An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Tue Nov 22 20:46:36 2016 +0000
Revision:
64:ef7ca92dff36
Parent:
63:5cd1a5f3a41b
Child:
65:739875521aae
Make PWM fades smooth (fixes flicker) by changing from PwmOut to FastPWM for GPIO PWM outputs

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 38:091e511ce8a0 42 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 143 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 144 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 145 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 146 //
mjr 35:e959ffba78fd 147 //
mjr 35:e959ffba78fd 148 //
mjr 33:d832bcab089e 149 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 150 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 151 //
mjr 48:058ace2aed1d 152 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 153 //
mjr 48:058ace2aed1d 154 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 155 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 156 // has been established)
mjr 48:058ace2aed1d 157 //
mjr 48:058ace2aed1d 158 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 159 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 160 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 161 //
mjr 38:091e511ce8a0 162 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 163 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 164 // transmissions are failing.
mjr 38:091e511ce8a0 165 //
mjr 6:cc35eb643e8f 166 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 167 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 168 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 169 // no plunger sensor configured.
mjr 6:cc35eb643e8f 170 //
mjr 38:091e511ce8a0 171 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 172 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 173 //
mjr 48:058ace2aed1d 174 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 175 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 176 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 177 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 178 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 179 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 180 //
mjr 48:058ace2aed1d 181 //
mjr 48:058ace2aed1d 182 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 183 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 184 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 185 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 186 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 187 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 188 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 189 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 190
mjr 33:d832bcab089e 191
mjr 0:5acbbe3f4cf4 192 #include "mbed.h"
mjr 6:cc35eb643e8f 193 #include "math.h"
mjr 48:058ace2aed1d 194 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 195 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 196 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 197 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 198 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 199 #include "crc32.h"
mjr 26:cb71c4af2912 200 #include "TLC5940.h"
mjr 34:6b981a2afab7 201 #include "74HC595.h"
mjr 35:e959ffba78fd 202 #include "nvm.h"
mjr 35:e959ffba78fd 203 #include "plunger.h"
mjr 35:e959ffba78fd 204 #include "ccdSensor.h"
mjr 35:e959ffba78fd 205 #include "potSensor.h"
mjr 35:e959ffba78fd 206 #include "nullSensor.h"
mjr 48:058ace2aed1d 207 #include "TinyDigitalIn.h"
mjr 64:ef7ca92dff36 208 #include "FastPWM.h"
mjr 2:c174f9ee414a 209
mjr 21:5048e16cc9ef 210 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 211 #include "config.h"
mjr 17:ab3cec0c8bf4 212
mjr 53:9b2611964afc 213
mjr 53:9b2611964afc 214 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 215 //
mjr 53:9b2611964afc 216 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 217 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 218 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 219 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 220 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 221 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 222 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 223 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 224 // interface.
mjr 53:9b2611964afc 225 //
mjr 53:9b2611964afc 226 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 227 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 228 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 229 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 230 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 231 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 232 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 233 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 234 //
mjr 53:9b2611964afc 235 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 236 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 237 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 238 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 239 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 240 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 241 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 242 //
mjr 53:9b2611964afc 243 const char *getOpenSDAID()
mjr 53:9b2611964afc 244 {
mjr 53:9b2611964afc 245 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 246 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 247 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 248
mjr 53:9b2611964afc 249 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 250 }
mjr 53:9b2611964afc 251
mjr 53:9b2611964afc 252 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 253 //
mjr 53:9b2611964afc 254 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 255 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 256 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 257 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 258 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 259 // want from this.
mjr 53:9b2611964afc 260 //
mjr 53:9b2611964afc 261 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 262 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 263 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 264 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 265 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 266 // macros.
mjr 53:9b2611964afc 267 //
mjr 53:9b2611964afc 268 const char *getBuildID()
mjr 53:9b2611964afc 269 {
mjr 53:9b2611964afc 270 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 271 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 272 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 273
mjr 53:9b2611964afc 274 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 275 }
mjr 53:9b2611964afc 276
mjr 53:9b2611964afc 277
mjr 48:058ace2aed1d 278 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 279 //
mjr 59:94eb9265b6d7 280 // Custom memory allocator. We use our own version of malloc() for more
mjr 59:94eb9265b6d7 281 // efficient memory usage, and to provide diagnostics if we run out of heap.
mjr 48:058ace2aed1d 282 //
mjr 59:94eb9265b6d7 283 // We can implement a more efficient malloc than the library can because we
mjr 59:94eb9265b6d7 284 // can make an assumption that the library can't: allocations are permanent.
mjr 59:94eb9265b6d7 285 // The normal malloc has to assume that allocations can be freed, so it has
mjr 59:94eb9265b6d7 286 // to track blocks individually. For the purposes of this program, though,
mjr 59:94eb9265b6d7 287 // we don't have to do this because virtually all of our allocations are
mjr 59:94eb9265b6d7 288 // de facto permanent. We only allocate dyanmic memory during setup, and
mjr 59:94eb9265b6d7 289 // once we set things up, we never delete anything. This means that we can
mjr 59:94eb9265b6d7 290 // allocate memory in bare blocks without any bookkeeping overhead.
mjr 59:94eb9265b6d7 291 //
mjr 59:94eb9265b6d7 292 // In addition, we can make a much larger overall pool of memory available
mjr 59:94eb9265b6d7 293 // in a custom allocator. The mbed library malloc() seems to have a pool
mjr 59:94eb9265b6d7 294 // of about 3K to work with, even though there's really about 9K of RAM
mjr 59:94eb9265b6d7 295 // left over after counting the static writable data and reserving space
mjr 59:94eb9265b6d7 296 // for a reasonable stack. I haven't looked at the mbed malloc to see why
mjr 59:94eb9265b6d7 297 // they're so stingy, but it appears from empirical testing that we can
mjr 59:94eb9265b6d7 298 // create a static array up to about 9K before things get crashy.
mjr 59:94eb9265b6d7 299
mjr 48:058ace2aed1d 300 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 301 {
mjr 59:94eb9265b6d7 302 // Dynamic memory pool. We'll reserve space for all dynamic
mjr 59:94eb9265b6d7 303 // allocations by creating a simple C array of bytes. The size
mjr 59:94eb9265b6d7 304 // of this array is the maximum number of bytes we can allocate
mjr 59:94eb9265b6d7 305 // with malloc or operator 'new'.
mjr 59:94eb9265b6d7 306 //
mjr 59:94eb9265b6d7 307 // The maximum safe size for this array is, in essence, the
mjr 59:94eb9265b6d7 308 // amount of physical KL25Z RAM left over after accounting for
mjr 59:94eb9265b6d7 309 // static data throughout the rest of the program, the run-time
mjr 59:94eb9265b6d7 310 // stack, and any other space reserved for compiler or MCU
mjr 59:94eb9265b6d7 311 // overhead. Unfortunately, it's not straightforward to
mjr 59:94eb9265b6d7 312 // determine this analytically. The big complication is that
mjr 59:94eb9265b6d7 313 // the minimum stack size isn't easily predictable, as the stack
mjr 59:94eb9265b6d7 314 // grows according to what the program does. In addition, the
mjr 59:94eb9265b6d7 315 // mbed platform tools don't give us detailed data on the
mjr 59:94eb9265b6d7 316 // compiler/linker memory map. All we get is a generic total
mjr 59:94eb9265b6d7 317 // RAM requirement, which doesn't necessarily account for all
mjr 59:94eb9265b6d7 318 // overhead (e.g., gaps inserted to get proper alignment for
mjr 59:94eb9265b6d7 319 // particular memory blocks).
mjr 59:94eb9265b6d7 320 //
mjr 59:94eb9265b6d7 321 // A very rough estimate: the total RAM size reported by the
mjr 59:94eb9265b6d7 322 // linker is about 3.5K (currently - that can obviously change
mjr 59:94eb9265b6d7 323 // as the project evolves) out of 16K total. Assuming about a
mjr 59:94eb9265b6d7 324 // 3K stack, that leaves in the ballpark of 10K. Empirically,
mjr 59:94eb9265b6d7 325 // that seems pretty close. In testing, we start to see some
mjr 59:94eb9265b6d7 326 // instability at 10K, while 9K seems safe. To be conservative,
mjr 59:94eb9265b6d7 327 // we'll reduce this to 8K.
mjr 59:94eb9265b6d7 328 //
mjr 59:94eb9265b6d7 329 // Our measured total usage in the base configuration (22 GPIO
mjr 59:94eb9265b6d7 330 // output ports, TSL1410R plunger sensor) is about 4000 bytes.
mjr 59:94eb9265b6d7 331 // A pretty fully decked-out configuration (121 output ports,
mjr 59:94eb9265b6d7 332 // with 8 TLC5940 chips and 3 74HC595 chips, plus the TSL1412R
mjr 59:94eb9265b6d7 333 // sensor with the higher pixel count, and all expansion board
mjr 59:94eb9265b6d7 334 // features enabled) comes to about 6700 bytes. That leaves
mjr 59:94eb9265b6d7 335 // us with about 1.5K free out of our 8K, so we still have a
mjr 59:94eb9265b6d7 336 // little more headroom for future expansion.
mjr 59:94eb9265b6d7 337 //
mjr 59:94eb9265b6d7 338 // For comparison, the standard mbed malloc() runs out of
mjr 59:94eb9265b6d7 339 // memory at about 6K. That's what led to this custom malloc:
mjr 59:94eb9265b6d7 340 // we can just fit the base configuration into that 4K, but
mjr 59:94eb9265b6d7 341 // it's not enough space for more complex setups. There's
mjr 59:94eb9265b6d7 342 // still a little room for squeezing out unnecessary space
mjr 59:94eb9265b6d7 343 // from the mbed library code, but at this point I'd prefer
mjr 59:94eb9265b6d7 344 // to treat that as a last resort, since it would mean having
mjr 59:94eb9265b6d7 345 // to fork private copies of the libraries.
mjr 59:94eb9265b6d7 346 static char pool[8*1024];
mjr 59:94eb9265b6d7 347 static char *nxt = pool;
mjr 59:94eb9265b6d7 348 static size_t rem = sizeof(pool);
mjr 59:94eb9265b6d7 349
mjr 59:94eb9265b6d7 350 // align to a 4-byte increment
mjr 59:94eb9265b6d7 351 siz = (siz + 3) & ~3;
mjr 59:94eb9265b6d7 352
mjr 59:94eb9265b6d7 353 // If insufficient memory is available, halt and show a fast red/purple
mjr 59:94eb9265b6d7 354 // diagnostic flash. We don't want to return, since we assume throughout
mjr 59:94eb9265b6d7 355 // the program that all memory allocations must succeed. Note that this
mjr 59:94eb9265b6d7 356 // is generally considered bad programming practice in applications on
mjr 59:94eb9265b6d7 357 // "real" computers, but for the purposes of this microcontroller app,
mjr 59:94eb9265b6d7 358 // there's no point in checking for failed allocations individually
mjr 59:94eb9265b6d7 359 // because there's no way to recover from them. It's better in this
mjr 59:94eb9265b6d7 360 // context to handle failed allocations as fatal errors centrally. We
mjr 59:94eb9265b6d7 361 // can't recover from these automatically, so we have to resort to user
mjr 59:94eb9265b6d7 362 // intervention, which we signal with the diagnostic LED flashes.
mjr 59:94eb9265b6d7 363 if (siz > rem)
mjr 59:94eb9265b6d7 364 {
mjr 59:94eb9265b6d7 365 // halt with the diagnostic display (by looping forever)
mjr 59:94eb9265b6d7 366 for (;;)
mjr 59:94eb9265b6d7 367 {
mjr 59:94eb9265b6d7 368 diagLED(1, 0, 0);
mjr 59:94eb9265b6d7 369 wait_us(200000);
mjr 59:94eb9265b6d7 370 diagLED(1, 0, 1);
mjr 59:94eb9265b6d7 371 wait_us(200000);
mjr 59:94eb9265b6d7 372 }
mjr 59:94eb9265b6d7 373 }
mjr 48:058ace2aed1d 374
mjr 59:94eb9265b6d7 375 // get the next free location from the pool to return
mjr 59:94eb9265b6d7 376 char *ret = nxt;
mjr 59:94eb9265b6d7 377
mjr 59:94eb9265b6d7 378 // advance the pool pointer and decrement the remaining size counter
mjr 59:94eb9265b6d7 379 nxt += siz;
mjr 59:94eb9265b6d7 380 rem -= siz;
mjr 59:94eb9265b6d7 381
mjr 59:94eb9265b6d7 382 // return the allocated block
mjr 59:94eb9265b6d7 383 return ret;
mjr 48:058ace2aed1d 384 }
mjr 48:058ace2aed1d 385
mjr 59:94eb9265b6d7 386 // Overload operator new to call our custom malloc. This ensures that
mjr 59:94eb9265b6d7 387 // all 'new' allocations throughout the program (including library code)
mjr 59:94eb9265b6d7 388 // go through our private allocator.
mjr 48:058ace2aed1d 389 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 390 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 391
mjr 59:94eb9265b6d7 392 // Since we don't do bookkeeping to track released memory, 'delete' does
mjr 59:94eb9265b6d7 393 // nothing. In actual testing, this routine appears to never be called.
mjr 59:94eb9265b6d7 394 // If it *is* ever called, it will simply leave the block in place, which
mjr 59:94eb9265b6d7 395 // will make it unavailable for re-use but will otherwise be harmless.
mjr 59:94eb9265b6d7 396 void operator delete(void *ptr) { }
mjr 59:94eb9265b6d7 397
mjr 59:94eb9265b6d7 398
mjr 5:a70c0bce770d 399 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 400 //
mjr 38:091e511ce8a0 401 // Forward declarations
mjr 38:091e511ce8a0 402 //
mjr 38:091e511ce8a0 403 void setNightMode(bool on);
mjr 38:091e511ce8a0 404 void toggleNightMode();
mjr 38:091e511ce8a0 405
mjr 38:091e511ce8a0 406 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 407 // utilities
mjr 17:ab3cec0c8bf4 408
mjr 26:cb71c4af2912 409 // floating point square of a number
mjr 26:cb71c4af2912 410 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 411
mjr 26:cb71c4af2912 412 // floating point rounding
mjr 26:cb71c4af2912 413 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 414
mjr 17:ab3cec0c8bf4 415
mjr 33:d832bcab089e 416 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 417 //
mjr 40:cc0d9814522b 418 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 419 // the running state.
mjr 40:cc0d9814522b 420 //
mjr 40:cc0d9814522b 421 class Timer2: public Timer
mjr 40:cc0d9814522b 422 {
mjr 40:cc0d9814522b 423 public:
mjr 40:cc0d9814522b 424 Timer2() : running(false) { }
mjr 40:cc0d9814522b 425
mjr 40:cc0d9814522b 426 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 427 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 428
mjr 40:cc0d9814522b 429 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 430
mjr 40:cc0d9814522b 431 private:
mjr 40:cc0d9814522b 432 bool running;
mjr 40:cc0d9814522b 433 };
mjr 40:cc0d9814522b 434
mjr 53:9b2611964afc 435
mjr 53:9b2611964afc 436 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 437 //
mjr 53:9b2611964afc 438 // Reboot timer. When we have a deferred reboot operation pending, we
mjr 53:9b2611964afc 439 // set the target time and start the timer.
mjr 53:9b2611964afc 440 Timer2 rebootTimer;
mjr 53:9b2611964afc 441 long rebootTime_us;
mjr 53:9b2611964afc 442
mjr 40:cc0d9814522b 443 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 444 //
mjr 33:d832bcab089e 445 // USB product version number
mjr 5:a70c0bce770d 446 //
mjr 47:df7a88cd249c 447 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 448
mjr 33:d832bcab089e 449 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 450 //
mjr 6:cc35eb643e8f 451 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 452 //
mjr 6:cc35eb643e8f 453 #define JOYMAX 4096
mjr 6:cc35eb643e8f 454
mjr 9:fd65b0a94720 455
mjr 17:ab3cec0c8bf4 456 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 457 //
mjr 40:cc0d9814522b 458 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 459 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 460 //
mjr 35:e959ffba78fd 461
mjr 35:e959ffba78fd 462 // unsigned 16-bit integer
mjr 35:e959ffba78fd 463 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 464 {
mjr 35:e959ffba78fd 465 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 466 }
mjr 40:cc0d9814522b 467 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 468 {
mjr 40:cc0d9814522b 469 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 470 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 471 }
mjr 35:e959ffba78fd 472
mjr 35:e959ffba78fd 473 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 474 {
mjr 35:e959ffba78fd 475 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 476 }
mjr 40:cc0d9814522b 477 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 478 {
mjr 40:cc0d9814522b 479 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 480 }
mjr 35:e959ffba78fd 481
mjr 35:e959ffba78fd 482 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 483 {
mjr 35:e959ffba78fd 484 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 485 }
mjr 40:cc0d9814522b 486 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 487 {
mjr 40:cc0d9814522b 488 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 489 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 490 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 491 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 492 }
mjr 35:e959ffba78fd 493
mjr 35:e959ffba78fd 494 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 495 {
mjr 35:e959ffba78fd 496 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 497 }
mjr 35:e959ffba78fd 498
mjr 53:9b2611964afc 499 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 500 //
mjr 53:9b2611964afc 501 // The internal mbed PinName format is
mjr 53:9b2611964afc 502 //
mjr 53:9b2611964afc 503 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 504 //
mjr 53:9b2611964afc 505 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 506 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 507 //
mjr 53:9b2611964afc 508 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 509 // pin name fits in 8 bits:
mjr 53:9b2611964afc 510 //
mjr 53:9b2611964afc 511 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 512 //
mjr 53:9b2611964afc 513 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 514 //
mjr 53:9b2611964afc 515 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 516 //
mjr 53:9b2611964afc 517 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 518 {
mjr 53:9b2611964afc 519 if (c == 0xFF)
mjr 53:9b2611964afc 520 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 521 else
mjr 53:9b2611964afc 522 return PinName(
mjr 53:9b2611964afc 523 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 524 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 525 }
mjr 40:cc0d9814522b 526 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 527 {
mjr 53:9b2611964afc 528 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 529 }
mjr 35:e959ffba78fd 530
mjr 35:e959ffba78fd 531
mjr 35:e959ffba78fd 532 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 533 //
mjr 38:091e511ce8a0 534 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 535 //
mjr 38:091e511ce8a0 536 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 537 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 538 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 539 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 540 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 541 // SPI capability.
mjr 38:091e511ce8a0 542 //
mjr 38:091e511ce8a0 543 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 546 // on, and -1 is no change (leaves the current setting intact).
mjr 38:091e511ce8a0 547 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 548 {
mjr 38:091e511ce8a0 549 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 550 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 551 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 552 }
mjr 38:091e511ce8a0 553
mjr 38:091e511ce8a0 554 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 555 // an on-board LED segment
mjr 38:091e511ce8a0 556 struct LedSeg
mjr 38:091e511ce8a0 557 {
mjr 38:091e511ce8a0 558 bool r, g, b;
mjr 38:091e511ce8a0 559 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 560
mjr 38:091e511ce8a0 561 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 562 {
mjr 38:091e511ce8a0 563 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 564 // our on-board LED segments
mjr 38:091e511ce8a0 565 int t = pc.typ;
mjr 38:091e511ce8a0 566 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 567 {
mjr 38:091e511ce8a0 568 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 569 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 570 if (pin == LED1)
mjr 38:091e511ce8a0 571 r = true;
mjr 38:091e511ce8a0 572 else if (pin == LED2)
mjr 38:091e511ce8a0 573 g = true;
mjr 38:091e511ce8a0 574 else if (pin == LED3)
mjr 38:091e511ce8a0 575 b = true;
mjr 38:091e511ce8a0 576 }
mjr 38:091e511ce8a0 577 }
mjr 38:091e511ce8a0 578 };
mjr 38:091e511ce8a0 579
mjr 38:091e511ce8a0 580 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 581 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 582 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 583 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 584 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 585 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 586 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 587 {
mjr 38:091e511ce8a0 588 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 589 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 590 LedSeg l;
mjr 38:091e511ce8a0 591 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 592 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 593
mjr 38:091e511ce8a0 594 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 595 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 596 // LedWiz use.
mjr 38:091e511ce8a0 597 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 598 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 599 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 600 }
mjr 38:091e511ce8a0 601
mjr 38:091e511ce8a0 602
mjr 38:091e511ce8a0 603 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 604 //
mjr 29:582472d0bc57 605 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 606 //
mjr 26:cb71c4af2912 607 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 608 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 609 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 610 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 611 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 612 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 613 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 614 // other if both features are to be used.
mjr 26:cb71c4af2912 615 //
mjr 26:cb71c4af2912 616 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 617 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 618 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 619 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 620 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 621 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 622 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 623 //
mjr 5:a70c0bce770d 624
mjr 29:582472d0bc57 625
mjr 26:cb71c4af2912 626 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 627 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 628 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 629 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 630 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 631
mjr 26:cb71c4af2912 632 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 633 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 634 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 635 class LwOut
mjr 6:cc35eb643e8f 636 {
mjr 6:cc35eb643e8f 637 public:
mjr 40:cc0d9814522b 638 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 639 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 640 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 641 };
mjr 26:cb71c4af2912 642
mjr 35:e959ffba78fd 643 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 644 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 645 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 646 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 647 // numbering.
mjr 35:e959ffba78fd 648 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 649 {
mjr 33:d832bcab089e 650 public:
mjr 35:e959ffba78fd 651 LwVirtualOut() { }
mjr 40:cc0d9814522b 652 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 653 };
mjr 26:cb71c4af2912 654
mjr 34:6b981a2afab7 655 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 656 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 657 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 658 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 659 {
mjr 34:6b981a2afab7 660 public:
mjr 34:6b981a2afab7 661 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 662 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 663
mjr 34:6b981a2afab7 664 private:
mjr 53:9b2611964afc 665 // underlying physical output
mjr 34:6b981a2afab7 666 LwOut *out;
mjr 34:6b981a2afab7 667 };
mjr 34:6b981a2afab7 668
mjr 53:9b2611964afc 669 // Global ZB Launch Ball state
mjr 53:9b2611964afc 670 bool zbLaunchOn = false;
mjr 53:9b2611964afc 671
mjr 53:9b2611964afc 672 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 673 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 674 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 675 {
mjr 53:9b2611964afc 676 public:
mjr 53:9b2611964afc 677 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 678 virtual void set(uint8_t val)
mjr 53:9b2611964afc 679 {
mjr 53:9b2611964afc 680 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 681 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 682
mjr 53:9b2611964afc 683 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 684 out->set(val);
mjr 53:9b2611964afc 685 }
mjr 53:9b2611964afc 686
mjr 53:9b2611964afc 687 private:
mjr 53:9b2611964afc 688 // underlying physical or virtual output
mjr 53:9b2611964afc 689 LwOut *out;
mjr 53:9b2611964afc 690 };
mjr 53:9b2611964afc 691
mjr 53:9b2611964afc 692
mjr 40:cc0d9814522b 693 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 694 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 695 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 696 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 697 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 698 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 699 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 700 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 701 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 702 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 703 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 704 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 705 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 706 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 707 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 708 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 709 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 710 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 711 };
mjr 40:cc0d9814522b 712
mjr 40:cc0d9814522b 713 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 714 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 715 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 716 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 717 {
mjr 40:cc0d9814522b 718 public:
mjr 40:cc0d9814522b 719 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 720 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 721
mjr 40:cc0d9814522b 722 private:
mjr 40:cc0d9814522b 723 LwOut *out;
mjr 40:cc0d9814522b 724 };
mjr 40:cc0d9814522b 725
mjr 53:9b2611964afc 726 // global night mode flag
mjr 53:9b2611964afc 727 static bool nightMode = false;
mjr 53:9b2611964afc 728
mjr 40:cc0d9814522b 729 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 730 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 731 // mode is engaged.
mjr 40:cc0d9814522b 732 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 733 {
mjr 40:cc0d9814522b 734 public:
mjr 40:cc0d9814522b 735 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 736 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 737
mjr 53:9b2611964afc 738 private:
mjr 53:9b2611964afc 739 LwOut *out;
mjr 53:9b2611964afc 740 };
mjr 53:9b2611964afc 741
mjr 53:9b2611964afc 742 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 743 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 744 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 745 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 746 {
mjr 53:9b2611964afc 747 public:
mjr 53:9b2611964afc 748 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 749 virtual void set(uint8_t)
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 // ignore the host value and simply show the current
mjr 53:9b2611964afc 752 // night mode setting
mjr 53:9b2611964afc 753 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 754 }
mjr 40:cc0d9814522b 755
mjr 40:cc0d9814522b 756 private:
mjr 40:cc0d9814522b 757 LwOut *out;
mjr 40:cc0d9814522b 758 };
mjr 40:cc0d9814522b 759
mjr 26:cb71c4af2912 760
mjr 35:e959ffba78fd 761 //
mjr 35:e959ffba78fd 762 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 763 // assignments set in config.h.
mjr 33:d832bcab089e 764 //
mjr 35:e959ffba78fd 765 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 766 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 767 {
mjr 35:e959ffba78fd 768 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 769 {
mjr 53:9b2611964afc 770 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 771 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 772 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 773 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 774 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 775 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 776 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 777 }
mjr 35:e959ffba78fd 778 }
mjr 26:cb71c4af2912 779
mjr 40:cc0d9814522b 780 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 781 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 782 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 783 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 784 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 785 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 786 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 787 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 788 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 789 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 790 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 791 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 792 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 793 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 794 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 795 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 796 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 797 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 798 };
mjr 40:cc0d9814522b 799
mjr 40:cc0d9814522b 800 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 801 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 802 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 803 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 804 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 805 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 806 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 807 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 808 // are always 8 bits.
mjr 40:cc0d9814522b 809 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 810 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 811 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 812 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 813 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 814 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 815 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 816 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 817 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 818 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 819 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 820 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 821 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 822 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 823 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 824 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 825 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 826 };
mjr 40:cc0d9814522b 827
mjr 26:cb71c4af2912 828 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 829 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 830 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 831 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 832 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 833 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 834 {
mjr 26:cb71c4af2912 835 public:
mjr 60:f38da020aa13 836 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 837 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 838 {
mjr 26:cb71c4af2912 839 if (val != prv)
mjr 40:cc0d9814522b 840 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 841 }
mjr 60:f38da020aa13 842 uint8_t idx;
mjr 40:cc0d9814522b 843 uint8_t prv;
mjr 26:cb71c4af2912 844 };
mjr 26:cb71c4af2912 845
mjr 40:cc0d9814522b 846 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 847 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 848 {
mjr 40:cc0d9814522b 849 public:
mjr 60:f38da020aa13 850 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 851 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 852 {
mjr 40:cc0d9814522b 853 if (val != prv)
mjr 40:cc0d9814522b 854 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 855 }
mjr 60:f38da020aa13 856 uint8_t idx;
mjr 40:cc0d9814522b 857 uint8_t prv;
mjr 40:cc0d9814522b 858 };
mjr 40:cc0d9814522b 859
mjr 40:cc0d9814522b 860
mjr 33:d832bcab089e 861
mjr 34:6b981a2afab7 862 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 863 // config.h.
mjr 35:e959ffba78fd 864 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 865
mjr 35:e959ffba78fd 866 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 867 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 868 {
mjr 35:e959ffba78fd 869 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 870 {
mjr 53:9b2611964afc 871 hc595 = new HC595(
mjr 53:9b2611964afc 872 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 873 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 874 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 875 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 876 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 877 hc595->init();
mjr 35:e959ffba78fd 878 hc595->update();
mjr 35:e959ffba78fd 879 }
mjr 35:e959ffba78fd 880 }
mjr 34:6b981a2afab7 881
mjr 34:6b981a2afab7 882 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 883 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 884 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 885 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 886 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 887 class Lw595Out: public LwOut
mjr 33:d832bcab089e 888 {
mjr 33:d832bcab089e 889 public:
mjr 60:f38da020aa13 890 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 891 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 892 {
mjr 34:6b981a2afab7 893 if (val != prv)
mjr 40:cc0d9814522b 894 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 895 }
mjr 60:f38da020aa13 896 uint8_t idx;
mjr 40:cc0d9814522b 897 uint8_t prv;
mjr 33:d832bcab089e 898 };
mjr 33:d832bcab089e 899
mjr 26:cb71c4af2912 900
mjr 40:cc0d9814522b 901
mjr 64:ef7ca92dff36 902 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 903 // normalized to 0.0 to 1.0 scale.
mjr 40:cc0d9814522b 904 static const float pwm_level[] = {
mjr 64:ef7ca92dff36 905 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 906 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 907 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 908 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 909 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 910 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 911 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 912 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 913 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 914 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 915 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 916 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 917 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 918 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 919 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 920 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 921 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 922 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 923 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 924 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 925 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 926 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 927 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 928 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 929 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 930 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 931 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 932 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 933 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 934 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 935 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 936 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 937 };
mjr 26:cb71c4af2912 938
mjr 64:ef7ca92dff36 939
mjr 64:ef7ca92dff36 940 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 941 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 942 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 943 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 944 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 945 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 946 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 947 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 948 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 949 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 950 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 951 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 952 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 953 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 954 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 955 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 956 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 957 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 958 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 959 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 960 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 961 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 962 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 963 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 964 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 965 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 966 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 967 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 968 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 969 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 970 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 971 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 972 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 973 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 974 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 975 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 976 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 977 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 978 };
mjr 64:ef7ca92dff36 979
mjr 64:ef7ca92dff36 980 // LwOut class for a PWM-capable GPIO port. Note that we use FastPWM for
mjr 64:ef7ca92dff36 981 // the underlying port interface. This isn't because we need the "fast"
mjr 64:ef7ca92dff36 982 // part; it's because FastPWM fixes a bug in the base mbed PwmOut class
mjr 64:ef7ca92dff36 983 // that makes it look ugly for fades. The base PwmOut class resets
mjr 64:ef7ca92dff36 984 // the cycle counter when changing the duty cycle, which makes the output
mjr 64:ef7ca92dff36 985 // reset immediately on every change. For an output connected to a lamp
mjr 64:ef7ca92dff36 986 // or LED, this causes obvious flickering when performing a rapid series
mjr 64:ef7ca92dff36 987 // of writes, such as during a fade. The KL25Z TPM hardware is specifically
mjr 64:ef7ca92dff36 988 // designed to make it easy for software to avoid this kind of flickering
mjr 64:ef7ca92dff36 989 // when used correctly: it has an internal staging register for the duty
mjr 64:ef7ca92dff36 990 // cycle register that gets latched at the start of the next cycle, ensuring
mjr 64:ef7ca92dff36 991 // that the duty cycle setting never changes mid-cycle. The mbed PwmOut
mjr 64:ef7ca92dff36 992 // defeats this by resetting the cycle counter on every write, which aborts
mjr 64:ef7ca92dff36 993 // the current cycle at the moment of the write, causing an effectively random
mjr 64:ef7ca92dff36 994 // drop in brightness on each write (by artificially shortening a cycle).
mjr 64:ef7ca92dff36 995 // Fortunately, we can fix this by switching to the API-compatible FastPWM
mjr 64:ef7ca92dff36 996 // class, which does the write right (heh).
mjr 6:cc35eb643e8f 997 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 998 {
mjr 6:cc35eb643e8f 999 public:
mjr 43:7a6364d82a41 1000 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1001 {
mjr 43:7a6364d82a41 1002 prv = initVal ^ 0xFF;
mjr 43:7a6364d82a41 1003 set(initVal);
mjr 43:7a6364d82a41 1004 }
mjr 40:cc0d9814522b 1005 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1006 {
mjr 13:72dda449c3c0 1007 if (val != prv)
mjr 40:cc0d9814522b 1008 p.write(pwm_level[prv = val]);
mjr 13:72dda449c3c0 1009 }
mjr 64:ef7ca92dff36 1010 FastPWM p;
mjr 40:cc0d9814522b 1011 uint8_t prv;
mjr 6:cc35eb643e8f 1012 };
mjr 26:cb71c4af2912 1013
mjr 64:ef7ca92dff36 1014 // Gamma corrected PWM GPIO output
mjr 64:ef7ca92dff36 1015 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1016 {
mjr 64:ef7ca92dff36 1017 public:
mjr 64:ef7ca92dff36 1018 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1019 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1020 {
mjr 64:ef7ca92dff36 1021 }
mjr 64:ef7ca92dff36 1022 virtual void set(uint8_t val)
mjr 64:ef7ca92dff36 1023 {
mjr 64:ef7ca92dff36 1024 if (val != prv)
mjr 64:ef7ca92dff36 1025 p.write(dof_to_gamma_pwm[prv = val]);
mjr 64:ef7ca92dff36 1026 }
mjr 64:ef7ca92dff36 1027 };
mjr 64:ef7ca92dff36 1028
mjr 64:ef7ca92dff36 1029
mjr 26:cb71c4af2912 1030 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1031 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1032 {
mjr 6:cc35eb643e8f 1033 public:
mjr 43:7a6364d82a41 1034 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1035 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1036 {
mjr 13:72dda449c3c0 1037 if (val != prv)
mjr 40:cc0d9814522b 1038 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1039 }
mjr 6:cc35eb643e8f 1040 DigitalOut p;
mjr 40:cc0d9814522b 1041 uint8_t prv;
mjr 6:cc35eb643e8f 1042 };
mjr 26:cb71c4af2912 1043
mjr 29:582472d0bc57 1044 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1045 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1046 // port n (0-based).
mjr 35:e959ffba78fd 1047 //
mjr 35:e959ffba78fd 1048 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1049 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1050 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1051 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1052 // 74HC595 ports).
mjr 33:d832bcab089e 1053 static int numOutputs;
mjr 33:d832bcab089e 1054 static LwOut **lwPin;
mjr 33:d832bcab089e 1055
mjr 38:091e511ce8a0 1056
mjr 35:e959ffba78fd 1057 // Number of LedWiz emulation outputs. This is the number of ports
mjr 35:e959ffba78fd 1058 // accessible through the standard (non-extended) LedWiz protocol
mjr 35:e959ffba78fd 1059 // messages. The protocol has a fixed set of 32 outputs, but we
mjr 35:e959ffba78fd 1060 // might have fewer actual outputs. This is therefore set to the
mjr 35:e959ffba78fd 1061 // lower of 32 or the actual number of outputs.
mjr 35:e959ffba78fd 1062 static int numLwOutputs;
mjr 35:e959ffba78fd 1063
mjr 63:5cd1a5f3a41b 1064 // Current absolute brightness levels for all outputs. These are
mjr 63:5cd1a5f3a41b 1065 // DOF brightness level value, from 0 for fully off to 255 for fully
mjr 63:5cd1a5f3a41b 1066 // on. These are always used for extended ports (33 and above), and
mjr 63:5cd1a5f3a41b 1067 // are used for LedWiz ports (1-32) when we're in extended protocol
mjr 63:5cd1a5f3a41b 1068 // mode (i.e., ledWizMode == false).
mjr 40:cc0d9814522b 1069 static uint8_t *outLevel;
mjr 38:091e511ce8a0 1070
mjr 38:091e511ce8a0 1071 // create a single output pin
mjr 53:9b2611964afc 1072 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1073 {
mjr 38:091e511ce8a0 1074 // get this item's values
mjr 38:091e511ce8a0 1075 int typ = pc.typ;
mjr 38:091e511ce8a0 1076 int pin = pc.pin;
mjr 38:091e511ce8a0 1077 int flags = pc.flags;
mjr 40:cc0d9814522b 1078 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1079 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1080 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1081
mjr 38:091e511ce8a0 1082 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1083 LwOut *lwp;
mjr 38:091e511ce8a0 1084 switch (typ)
mjr 38:091e511ce8a0 1085 {
mjr 38:091e511ce8a0 1086 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1087 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1088 if (pin != 0)
mjr 64:ef7ca92dff36 1089 {
mjr 64:ef7ca92dff36 1090 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1091 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1092 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1093 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1094 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1095 {
mjr 64:ef7ca92dff36 1096 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1097 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1098
mjr 64:ef7ca92dff36 1099 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1100 gamma = false;
mjr 64:ef7ca92dff36 1101 }
mjr 64:ef7ca92dff36 1102 else
mjr 64:ef7ca92dff36 1103 {
mjr 64:ef7ca92dff36 1104 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1105 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1106 }
mjr 64:ef7ca92dff36 1107 }
mjr 48:058ace2aed1d 1108 else
mjr 48:058ace2aed1d 1109 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1110 break;
mjr 38:091e511ce8a0 1111
mjr 38:091e511ce8a0 1112 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1113 // Digital GPIO port
mjr 48:058ace2aed1d 1114 if (pin != 0)
mjr 48:058ace2aed1d 1115 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1116 else
mjr 48:058ace2aed1d 1117 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1118 break;
mjr 38:091e511ce8a0 1119
mjr 38:091e511ce8a0 1120 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1121 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1122 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1123 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1124 {
mjr 40:cc0d9814522b 1125 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1126 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1127 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1128 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1129 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1130 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1131 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1132 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1133 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1134 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1135 // for this unlikely case.
mjr 40:cc0d9814522b 1136 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1137 {
mjr 40:cc0d9814522b 1138 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1139 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1140
mjr 40:cc0d9814522b 1141 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1142 gamma = false;
mjr 40:cc0d9814522b 1143 }
mjr 40:cc0d9814522b 1144 else
mjr 40:cc0d9814522b 1145 {
mjr 40:cc0d9814522b 1146 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1147 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1148 }
mjr 40:cc0d9814522b 1149 }
mjr 38:091e511ce8a0 1150 else
mjr 40:cc0d9814522b 1151 {
mjr 40:cc0d9814522b 1152 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1153 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1154 }
mjr 38:091e511ce8a0 1155 break;
mjr 38:091e511ce8a0 1156
mjr 38:091e511ce8a0 1157 case PortType74HC595:
mjr 38:091e511ce8a0 1158 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1159 // output number, create a virtual port)
mjr 38:091e511ce8a0 1160 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1161 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1162 else
mjr 38:091e511ce8a0 1163 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1164 break;
mjr 38:091e511ce8a0 1165
mjr 38:091e511ce8a0 1166 case PortTypeVirtual:
mjr 43:7a6364d82a41 1167 case PortTypeDisabled:
mjr 38:091e511ce8a0 1168 default:
mjr 38:091e511ce8a0 1169 // virtual or unknown
mjr 38:091e511ce8a0 1170 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1171 break;
mjr 38:091e511ce8a0 1172 }
mjr 38:091e511ce8a0 1173
mjr 40:cc0d9814522b 1174 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1175 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1176 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1177 if (activeLow)
mjr 38:091e511ce8a0 1178 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1179
mjr 40:cc0d9814522b 1180 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1181 // needs to be
mjr 40:cc0d9814522b 1182 if (noisy)
mjr 40:cc0d9814522b 1183 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1184
mjr 40:cc0d9814522b 1185 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1186 if (gamma)
mjr 40:cc0d9814522b 1187 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1188
mjr 53:9b2611964afc 1189 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1190 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1191 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1192 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1193 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1194
mjr 53:9b2611964afc 1195 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1196 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1197 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1198
mjr 38:091e511ce8a0 1199 // turn it off initially
mjr 38:091e511ce8a0 1200 lwp->set(0);
mjr 38:091e511ce8a0 1201
mjr 38:091e511ce8a0 1202 // return the pin
mjr 38:091e511ce8a0 1203 return lwp;
mjr 38:091e511ce8a0 1204 }
mjr 38:091e511ce8a0 1205
mjr 6:cc35eb643e8f 1206 // initialize the output pin array
mjr 35:e959ffba78fd 1207 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1208 {
mjr 35:e959ffba78fd 1209 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1210 // total number of ports.
mjr 35:e959ffba78fd 1211 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1212 int i;
mjr 35:e959ffba78fd 1213 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1214 {
mjr 35:e959ffba78fd 1215 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1216 {
mjr 35:e959ffba78fd 1217 numOutputs = i;
mjr 34:6b981a2afab7 1218 break;
mjr 34:6b981a2afab7 1219 }
mjr 33:d832bcab089e 1220 }
mjr 33:d832bcab089e 1221
mjr 35:e959ffba78fd 1222 // the real LedWiz protocol can access at most 32 ports, or the
mjr 35:e959ffba78fd 1223 // actual number of outputs, whichever is lower
mjr 35:e959ffba78fd 1224 numLwOutputs = (numOutputs < 32 ? numOutputs : 32);
mjr 35:e959ffba78fd 1225
mjr 33:d832bcab089e 1226 // allocate the pin array
mjr 33:d832bcab089e 1227 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 1228
mjr 38:091e511ce8a0 1229 // Allocate the current brightness array. For these, allocate at
mjr 38:091e511ce8a0 1230 // least 32, so that we have enough for all LedWiz messages, but
mjr 38:091e511ce8a0 1231 // allocate the full set of actual ports if we have more than the
mjr 38:091e511ce8a0 1232 // LedWiz complement.
mjr 38:091e511ce8a0 1233 int minOuts = numOutputs < 32 ? 32 : numOutputs;
mjr 40:cc0d9814522b 1234 outLevel = new uint8_t[minOuts];
mjr 33:d832bcab089e 1235
mjr 35:e959ffba78fd 1236 // create the pin interface object for each port
mjr 35:e959ffba78fd 1237 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1238 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1239 }
mjr 6:cc35eb643e8f 1240
mjr 63:5cd1a5f3a41b 1241 // LedWiz/Extended protocol mode.
mjr 63:5cd1a5f3a41b 1242 //
mjr 63:5cd1a5f3a41b 1243 // We implement output port control using both the legacy LedWiz
mjr 63:5cd1a5f3a41b 1244 // protocol and a private extended protocol (which is 100% backwards
mjr 63:5cd1a5f3a41b 1245 // compatible with the LedWiz protocol: we recognize all valid legacy
mjr 63:5cd1a5f3a41b 1246 // protocol commands and handle them the same way a real LedWiz does).
mjr 63:5cd1a5f3a41b 1247 // The legacy protocol can access the first 32 ports; the extended
mjr 63:5cd1a5f3a41b 1248 // protocol can access all ports, including the first 32 as well as
mjr 63:5cd1a5f3a41b 1249 // the higher numbered ports. This means that the first 32 ports
mjr 63:5cd1a5f3a41b 1250 // can be addressed with either protocol, which muddies the waters
mjr 63:5cd1a5f3a41b 1251 // a bit because of the different approaches the two protocols take.
mjr 63:5cd1a5f3a41b 1252 // The legacy protocol separates the brightness/flash state of an
mjr 63:5cd1a5f3a41b 1253 // output (which it calls the "profile" state) from the on/off state.
mjr 63:5cd1a5f3a41b 1254 // The extended protocol doesn't; "off" is simply represented as
mjr 63:5cd1a5f3a41b 1255 // brightness 0.
mjr 63:5cd1a5f3a41b 1256 //
mjr 63:5cd1a5f3a41b 1257 // To deal with the different approaches, we use this flag to keep
mjr 63:5cd1a5f3a41b 1258 // track of the global protocol state. Each time we get an output
mjr 63:5cd1a5f3a41b 1259 // port command, we switch the protocol state to the protocol that
mjr 63:5cd1a5f3a41b 1260 // was used in the command. On a legacy SBA or PBA, we switch to
mjr 63:5cd1a5f3a41b 1261 // LedWiz mode; on an extended output set message, we switch to
mjr 63:5cd1a5f3a41b 1262 // extended mode. We remember the LedWiz and extended output state
mjr 63:5cd1a5f3a41b 1263 // for each LW ports (1-32) separately. Any time the mode changes,
mjr 63:5cd1a5f3a41b 1264 // we set ports 1-32 back to the state for the new mode.
mjr 63:5cd1a5f3a41b 1265 //
mjr 63:5cd1a5f3a41b 1266 // The reasoning here is that any given client (on the PC) will use
mjr 63:5cd1a5f3a41b 1267 // one mode or the other, and won't mix the two. An older program
mjr 63:5cd1a5f3a41b 1268 // that only knows about the LedWiz protocol will use the legacy
mjr 63:5cd1a5f3a41b 1269 // protocol only, and never send us an extended command. A DOF-based
mjr 63:5cd1a5f3a41b 1270 // program might use one or the other, according to how the user has
mjr 63:5cd1a5f3a41b 1271 // configured DOF. We have to be able to switch seamlessly between
mjr 63:5cd1a5f3a41b 1272 // the protocols to accommodate switching from one type of program
mjr 63:5cd1a5f3a41b 1273 // on the PC to the other, but we shouldn't have to worry about one
mjr 63:5cd1a5f3a41b 1274 // program switching back and forth.
mjr 63:5cd1a5f3a41b 1275 static uint8_t ledWizMode = true;
mjr 63:5cd1a5f3a41b 1276
mjr 29:582472d0bc57 1277 // LedWiz output states.
mjr 29:582472d0bc57 1278 //
mjr 29:582472d0bc57 1279 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 1280 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 1281 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 1282 // The two axes are independent.
mjr 29:582472d0bc57 1283 //
mjr 29:582472d0bc57 1284 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 1285 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 1286 // how many physical outputs we're using.
mjr 29:582472d0bc57 1287
mjr 0:5acbbe3f4cf4 1288 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 1289 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 1290
mjr 40:cc0d9814522b 1291 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 40:cc0d9814522b 1292 // for each LedWiz output. If the output was last updated through an
mjr 40:cc0d9814522b 1293 // LedWiz protocol message, it will have one of these values:
mjr 29:582472d0bc57 1294 //
mjr 29:582472d0bc57 1295 // 0-48 = fixed brightness 0% to 100%
mjr 40:cc0d9814522b 1296 // 49 = fixed brightness 100% (equivalent to 48)
mjr 29:582472d0bc57 1297 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 1298 // 130 = flash on / off
mjr 29:582472d0bc57 1299 // 131 = on / ramp down
mjr 29:582472d0bc57 1300 // 132 = ramp up / on
mjr 29:582472d0bc57 1301 //
mjr 40:cc0d9814522b 1302 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 40:cc0d9814522b 1303 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 40:cc0d9814522b 1304 // it, so we need to accept it for compatibility.)
mjr 1:d913e0afb2ac 1305 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 1306 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1307 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1308 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1309 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 1310 };
mjr 0:5acbbe3f4cf4 1311
mjr 29:582472d0bc57 1312 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 1313 // rate for lights in blinking states.
mjr 29:582472d0bc57 1314 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 1315
mjr 40:cc0d9814522b 1316 // Current LedWiz flash cycle counter. This runs from 0 to 255
mjr 40:cc0d9814522b 1317 // during each cycle.
mjr 29:582472d0bc57 1318 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 1319
mjr 40:cc0d9814522b 1320 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 1321 // level (0-255)
mjr 40:cc0d9814522b 1322 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1323 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1324 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1325 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1326 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1327 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1328 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1329 255, 255
mjr 40:cc0d9814522b 1330 };
mjr 40:cc0d9814522b 1331
mjr 40:cc0d9814522b 1332 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 40:cc0d9814522b 1333 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 1334 {
mjr 63:5cd1a5f3a41b 1335 // If we're in extended protocol mode, ignore the LedWiz setting
mjr 63:5cd1a5f3a41b 1336 // for the port and use the new protocol setting instead.
mjr 63:5cd1a5f3a41b 1337 if (!ledWizMode)
mjr 29:582472d0bc57 1338 return outLevel[idx];
mjr 29:582472d0bc57 1339
mjr 29:582472d0bc57 1340 // if it's off, show at zero intensity
mjr 29:582472d0bc57 1341 if (!wizOn[idx])
mjr 29:582472d0bc57 1342 return 0;
mjr 29:582472d0bc57 1343
mjr 29:582472d0bc57 1344 // check the state
mjr 29:582472d0bc57 1345 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 1346 if (val <= 49)
mjr 29:582472d0bc57 1347 {
mjr 29:582472d0bc57 1348 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 1349 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 1350 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 1351 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 1352 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 1353 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 1354 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 1355 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 1356 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 1357 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 1358 // err in this direction, because while the difference in
mjr 29:582472d0bc57 1359 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 1360 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 1361 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 1362 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 1363 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 1364 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 1365 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 1366 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 1367 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 1368 //
mjr 40:cc0d9814522b 1369 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 1370 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 1371 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 1372 // it the same way for compatibility.
mjr 40:cc0d9814522b 1373 return lw_to_dof[val];
mjr 29:582472d0bc57 1374 }
mjr 29:582472d0bc57 1375 else if (val == 129)
mjr 29:582472d0bc57 1376 {
mjr 40:cc0d9814522b 1377 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 1378 return wizFlashCounter < 128
mjr 40:cc0d9814522b 1379 ? wizFlashCounter*2 + 1
mjr 40:cc0d9814522b 1380 : (255 - wizFlashCounter)*2;
mjr 29:582472d0bc57 1381 }
mjr 29:582472d0bc57 1382 else if (val == 130)
mjr 29:582472d0bc57 1383 {
mjr 40:cc0d9814522b 1384 // 130 = flash on / off
mjr 40:cc0d9814522b 1385 return wizFlashCounter < 128 ? 255 : 0;
mjr 29:582472d0bc57 1386 }
mjr 29:582472d0bc57 1387 else if (val == 131)
mjr 29:582472d0bc57 1388 {
mjr 40:cc0d9814522b 1389 // 131 = on / ramp down
mjr 40:cc0d9814522b 1390 return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2;
mjr 0:5acbbe3f4cf4 1391 }
mjr 29:582472d0bc57 1392 else if (val == 132)
mjr 29:582472d0bc57 1393 {
mjr 40:cc0d9814522b 1394 // 132 = ramp up / on
mjr 40:cc0d9814522b 1395 return wizFlashCounter < 128 ? wizFlashCounter*2 : 255;
mjr 29:582472d0bc57 1396 }
mjr 29:582472d0bc57 1397 else
mjr 13:72dda449c3c0 1398 {
mjr 29:582472d0bc57 1399 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1400 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1401 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1402 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1403 // to 48 (fully on).
mjr 40:cc0d9814522b 1404 return 255;
mjr 0:5acbbe3f4cf4 1405 }
mjr 0:5acbbe3f4cf4 1406 }
mjr 0:5acbbe3f4cf4 1407
mjr 29:582472d0bc57 1408 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 1409 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 1410 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 1411 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 1412 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 1413 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 1414 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 1415 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 1416 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 1417 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 1418 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 1419 static void wizPulse()
mjr 29:582472d0bc57 1420 {
mjr 29:582472d0bc57 1421 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 1422 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 1423 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 1424
mjr 29:582472d0bc57 1425 // if we have any flashing lights, update them
mjr 29:582472d0bc57 1426 int ena = false;
mjr 35:e959ffba78fd 1427 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1428 {
mjr 29:582472d0bc57 1429 if (wizOn[i])
mjr 29:582472d0bc57 1430 {
mjr 29:582472d0bc57 1431 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 1432 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 1433 {
mjr 40:cc0d9814522b 1434 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1435 ena = true;
mjr 29:582472d0bc57 1436 }
mjr 29:582472d0bc57 1437 }
mjr 29:582472d0bc57 1438 }
mjr 29:582472d0bc57 1439
mjr 29:582472d0bc57 1440 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 1441 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 1442 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 1443 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 1444 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 1445 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 1446 if (ena)
mjr 29:582472d0bc57 1447 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 1448 }
mjr 29:582472d0bc57 1449
mjr 29:582472d0bc57 1450 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1451 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1452 static void updateWizOuts()
mjr 1:d913e0afb2ac 1453 {
mjr 29:582472d0bc57 1454 // update each output
mjr 29:582472d0bc57 1455 int pulse = false;
mjr 35:e959ffba78fd 1456 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1457 {
mjr 29:582472d0bc57 1458 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 40:cc0d9814522b 1459 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1460 }
mjr 29:582472d0bc57 1461
mjr 29:582472d0bc57 1462 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 1463 // isn't running, turn it on
mjr 29:582472d0bc57 1464 if (pulse)
mjr 29:582472d0bc57 1465 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 1466
mjr 34:6b981a2afab7 1467 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1468 if (hc595 != 0)
mjr 35:e959ffba78fd 1469 hc595->update();
mjr 1:d913e0afb2ac 1470 }
mjr 38:091e511ce8a0 1471
mjr 38:091e511ce8a0 1472 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1473 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1474 static void updateAllOuts()
mjr 38:091e511ce8a0 1475 {
mjr 38:091e511ce8a0 1476 // uddate each LedWiz output
mjr 38:091e511ce8a0 1477 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 40:cc0d9814522b 1478 lwPin[i]->set(wizState(i));
mjr 34:6b981a2afab7 1479
mjr 38:091e511ce8a0 1480 // update each extended output
mjr 63:5cd1a5f3a41b 1481 for (int i = numLwOutputs ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1482 lwPin[i]->set(outLevel[i]);
mjr 38:091e511ce8a0 1483
mjr 38:091e511ce8a0 1484 // flush 74HC595 changes, if necessary
mjr 38:091e511ce8a0 1485 if (hc595 != 0)
mjr 38:091e511ce8a0 1486 hc595->update();
mjr 38:091e511ce8a0 1487 }
mjr 38:091e511ce8a0 1488
mjr 11:bd9da7088e6e 1489 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1490 //
mjr 11:bd9da7088e6e 1491 // Button input
mjr 11:bd9da7088e6e 1492 //
mjr 11:bd9da7088e6e 1493
mjr 18:5e890ebd0023 1494 // button state
mjr 18:5e890ebd0023 1495 struct ButtonState
mjr 18:5e890ebd0023 1496 {
mjr 38:091e511ce8a0 1497 ButtonState()
mjr 38:091e511ce8a0 1498 {
mjr 38:091e511ce8a0 1499 di = NULL;
mjr 53:9b2611964afc 1500 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 1501 virtState = 0;
mjr 53:9b2611964afc 1502 dbState = 0;
mjr 38:091e511ce8a0 1503 pulseState = 0;
mjr 53:9b2611964afc 1504 pulseTime = 0;
mjr 38:091e511ce8a0 1505 }
mjr 35:e959ffba78fd 1506
mjr 53:9b2611964afc 1507 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 1508 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 1509 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 1510 //
mjr 53:9b2611964afc 1511 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 1512 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 1513 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 1514 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 1515 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 1516 void virtPress(bool on)
mjr 53:9b2611964afc 1517 {
mjr 53:9b2611964afc 1518 // Increment or decrement the current state
mjr 53:9b2611964afc 1519 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 1520 }
mjr 53:9b2611964afc 1521
mjr 53:9b2611964afc 1522 // DigitalIn for the button, if connected to a physical input
mjr 48:058ace2aed1d 1523 TinyDigitalIn *di;
mjr 38:091e511ce8a0 1524
mjr 38:091e511ce8a0 1525 // current PHYSICAL on/off state, after debouncing
mjr 53:9b2611964afc 1526 uint8_t physState : 1;
mjr 18:5e890ebd0023 1527
mjr 38:091e511ce8a0 1528 // current LOGICAL on/off state as reported to the host.
mjr 53:9b2611964afc 1529 uint8_t logState : 1;
mjr 38:091e511ce8a0 1530
mjr 38:091e511ce8a0 1531 // previous logical on/off state, when keys were last processed for USB
mjr 38:091e511ce8a0 1532 // reports and local effects
mjr 53:9b2611964afc 1533 uint8_t prevLogState : 1;
mjr 53:9b2611964afc 1534
mjr 53:9b2611964afc 1535 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 1536 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 1537 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 1538 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 1539 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 1540 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 1541 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 1542 // and physical source states.
mjr 53:9b2611964afc 1543 uint8_t virtState;
mjr 38:091e511ce8a0 1544
mjr 38:091e511ce8a0 1545 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 1546 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 1547 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 1548 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 1549 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 1550 uint8_t dbState;
mjr 38:091e511ce8a0 1551
mjr 38:091e511ce8a0 1552 // Pulse mode: a button in pulse mode transmits a brief logical button press and
mjr 38:091e511ce8a0 1553 // release each time the attached physical switch changes state. This is useful
mjr 38:091e511ce8a0 1554 // for cases where the host expects a key press for each change in the state of
mjr 38:091e511ce8a0 1555 // the physical switch. The canonical example is the Coin Door switch in VPinMAME,
mjr 38:091e511ce8a0 1556 // which requires pressing the END key to toggle the open/closed state. This
mjr 38:091e511ce8a0 1557 // software design isn't easily implemented in a physical coin door, though -
mjr 38:091e511ce8a0 1558 // the easiest way to sense a physical coin door's state is with a simple on/off
mjr 38:091e511ce8a0 1559 // switch. Pulse mode bridges that divide by converting a physical switch state
mjr 38:091e511ce8a0 1560 // to on/off toggle key reports to the host.
mjr 38:091e511ce8a0 1561 //
mjr 38:091e511ce8a0 1562 // Pulse state:
mjr 38:091e511ce8a0 1563 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 1564 // 1 -> off
mjr 38:091e511ce8a0 1565 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 1566 // 3 -> on
mjr 38:091e511ce8a0 1567 // 4 -> transitioning on-off
mjr 38:091e511ce8a0 1568 //
mjr 38:091e511ce8a0 1569 // Each state change sticks for a minimum period; when the timer expires,
mjr 38:091e511ce8a0 1570 // if the underlying physical switch is in a different state, we switch
mjr 53:9b2611964afc 1571 // to the next state and restart the timer. pulseTime is the time remaining
mjr 53:9b2611964afc 1572 // remaining before we can make another state transition, in microseconds.
mjr 53:9b2611964afc 1573 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 53:9b2611964afc 1574 // this guarantees that the parity of the pulse count always matches the
mjr 38:091e511ce8a0 1575 // current physical switch state when the latter is stable, which makes
mjr 38:091e511ce8a0 1576 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 38:091e511ce8a0 1577 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 38:091e511ce8a0 1578 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 38:091e511ce8a0 1579 // This software system can't be fooled that way.)
mjr 38:091e511ce8a0 1580 uint8_t pulseState;
mjr 53:9b2611964afc 1581 uint32_t pulseTime;
mjr 38:091e511ce8a0 1582
mjr 48:058ace2aed1d 1583 } __attribute__((packed)) buttonState[MAX_BUTTONS];
mjr 18:5e890ebd0023 1584
mjr 38:091e511ce8a0 1585
mjr 38:091e511ce8a0 1586 // Button data
mjr 38:091e511ce8a0 1587 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 1588
mjr 38:091e511ce8a0 1589 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 1590 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 1591 // modifier keys.
mjr 38:091e511ce8a0 1592 struct
mjr 38:091e511ce8a0 1593 {
mjr 38:091e511ce8a0 1594 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 1595 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 1596 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 1597 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 1598 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 1599
mjr 38:091e511ce8a0 1600 // Media key state
mjr 38:091e511ce8a0 1601 struct
mjr 38:091e511ce8a0 1602 {
mjr 38:091e511ce8a0 1603 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 1604 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 1605 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 1606
mjr 38:091e511ce8a0 1607 // button scan interrupt ticker
mjr 38:091e511ce8a0 1608 Ticker buttonTicker;
mjr 38:091e511ce8a0 1609
mjr 38:091e511ce8a0 1610 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 1611 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 1612 void scanButtons()
mjr 38:091e511ce8a0 1613 {
mjr 38:091e511ce8a0 1614 // scan all button input pins
mjr 38:091e511ce8a0 1615 ButtonState *bs = buttonState;
mjr 38:091e511ce8a0 1616 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 38:091e511ce8a0 1617 {
mjr 53:9b2611964afc 1618 // if this logical button is connected to a physical input, check
mjr 53:9b2611964afc 1619 // the GPIO pin state
mjr 38:091e511ce8a0 1620 if (bs->di != NULL)
mjr 38:091e511ce8a0 1621 {
mjr 38:091e511ce8a0 1622 // Shift the new state into the debounce history. Note that
mjr 38:091e511ce8a0 1623 // the physical pin inputs are active low (0V/GND = ON), so invert
mjr 38:091e511ce8a0 1624 // the reading by XOR'ing the low bit with 1. And of course we
mjr 38:091e511ce8a0 1625 // only want the low bit (since the history is effectively a bit
mjr 38:091e511ce8a0 1626 // vector), so mask the whole thing with 0x01 as well.
mjr 53:9b2611964afc 1627 uint8_t db = bs->dbState;
mjr 38:091e511ce8a0 1628 db <<= 1;
mjr 38:091e511ce8a0 1629 db |= (bs->di->read() & 0x01) ^ 0x01;
mjr 53:9b2611964afc 1630 bs->dbState = db;
mjr 38:091e511ce8a0 1631
mjr 38:091e511ce8a0 1632 // if we have all 0's or 1's in the history for the required
mjr 38:091e511ce8a0 1633 // debounce period, the key state is stable - check for a change
mjr 38:091e511ce8a0 1634 // to the last stable state
mjr 38:091e511ce8a0 1635 const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings
mjr 38:091e511ce8a0 1636 db &= stable;
mjr 38:091e511ce8a0 1637 if (db == 0 || db == stable)
mjr 53:9b2611964afc 1638 bs->physState = db & 1;
mjr 38:091e511ce8a0 1639 }
mjr 38:091e511ce8a0 1640 }
mjr 38:091e511ce8a0 1641 }
mjr 38:091e511ce8a0 1642
mjr 38:091e511ce8a0 1643 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1644 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1645 // in the physical button state.
mjr 38:091e511ce8a0 1646 Timer buttonTimer;
mjr 12:669df364a565 1647
mjr 11:bd9da7088e6e 1648 // initialize the button inputs
mjr 35:e959ffba78fd 1649 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1650 {
mjr 35:e959ffba78fd 1651 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1652 kbKeys = false;
mjr 35:e959ffba78fd 1653
mjr 53:9b2611964afc 1654 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 1655 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 1656 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 1657 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 1658
mjr 53:9b2611964afc 1659 // ZB Launch Ball button
mjr 53:9b2611964afc 1660 cfg.button[ZBL_BUTTON].set(
mjr 53:9b2611964afc 1661 PINNAME_TO_WIRE(NC),
mjr 53:9b2611964afc 1662 cfg.plunger.zbLaunchBall.keytype,
mjr 53:9b2611964afc 1663 cfg.plunger.zbLaunchBall.keycode);
mjr 53:9b2611964afc 1664
mjr 11:bd9da7088e6e 1665 // create the digital inputs
mjr 35:e959ffba78fd 1666 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1667 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1668 {
mjr 35:e959ffba78fd 1669 PinName pin = wirePinName(cfg.button[i].pin);
mjr 35:e959ffba78fd 1670 if (pin != NC)
mjr 35:e959ffba78fd 1671 {
mjr 35:e959ffba78fd 1672 // set up the GPIO input pin for this button
mjr 48:058ace2aed1d 1673 bs->di = new TinyDigitalIn(pin);
mjr 35:e959ffba78fd 1674
mjr 38:091e511ce8a0 1675 // if it's a pulse mode button, set the initial pulse state to Off
mjr 38:091e511ce8a0 1676 if (cfg.button[i].flags & BtnFlagPulse)
mjr 38:091e511ce8a0 1677 bs->pulseState = 1;
mjr 38:091e511ce8a0 1678
mjr 53:9b2611964afc 1679 // Note if it's a keyboard key of some kind. If we find any keyboard
mjr 53:9b2611964afc 1680 // mappings, we'll declare a keyboard interface when we send our HID
mjr 53:9b2611964afc 1681 // configuration to the host during USB connection setup.
mjr 35:e959ffba78fd 1682 switch (cfg.button[i].typ)
mjr 35:e959ffba78fd 1683 {
mjr 35:e959ffba78fd 1684 case BtnTypeKey:
mjr 53:9b2611964afc 1685 // note that we have at least one keyboard key
mjr 35:e959ffba78fd 1686 kbKeys = true;
mjr 35:e959ffba78fd 1687 break;
mjr 35:e959ffba78fd 1688
mjr 53:9b2611964afc 1689 default:
mjr 53:9b2611964afc 1690 // not a keyboard key
mjr 39:b3815a1c3802 1691 break;
mjr 35:e959ffba78fd 1692 }
mjr 35:e959ffba78fd 1693 }
mjr 11:bd9da7088e6e 1694 }
mjr 12:669df364a565 1695
mjr 53:9b2611964afc 1696 // If the ZB Launch Ball feature is enabled, and it uses a keyboard
mjr 53:9b2611964afc 1697 // key, this requires setting up a USB keyboard interface.
mjr 53:9b2611964afc 1698 if (cfg.plunger.zbLaunchBall.port != 0
mjr 53:9b2611964afc 1699 && cfg.plunger.zbLaunchBall.keytype == BtnTypeKey)
mjr 53:9b2611964afc 1700 kbKeys = true;
mjr 53:9b2611964afc 1701
mjr 38:091e511ce8a0 1702 // start the button scan thread
mjr 38:091e511ce8a0 1703 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1704
mjr 38:091e511ce8a0 1705 // start the button state transition timer
mjr 12:669df364a565 1706 buttonTimer.start();
mjr 11:bd9da7088e6e 1707 }
mjr 11:bd9da7088e6e 1708
mjr 38:091e511ce8a0 1709 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1710 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1711 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1712 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 1713 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 1714 {
mjr 35:e959ffba78fd 1715 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1716 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1717 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1718 int nkeys = 0;
mjr 11:bd9da7088e6e 1719
mjr 35:e959ffba78fd 1720 // clear the joystick buttons
mjr 36:b9747461331e 1721 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1722
mjr 35:e959ffba78fd 1723 // start with no media keys pressed
mjr 35:e959ffba78fd 1724 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1725
mjr 38:091e511ce8a0 1726 // calculate the time since the last run
mjr 53:9b2611964afc 1727 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 1728 buttonTimer.reset();
mjr 38:091e511ce8a0 1729
mjr 11:bd9da7088e6e 1730 // scan the button list
mjr 18:5e890ebd0023 1731 ButtonState *bs = buttonState;
mjr 53:9b2611964afc 1732 ButtonCfg *bc = cfg.button;
mjr 53:9b2611964afc 1733 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs, ++bc)
mjr 11:bd9da7088e6e 1734 {
mjr 38:091e511ce8a0 1735 // if it's a pulse-mode switch, get the virtual pressed state
mjr 38:091e511ce8a0 1736 if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1737 {
mjr 38:091e511ce8a0 1738 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 1739 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 1740 {
mjr 53:9b2611964afc 1741 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 1742 bs->pulseTime -= dt;
mjr 53:9b2611964afc 1743 }
mjr 53:9b2611964afc 1744 else
mjr 53:9b2611964afc 1745 {
mjr 53:9b2611964afc 1746 // pulse time expired - check for a state change
mjr 53:9b2611964afc 1747 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 1748 switch (bs->pulseState)
mjr 18:5e890ebd0023 1749 {
mjr 38:091e511ce8a0 1750 case 1:
mjr 38:091e511ce8a0 1751 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 1752 if (bs->physState)
mjr 53:9b2611964afc 1753 {
mjr 38:091e511ce8a0 1754 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1755 bs->pulseState = 2;
mjr 53:9b2611964afc 1756 bs->logState = 1;
mjr 38:091e511ce8a0 1757 }
mjr 38:091e511ce8a0 1758 break;
mjr 18:5e890ebd0023 1759
mjr 38:091e511ce8a0 1760 case 2:
mjr 38:091e511ce8a0 1761 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1762 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1763 // change in state in the logical button
mjr 38:091e511ce8a0 1764 bs->pulseState = 3;
mjr 38:091e511ce8a0 1765 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 1766 bs->logState = 0;
mjr 38:091e511ce8a0 1767 break;
mjr 38:091e511ce8a0 1768
mjr 38:091e511ce8a0 1769 case 3:
mjr 38:091e511ce8a0 1770 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 1771 if (!bs->physState)
mjr 53:9b2611964afc 1772 {
mjr 38:091e511ce8a0 1773 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1774 bs->pulseState = 4;
mjr 53:9b2611964afc 1775 bs->logState = 1;
mjr 38:091e511ce8a0 1776 }
mjr 38:091e511ce8a0 1777 break;
mjr 38:091e511ce8a0 1778
mjr 38:091e511ce8a0 1779 case 4:
mjr 38:091e511ce8a0 1780 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 1781 bs->pulseState = 1;
mjr 38:091e511ce8a0 1782 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 1783 bs->logState = 0;
mjr 38:091e511ce8a0 1784 break;
mjr 18:5e890ebd0023 1785 }
mjr 18:5e890ebd0023 1786 }
mjr 38:091e511ce8a0 1787 }
mjr 38:091e511ce8a0 1788 else
mjr 38:091e511ce8a0 1789 {
mjr 38:091e511ce8a0 1790 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 1791 bs->logState = bs->physState;
mjr 38:091e511ce8a0 1792 }
mjr 35:e959ffba78fd 1793
mjr 38:091e511ce8a0 1794 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 1795 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 1796 {
mjr 38:091e511ce8a0 1797 // check for special key transitions
mjr 53:9b2611964afc 1798 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 1799 {
mjr 53:9b2611964afc 1800 // Check the switch type in the config flags. If flag 0x01 is set,
mjr 53:9b2611964afc 1801 // it's a persistent on/off switch, so the night mode state simply
mjr 53:9b2611964afc 1802 // follows the current state of the switch. Otherwise, it's a
mjr 53:9b2611964afc 1803 // momentary button, so each button push (i.e., each transition from
mjr 53:9b2611964afc 1804 // logical state OFF to ON) toggles the current night mode state.
mjr 53:9b2611964afc 1805 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 1806 {
mjr 53:9b2611964afc 1807 // toggle switch - when the button changes state, change
mjr 53:9b2611964afc 1808 // night mode to match the new state
mjr 53:9b2611964afc 1809 setNightMode(bs->logState);
mjr 53:9b2611964afc 1810 }
mjr 53:9b2611964afc 1811 else
mjr 53:9b2611964afc 1812 {
mjr 53:9b2611964afc 1813 // momentary switch - toggle the night mode state when the
mjr 53:9b2611964afc 1814 // physical button is pushed (i.e., when its logical state
mjr 53:9b2611964afc 1815 // transitions from OFF to ON)
mjr 53:9b2611964afc 1816 if (bs->logState)
mjr 53:9b2611964afc 1817 toggleNightMode();
mjr 53:9b2611964afc 1818 }
mjr 35:e959ffba78fd 1819 }
mjr 38:091e511ce8a0 1820
mjr 38:091e511ce8a0 1821 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 1822 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 1823 }
mjr 38:091e511ce8a0 1824
mjr 53:9b2611964afc 1825 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 1826 // key state list
mjr 53:9b2611964afc 1827 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 1828 {
mjr 38:091e511ce8a0 1829 // OR in the joystick button bit, mod key bits, and media key bits
mjr 53:9b2611964afc 1830 uint8_t val = bc->val;
mjr 53:9b2611964afc 1831 switch (bc->typ)
mjr 53:9b2611964afc 1832 {
mjr 53:9b2611964afc 1833 case BtnTypeJoystick:
mjr 53:9b2611964afc 1834 // joystick button
mjr 53:9b2611964afc 1835 newjs |= (1 << (val - 1));
mjr 53:9b2611964afc 1836 break;
mjr 53:9b2611964afc 1837
mjr 53:9b2611964afc 1838 case BtnTypeKey:
mjr 53:9b2611964afc 1839 // Keyboard key. This could be a modifier key (shift, control,
mjr 53:9b2611964afc 1840 // alt, GUI), a media key (mute, volume up, volume down), or a
mjr 53:9b2611964afc 1841 // regular key. Check which one.
mjr 53:9b2611964afc 1842 if (val >= 0x7F && val <= 0x81)
mjr 53:9b2611964afc 1843 {
mjr 53:9b2611964afc 1844 // It's a media key. OR the key into the media key mask.
mjr 53:9b2611964afc 1845 // The media mask bits are mapped in the HID report descriptor
mjr 53:9b2611964afc 1846 // in USBJoystick.cpp. For simplicity, we arrange the mask so
mjr 53:9b2611964afc 1847 // that the ones with regular keyboard equivalents that we catch
mjr 53:9b2611964afc 1848 // here are in the same order as the key scan codes:
mjr 53:9b2611964afc 1849 //
mjr 53:9b2611964afc 1850 // Mute = scan 0x7F = mask bit 0x01
mjr 53:9b2611964afc 1851 // Vol Up = scan 0x80 = mask bit 0x02
mjr 53:9b2611964afc 1852 // Vol Down = scan 0x81 = mask bit 0x04
mjr 53:9b2611964afc 1853 //
mjr 53:9b2611964afc 1854 // So we can translate from scan code to bit mask with some
mjr 53:9b2611964afc 1855 // simple bit shifting:
mjr 53:9b2611964afc 1856 mediakeys |= (1 << (val - 0x7f));
mjr 53:9b2611964afc 1857 }
mjr 53:9b2611964afc 1858 else if (val >= 0xE0 && val <= 0xE7)
mjr 53:9b2611964afc 1859 {
mjr 53:9b2611964afc 1860 // It's a modifier key. Like the media keys, these are represented
mjr 53:9b2611964afc 1861 // in the USB reports with a bit mask, and like the media keys, we
mjr 53:9b2611964afc 1862 // arrange the mask bits in the same order as the scan codes. This
mjr 53:9b2611964afc 1863 // makes figuring the mask a simple bit shift:
mjr 53:9b2611964afc 1864 modkeys |= (1 << (val - 0xE0));
mjr 53:9b2611964afc 1865 }
mjr 53:9b2611964afc 1866 else
mjr 53:9b2611964afc 1867 {
mjr 53:9b2611964afc 1868 // It's a regular key. Make sure it's not already in the list, and
mjr 53:9b2611964afc 1869 // that the list isn't full. If neither of these apply, add the key.
mjr 53:9b2611964afc 1870 if (nkeys < 7)
mjr 53:9b2611964afc 1871 {
mjr 57:cc03231f676b 1872 bool found = false;
mjr 53:9b2611964afc 1873 for (int j = 0 ; j < nkeys ; ++j)
mjr 53:9b2611964afc 1874 {
mjr 53:9b2611964afc 1875 if (keys[j] == val)
mjr 53:9b2611964afc 1876 {
mjr 53:9b2611964afc 1877 found = true;
mjr 53:9b2611964afc 1878 break;
mjr 53:9b2611964afc 1879 }
mjr 53:9b2611964afc 1880 }
mjr 53:9b2611964afc 1881 if (!found)
mjr 53:9b2611964afc 1882 keys[nkeys++] = val;
mjr 53:9b2611964afc 1883 }
mjr 53:9b2611964afc 1884 }
mjr 53:9b2611964afc 1885 break;
mjr 53:9b2611964afc 1886 }
mjr 18:5e890ebd0023 1887 }
mjr 11:bd9da7088e6e 1888 }
mjr 36:b9747461331e 1889
mjr 36:b9747461331e 1890 // check for joystick button changes
mjr 36:b9747461331e 1891 if (jsButtons != newjs)
mjr 36:b9747461331e 1892 jsButtons = newjs;
mjr 11:bd9da7088e6e 1893
mjr 35:e959ffba78fd 1894 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 1895 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 1896 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 1897 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 1898 {
mjr 35:e959ffba78fd 1899 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 1900 kbState.changed = true;
mjr 35:e959ffba78fd 1901 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 1902 if (nkeys <= 6) {
mjr 35:e959ffba78fd 1903 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 1904 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 1905 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 1906 }
mjr 35:e959ffba78fd 1907 else {
mjr 35:e959ffba78fd 1908 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 1909 kbState.nkeys = 6;
mjr 35:e959ffba78fd 1910 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 1911 }
mjr 35:e959ffba78fd 1912 }
mjr 35:e959ffba78fd 1913
mjr 35:e959ffba78fd 1914 // Check for changes to media keys
mjr 35:e959ffba78fd 1915 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 1916 {
mjr 35:e959ffba78fd 1917 mediaState.changed = true;
mjr 35:e959ffba78fd 1918 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 1919 }
mjr 11:bd9da7088e6e 1920 }
mjr 11:bd9da7088e6e 1921
mjr 5:a70c0bce770d 1922 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1923 //
mjr 5:a70c0bce770d 1924 // Customization joystick subbclass
mjr 5:a70c0bce770d 1925 //
mjr 5:a70c0bce770d 1926
mjr 5:a70c0bce770d 1927 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 1928 {
mjr 5:a70c0bce770d 1929 public:
mjr 35:e959ffba78fd 1930 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 1931 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 1932 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 1933 {
mjr 54:fd77a6b2f76c 1934 sleeping_ = false;
mjr 54:fd77a6b2f76c 1935 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 1936 timer_.start();
mjr 54:fd77a6b2f76c 1937 }
mjr 54:fd77a6b2f76c 1938
mjr 54:fd77a6b2f76c 1939 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 1940 void diagFlash()
mjr 54:fd77a6b2f76c 1941 {
mjr 54:fd77a6b2f76c 1942 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 1943 {
mjr 54:fd77a6b2f76c 1944 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 1945 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 1946 {
mjr 54:fd77a6b2f76c 1947 // short red flash
mjr 54:fd77a6b2f76c 1948 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 1949 wait_us(50000);
mjr 54:fd77a6b2f76c 1950 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 1951 wait_us(50000);
mjr 54:fd77a6b2f76c 1952 }
mjr 54:fd77a6b2f76c 1953 }
mjr 5:a70c0bce770d 1954 }
mjr 5:a70c0bce770d 1955
mjr 5:a70c0bce770d 1956 // are we connected?
mjr 5:a70c0bce770d 1957 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 1958
mjr 54:fd77a6b2f76c 1959 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 1960 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 1961 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 1962 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 1963 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 1964
mjr 54:fd77a6b2f76c 1965 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 1966 //
mjr 54:fd77a6b2f76c 1967 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 1968 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 1969 // other way.
mjr 54:fd77a6b2f76c 1970 //
mjr 54:fd77a6b2f76c 1971 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 1972 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 1973 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 1974 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 1975 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 1976 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 1977 //
mjr 54:fd77a6b2f76c 1978 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 1979 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 1980 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 1981 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 1982 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 1983 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 1984 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 1985 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 1986 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 1987 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 1988 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 1989 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 1990 // is effectively dead.
mjr 54:fd77a6b2f76c 1991 //
mjr 54:fd77a6b2f76c 1992 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 1993 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 1994 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 1995 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 1996 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 1997 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 1998 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 1999 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 2000 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 2001 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 2002 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 2003 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 2004 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 2005 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 2006 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 2007 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 2008 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 2009 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 2010 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 2011 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 2012 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 2013 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 2014 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 2015 // a disconnect.
mjr 54:fd77a6b2f76c 2016 //
mjr 54:fd77a6b2f76c 2017 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 2018 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 2019 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 2020 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 2021 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 2022 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 2023 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 2024 //
mjr 54:fd77a6b2f76c 2025 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 2026 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 2027 //
mjr 54:fd77a6b2f76c 2028 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 2029 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 2030 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 2031 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 2032 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 2033 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 2034 // has been plugged in and initiates the logical connection setup.
mjr 54:fd77a6b2f76c 2035 // We have to remain disconnected for a macroscopic interval for
mjr 54:fd77a6b2f76c 2036 // this to happen - 5ms seems to do the trick.
mjr 54:fd77a6b2f76c 2037 //
mjr 54:fd77a6b2f76c 2038 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 2039 //
mjr 54:fd77a6b2f76c 2040 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 2041 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 2042 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 2043 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 2044 // return.
mjr 54:fd77a6b2f76c 2045 //
mjr 54:fd77a6b2f76c 2046 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 2047 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 2048 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 2049 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 2050 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 2051 //
mjr 54:fd77a6b2f76c 2052 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 2053 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 2054 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 2055 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 2056 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 2057 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 2058 //
mjr 54:fd77a6b2f76c 2059 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 2060 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 2061 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 2062 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 2063 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 2064 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 2065 // freezes over.
mjr 54:fd77a6b2f76c 2066 //
mjr 54:fd77a6b2f76c 2067 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 2068 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 2069 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 2070 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 2071 // less than second with this code in place.
mjr 54:fd77a6b2f76c 2072 void recoverConnection()
mjr 54:fd77a6b2f76c 2073 {
mjr 54:fd77a6b2f76c 2074 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 2075 if (reconnectPending_)
mjr 54:fd77a6b2f76c 2076 {
mjr 54:fd77a6b2f76c 2077 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 2078 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 2079 {
mjr 54:fd77a6b2f76c 2080 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 2081 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 2082 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 2083 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 2084 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 2085 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 2086 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 2087 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 2088 __disable_irq();
mjr 54:fd77a6b2f76c 2089 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 2090 {
mjr 54:fd77a6b2f76c 2091 connect(false);
mjr 54:fd77a6b2f76c 2092 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 2093 done = true;
mjr 54:fd77a6b2f76c 2094 }
mjr 54:fd77a6b2f76c 2095 __enable_irq();
mjr 54:fd77a6b2f76c 2096 }
mjr 54:fd77a6b2f76c 2097 }
mjr 54:fd77a6b2f76c 2098 }
mjr 5:a70c0bce770d 2099
mjr 5:a70c0bce770d 2100 protected:
mjr 54:fd77a6b2f76c 2101 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 2102 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 2103 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 2104 //
mjr 54:fd77a6b2f76c 2105 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 2106 //
mjr 54:fd77a6b2f76c 2107 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 2108 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 2109 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 2110 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 2111 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 2112 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 2113 {
mjr 54:fd77a6b2f76c 2114 // note the new state
mjr 54:fd77a6b2f76c 2115 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 2116
mjr 54:fd77a6b2f76c 2117 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 2118 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 2119 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 2120 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 2121 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 2122 {
mjr 54:fd77a6b2f76c 2123 disconnect();
mjr 54:fd77a6b2f76c 2124 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 2125 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 2126 }
mjr 54:fd77a6b2f76c 2127 }
mjr 54:fd77a6b2f76c 2128
mjr 54:fd77a6b2f76c 2129 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 2130 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 2131
mjr 54:fd77a6b2f76c 2132 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 2133 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 2134
mjr 54:fd77a6b2f76c 2135 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 2136 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 2137
mjr 54:fd77a6b2f76c 2138 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 2139 Timer timer_;
mjr 5:a70c0bce770d 2140 };
mjr 5:a70c0bce770d 2141
mjr 5:a70c0bce770d 2142 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2143 //
mjr 5:a70c0bce770d 2144 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 2145 //
mjr 5:a70c0bce770d 2146
mjr 5:a70c0bce770d 2147 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 2148 //
mjr 5:a70c0bce770d 2149 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 2150 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 2151 // automatic calibration.
mjr 5:a70c0bce770d 2152 //
mjr 5:a70c0bce770d 2153 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 2154 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 2155 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 2156 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 2157 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 2158 // every sample.
mjr 5:a70c0bce770d 2159 //
mjr 6:cc35eb643e8f 2160 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 2161 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 2162 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 2163 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 2164 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 2165 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 2166 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 2167 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 2168 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 2169 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 2170 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 2171 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 2172 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 2173 // of nudging, say).
mjr 5:a70c0bce770d 2174 //
mjr 5:a70c0bce770d 2175
mjr 17:ab3cec0c8bf4 2176 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 2177 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 2178
mjr 17:ab3cec0c8bf4 2179 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 2180 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 2181 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 2182
mjr 17:ab3cec0c8bf4 2183 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 2184 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 2185 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 2186 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 2187
mjr 17:ab3cec0c8bf4 2188
mjr 6:cc35eb643e8f 2189 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 2190 struct AccHist
mjr 5:a70c0bce770d 2191 {
mjr 6:cc35eb643e8f 2192 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2193 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 2194 {
mjr 6:cc35eb643e8f 2195 // save the raw position
mjr 6:cc35eb643e8f 2196 this->x = x;
mjr 6:cc35eb643e8f 2197 this->y = y;
mjr 6:cc35eb643e8f 2198 this->d = distance(prv);
mjr 6:cc35eb643e8f 2199 }
mjr 6:cc35eb643e8f 2200
mjr 6:cc35eb643e8f 2201 // reading for this entry
mjr 5:a70c0bce770d 2202 float x, y;
mjr 5:a70c0bce770d 2203
mjr 6:cc35eb643e8f 2204 // distance from previous entry
mjr 6:cc35eb643e8f 2205 float d;
mjr 5:a70c0bce770d 2206
mjr 6:cc35eb643e8f 2207 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 2208 float xtot, ytot;
mjr 6:cc35eb643e8f 2209 int cnt;
mjr 6:cc35eb643e8f 2210
mjr 6:cc35eb643e8f 2211 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 2212 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 2213 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 2214 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 2215
mjr 6:cc35eb643e8f 2216 float distance(AccHist *p)
mjr 6:cc35eb643e8f 2217 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 2218 };
mjr 5:a70c0bce770d 2219
mjr 5:a70c0bce770d 2220 // accelerometer wrapper class
mjr 3:3514575d4f86 2221 class Accel
mjr 3:3514575d4f86 2222 {
mjr 3:3514575d4f86 2223 public:
mjr 3:3514575d4f86 2224 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 2225 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 2226 {
mjr 5:a70c0bce770d 2227 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 2228 irqPin_ = irqPin;
mjr 5:a70c0bce770d 2229
mjr 5:a70c0bce770d 2230 // reset and initialize
mjr 5:a70c0bce770d 2231 reset();
mjr 5:a70c0bce770d 2232 }
mjr 5:a70c0bce770d 2233
mjr 5:a70c0bce770d 2234 void reset()
mjr 5:a70c0bce770d 2235 {
mjr 6:cc35eb643e8f 2236 // clear the center point
mjr 6:cc35eb643e8f 2237 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 2238
mjr 6:cc35eb643e8f 2239 // start the calibration timer
mjr 5:a70c0bce770d 2240 tCenter_.start();
mjr 5:a70c0bce770d 2241 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 2242
mjr 5:a70c0bce770d 2243 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 2244 mma_.init();
mjr 6:cc35eb643e8f 2245
mjr 6:cc35eb643e8f 2246 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 2247 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2248
mjr 6:cc35eb643e8f 2249 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 2250 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 2251 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 2252
mjr 3:3514575d4f86 2253 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 2254 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 2255
mjr 3:3514575d4f86 2256 // start our timers
mjr 3:3514575d4f86 2257 tGet_.start();
mjr 3:3514575d4f86 2258 tInt_.start();
mjr 3:3514575d4f86 2259 }
mjr 3:3514575d4f86 2260
mjr 9:fd65b0a94720 2261 void get(int &x, int &y)
mjr 3:3514575d4f86 2262 {
mjr 3:3514575d4f86 2263 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 2264 __disable_irq();
mjr 3:3514575d4f86 2265
mjr 3:3514575d4f86 2266 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 2267 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 2268 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 2269
mjr 6:cc35eb643e8f 2270 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 2271 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2272
mjr 3:3514575d4f86 2273 // get the time since the last get() sample
mjr 38:091e511ce8a0 2274 float dt = tGet_.read_us()/1.0e6f;
mjr 3:3514575d4f86 2275 tGet_.reset();
mjr 3:3514575d4f86 2276
mjr 3:3514575d4f86 2277 // done manipulating the shared data
mjr 3:3514575d4f86 2278 __enable_irq();
mjr 3:3514575d4f86 2279
mjr 6:cc35eb643e8f 2280 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 2281 vx /= dt;
mjr 6:cc35eb643e8f 2282 vy /= dt;
mjr 6:cc35eb643e8f 2283
mjr 6:cc35eb643e8f 2284 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 2285 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2286 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 2287
mjr 5:a70c0bce770d 2288 // check for auto-centering every so often
mjr 48:058ace2aed1d 2289 if (tCenter_.read_us() > 1000000)
mjr 5:a70c0bce770d 2290 {
mjr 5:a70c0bce770d 2291 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 2292 AccHist *prv = p;
mjr 5:a70c0bce770d 2293 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 2294 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2295 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 2296
mjr 5:a70c0bce770d 2297 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 2298 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 2299 {
mjr 5:a70c0bce770d 2300 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 2301 static const float accTol = .01;
mjr 6:cc35eb643e8f 2302 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 2303 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 2304 && p0[1].d < accTol
mjr 6:cc35eb643e8f 2305 && p0[2].d < accTol
mjr 6:cc35eb643e8f 2306 && p0[3].d < accTol
mjr 6:cc35eb643e8f 2307 && p0[4].d < accTol)
mjr 5:a70c0bce770d 2308 {
mjr 6:cc35eb643e8f 2309 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 2310 // the samples over the rest period
mjr 6:cc35eb643e8f 2311 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 2312 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 2313 }
mjr 5:a70c0bce770d 2314 }
mjr 5:a70c0bce770d 2315 else
mjr 5:a70c0bce770d 2316 {
mjr 5:a70c0bce770d 2317 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 2318 ++nAccPrv_;
mjr 5:a70c0bce770d 2319 }
mjr 6:cc35eb643e8f 2320
mjr 6:cc35eb643e8f 2321 // clear the new item's running totals
mjr 6:cc35eb643e8f 2322 p->clearAvg();
mjr 5:a70c0bce770d 2323
mjr 5:a70c0bce770d 2324 // reset the timer
mjr 5:a70c0bce770d 2325 tCenter_.reset();
mjr 39:b3815a1c3802 2326
mjr 39:b3815a1c3802 2327 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 2328 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 2329 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 2330 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 2331 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 2332 // generation to continue.
mjr 39:b3815a1c3802 2333 //
mjr 39:b3815a1c3802 2334 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 2335 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 2336 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 2337 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 2338 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 2339 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 2340 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 2341 {
mjr 39:b3815a1c3802 2342 float x, y, z;
mjr 39:b3815a1c3802 2343 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 2344 }
mjr 5:a70c0bce770d 2345 }
mjr 5:a70c0bce770d 2346
mjr 6:cc35eb643e8f 2347 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 2348 x = rawToReport(vx);
mjr 6:cc35eb643e8f 2349 y = rawToReport(vy);
mjr 5:a70c0bce770d 2350
mjr 6:cc35eb643e8f 2351 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 2352 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 2353 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 2354 #endif
mjr 3:3514575d4f86 2355 }
mjr 29:582472d0bc57 2356
mjr 3:3514575d4f86 2357 private:
mjr 6:cc35eb643e8f 2358 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 2359 int rawToReport(float v)
mjr 5:a70c0bce770d 2360 {
mjr 6:cc35eb643e8f 2361 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 2362 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 2363
mjr 6:cc35eb643e8f 2364 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 2365 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 2366 static const int filter[] = {
mjr 6:cc35eb643e8f 2367 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 2368 0,
mjr 6:cc35eb643e8f 2369 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 2370 };
mjr 6:cc35eb643e8f 2371 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 2372 }
mjr 5:a70c0bce770d 2373
mjr 3:3514575d4f86 2374 // interrupt handler
mjr 3:3514575d4f86 2375 void isr()
mjr 3:3514575d4f86 2376 {
mjr 3:3514575d4f86 2377 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 2378 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 2379 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 2380 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 2381 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 2382 float x, y, z;
mjr 5:a70c0bce770d 2383 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 2384
mjr 3:3514575d4f86 2385 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 2386 float dt = tInt_.read();
mjr 3:3514575d4f86 2387 tInt_.reset();
mjr 6:cc35eb643e8f 2388
mjr 6:cc35eb643e8f 2389 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 2390 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 2391 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 2392
mjr 6:cc35eb643e8f 2393 // store the updates
mjr 6:cc35eb643e8f 2394 ax_ = x;
mjr 6:cc35eb643e8f 2395 ay_ = y;
mjr 6:cc35eb643e8f 2396 az_ = z;
mjr 3:3514575d4f86 2397 }
mjr 3:3514575d4f86 2398
mjr 3:3514575d4f86 2399 // underlying accelerometer object
mjr 3:3514575d4f86 2400 MMA8451Q mma_;
mjr 3:3514575d4f86 2401
mjr 5:a70c0bce770d 2402 // last raw acceleration readings
mjr 6:cc35eb643e8f 2403 float ax_, ay_, az_;
mjr 5:a70c0bce770d 2404
mjr 6:cc35eb643e8f 2405 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 2406 float vx_, vy_;
mjr 6:cc35eb643e8f 2407
mjr 3:3514575d4f86 2408 // timer for measuring time between get() samples
mjr 3:3514575d4f86 2409 Timer tGet_;
mjr 3:3514575d4f86 2410
mjr 3:3514575d4f86 2411 // timer for measuring time between interrupts
mjr 3:3514575d4f86 2412 Timer tInt_;
mjr 5:a70c0bce770d 2413
mjr 6:cc35eb643e8f 2414 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 2415 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 2416 // at rest.
mjr 6:cc35eb643e8f 2417 float cx_, cy_;
mjr 5:a70c0bce770d 2418
mjr 5:a70c0bce770d 2419 // timer for atuo-centering
mjr 5:a70c0bce770d 2420 Timer tCenter_;
mjr 6:cc35eb643e8f 2421
mjr 6:cc35eb643e8f 2422 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 2423 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 2424 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 2425 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 2426 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 2427 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 2428 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 2429 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 2430 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 2431 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 2432 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 2433 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 2434 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 2435 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 2436 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 2437
mjr 5:a70c0bce770d 2438 // interurupt pin name
mjr 5:a70c0bce770d 2439 PinName irqPin_;
mjr 5:a70c0bce770d 2440
mjr 5:a70c0bce770d 2441 // interrupt router
mjr 5:a70c0bce770d 2442 InterruptIn intIn_;
mjr 3:3514575d4f86 2443 };
mjr 3:3514575d4f86 2444
mjr 5:a70c0bce770d 2445
mjr 5:a70c0bce770d 2446 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2447 //
mjr 14:df700b22ca08 2448 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 2449 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 2450 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 2451 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 2452 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 2453 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 2454 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 2455 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 2456 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 2457 //
mjr 14:df700b22ca08 2458 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 2459 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 2460 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 2461 //
mjr 5:a70c0bce770d 2462 void clear_i2c()
mjr 5:a70c0bce770d 2463 {
mjr 38:091e511ce8a0 2464 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 2465 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 2466 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 2467
mjr 5:a70c0bce770d 2468 // clock the SCL 9 times
mjr 5:a70c0bce770d 2469 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 2470 {
mjr 5:a70c0bce770d 2471 scl = 1;
mjr 5:a70c0bce770d 2472 wait_us(20);
mjr 5:a70c0bce770d 2473 scl = 0;
mjr 5:a70c0bce770d 2474 wait_us(20);
mjr 5:a70c0bce770d 2475 }
mjr 5:a70c0bce770d 2476 }
mjr 14:df700b22ca08 2477
mjr 14:df700b22ca08 2478 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 2479 //
mjr 33:d832bcab089e 2480 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 2481 // for a given interval before allowing an update.
mjr 33:d832bcab089e 2482 //
mjr 33:d832bcab089e 2483 class Debouncer
mjr 33:d832bcab089e 2484 {
mjr 33:d832bcab089e 2485 public:
mjr 33:d832bcab089e 2486 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 2487 {
mjr 33:d832bcab089e 2488 t.start();
mjr 33:d832bcab089e 2489 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 2490 this->tmin = tmin;
mjr 33:d832bcab089e 2491 }
mjr 33:d832bcab089e 2492
mjr 33:d832bcab089e 2493 // Get the current stable value
mjr 33:d832bcab089e 2494 bool val() const { return stable; }
mjr 33:d832bcab089e 2495
mjr 33:d832bcab089e 2496 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 2497 // input device.
mjr 33:d832bcab089e 2498 void sampleIn(bool val)
mjr 33:d832bcab089e 2499 {
mjr 33:d832bcab089e 2500 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 2501 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 2502 // on the sample reader.
mjr 33:d832bcab089e 2503 if (val != prv)
mjr 33:d832bcab089e 2504 {
mjr 33:d832bcab089e 2505 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 2506 t.reset();
mjr 33:d832bcab089e 2507
mjr 33:d832bcab089e 2508 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 2509 prv = val;
mjr 33:d832bcab089e 2510 }
mjr 33:d832bcab089e 2511 else if (val != stable)
mjr 33:d832bcab089e 2512 {
mjr 33:d832bcab089e 2513 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 2514 // and different from the stable value. This means that
mjr 33:d832bcab089e 2515 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 2516 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 2517 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 2518 if (t.read() > tmin)
mjr 33:d832bcab089e 2519 stable = val;
mjr 33:d832bcab089e 2520 }
mjr 33:d832bcab089e 2521 }
mjr 33:d832bcab089e 2522
mjr 33:d832bcab089e 2523 private:
mjr 33:d832bcab089e 2524 // current stable value
mjr 33:d832bcab089e 2525 bool stable;
mjr 33:d832bcab089e 2526
mjr 33:d832bcab089e 2527 // last raw sample value
mjr 33:d832bcab089e 2528 bool prv;
mjr 33:d832bcab089e 2529
mjr 33:d832bcab089e 2530 // elapsed time since last raw input change
mjr 33:d832bcab089e 2531 Timer t;
mjr 33:d832bcab089e 2532
mjr 33:d832bcab089e 2533 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 2534 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 2535 float tmin;
mjr 33:d832bcab089e 2536 };
mjr 33:d832bcab089e 2537
mjr 33:d832bcab089e 2538
mjr 33:d832bcab089e 2539 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2540 //
mjr 33:d832bcab089e 2541 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 2542 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 2543 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 2544 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 2545 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 2546 //
mjr 33:d832bcab089e 2547 void allOutputsOff()
mjr 33:d832bcab089e 2548 {
mjr 33:d832bcab089e 2549 // reset all LedWiz outputs to OFF/48
mjr 35:e959ffba78fd 2550 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 33:d832bcab089e 2551 {
mjr 33:d832bcab089e 2552 outLevel[i] = 0;
mjr 33:d832bcab089e 2553 wizOn[i] = 0;
mjr 33:d832bcab089e 2554 wizVal[i] = 48;
mjr 33:d832bcab089e 2555 lwPin[i]->set(0);
mjr 33:d832bcab089e 2556 }
mjr 33:d832bcab089e 2557
mjr 33:d832bcab089e 2558 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 40:cc0d9814522b 2559 for (int i = numLwOutputs ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 2560 {
mjr 33:d832bcab089e 2561 outLevel[i] = 0;
mjr 33:d832bcab089e 2562 lwPin[i]->set(0);
mjr 33:d832bcab089e 2563 }
mjr 33:d832bcab089e 2564
mjr 33:d832bcab089e 2565 // restore default LedWiz flash rate
mjr 33:d832bcab089e 2566 wizSpeed = 2;
mjr 34:6b981a2afab7 2567
mjr 34:6b981a2afab7 2568 // flush changes to hc595, if applicable
mjr 35:e959ffba78fd 2569 if (hc595 != 0)
mjr 35:e959ffba78fd 2570 hc595->update();
mjr 33:d832bcab089e 2571 }
mjr 33:d832bcab089e 2572
mjr 33:d832bcab089e 2573 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2574 //
mjr 33:d832bcab089e 2575 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 2576 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 2577 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 2578 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 2579 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 2580 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 2581 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 2582 //
mjr 33:d832bcab089e 2583 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 2584 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 2585 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 2586 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 2587 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 2588 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 2589 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 2590 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 2591 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 2592 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 2593 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 2594 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 2595 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 2596 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 2597 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 2598 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 2599 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 2600 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 2601 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 2602 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 2603 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 2604 //
mjr 40:cc0d9814522b 2605 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 2606 // of tricky but likely scenarios:
mjr 33:d832bcab089e 2607 //
mjr 33:d832bcab089e 2608 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 2609 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 2610 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 2611 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 2612 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 2613 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 2614 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 2615 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 2616 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 2617 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 2618 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 2619 //
mjr 33:d832bcab089e 2620 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 2621 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 2622 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 2623 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 2624 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 2625 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 2626 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 2627 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 2628 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 2629 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 2630 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 2631 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 2632 // first check.
mjr 33:d832bcab089e 2633 //
mjr 33:d832bcab089e 2634 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 2635 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 2636 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 2637 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 2638 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 2639 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 2640 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 2641 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 2642 //
mjr 33:d832bcab089e 2643
mjr 33:d832bcab089e 2644 // Current PSU2 state:
mjr 33:d832bcab089e 2645 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 2646 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 2647 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 2648 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 2649 // 5 -> TV relay on
mjr 33:d832bcab089e 2650 int psu2_state = 1;
mjr 35:e959ffba78fd 2651
mjr 35:e959ffba78fd 2652 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 2653 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 2654 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 2655
mjr 35:e959ffba78fd 2656 // TV ON switch relay control
mjr 35:e959ffba78fd 2657 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 2658
mjr 35:e959ffba78fd 2659 // Timer interrupt
mjr 35:e959ffba78fd 2660 Ticker tv_ticker;
mjr 35:e959ffba78fd 2661 float tv_delay_time;
mjr 33:d832bcab089e 2662 void TVTimerInt()
mjr 33:d832bcab089e 2663 {
mjr 35:e959ffba78fd 2664 // time since last state change
mjr 35:e959ffba78fd 2665 static Timer tv_timer;
mjr 35:e959ffba78fd 2666
mjr 33:d832bcab089e 2667 // Check our internal state
mjr 33:d832bcab089e 2668 switch (psu2_state)
mjr 33:d832bcab089e 2669 {
mjr 33:d832bcab089e 2670 case 1:
mjr 33:d832bcab089e 2671 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 2672 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 2673 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 2674 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 2675 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 2676 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 2677 {
mjr 33:d832bcab089e 2678 // switch to OFF state
mjr 33:d832bcab089e 2679 psu2_state = 2;
mjr 33:d832bcab089e 2680
mjr 33:d832bcab089e 2681 // try setting the latch
mjr 35:e959ffba78fd 2682 psu2_status_set->write(1);
mjr 33:d832bcab089e 2683 }
mjr 33:d832bcab089e 2684 break;
mjr 33:d832bcab089e 2685
mjr 33:d832bcab089e 2686 case 2:
mjr 33:d832bcab089e 2687 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 2688 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 2689 psu2_status_set->write(0);
mjr 33:d832bcab089e 2690 psu2_state = 3;
mjr 33:d832bcab089e 2691 break;
mjr 33:d832bcab089e 2692
mjr 33:d832bcab089e 2693 case 3:
mjr 33:d832bcab089e 2694 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 2695 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 2696 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 2697 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 2698 if (psu2_status_sense->read())
mjr 33:d832bcab089e 2699 {
mjr 33:d832bcab089e 2700 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 2701 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 2702 tv_timer.reset();
mjr 33:d832bcab089e 2703 tv_timer.start();
mjr 33:d832bcab089e 2704 psu2_state = 4;
mjr 33:d832bcab089e 2705 }
mjr 33:d832bcab089e 2706 else
mjr 33:d832bcab089e 2707 {
mjr 33:d832bcab089e 2708 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 2709 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 2710 // was turned on since the last check.
mjr 35:e959ffba78fd 2711 psu2_status_set->write(1);
mjr 33:d832bcab089e 2712 psu2_state = 2;
mjr 33:d832bcab089e 2713 }
mjr 33:d832bcab089e 2714 break;
mjr 33:d832bcab089e 2715
mjr 33:d832bcab089e 2716 case 4:
mjr 33:d832bcab089e 2717 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 2718 // delay time, pulse the relay.
mjr 35:e959ffba78fd 2719 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 2720 {
mjr 33:d832bcab089e 2721 // turn on the relay for one timer interval
mjr 35:e959ffba78fd 2722 tv_relay->write(1);
mjr 33:d832bcab089e 2723 psu2_state = 5;
mjr 33:d832bcab089e 2724 }
mjr 33:d832bcab089e 2725 break;
mjr 33:d832bcab089e 2726
mjr 33:d832bcab089e 2727 case 5:
mjr 33:d832bcab089e 2728 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 2729 // it's now time to turn it off and return to the default state.
mjr 35:e959ffba78fd 2730 tv_relay->write(0);
mjr 33:d832bcab089e 2731 psu2_state = 1;
mjr 33:d832bcab089e 2732 break;
mjr 33:d832bcab089e 2733 }
mjr 33:d832bcab089e 2734 }
mjr 33:d832bcab089e 2735
mjr 35:e959ffba78fd 2736 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 2737 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 2738 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 2739 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 2740 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 2741 {
mjr 55:4db125cd11a0 2742 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 2743 // time is nonzero
mjr 55:4db125cd11a0 2744 if (cfg.TVON.delayTime != 0
mjr 55:4db125cd11a0 2745 && cfg.TVON.statusPin != 0xFF
mjr 53:9b2611964afc 2746 && cfg.TVON.latchPin != 0xFF
mjr 53:9b2611964afc 2747 && cfg.TVON.relayPin != 0xFF)
mjr 35:e959ffba78fd 2748 {
mjr 53:9b2611964afc 2749 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 2750 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 53:9b2611964afc 2751 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 40:cc0d9814522b 2752 tv_delay_time = cfg.TVON.delayTime/100.0;
mjr 35:e959ffba78fd 2753
mjr 35:e959ffba78fd 2754 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 2755 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 2756 }
mjr 35:e959ffba78fd 2757 }
mjr 35:e959ffba78fd 2758
mjr 35:e959ffba78fd 2759 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2760 //
mjr 35:e959ffba78fd 2761 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 2762 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 2763 //
mjr 35:e959ffba78fd 2764 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 2765 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 2766 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 2767 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 2768 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 2769 // again each time the firmware is updated.
mjr 35:e959ffba78fd 2770 //
mjr 35:e959ffba78fd 2771 NVM nvm;
mjr 35:e959ffba78fd 2772
mjr 35:e959ffba78fd 2773 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 2774 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 2775
mjr 35:e959ffba78fd 2776 // flash memory controller interface
mjr 35:e959ffba78fd 2777 FreescaleIAP iap;
mjr 35:e959ffba78fd 2778
mjr 35:e959ffba78fd 2779 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 2780 // required to store the structure
mjr 35:e959ffba78fd 2781 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 2782 {
mjr 35:e959ffba78fd 2783 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 2784 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 2785
mjr 35:e959ffba78fd 2786 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 2787 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 2788 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 2789
mjr 35:e959ffba78fd 2790 // return the address as a pointer
mjr 35:e959ffba78fd 2791 return (NVM *)addr;
mjr 35:e959ffba78fd 2792 }
mjr 35:e959ffba78fd 2793
mjr 35:e959ffba78fd 2794 // figure the flash address as a pointer
mjr 35:e959ffba78fd 2795 NVM *configFlashAddr()
mjr 35:e959ffba78fd 2796 {
mjr 35:e959ffba78fd 2797 int addr, numSectors;
mjr 35:e959ffba78fd 2798 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 2799 }
mjr 35:e959ffba78fd 2800
mjr 35:e959ffba78fd 2801 // Load the config from flash
mjr 35:e959ffba78fd 2802 void loadConfigFromFlash()
mjr 35:e959ffba78fd 2803 {
mjr 35:e959ffba78fd 2804 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 2805 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 2806 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 2807 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 2808 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 2809 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 2810 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 2811 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 2812 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 2813 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 2814 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 2815 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 2816 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 2817 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 2818 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 2819 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 2820
mjr 35:e959ffba78fd 2821 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 2822 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 2823
mjr 35:e959ffba78fd 2824 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 2825 if (flash->valid())
mjr 35:e959ffba78fd 2826 {
mjr 35:e959ffba78fd 2827 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 2828 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 2829 }
mjr 35:e959ffba78fd 2830 else
mjr 35:e959ffba78fd 2831 {
mjr 35:e959ffba78fd 2832 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 2833 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 2834 }
mjr 35:e959ffba78fd 2835 }
mjr 35:e959ffba78fd 2836
mjr 35:e959ffba78fd 2837 void saveConfigToFlash()
mjr 33:d832bcab089e 2838 {
mjr 35:e959ffba78fd 2839 int addr, sectors;
mjr 35:e959ffba78fd 2840 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 2841 nvm.save(iap, addr);
mjr 35:e959ffba78fd 2842 }
mjr 35:e959ffba78fd 2843
mjr 35:e959ffba78fd 2844 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2845 //
mjr 55:4db125cd11a0 2846 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 2847 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 2848 //
mjr 55:4db125cd11a0 2849 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 2850 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 2851 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 2852
mjr 55:4db125cd11a0 2853
mjr 55:4db125cd11a0 2854
mjr 55:4db125cd11a0 2855 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 2856 //
mjr 40:cc0d9814522b 2857 // Night mode setting updates
mjr 40:cc0d9814522b 2858 //
mjr 38:091e511ce8a0 2859
mjr 38:091e511ce8a0 2860 // Turn night mode on or off
mjr 38:091e511ce8a0 2861 static void setNightMode(bool on)
mjr 38:091e511ce8a0 2862 {
mjr 40:cc0d9814522b 2863 // set the new night mode flag in the noisy output class
mjr 53:9b2611964afc 2864 nightMode = on;
mjr 55:4db125cd11a0 2865
mjr 40:cc0d9814522b 2866 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 2867 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 2868 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 2869 lwPin[port]->set(nightMode ? 255 : 0);
mjr 40:cc0d9814522b 2870
mjr 40:cc0d9814522b 2871 // update all outputs for the mode change
mjr 40:cc0d9814522b 2872 updateAllOuts();
mjr 38:091e511ce8a0 2873 }
mjr 38:091e511ce8a0 2874
mjr 38:091e511ce8a0 2875 // Toggle night mode
mjr 38:091e511ce8a0 2876 static void toggleNightMode()
mjr 38:091e511ce8a0 2877 {
mjr 53:9b2611964afc 2878 setNightMode(!nightMode);
mjr 38:091e511ce8a0 2879 }
mjr 38:091e511ce8a0 2880
mjr 38:091e511ce8a0 2881
mjr 38:091e511ce8a0 2882 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2883 //
mjr 35:e959ffba78fd 2884 // Plunger Sensor
mjr 35:e959ffba78fd 2885 //
mjr 35:e959ffba78fd 2886
mjr 35:e959ffba78fd 2887 // the plunger sensor interface object
mjr 35:e959ffba78fd 2888 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 2889
mjr 35:e959ffba78fd 2890 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 2891 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 2892 void createPlunger()
mjr 35:e959ffba78fd 2893 {
mjr 35:e959ffba78fd 2894 // create the new sensor object according to the type
mjr 35:e959ffba78fd 2895 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 2896 {
mjr 35:e959ffba78fd 2897 case PlungerType_TSL1410RS:
mjr 35:e959ffba78fd 2898 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 2899 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 2900 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2901 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2902 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2903 NC);
mjr 35:e959ffba78fd 2904 break;
mjr 35:e959ffba78fd 2905
mjr 35:e959ffba78fd 2906 case PlungerType_TSL1410RP:
mjr 35:e959ffba78fd 2907 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 2908 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 2909 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2910 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2911 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2912 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 2913 break;
mjr 35:e959ffba78fd 2914
mjr 35:e959ffba78fd 2915 case PlungerType_TSL1412RS:
mjr 35:e959ffba78fd 2916 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 2917 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 2918 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2919 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2920 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2921 NC);
mjr 35:e959ffba78fd 2922 break;
mjr 35:e959ffba78fd 2923
mjr 35:e959ffba78fd 2924 case PlungerType_TSL1412RP:
mjr 35:e959ffba78fd 2925 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 2926 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 2927 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2928 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2929 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2930 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 2931 break;
mjr 35:e959ffba78fd 2932
mjr 35:e959ffba78fd 2933 case PlungerType_Pot:
mjr 35:e959ffba78fd 2934 // pins are: AO
mjr 53:9b2611964afc 2935 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 2936 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 2937 break;
mjr 35:e959ffba78fd 2938
mjr 35:e959ffba78fd 2939 case PlungerType_None:
mjr 35:e959ffba78fd 2940 default:
mjr 35:e959ffba78fd 2941 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 2942 break;
mjr 35:e959ffba78fd 2943 }
mjr 33:d832bcab089e 2944 }
mjr 33:d832bcab089e 2945
mjr 52:8298b2a73eb2 2946 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 2947 bool plungerCalMode;
mjr 52:8298b2a73eb2 2948
mjr 48:058ace2aed1d 2949 // Plunger reader
mjr 51:57eb311faafa 2950 //
mjr 51:57eb311faafa 2951 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 2952 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 2953 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 2954 //
mjr 51:57eb311faafa 2955 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 2956 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 2957 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 2958 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 2959 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 2960 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 2961 // firing motion.
mjr 51:57eb311faafa 2962 //
mjr 51:57eb311faafa 2963 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 2964 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 2965 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 2966 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 2967 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 2968 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 2969 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 2970 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 2971 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 2972 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 2973 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 2974 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 2975 // a classic digital aliasing effect.
mjr 51:57eb311faafa 2976 //
mjr 51:57eb311faafa 2977 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 2978 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 2979 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 2980 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 2981 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 2982 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 2983 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 2984 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 2985 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 2986 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 2987 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 2988 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 2989 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 2990 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 2991 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 2992 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 2993 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 2994 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 2995 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 2996 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 2997 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 2998 //
mjr 48:058ace2aed1d 2999 class PlungerReader
mjr 48:058ace2aed1d 3000 {
mjr 48:058ace2aed1d 3001 public:
mjr 48:058ace2aed1d 3002 PlungerReader()
mjr 48:058ace2aed1d 3003 {
mjr 48:058ace2aed1d 3004 // not in a firing event yet
mjr 48:058ace2aed1d 3005 firing = 0;
mjr 48:058ace2aed1d 3006
mjr 48:058ace2aed1d 3007 // no history yet
mjr 48:058ace2aed1d 3008 histIdx = 0;
mjr 55:4db125cd11a0 3009
mjr 55:4db125cd11a0 3010 // initialize the filter
mjr 55:4db125cd11a0 3011 initFilter();
mjr 48:058ace2aed1d 3012 }
mjr 48:058ace2aed1d 3013
mjr 48:058ace2aed1d 3014 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 3015 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 3016 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 3017 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 3018 void read()
mjr 48:058ace2aed1d 3019 {
mjr 48:058ace2aed1d 3020 // Read a sample from the sensor
mjr 48:058ace2aed1d 3021 PlungerReading r;
mjr 48:058ace2aed1d 3022 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 3023 {
mjr 51:57eb311faafa 3024 // Pull the previous reading from the history
mjr 50:40015764bbe6 3025 const PlungerReading &prv = nthHist(0);
mjr 48:058ace2aed1d 3026
mjr 48:058ace2aed1d 3027 // If the new reading is within 2ms of the previous reading,
mjr 48:058ace2aed1d 3028 // ignore it. We require a minimum time between samples to
mjr 48:058ace2aed1d 3029 // ensure that we have a usable amount of precision in the
mjr 48:058ace2aed1d 3030 // denominator (the time interval) for calculating the plunger
mjr 48:058ace2aed1d 3031 // velocity. (The CCD sensor can't take readings faster than
mjr 48:058ace2aed1d 3032 // this anyway, but other sensor types, such as potentiometers,
mjr 48:058ace2aed1d 3033 // can, so we have to throttle the rate artifically in case
mjr 48:058ace2aed1d 3034 // we're using a fast sensor like that.)
mjr 48:058ace2aed1d 3035 if (uint32_t(r.t - prv.t) < 2000UL)
mjr 48:058ace2aed1d 3036 return;
mjr 53:9b2611964afc 3037
mjr 53:9b2611964afc 3038 // check for calibration mode
mjr 53:9b2611964afc 3039 if (plungerCalMode)
mjr 53:9b2611964afc 3040 {
mjr 53:9b2611964afc 3041 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 3042 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 3043 // expand the envelope to include this new value.
mjr 53:9b2611964afc 3044 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 3045 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 3046 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 3047 cfg.plunger.cal.min = r.pos;
mjr 50:40015764bbe6 3048
mjr 53:9b2611964afc 3049 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 3050 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 3051 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 3052 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 3053 if (calState == 0)
mjr 53:9b2611964afc 3054 {
mjr 53:9b2611964afc 3055 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 3056 {
mjr 53:9b2611964afc 3057 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 3058 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 3059 {
mjr 53:9b2611964afc 3060 // we've been at rest long enough - count it
mjr 53:9b2611964afc 3061 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 3062 calZeroPosN += 1;
mjr 53:9b2611964afc 3063
mjr 53:9b2611964afc 3064 // update the zero position from the new average
mjr 53:9b2611964afc 3065 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 53:9b2611964afc 3066
mjr 53:9b2611964afc 3067 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 3068 calState = 1;
mjr 53:9b2611964afc 3069 }
mjr 53:9b2611964afc 3070 }
mjr 53:9b2611964afc 3071 else
mjr 53:9b2611964afc 3072 {
mjr 53:9b2611964afc 3073 // we're not close to the last position - start again here
mjr 53:9b2611964afc 3074 calZeroStart = r;
mjr 53:9b2611964afc 3075 }
mjr 53:9b2611964afc 3076 }
mjr 53:9b2611964afc 3077
mjr 53:9b2611964afc 3078 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 3079 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 3080 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 3081 r.pos = int(
mjr 53:9b2611964afc 3082 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 3083 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 3084 }
mjr 53:9b2611964afc 3085 else
mjr 53:9b2611964afc 3086 {
mjr 53:9b2611964afc 3087 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 3088 // rescale to the joystick range.
mjr 53:9b2611964afc 3089 r.pos = int(
mjr 53:9b2611964afc 3090 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 3091 / (cfg.plunger.cal.max - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 3092
mjr 53:9b2611964afc 3093 // limit the result to the valid joystick range
mjr 53:9b2611964afc 3094 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 3095 r.pos = JOYMAX;
mjr 53:9b2611964afc 3096 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 3097 r.pos = -JOYMAX;
mjr 53:9b2611964afc 3098 }
mjr 50:40015764bbe6 3099
mjr 50:40015764bbe6 3100 // Calculate the velocity from the second-to-last reading
mjr 50:40015764bbe6 3101 // to here, in joystick distance units per microsecond.
mjr 50:40015764bbe6 3102 // Note that we use the second-to-last reading rather than
mjr 50:40015764bbe6 3103 // the very last reading to give ourselves a little longer
mjr 50:40015764bbe6 3104 // time base. The time base is so short between consecutive
mjr 50:40015764bbe6 3105 // readings that the error bars in the position would be too
mjr 50:40015764bbe6 3106 // large.
mjr 50:40015764bbe6 3107 //
mjr 50:40015764bbe6 3108 // For reference, the physical plunger velocity ranges up
mjr 50:40015764bbe6 3109 // to about 100,000 joystick distance units/sec. This is
mjr 50:40015764bbe6 3110 // based on empirical measurements. The typical time for
mjr 50:40015764bbe6 3111 // a real plunger to travel the full distance when released
mjr 50:40015764bbe6 3112 // from full retraction is about 85ms, so the average velocity
mjr 50:40015764bbe6 3113 // covering this distance is about 56,000 units/sec. The
mjr 50:40015764bbe6 3114 // peak is probably about twice that. In real-world units,
mjr 50:40015764bbe6 3115 // this translates to an average speed of about .75 m/s and
mjr 50:40015764bbe6 3116 // a peak of about 1.5 m/s.
mjr 50:40015764bbe6 3117 //
mjr 50:40015764bbe6 3118 // Note that we actually calculate the value here in units
mjr 50:40015764bbe6 3119 // per *microsecond* - the discussion above is in terms of
mjr 50:40015764bbe6 3120 // units/sec because that's more on a human scale. Our
mjr 50:40015764bbe6 3121 // choice of internal units here really isn't important,
mjr 50:40015764bbe6 3122 // since we only use the velocity for comparison purposes,
mjr 50:40015764bbe6 3123 // to detect acceleration trends. We therefore save ourselves
mjr 50:40015764bbe6 3124 // a little CPU time by using the natural units of our inputs.
mjr 51:57eb311faafa 3125 const PlungerReading &prv2 = nthHist(1);
mjr 50:40015764bbe6 3126 float v = float(r.pos - prv2.pos)/float(r.t - prv2.t);
mjr 50:40015764bbe6 3127
mjr 50:40015764bbe6 3128 // presume we'll report the latest instantaneous reading
mjr 50:40015764bbe6 3129 z = r.pos;
mjr 50:40015764bbe6 3130 vz = v;
mjr 48:058ace2aed1d 3131
mjr 50:40015764bbe6 3132 // Check firing events
mjr 50:40015764bbe6 3133 switch (firing)
mjr 50:40015764bbe6 3134 {
mjr 50:40015764bbe6 3135 case 0:
mjr 50:40015764bbe6 3136 // Default state - not in a firing event.
mjr 50:40015764bbe6 3137
mjr 50:40015764bbe6 3138 // If we have forward motion from a position that's retracted
mjr 50:40015764bbe6 3139 // beyond a threshold, enter phase 1. If we're not pulled back
mjr 50:40015764bbe6 3140 // far enough, don't bother with this, as a release wouldn't
mjr 50:40015764bbe6 3141 // be strong enough to require the synthetic firing treatment.
mjr 50:40015764bbe6 3142 if (v < 0 && r.pos > JOYMAX/6)
mjr 50:40015764bbe6 3143 {
mjr 53:9b2611964afc 3144 // enter firing phase 1
mjr 50:40015764bbe6 3145 firingMode(1);
mjr 50:40015764bbe6 3146
mjr 53:9b2611964afc 3147 // if in calibration state 1 (at rest), switch to state 2 (not
mjr 53:9b2611964afc 3148 // at rest)
mjr 53:9b2611964afc 3149 if (calState == 1)
mjr 53:9b2611964afc 3150 calState = 2;
mjr 53:9b2611964afc 3151
mjr 50:40015764bbe6 3152 // we don't have a freeze position yet, but note the start time
mjr 50:40015764bbe6 3153 f1.pos = 0;
mjr 50:40015764bbe6 3154 f1.t = r.t;
mjr 50:40015764bbe6 3155
mjr 50:40015764bbe6 3156 // Figure the barrel spring "bounce" position in case we complete
mjr 50:40015764bbe6 3157 // the firing event. This is the amount that the forward momentum
mjr 50:40015764bbe6 3158 // of the plunger will compress the barrel spring at the peak of
mjr 50:40015764bbe6 3159 // the forward travel during the release. Assume that this is
mjr 50:40015764bbe6 3160 // linearly proportional to the starting retraction distance.
mjr 50:40015764bbe6 3161 // The barrel spring is about 1/6 the length of the main spring,
mjr 50:40015764bbe6 3162 // so figure it compresses by 1/6 the distance. (This is overly
mjr 53:9b2611964afc 3163 // simplistic and not very accurate, but it seems to give good
mjr 50:40015764bbe6 3164 // visual results, and that's all it's for.)
mjr 50:40015764bbe6 3165 f2.pos = -r.pos/6;
mjr 50:40015764bbe6 3166 }
mjr 50:40015764bbe6 3167 break;
mjr 50:40015764bbe6 3168
mjr 50:40015764bbe6 3169 case 1:
mjr 50:40015764bbe6 3170 // Phase 1 - acceleration. If we cross the zero point, trigger
mjr 50:40015764bbe6 3171 // the firing event. Otherwise, continue monitoring as long as we
mjr 50:40015764bbe6 3172 // see acceleration in the forward direction.
mjr 50:40015764bbe6 3173 if (r.pos <= 0)
mjr 50:40015764bbe6 3174 {
mjr 50:40015764bbe6 3175 // switch to the synthetic firing mode
mjr 50:40015764bbe6 3176 firingMode(2);
mjr 50:40015764bbe6 3177 z = f2.pos;
mjr 50:40015764bbe6 3178
mjr 50:40015764bbe6 3179 // note the start time for the firing phase
mjr 50:40015764bbe6 3180 f2.t = r.t;
mjr 53:9b2611964afc 3181
mjr 53:9b2611964afc 3182 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 3183 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 3184 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 3185 {
mjr 53:9b2611964afc 3186 // collect a new zero point for the average when we
mjr 53:9b2611964afc 3187 // come to rest
mjr 53:9b2611964afc 3188 calState = 0;
mjr 53:9b2611964afc 3189
mjr 53:9b2611964afc 3190 // collect average firing time statistics in millseconds, if
mjr 53:9b2611964afc 3191 // it's in range (20 to 255 ms)
mjr 53:9b2611964afc 3192 int dt = uint32_t(r.t - f1.t)/1000UL;
mjr 53:9b2611964afc 3193 if (dt >= 20 && dt <= 255)
mjr 53:9b2611964afc 3194 {
mjr 53:9b2611964afc 3195 calRlsTimeSum += dt;
mjr 53:9b2611964afc 3196 calRlsTimeN += 1;
mjr 53:9b2611964afc 3197 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 3198 }
mjr 53:9b2611964afc 3199 }
mjr 50:40015764bbe6 3200 }
mjr 50:40015764bbe6 3201 else if (v < vprv2)
mjr 50:40015764bbe6 3202 {
mjr 50:40015764bbe6 3203 // We're still accelerating, and we haven't crossed the zero
mjr 50:40015764bbe6 3204 // point yet - stay in phase 1. (Note that forward motion is
mjr 50:40015764bbe6 3205 // negative velocity, so accelerating means that the new
mjr 50:40015764bbe6 3206 // velocity is more negative than the previous one, which
mjr 50:40015764bbe6 3207 // is to say numerically less than - that's why the test
mjr 50:40015764bbe6 3208 // for acceleration is the seemingly backwards 'v < vprv'.)
mjr 50:40015764bbe6 3209
mjr 50:40015764bbe6 3210 // If we've been accelerating for at least 20ms, we're probably
mjr 50:40015764bbe6 3211 // really doing a release. Jump back to the recent local
mjr 50:40015764bbe6 3212 // maximum where the release *really* started. This is always
mjr 50:40015764bbe6 3213 // a bit before we started seeing sustained accleration, because
mjr 50:40015764bbe6 3214 // the plunger motion for the first few milliseconds is too slow
mjr 50:40015764bbe6 3215 // for our sensor precision to reliably detect acceleration.
mjr 50:40015764bbe6 3216 if (f1.pos != 0)
mjr 50:40015764bbe6 3217 {
mjr 50:40015764bbe6 3218 // we have a reset point - freeze there
mjr 50:40015764bbe6 3219 z = f1.pos;
mjr 50:40015764bbe6 3220 }
mjr 50:40015764bbe6 3221 else if (uint32_t(r.t - f1.t) >= 20000UL)
mjr 50:40015764bbe6 3222 {
mjr 50:40015764bbe6 3223 // it's been long enough - set a reset point.
mjr 50:40015764bbe6 3224 f1.pos = z = histLocalMax(r.t, 50000UL);
mjr 50:40015764bbe6 3225 }
mjr 50:40015764bbe6 3226 }
mjr 50:40015764bbe6 3227 else
mjr 50:40015764bbe6 3228 {
mjr 50:40015764bbe6 3229 // We're not accelerating. Cancel the firing event.
mjr 50:40015764bbe6 3230 firingMode(0);
mjr 53:9b2611964afc 3231 calState = 1;
mjr 50:40015764bbe6 3232 }
mjr 50:40015764bbe6 3233 break;
mjr 50:40015764bbe6 3234
mjr 50:40015764bbe6 3235 case 2:
mjr 50:40015764bbe6 3236 // Phase 2 - start of synthetic firing event. Report the fake
mjr 50:40015764bbe6 3237 // bounce for 25ms. VP polls the joystick about every 10ms, so
mjr 50:40015764bbe6 3238 // this should be enough time to guarantee that VP sees this
mjr 50:40015764bbe6 3239 // report at least once.
mjr 50:40015764bbe6 3240 if (uint32_t(r.t - f2.t) < 25000UL)
mjr 50:40015764bbe6 3241 {
mjr 50:40015764bbe6 3242 // report the bounce position
mjr 50:40015764bbe6 3243 z = f2.pos;
mjr 50:40015764bbe6 3244 }
mjr 50:40015764bbe6 3245 else
mjr 50:40015764bbe6 3246 {
mjr 50:40015764bbe6 3247 // it's been long enough - switch to phase 3, where we
mjr 50:40015764bbe6 3248 // report the park position until the real plunger comes
mjr 50:40015764bbe6 3249 // to rest
mjr 50:40015764bbe6 3250 firingMode(3);
mjr 50:40015764bbe6 3251 z = 0;
mjr 50:40015764bbe6 3252
mjr 50:40015764bbe6 3253 // set the start of the "stability window" to the rest position
mjr 50:40015764bbe6 3254 f3s.t = r.t;
mjr 50:40015764bbe6 3255 f3s.pos = 0;
mjr 50:40015764bbe6 3256
mjr 50:40015764bbe6 3257 // set the start of the "retraction window" to the actual position
mjr 50:40015764bbe6 3258 f3r = r;
mjr 50:40015764bbe6 3259 }
mjr 50:40015764bbe6 3260 break;
mjr 50:40015764bbe6 3261
mjr 50:40015764bbe6 3262 case 3:
mjr 50:40015764bbe6 3263 // Phase 3 - in synthetic firing event. Report the park position
mjr 50:40015764bbe6 3264 // until the plunger position stabilizes. Left to its own devices,
mjr 50:40015764bbe6 3265 // the plunger will usualy bounce off the barrel spring several
mjr 50:40015764bbe6 3266 // times before coming to rest, so we'll see oscillating motion
mjr 50:40015764bbe6 3267 // for a second or two. In the simplest case, we can aimply wait
mjr 50:40015764bbe6 3268 // for the plunger to stop moving for a short time. However, the
mjr 50:40015764bbe6 3269 // player might intervene by pulling the plunger back again, so
mjr 50:40015764bbe6 3270 // watch for that motion as well. If we're just bouncing freely,
mjr 50:40015764bbe6 3271 // we'll see the direction change frequently. If the player is
mjr 50:40015764bbe6 3272 // moving the plunger manually, the direction will be constant
mjr 50:40015764bbe6 3273 // for longer.
mjr 50:40015764bbe6 3274 if (v >= 0)
mjr 50:40015764bbe6 3275 {
mjr 50:40015764bbe6 3276 // We're moving back (or standing still). If this has been
mjr 50:40015764bbe6 3277 // going on for a while, the user must have taken control.
mjr 50:40015764bbe6 3278 if (uint32_t(r.t - f3r.t) > 65000UL)
mjr 50:40015764bbe6 3279 {
mjr 50:40015764bbe6 3280 // user has taken control - cancel firing mode
mjr 50:40015764bbe6 3281 firingMode(0);
mjr 50:40015764bbe6 3282 break;
mjr 50:40015764bbe6 3283 }
mjr 50:40015764bbe6 3284 }
mjr 50:40015764bbe6 3285 else
mjr 50:40015764bbe6 3286 {
mjr 50:40015764bbe6 3287 // forward motion - reset retraction window
mjr 50:40015764bbe6 3288 f3r.t = r.t;
mjr 50:40015764bbe6 3289 }
mjr 50:40015764bbe6 3290
mjr 53:9b2611964afc 3291 // Check if we're close to the last starting point. The joystick
mjr 53:9b2611964afc 3292 // positive axis range (0..4096) covers the retraction distance of
mjr 53:9b2611964afc 3293 // about 2.5", so 1" is about 1638 joystick units, hence 1/16" is
mjr 53:9b2611964afc 3294 // about 100 units.
mjr 53:9b2611964afc 3295 if (abs(r.pos - f3s.pos) < 100)
mjr 50:40015764bbe6 3296 {
mjr 53:9b2611964afc 3297 // It's at roughly the same position as the starting point.
mjr 53:9b2611964afc 3298 // Consider it stable if this has been true for 300ms.
mjr 50:40015764bbe6 3299 if (uint32_t(r.t - f3s.t) > 30000UL)
mjr 50:40015764bbe6 3300 {
mjr 50:40015764bbe6 3301 // we're done with the firing event
mjr 50:40015764bbe6 3302 firingMode(0);
mjr 50:40015764bbe6 3303 }
mjr 50:40015764bbe6 3304 else
mjr 50:40015764bbe6 3305 {
mjr 50:40015764bbe6 3306 // it's close to the last position but hasn't been
mjr 50:40015764bbe6 3307 // here long enough; stay in firing mode and continue
mjr 50:40015764bbe6 3308 // to report the park position
mjr 50:40015764bbe6 3309 z = 0;
mjr 50:40015764bbe6 3310 }
mjr 50:40015764bbe6 3311 }
mjr 50:40015764bbe6 3312 else
mjr 50:40015764bbe6 3313 {
mjr 50:40015764bbe6 3314 // It's not close enough to the last starting point, so use
mjr 50:40015764bbe6 3315 // this as a new starting point, and stay in firing mode.
mjr 50:40015764bbe6 3316 f3s = r;
mjr 50:40015764bbe6 3317 z = 0;
mjr 50:40015764bbe6 3318 }
mjr 50:40015764bbe6 3319 break;
mjr 50:40015764bbe6 3320 }
mjr 50:40015764bbe6 3321
mjr 50:40015764bbe6 3322 // save the velocity reading for next time
mjr 50:40015764bbe6 3323 vprv2 = vprv;
mjr 50:40015764bbe6 3324 vprv = v;
mjr 50:40015764bbe6 3325
mjr 50:40015764bbe6 3326 // add the new reading to the history
mjr 50:40015764bbe6 3327 hist[histIdx++] = r;
mjr 50:40015764bbe6 3328 histIdx %= countof(hist);
mjr 58:523fdcffbe6d 3329
mjr 58:523fdcffbe6d 3330 // figure the filtered value
mjr 58:523fdcffbe6d 3331 zf = applyFilter();
mjr 48:058ace2aed1d 3332 }
mjr 48:058ace2aed1d 3333 }
mjr 48:058ace2aed1d 3334
mjr 48:058ace2aed1d 3335 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 3336 int16_t getPosition()
mjr 58:523fdcffbe6d 3337 {
mjr 58:523fdcffbe6d 3338 // return the last filtered reading
mjr 58:523fdcffbe6d 3339 return zf;
mjr 55:4db125cd11a0 3340 }
mjr 58:523fdcffbe6d 3341
mjr 48:058ace2aed1d 3342 // Get the current velocity (joystick distance units per microsecond)
mjr 48:058ace2aed1d 3343 float getVelocity() const { return vz; }
mjr 48:058ace2aed1d 3344
mjr 48:058ace2aed1d 3345 // get the timestamp of the current joystick report (microseconds)
mjr 50:40015764bbe6 3346 uint32_t getTimestamp() const { return nthHist(0).t; }
mjr 48:058ace2aed1d 3347
mjr 48:058ace2aed1d 3348 // Set calibration mode on or off
mjr 52:8298b2a73eb2 3349 void setCalMode(bool f)
mjr 48:058ace2aed1d 3350 {
mjr 52:8298b2a73eb2 3351 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 3352 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 3353 {
mjr 52:8298b2a73eb2 3354 // reset the calibration in the configuration
mjr 48:058ace2aed1d 3355 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 3356
mjr 52:8298b2a73eb2 3357 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 3358 calState = 0;
mjr 52:8298b2a73eb2 3359 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 3360 calZeroPosN = 0;
mjr 52:8298b2a73eb2 3361 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 3362 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 3363
mjr 52:8298b2a73eb2 3364 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 3365 PlungerReading r;
mjr 52:8298b2a73eb2 3366 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 3367 {
mjr 52:8298b2a73eb2 3368 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 3369 cfg.plunger.cal.zero = r.pos;
mjr 52:8298b2a73eb2 3370
mjr 52:8298b2a73eb2 3371 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 3372 calZeroStart = r;
mjr 52:8298b2a73eb2 3373 }
mjr 52:8298b2a73eb2 3374 else
mjr 52:8298b2a73eb2 3375 {
mjr 52:8298b2a73eb2 3376 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 3377 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 3378
mjr 52:8298b2a73eb2 3379 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 3380 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 3381 calZeroStart.t = 0;
mjr 53:9b2611964afc 3382 }
mjr 53:9b2611964afc 3383 }
mjr 53:9b2611964afc 3384 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 3385 {
mjr 53:9b2611964afc 3386 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 3387 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 3388 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 3389 // physically meaningless.
mjr 53:9b2611964afc 3390 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 3391 {
mjr 53:9b2611964afc 3392 // bad settings - reset to defaults
mjr 53:9b2611964afc 3393 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 3394 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 3395 }
mjr 52:8298b2a73eb2 3396 }
mjr 52:8298b2a73eb2 3397
mjr 48:058ace2aed1d 3398 // remember the new mode
mjr 52:8298b2a73eb2 3399 plungerCalMode = f;
mjr 48:058ace2aed1d 3400 }
mjr 48:058ace2aed1d 3401
mjr 48:058ace2aed1d 3402 // is a firing event in progress?
mjr 53:9b2611964afc 3403 bool isFiring() { return firing == 3; }
mjr 48:058ace2aed1d 3404
mjr 48:058ace2aed1d 3405 private:
mjr 52:8298b2a73eb2 3406
mjr 58:523fdcffbe6d 3407 // Figure the next filtered value. This applies the hysteresis
mjr 58:523fdcffbe6d 3408 // filter to the last raw z value and returns the filtered result.
mjr 58:523fdcffbe6d 3409 int applyFilter()
mjr 58:523fdcffbe6d 3410 {
mjr 58:523fdcffbe6d 3411 if (firing <= 1)
mjr 58:523fdcffbe6d 3412 {
mjr 58:523fdcffbe6d 3413 // Filter limit - 5 samples. Once we've been moving
mjr 58:523fdcffbe6d 3414 // in the same direction for this many samples, we'll
mjr 58:523fdcffbe6d 3415 // clear the history and start over.
mjr 58:523fdcffbe6d 3416 const int filterMask = 0x1f;
mjr 58:523fdcffbe6d 3417
mjr 58:523fdcffbe6d 3418 // figure the last average
mjr 58:523fdcffbe6d 3419 int lastAvg = int(filterSum / filterN);
mjr 58:523fdcffbe6d 3420
mjr 58:523fdcffbe6d 3421 // figure the direction of this sample relative to the average,
mjr 58:523fdcffbe6d 3422 // and shift it in to our bit mask of recent direction data
mjr 58:523fdcffbe6d 3423 if (z != lastAvg)
mjr 58:523fdcffbe6d 3424 {
mjr 58:523fdcffbe6d 3425 // shift the new direction bit into the vector
mjr 58:523fdcffbe6d 3426 filterDir <<= 1;
mjr 58:523fdcffbe6d 3427 if (z > lastAvg) filterDir |= 1;
mjr 58:523fdcffbe6d 3428 }
mjr 58:523fdcffbe6d 3429
mjr 58:523fdcffbe6d 3430 // keep only the last N readings, up to the filter limit
mjr 58:523fdcffbe6d 3431 filterDir &= filterMask;
mjr 58:523fdcffbe6d 3432
mjr 58:523fdcffbe6d 3433 // if we've been moving consistently in one direction (all 1's
mjr 58:523fdcffbe6d 3434 // or all 0's in the direction history vector), reset the average
mjr 58:523fdcffbe6d 3435 if (filterDir == 0x00 || filterDir == filterMask)
mjr 58:523fdcffbe6d 3436 {
mjr 58:523fdcffbe6d 3437 // motion away from the average - reset the average
mjr 58:523fdcffbe6d 3438 filterDir = 0x5555;
mjr 58:523fdcffbe6d 3439 filterN = 1;
mjr 58:523fdcffbe6d 3440 filterSum = (lastAvg + z)/2;
mjr 58:523fdcffbe6d 3441 return int16_t(filterSum);
mjr 58:523fdcffbe6d 3442 }
mjr 58:523fdcffbe6d 3443 else
mjr 58:523fdcffbe6d 3444 {
mjr 58:523fdcffbe6d 3445 // we're diretionless - return the new average, with the
mjr 58:523fdcffbe6d 3446 // new sample included
mjr 58:523fdcffbe6d 3447 filterSum += z;
mjr 58:523fdcffbe6d 3448 ++filterN;
mjr 58:523fdcffbe6d 3449 return int16_t(filterSum / filterN);
mjr 58:523fdcffbe6d 3450 }
mjr 58:523fdcffbe6d 3451 }
mjr 58:523fdcffbe6d 3452 else
mjr 58:523fdcffbe6d 3453 {
mjr 58:523fdcffbe6d 3454 // firing mode - skip the filter
mjr 58:523fdcffbe6d 3455 filterN = 1;
mjr 58:523fdcffbe6d 3456 filterSum = z;
mjr 58:523fdcffbe6d 3457 filterDir = 0x5555;
mjr 58:523fdcffbe6d 3458 return z;
mjr 58:523fdcffbe6d 3459 }
mjr 58:523fdcffbe6d 3460 }
mjr 58:523fdcffbe6d 3461
mjr 58:523fdcffbe6d 3462 void initFilter()
mjr 58:523fdcffbe6d 3463 {
mjr 58:523fdcffbe6d 3464 filterSum = 0;
mjr 58:523fdcffbe6d 3465 filterN = 1;
mjr 58:523fdcffbe6d 3466 filterDir = 0x5555;
mjr 58:523fdcffbe6d 3467 }
mjr 58:523fdcffbe6d 3468 int64_t filterSum;
mjr 58:523fdcffbe6d 3469 int64_t filterN;
mjr 58:523fdcffbe6d 3470 uint16_t filterDir;
mjr 58:523fdcffbe6d 3471
mjr 58:523fdcffbe6d 3472
mjr 52:8298b2a73eb2 3473 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 3474 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 3475 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 3476 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 3477 // 0 = waiting to settle
mjr 52:8298b2a73eb2 3478 // 1 = at rest
mjr 52:8298b2a73eb2 3479 // 2 = retracting
mjr 52:8298b2a73eb2 3480 // 3 = possibly releasing
mjr 52:8298b2a73eb2 3481 uint8_t calState;
mjr 52:8298b2a73eb2 3482
mjr 52:8298b2a73eb2 3483 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 3484 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 3485 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 3486 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 3487 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 3488 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 3489 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 3490 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 3491 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 3492 long calZeroPosSum;
mjr 52:8298b2a73eb2 3493 int calZeroPosN;
mjr 52:8298b2a73eb2 3494
mjr 52:8298b2a73eb2 3495 // Calibration release time statistics.
mjr 52:8298b2a73eb2 3496 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 3497 long calRlsTimeSum;
mjr 52:8298b2a73eb2 3498 int calRlsTimeN;
mjr 52:8298b2a73eb2 3499
mjr 48:058ace2aed1d 3500 // set a firing mode
mjr 48:058ace2aed1d 3501 inline void firingMode(int m)
mjr 48:058ace2aed1d 3502 {
mjr 48:058ace2aed1d 3503 firing = m;
mjr 48:058ace2aed1d 3504 }
mjr 48:058ace2aed1d 3505
mjr 48:058ace2aed1d 3506 // Find the most recent local maximum in the history data, up to
mjr 48:058ace2aed1d 3507 // the given time limit.
mjr 48:058ace2aed1d 3508 int histLocalMax(uint32_t tcur, uint32_t dt)
mjr 48:058ace2aed1d 3509 {
mjr 48:058ace2aed1d 3510 // start with the prior entry
mjr 48:058ace2aed1d 3511 int idx = (histIdx == 0 ? countof(hist) : histIdx) - 1;
mjr 48:058ace2aed1d 3512 int hi = hist[idx].pos;
mjr 48:058ace2aed1d 3513
mjr 48:058ace2aed1d 3514 // scan backwards for a local maximum
mjr 48:058ace2aed1d 3515 for (int n = countof(hist) - 1 ; n > 0 ; idx = (idx == 0 ? countof(hist) : idx) - 1)
mjr 48:058ace2aed1d 3516 {
mjr 48:058ace2aed1d 3517 // if this isn't within the time window, stop
mjr 48:058ace2aed1d 3518 if (uint32_t(tcur - hist[idx].t) > dt)
mjr 48:058ace2aed1d 3519 break;
mjr 48:058ace2aed1d 3520
mjr 48:058ace2aed1d 3521 // if this isn't above the current hith, stop
mjr 48:058ace2aed1d 3522 if (hist[idx].pos < hi)
mjr 48:058ace2aed1d 3523 break;
mjr 48:058ace2aed1d 3524
mjr 48:058ace2aed1d 3525 // this is the new high
mjr 48:058ace2aed1d 3526 hi = hist[idx].pos;
mjr 48:058ace2aed1d 3527 }
mjr 48:058ace2aed1d 3528
mjr 48:058ace2aed1d 3529 // return the local maximum
mjr 48:058ace2aed1d 3530 return hi;
mjr 48:058ace2aed1d 3531 }
mjr 48:058ace2aed1d 3532
mjr 50:40015764bbe6 3533 // velocity at previous reading, and the one before that
mjr 50:40015764bbe6 3534 float vprv, vprv2;
mjr 48:058ace2aed1d 3535
mjr 48:058ace2aed1d 3536 // Circular buffer of recent readings. We keep a short history
mjr 48:058ace2aed1d 3537 // of readings to analyze during firing events. We can only identify
mjr 48:058ace2aed1d 3538 // a firing event once it's somewhat under way, so we need a little
mjr 48:058ace2aed1d 3539 // retrospective information to accurately determine after the fact
mjr 48:058ace2aed1d 3540 // exactly when it started. We throttle our readings to no more
mjr 48:058ace2aed1d 3541 // than one every 2ms, so we have at least N*2ms of history in this
mjr 48:058ace2aed1d 3542 // array.
mjr 50:40015764bbe6 3543 PlungerReading hist[25];
mjr 48:058ace2aed1d 3544 int histIdx;
mjr 49:37bd97eb7688 3545
mjr 50:40015764bbe6 3546 // get the nth history item (0=last, 1=2nd to last, etc)
mjr 50:40015764bbe6 3547 const PlungerReading &nthHist(int n) const
mjr 50:40015764bbe6 3548 {
mjr 50:40015764bbe6 3549 // histIdx-1 is the last written; go from there
mjr 50:40015764bbe6 3550 n = histIdx - 1 - n;
mjr 50:40015764bbe6 3551
mjr 50:40015764bbe6 3552 // adjust for wrapping
mjr 50:40015764bbe6 3553 if (n < 0)
mjr 50:40015764bbe6 3554 n += countof(hist);
mjr 50:40015764bbe6 3555
mjr 50:40015764bbe6 3556 // return the item
mjr 50:40015764bbe6 3557 return hist[n];
mjr 50:40015764bbe6 3558 }
mjr 48:058ace2aed1d 3559
mjr 48:058ace2aed1d 3560 // Firing event state.
mjr 48:058ace2aed1d 3561 //
mjr 48:058ace2aed1d 3562 // 0 - Default state. We report the real instantaneous plunger
mjr 48:058ace2aed1d 3563 // position to the joystick interface.
mjr 48:058ace2aed1d 3564 //
mjr 53:9b2611964afc 3565 // 1 - Moving forward
mjr 48:058ace2aed1d 3566 //
mjr 53:9b2611964afc 3567 // 2 - Accelerating
mjr 48:058ace2aed1d 3568 //
mjr 53:9b2611964afc 3569 // 3 - Firing. We report the rest position for a minimum interval,
mjr 53:9b2611964afc 3570 // or until the real plunger comes to rest somewhere.
mjr 48:058ace2aed1d 3571 //
mjr 48:058ace2aed1d 3572 int firing;
mjr 48:058ace2aed1d 3573
mjr 51:57eb311faafa 3574 // Position/timestamp at start of firing phase 1. When we see a
mjr 51:57eb311faafa 3575 // sustained forward acceleration, we freeze joystick reports at
mjr 51:57eb311faafa 3576 // the recent local maximum, on the assumption that this was the
mjr 51:57eb311faafa 3577 // start of the release. If this is zero, it means that we're
mjr 51:57eb311faafa 3578 // monitoring accelerating motion but haven't seen it for long
mjr 51:57eb311faafa 3579 // enough yet to be confident that a release is in progress.
mjr 48:058ace2aed1d 3580 PlungerReading f1;
mjr 48:058ace2aed1d 3581
mjr 48:058ace2aed1d 3582 // Position/timestamp at start of firing phase 2. The position is
mjr 48:058ace2aed1d 3583 // the fake "bounce" position we report during this phase, and the
mjr 48:058ace2aed1d 3584 // timestamp tells us when the phase began so that we can end it
mjr 48:058ace2aed1d 3585 // after enough time elapses.
mjr 48:058ace2aed1d 3586 PlungerReading f2;
mjr 48:058ace2aed1d 3587
mjr 48:058ace2aed1d 3588 // Position/timestamp of start of stability window during phase 3.
mjr 48:058ace2aed1d 3589 // We use this to determine when the plunger comes to rest. We set
mjr 51:57eb311faafa 3590 // this at the beginning of phase 3, and then reset it when the
mjr 48:058ace2aed1d 3591 // plunger moves too far from the last position.
mjr 48:058ace2aed1d 3592 PlungerReading f3s;
mjr 48:058ace2aed1d 3593
mjr 48:058ace2aed1d 3594 // Position/timestamp of start of retraction window during phase 3.
mjr 48:058ace2aed1d 3595 // We use this to determine if the user is drawing the plunger back.
mjr 48:058ace2aed1d 3596 // If we see retraction motion for more than about 65ms, we assume
mjr 48:058ace2aed1d 3597 // that the user has taken over, because we should see forward
mjr 48:058ace2aed1d 3598 // motion within this timeframe if the plunger is just bouncing
mjr 48:058ace2aed1d 3599 // freely.
mjr 48:058ace2aed1d 3600 PlungerReading f3r;
mjr 48:058ace2aed1d 3601
mjr 58:523fdcffbe6d 3602 // next raw (unfiltered) Z value to report to the joystick interface
mjr 58:523fdcffbe6d 3603 // (in joystick distance units)
mjr 48:058ace2aed1d 3604 int z;
mjr 48:058ace2aed1d 3605
mjr 48:058ace2aed1d 3606 // velocity of this reading (joystick distance units per microsecond)
mjr 48:058ace2aed1d 3607 float vz;
mjr 58:523fdcffbe6d 3608
mjr 58:523fdcffbe6d 3609 // next filtered Z value to report to the joystick interface
mjr 58:523fdcffbe6d 3610 int zf;
mjr 48:058ace2aed1d 3611 };
mjr 48:058ace2aed1d 3612
mjr 48:058ace2aed1d 3613 // plunger reader singleton
mjr 48:058ace2aed1d 3614 PlungerReader plungerReader;
mjr 48:058ace2aed1d 3615
mjr 48:058ace2aed1d 3616 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 3617 //
mjr 48:058ace2aed1d 3618 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 3619 //
mjr 48:058ace2aed1d 3620 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 3621 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 3622 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 3623 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 3624 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 3625 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 3626 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 3627 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 3628 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 3629 //
mjr 48:058ace2aed1d 3630 // This feature has two configuration components:
mjr 48:058ace2aed1d 3631 //
mjr 48:058ace2aed1d 3632 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 3633 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 3634 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 3635 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 3636 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 3637 // plunger/launch button connection.
mjr 48:058ace2aed1d 3638 //
mjr 48:058ace2aed1d 3639 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 3640 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 3641 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 3642 // position.
mjr 48:058ace2aed1d 3643 //
mjr 48:058ace2aed1d 3644 class ZBLaunchBall
mjr 48:058ace2aed1d 3645 {
mjr 48:058ace2aed1d 3646 public:
mjr 48:058ace2aed1d 3647 ZBLaunchBall()
mjr 48:058ace2aed1d 3648 {
mjr 48:058ace2aed1d 3649 // start in the default state
mjr 48:058ace2aed1d 3650 lbState = 0;
mjr 53:9b2611964afc 3651 btnState = false;
mjr 48:058ace2aed1d 3652 }
mjr 48:058ace2aed1d 3653
mjr 48:058ace2aed1d 3654 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 3655 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 3656 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 3657 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 3658 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 3659 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 3660 void update()
mjr 48:058ace2aed1d 3661 {
mjr 53:9b2611964afc 3662 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 3663 // plunger firing event
mjr 53:9b2611964afc 3664 if (zbLaunchOn)
mjr 48:058ace2aed1d 3665 {
mjr 53:9b2611964afc 3666 // note the new position
mjr 48:058ace2aed1d 3667 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 3668
mjr 53:9b2611964afc 3669 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 3670 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 3671
mjr 53:9b2611964afc 3672 // check the state
mjr 48:058ace2aed1d 3673 switch (lbState)
mjr 48:058ace2aed1d 3674 {
mjr 48:058ace2aed1d 3675 case 0:
mjr 53:9b2611964afc 3676 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 3677 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 3678 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 3679 // the button.
mjr 53:9b2611964afc 3680 if (plungerReader.isFiring())
mjr 53:9b2611964afc 3681 {
mjr 53:9b2611964afc 3682 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 3683 lbTimer.reset();
mjr 53:9b2611964afc 3684 lbTimer.start();
mjr 53:9b2611964afc 3685 setButton(true);
mjr 53:9b2611964afc 3686
mjr 53:9b2611964afc 3687 // switch to state 1
mjr 53:9b2611964afc 3688 lbState = 1;
mjr 53:9b2611964afc 3689 }
mjr 48:058ace2aed1d 3690 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 3691 {
mjr 53:9b2611964afc 3692 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 3693 // button as long as we're pushed forward
mjr 53:9b2611964afc 3694 setButton(true);
mjr 53:9b2611964afc 3695 }
mjr 53:9b2611964afc 3696 else
mjr 53:9b2611964afc 3697 {
mjr 53:9b2611964afc 3698 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 3699 setButton(false);
mjr 53:9b2611964afc 3700 }
mjr 48:058ace2aed1d 3701 break;
mjr 48:058ace2aed1d 3702
mjr 48:058ace2aed1d 3703 case 1:
mjr 53:9b2611964afc 3704 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 3705 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 3706 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 3707 {
mjr 53:9b2611964afc 3708 // timer expired - turn off the button
mjr 53:9b2611964afc 3709 setButton(false);
mjr 53:9b2611964afc 3710
mjr 53:9b2611964afc 3711 // switch to state 2
mjr 53:9b2611964afc 3712 lbState = 2;
mjr 53:9b2611964afc 3713 }
mjr 48:058ace2aed1d 3714 break;
mjr 48:058ace2aed1d 3715
mjr 48:058ace2aed1d 3716 case 2:
mjr 53:9b2611964afc 3717 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 3718 // plunger launch event to end.
mjr 53:9b2611964afc 3719 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 3720 {
mjr 53:9b2611964afc 3721 // firing event done - return to default state
mjr 53:9b2611964afc 3722 lbState = 0;
mjr 53:9b2611964afc 3723 }
mjr 48:058ace2aed1d 3724 break;
mjr 48:058ace2aed1d 3725 }
mjr 53:9b2611964afc 3726 }
mjr 53:9b2611964afc 3727 else
mjr 53:9b2611964afc 3728 {
mjr 53:9b2611964afc 3729 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 3730 setButton(false);
mjr 48:058ace2aed1d 3731
mjr 53:9b2611964afc 3732 // return to the default state
mjr 53:9b2611964afc 3733 lbState = 0;
mjr 48:058ace2aed1d 3734 }
mjr 48:058ace2aed1d 3735 }
mjr 53:9b2611964afc 3736
mjr 53:9b2611964afc 3737 // Set the button state
mjr 53:9b2611964afc 3738 void setButton(bool on)
mjr 53:9b2611964afc 3739 {
mjr 53:9b2611964afc 3740 if (btnState != on)
mjr 53:9b2611964afc 3741 {
mjr 53:9b2611964afc 3742 // remember the new state
mjr 53:9b2611964afc 3743 btnState = on;
mjr 53:9b2611964afc 3744
mjr 53:9b2611964afc 3745 // update the virtual button state
mjr 53:9b2611964afc 3746 buttonState[ZBL_BUTTON].virtPress(on);
mjr 53:9b2611964afc 3747 }
mjr 53:9b2611964afc 3748 }
mjr 53:9b2611964afc 3749
mjr 48:058ace2aed1d 3750 private:
mjr 48:058ace2aed1d 3751 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 3752 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 3753 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 3754 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 3755 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 3756 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 3757 //
mjr 48:058ace2aed1d 3758 // States:
mjr 48:058ace2aed1d 3759 // 0 = default
mjr 53:9b2611964afc 3760 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 3761 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 3762 // firing event to end)
mjr 53:9b2611964afc 3763 uint8_t lbState;
mjr 48:058ace2aed1d 3764
mjr 53:9b2611964afc 3765 // button state
mjr 53:9b2611964afc 3766 bool btnState;
mjr 48:058ace2aed1d 3767
mjr 48:058ace2aed1d 3768 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 3769 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 3770 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 3771 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 3772 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 3773 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 3774 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 3775 Timer lbTimer;
mjr 48:058ace2aed1d 3776 };
mjr 48:058ace2aed1d 3777
mjr 35:e959ffba78fd 3778 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3779 //
mjr 35:e959ffba78fd 3780 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 3781 //
mjr 54:fd77a6b2f76c 3782 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 3783 {
mjr 35:e959ffba78fd 3784 // disconnect from USB
mjr 54:fd77a6b2f76c 3785 if (disconnect)
mjr 54:fd77a6b2f76c 3786 js.disconnect();
mjr 35:e959ffba78fd 3787
mjr 35:e959ffba78fd 3788 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 3789 wait_us(pause_us);
mjr 35:e959ffba78fd 3790
mjr 35:e959ffba78fd 3791 // reset the device
mjr 35:e959ffba78fd 3792 NVIC_SystemReset();
mjr 35:e959ffba78fd 3793 while (true) { }
mjr 35:e959ffba78fd 3794 }
mjr 35:e959ffba78fd 3795
mjr 35:e959ffba78fd 3796 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3797 //
mjr 35:e959ffba78fd 3798 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 3799 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 3800 //
mjr 35:e959ffba78fd 3801 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 3802 {
mjr 35:e959ffba78fd 3803 int tmp;
mjr 35:e959ffba78fd 3804 switch (cfg.orientation)
mjr 35:e959ffba78fd 3805 {
mjr 35:e959ffba78fd 3806 case OrientationFront:
mjr 35:e959ffba78fd 3807 tmp = x;
mjr 35:e959ffba78fd 3808 x = y;
mjr 35:e959ffba78fd 3809 y = tmp;
mjr 35:e959ffba78fd 3810 break;
mjr 35:e959ffba78fd 3811
mjr 35:e959ffba78fd 3812 case OrientationLeft:
mjr 35:e959ffba78fd 3813 x = -x;
mjr 35:e959ffba78fd 3814 break;
mjr 35:e959ffba78fd 3815
mjr 35:e959ffba78fd 3816 case OrientationRight:
mjr 35:e959ffba78fd 3817 y = -y;
mjr 35:e959ffba78fd 3818 break;
mjr 35:e959ffba78fd 3819
mjr 35:e959ffba78fd 3820 case OrientationRear:
mjr 35:e959ffba78fd 3821 tmp = -x;
mjr 35:e959ffba78fd 3822 x = -y;
mjr 35:e959ffba78fd 3823 y = tmp;
mjr 35:e959ffba78fd 3824 break;
mjr 35:e959ffba78fd 3825 }
mjr 35:e959ffba78fd 3826 }
mjr 35:e959ffba78fd 3827
mjr 35:e959ffba78fd 3828 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3829 //
mjr 35:e959ffba78fd 3830 // Calibration button state:
mjr 35:e959ffba78fd 3831 // 0 = not pushed
mjr 35:e959ffba78fd 3832 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 3833 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 3834 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 3835 int calBtnState = 0;
mjr 35:e959ffba78fd 3836
mjr 35:e959ffba78fd 3837 // calibration button debounce timer
mjr 35:e959ffba78fd 3838 Timer calBtnTimer;
mjr 35:e959ffba78fd 3839
mjr 35:e959ffba78fd 3840 // calibration button light state
mjr 35:e959ffba78fd 3841 int calBtnLit = false;
mjr 35:e959ffba78fd 3842
mjr 35:e959ffba78fd 3843
mjr 35:e959ffba78fd 3844 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3845 //
mjr 40:cc0d9814522b 3846 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 3847 //
mjr 40:cc0d9814522b 3848
mjr 40:cc0d9814522b 3849 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 3850 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 3851 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 3852 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 53:9b2611964afc 3853 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 3854 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 40:cc0d9814522b 3855 #define v_func configVarSet
mjr 40:cc0d9814522b 3856 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 3857
mjr 40:cc0d9814522b 3858 // redefine everything for the SET messages
mjr 40:cc0d9814522b 3859 #undef if_msg_valid
mjr 40:cc0d9814522b 3860 #undef v_byte
mjr 40:cc0d9814522b 3861 #undef v_ui16
mjr 40:cc0d9814522b 3862 #undef v_pin
mjr 53:9b2611964afc 3863 #undef v_byte_ro
mjr 40:cc0d9814522b 3864 #undef v_func
mjr 38:091e511ce8a0 3865
mjr 40:cc0d9814522b 3866 // Handle GET messages - read variable values and return in USB message daa
mjr 40:cc0d9814522b 3867 #define if_msg_valid(test)
mjr 53:9b2611964afc 3868 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 3869 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 3870 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 3871 #define v_byte_ro(val, ofs) data[ofs] = val
mjr 40:cc0d9814522b 3872 #define v_func configVarGet
mjr 40:cc0d9814522b 3873 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 3874
mjr 35:e959ffba78fd 3875
mjr 35:e959ffba78fd 3876 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 3877 //
mjr 35:e959ffba78fd 3878 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 3879 // LedWiz protocol.
mjr 33:d832bcab089e 3880 //
mjr 48:058ace2aed1d 3881 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js)
mjr 35:e959ffba78fd 3882 {
mjr 38:091e511ce8a0 3883 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 3884 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 3885 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 3886 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 3887 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 3888 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 3889 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 3890 // So our full protocol is as follows:
mjr 38:091e511ce8a0 3891 //
mjr 38:091e511ce8a0 3892 // first byte =
mjr 38:091e511ce8a0 3893 // 0-48 -> LWZ-PBA
mjr 38:091e511ce8a0 3894 // 64 -> LWZ SBA
mjr 38:091e511ce8a0 3895 // 65 -> private control message; second byte specifies subtype
mjr 38:091e511ce8a0 3896 // 129-132 -> LWZ-PBA
mjr 38:091e511ce8a0 3897 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 3898 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 3899 // other -> reserved for future use
mjr 38:091e511ce8a0 3900 //
mjr 39:b3815a1c3802 3901 uint8_t *data = lwm.data;
mjr 38:091e511ce8a0 3902 if (data[0] == 64)
mjr 35:e959ffba78fd 3903 {
mjr 38:091e511ce8a0 3904 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 38:091e511ce8a0 3905 // for the outputs; 5th byte is the pulse speed (1-7)
mjr 38:091e511ce8a0 3906 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 38:091e511ce8a0 3907 // data[1], data[2], data[3], data[4], data[5]);
mjr 38:091e511ce8a0 3908
mjr 63:5cd1a5f3a41b 3909 // switch to LedWiz protocol mode
mjr 63:5cd1a5f3a41b 3910 ledWizMode = true;
mjr 63:5cd1a5f3a41b 3911
mjr 38:091e511ce8a0 3912 // update all on/off states
mjr 38:091e511ce8a0 3913 for (int i = 0, bit = 1, ri = 1 ; i < numLwOutputs ; ++i, bit <<= 1)
mjr 35:e959ffba78fd 3914 {
mjr 38:091e511ce8a0 3915 // figure the on/off state bit for this output
mjr 38:091e511ce8a0 3916 if (bit == 0x100) {
mjr 38:091e511ce8a0 3917 bit = 1;
mjr 38:091e511ce8a0 3918 ++ri;
mjr 35:e959ffba78fd 3919 }
mjr 35:e959ffba78fd 3920
mjr 38:091e511ce8a0 3921 // set the on/off state
mjr 38:091e511ce8a0 3922 wizOn[i] = ((data[ri] & bit) != 0);
mjr 38:091e511ce8a0 3923 }
mjr 38:091e511ce8a0 3924
mjr 38:091e511ce8a0 3925 // set the flash speed - enforce the value range 1-7
mjr 38:091e511ce8a0 3926 wizSpeed = data[5];
mjr 38:091e511ce8a0 3927 if (wizSpeed < 1)
mjr 38:091e511ce8a0 3928 wizSpeed = 1;
mjr 38:091e511ce8a0 3929 else if (wizSpeed > 7)
mjr 38:091e511ce8a0 3930 wizSpeed = 7;
mjr 38:091e511ce8a0 3931
mjr 38:091e511ce8a0 3932 // update the physical outputs
mjr 38:091e511ce8a0 3933 updateWizOuts();
mjr 38:091e511ce8a0 3934 if (hc595 != 0)
mjr 38:091e511ce8a0 3935 hc595->update();
mjr 38:091e511ce8a0 3936
mjr 38:091e511ce8a0 3937 // reset the PBA counter
mjr 38:091e511ce8a0 3938 pbaIdx = 0;
mjr 38:091e511ce8a0 3939 }
mjr 38:091e511ce8a0 3940 else if (data[0] == 65)
mjr 38:091e511ce8a0 3941 {
mjr 38:091e511ce8a0 3942 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 3943 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 3944 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 3945 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 3946 // message type.
mjr 39:b3815a1c3802 3947 switch (data[1])
mjr 38:091e511ce8a0 3948 {
mjr 39:b3815a1c3802 3949 case 0:
mjr 39:b3815a1c3802 3950 // No Op
mjr 39:b3815a1c3802 3951 break;
mjr 39:b3815a1c3802 3952
mjr 39:b3815a1c3802 3953 case 1:
mjr 38:091e511ce8a0 3954 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 3955 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 3956 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 3957 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 3958 {
mjr 39:b3815a1c3802 3959
mjr 39:b3815a1c3802 3960 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 3961 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 3962 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 3963
mjr 39:b3815a1c3802 3964 // we'll need a reset if the LedWiz unit number is changing
mjr 39:b3815a1c3802 3965 bool needReset = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 3966
mjr 39:b3815a1c3802 3967 // set the configuration parameters from the message
mjr 39:b3815a1c3802 3968 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 3969 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 3970
mjr 39:b3815a1c3802 3971 // save the configuration
mjr 39:b3815a1c3802 3972 saveConfigToFlash();
mjr 39:b3815a1c3802 3973
mjr 39:b3815a1c3802 3974 // reboot if necessary
mjr 39:b3815a1c3802 3975 if (needReset)
mjr 39:b3815a1c3802 3976 reboot(js);
mjr 39:b3815a1c3802 3977 }
mjr 39:b3815a1c3802 3978 break;
mjr 38:091e511ce8a0 3979
mjr 39:b3815a1c3802 3980 case 2:
mjr 38:091e511ce8a0 3981 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 3982 // (No parameters)
mjr 38:091e511ce8a0 3983
mjr 38:091e511ce8a0 3984 // enter calibration mode
mjr 38:091e511ce8a0 3985 calBtnState = 3;
mjr 52:8298b2a73eb2 3986 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 3987 calBtnTimer.reset();
mjr 39:b3815a1c3802 3988 break;
mjr 39:b3815a1c3802 3989
mjr 39:b3815a1c3802 3990 case 3:
mjr 52:8298b2a73eb2 3991 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 3992 // data[2] = flag bits
mjr 53:9b2611964afc 3993 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 3994 reportPlungerStat = true;
mjr 53:9b2611964afc 3995 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 3996 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 3997
mjr 38:091e511ce8a0 3998 // show purple until we finish sending the report
mjr 38:091e511ce8a0 3999 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 4000 break;
mjr 39:b3815a1c3802 4001
mjr 39:b3815a1c3802 4002 case 4:
mjr 38:091e511ce8a0 4003 // 4 = hardware configuration query
mjr 38:091e511ce8a0 4004 // (No parameters)
mjr 38:091e511ce8a0 4005 js.reportConfig(
mjr 38:091e511ce8a0 4006 numOutputs,
mjr 38:091e511ce8a0 4007 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 4008 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 40:cc0d9814522b 4009 nvm.valid());
mjr 39:b3815a1c3802 4010 break;
mjr 39:b3815a1c3802 4011
mjr 39:b3815a1c3802 4012 case 5:
mjr 38:091e511ce8a0 4013 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 4014 allOutputsOff();
mjr 39:b3815a1c3802 4015 break;
mjr 39:b3815a1c3802 4016
mjr 39:b3815a1c3802 4017 case 6:
mjr 38:091e511ce8a0 4018 // 6 = Save configuration to flash.
mjr 38:091e511ce8a0 4019 saveConfigToFlash();
mjr 38:091e511ce8a0 4020
mjr 53:9b2611964afc 4021 // before disconnecting, pause for the delay time specified in
mjr 53:9b2611964afc 4022 // the parameter byte (in seconds)
mjr 53:9b2611964afc 4023 rebootTime_us = data[2] * 1000000L;
mjr 53:9b2611964afc 4024 rebootTimer.start();
mjr 39:b3815a1c3802 4025 break;
mjr 40:cc0d9814522b 4026
mjr 40:cc0d9814522b 4027 case 7:
mjr 40:cc0d9814522b 4028 // 7 = Device ID report
mjr 53:9b2611964afc 4029 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 4030 js.reportID(data[2]);
mjr 40:cc0d9814522b 4031 break;
mjr 40:cc0d9814522b 4032
mjr 40:cc0d9814522b 4033 case 8:
mjr 40:cc0d9814522b 4034 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 4035 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 4036 setNightMode(data[2]);
mjr 40:cc0d9814522b 4037 break;
mjr 52:8298b2a73eb2 4038
mjr 52:8298b2a73eb2 4039 case 9:
mjr 52:8298b2a73eb2 4040 // 9 = Config variable query.
mjr 52:8298b2a73eb2 4041 // data[2] = config var ID
mjr 52:8298b2a73eb2 4042 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 4043 {
mjr 53:9b2611964afc 4044 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 4045 // the rest of the buffer
mjr 52:8298b2a73eb2 4046 uint8_t reply[8];
mjr 52:8298b2a73eb2 4047 reply[1] = data[2];
mjr 52:8298b2a73eb2 4048 reply[2] = data[3];
mjr 53:9b2611964afc 4049 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 4050
mjr 52:8298b2a73eb2 4051 // query the value
mjr 52:8298b2a73eb2 4052 configVarGet(reply);
mjr 52:8298b2a73eb2 4053
mjr 52:8298b2a73eb2 4054 // send the reply
mjr 52:8298b2a73eb2 4055 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 4056 }
mjr 52:8298b2a73eb2 4057 break;
mjr 53:9b2611964afc 4058
mjr 53:9b2611964afc 4059 case 10:
mjr 53:9b2611964afc 4060 // 10 = Build ID query.
mjr 53:9b2611964afc 4061 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 4062 break;
mjr 38:091e511ce8a0 4063 }
mjr 38:091e511ce8a0 4064 }
mjr 38:091e511ce8a0 4065 else if (data[0] == 66)
mjr 38:091e511ce8a0 4066 {
mjr 38:091e511ce8a0 4067 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 4068 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 4069 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 4070 // in a variable-dependent format.
mjr 40:cc0d9814522b 4071 configVarSet(data);
mjr 38:091e511ce8a0 4072 }
mjr 38:091e511ce8a0 4073 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 4074 {
mjr 38:091e511ce8a0 4075 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 4076 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 4077 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 4078 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 4079 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 4080 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 4081 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 4082 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 4083 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 4084 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 4085 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 4086 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 4087 //
mjr 38:091e511ce8a0 4088 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 4089 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 4090 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 4091 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 4092 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 4093 // address those ports anyway.
mjr 63:5cd1a5f3a41b 4094
mjr 63:5cd1a5f3a41b 4095 // flag that we're in extended protocol mode
mjr 63:5cd1a5f3a41b 4096 ledWizMode = false;
mjr 63:5cd1a5f3a41b 4097
mjr 63:5cd1a5f3a41b 4098 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 4099 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 4100 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 4101
mjr 63:5cd1a5f3a41b 4102 // update each port
mjr 38:091e511ce8a0 4103 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 4104 {
mjr 38:091e511ce8a0 4105 // set the brightness level for the output
mjr 40:cc0d9814522b 4106 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 4107 outLevel[i] = b;
mjr 38:091e511ce8a0 4108
mjr 38:091e511ce8a0 4109 // set the output
mjr 40:cc0d9814522b 4110 lwPin[i]->set(b);
mjr 38:091e511ce8a0 4111 }
mjr 38:091e511ce8a0 4112
mjr 38:091e511ce8a0 4113 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 4114 if (hc595 != 0)
mjr 38:091e511ce8a0 4115 hc595->update();
mjr 38:091e511ce8a0 4116 }
mjr 38:091e511ce8a0 4117 else
mjr 38:091e511ce8a0 4118 {
mjr 38:091e511ce8a0 4119 // Everything else is LWZ-PBA. This is a full "profile"
mjr 38:091e511ce8a0 4120 // dump from the host for one bank of 8 outputs. Each
mjr 38:091e511ce8a0 4121 // byte sets one output in the current bank. The current
mjr 38:091e511ce8a0 4122 // bank is implied; the bank starts at 0 and is reset to 0
mjr 38:091e511ce8a0 4123 // by any LWZ-SBA message, and is incremented to the next
mjr 38:091e511ce8a0 4124 // bank by each LWZ-PBA message. Our variable pbaIdx keeps
mjr 38:091e511ce8a0 4125 // track of our notion of the current bank. There's no direct
mjr 38:091e511ce8a0 4126 // way for the host to select the bank; it just has to count
mjr 38:091e511ce8a0 4127 // on us staying in sync. In practice, the host will always
mjr 38:091e511ce8a0 4128 // send a full set of 4 PBA messages in a row to set all 32
mjr 38:091e511ce8a0 4129 // outputs.
mjr 38:091e511ce8a0 4130 //
mjr 38:091e511ce8a0 4131 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 4132 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 4133 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 4134 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 4135 // protocol mode.
mjr 38:091e511ce8a0 4136 //
mjr 38:091e511ce8a0 4137 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 4138 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 4139
mjr 63:5cd1a5f3a41b 4140 // flag that we received an LedWiz message
mjr 63:5cd1a5f3a41b 4141 ledWizMode = true;
mjr 63:5cd1a5f3a41b 4142
mjr 38:091e511ce8a0 4143 // Update all output profile settings
mjr 38:091e511ce8a0 4144 for (int i = 0 ; i < 8 ; ++i)
mjr 38:091e511ce8a0 4145 wizVal[pbaIdx + i] = data[i];
mjr 38:091e511ce8a0 4146
mjr 38:091e511ce8a0 4147 // Update the physical LED state if this is the last bank.
mjr 38:091e511ce8a0 4148 // Note that hosts always send a full set of four PBA
mjr 38:091e511ce8a0 4149 // messages, so there's no need to do a physical update
mjr 38:091e511ce8a0 4150 // until we've received the last bank's PBA message.
mjr 38:091e511ce8a0 4151 if (pbaIdx == 24)
mjr 38:091e511ce8a0 4152 {
mjr 35:e959ffba78fd 4153 updateWizOuts();
mjr 35:e959ffba78fd 4154 if (hc595 != 0)
mjr 35:e959ffba78fd 4155 hc595->update();
mjr 35:e959ffba78fd 4156 pbaIdx = 0;
mjr 35:e959ffba78fd 4157 }
mjr 38:091e511ce8a0 4158 else
mjr 38:091e511ce8a0 4159 pbaIdx += 8;
mjr 38:091e511ce8a0 4160 }
mjr 38:091e511ce8a0 4161 }
mjr 35:e959ffba78fd 4162
mjr 33:d832bcab089e 4163
mjr 38:091e511ce8a0 4164 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4165 //
mjr 5:a70c0bce770d 4166 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 4167 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 4168 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 4169 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 4170 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 4171 // port outputs.
mjr 5:a70c0bce770d 4172 //
mjr 0:5acbbe3f4cf4 4173 int main(void)
mjr 0:5acbbe3f4cf4 4174 {
mjr 60:f38da020aa13 4175 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 4176 printf("\r\nPinscape Controller starting\r\n");
mjr 60:f38da020aa13 4177
mjr 60:f38da020aa13 4178 // debugging: print memory config info
mjr 59:94eb9265b6d7 4179 // -> no longer very useful, since we use our own custom malloc/new allocator (see xmalloc() above)
mjr 60:f38da020aa13 4180 // {int *a = new int; printf("Stack=%lx, heap=%lx, free=%ld\r\n", (long)&a, (long)a, (long)&a - (long)a);}
mjr 1:d913e0afb2ac 4181
mjr 39:b3815a1c3802 4182 // clear the I2C bus (for the accelerometer)
mjr 35:e959ffba78fd 4183 clear_i2c();
mjr 38:091e511ce8a0 4184
mjr 43:7a6364d82a41 4185 // load the saved configuration (or set factory defaults if no flash
mjr 43:7a6364d82a41 4186 // configuration has ever been saved)
mjr 35:e959ffba78fd 4187 loadConfigFromFlash();
mjr 35:e959ffba78fd 4188
mjr 38:091e511ce8a0 4189 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 4190 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 4191
mjr 33:d832bcab089e 4192 // we're not connected/awake yet
mjr 33:d832bcab089e 4193 bool connected = false;
mjr 40:cc0d9814522b 4194 Timer connectChangeTimer;
mjr 33:d832bcab089e 4195
mjr 35:e959ffba78fd 4196 // create the plunger sensor interface
mjr 35:e959ffba78fd 4197 createPlunger();
mjr 33:d832bcab089e 4198
mjr 60:f38da020aa13 4199 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 4200 init_tlc5940(cfg);
mjr 34:6b981a2afab7 4201
mjr 60:f38da020aa13 4202 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 4203 init_hc595(cfg);
mjr 6:cc35eb643e8f 4204
mjr 54:fd77a6b2f76c 4205 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 4206 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 4207 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 4208 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 4209 initLwOut(cfg);
mjr 48:058ace2aed1d 4210
mjr 60:f38da020aa13 4211 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 4212 if (tlc5940 != 0)
mjr 35:e959ffba78fd 4213 tlc5940->start();
mjr 35:e959ffba78fd 4214
mjr 40:cc0d9814522b 4215 // start the TV timer, if applicable
mjr 40:cc0d9814522b 4216 startTVTimer(cfg);
mjr 48:058ace2aed1d 4217
mjr 35:e959ffba78fd 4218 // initialize the button input ports
mjr 35:e959ffba78fd 4219 bool kbKeys = false;
mjr 35:e959ffba78fd 4220 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 4221
mjr 60:f38da020aa13 4222 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 4223 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 4224 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 4225 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 4226 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 4227 // to the joystick interface.
mjr 51:57eb311faafa 4228 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 51:57eb311faafa 4229 cfg.joystickEnabled, kbKeys);
mjr 51:57eb311faafa 4230
mjr 60:f38da020aa13 4231 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 4232 // flash pattern while waiting.
mjr 51:57eb311faafa 4233 Timer connectTimer;
mjr 51:57eb311faafa 4234 connectTimer.start();
mjr 51:57eb311faafa 4235 while (!js.configured())
mjr 51:57eb311faafa 4236 {
mjr 51:57eb311faafa 4237 // show one short yellow flash at 2-second intervals
mjr 51:57eb311faafa 4238 if (connectTimer.read_us() > 2000000)
mjr 51:57eb311faafa 4239 {
mjr 51:57eb311faafa 4240 // short yellow flash
mjr 51:57eb311faafa 4241 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 4242 wait_us(50000);
mjr 51:57eb311faafa 4243 diagLED(0, 0, 0);
mjr 51:57eb311faafa 4244
mjr 51:57eb311faafa 4245 // reset the flash timer
mjr 51:57eb311faafa 4246 connectTimer.reset();
mjr 51:57eb311faafa 4247 }
mjr 51:57eb311faafa 4248 }
mjr 60:f38da020aa13 4249
mjr 60:f38da020aa13 4250 // we're now connected to the host
mjr 54:fd77a6b2f76c 4251 connected = true;
mjr 40:cc0d9814522b 4252
mjr 60:f38da020aa13 4253 // Last report timer for the joytick interface. We use this timer to
mjr 60:f38da020aa13 4254 // throttle the report rate to a pace that's suitable for VP. Without
mjr 60:f38da020aa13 4255 // any artificial delays, we could generate data to send on the joystick
mjr 60:f38da020aa13 4256 // interface on every loop iteration. The loop iteration time depends
mjr 60:f38da020aa13 4257 // on which devices are attached, since most of the work in our main
mjr 60:f38da020aa13 4258 // loop is simply polling our devices. For typical setups, the loop
mjr 60:f38da020aa13 4259 // time ranges from about 0.25ms to 2.5ms; the biggest factor is the
mjr 60:f38da020aa13 4260 // plunger sensor. But VP polls for input about every 10ms, so there's
mjr 60:f38da020aa13 4261 // no benefit in sending data faster than that, and there's some harm,
mjr 60:f38da020aa13 4262 // in that it creates USB overhead (both on the wire and on the host
mjr 60:f38da020aa13 4263 // CPU). We therefore use this timer to pace our reports to roughly
mjr 60:f38da020aa13 4264 // the VP input polling rate. Note that there's no way to actually
mjr 60:f38da020aa13 4265 // synchronize with VP's polling, but there's also no need to, as the
mjr 60:f38da020aa13 4266 // input model is designed to reflect the overall current state at any
mjr 60:f38da020aa13 4267 // given time rather than events or deltas. If VP polls twice between
mjr 60:f38da020aa13 4268 // two updates, it simply sees no state change; if we send two updates
mjr 60:f38da020aa13 4269 // between VP polls, VP simply sees the latest state when it does get
mjr 60:f38da020aa13 4270 // around to polling.
mjr 38:091e511ce8a0 4271 Timer jsReportTimer;
mjr 38:091e511ce8a0 4272 jsReportTimer.start();
mjr 38:091e511ce8a0 4273
mjr 60:f38da020aa13 4274 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 4275 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 4276 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 4277 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 4278 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 4279 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 4280 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 4281 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 4282 Timer jsOKTimer;
mjr 38:091e511ce8a0 4283 jsOKTimer.start();
mjr 35:e959ffba78fd 4284
mjr 55:4db125cd11a0 4285 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 4286 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 4287 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 4288 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 4289 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 4290
mjr 55:4db125cd11a0 4291 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 4292 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 4293 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 4294
mjr 55:4db125cd11a0 4295 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 4296 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 4297 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 4298
mjr 35:e959ffba78fd 4299 // initialize the calibration button
mjr 1:d913e0afb2ac 4300 calBtnTimer.start();
mjr 35:e959ffba78fd 4301 calBtnState = 0;
mjr 1:d913e0afb2ac 4302
mjr 1:d913e0afb2ac 4303 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 4304 Timer hbTimer;
mjr 1:d913e0afb2ac 4305 hbTimer.start();
mjr 1:d913e0afb2ac 4306 int hb = 0;
mjr 5:a70c0bce770d 4307 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 4308
mjr 1:d913e0afb2ac 4309 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 4310 Timer acTimer;
mjr 1:d913e0afb2ac 4311 acTimer.start();
mjr 1:d913e0afb2ac 4312
mjr 0:5acbbe3f4cf4 4313 // create the accelerometer object
mjr 5:a70c0bce770d 4314 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 48:058ace2aed1d 4315
mjr 17:ab3cec0c8bf4 4316 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 4317 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 4318 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 4319
mjr 48:058ace2aed1d 4320 // initialize the plunger sensor
mjr 35:e959ffba78fd 4321 plungerSensor->init();
mjr 10:976666ffa4ef 4322
mjr 48:058ace2aed1d 4323 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 4324 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 4325
mjr 54:fd77a6b2f76c 4326 // enable the peripheral chips
mjr 54:fd77a6b2f76c 4327 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 4328 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 4329 if (hc595 != 0)
mjr 54:fd77a6b2f76c 4330 hc595->enable(true);
mjr 43:7a6364d82a41 4331
mjr 1:d913e0afb2ac 4332 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 4333 // host requests
mjr 0:5acbbe3f4cf4 4334 for (;;)
mjr 0:5acbbe3f4cf4 4335 {
mjr 48:058ace2aed1d 4336 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 4337 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 4338 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 4339 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 4340 LedWizMsg lwm;
mjr 48:058ace2aed1d 4341 Timer lwt;
mjr 48:058ace2aed1d 4342 lwt.start();
mjr 48:058ace2aed1d 4343 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 48:058ace2aed1d 4344 handleInputMsg(lwm, js);
mjr 55:4db125cd11a0 4345
mjr 55:4db125cd11a0 4346 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 4347 if (tlc5940 != 0)
mjr 55:4db125cd11a0 4348 tlc5940->send();
mjr 1:d913e0afb2ac 4349
mjr 1:d913e0afb2ac 4350 // check for plunger calibration
mjr 17:ab3cec0c8bf4 4351 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 4352 {
mjr 1:d913e0afb2ac 4353 // check the state
mjr 1:d913e0afb2ac 4354 switch (calBtnState)
mjr 0:5acbbe3f4cf4 4355 {
mjr 1:d913e0afb2ac 4356 case 0:
mjr 1:d913e0afb2ac 4357 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 4358 calBtnTimer.reset();
mjr 1:d913e0afb2ac 4359 calBtnState = 1;
mjr 1:d913e0afb2ac 4360 break;
mjr 1:d913e0afb2ac 4361
mjr 1:d913e0afb2ac 4362 case 1:
mjr 1:d913e0afb2ac 4363 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 4364 // passed, start the hold period
mjr 48:058ace2aed1d 4365 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 4366 calBtnState = 2;
mjr 1:d913e0afb2ac 4367 break;
mjr 1:d913e0afb2ac 4368
mjr 1:d913e0afb2ac 4369 case 2:
mjr 1:d913e0afb2ac 4370 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 4371 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 4372 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 4373 {
mjr 1:d913e0afb2ac 4374 // enter calibration mode
mjr 1:d913e0afb2ac 4375 calBtnState = 3;
mjr 9:fd65b0a94720 4376 calBtnTimer.reset();
mjr 35:e959ffba78fd 4377
mjr 44:b5ac89b9cd5d 4378 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 4379 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 4380 }
mjr 1:d913e0afb2ac 4381 break;
mjr 2:c174f9ee414a 4382
mjr 2:c174f9ee414a 4383 case 3:
mjr 9:fd65b0a94720 4384 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 4385 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 4386 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 4387 break;
mjr 0:5acbbe3f4cf4 4388 }
mjr 0:5acbbe3f4cf4 4389 }
mjr 1:d913e0afb2ac 4390 else
mjr 1:d913e0afb2ac 4391 {
mjr 2:c174f9ee414a 4392 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 4393 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 4394 // and save the results to flash.
mjr 2:c174f9ee414a 4395 //
mjr 2:c174f9ee414a 4396 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 4397 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 4398 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 4399 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 4400 {
mjr 2:c174f9ee414a 4401 // exit calibration mode
mjr 1:d913e0afb2ac 4402 calBtnState = 0;
mjr 52:8298b2a73eb2 4403 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 4404
mjr 6:cc35eb643e8f 4405 // save the updated configuration
mjr 35:e959ffba78fd 4406 cfg.plunger.cal.calibrated = 1;
mjr 35:e959ffba78fd 4407 saveConfigToFlash();
mjr 2:c174f9ee414a 4408 }
mjr 2:c174f9ee414a 4409 else if (calBtnState != 3)
mjr 2:c174f9ee414a 4410 {
mjr 2:c174f9ee414a 4411 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 4412 calBtnState = 0;
mjr 2:c174f9ee414a 4413 }
mjr 1:d913e0afb2ac 4414 }
mjr 1:d913e0afb2ac 4415
mjr 1:d913e0afb2ac 4416 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 4417 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 4418 switch (calBtnState)
mjr 0:5acbbe3f4cf4 4419 {
mjr 1:d913e0afb2ac 4420 case 2:
mjr 1:d913e0afb2ac 4421 // in the hold period - flash the light
mjr 48:058ace2aed1d 4422 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 4423 break;
mjr 1:d913e0afb2ac 4424
mjr 1:d913e0afb2ac 4425 case 3:
mjr 1:d913e0afb2ac 4426 // calibration mode - show steady on
mjr 1:d913e0afb2ac 4427 newCalBtnLit = true;
mjr 1:d913e0afb2ac 4428 break;
mjr 1:d913e0afb2ac 4429
mjr 1:d913e0afb2ac 4430 default:
mjr 1:d913e0afb2ac 4431 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 4432 newCalBtnLit = false;
mjr 1:d913e0afb2ac 4433 break;
mjr 1:d913e0afb2ac 4434 }
mjr 3:3514575d4f86 4435
mjr 3:3514575d4f86 4436 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 4437 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 4438 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 4439 {
mjr 1:d913e0afb2ac 4440 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 4441 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 4442 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 4443 calBtnLed->write(1);
mjr 38:091e511ce8a0 4444 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 4445 }
mjr 2:c174f9ee414a 4446 else {
mjr 17:ab3cec0c8bf4 4447 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 4448 calBtnLed->write(0);
mjr 38:091e511ce8a0 4449 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 4450 }
mjr 1:d913e0afb2ac 4451 }
mjr 35:e959ffba78fd 4452
mjr 48:058ace2aed1d 4453 // read the plunger sensor
mjr 48:058ace2aed1d 4454 plungerReader.read();
mjr 48:058ace2aed1d 4455
mjr 53:9b2611964afc 4456 // update the ZB Launch Ball status
mjr 53:9b2611964afc 4457 zbLaunchBall.update();
mjr 37:ed52738445fc 4458
mjr 53:9b2611964afc 4459 // process button updates
mjr 53:9b2611964afc 4460 processButtons(cfg);
mjr 53:9b2611964afc 4461
mjr 38:091e511ce8a0 4462 // send a keyboard report if we have new data
mjr 37:ed52738445fc 4463 if (kbState.changed)
mjr 37:ed52738445fc 4464 {
mjr 38:091e511ce8a0 4465 // send a keyboard report
mjr 37:ed52738445fc 4466 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 4467 kbState.changed = false;
mjr 37:ed52738445fc 4468 }
mjr 38:091e511ce8a0 4469
mjr 38:091e511ce8a0 4470 // likewise for the media controller
mjr 37:ed52738445fc 4471 if (mediaState.changed)
mjr 37:ed52738445fc 4472 {
mjr 38:091e511ce8a0 4473 // send a media report
mjr 37:ed52738445fc 4474 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 4475 mediaState.changed = false;
mjr 37:ed52738445fc 4476 }
mjr 38:091e511ce8a0 4477
mjr 38:091e511ce8a0 4478 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 4479 bool jsOK = false;
mjr 55:4db125cd11a0 4480
mjr 55:4db125cd11a0 4481 // figure the current status flags for joystick reports
mjr 55:4db125cd11a0 4482 uint16_t statusFlags =
mjr 55:4db125cd11a0 4483 (cfg.plunger.enabled ? 0x01 : 0x00)
mjr 55:4db125cd11a0 4484 | (nightMode ? 0x02 : 0x00);
mjr 17:ab3cec0c8bf4 4485
mjr 50:40015764bbe6 4486 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 4487 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 4488 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 4489 // More frequent reporting would only add USB I/O overhead.
mjr 50:40015764bbe6 4490 if (cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 17:ab3cec0c8bf4 4491 {
mjr 17:ab3cec0c8bf4 4492 // read the accelerometer
mjr 17:ab3cec0c8bf4 4493 int xa, ya;
mjr 17:ab3cec0c8bf4 4494 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 4495
mjr 17:ab3cec0c8bf4 4496 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 4497 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 4498 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 4499 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 4500 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 4501
mjr 17:ab3cec0c8bf4 4502 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 4503 x = xa;
mjr 17:ab3cec0c8bf4 4504 y = ya;
mjr 17:ab3cec0c8bf4 4505
mjr 48:058ace2aed1d 4506 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 4507 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 4508 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 4509 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 4510 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 4511 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 4512 // regular plunger inputs.
mjr 48:058ace2aed1d 4513 int z = plungerReader.getPosition();
mjr 53:9b2611964afc 4514 int zrep = (!cfg.plunger.enabled || zbLaunchOn ? 0 : z);
mjr 35:e959ffba78fd 4515
mjr 35:e959ffba78fd 4516 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 4517 accelRotate(x, y);
mjr 35:e959ffba78fd 4518
mjr 35:e959ffba78fd 4519 // send the joystick report
mjr 53:9b2611964afc 4520 jsOK = js.update(x, y, zrep, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 4521
mjr 17:ab3cec0c8bf4 4522 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 4523 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 4524 }
mjr 21:5048e16cc9ef 4525
mjr 52:8298b2a73eb2 4526 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 4527 if (reportPlungerStat)
mjr 10:976666ffa4ef 4528 {
mjr 17:ab3cec0c8bf4 4529 // send the report
mjr 53:9b2611964afc 4530 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 4531
mjr 10:976666ffa4ef 4532 // we have satisfied this request
mjr 52:8298b2a73eb2 4533 reportPlungerStat = false;
mjr 10:976666ffa4ef 4534 }
mjr 10:976666ffa4ef 4535
mjr 35:e959ffba78fd 4536 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 4537 // periodically for the sake of the Windows config tool.
mjr 55:4db125cd11a0 4538 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 5000)
mjr 21:5048e16cc9ef 4539 {
mjr 55:4db125cd11a0 4540 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 4541 jsReportTimer.reset();
mjr 38:091e511ce8a0 4542 }
mjr 38:091e511ce8a0 4543
mjr 38:091e511ce8a0 4544 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 4545 if (jsOK)
mjr 38:091e511ce8a0 4546 {
mjr 38:091e511ce8a0 4547 jsOKTimer.reset();
mjr 38:091e511ce8a0 4548 jsOKTimer.start();
mjr 21:5048e16cc9ef 4549 }
mjr 21:5048e16cc9ef 4550
mjr 6:cc35eb643e8f 4551 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 4552 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 4553 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 4554 #endif
mjr 6:cc35eb643e8f 4555
mjr 33:d832bcab089e 4556 // check for connection status changes
mjr 54:fd77a6b2f76c 4557 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 4558 if (newConnected != connected)
mjr 33:d832bcab089e 4559 {
mjr 54:fd77a6b2f76c 4560 // give it a moment to stabilize
mjr 40:cc0d9814522b 4561 connectChangeTimer.start();
mjr 55:4db125cd11a0 4562 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 4563 {
mjr 33:d832bcab089e 4564 // note the new status
mjr 33:d832bcab089e 4565 connected = newConnected;
mjr 40:cc0d9814522b 4566
mjr 40:cc0d9814522b 4567 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 4568 connectChangeTimer.stop();
mjr 40:cc0d9814522b 4569 connectChangeTimer.reset();
mjr 33:d832bcab089e 4570
mjr 54:fd77a6b2f76c 4571 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 4572 if (!connected)
mjr 40:cc0d9814522b 4573 {
mjr 54:fd77a6b2f76c 4574 // turn off all outputs
mjr 33:d832bcab089e 4575 allOutputsOff();
mjr 40:cc0d9814522b 4576
mjr 40:cc0d9814522b 4577 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 4578 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 4579 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 4580 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 4581 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 4582 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 4583 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 4584 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 4585 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 4586 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 4587 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 4588 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 4589 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 4590 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 4591 // the power first comes on.
mjr 40:cc0d9814522b 4592 if (tlc5940 != 0)
mjr 40:cc0d9814522b 4593 tlc5940->enable(false);
mjr 40:cc0d9814522b 4594 if (hc595 != 0)
mjr 40:cc0d9814522b 4595 hc595->enable(false);
mjr 40:cc0d9814522b 4596 }
mjr 33:d832bcab089e 4597 }
mjr 33:d832bcab089e 4598 }
mjr 48:058ace2aed1d 4599
mjr 53:9b2611964afc 4600 // if we have a reboot timer pending, check for completion
mjr 53:9b2611964afc 4601 if (rebootTimer.isRunning() && rebootTimer.read_us() > rebootTime_us)
mjr 53:9b2611964afc 4602 reboot(js);
mjr 53:9b2611964afc 4603
mjr 48:058ace2aed1d 4604 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 4605 if (!connected)
mjr 48:058ace2aed1d 4606 {
mjr 54:fd77a6b2f76c 4607 // show USB HAL debug events
mjr 54:fd77a6b2f76c 4608 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 4609 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 4610
mjr 54:fd77a6b2f76c 4611 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 4612 js.diagFlash();
mjr 54:fd77a6b2f76c 4613
mjr 54:fd77a6b2f76c 4614 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 4615 diagLED(0, 0, 0);
mjr 51:57eb311faafa 4616
mjr 51:57eb311faafa 4617 // set up a timer to monitor the reboot timeout
mjr 51:57eb311faafa 4618 Timer rebootTimer;
mjr 51:57eb311faafa 4619 rebootTimer.start();
mjr 48:058ace2aed1d 4620
mjr 54:fd77a6b2f76c 4621 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 4622 Timer diagTimer;
mjr 54:fd77a6b2f76c 4623 diagTimer.reset();
mjr 54:fd77a6b2f76c 4624 diagTimer.start();
mjr 54:fd77a6b2f76c 4625
mjr 54:fd77a6b2f76c 4626 // loop until we get our connection back
mjr 54:fd77a6b2f76c 4627 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 4628 {
mjr 54:fd77a6b2f76c 4629 // try to recover the connection
mjr 54:fd77a6b2f76c 4630 js.recoverConnection();
mjr 54:fd77a6b2f76c 4631
mjr 55:4db125cd11a0 4632 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 4633 if (tlc5940 != 0)
mjr 55:4db125cd11a0 4634 tlc5940->send();
mjr 55:4db125cd11a0 4635
mjr 54:fd77a6b2f76c 4636 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 4637 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 4638 {
mjr 54:fd77a6b2f76c 4639 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 4640 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 4641
mjr 54:fd77a6b2f76c 4642 // show diagnostic feedback
mjr 54:fd77a6b2f76c 4643 js.diagFlash();
mjr 51:57eb311faafa 4644
mjr 51:57eb311faafa 4645 // reset the flash timer
mjr 54:fd77a6b2f76c 4646 diagTimer.reset();
mjr 51:57eb311faafa 4647 }
mjr 51:57eb311faafa 4648
mjr 51:57eb311faafa 4649 // if the disconnect reboot timeout has expired, reboot
mjr 51:57eb311faafa 4650 if (cfg.disconnectRebootTimeout != 0
mjr 51:57eb311faafa 4651 && rebootTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 4652 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 4653 }
mjr 54:fd77a6b2f76c 4654
mjr 54:fd77a6b2f76c 4655 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 4656 connected = true;
mjr 54:fd77a6b2f76c 4657 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 4658
mjr 54:fd77a6b2f76c 4659 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 4660 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 4661 {
mjr 55:4db125cd11a0 4662 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 4663 tlc5940->update(true);
mjr 54:fd77a6b2f76c 4664 }
mjr 54:fd77a6b2f76c 4665 if (hc595 != 0)
mjr 54:fd77a6b2f76c 4666 {
mjr 55:4db125cd11a0 4667 hc595->enable(true);
mjr 54:fd77a6b2f76c 4668 hc595->update(true);
mjr 51:57eb311faafa 4669 }
mjr 48:058ace2aed1d 4670 }
mjr 43:7a6364d82a41 4671
mjr 6:cc35eb643e8f 4672 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 4673 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 4674 {
mjr 54:fd77a6b2f76c 4675 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 4676 {
mjr 39:b3815a1c3802 4677 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 4678 //
mjr 54:fd77a6b2f76c 4679 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 4680 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 4681 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 4682 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 4683 hb = !hb;
mjr 38:091e511ce8a0 4684 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 4685
mjr 54:fd77a6b2f76c 4686 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 4687 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 4688 // with the USB connection.
mjr 54:fd77a6b2f76c 4689 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 4690 {
mjr 54:fd77a6b2f76c 4691 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 4692 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 4693 // limit, keep running for now, and leave the OK timer running so
mjr 54:fd77a6b2f76c 4694 // that we can continue to monitor this.
mjr 54:fd77a6b2f76c 4695 if (jsOKTimer.read() > cfg.disconnectRebootTimeout)
mjr 54:fd77a6b2f76c 4696 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 4697 }
mjr 54:fd77a6b2f76c 4698 else
mjr 54:fd77a6b2f76c 4699 {
mjr 54:fd77a6b2f76c 4700 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 4701 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 4702 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 4703 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 4704 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 4705 }
mjr 38:091e511ce8a0 4706 }
mjr 35:e959ffba78fd 4707 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 4708 {
mjr 6:cc35eb643e8f 4709 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 4710 hb = !hb;
mjr 38:091e511ce8a0 4711 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 4712 }
mjr 6:cc35eb643e8f 4713 else
mjr 6:cc35eb643e8f 4714 {
mjr 6:cc35eb643e8f 4715 // connected - flash blue/green
mjr 2:c174f9ee414a 4716 hb = !hb;
mjr 38:091e511ce8a0 4717 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 4718 }
mjr 1:d913e0afb2ac 4719
mjr 1:d913e0afb2ac 4720 // reset the heartbeat timer
mjr 1:d913e0afb2ac 4721 hbTimer.reset();
mjr 5:a70c0bce770d 4722 ++hbcnt;
mjr 1:d913e0afb2ac 4723 }
mjr 1:d913e0afb2ac 4724 }
mjr 0:5acbbe3f4cf4 4725 }