444
mjr 53:9b2611964afc 5445 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5446 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5447 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5448 {
mjr 53:9b2611964afc 5449 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5450 // come to rest
mjr 53:9b2611964afc 5451 calState = 0;
mjr 53:9b2611964afc 5452
mjr 87:8d35c74403af 5453 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5454 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5455 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5456 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5457 {
mjr 53:9b2611964afc 5458 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5459 calRlsTimeN += 1;
mjr 53:9b2611964afc 5460 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5461 }
mjr 53:9b2611964afc 5462 }
mjr 87:8d35c74403af 5463
mjr 87:8d35c74403af 5464 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5465 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5466 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5467 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5468 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5469 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5470 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5471 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5472 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5473 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5474 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5475 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5476 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5477 // small in any case.)
mjr 87:8d35c74403af 5478 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5479
mjr 87:8d35c74403af 5480 // reset the starting time for this phase
mjr 87:8d35c74403af 5481 f0.t = r.t;
mjr 50:40015764bbe6 5482 }
mjr 50:40015764bbe6 5483 else
mjr 50:40015764bbe6 5484 {
mjr 87:8d35c74403af 5485 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5486 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5487 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5488 if (dt < 50000
mjr 87:8d35c74403af 5489 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5490 {
mjr 87:8d35c74403af 5491 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5492 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5493 // stay in the first release phase.
mjr 87:8d35c74403af 5494 z = f0.pos;
mjr 87:8d35c74403af 5495 }
mjr 87:8d35c74403af 5496 else
mjr 87:8d35c74403af 5497 {
mjr 87:8d35c74403af 5498 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5499 // motion. Return to the default state.
mjr 87:8d35c74403af 5500 firingMode(0);
mjr 87:8d35c74403af 5501 calState = 1;
mjr 87:8d35c74403af 5502 }
mjr 50:40015764bbe6 5503 }
mjr 50:40015764bbe6 5504 break;
mjr 50:40015764bbe6 5505
mjr 50:40015764bbe6 5506 case 2:
mjr 87:8d35c74403af 5507 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5508 // Hold here for 25ms.
mjr 87:8d35c74403af 5509 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5510 {
mjr 87:8d35c74403af 5511 // stay here for now
mjr 87:8d35c74403af 5512 z = f0.pos;
mjr 50:40015764bbe6 5513 }
mjr 50:40015764bbe6 5514 else
mjr 50:40015764bbe6 5515 {
mjr 87:8d35c74403af 5516 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5517 // position until the plunger comes to rest
mjr 50:40015764bbe6 5518 firingMode(3);
mjr 50:40015764bbe6 5519 z = 0;
mjr 87:8d35c74403af 5520
mjr 87:8d35c74403af 5521 // remember when we started
mjr 87:8d35c74403af 5522 f0.t = r.t;
mjr 50:40015764bbe6 5523 }
mjr 50:40015764bbe6 5524 break;
mjr 50:40015764bbe6 5525
mjr 50:40015764bbe6 5526 case 3:
mjr 87:8d35c74403af 5527 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5528 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5529 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5530 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5531 {
mjr 87:8d35c74403af 5532 // stay here a while longer
mjr 87:8d35c74403af 5533 z = 0;
mjr 50:40015764bbe6 5534 }
mjr 50:40015764bbe6 5535 else
mjr 50:40015764bbe6 5536 {
mjr 87:8d35c74403af 5537 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5538 firingMode(0);
mjr 50:40015764bbe6 5539 }
mjr 50:40015764bbe6 5540 break;
mjr 50:40015764bbe6 5541 }
mjr 50:40015764bbe6 5542
mjr 82:4f6209cb5c33 5543 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5544 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5545 {
mjr 82:4f6209cb5c33 5546 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5547 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5548 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5549 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5550 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5551 {
mjr 82:4f6209cb5c33 5552 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5553 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5554 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5555 }
mjr 82:4f6209cb5c33 5556 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5557 {
mjr 82:4f6209cb5c33 5558 // auto-zero now
mjr 82:4f6209cb5c33 5559 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5560
mjr 82:4f6209cb5c33 5561 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5562 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5563 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5564 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5565 }
mjr 82:4f6209cb5c33 5566 }
mjr 82:4f6209cb5c33 5567
mjr 87:8d35c74403af 5568 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5569 prv = r;
mjr 48:058ace2aed1d 5570 }
mjr 48:058ace2aed1d 5571 }
mjr 48:058ace2aed1d 5572
mjr 48:058ace2aed1d 5573 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5574 int16_t getPosition()
mjr 58:523fdcffbe6d 5575 {
mjr 86:e30a1f60f783 5576 // return the last reading
mjr 86:e30a1f60f783 5577 return z;
mjr 55:4db125cd11a0 5578 }
mjr 58:523fdcffbe6d 5579
mjr 48:058ace2aed1d 5580 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5581 void setCalMode(bool f)
mjr 48:058ace2aed1d 5582 {
mjr 52:8298b2a73eb2 5583 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5584 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5585 {
mjr 52:8298b2a73eb2 5586 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5587 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5588
mjr 52:8298b2a73eb2 5589 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5590 calState = 0;
mjr 52:8298b2a73eb2 5591 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5592 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5593 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5594 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5595
mjr 82:4f6209cb5c33 5596 // tell the plunger we're starting calibration
mjr 100:1ff35c07217c 5597 plungerSensor->beginCalibration(cfg);
mjr 82:4f6209cb5c33 5598
mjr 52:8298b2a73eb2 5599 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5600 PlungerReading r;
mjr 52:8298b2a73eb2 5601 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5602 {
mjr 52:8298b2a73eb2 5603 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5604 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5605 onUpdateCal();
mjr 52:8298b2a73eb2 5606
mjr 52:8298b2a73eb2 5607 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5608 calZeroStart = r;
mjr 52:8298b2a73eb2 5609 }
mjr 52:8298b2a73eb2 5610 else
mjr 52:8298b2a73eb2 5611 {
mjr 52:8298b2a73eb2 5612 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5613 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5614 onUpdateCal();
mjr 52:8298b2a73eb2 5615
mjr 52:8298b2a73eb2 5616 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5617 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5618 calZeroStart.t = 0;
mjr 53:9b2611964afc 5619 }
mjr 53:9b2611964afc 5620 }
mjr 53:9b2611964afc 5621 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5622 {
mjr 53:9b2611964afc 5623 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5624 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5625 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5626 // physically meaningless.
mjr 53:9b2611964afc 5627 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5628 {
mjr 53:9b2611964afc 5629 // bad settings - reset to defaults
mjr 53:9b2611964afc 5630 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5631 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 5632 }
mjr 100:1ff35c07217c 5633
mjr 100:1ff35c07217c 5634 // finalize the configuration in the plunger object
mjr 100:1ff35c07217c 5635 plungerSensor->endCalibration(cfg);
mjr 100:1ff35c07217c 5636
mjr 100:1ff35c07217c 5637 // update our internal cached information for the new calibration
mjr 100:1ff35c07217c 5638 onUpdateCal();
mjr 52:8298b2a73eb2 5639 }
mjr 52:8298b2a73eb2 5640
mjr 48:058ace2aed1d 5641 // remember the new mode
mjr 52:8298b2a73eb2 5642 plungerCalMode = f;
mjr 48:058ace2aed1d 5643 }
mjr 48:058ace2aed1d 5644
mjr 76:7f5912b6340e 5645 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5646 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5647 // cached inverse is calculated as
mjr 76:7f5912b6340e 5648 //
mjr 76:7f5912b6340e 5649 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5650 //
mjr 76:7f5912b6340e 5651 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5652 //
mjr 76:7f5912b6340e 5653 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5654 //
mjr 76:7f5912b6340e 5655 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5656 int invCalRange;
mjr 76:7f5912b6340e 5657
mjr 76:7f5912b6340e 5658 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5659 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5660 {
mjr 76:7f5912b6340e 5661 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5662 }
mjr 76:7f5912b6340e 5663
mjr 76:7f5912b6340e 5664 void onUpdateCal()
mjr 76:7f5912b6340e 5665 {
mjr 76:7f5912b6340e 5666 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5667 }
mjr 76:7f5912b6340e 5668
mjr 48:058ace2aed1d 5669 // is a firing event in progress?
mjr 53:9b2611964afc 5670 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5671
mjr 48:058ace2aed1d 5672 private:
mjr 87:8d35c74403af 5673 // current reported joystick reading
mjr 87:8d35c74403af 5674 int z;
mjr 87:8d35c74403af 5675
mjr 87:8d35c74403af 5676 // previous reading
mjr 87:8d35c74403af 5677 PlungerReading prv;
mjr 87:8d35c74403af 5678
mjr 52:8298b2a73eb2 5679 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5680 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5681 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5682 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5683 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5684 // 1 = at rest
mjr 52:8298b2a73eb2 5685 // 2 = retracting
mjr 52:8298b2a73eb2 5686 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5687 uint8_t calState;
mjr 52:8298b2a73eb2 5688
mjr 52:8298b2a73eb2 5689 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5690 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5691 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5692 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5693 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5694 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5695 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5696 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5697 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5698 long calZeroPosSum;
mjr 52:8298b2a73eb2 5699 int calZeroPosN;
mjr 52:8298b2a73eb2 5700
mjr 52:8298b2a73eb2 5701 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5702 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5703 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5704 int calRlsTimeN;
mjr 52:8298b2a73eb2 5705
mjr 85:3c28aee81cde 5706 // Auto-zeroing timer
mjr 85:3c28aee81cde 5707 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5708
mjr 48:058ace2aed1d 5709 // set a firing mode
mjr 48:058ace2aed1d 5710 inline void firingMode(int m)
mjr 48:058ace2aed1d 5711 {
mjr 48:058ace2aed1d 5712 firing = m;
mjr 48:058ace2aed1d 5713 }
mjr 48:058ace2aed1d 5714
mjr 48:058ace2aed1d 5715 // Firing event state.
mjr 48:058ace2aed1d 5716 //
mjr 87:8d35c74403af 5717 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5718 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5719 //
mjr 87:8d35c74403af 5720 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5721 //
mjr 87:8d35c74403af 5722 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5723 //
mjr 87:8d35c74403af 5724 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5725 //
mjr 48:058ace2aed1d 5726 int firing;
mjr 48:058ace2aed1d 5727
mjr 87:8d35c74403af 5728 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5729 PlungerReading f0;
mjr 48:058ace2aed1d 5730 };
mjr 48:058ace2aed1d 5731
mjr 48:058ace2aed1d 5732 // plunger reader singleton
mjr 48:058ace2aed1d 5733 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5734
mjr 48:058ace2aed1d 5735 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5736 //
mjr 48:058ace2aed1d 5737 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5738 //
mjr 48:058ace2aed1d 5739 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5740 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5741 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5742 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5743 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5744 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5745 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5746 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5747 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5748 //
mjr 48:058ace2aed1d 5749 // This feature has two configuration components:
mjr 48:058ace2aed1d 5750 //
mjr 48:058ace2aed1d 5751 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5752 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5753 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5754 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5755 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5756 // plunger/launch button connection.
mjr 48:058ace2aed1d 5757 //
mjr 48:058ace2aed1d 5758 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5759 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5760 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5761 // position.
mjr 48:058ace2aed1d 5762 //
mjr 48:058ace2aed1d 5763 class ZBLaunchBall
mjr 48:058ace2aed1d 5764 {
mjr 48:058ace2aed1d 5765 public:
mjr 48:058ace2aed1d 5766 ZBLaunchBall()
mjr 48:058ace2aed1d 5767 {
mjr 48:058ace2aed1d 5768 // start in the default state
mjr 48:058ace2aed1d 5769 lbState = 0;
mjr 53:9b2611964afc 5770 btnState = false;
mjr 48:058ace2aed1d 5771 }
mjr 48:058ace2aed1d 5772
mjr 48:058ace2aed1d 5773 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5774 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5775 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5776 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5777 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5778 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5779 void update()
mjr 48:058ace2aed1d 5780 {
mjr 53:9b2611964afc 5781 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5782 // plunger firing event
mjr 53:9b2611964afc 5783 if (zbLaunchOn)
mjr 48:058ace2aed1d 5784 {
mjr 53:9b2611964afc 5785 // note the new position
mjr 48:058ace2aed1d 5786 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5787
mjr 53:9b2611964afc 5788 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5789 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5790
mjr 53:9b2611964afc 5791 // check the state
mjr 48:058ace2aed1d 5792 switch (lbState)
mjr 48:058ace2aed1d 5793 {
mjr 48:058ace2aed1d 5794 case 0:
mjr 53:9b2611964afc 5795 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5796 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5797 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5798 // the button.
mjr 53:9b2611964afc 5799 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5800 {
mjr 53:9b2611964afc 5801 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5802 lbTimer.reset();
mjr 53:9b2611964afc 5803 lbTimer.start();
mjr 53:9b2611964afc 5804 setButton(true);
mjr 53:9b2611964afc 5805
mjr 53:9b2611964afc 5806 // switch to state 1
mjr 53:9b2611964afc 5807 lbState = 1;
mjr 53:9b2611964afc 5808 }
mjr 48:058ace2aed1d 5809 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5810 {
mjr 53:9b2611964afc 5811 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5812 // button as long as we're pushed forward
mjr 53:9b2611964afc 5813 setButton(true);
mjr 53:9b2611964afc 5814 }
mjr 53:9b2611964afc 5815 else
mjr 53:9b2611964afc 5816 {
mjr 53:9b2611964afc 5817 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5818 setButton(false);
mjr 53:9b2611964afc 5819 }
mjr 48:058ace2aed1d 5820 break;
mjr 48:058ace2aed1d 5821
mjr 48:058ace2aed1d 5822 case 1:
mjr 53:9b2611964afc 5823 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5824 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5825 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5826 {
mjr 53:9b2611964afc 5827 // timer expired - turn off the button
mjr 53:9b2611964afc 5828 setButton(false);
mjr 53:9b2611964afc 5829
mjr 53:9b2611964afc 5830 // switch to state 2
mjr 53:9b2611964afc 5831 lbState = 2;
mjr 53:9b2611964afc 5832 }
mjr 48:058ace2aed1d 5833 break;
mjr 48:058ace2aed1d 5834
mjr 48:058ace2aed1d 5835 case 2:
mjr 53:9b2611964afc 5836 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5837 // plunger launch event to end.
mjr 53:9b2611964afc 5838 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5839 {
mjr 53:9b2611964afc 5840 // firing event done - return to default state
mjr 53:9b2611964afc 5841 lbState = 0;
mjr 53:9b2611964afc 5842 }
mjr 48:058ace2aed1d 5843 break;
mjr 48:058ace2aed1d 5844 }
mjr 53:9b2611964afc 5845 }
mjr 53:9b2611964afc 5846 else
mjr 53:9b2611964afc 5847 {
mjr 53:9b2611964afc 5848 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5849 setButton(false);
mjr 48:058ace2aed1d 5850
mjr 53:9b2611964afc 5851 // return to the default state
mjr 53:9b2611964afc 5852 lbState = 0;
mjr 48:058ace2aed1d 5853 }
mjr 48:058ace2aed1d 5854 }
mjr 53:9b2611964afc 5855
mjr 53:9b2611964afc 5856 // Set the button state
mjr 53:9b2611964afc 5857 void setButton(bool on)
mjr 53:9b2611964afc 5858 {
mjr 53:9b2611964afc 5859 if (btnState != on)
mjr 53:9b2611964afc 5860 {
mjr 53:9b2611964afc 5861 // remember the new state
mjr 53:9b2611964afc 5862 btnState = on;
mjr 53:9b2611964afc 5863
mjr 53:9b2611964afc 5864 // update the virtual button state
mjr 65:739875521aae 5865 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5866 }
mjr 53:9b2611964afc 5867 }
mjr 53:9b2611964afc 5868
mjr 48:058ace2aed1d 5869 private:
mjr 48:058ace2aed1d 5870 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5871 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5872 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5873 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5874 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5875 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5876 //
mjr 48:058ace2aed1d 5877 // States:
mjr 48:058ace2aed1d 5878 // 0 = default
mjr 53:9b2611964afc 5879 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5880 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5881 // firing event to end)
mjr 53:9b2611964afc 5882 uint8_t lbState;
mjr 48:058ace2aed1d 5883
mjr 53:9b2611964afc 5884 // button state
mjr 53:9b2611964afc 5885 bool btnState;
mjr 48:058ace2aed1d 5886
mjr 48:058ace2aed1d 5887 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5888 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5889 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5890 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5891 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5892 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5893 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5894 Timer lbTimer;
mjr 48:058ace2aed1d 5895 };
mjr 48:058ace2aed1d 5896
mjr 35:e959ffba78fd 5897 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5898 //
mjr 35:e959ffba78fd 5899 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5900 //
mjr 54:fd77a6b2f76c 5901 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5902 {
mjr 35:e959ffba78fd 5903 // disconnect from USB
mjr 54:fd77a6b2f76c 5904 if (disconnect)
mjr 54:fd77a6b2f76c 5905 js.disconnect();
mjr 35:e959ffba78fd 5906
mjr 35:e959ffba78fd 5907 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5908 wait_us(pause_us);
mjr 35:e959ffba78fd 5909
mjr 35:e959ffba78fd 5910 // reset the device
mjr 35:e959ffba78fd 5911 NVIC_SystemReset();
mjr 35:e959ffba78fd 5912 while (true) { }
mjr 35:e959ffba78fd 5913 }
mjr 35:e959ffba78fd 5914
mjr 35:e959ffba78fd 5915 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5916 //
mjr 35:e959ffba78fd 5917 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5918 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5919 //
mjr 35:e959ffba78fd 5920 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5921 {
mjr 35:e959ffba78fd 5922 int tmp;
mjr 78:1e00b3fa11af 5923 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5924 {
mjr 35:e959ffba78fd 5925 case OrientationFront:
mjr 35:e959ffba78fd 5926 tmp = x;
mjr 35:e959ffba78fd 5927 x = y;
mjr 35:e959ffba78fd 5928 y = tmp;
mjr 35:e959ffba78fd 5929 break;
mjr 35:e959ffba78fd 5930
mjr 35:e959ffba78fd 5931 case OrientationLeft:
mjr 35:e959ffba78fd 5932 x = -x;
mjr 35:e959ffba78fd 5933 break;
mjr 35:e959ffba78fd 5934
mjr 35:e959ffba78fd 5935 case OrientationRight:
mjr 35:e959ffba78fd 5936 y = -y;
mjr 35:e959ffba78fd 5937 break;
mjr 35:e959ffba78fd 5938
mjr 35:e959ffba78fd 5939 case OrientationRear:
mjr 35:e959ffba78fd 5940 tmp = -x;
mjr 35:e959ffba78fd 5941 x = -y;
mjr 35:e959ffba78fd 5942 y = tmp;
mjr 35:e959ffba78fd 5943 break;
mjr 35:e959ffba78fd 5944 }
mjr 35:e959ffba78fd 5945 }
mjr 35:e959ffba78fd 5946
mjr 35:e959ffba78fd 5947 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5948 //
mjr 35:e959ffba78fd 5949 // Calibration button state:
mjr 35:e959ffba78fd 5950 // 0 = not pushed
mjr 35:e959ffba78fd 5951 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5952 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5953 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5954 int calBtnState = 0;
mjr 35:e959ffba78fd 5955
mjr 35:e959ffba78fd 5956 // calibration button debounce timer
mjr 35:e959ffba78fd 5957 Timer calBtnTimer;
mjr 35:e959ffba78fd 5958
mjr 35:e959ffba78fd 5959 // calibration button light state
mjr 35:e959ffba78fd 5960 int calBtnLit = false;
mjr 35:e959ffba78fd 5961
mjr 35:e959ffba78fd 5962
mjr 35:e959ffba78fd 5963 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5964 //
mjr 40:cc0d9814522b 5965 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5966 //
mjr 40:cc0d9814522b 5967
mjr 40:cc0d9814522b 5968 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5969 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5970 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 5971 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5972 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5973 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5974 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5975 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5976 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5977 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5978 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5979 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5980
mjr 40:cc0d9814522b 5981 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5982 #undef if_msg_valid
mjr 40:cc0d9814522b 5983 #undef v_byte
mjr 40:cc0d9814522b 5984 #undef v_ui16
mjr 77:0b96f6867312 5985 #undef v_ui32
mjr 40:cc0d9814522b 5986 #undef v_pin
mjr 53:9b2611964afc 5987 #undef v_byte_ro
mjr 91:ae9be42652bf 5988 #undef v_byte_wo
mjr 74:822a92bc11d2 5989 #undef v_ui32_ro
mjr 74:822a92bc11d2 5990 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5991 #undef v_func
mjr 38:091e511ce8a0 5992
mjr 91:ae9be42652bf 5993 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 5994 #define if_msg_valid(test)
mjr 53:9b2611964afc 5995 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5996 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5997 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5998 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5999 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 6000 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 6001 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 6002 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 6003 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 6004 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 6005
mjr 35:e959ffba78fd 6006
mjr 35:e959ffba78fd 6007 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6008 //
mjr 101:755f44622abc 6009 // Timer for timestamping input requests
mjr 101:755f44622abc 6010 //
mjr 101:755f44622abc 6011 Timer requestTimestamper;
mjr 101:755f44622abc 6012
mjr 101:755f44622abc 6013 // ---------------------------------------------------------------------------
mjr 101:755f44622abc 6014 //
mjr 35:e959ffba78fd 6015 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 6016 // LedWiz protocol.
mjr 33:d832bcab089e 6017 //
mjr 78:1e00b3fa11af 6018 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 6019 {
mjr 38:091e511ce8a0 6020 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 6021 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 6022 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 6023 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 6024 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 6025 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 6026 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 6027 // So our full protocol is as follows:
mjr 38:091e511ce8a0 6028 //
mjr 38:091e511ce8a0 6029 // first byte =
mjr 74:822a92bc11d2 6030 // 0-48 -> PBA
mjr 74:822a92bc11d2 6031 // 64 -> SBA
mjr 38:091e511ce8a0 6032 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 6033 // 129-132 -> PBA
mjr 38:091e511ce8a0 6034 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 6035 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 6036 // other -> reserved for future use
mjr 38:091e511ce8a0 6037 //
mjr 39:b3815a1c3802 6038 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 6039 if (data[0] == 64)
mjr 35:e959ffba78fd 6040 {
mjr 74:822a92bc11d2 6041 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 6042 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 6043 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 6044 sba_sbx(0, data);
mjr 74:822a92bc11d2 6045
mjr 74:822a92bc11d2 6046 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 6047 pbaIdx = 0;
mjr 38:091e511ce8a0 6048 }
mjr 38:091e511ce8a0 6049 else if (data[0] == 65)
mjr 38:091e511ce8a0 6050 {
mjr 38:091e511ce8a0 6051 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 6052 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 6053 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 6054 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 6055 // message type.
mjr 39:b3815a1c3802 6056 switch (data[1])
mjr 38:091e511ce8a0 6057 {
mjr 39:b3815a1c3802 6058 case 0:
mjr 39:b3815a1c3802 6059 // No Op
mjr 39:b3815a1c3802 6060 break;
mjr 39:b3815a1c3802 6061
mjr 39:b3815a1c3802 6062 case 1:
mjr 38:091e511ce8a0 6063 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 6064 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 6065 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 6066 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 6067 {
mjr 39:b3815a1c3802 6068
mjr 39:b3815a1c3802 6069 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 6070 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 6071 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 6072
mjr 86:e30a1f60f783 6073 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 6074 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 6075
mjr 39:b3815a1c3802 6076 // set the configuration parameters from the message
mjr 39:b3815a1c3802 6077 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 6078 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 6079
mjr 77:0b96f6867312 6080 // set the flag to do the save
mjr 86:e30a1f60f783 6081 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 6082 }
mjr 39:b3815a1c3802 6083 break;
mjr 38:091e511ce8a0 6084
mjr 39:b3815a1c3802 6085 case 2:
mjr 38:091e511ce8a0 6086 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 6087 // (No parameters)
mjr 38:091e511ce8a0 6088
mjr 38:091e511ce8a0 6089 // enter calibration mode
mjr 38:091e511ce8a0 6090 calBtnState = 3;
mjr 52:8298b2a73eb2 6091 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 6092 calBtnTimer.reset();
mjr 39:b3815a1c3802 6093 break;
mjr 39:b3815a1c3802 6094
mjr 39:b3815a1c3802 6095 case 3:
mjr 52:8298b2a73eb2 6096 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 6097 // data[2] = flag bits
mjr 53:9b2611964afc 6098 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 6099 reportPlungerStat = true;
mjr 53:9b2611964afc 6100 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 6101 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 6102
mjr 101:755f44622abc 6103 // set the extra integration time in the sensor
mjr 101:755f44622abc 6104 plungerSensor->setExtraIntegrationTime(reportPlungerStatTime * 100);
mjr 101:755f44622abc 6105
mjr 101:755f44622abc 6106 // make a note of the request timestamp
mjr 101:755f44622abc 6107 tReportPlungerStat = requestTimestamper.read_us();
mjr 101:755f44622abc 6108
mjr 38:091e511ce8a0 6109 // show purple until we finish sending the report
mjr 38:091e511ce8a0 6110 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 6111 break;
mjr 39:b3815a1c3802 6112
mjr 39:b3815a1c3802 6113 case 4:
mjr 38:091e511ce8a0 6114 // 4 = hardware configuration query
mjr 38:091e511ce8a0 6115 // (No parameters)
mjr 38:091e511ce8a0 6116 js.reportConfig(
mjr 38:091e511ce8a0 6117 numOutputs,
mjr 38:091e511ce8a0 6118 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 6119 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 6120 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 6121 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 6122 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 6123 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 6124 true, // we support the configurable joystick report timing features
mjr 99:8139b0c274f4 6125 true, // chime logic is supported
mjr 79:682ae3171a08 6126 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 6127 break;
mjr 39:b3815a1c3802 6128
mjr 39:b3815a1c3802 6129 case 5:
mjr 38:091e511ce8a0 6130 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 6131 allOutputsOff();
mjr 39:b3815a1c3802 6132 break;
mjr 39:b3815a1c3802 6133
mjr 39:b3815a1c3802 6134 case 6:
mjr 85:3c28aee81cde 6135 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 6136 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 6137 //
mjr 85:3c28aee81cde 6138 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 6139 // data[3] = flags:
mjr 85:3c28aee81cde 6140 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 6141 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 6142 break;
mjr 40:cc0d9814522b 6143
mjr 40:cc0d9814522b 6144 case 7:
mjr 40:cc0d9814522b 6145 // 7 = Device ID report
mjr 53:9b2611964afc 6146 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 6147 js.reportID(data[2]);
mjr 40:cc0d9814522b 6148 break;
mjr 40:cc0d9814522b 6149
mjr 40:cc0d9814522b 6150 case 8:
mjr 40:cc0d9814522b 6151 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 6152 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 6153 setNightMode(data[2]);
mjr 40:cc0d9814522b 6154 break;
mjr 52:8298b2a73eb2 6155
mjr 52:8298b2a73eb2 6156 case 9:
mjr 52:8298b2a73eb2 6157 // 9 = Config variable query.
mjr 52:8298b2a73eb2 6158 // data[2] = config var ID
mjr 52:8298b2a73eb2 6159 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 6160 {
mjr 53:9b2611964afc 6161 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 6162 // the rest of the buffer
mjr 52:8298b2a73eb2 6163 uint8_t reply[8];
mjr 52:8298b2a73eb2 6164 reply[1] = data[2];
mjr 52:8298b2a73eb2 6165 reply[2] = data[3];
mjr 53:9b2611964afc 6166 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 6167
mjr 52:8298b2a73eb2 6168 // query the value
mjr 52:8298b2a73eb2 6169 configVarGet(reply);
mjr 52:8298b2a73eb2 6170
mjr 52:8298b2a73eb2 6171 // send the reply
mjr 52:8298b2a73eb2 6172 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 6173 }
mjr 52:8298b2a73eb2 6174 break;
mjr 53:9b2611964afc 6175
mjr 53:9b2611964afc 6176 case 10:
mjr 53:9b2611964afc 6177 // 10 = Build ID query.
mjr 53:9b2611964afc 6178 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 6179 break;
mjr 73:4e8ce0b18915 6180
mjr 73:4e8ce0b18915 6181 case 11:
mjr 73:4e8ce0b18915 6182 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 6183 // data[2] = operation:
mjr 73:4e8ce0b18915 6184 // 0 = turn relay off
mjr 73:4e8ce0b18915 6185 // 1 = turn relay on
mjr 73:4e8ce0b18915 6186 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 6187 TVRelay(data[2]);
mjr 73:4e8ce0b18915 6188 break;
mjr 73:4e8ce0b18915 6189
mjr 73:4e8ce0b18915 6190 case 12:
mjr 77:0b96f6867312 6191 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 6192 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 6193 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 6194 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 6195 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 6196
mjr 77:0b96f6867312 6197 // enter IR learning mode
mjr 77:0b96f6867312 6198 IRLearningMode = 1;
mjr 77:0b96f6867312 6199
mjr 77:0b96f6867312 6200 // cancel any regular IR input in progress
mjr 77:0b96f6867312 6201 IRCommandIn = 0;
mjr 77:0b96f6867312 6202
mjr 77:0b96f6867312 6203 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 6204 IRTimer.reset();
mjr 73:4e8ce0b18915 6205 break;
mjr 73:4e8ce0b18915 6206
mjr 73:4e8ce0b18915 6207 case 13:
mjr 73:4e8ce0b18915 6208 // 13 = Send button status report
mjr 73:4e8ce0b18915 6209 reportButtonStatus(js);
mjr 73:4e8ce0b18915 6210 break;
mjr 78:1e00b3fa11af 6211
mjr 78:1e00b3fa11af 6212 case 14:
mjr 78:1e00b3fa11af 6213 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 6214 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 6215 break;
mjr 78:1e00b3fa11af 6216
mjr 78:1e00b3fa11af 6217 case 15:
mjr 78:1e00b3fa11af 6218 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 6219 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 6220 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 6221 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 6222 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 6223 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 6224 break;
mjr 78:1e00b3fa11af 6225
mjr 78:1e00b3fa11af 6226 case 16:
mjr 78:1e00b3fa11af 6227 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 6228 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 6229 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 6230 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 6231 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 6232 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 6233 break;
mjr 88:98bce687e6c0 6234
mjr 88:98bce687e6c0 6235 case 17:
mjr 88:98bce687e6c0 6236 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 6237 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 6238 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 6239 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 6240 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 6241 {
mjr 88:98bce687e6c0 6242 // get the IR command slot in the config
mjr 88:98bce687e6c0 6243 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 6244
mjr 88:98bce687e6c0 6245 // copy the IR command data from the config
mjr 88:98bce687e6c0 6246 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 6247 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 6248 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 6249
mjr 88:98bce687e6c0 6250 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 6251 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 6252 // is free
mjr 88:98bce687e6c0 6253 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 6254 }
mjr 88:98bce687e6c0 6255 break;
mjr 38:091e511ce8a0 6256 }
mjr 38:091e511ce8a0 6257 }
mjr 38:091e511ce8a0 6258 else if (data[0] == 66)
mjr 38:091e511ce8a0 6259 {
mjr 38:091e511ce8a0 6260 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 6261 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 6262 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 6263 // in a variable-dependent format.
mjr 40:cc0d9814522b 6264 configVarSet(data);
mjr 86:e30a1f60f783 6265
mjr 87:8d35c74403af 6266 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 6267 // dynamically
mjr 87:8d35c74403af 6268 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 6269 }
mjr 74:822a92bc11d2 6270 else if (data[0] == 67)
mjr 74:822a92bc11d2 6271 {
mjr 74:822a92bc11d2 6272 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 6273 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 6274 // to ports beyond the first 32.
mjr 74:822a92bc11d2 6275 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 6276 }
mjr 74:822a92bc11d2 6277 else if (data[0] == 68)
mjr 74:822a92bc11d2 6278 {
mjr 74:822a92bc11d2 6279 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 6280 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 6281 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 6282
mjr 74:822a92bc11d2 6283 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 6284 int portGroup = data[1];
mjr 74:822a92bc11d2 6285
mjr 74:822a92bc11d2 6286 // unpack the brightness values
mjr 74:822a92bc11d2 6287 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 6288 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 6289 uint8_t bri[8] = {
mjr 74:822a92bc11d2 6290 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 6291 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 6292 };
mjr 74:822a92bc11d2 6293
mjr 74:822a92bc11d2 6294 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 6295 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 6296 {
mjr 74:822a92bc11d2 6297 if (bri[i] >= 60)
mjr 74:822a92bc11d2 6298 bri[i] += 129-60;
mjr 74:822a92bc11d2 6299 }
mjr 74:822a92bc11d2 6300
mjr 74:822a92bc11d2 6301 // Carry out the PBA
mjr 74:822a92bc11d2 6302 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 6303 }
mjr 38:091e511ce8a0 6304 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 6305 {
mjr 38:091e511ce8a0 6306 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 6307 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 6308 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 6309 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 6310 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 6311 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 6312 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 6313 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 6314 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 6315 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 6316 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 6317 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 6318 //
mjr 38:091e511ce8a0 6319 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 6320 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 6321 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 6322 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 6323 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 6324 // address those ports anyway.
mjr 63:5cd1a5f3a41b 6325
mjr 63:5cd1a5f3a41b 6326 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 6327 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 6328 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 6329
mjr 63:5cd1a5f3a41b 6330 // update each port
mjr 38:091e511ce8a0 6331 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 6332 {
mjr 38:091e511ce8a0 6333 // set the brightness level for the output
mjr 40:cc0d9814522b 6334 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 6335 outLevel[i] = b;
mjr 38:091e511ce8a0 6336
mjr 74:822a92bc11d2 6337 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 6338 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 6339 // LedWiz mode on a future update
mjr 76:7f5912b6340e 6340 if (b != 0)
mjr 76:7f5912b6340e 6341 {
mjr 76:7f5912b6340e 6342 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 6343 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 6344 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 6345 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 6346 // forward unchanged.
mjr 76:7f5912b6340e 6347 wizOn[i] = 1;
mjr 76:7f5912b6340e 6348 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 6349 }
mjr 76:7f5912b6340e 6350 else
mjr 76:7f5912b6340e 6351 {
mjr 76:7f5912b6340e 6352 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 6353 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 6354 wizOn[i] = 0;
mjr 76:7f5912b6340e 6355 }
mjr 74:822a92bc11d2 6356
mjr 38:091e511ce8a0 6357 // set the output
mjr 40:cc0d9814522b 6358 lwPin[i]->set(b);
mjr 38:091e511ce8a0 6359 }
mjr 38:091e511ce8a0 6360
mjr 38:091e511ce8a0 6361 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 6362 if (hc595 != 0)
mjr 38:091e511ce8a0 6363 hc595->update();
mjr 38:091e511ce8a0 6364 }
mjr 38:091e511ce8a0 6365 else
mjr 38:091e511ce8a0 6366 {
mjr 74:822a92bc11d2 6367 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 6368 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 6369 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 6370 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 6371 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 6372 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 6373 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 6374 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 6375 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 6376 //
mjr 38:091e511ce8a0 6377 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 6378 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 6379 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 6380 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 6381 // protocol mode.
mjr 38:091e511ce8a0 6382 //
mjr 38:091e511ce8a0 6383 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 6384 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 6385
mjr 74:822a92bc11d2 6386 // carry out the PBA
mjr 74:822a92bc11d2 6387 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6388
mjr 74:822a92bc11d2 6389 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6390 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6391 }
mjr 38:091e511ce8a0 6392 }
mjr 35:e959ffba78fd 6393
mjr 38:091e511ce8a0 6394 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6395 //
mjr 5:a70c0bce770d 6396 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6397 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6398 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6399 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6400 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6401 // port outputs.
mjr 5:a70c0bce770d 6402 //
mjr 0:5acbbe3f4cf4 6403 int main(void)
mjr 0:5acbbe3f4cf4 6404 {
mjr 60:f38da020aa13 6405 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6406 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6407
mjr 98:4df3c0f7e707 6408 // Set the default PWM period to 0.5ms = 2 kHz. This will be used
mjr 98:4df3c0f7e707 6409 // for PWM channels on PWM units whose periods aren't changed
mjr 98:4df3c0f7e707 6410 // explicitly, so it'll apply to LW outputs assigned to GPIO pins.
mjr 98:4df3c0f7e707 6411 // The KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6412 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6413 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6414 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6415 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6416 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6417 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6418 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6419 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6420 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6421 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6422 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6423 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6424 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6425 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6426 //
mjr 94:0476b3e2b996 6427 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6428 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6429 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6430 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6431 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6432 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6433 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6434
mjr 76:7f5912b6340e 6435 // clear the I2C connection
mjr 35:e959ffba78fd 6436 clear_i2c();
mjr 82:4f6209cb5c33 6437
mjr 82:4f6209cb5c33 6438 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6439 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6440 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6441 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6442 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6443 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6444
mjr 76:7f5912b6340e 6445 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6446 // configuration data:
mjr 76:7f5912b6340e 6447 //
mjr 76:7f5912b6340e 6448 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6449 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6450 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6451 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6452 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6453 // to store user settings updates.
mjr 76:7f5912b6340e 6454 //
mjr 76:7f5912b6340e 6455 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6456 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6457 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6458 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6459 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6460 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6461 // without a separate download of the config data.
mjr 76:7f5912b6340e 6462 //
mjr 76:7f5912b6340e 6463 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6464 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6465 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6466 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6467 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6468 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6469 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6470 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6471 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6472 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6473 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6474 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6475 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6476
mjr 38:091e511ce8a0 6477 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6478 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6479
mjr 33:d832bcab089e 6480 // we're not connected/awake yet
mjr 33:d832bcab089e 6481 bool connected = false;
mjr 40:cc0d9814522b 6482 Timer connectChangeTimer;
mjr 33:d832bcab089e 6483
mjr 35:e959ffba78fd 6484 // create the plunger sensor interface
mjr 35:e959ffba78fd 6485 createPlunger();
mjr 76:7f5912b6340e 6486
mjr 76:7f5912b6340e 6487 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6488 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6489
mjr 60:f38da020aa13 6490 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6491 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6492
mjr 87:8d35c74403af 6493 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6494 init_tlc59116(cfg);
mjr 87:8d35c74403af 6495
mjr 60:f38da020aa13 6496 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6497 init_hc595(cfg);
mjr 6:cc35eb643e8f 6498
mjr 54:fd77a6b2f76c 6499 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6500 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6501 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6502 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6503 initLwOut(cfg);
mjr 48:058ace2aed1d 6504
mjr 60:f38da020aa13 6505 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6506 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6507 tlc5940->start();
mjr 87:8d35c74403af 6508
mjr 77:0b96f6867312 6509 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6510 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6511 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6512 // USB keyboard interface.
mjr 77:0b96f6867312 6513 bool kbKeys = false;
mjr 77:0b96f6867312 6514
mjr 77:0b96f6867312 6515 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6516 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6517
mjr 77:0b96f6867312 6518 // start the power status time, if applicable
mjr 77:0b96f6867312 6519 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6520
mjr 35:e959ffba78fd 6521 // initialize the button input ports
mjr 35:e959ffba78fd 6522 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6523
mjr 60:f38da020aa13 6524 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6525 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6526 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6527 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6528 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6529 // to the joystick interface.
mjr 51:57eb311faafa 6530 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6531 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6532
mjr 101:755f44622abc 6533 // start the request timestamp timer
mjr 101:755f44622abc 6534 requestTimestamper.start();
mjr 101:755f44622abc 6535
mjr 60:f38da020aa13 6536 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6537 // flash pattern while waiting.
mjr 70:9f58735a1732 6538 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6539 connTimeoutTimer.start();
mjr 70:9f58735a1732 6540 connFlashTimer.start();
mjr 51:57eb311faafa 6541 while (!js.configured())
mjr 51:57eb311faafa 6542 {
mjr 51:57eb311faafa 6543 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6544 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6545 {
mjr 51:57eb311faafa 6546 // short yellow flash
mjr 51:57eb311faafa 6547 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6548 wait_us(50000);
mjr 51:57eb311faafa 6549 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6550
mjr 51:57eb311faafa 6551 // reset the flash timer
mjr 70:9f58735a1732 6552 connFlashTimer.reset();
mjr 51:57eb311faafa 6553 }
mjr 70:9f58735a1732 6554
mjr 77:0b96f6867312 6555 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6556 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6557 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6558 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6559 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6560 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6561 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6562 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6563 reboot(js, false, 0);
mjr 77:0b96f6867312 6564
mjr 77:0b96f6867312 6565 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6566 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6567 }
mjr 60:f38da020aa13 6568
mjr 60:f38da020aa13 6569 // we're now connected to the host
mjr 54:fd77a6b2f76c 6570 connected = true;
mjr 40:cc0d9814522b 6571
mjr 92:f264fbaa1be5 6572 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6573 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6574 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6575 //
mjr 92:f264fbaa1be5 6576 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6577 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6578 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6579 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6580 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6581 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6582 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6583 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6584 // sampling rate as best we can.
mjr 38:091e511ce8a0 6585 Timer jsReportTimer;
mjr 38:091e511ce8a0 6586 jsReportTimer.start();
mjr 38:091e511ce8a0 6587
mjr 92:f264fbaa1be5 6588 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6589 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6590 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6591 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6592 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6593 //
mjr 92:f264fbaa1be5 6594 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6595 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6596 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6597 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6598 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6599 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6600
mjr 92:f264fbaa1be5 6601 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6602 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6603 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6604 // can be set in the configuration.
mjr 92:f264fbaa1be5 6605 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6606
mjr 60:f38da020aa13 6607 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6608 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6609 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6610 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6611 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6612 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6613 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6614 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6615 Timer jsOKTimer;
mjr 38:091e511ce8a0 6616 jsOKTimer.start();
mjr 35:e959ffba78fd 6617
mjr 55:4db125cd11a0 6618 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6619 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6620 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6621 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6622 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6623
mjr 55:4db125cd11a0 6624 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6625 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6626 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6627
mjr 55:4db125cd11a0 6628 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6629 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6630 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6631
mjr 35:e959ffba78fd 6632 // initialize the calibration button
mjr 1:d913e0afb2ac 6633 calBtnTimer.start();
mjr 35:e959ffba78fd 6634 calBtnState = 0;
mjr 1:d913e0afb2ac 6635
mjr 1:d913e0afb2ac 6636 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6637 Timer hbTimer;
mjr 1:d913e0afb2ac 6638 hbTimer.start();
mjr 1:d913e0afb2ac 6639 int hb = 0;
mjr 5:a70c0bce770d 6640 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6641
mjr 1:d913e0afb2ac 6642 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6643 Timer acTimer;
mjr 1:d913e0afb2ac 6644 acTimer.start();
mjr 1:d913e0afb2ac 6645
mjr 0:5acbbe3f4cf4 6646 // create the accelerometer object
mjr 77:0b96f6867312 6647 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6648 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6649
mjr 48:058ace2aed1d 6650 // initialize the plunger sensor
mjr 35:e959ffba78fd 6651 plungerSensor->init();
mjr 10:976666ffa4ef 6652
mjr 48:058ace2aed1d 6653 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6654 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6655
mjr 54:fd77a6b2f76c 6656 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6657 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6658 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6659 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6660 hc595->enable(true);
mjr 87:8d35c74403af 6661 if (tlc59116 != 0)
mjr 87:8d35c74403af 6662 tlc59116->enable(true);
mjr 74:822a92bc11d2 6663
mjr 76:7f5912b6340e 6664 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6665 wizCycleTimer.start();
mjr 74:822a92bc11d2 6666
mjr 74:822a92bc11d2 6667 // start the PWM update polling timer
mjr 74:822a92bc11d2 6668 polledPwmTimer.start();
mjr 43:7a6364d82a41 6669
mjr 1:d913e0afb2ac 6670 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6671 // host requests
mjr 0:5acbbe3f4cf4 6672 for (;;)
mjr 0:5acbbe3f4cf4 6673 {
mjr 74:822a92bc11d2 6674 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6675 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 96:68d5621ff49f 6676
mjr 48:058ace2aed1d 6677 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6678 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6679 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6680 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6681 LedWizMsg lwm;
mjr 48:058ace2aed1d 6682 Timer lwt;
mjr 48:058ace2aed1d 6683 lwt.start();
mjr 77:0b96f6867312 6684 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6685 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6686 {
mjr 78:1e00b3fa11af 6687 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6688 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6689 }
mjr 74:822a92bc11d2 6690
mjr 74:822a92bc11d2 6691 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6692 IF_DIAG(
mjr 74:822a92bc11d2 6693 if (msgCount != 0)
mjr 74:822a92bc11d2 6694 {
mjr 76:7f5912b6340e 6695 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6696 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6697 }
mjr 74:822a92bc11d2 6698 )
mjr 74:822a92bc11d2 6699
mjr 77:0b96f6867312 6700 // process IR input
mjr 77:0b96f6867312 6701 process_IR(cfg, js);
mjr 77:0b96f6867312 6702
mjr 77:0b96f6867312 6703 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6704 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6705
mjr 74:822a92bc11d2 6706 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6707 wizPulse();
mjr 74:822a92bc11d2 6708
mjr 74:822a92bc11d2 6709 // update PWM outputs
mjr 74:822a92bc11d2 6710 pollPwmUpdates();
mjr 77:0b96f6867312 6711
mjr 99:8139b0c274f4 6712 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 6713 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 6714 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 6715
mjr 77:0b96f6867312 6716 // poll the accelerometer
mjr 77:0b96f6867312 6717 accel.poll();
mjr 55:4db125cd11a0 6718
mjr 96:68d5621ff49f 6719 // Note the "effective" plunger enabled status. This has two
mjr 96:68d5621ff49f 6720 // components: the explicit "enabled" bit, and the plunger sensor
mjr 96:68d5621ff49f 6721 // type setting. For most purposes, a plunger type of NONE is
mjr 96:68d5621ff49f 6722 // equivalent to disabled. Set this to explicit 0x01 or 0x00
mjr 96:68d5621ff49f 6723 // so that we can OR the bit into status reports.
mjr 96:68d5621ff49f 6724 uint8_t effectivePlungerEnabled = (cfg.plunger.enabled
mjr 96:68d5621ff49f 6725 && cfg.plunger.sensorType != PlungerType_None) ? 0x01 : 0x00;
mjr 96:68d5621ff49f 6726
mjr 76:7f5912b6340e 6727 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6728 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6729
mjr 55:4db125cd11a0 6730 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6731 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6732 tlc5940->send();
mjr 87:8d35c74403af 6733
mjr 87:8d35c74403af 6734 // send TLC59116 data updates
mjr 87:8d35c74403af 6735 if (tlc59116 != 0)
mjr 87:8d35c74403af 6736 tlc59116->send();
mjr 1:d913e0afb2ac 6737
mjr 76:7f5912b6340e 6738 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6739 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6740
mjr 1:d913e0afb2ac 6741 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6742 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6743 {
mjr 1:d913e0afb2ac 6744 // check the state
mjr 1:d913e0afb2ac 6745 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6746 {
mjr 1:d913e0afb2ac 6747 case 0:
mjr 1:d913e0afb2ac 6748 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6749 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6750 calBtnState = 1;
mjr 1:d913e0afb2ac 6751 break;
mjr 1:d913e0afb2ac 6752
mjr 1:d913e0afb2ac 6753 case 1:
mjr 1:d913e0afb2ac 6754 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6755 // passed, start the hold period
mjr 48:058ace2aed1d 6756 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6757 calBtnState = 2;
mjr 1:d913e0afb2ac 6758 break;
mjr 1:d913e0afb2ac 6759
mjr 1:d913e0afb2ac 6760 case 2:
mjr 1:d913e0afb2ac 6761 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6762 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6763 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6764 {
mjr 1:d913e0afb2ac 6765 // enter calibration mode
mjr 1:d913e0afb2ac 6766 calBtnState = 3;
mjr 9:fd65b0a94720 6767 calBtnTimer.reset();
mjr 35:e959ffba78fd 6768
mjr 44:b5ac89b9cd5d 6769 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6770 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6771 }
mjr 1:d913e0afb2ac 6772 break;
mjr 2:c174f9ee414a 6773
mjr 2:c174f9ee414a 6774 case 3:
mjr 9:fd65b0a94720 6775 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6776 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6777 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6778 break;
mjr 0:5acbbe3f4cf4 6779 }
mjr 0:5acbbe3f4cf4 6780 }
mjr 1:d913e0afb2ac 6781 else
mjr 1:d913e0afb2ac 6782 {
mjr 2:c174f9ee414a 6783 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6784 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6785 // and save the results to flash.
mjr 2:c174f9ee414a 6786 //
mjr 2:c174f9ee414a 6787 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6788 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6789 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6790 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6791 {
mjr 2:c174f9ee414a 6792 // exit calibration mode
mjr 1:d913e0afb2ac 6793 calBtnState = 0;
mjr 52:8298b2a73eb2 6794 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6795
mjr 6:cc35eb643e8f 6796 // save the updated configuration
mjr 35:e959ffba78fd 6797 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6798 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6799 }
mjr 2:c174f9ee414a 6800 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6801 {
mjr 2:c174f9ee414a 6802 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6803 calBtnState = 0;
mjr 2:c174f9ee414a 6804 }
mjr 1:d913e0afb2ac 6805 }
mjr 1:d913e0afb2ac 6806
mjr 1:d913e0afb2ac 6807 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6808 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6809 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6810 {
mjr 1:d913e0afb2ac 6811 case 2:
mjr 1:d913e0afb2ac 6812 // in the hold period - flash the light
mjr 48:058ace2aed1d 6813 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6814 break;
mjr 1:d913e0afb2ac 6815
mjr 1:d913e0afb2ac 6816 case 3:
mjr 1:d913e0afb2ac 6817 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6818 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6819 break;
mjr 1:d913e0afb2ac 6820
mjr 1:d913e0afb2ac 6821 default:
mjr 1:d913e0afb2ac 6822 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6823 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6824 break;
mjr 1:d913e0afb2ac 6825 }
mjr 3:3514575d4f86 6826
mjr 3:3514575d4f86 6827 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6828 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6829 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6830 {
mjr 1:d913e0afb2ac 6831 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6832 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6833 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6834 calBtnLed->write(1);
mjr 38:091e511ce8a0 6835 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6836 }
mjr 2:c174f9ee414a 6837 else {
mjr 17:ab3cec0c8bf4 6838 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6839 calBtnLed->write(0);
mjr 38:091e511ce8a0 6840 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6841 }
mjr 1:d913e0afb2ac 6842 }
mjr 35:e959ffba78fd 6843
mjr 76:7f5912b6340e 6844 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6845 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6846
mjr 48:058ace2aed1d 6847 // read the plunger sensor
mjr 48:058ace2aed1d 6848 plungerReader.read();
mjr 48:058ace2aed1d 6849
mjr 76:7f5912b6340e 6850 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6851 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6852
mjr 53:9b2611964afc 6853 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6854 zbLaunchBall.update();
mjr 37:ed52738445fc 6855
mjr 76:7f5912b6340e 6856 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6857 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6858
mjr 53:9b2611964afc 6859 // process button updates
mjr 53:9b2611964afc 6860 processButtons(cfg);
mjr 53:9b2611964afc 6861
mjr 76:7f5912b6340e 6862 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6863 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6864
mjr 38:091e511ce8a0 6865 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6866 if (kbState.changed)
mjr 37:ed52738445fc 6867 {
mjr 38:091e511ce8a0 6868 // send a keyboard report
mjr 37:ed52738445fc 6869 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6870 kbState.changed = false;
mjr 37:ed52738445fc 6871 }
mjr 38:091e511ce8a0 6872
mjr 38:091e511ce8a0 6873 // likewise for the media controller
mjr 37:ed52738445fc 6874 if (mediaState.changed)
mjr 37:ed52738445fc 6875 {
mjr 38:091e511ce8a0 6876 // send a media report
mjr 37:ed52738445fc 6877 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6878 mediaState.changed = false;
mjr 37:ed52738445fc 6879 }
mjr 38:091e511ce8a0 6880
mjr 76:7f5912b6340e 6881 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6882 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6883
mjr 38:091e511ce8a0 6884 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6885 bool jsOK = false;
mjr 55:4db125cd11a0 6886
mjr 55:4db125cd11a0 6887 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6888 uint16_t statusFlags =
mjr 96:68d5621ff49f 6889 effectivePlungerEnabled // 0x01
mjr 77:0b96f6867312 6890 | nightMode // 0x02
mjr 79:682ae3171a08 6891 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6892 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6893 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6894 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6895
mjr 50:40015764bbe6 6896 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6897 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6898 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6899 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 6900 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 6901 {
mjr 92:f264fbaa1be5 6902 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 6903 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 6904 // not, repeat the last sample.
mjr 92:f264fbaa1be5 6905 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 6906 {
mjr 92:f264fbaa1be5 6907 // read the accelerometer
mjr 92:f264fbaa1be5 6908 int xa, ya;
mjr 92:f264fbaa1be5 6909 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6910
mjr 92:f264fbaa1be5 6911 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 6912 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 6913 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 6914 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 6915 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 6916
mjr 92:f264fbaa1be5 6917 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 6918 x = xa;
mjr 92:f264fbaa1be5 6919 y = ya;
mjr 92:f264fbaa1be5 6920
mjr 95:8eca8acbb82c 6921 // rotate X and Y according to the device orientation in the cabinet
mjr 95:8eca8acbb82c 6922 accelRotate(x, y);
mjr 95:8eca8acbb82c 6923
mjr 92:f264fbaa1be5 6924 // reset the stutter counter
mjr 92:f264fbaa1be5 6925 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6926 }
mjr 17:ab3cec0c8bf4 6927
mjr 48:058ace2aed1d 6928 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6929 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6930 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6931 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6932 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6933 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6934 // regular plunger inputs.
mjr 92:f264fbaa1be5 6935 int zActual = plungerReader.getPosition();
mjr 96:68d5621ff49f 6936 int zReported = (!effectivePlungerEnabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 6937
mjr 35:e959ffba78fd 6938 // send the joystick report
mjr 92:f264fbaa1be5 6939 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6940
mjr 17:ab3cec0c8bf4 6941 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6942 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6943 }
mjr 21:5048e16cc9ef 6944
mjr 52:8298b2a73eb2 6945 // If we're in sensor status mode, report all pixel exposure values
mjr 101:755f44622abc 6946 if (reportPlungerStat && plungerSensor->ready())
mjr 10:976666ffa4ef 6947 {
mjr 17:ab3cec0c8bf4 6948 // send the report
mjr 101:755f44622abc 6949 plungerSensor->sendStatusReport(js, reportPlungerStatFlags);
mjr 17:ab3cec0c8bf4 6950
mjr 10:976666ffa4ef 6951 // we have satisfied this request
mjr 52:8298b2a73eb2 6952 reportPlungerStat = false;
mjr 10:976666ffa4ef 6953 }
mjr 10:976666ffa4ef 6954
mjr 101:755f44622abc 6955 // Reset the plunger status report extra timer after enough time has
mjr 101:755f44622abc 6956 // elapsed to satisfy the request. We don't just do this immediately
mjr 101:755f44622abc 6957 // because of the complexities of the pixel frame buffer pipelines in
mjr 101:755f44622abc 6958 // most of the image sensors. The pipelines delay the effect of the
mjr 101:755f44622abc 6959 // exposure time request by a couple of frames, so we can't be sure
mjr 101:755f44622abc 6960 // exactly when they're applied - meaning we can't consider the
mjr 101:755f44622abc 6961 // delay time to be consumed after a fixed number of frames. Instead,
mjr 101:755f44622abc 6962 // we'll consider it consumed after a long enough time to be sure
mjr 101:755f44622abc 6963 // we've sent a few frames. The extra time value is meant to be an
mjr 101:755f44622abc 6964 // interactive tool for debugging, so it's not important to reset it
mjr 101:755f44622abc 6965 // immediately - the user will probably want to see the effect over
mjr 101:755f44622abc 6966 // many frames, so they're likely to keep sending requests with the
mjr 101:755f44622abc 6967 // time value over and over. They'll eventually shut down the frame
mjr 101:755f44622abc 6968 // viewer and return to normal operation, at which point the requests
mjr 101:755f44622abc 6969 // will stop. So we just have to clear things out after we haven't
mjr 101:755f44622abc 6970 // seen a request with extra time for a little while.
mjr 101:755f44622abc 6971 if (reportPlungerStatTime != 0
mjr 101:755f44622abc 6972 && static_cast<uint32_t>(requestTimestamper.read_us() - tReportPlungerStat) > 1000000)
mjr 101:755f44622abc 6973 {
mjr 101:755f44622abc 6974 reportPlungerStatTime = 0;
mjr 101:755f44622abc 6975 plungerSensor->setExtraIntegrationTime(0);
mjr 101:755f44622abc 6976 }
mjr 101:755f44622abc 6977
mjr 35:e959ffba78fd 6978 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6979 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6980 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6981 {
mjr 55:4db125cd11a0 6982 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6983 jsReportTimer.reset();
mjr 38:091e511ce8a0 6984 }
mjr 38:091e511ce8a0 6985
mjr 38:091e511ce8a0 6986 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6987 if (jsOK)
mjr 38:091e511ce8a0 6988 {
mjr 38:091e511ce8a0 6989 jsOKTimer.reset();
mjr 38:091e511ce8a0 6990 jsOKTimer.start();
mjr 21:5048e16cc9ef 6991 }
mjr 21:5048e16cc9ef 6992
mjr 76:7f5912b6340e 6993 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6994 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6995
mjr 6:cc35eb643e8f 6996 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6997 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6998 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6999 #endif
mjr 6:cc35eb643e8f 7000
mjr 33:d832bcab089e 7001 // check for connection status changes
mjr 54:fd77a6b2f76c 7002 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 7003 if (newConnected != connected)
mjr 33:d832bcab089e 7004 {
mjr 54:fd77a6b2f76c 7005 // give it a moment to stabilize
mjr 40:cc0d9814522b 7006 connectChangeTimer.start();
mjr 55:4db125cd11a0 7007 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 7008 {
mjr 33:d832bcab089e 7009 // note the new status
mjr 33:d832bcab089e 7010 connected = newConnected;
mjr 40:cc0d9814522b 7011
mjr 40:cc0d9814522b 7012 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 7013 connectChangeTimer.stop();
mjr 40:cc0d9814522b 7014 connectChangeTimer.reset();
mjr 33:d832bcab089e 7015
mjr 54:fd77a6b2f76c 7016 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 7017 if (!connected)
mjr 40:cc0d9814522b 7018 {
mjr 54:fd77a6b2f76c 7019 // turn off all outputs
mjr 33:d832bcab089e 7020 allOutputsOff();
mjr 40:cc0d9814522b 7021
mjr 40:cc0d9814522b 7022 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 7023 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 7024 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 7025 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 7026 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 7027 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 7028 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 7029 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 7030 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 7031 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 7032 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 7033 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 7034 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 7035 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 7036 // the power first comes on.
mjr 40:cc0d9814522b 7037 if (tlc5940 != 0)
mjr 40:cc0d9814522b 7038 tlc5940->enable(false);
mjr 87:8d35c74403af 7039 if (tlc59116 != 0)
mjr 87:8d35c74403af 7040 tlc59116->enable(false);
mjr 40:cc0d9814522b 7041 if (hc595 != 0)
mjr 40:cc0d9814522b 7042 hc595->enable(false);
mjr 40:cc0d9814522b 7043 }
mjr 33:d832bcab089e 7044 }
mjr 33:d832bcab089e 7045 }
mjr 48:058ace2aed1d 7046
mjr 53:9b2611964afc 7047 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 7048 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 7049 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 7050 {
mjr 85:3c28aee81cde 7051 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 7052 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 7053 {
mjr 86:e30a1f60f783 7054 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 7055 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 7056 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 7057 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 7058 // status allows it.
mjr 86:e30a1f60f783 7059 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 7060 reboot(js);
mjr 82:4f6209cb5c33 7061 }
mjr 85:3c28aee81cde 7062 else
mjr 85:3c28aee81cde 7063 {
mjr 86:e30a1f60f783 7064 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 7065
mjr 86:e30a1f60f783 7066 // stop and reset the post-save timer
mjr 86:e30a1f60f783 7067 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 7068 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 7069
mjr 86:e30a1f60f783 7070 // clear the post-save success flag
mjr 86:e30a1f60f783 7071 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 7072 }
mjr 77:0b96f6867312 7073 }
mjr 86:e30a1f60f783 7074
mjr 48:058ace2aed1d 7075 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 7076 if (!connected)
mjr 48:058ace2aed1d 7077 {
mjr 54:fd77a6b2f76c 7078 // show USB HAL debug events
mjr 54:fd77a6b2f76c 7079 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 7080 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 7081
mjr 54:fd77a6b2f76c 7082 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 7083 js.diagFlash();
mjr 54:fd77a6b2f76c 7084
mjr 54:fd77a6b2f76c 7085 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 7086 diagLED(0, 0, 0);
mjr 51:57eb311faafa 7087
mjr 51:57eb311faafa 7088 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 7089 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 7090 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 7091
mjr 54:fd77a6b2f76c 7092 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 7093 Timer diagTimer;
mjr 54:fd77a6b2f76c 7094 diagTimer.reset();
mjr 54:fd77a6b2f76c 7095 diagTimer.start();
mjr 74:822a92bc11d2 7096
mjr 74:822a92bc11d2 7097 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 7098 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 7099
mjr 54:fd77a6b2f76c 7100 // loop until we get our connection back
mjr 54:fd77a6b2f76c 7101 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 7102 {
mjr 54:fd77a6b2f76c 7103 // try to recover the connection
mjr 54:fd77a6b2f76c 7104 js.recoverConnection();
mjr 54:fd77a6b2f76c 7105
mjr 99:8139b0c274f4 7106 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 7107 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 7108 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 7109
mjr 55:4db125cd11a0 7110 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 7111 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7112 tlc5940->send();
mjr 87:8d35c74403af 7113
mjr 87:8d35c74403af 7114 // update TLC59116 outputs
mjr 87:8d35c74403af 7115 if (tlc59116 != 0)
mjr 87:8d35c74403af 7116 tlc59116->send();
mjr 55:4db125cd11a0 7117
mjr 54:fd77a6b2f76c 7118 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 7119 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 7120 {
mjr 54:fd77a6b2f76c 7121 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 7122 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 7123
mjr 54:fd77a6b2f76c 7124 // show diagnostic feedback
mjr 54:fd77a6b2f76c 7125 js.diagFlash();
mjr 51:57eb311faafa 7126
mjr 51:57eb311faafa 7127 // reset the flash timer
mjr 54:fd77a6b2f76c 7128 diagTimer.reset();
mjr 51:57eb311faafa 7129 }
mjr 51:57eb311faafa 7130
mjr 77:0b96f6867312 7131 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 7132 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 7133 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 7134 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 7135 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 7136 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 7137 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 7138 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 7139 // round and keep waiting.
mjr 51:57eb311faafa 7140 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 7141 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7142 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7143 reboot(js, false, 0);
mjr 77:0b96f6867312 7144
mjr 77:0b96f6867312 7145 // update the PSU2 power sensing status
mjr 77:0b96f6867312 7146 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 7147 }
mjr 54:fd77a6b2f76c 7148
mjr 74:822a92bc11d2 7149 // resume the main loop timer
mjr 74:822a92bc11d2 7150 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 7151
mjr 54:fd77a6b2f76c 7152 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 7153 connected = true;
mjr 54:fd77a6b2f76c 7154 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 7155
mjr 54:fd77a6b2f76c 7156 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 7157 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7158 tlc5940->enable(true);
mjr 87:8d35c74403af 7159 if (tlc59116 != 0)
mjr 87:8d35c74403af 7160 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 7161 if (hc595 != 0)
mjr 54:fd77a6b2f76c 7162 {
mjr 55:4db125cd11a0 7163 hc595->enable(true);
mjr 54:fd77a6b2f76c 7164 hc595->update(true);
mjr 51:57eb311faafa 7165 }
mjr 48:058ace2aed1d 7166 }
mjr 43:7a6364d82a41 7167
mjr 6:cc35eb643e8f 7168 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 7169 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 7170 {
mjr 54:fd77a6b2f76c 7171 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 7172 {
mjr 39:b3815a1c3802 7173 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 7174 //
mjr 54:fd77a6b2f76c 7175 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 7176 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 7177 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 7178 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 7179 hb = !hb;
mjr 38:091e511ce8a0 7180 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 7181
mjr 54:fd77a6b2f76c 7182 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 7183 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 7184 // with the USB connection.
mjr 54:fd77a6b2f76c 7185 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 7186 {
mjr 54:fd77a6b2f76c 7187 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 7188 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 7189 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 7190 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 7191 // power status allows it.
mjr 86:e30a1f60f783 7192 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7193 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7194 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 7195 }
mjr 54:fd77a6b2f76c 7196 else
mjr 54:fd77a6b2f76c 7197 {
mjr 54:fd77a6b2f76c 7198 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 7199 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 7200 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 7201 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 7202 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 7203 }
mjr 38:091e511ce8a0 7204 }
mjr 73:4e8ce0b18915 7205 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 7206 {
mjr 73:4e8ce0b18915 7207 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 7208 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 7209 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 7210 }
mjr 96:68d5621ff49f 7211 else if (effectivePlungerEnabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 7212 {
mjr 6:cc35eb643e8f 7213 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 7214 hb = !hb;
mjr 38:091e511ce8a0 7215 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 7216 }
mjr 6:cc35eb643e8f 7217 else
mjr 6:cc35eb643e8f 7218 {
mjr 6:cc35eb643e8f 7219 // connected - flash blue/green
mjr 2:c174f9ee414a 7220 hb = !hb;
mjr 38:091e511ce8a0 7221 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 7222 }
mjr 1:d913e0afb2ac 7223
mjr 1:d913e0afb2ac 7224 // reset the heartbeat timer
mjr 1:d913e0afb2ac 7225 hbTimer.reset();
mjr 5:a70c0bce770d 7226 ++hbcnt;
mjr 1:d913e0afb2ac 7227 }
mjr 74:822a92bc11d2 7228
mjr 74:822a92bc11d2 7229 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 7230 IF_DIAG(
mjr 76:7f5912b6340e 7231 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 7232 mainLoopIterCount++;
mjr 74:822a92bc11d2 7233 )
mjr 1:d913e0afb2ac 7234 }
mjr 0:5acbbe3f4cf4 7235 }