An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Mar 01 23:53:59 2019 +0000
Revision:
98:4df3c0f7e707
Parent:
96:68d5621ff49f
Child:
99:8139b0c274f4
Modified flipper logic timing; add Minimum Time Output port flag (proposed changes only; may be replaced collectively by a new Chime Logic type)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 89:c43cd923401c 838 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 839 // top of a physical pin output.
mjr 89:c43cd923401c 840 //
mjr 89:c43cd923401c 841 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 842 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 843 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 844 // level is ON.
mjr 89:c43cd923401c 845 //
mjr 89:c43cd923401c 846 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 847 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 848 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 849 //
mjr 89:c43cd923401c 850 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 851 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 852 // power and start a timer.
mjr 89:c43cd923401c 853 //
mjr 89:c43cd923401c 854 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 855 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 856 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 857 //
mjr 89:c43cd923401c 858 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 859 {
mjr 89:c43cd923401c 860 public:
mjr 89:c43cd923401c 861 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 862 // the configuration.
mjr 89:c43cd923401c 863 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 864 : out(o), params(params)
mjr 89:c43cd923401c 865 {
mjr 89:c43cd923401c 866 // initially OFF
mjr 89:c43cd923401c 867 state = 0;
mjr 89:c43cd923401c 868 }
mjr 89:c43cd923401c 869
mjr 89:c43cd923401c 870 virtual void set(uint8_t level)
mjr 89:c43cd923401c 871 {
mjr 98:4df3c0f7e707 872 // remember the new nominal level set by the client
mjr 89:c43cd923401c 873 val = level;
mjr 89:c43cd923401c 874
mjr 89:c43cd923401c 875 // update the physical output according to our current timing state
mjr 89:c43cd923401c 876 switch (state)
mjr 89:c43cd923401c 877 {
mjr 89:c43cd923401c 878 case 0:
mjr 89:c43cd923401c 879 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 880 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 881 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 882 // off, so there's no change.
mjr 89:c43cd923401c 883 if (level != 0)
mjr 89:c43cd923401c 884 {
mjr 89:c43cd923401c 885 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 886 state = 1;
mjr 89:c43cd923401c 887
mjr 89:c43cd923401c 888 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 889 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 890 // requested
mjr 89:c43cd923401c 891 out->set(level);
mjr 89:c43cd923401c 892
mjr 89:c43cd923401c 893 // add myself to the pending timer list
mjr 89:c43cd923401c 894 pending[nPending++] = this;
mjr 89:c43cd923401c 895
mjr 89:c43cd923401c 896 // note the starting time
mjr 89:c43cd923401c 897 t0 = timer.read_us();
mjr 89:c43cd923401c 898 }
mjr 89:c43cd923401c 899 break;
mjr 89:c43cd923401c 900
mjr 89:c43cd923401c 901 case 1:
mjr 89:c43cd923401c 902 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 903 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 904 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 905 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 906 out->set(level);
mjr 89:c43cd923401c 907 if (level == 0)
mjr 89:c43cd923401c 908 {
mjr 89:c43cd923401c 909 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 910 // so we need to remove it from the list.
mjr 89:c43cd923401c 911 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 912 {
mjr 89:c43cd923401c 913 // is this us?
mjr 89:c43cd923401c 914 if (pending[i] == this)
mjr 89:c43cd923401c 915 {
mjr 89:c43cd923401c 916 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 917 // last list entry
mjr 89:c43cd923401c 918 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 919
mjr 89:c43cd923401c 920 // no need to look any further
mjr 89:c43cd923401c 921 break;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923 }
mjr 89:c43cd923401c 924
mjr 89:c43cd923401c 925 // switch to state 0 (off)
mjr 89:c43cd923401c 926 state = 0;
mjr 89:c43cd923401c 927 }
mjr 89:c43cd923401c 928 break;
mjr 89:c43cd923401c 929
mjr 89:c43cd923401c 930 case 2:
mjr 89:c43cd923401c 931 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 932 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 933 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 934 // as the upper bound.
mjr 89:c43cd923401c 935 if (level == 0)
mjr 89:c43cd923401c 936 {
mjr 89:c43cd923401c 937 // switching off - turn off the physical output
mjr 89:c43cd923401c 938 out->set(0);
mjr 89:c43cd923401c 939
mjr 89:c43cd923401c 940 // go to state 0 (off)
mjr 89:c43cd923401c 941 state = 0;
mjr 89:c43cd923401c 942 }
mjr 89:c43cd923401c 943 else
mjr 89:c43cd923401c 944 {
mjr 89:c43cd923401c 945 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 946 // lower of the requested power and the hold power
mjr 89:c43cd923401c 947 uint8_t hold = holdPower();
mjr 89:c43cd923401c 948 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953
mjr 89:c43cd923401c 954 // Class initialization
mjr 89:c43cd923401c 955 static void classInit(Config &cfg)
mjr 89:c43cd923401c 956 {
mjr 89:c43cd923401c 957 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 958 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 959 // all of these outputs.
mjr 89:c43cd923401c 960 int n = 0;
mjr 89:c43cd923401c 961 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 964 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 965 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 966 ++n;
mjr 89:c43cd923401c 967 }
mjr 89:c43cd923401c 968
mjr 89:c43cd923401c 969 // allocate space for the pending timer list
mjr 89:c43cd923401c 970 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 971
mjr 89:c43cd923401c 972 // there's nothing in the pending list yet
mjr 89:c43cd923401c 973 nPending = 0;
mjr 89:c43cd923401c 974
mjr 89:c43cd923401c 975 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 976 // use it to figure elapsed times.
mjr 89:c43cd923401c 977 timer.start();
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979
mjr 89:c43cd923401c 980 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 981 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 982 static void poll()
mjr 89:c43cd923401c 983 {
mjr 89:c43cd923401c 984 // note the current time
mjr 89:c43cd923401c 985 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 986
mjr 89:c43cd923401c 987 // go through the timer list
mjr 89:c43cd923401c 988 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 989 {
mjr 89:c43cd923401c 990 // get the port
mjr 89:c43cd923401c 991 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 992
mjr 89:c43cd923401c 993 // assume we'll keep it
mjr 89:c43cd923401c 994 bool remove = false;
mjr 89:c43cd923401c 995
mjr 89:c43cd923401c 996 // check if the port is still on
mjr 89:c43cd923401c 997 if (port->state != 0)
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1000 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1001 {
mjr 89:c43cd923401c 1002 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1003 port->state = 2;
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1006 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1007 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1008 uint8_t val = port->val;
mjr 89:c43cd923401c 1009 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1010
mjr 89:c43cd923401c 1011 // we're done with the timer
mjr 89:c43cd923401c 1012 remove = true;
mjr 89:c43cd923401c 1013 }
mjr 89:c43cd923401c 1014 }
mjr 89:c43cd923401c 1015 else
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1018 // it from the timer list
mjr 89:c43cd923401c 1019 remove = true;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021
mjr 89:c43cd923401c 1022 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1023 if (remove)
mjr 89:c43cd923401c 1024 {
mjr 89:c43cd923401c 1025 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1026 // the last entry in the list.
mjr 89:c43cd923401c 1027 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1030 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1031 }
mjr 89:c43cd923401c 1032 else
mjr 89:c43cd923401c 1033 {
mjr 89:c43cd923401c 1034 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1035 ++i;
mjr 89:c43cd923401c 1036 }
mjr 89:c43cd923401c 1037 }
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039
mjr 89:c43cd923401c 1040 protected:
mjr 89:c43cd923401c 1041 // underlying physical output
mjr 89:c43cd923401c 1042 LwOut *out;
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1045 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1046 uint32_t t0;
mjr 89:c43cd923401c 1047
mjr 89:c43cd923401c 1048 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1049 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1050 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1051 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1052 // if it's lower.
mjr 89:c43cd923401c 1053 uint8_t val;
mjr 89:c43cd923401c 1054
mjr 89:c43cd923401c 1055 // Current port state:
mjr 89:c43cd923401c 1056 //
mjr 89:c43cd923401c 1057 // 0 = off
mjr 89:c43cd923401c 1058 // 1 = on at initial full power
mjr 89:c43cd923401c 1059 // 2 = on at hold power
mjr 89:c43cd923401c 1060 uint8_t state;
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1063 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1064 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1065 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1066 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1067 uint8_t params;
mjr 89:c43cd923401c 1068
mjr 98:4df3c0f7e707 1069 // Full-power time mapping. This maps from the 4-bit (0..15) time value
mjr 98:4df3c0f7e707 1070 // in the parameters to the number of microseconds.
mjr 98:4df3c0f7e707 1071 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1072
mjr 89:c43cd923401c 1073 // Figure the initial full-power time in microseconds
mjr 98:4df3c0f7e707 1074 inline uint32_t fullPowerTime_us() const { return paramToTime_us[params >> 4]; }
mjr 89:c43cd923401c 1075
mjr 89:c43cd923401c 1076 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1077 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1078
mjr 89:c43cd923401c 1079 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1080 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1081 // (which runs continuously).
mjr 89:c43cd923401c 1082 static Timer timer;
mjr 89:c43cd923401c 1083
mjr 89:c43cd923401c 1084 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1085 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1086 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1087 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1088 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1089 static uint8_t nPending;
mjr 89:c43cd923401c 1090 };
mjr 89:c43cd923401c 1091
mjr 89:c43cd923401c 1092 // Flipper Logic statics
mjr 89:c43cd923401c 1093 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1094 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1095 uint8_t LwFlipperLogicOut::nPending;
mjr 98:4df3c0f7e707 1096 const uint32_t LwFlipperLogicOut::paramToTime_us[] = {
mjr 98:4df3c0f7e707 1097 1000,
mjr 98:4df3c0f7e707 1098 2000,
mjr 98:4df3c0f7e707 1099 5000,
mjr 98:4df3c0f7e707 1100 10000,
mjr 98:4df3c0f7e707 1101 20000,
mjr 98:4df3c0f7e707 1102 40000,
mjr 98:4df3c0f7e707 1103 80000,
mjr 98:4df3c0f7e707 1104 100000,
mjr 98:4df3c0f7e707 1105 150000,
mjr 98:4df3c0f7e707 1106 200000,
mjr 98:4df3c0f7e707 1107 300000,
mjr 98:4df3c0f7e707 1108 400000,
mjr 98:4df3c0f7e707 1109 500000,
mjr 98:4df3c0f7e707 1110 600000,
mjr 98:4df3c0f7e707 1111 700000,
mjr 98:4df3c0f7e707 1112 800000
mjr 98:4df3c0f7e707 1113 };
mjr 98:4df3c0f7e707 1114
mjr 98:4df3c0f7e707 1115 // Minimum On Time output. This is a filter output that we layer on
mjr 98:4df3c0f7e707 1116 // a physical output to force the underlying output to stay on for a
mjr 98:4df3c0f7e707 1117 // minimum interval. This can be used for devices that need to be on
mjr 98:4df3c0f7e707 1118 // for a certain amount of time to trigger their full effect, such as
mjr 98:4df3c0f7e707 1119 // slower solenoids or contactors.
mjr 98:4df3c0f7e707 1120 class LwMinTimeOut: public LwOut
mjr 98:4df3c0f7e707 1121 {
mjr 98:4df3c0f7e707 1122 public:
mjr 98:4df3c0f7e707 1123 // Set up the output. 'param' is the configuration parameter
mjr 98:4df3c0f7e707 1124 // for the mininum time span.
mjr 98:4df3c0f7e707 1125 LwMinTimeOut(LwOut *o, uint8_t param)
mjr 98:4df3c0f7e707 1126 : out(o), param(param)
mjr 98:4df3c0f7e707 1127 {
mjr 98:4df3c0f7e707 1128 // initially OFF
mjr 98:4df3c0f7e707 1129 state = 0;
mjr 98:4df3c0f7e707 1130 }
mjr 98:4df3c0f7e707 1131
mjr 98:4df3c0f7e707 1132 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1133 {
mjr 98:4df3c0f7e707 1134 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1135 switch (state)
mjr 98:4df3c0f7e707 1136 {
mjr 98:4df3c0f7e707 1137 case 0:
mjr 98:4df3c0f7e707 1138 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1139 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1140 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1141 // off, so there's no change.
mjr 98:4df3c0f7e707 1142 if (level != 0)
mjr 98:4df3c0f7e707 1143 {
mjr 98:4df3c0f7e707 1144 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1145 // logically on)
mjr 98:4df3c0f7e707 1146 state = 1;
mjr 98:4df3c0f7e707 1147
mjr 98:4df3c0f7e707 1148 // set the requested output level
mjr 98:4df3c0f7e707 1149 out->set(level);
mjr 98:4df3c0f7e707 1150
mjr 98:4df3c0f7e707 1151 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1152 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1153
mjr 98:4df3c0f7e707 1154 // note the starting time
mjr 98:4df3c0f7e707 1155 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1156 }
mjr 98:4df3c0f7e707 1157 break;
mjr 98:4df3c0f7e707 1158
mjr 98:4df3c0f7e707 1159 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1160 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1161 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1162 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1163 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1164 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1165 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1166 //
mjr 98:4df3c0f7e707 1167 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1168 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1169 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1170 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1171 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1172 if (level != 0)
mjr 98:4df3c0f7e707 1173 {
mjr 98:4df3c0f7e707 1174 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1175 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1176 out->set(level);
mjr 98:4df3c0f7e707 1177 state = 1;
mjr 98:4df3c0f7e707 1178 }
mjr 98:4df3c0f7e707 1179 else
mjr 98:4df3c0f7e707 1180 {
mjr 98:4df3c0f7e707 1181 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1182 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1183 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1184 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1185 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1186 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1187 // time requirement.
mjr 98:4df3c0f7e707 1188 state = 2;
mjr 98:4df3c0f7e707 1189 }
mjr 98:4df3c0f7e707 1190 break;
mjr 98:4df3c0f7e707 1191
mjr 98:4df3c0f7e707 1192 case 3:
mjr 98:4df3c0f7e707 1193 // We're out of the minimum ON interval, so we can set any new
mjr 98:4df3c0f7e707 1194 // level, including fully off. Pass the new power level through
mjr 98:4df3c0f7e707 1195 // to the port.
mjr 98:4df3c0f7e707 1196 out->set(level);
mjr 98:4df3c0f7e707 1197
mjr 98:4df3c0f7e707 1198 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1199 if (level == 0)
mjr 98:4df3c0f7e707 1200 state = 0;
mjr 98:4df3c0f7e707 1201 break;
mjr 98:4df3c0f7e707 1202 }
mjr 98:4df3c0f7e707 1203 }
mjr 98:4df3c0f7e707 1204
mjr 98:4df3c0f7e707 1205 // Class initialization
mjr 98:4df3c0f7e707 1206 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1207 {
mjr 98:4df3c0f7e707 1208 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1209 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1210 // all of these outputs.
mjr 98:4df3c0f7e707 1211 int n = 0;
mjr 98:4df3c0f7e707 1212 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1213 {
mjr 98:4df3c0f7e707 1214 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1215 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 98:4df3c0f7e707 1216 && (cfg.outPort[i].flags & PortFlagMinOnTime) != 0)
mjr 98:4df3c0f7e707 1217 ++n;
mjr 98:4df3c0f7e707 1218 }
mjr 98:4df3c0f7e707 1219
mjr 98:4df3c0f7e707 1220 // allocate space for the pending timer list
mjr 98:4df3c0f7e707 1221 pending = new LwMinTimeOut*[n];
mjr 98:4df3c0f7e707 1222
mjr 98:4df3c0f7e707 1223 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1224 nPending = 0;
mjr 98:4df3c0f7e707 1225
mjr 98:4df3c0f7e707 1226 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1227 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1228 timer.start();
mjr 98:4df3c0f7e707 1229 }
mjr 98:4df3c0f7e707 1230
mjr 98:4df3c0f7e707 1231 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1232 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1233 static void poll()
mjr 98:4df3c0f7e707 1234 {
mjr 98:4df3c0f7e707 1235 // note the current time
mjr 98:4df3c0f7e707 1236 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1237
mjr 98:4df3c0f7e707 1238 // go through the timer list
mjr 98:4df3c0f7e707 1239 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1240 {
mjr 98:4df3c0f7e707 1241 // get the port
mjr 98:4df3c0f7e707 1242 LwMinTimeOut *port = pending[i];
mjr 98:4df3c0f7e707 1243
mjr 98:4df3c0f7e707 1244 // assume we'll keep it
mjr 98:4df3c0f7e707 1245 bool remove = false;
mjr 98:4df3c0f7e707 1246
mjr 98:4df3c0f7e707 1247 // check if we're in the minimum ON period for the port
mjr 98:4df3c0f7e707 1248 if (port->state == 1 || port->state == 2)
mjr 98:4df3c0f7e707 1249 {
mjr 98:4df3c0f7e707 1250 // we are - check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1251 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1252 {
mjr 98:4df3c0f7e707 1253 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1254 // it advances to the next state.
mjr 98:4df3c0f7e707 1255 if (port->state == 1)
mjr 98:4df3c0f7e707 1256 {
mjr 98:4df3c0f7e707 1257 // The port is logically on, so advance to state 3,
mjr 98:4df3c0f7e707 1258 // "on past minimum initial time". The underlying
mjr 98:4df3c0f7e707 1259 // port is already at its proper level, since we pass
mjr 98:4df3c0f7e707 1260 // through non-zero power settings to the underlying
mjr 98:4df3c0f7e707 1261 // port throughout the initial ON interval.
mjr 98:4df3c0f7e707 1262 port->state = 3;
mjr 98:4df3c0f7e707 1263 }
mjr 98:4df3c0f7e707 1264 else
mjr 98:4df3c0f7e707 1265 {
mjr 98:4df3c0f7e707 1266 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1267 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1268 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1269 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1270 // the port off now.
mjr 98:4df3c0f7e707 1271 port->out->set(0);
mjr 98:4df3c0f7e707 1272
mjr 98:4df3c0f7e707 1273 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1274 port->state = 0;
mjr 98:4df3c0f7e707 1275 }
mjr 98:4df3c0f7e707 1276
mjr 98:4df3c0f7e707 1277 // we're done with the timer
mjr 98:4df3c0f7e707 1278 remove = true;
mjr 98:4df3c0f7e707 1279 }
mjr 98:4df3c0f7e707 1280 }
mjr 98:4df3c0f7e707 1281
mjr 98:4df3c0f7e707 1282 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1283 if (remove)
mjr 98:4df3c0f7e707 1284 {
mjr 98:4df3c0f7e707 1285 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1286 // the last entry in the list.
mjr 98:4df3c0f7e707 1287 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1288
mjr 98:4df3c0f7e707 1289 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1290 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1291 }
mjr 98:4df3c0f7e707 1292 else
mjr 98:4df3c0f7e707 1293 {
mjr 98:4df3c0f7e707 1294 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1295 ++i;
mjr 98:4df3c0f7e707 1296 }
mjr 98:4df3c0f7e707 1297 }
mjr 98:4df3c0f7e707 1298 }
mjr 98:4df3c0f7e707 1299
mjr 98:4df3c0f7e707 1300 protected:
mjr 98:4df3c0f7e707 1301 // underlying physical output
mjr 98:4df3c0f7e707 1302 LwOut *out;
mjr 98:4df3c0f7e707 1303
mjr 98:4df3c0f7e707 1304 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1305 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1306 uint32_t t0;
mjr 98:4df3c0f7e707 1307
mjr 98:4df3c0f7e707 1308 // Current port state:
mjr 98:4df3c0f7e707 1309 //
mjr 98:4df3c0f7e707 1310 // 0 = off
mjr 98:4df3c0f7e707 1311 // 1 = initial minimum ON interval, logical port is ON
mjr 98:4df3c0f7e707 1312 // 2 = initial minimum ON interval, logical port is OFF
mjr 98:4df3c0f7e707 1313 // 3 = past the minimum ON interval
mjr 98:4df3c0f7e707 1314 //
mjr 98:4df3c0f7e707 1315 uint8_t state;
mjr 98:4df3c0f7e707 1316
mjr 98:4df3c0f7e707 1317 // Configuration parameter. This encodes the minimum ON time.
mjr 98:4df3c0f7e707 1318 uint8_t param;
mjr 98:4df3c0f7e707 1319
mjr 98:4df3c0f7e707 1320 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1321 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1322 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1323 static Timer timer;
mjr 98:4df3c0f7e707 1324
mjr 98:4df3c0f7e707 1325 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1326 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1327
mjr 98:4df3c0f7e707 1328 // Figure the minimum ON time
mjr 98:4df3c0f7e707 1329 inline uint32_t minOnTime_us() const { return paramToTime_us[param & 0x0F]; }
mjr 98:4df3c0f7e707 1330
mjr 98:4df3c0f7e707 1331 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1332 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1333 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1334 // ON intervals.
mjr 98:4df3c0f7e707 1335 static LwMinTimeOut **pending;
mjr 98:4df3c0f7e707 1336 static uint8_t nPending;
mjr 98:4df3c0f7e707 1337 };
mjr 98:4df3c0f7e707 1338
mjr 98:4df3c0f7e707 1339 // Min Time Out statics
mjr 98:4df3c0f7e707 1340 Timer LwMinTimeOut::timer;
mjr 98:4df3c0f7e707 1341 LwMinTimeOut **LwMinTimeOut::pending;
mjr 98:4df3c0f7e707 1342 uint8_t LwMinTimeOut::nPending;
mjr 98:4df3c0f7e707 1343 const uint32_t LwMinTimeOut::paramToTime_us[] = {
mjr 98:4df3c0f7e707 1344 1000,
mjr 98:4df3c0f7e707 1345 2000,
mjr 98:4df3c0f7e707 1346 5000,
mjr 98:4df3c0f7e707 1347 10000,
mjr 98:4df3c0f7e707 1348 20000,
mjr 98:4df3c0f7e707 1349 40000,
mjr 98:4df3c0f7e707 1350 80000,
mjr 98:4df3c0f7e707 1351 100000,
mjr 98:4df3c0f7e707 1352 150000,
mjr 98:4df3c0f7e707 1353 200000,
mjr 98:4df3c0f7e707 1354 300000,
mjr 98:4df3c0f7e707 1355 400000,
mjr 98:4df3c0f7e707 1356 500000,
mjr 98:4df3c0f7e707 1357 600000,
mjr 98:4df3c0f7e707 1358 700000,
mjr 98:4df3c0f7e707 1359 800000
mjr 98:4df3c0f7e707 1360 };
mjr 89:c43cd923401c 1361
mjr 35:e959ffba78fd 1362 //
mjr 35:e959ffba78fd 1363 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1364 // assignments set in config.h.
mjr 33:d832bcab089e 1365 //
mjr 35:e959ffba78fd 1366 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1367 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1368 {
mjr 35:e959ffba78fd 1369 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1370 {
mjr 53:9b2611964afc 1371 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1372 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1373 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1374 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1375 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1376 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1377 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1378 }
mjr 35:e959ffba78fd 1379 }
mjr 26:cb71c4af2912 1380
mjr 40:cc0d9814522b 1381 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1382 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1383 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1384 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1385 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1386 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1387 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1388 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1389 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1390 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1391 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1392 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1393 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1394 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1395 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1396 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1397 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1398 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1399 };
mjr 40:cc0d9814522b 1400
mjr 40:cc0d9814522b 1401 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1402 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1403 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1404 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1405 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1406 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1407 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1408 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1409 // are always 8 bits.
mjr 40:cc0d9814522b 1410 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1411 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1412 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1413 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1414 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1415 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1416 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1417 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1418 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1419 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1420 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1421 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1422 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1423 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1424 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1425 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1426 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1427 };
mjr 40:cc0d9814522b 1428
mjr 26:cb71c4af2912 1429 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1430 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1431 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1432 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1433 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1434 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1435 {
mjr 26:cb71c4af2912 1436 public:
mjr 60:f38da020aa13 1437 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1438 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1439 {
mjr 26:cb71c4af2912 1440 if (val != prv)
mjr 40:cc0d9814522b 1441 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1442 }
mjr 60:f38da020aa13 1443 uint8_t idx;
mjr 40:cc0d9814522b 1444 uint8_t prv;
mjr 26:cb71c4af2912 1445 };
mjr 26:cb71c4af2912 1446
mjr 40:cc0d9814522b 1447 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1448 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1449 {
mjr 40:cc0d9814522b 1450 public:
mjr 60:f38da020aa13 1451 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1452 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1453 {
mjr 40:cc0d9814522b 1454 if (val != prv)
mjr 40:cc0d9814522b 1455 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1456 }
mjr 60:f38da020aa13 1457 uint8_t idx;
mjr 40:cc0d9814522b 1458 uint8_t prv;
mjr 40:cc0d9814522b 1459 };
mjr 40:cc0d9814522b 1460
mjr 87:8d35c74403af 1461 //
mjr 87:8d35c74403af 1462 // TLC59116 interface object
mjr 87:8d35c74403af 1463 //
mjr 87:8d35c74403af 1464 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1465 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1466 {
mjr 87:8d35c74403af 1467 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1468 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1469 {
mjr 87:8d35c74403af 1470 // set up the interface
mjr 87:8d35c74403af 1471 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1472 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1473 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1474 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1475
mjr 87:8d35c74403af 1476 // initialize the chips
mjr 87:8d35c74403af 1477 tlc59116->init();
mjr 87:8d35c74403af 1478 }
mjr 87:8d35c74403af 1479 }
mjr 87:8d35c74403af 1480
mjr 87:8d35c74403af 1481 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1482 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1483 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1484 // (0-15).
mjr 87:8d35c74403af 1485 //
mjr 87:8d35c74403af 1486 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1487 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1488 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1489 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1490 {
mjr 87:8d35c74403af 1491 public:
mjr 87:8d35c74403af 1492 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1493 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1494 {
mjr 87:8d35c74403af 1495 if (val != prv)
mjr 87:8d35c74403af 1496 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1497 }
mjr 87:8d35c74403af 1498
mjr 87:8d35c74403af 1499 protected:
mjr 87:8d35c74403af 1500 uint8_t addr;
mjr 87:8d35c74403af 1501 uint8_t port;
mjr 87:8d35c74403af 1502 uint8_t prv;
mjr 87:8d35c74403af 1503 };
mjr 87:8d35c74403af 1504
mjr 87:8d35c74403af 1505
mjr 87:8d35c74403af 1506 //
mjr 34:6b981a2afab7 1507 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1508 // config.h.
mjr 87:8d35c74403af 1509 //
mjr 35:e959ffba78fd 1510 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1511
mjr 35:e959ffba78fd 1512 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1513 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1514 {
mjr 35:e959ffba78fd 1515 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1516 {
mjr 53:9b2611964afc 1517 hc595 = new HC595(
mjr 53:9b2611964afc 1518 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1519 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1520 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1521 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1522 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1523 hc595->init();
mjr 35:e959ffba78fd 1524 hc595->update();
mjr 35:e959ffba78fd 1525 }
mjr 35:e959ffba78fd 1526 }
mjr 34:6b981a2afab7 1527
mjr 34:6b981a2afab7 1528 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1529 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1530 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1531 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1532 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1533 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1534 {
mjr 33:d832bcab089e 1535 public:
mjr 60:f38da020aa13 1536 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1537 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1538 {
mjr 34:6b981a2afab7 1539 if (val != prv)
mjr 40:cc0d9814522b 1540 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1541 }
mjr 60:f38da020aa13 1542 uint8_t idx;
mjr 40:cc0d9814522b 1543 uint8_t prv;
mjr 33:d832bcab089e 1544 };
mjr 33:d832bcab089e 1545
mjr 26:cb71c4af2912 1546
mjr 40:cc0d9814522b 1547
mjr 64:ef7ca92dff36 1548 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1549 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1550 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1551 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1552 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1553 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1554 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1555 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1556 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1557 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1558 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1559 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1560 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1561 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1562 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1563 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1564 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1565 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1566 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1567 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1568 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1569 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1570 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1571 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1572 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1573 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1574 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1575 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1576 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1577 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1578 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1579 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1580 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1581 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1582 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1583 };
mjr 26:cb71c4af2912 1584
mjr 64:ef7ca92dff36 1585
mjr 92:f264fbaa1be5 1586 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1587 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1588 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1589 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1590 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1591 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1592 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1593 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1594 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1595 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1596 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1597 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1598 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1599 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1600 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1601 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1602 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1603 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1604 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1605 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1606 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1607 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1608 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1609 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1610 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1611 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1612 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1613 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1614 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1615 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1616 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1617 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1618 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1619 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1620 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1621 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1622 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1623 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1624 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1625 };
mjr 64:ef7ca92dff36 1626
mjr 77:0b96f6867312 1627 // Polled-update PWM output list
mjr 74:822a92bc11d2 1628 //
mjr 77:0b96f6867312 1629 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1630 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1631 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1632 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1633 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1634 //
mjr 92:f264fbaa1be5 1635 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1636 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1637 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1638 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1639 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1640 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1641 //
mjr 92:f264fbaa1be5 1642 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1643 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1644 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1645 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1646 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1647 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1648 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1649 // enough to become noticeable.
mjr 92:f264fbaa1be5 1650 //
mjr 92:f264fbaa1be5 1651 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1652 // mbed solution isn't really a solution at all because it creates a separate
mjr 92:f264fbaa1be5 1653 // problem of its own. The mbed approach is reset the TPM "count" register
mjr 92:f264fbaa1be5 1654 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1655 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1656 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1657 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1658 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1659 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1660 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1661 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1662 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1663 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1664 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1665 //
mjr 92:f264fbaa1be5 1666 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1667 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1668 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1669 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1670 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1671 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1672 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1673 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1674 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1675 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1676 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1677 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1678 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1679 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1680 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1681 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1682 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1683 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1684 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1685 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1686 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1687 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1688 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1689 //
mjr 77:0b96f6867312 1690 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1691 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1692 // of polled items.
mjr 74:822a92bc11d2 1693 static int numPolledPwm;
mjr 74:822a92bc11d2 1694 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1695
mjr 74:822a92bc11d2 1696 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1697 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1698 {
mjr 6:cc35eb643e8f 1699 public:
mjr 43:7a6364d82a41 1700 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1701 {
mjr 77:0b96f6867312 1702 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1703 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1704 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1705
mjr 94:0476b3e2b996 1706 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1707 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1708 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1709 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1710 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1711 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1712 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1713 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1714 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1715 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1716 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1717 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1718 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1719 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1720 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1721 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1722
mjr 94:0476b3e2b996 1723 // set the initial brightness value
mjr 77:0b96f6867312 1724 set(initVal);
mjr 43:7a6364d82a41 1725 }
mjr 74:822a92bc11d2 1726
mjr 40:cc0d9814522b 1727 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1728 {
mjr 77:0b96f6867312 1729 // save the new value
mjr 74:822a92bc11d2 1730 this->val = val;
mjr 77:0b96f6867312 1731
mjr 77:0b96f6867312 1732 // commit it to the hardware
mjr 77:0b96f6867312 1733 commit();
mjr 13:72dda449c3c0 1734 }
mjr 74:822a92bc11d2 1735
mjr 74:822a92bc11d2 1736 // handle periodic update polling
mjr 74:822a92bc11d2 1737 void poll()
mjr 74:822a92bc11d2 1738 {
mjr 77:0b96f6867312 1739 commit();
mjr 74:822a92bc11d2 1740 }
mjr 74:822a92bc11d2 1741
mjr 74:822a92bc11d2 1742 protected:
mjr 77:0b96f6867312 1743 virtual void commit()
mjr 74:822a92bc11d2 1744 {
mjr 74:822a92bc11d2 1745 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1746 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1747 }
mjr 74:822a92bc11d2 1748
mjr 77:0b96f6867312 1749 NewPwmOut p;
mjr 77:0b96f6867312 1750 uint8_t val;
mjr 6:cc35eb643e8f 1751 };
mjr 26:cb71c4af2912 1752
mjr 74:822a92bc11d2 1753 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1754 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1755 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1756 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1757 {
mjr 64:ef7ca92dff36 1758 public:
mjr 64:ef7ca92dff36 1759 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1760 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1761 {
mjr 64:ef7ca92dff36 1762 }
mjr 74:822a92bc11d2 1763
mjr 74:822a92bc11d2 1764 protected:
mjr 77:0b96f6867312 1765 virtual void commit()
mjr 64:ef7ca92dff36 1766 {
mjr 74:822a92bc11d2 1767 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1768 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1769 }
mjr 64:ef7ca92dff36 1770 };
mjr 64:ef7ca92dff36 1771
mjr 74:822a92bc11d2 1772 // poll the PWM outputs
mjr 74:822a92bc11d2 1773 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1774 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1775 void pollPwmUpdates()
mjr 74:822a92bc11d2 1776 {
mjr 94:0476b3e2b996 1777 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1778 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1779 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1780 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1781 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1782 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1783 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1784 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1785 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1786 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1787 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1788 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1789 // viewer.
mjr 94:0476b3e2b996 1790 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1791 {
mjr 74:822a92bc11d2 1792 // time the run for statistics collection
mjr 74:822a92bc11d2 1793 IF_DIAG(
mjr 74:822a92bc11d2 1794 Timer t;
mjr 74:822a92bc11d2 1795 t.start();
mjr 74:822a92bc11d2 1796 )
mjr 74:822a92bc11d2 1797
mjr 74:822a92bc11d2 1798 // poll each output
mjr 74:822a92bc11d2 1799 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1800 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1801
mjr 74:822a92bc11d2 1802 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1803 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1804
mjr 74:822a92bc11d2 1805 // collect statistics
mjr 74:822a92bc11d2 1806 IF_DIAG(
mjr 76:7f5912b6340e 1807 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1808 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1809 )
mjr 74:822a92bc11d2 1810 }
mjr 74:822a92bc11d2 1811 }
mjr 64:ef7ca92dff36 1812
mjr 26:cb71c4af2912 1813 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1814 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1815 {
mjr 6:cc35eb643e8f 1816 public:
mjr 43:7a6364d82a41 1817 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1818 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1819 {
mjr 13:72dda449c3c0 1820 if (val != prv)
mjr 40:cc0d9814522b 1821 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1822 }
mjr 6:cc35eb643e8f 1823 DigitalOut p;
mjr 40:cc0d9814522b 1824 uint8_t prv;
mjr 6:cc35eb643e8f 1825 };
mjr 26:cb71c4af2912 1826
mjr 29:582472d0bc57 1827 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1828 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1829 // port n (0-based).
mjr 35:e959ffba78fd 1830 //
mjr 35:e959ffba78fd 1831 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1832 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1833 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1834 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1835 // 74HC595 ports).
mjr 33:d832bcab089e 1836 static int numOutputs;
mjr 33:d832bcab089e 1837 static LwOut **lwPin;
mjr 33:d832bcab089e 1838
mjr 38:091e511ce8a0 1839 // create a single output pin
mjr 53:9b2611964afc 1840 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1841 {
mjr 38:091e511ce8a0 1842 // get this item's values
mjr 38:091e511ce8a0 1843 int typ = pc.typ;
mjr 38:091e511ce8a0 1844 int pin = pc.pin;
mjr 38:091e511ce8a0 1845 int flags = pc.flags;
mjr 40:cc0d9814522b 1846 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1847 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1848 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1849 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 98:4df3c0f7e707 1850 int hasMinOnTime = flags & PortFlagMinOnTime;
mjr 89:c43cd923401c 1851
mjr 89:c43cd923401c 1852 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1853 if (flipperLogic)
mjr 89:c43cd923401c 1854 gamma = false;
mjr 38:091e511ce8a0 1855
mjr 38:091e511ce8a0 1856 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1857 LwOut *lwp;
mjr 38:091e511ce8a0 1858 switch (typ)
mjr 38:091e511ce8a0 1859 {
mjr 38:091e511ce8a0 1860 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1861 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1862 if (pin != 0)
mjr 64:ef7ca92dff36 1863 {
mjr 64:ef7ca92dff36 1864 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1865 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1866 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1867 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1868 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1869 {
mjr 64:ef7ca92dff36 1870 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1871 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1872
mjr 64:ef7ca92dff36 1873 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1874 gamma = false;
mjr 64:ef7ca92dff36 1875 }
mjr 64:ef7ca92dff36 1876 else
mjr 64:ef7ca92dff36 1877 {
mjr 64:ef7ca92dff36 1878 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1879 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1880 }
mjr 64:ef7ca92dff36 1881 }
mjr 48:058ace2aed1d 1882 else
mjr 48:058ace2aed1d 1883 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1884 break;
mjr 38:091e511ce8a0 1885
mjr 38:091e511ce8a0 1886 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1887 // Digital GPIO port
mjr 48:058ace2aed1d 1888 if (pin != 0)
mjr 48:058ace2aed1d 1889 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1890 else
mjr 48:058ace2aed1d 1891 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1892 break;
mjr 38:091e511ce8a0 1893
mjr 38:091e511ce8a0 1894 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1895 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1896 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1897 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1898 {
mjr 40:cc0d9814522b 1899 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1900 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1901 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1902 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1903 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1904 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1905 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1906 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1907 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1908 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1909 // for this unlikely case.
mjr 40:cc0d9814522b 1910 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1911 {
mjr 40:cc0d9814522b 1912 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1913 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1914
mjr 40:cc0d9814522b 1915 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1916 gamma = false;
mjr 40:cc0d9814522b 1917 }
mjr 40:cc0d9814522b 1918 else
mjr 40:cc0d9814522b 1919 {
mjr 40:cc0d9814522b 1920 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1921 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1922 }
mjr 40:cc0d9814522b 1923 }
mjr 38:091e511ce8a0 1924 else
mjr 40:cc0d9814522b 1925 {
mjr 40:cc0d9814522b 1926 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1927 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1928 }
mjr 38:091e511ce8a0 1929 break;
mjr 38:091e511ce8a0 1930
mjr 38:091e511ce8a0 1931 case PortType74HC595:
mjr 87:8d35c74403af 1932 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1933 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1934 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1935 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1936 else
mjr 38:091e511ce8a0 1937 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1938 break;
mjr 87:8d35c74403af 1939
mjr 87:8d35c74403af 1940 case PortTypeTLC59116:
mjr 87:8d35c74403af 1941 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1942 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1943 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1944 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1945 if (tlc59116 != 0)
mjr 87:8d35c74403af 1946 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1947 break;
mjr 38:091e511ce8a0 1948
mjr 38:091e511ce8a0 1949 case PortTypeVirtual:
mjr 43:7a6364d82a41 1950 case PortTypeDisabled:
mjr 38:091e511ce8a0 1951 default:
mjr 38:091e511ce8a0 1952 // virtual or unknown
mjr 38:091e511ce8a0 1953 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1954 break;
mjr 38:091e511ce8a0 1955 }
mjr 38:091e511ce8a0 1956
mjr 40:cc0d9814522b 1957 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1958 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1959 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1960 if (activeLow)
mjr 38:091e511ce8a0 1961 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1962
mjr 89:c43cd923401c 1963 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 1964 if (flipperLogic)
mjr 89:c43cd923401c 1965 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 1966
mjr 98:4df3c0f7e707 1967 // Layer on the Minimum On Time if desired
mjr 98:4df3c0f7e707 1968 if (hasMinOnTime)
mjr 98:4df3c0f7e707 1969 lwp = new LwMinTimeOut(lwp, pc.minOnTime);
mjr 98:4df3c0f7e707 1970
mjr 89:c43cd923401c 1971 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 1972 if (noisy)
mjr 40:cc0d9814522b 1973 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1974
mjr 40:cc0d9814522b 1975 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1976 if (gamma)
mjr 40:cc0d9814522b 1977 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1978
mjr 53:9b2611964afc 1979 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1980 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1981 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1982 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1983 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1984
mjr 53:9b2611964afc 1985 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1986 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1987 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1988
mjr 38:091e511ce8a0 1989 // turn it off initially
mjr 38:091e511ce8a0 1990 lwp->set(0);
mjr 38:091e511ce8a0 1991
mjr 38:091e511ce8a0 1992 // return the pin
mjr 38:091e511ce8a0 1993 return lwp;
mjr 38:091e511ce8a0 1994 }
mjr 38:091e511ce8a0 1995
mjr 6:cc35eb643e8f 1996 // initialize the output pin array
mjr 35:e959ffba78fd 1997 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1998 {
mjr 98:4df3c0f7e707 1999 // Initialize the Flipper Logic and Minimum On Time outputs
mjr 89:c43cd923401c 2000 LwFlipperLogicOut::classInit(cfg);
mjr 98:4df3c0f7e707 2001 LwMinTimeOut::classInit(cfg);
mjr 89:c43cd923401c 2002
mjr 35:e959ffba78fd 2003 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2004 // total number of ports.
mjr 35:e959ffba78fd 2005 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2006 int i;
mjr 35:e959ffba78fd 2007 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2008 {
mjr 35:e959ffba78fd 2009 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2010 {
mjr 35:e959ffba78fd 2011 numOutputs = i;
mjr 34:6b981a2afab7 2012 break;
mjr 34:6b981a2afab7 2013 }
mjr 33:d832bcab089e 2014 }
mjr 33:d832bcab089e 2015
mjr 73:4e8ce0b18915 2016 // allocate the pin array
mjr 73:4e8ce0b18915 2017 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2018
mjr 73:4e8ce0b18915 2019 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2020 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2021
mjr 73:4e8ce0b18915 2022 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2023 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2024 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2025
mjr 73:4e8ce0b18915 2026 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2027 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2028 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2029
mjr 73:4e8ce0b18915 2030 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2031 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2032 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2033
mjr 35:e959ffba78fd 2034 // create the pin interface object for each port
mjr 35:e959ffba78fd 2035 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2036 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2037 }
mjr 6:cc35eb643e8f 2038
mjr 76:7f5912b6340e 2039 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2040 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2041 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2042 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2043 // equivalent to 48.
mjr 40:cc0d9814522b 2044 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2045 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2046 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2047 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2048 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2049 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2050 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2051 255, 255
mjr 40:cc0d9814522b 2052 };
mjr 40:cc0d9814522b 2053
mjr 76:7f5912b6340e 2054 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2055 // level (1..48)
mjr 76:7f5912b6340e 2056 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2057 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2058 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2059 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2060 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2061 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2062 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2063 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2064 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2065 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2066 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2067 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2068 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2069 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2070 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2071 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2072 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2073 };
mjr 76:7f5912b6340e 2074
mjr 74:822a92bc11d2 2075 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2076 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2077 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2078 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2079 //
mjr 74:822a92bc11d2 2080 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2081 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2082 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2083 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2084 //
mjr 74:822a92bc11d2 2085 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2086 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2087 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2088 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2089 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2090 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2091 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2092 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2093 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2094 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2095 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2096 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2097 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2098 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2099 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2100 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2101 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2102 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2103 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2104 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2105
mjr 74:822a92bc11d2 2106 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2107 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2108 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2109 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2110 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2111 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2112 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2113 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2114 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2115 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2116 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2117 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2118 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2119 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2120 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2121 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2122 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2123
mjr 74:822a92bc11d2 2124 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2126 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2128 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2129 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2130 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2131 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2132 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2133 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2134 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2135 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2136 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2137 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2138 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2139 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2140 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2141
mjr 74:822a92bc11d2 2142 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2143 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2144 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2145 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2146 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2147 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2148 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2149 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2150 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2151 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2152 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2153 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2154 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2155 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2156 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2157 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2158 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2159 };
mjr 74:822a92bc11d2 2160
mjr 74:822a92bc11d2 2161 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2162 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2163 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2164
mjr 76:7f5912b6340e 2165 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2166 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2167
mjr 76:7f5912b6340e 2168 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2169 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2170 // outputs on each cycle.
mjr 29:582472d0bc57 2171 static void wizPulse()
mjr 29:582472d0bc57 2172 {
mjr 76:7f5912b6340e 2173 // current bank
mjr 76:7f5912b6340e 2174 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2175
mjr 76:7f5912b6340e 2176 // start a timer for statistics collection
mjr 76:7f5912b6340e 2177 IF_DIAG(
mjr 76:7f5912b6340e 2178 Timer t;
mjr 76:7f5912b6340e 2179 t.start();
mjr 76:7f5912b6340e 2180 )
mjr 76:7f5912b6340e 2181
mjr 76:7f5912b6340e 2182 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2183 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2184 //
mjr 76:7f5912b6340e 2185 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2186 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2187 //
mjr 76:7f5912b6340e 2188 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2189 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2190 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2191 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2192 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2193 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2194 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2195 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2196 // current cycle.
mjr 76:7f5912b6340e 2197 //
mjr 76:7f5912b6340e 2198 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2199 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2200 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2201 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2202 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2203 //
mjr 76:7f5912b6340e 2204 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2205 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2206 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2207 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2208 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2209 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2210 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2211 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2212 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2213 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2214 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2215 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2216 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2217 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2218 // bit counts.
mjr 76:7f5912b6340e 2219 //
mjr 76:7f5912b6340e 2220 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2221 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2222 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2223 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2224 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2225 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2226 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2227 // one division for another!
mjr 76:7f5912b6340e 2228 //
mjr 76:7f5912b6340e 2229 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2230 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2231 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2232 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2233 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2234 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2235 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2236 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2237 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2238 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2239 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2240 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2241 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2242 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2243 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2244 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2245 // remainder calculation anyway.
mjr 76:7f5912b6340e 2246 //
mjr 76:7f5912b6340e 2247 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2248 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2249 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2250 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2251 //
mjr 76:7f5912b6340e 2252 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2253 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2254 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2255 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2256 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2257 // the result, since we started with 32.
mjr 76:7f5912b6340e 2258 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2259 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2260 };
mjr 76:7f5912b6340e 2261 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2262
mjr 76:7f5912b6340e 2263 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2264 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2265 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2266 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2267 toPort = numOutputs;
mjr 76:7f5912b6340e 2268
mjr 76:7f5912b6340e 2269 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2270 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2271 {
mjr 76:7f5912b6340e 2272 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2273 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2274 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2275 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2276 if (wizOn[i])
mjr 29:582472d0bc57 2277 {
mjr 76:7f5912b6340e 2278 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2279 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2280 {
mjr 76:7f5912b6340e 2281 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2282 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2283 }
mjr 29:582472d0bc57 2284 }
mjr 76:7f5912b6340e 2285 }
mjr 76:7f5912b6340e 2286
mjr 34:6b981a2afab7 2287 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2288 if (hc595 != 0)
mjr 35:e959ffba78fd 2289 hc595->update();
mjr 76:7f5912b6340e 2290
mjr 76:7f5912b6340e 2291 // switch to the next bank
mjr 76:7f5912b6340e 2292 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2293 wizPulseBank = 0;
mjr 76:7f5912b6340e 2294
mjr 76:7f5912b6340e 2295 // collect timing statistics
mjr 76:7f5912b6340e 2296 IF_DIAG(
mjr 76:7f5912b6340e 2297 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2298 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2299 )
mjr 1:d913e0afb2ac 2300 }
mjr 38:091e511ce8a0 2301
mjr 76:7f5912b6340e 2302 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2303 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2304 {
mjr 76:7f5912b6340e 2305 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2306 if (wizOn[port])
mjr 76:7f5912b6340e 2307 {
mjr 76:7f5912b6340e 2308 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2309 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2310 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2311 // it on the next cycle.
mjr 76:7f5912b6340e 2312 int val = wizVal[port];
mjr 76:7f5912b6340e 2313 if (val <= 49)
mjr 76:7f5912b6340e 2314 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2315 }
mjr 76:7f5912b6340e 2316 else
mjr 76:7f5912b6340e 2317 {
mjr 76:7f5912b6340e 2318 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2319 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2320 }
mjr 73:4e8ce0b18915 2321 }
mjr 73:4e8ce0b18915 2322
mjr 73:4e8ce0b18915 2323 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2324 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2325 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2326 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2327 //
mjr 73:4e8ce0b18915 2328 void allOutputsOff()
mjr 73:4e8ce0b18915 2329 {
mjr 92:f264fbaa1be5 2330 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2331 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2332 {
mjr 73:4e8ce0b18915 2333 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2334 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2335 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2336 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2337 }
mjr 73:4e8ce0b18915 2338
mjr 73:4e8ce0b18915 2339 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2340 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2341 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2342
mjr 73:4e8ce0b18915 2343 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2344 if (hc595 != 0)
mjr 38:091e511ce8a0 2345 hc595->update();
mjr 38:091e511ce8a0 2346 }
mjr 38:091e511ce8a0 2347
mjr 74:822a92bc11d2 2348 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2349 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2350 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2351 // address any port group.
mjr 74:822a92bc11d2 2352 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2353 {
mjr 76:7f5912b6340e 2354 // update all on/off states in the group
mjr 74:822a92bc11d2 2355 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2356 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2357 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2358 {
mjr 74:822a92bc11d2 2359 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2360 if (bit == 0x100) {
mjr 74:822a92bc11d2 2361 bit = 1;
mjr 74:822a92bc11d2 2362 ++imsg;
mjr 74:822a92bc11d2 2363 }
mjr 74:822a92bc11d2 2364
mjr 74:822a92bc11d2 2365 // set the on/off state
mjr 76:7f5912b6340e 2366 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2367
mjr 76:7f5912b6340e 2368 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2369 updateLwPort(port);
mjr 74:822a92bc11d2 2370 }
mjr 74:822a92bc11d2 2371
mjr 74:822a92bc11d2 2372 // set the flash speed for the port group
mjr 74:822a92bc11d2 2373 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2374 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2375
mjr 76:7f5912b6340e 2376 // update 74HC959 outputs
mjr 76:7f5912b6340e 2377 if (hc595 != 0)
mjr 76:7f5912b6340e 2378 hc595->update();
mjr 74:822a92bc11d2 2379 }
mjr 74:822a92bc11d2 2380
mjr 74:822a92bc11d2 2381 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2382 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2383 {
mjr 74:822a92bc11d2 2384 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2385 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2386 {
mjr 74:822a92bc11d2 2387 // get the value
mjr 74:822a92bc11d2 2388 uint8_t v = data[i];
mjr 74:822a92bc11d2 2389
mjr 74:822a92bc11d2 2390 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2391 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2392 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2393 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2394 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2395 // as such.
mjr 74:822a92bc11d2 2396 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2397 v = 48;
mjr 74:822a92bc11d2 2398
mjr 74:822a92bc11d2 2399 // store it
mjr 76:7f5912b6340e 2400 wizVal[port] = v;
mjr 76:7f5912b6340e 2401
mjr 76:7f5912b6340e 2402 // update the port
mjr 76:7f5912b6340e 2403 updateLwPort(port);
mjr 74:822a92bc11d2 2404 }
mjr 74:822a92bc11d2 2405
mjr 76:7f5912b6340e 2406 // update 74HC595 outputs
mjr 76:7f5912b6340e 2407 if (hc595 != 0)
mjr 76:7f5912b6340e 2408 hc595->update();
mjr 74:822a92bc11d2 2409 }
mjr 74:822a92bc11d2 2410
mjr 77:0b96f6867312 2411 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2412 //
mjr 77:0b96f6867312 2413 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2414 //
mjr 77:0b96f6867312 2415
mjr 77:0b96f6867312 2416 // receiver
mjr 77:0b96f6867312 2417 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2418
mjr 77:0b96f6867312 2419 // transmitter
mjr 77:0b96f6867312 2420 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2421
mjr 77:0b96f6867312 2422 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2423 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2424 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2425 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2426 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2427 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2428 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2429 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2430 // configuration slot n
mjr 77:0b96f6867312 2431 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2432
mjr 78:1e00b3fa11af 2433 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2434 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2435 // protocol.
mjr 78:1e00b3fa11af 2436 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2437
mjr 78:1e00b3fa11af 2438 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2439 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2440 // while waiting for the rest.
mjr 78:1e00b3fa11af 2441 static struct
mjr 78:1e00b3fa11af 2442 {
mjr 78:1e00b3fa11af 2443 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2444 uint64_t code; // code
mjr 78:1e00b3fa11af 2445 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2446 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2447 } IRAdHocCmd;
mjr 88:98bce687e6c0 2448
mjr 77:0b96f6867312 2449
mjr 77:0b96f6867312 2450 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2451 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2452 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2453 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2454 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2455 // amount of time.
mjr 77:0b96f6867312 2456 Timer IRTimer;
mjr 77:0b96f6867312 2457
mjr 77:0b96f6867312 2458 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2459 // The states are:
mjr 77:0b96f6867312 2460 //
mjr 77:0b96f6867312 2461 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2462 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2463 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2464 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2465 //
mjr 77:0b96f6867312 2466 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2467 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2468 // received within a reasonable time.
mjr 77:0b96f6867312 2469 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2470
mjr 77:0b96f6867312 2471 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2472 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2473 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2474 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2475 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2476 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2477 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2478 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2479 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2480
mjr 78:1e00b3fa11af 2481 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2482 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2483 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2484 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2485 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2486 // index; 0 represents no command.
mjr 77:0b96f6867312 2487 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2488
mjr 77:0b96f6867312 2489 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2490 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2491 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2492 // command we received.
mjr 77:0b96f6867312 2493 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2494
mjr 77:0b96f6867312 2495 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2496 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2497 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2498 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2499 // distinct key press.
mjr 77:0b96f6867312 2500 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2501
mjr 78:1e00b3fa11af 2502
mjr 77:0b96f6867312 2503 // initialize
mjr 77:0b96f6867312 2504 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2505 {
mjr 77:0b96f6867312 2506 PinName pin;
mjr 77:0b96f6867312 2507
mjr 77:0b96f6867312 2508 // start the IR timer
mjr 77:0b96f6867312 2509 IRTimer.start();
mjr 77:0b96f6867312 2510
mjr 77:0b96f6867312 2511 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2512 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2513 {
mjr 77:0b96f6867312 2514 // no virtual buttons yet
mjr 77:0b96f6867312 2515 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2516 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2517
mjr 77:0b96f6867312 2518 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2519 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2520 {
mjr 77:0b96f6867312 2521 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2522 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2523 }
mjr 77:0b96f6867312 2524
mjr 77:0b96f6867312 2525 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2526 // real button inputs
mjr 77:0b96f6867312 2527 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2528 {
mjr 77:0b96f6867312 2529 // get the button
mjr 77:0b96f6867312 2530 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2531
mjr 77:0b96f6867312 2532 // check the unshifted button
mjr 77:0b96f6867312 2533 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2534 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2535 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2536 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2537
mjr 77:0b96f6867312 2538 // check the shifted button
mjr 77:0b96f6867312 2539 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2540 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2541 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2542 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2543 }
mjr 77:0b96f6867312 2544
mjr 77:0b96f6867312 2545 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2546 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2547 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2548
mjr 77:0b96f6867312 2549 // create the transmitter
mjr 77:0b96f6867312 2550 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2551
mjr 77:0b96f6867312 2552 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2553 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2554 {
mjr 77:0b96f6867312 2555 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2556 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2557 if (vb != 0xFF)
mjr 77:0b96f6867312 2558 {
mjr 77:0b96f6867312 2559 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2560 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2561 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2562 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2563 }
mjr 77:0b96f6867312 2564 }
mjr 77:0b96f6867312 2565 }
mjr 77:0b96f6867312 2566
mjr 77:0b96f6867312 2567 // if there's a receiver, set it up
mjr 77:0b96f6867312 2568 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2569 {
mjr 77:0b96f6867312 2570 // create the receiver
mjr 77:0b96f6867312 2571 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2572
mjr 77:0b96f6867312 2573 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2574 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2575 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2576
mjr 77:0b96f6867312 2577 // enable it
mjr 77:0b96f6867312 2578 ir_rx->enable();
mjr 77:0b96f6867312 2579
mjr 77:0b96f6867312 2580 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2581 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2582 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2583 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2584 {
mjr 77:0b96f6867312 2585 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2586 if (cb.protocol != 0
mjr 77:0b96f6867312 2587 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2588 {
mjr 77:0b96f6867312 2589 kbKeys = true;
mjr 77:0b96f6867312 2590 break;
mjr 77:0b96f6867312 2591 }
mjr 77:0b96f6867312 2592 }
mjr 77:0b96f6867312 2593 }
mjr 77:0b96f6867312 2594 }
mjr 77:0b96f6867312 2595
mjr 77:0b96f6867312 2596 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2597 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2598 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2599 {
mjr 77:0b96f6867312 2600 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2601 if (ir_tx != 0)
mjr 77:0b96f6867312 2602 {
mjr 77:0b96f6867312 2603 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2604 int slot = cmd - 1;
mjr 77:0b96f6867312 2605
mjr 77:0b96f6867312 2606 // press or release the virtual button
mjr 77:0b96f6867312 2607 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2608 }
mjr 77:0b96f6867312 2609 }
mjr 77:0b96f6867312 2610
mjr 78:1e00b3fa11af 2611 // Process IR input and output
mjr 77:0b96f6867312 2612 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2613 {
mjr 78:1e00b3fa11af 2614 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2615 if (ir_tx != 0)
mjr 77:0b96f6867312 2616 {
mjr 78:1e00b3fa11af 2617 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2618 // is ready to send, send it.
mjr 78:1e00b3fa11af 2619 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2620 {
mjr 78:1e00b3fa11af 2621 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2622 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2623 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2624 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2625
mjr 78:1e00b3fa11af 2626 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2627 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2628 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2629
mjr 78:1e00b3fa11af 2630 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2631 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2632 }
mjr 77:0b96f6867312 2633 }
mjr 78:1e00b3fa11af 2634
mjr 78:1e00b3fa11af 2635 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2636 if (ir_rx != 0)
mjr 77:0b96f6867312 2637 {
mjr 78:1e00b3fa11af 2638 // Time out any received command
mjr 78:1e00b3fa11af 2639 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2640 {
mjr 80:94dc2946871b 2641 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2642 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2643 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2644 if (t > 200000)
mjr 78:1e00b3fa11af 2645 IRCommandIn = 0;
mjr 80:94dc2946871b 2646 else if (t > 50000)
mjr 78:1e00b3fa11af 2647 IRKeyGap = false;
mjr 78:1e00b3fa11af 2648 }
mjr 78:1e00b3fa11af 2649
mjr 78:1e00b3fa11af 2650 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2651 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2652 {
mjr 78:1e00b3fa11af 2653 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2654 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2655 // limit.
mjr 78:1e00b3fa11af 2656 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2657 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2658 int n;
mjr 78:1e00b3fa11af 2659 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2660
mjr 78:1e00b3fa11af 2661 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2662 if (n != 0)
mjr 78:1e00b3fa11af 2663 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2664
mjr 78:1e00b3fa11af 2665 // check for a command
mjr 78:1e00b3fa11af 2666 IRCommand c;
mjr 78:1e00b3fa11af 2667 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2668 {
mjr 78:1e00b3fa11af 2669 // check the current learning state
mjr 78:1e00b3fa11af 2670 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2671 {
mjr 78:1e00b3fa11af 2672 case 1:
mjr 78:1e00b3fa11af 2673 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2674 // This is it.
mjr 78:1e00b3fa11af 2675 learnedIRCode = c;
mjr 78:1e00b3fa11af 2676
mjr 78:1e00b3fa11af 2677 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2678 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2679 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2680 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2681 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2682 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2683 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2684 break;
mjr 78:1e00b3fa11af 2685
mjr 78:1e00b3fa11af 2686 case 2:
mjr 78:1e00b3fa11af 2687 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2688 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2689 //
mjr 78:1e00b3fa11af 2690 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2691 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2692 //
mjr 78:1e00b3fa11af 2693 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2694 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2695 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2696 // them.
mjr 78:1e00b3fa11af 2697 //
mjr 78:1e00b3fa11af 2698 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2699 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2700 // over.
mjr 78:1e00b3fa11af 2701 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2702 && c.hasDittos
mjr 78:1e00b3fa11af 2703 && c.ditto)
mjr 78:1e00b3fa11af 2704 {
mjr 78:1e00b3fa11af 2705 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2706 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2707 }
mjr 78:1e00b3fa11af 2708 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2709 && c.hasDittos
mjr 78:1e00b3fa11af 2710 && !c.ditto
mjr 78:1e00b3fa11af 2711 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2712 {
mjr 78:1e00b3fa11af 2713 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2714 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2715 // protocol supports them
mjr 78:1e00b3fa11af 2716 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2717 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2718 }
mjr 78:1e00b3fa11af 2719 else
mjr 78:1e00b3fa11af 2720 {
mjr 78:1e00b3fa11af 2721 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2722 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2723 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2724 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2725 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2726 }
mjr 78:1e00b3fa11af 2727 break;
mjr 78:1e00b3fa11af 2728 }
mjr 77:0b96f6867312 2729
mjr 78:1e00b3fa11af 2730 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2731 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2732 // learning mode.
mjr 78:1e00b3fa11af 2733 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2734 {
mjr 78:1e00b3fa11af 2735 // figure the flags:
mjr 78:1e00b3fa11af 2736 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2737 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2738 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2739 flags |= 0x02;
mjr 78:1e00b3fa11af 2740
mjr 78:1e00b3fa11af 2741 // report the code
mjr 78:1e00b3fa11af 2742 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2743
mjr 78:1e00b3fa11af 2744 // exit learning mode
mjr 78:1e00b3fa11af 2745 IRLearningMode = 0;
mjr 77:0b96f6867312 2746 }
mjr 77:0b96f6867312 2747 }
mjr 77:0b96f6867312 2748
mjr 78:1e00b3fa11af 2749 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2750 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2751 {
mjr 78:1e00b3fa11af 2752 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2753 // zero data elements
mjr 78:1e00b3fa11af 2754 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2755
mjr 78:1e00b3fa11af 2756
mjr 78:1e00b3fa11af 2757 // cancel learning mode
mjr 77:0b96f6867312 2758 IRLearningMode = 0;
mjr 77:0b96f6867312 2759 }
mjr 77:0b96f6867312 2760 }
mjr 78:1e00b3fa11af 2761 else
mjr 77:0b96f6867312 2762 {
mjr 78:1e00b3fa11af 2763 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2764 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2765 ir_rx->process();
mjr 78:1e00b3fa11af 2766
mjr 78:1e00b3fa11af 2767 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2768 // have been read.
mjr 78:1e00b3fa11af 2769 IRCommand c;
mjr 78:1e00b3fa11af 2770 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2771 {
mjr 78:1e00b3fa11af 2772 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2773 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2774 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2775 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2776 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2777 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2778 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2779 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2780 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2781 //
mjr 78:1e00b3fa11af 2782 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2783 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2784 // command.
mjr 78:1e00b3fa11af 2785 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2786 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2787 {
mjr 78:1e00b3fa11af 2788 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2789 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2790 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2791 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2792 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2793 if (c.ditto)
mjr 78:1e00b3fa11af 2794 {
mjr 78:1e00b3fa11af 2795 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2796 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2797 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2798 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2799 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2800 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2801 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2802 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2803 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2804 }
mjr 78:1e00b3fa11af 2805 else
mjr 78:1e00b3fa11af 2806 {
mjr 78:1e00b3fa11af 2807 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2808 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2809 // prior command.
mjr 78:1e00b3fa11af 2810 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2811 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2812 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2813
mjr 78:1e00b3fa11af 2814 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2815 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2816 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2817 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2818 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2819 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2820 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2821 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2822 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2823 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2824 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2825 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2826 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2827 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2828 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2829 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2830 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2831 autoRepeat =
mjr 78:1e00b3fa11af 2832 repeat
mjr 78:1e00b3fa11af 2833 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2834 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2835 }
mjr 78:1e00b3fa11af 2836 }
mjr 78:1e00b3fa11af 2837
mjr 78:1e00b3fa11af 2838 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2839 if (repeat)
mjr 78:1e00b3fa11af 2840 {
mjr 78:1e00b3fa11af 2841 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2842 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2843 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2844 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2845 // key press event.
mjr 78:1e00b3fa11af 2846 if (!autoRepeat)
mjr 78:1e00b3fa11af 2847 IRKeyGap = true;
mjr 78:1e00b3fa11af 2848
mjr 78:1e00b3fa11af 2849 // restart the key-up timer
mjr 78:1e00b3fa11af 2850 IRTimer.reset();
mjr 78:1e00b3fa11af 2851 }
mjr 78:1e00b3fa11af 2852 else if (c.ditto)
mjr 78:1e00b3fa11af 2853 {
mjr 78:1e00b3fa11af 2854 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2855 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2856 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2857 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2858 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2859 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2860 // a full command for a new key press.
mjr 78:1e00b3fa11af 2861 IRCommandIn = 0;
mjr 77:0b96f6867312 2862 }
mjr 77:0b96f6867312 2863 else
mjr 77:0b96f6867312 2864 {
mjr 78:1e00b3fa11af 2865 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2866 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2867 // the new command).
mjr 78:1e00b3fa11af 2868 IRCommandIn = 0;
mjr 77:0b96f6867312 2869
mjr 78:1e00b3fa11af 2870 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2871 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2872 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2873 {
mjr 78:1e00b3fa11af 2874 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2875 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2876 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2877 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2878 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2879 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2880 {
mjr 78:1e00b3fa11af 2881 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2882 // remember the starting time.
mjr 78:1e00b3fa11af 2883 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2884 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2885 IRTimer.reset();
mjr 78:1e00b3fa11af 2886
mjr 78:1e00b3fa11af 2887 // no need to keep searching
mjr 78:1e00b3fa11af 2888 break;
mjr 78:1e00b3fa11af 2889 }
mjr 77:0b96f6867312 2890 }
mjr 77:0b96f6867312 2891 }
mjr 77:0b96f6867312 2892 }
mjr 77:0b96f6867312 2893 }
mjr 77:0b96f6867312 2894 }
mjr 77:0b96f6867312 2895 }
mjr 77:0b96f6867312 2896
mjr 74:822a92bc11d2 2897
mjr 11:bd9da7088e6e 2898 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2899 //
mjr 11:bd9da7088e6e 2900 // Button input
mjr 11:bd9da7088e6e 2901 //
mjr 11:bd9da7088e6e 2902
mjr 18:5e890ebd0023 2903 // button state
mjr 18:5e890ebd0023 2904 struct ButtonState
mjr 18:5e890ebd0023 2905 {
mjr 38:091e511ce8a0 2906 ButtonState()
mjr 38:091e511ce8a0 2907 {
mjr 53:9b2611964afc 2908 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2909 virtState = 0;
mjr 53:9b2611964afc 2910 dbState = 0;
mjr 38:091e511ce8a0 2911 pulseState = 0;
mjr 53:9b2611964afc 2912 pulseTime = 0;
mjr 38:091e511ce8a0 2913 }
mjr 35:e959ffba78fd 2914
mjr 53:9b2611964afc 2915 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2916 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2917 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2918 //
mjr 53:9b2611964afc 2919 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2920 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2921 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2922 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2923 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2924 void virtPress(bool on)
mjr 53:9b2611964afc 2925 {
mjr 53:9b2611964afc 2926 // Increment or decrement the current state
mjr 53:9b2611964afc 2927 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2928 }
mjr 53:9b2611964afc 2929
mjr 53:9b2611964afc 2930 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2931 TinyDigitalIn di;
mjr 38:091e511ce8a0 2932
mjr 65:739875521aae 2933 // Time of last pulse state transition.
mjr 65:739875521aae 2934 //
mjr 65:739875521aae 2935 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2936 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2937 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2938 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2939 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2940 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2941 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2942 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2943 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2944 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2945 // This software system can't be fooled that way.)
mjr 65:739875521aae 2946 uint32_t pulseTime;
mjr 18:5e890ebd0023 2947
mjr 65:739875521aae 2948 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2949 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2950 uint8_t cfgIndex;
mjr 53:9b2611964afc 2951
mjr 53:9b2611964afc 2952 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2953 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2954 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2955 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2956 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2957 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2958 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2959 // and physical source states.
mjr 53:9b2611964afc 2960 uint8_t virtState;
mjr 38:091e511ce8a0 2961
mjr 38:091e511ce8a0 2962 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2963 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2964 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2965 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2966 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2967 uint8_t dbState;
mjr 38:091e511ce8a0 2968
mjr 65:739875521aae 2969 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2970 uint8_t physState : 1;
mjr 65:739875521aae 2971
mjr 65:739875521aae 2972 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2973 uint8_t logState : 1;
mjr 65:739875521aae 2974
mjr 79:682ae3171a08 2975 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2976 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2977 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2978 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2979 uint8_t prevLogState : 1;
mjr 65:739875521aae 2980
mjr 65:739875521aae 2981 // Pulse state
mjr 65:739875521aae 2982 //
mjr 65:739875521aae 2983 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2984 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2985 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2986 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2987 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2988 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2989 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2990 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2991 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2992 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2993 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2994 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2995 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2996 //
mjr 38:091e511ce8a0 2997 // Pulse state:
mjr 38:091e511ce8a0 2998 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2999 // 1 -> off
mjr 38:091e511ce8a0 3000 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 3001 // 3 -> on
mjr 38:091e511ce8a0 3002 // 4 -> transitioning on-off
mjr 65:739875521aae 3003 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 3004
mjr 65:739875521aae 3005 } __attribute__((packed));
mjr 65:739875521aae 3006
mjr 65:739875521aae 3007 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 3008 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 3009 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 3010
mjr 66:2e3583fbd2f4 3011 // Shift button state
mjr 66:2e3583fbd2f4 3012 struct
mjr 66:2e3583fbd2f4 3013 {
mjr 66:2e3583fbd2f4 3014 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 3015 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 3016 // 0 = not shifted
mjr 66:2e3583fbd2f4 3017 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 3018 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 3019 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 3020 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 3021 }
mjr 66:2e3583fbd2f4 3022 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 3023
mjr 38:091e511ce8a0 3024 // Button data
mjr 38:091e511ce8a0 3025 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 3026
mjr 38:091e511ce8a0 3027 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 3028 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 3029 // modifier keys.
mjr 38:091e511ce8a0 3030 struct
mjr 38:091e511ce8a0 3031 {
mjr 38:091e511ce8a0 3032 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 3033 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 3034 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 3035 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 3036 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 3037
mjr 38:091e511ce8a0 3038 // Media key state
mjr 38:091e511ce8a0 3039 struct
mjr 38:091e511ce8a0 3040 {
mjr 38:091e511ce8a0 3041 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 3042 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 3043 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 3044
mjr 79:682ae3171a08 3045 // button scan interrupt timer
mjr 79:682ae3171a08 3046 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 3047
mjr 38:091e511ce8a0 3048 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 3049 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 3050 void scanButtons()
mjr 38:091e511ce8a0 3051 {
mjr 79:682ae3171a08 3052 // schedule the next interrupt
mjr 79:682ae3171a08 3053 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 3054
mjr 38:091e511ce8a0 3055 // scan all button input pins
mjr 73:4e8ce0b18915 3056 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 3057 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 3058 {
mjr 73:4e8ce0b18915 3059 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 3060 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 3061 bs->dbState = db;
mjr 73:4e8ce0b18915 3062
mjr 73:4e8ce0b18915 3063 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 3064 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 3065 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 3066 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 3067 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 3068 db &= stable;
mjr 73:4e8ce0b18915 3069 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 3070 bs->physState = !db;
mjr 38:091e511ce8a0 3071 }
mjr 38:091e511ce8a0 3072 }
mjr 38:091e511ce8a0 3073
mjr 38:091e511ce8a0 3074 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 3075 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 3076 // in the physical button state.
mjr 38:091e511ce8a0 3077 Timer buttonTimer;
mjr 12:669df364a565 3078
mjr 65:739875521aae 3079 // Count a button during the initial setup scan
mjr 72:884207c0aab0 3080 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 3081 {
mjr 65:739875521aae 3082 // count it
mjr 65:739875521aae 3083 ++nButtons;
mjr 65:739875521aae 3084
mjr 67:c39e66c4e000 3085 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 3086 // keyboard interface
mjr 72:884207c0aab0 3087 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 3088 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 3089 kbKeys = true;
mjr 65:739875521aae 3090 }
mjr 65:739875521aae 3091
mjr 11:bd9da7088e6e 3092 // initialize the button inputs
mjr 35:e959ffba78fd 3093 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 3094 {
mjr 66:2e3583fbd2f4 3095 // presume no shift key
mjr 66:2e3583fbd2f4 3096 shiftButton.index = -1;
mjr 82:4f6209cb5c33 3097 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 3098
mjr 65:739875521aae 3099 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 3100 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 3101 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 3102 nButtons = 0;
mjr 65:739875521aae 3103 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3104 {
mjr 65:739875521aae 3105 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 3106 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 3107 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 3108 }
mjr 65:739875521aae 3109
mjr 65:739875521aae 3110 // Count virtual buttons
mjr 65:739875521aae 3111
mjr 65:739875521aae 3112 // ZB Launch
mjr 65:739875521aae 3113 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 3114 {
mjr 65:739875521aae 3115 // valid - remember the live button index
mjr 65:739875521aae 3116 zblButtonIndex = nButtons;
mjr 65:739875521aae 3117
mjr 65:739875521aae 3118 // count it
mjr 72:884207c0aab0 3119 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 3120 }
mjr 65:739875521aae 3121
mjr 65:739875521aae 3122 // Allocate the live button slots
mjr 65:739875521aae 3123 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 3124
mjr 65:739875521aae 3125 // Configure the physical inputs
mjr 65:739875521aae 3126 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3127 {
mjr 65:739875521aae 3128 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 3129 if (pin != NC)
mjr 65:739875521aae 3130 {
mjr 65:739875521aae 3131 // point back to the config slot for the keyboard data
mjr 65:739875521aae 3132 bs->cfgIndex = i;
mjr 65:739875521aae 3133
mjr 65:739875521aae 3134 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 3135 bs->di.assignPin(pin);
mjr 65:739875521aae 3136
mjr 65:739875521aae 3137 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 3138 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 3139 bs->pulseState = 1;
mjr 65:739875521aae 3140
mjr 66:2e3583fbd2f4 3141 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 3142 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 3143 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 3144 // config slots are left unused.
mjr 78:1e00b3fa11af 3145 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 3146 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 3147
mjr 65:739875521aae 3148 // advance to the next button
mjr 65:739875521aae 3149 ++bs;
mjr 65:739875521aae 3150 }
mjr 65:739875521aae 3151 }
mjr 65:739875521aae 3152
mjr 53:9b2611964afc 3153 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 3154 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 3155 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 3156 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 3157
mjr 53:9b2611964afc 3158 // ZB Launch Ball button
mjr 65:739875521aae 3159 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 3160 {
mjr 65:739875521aae 3161 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 3162 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 3163 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 3164 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 3165 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 3166 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 3167 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 3168 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 3169
mjr 66:2e3583fbd2f4 3170 // advance to the next button
mjr 65:739875521aae 3171 ++bs;
mjr 11:bd9da7088e6e 3172 }
mjr 12:669df364a565 3173
mjr 38:091e511ce8a0 3174 // start the button scan thread
mjr 79:682ae3171a08 3175 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 3176
mjr 38:091e511ce8a0 3177 // start the button state transition timer
mjr 12:669df364a565 3178 buttonTimer.start();
mjr 11:bd9da7088e6e 3179 }
mjr 11:bd9da7088e6e 3180
mjr 67:c39e66c4e000 3181 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 3182 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 3183 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 3184 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 3185 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 3186 //
mjr 67:c39e66c4e000 3187 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 3188 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 3189 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 3190 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 3191 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 3192 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 3193 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 3194 //
mjr 67:c39e66c4e000 3195 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 3196 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 3197 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 3198 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 3199 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 3200 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 3201 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 3202 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 3203 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 3204 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 3205 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 3206 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 3207 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 3208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 3209 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 3210 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 3211 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 3212 };
mjr 77:0b96f6867312 3213
mjr 77:0b96f6867312 3214 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 3215 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 3216 // states of the button iputs.
mjr 77:0b96f6867312 3217 struct KeyState
mjr 77:0b96f6867312 3218 {
mjr 77:0b96f6867312 3219 KeyState()
mjr 77:0b96f6867312 3220 {
mjr 77:0b96f6867312 3221 // zero all members
mjr 77:0b96f6867312 3222 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 3223 }
mjr 77:0b96f6867312 3224
mjr 77:0b96f6867312 3225 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 3226 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 3227 uint8_t mediakeys;
mjr 77:0b96f6867312 3228
mjr 77:0b96f6867312 3229 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 3230 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 3231 // USBJoystick.cpp).
mjr 77:0b96f6867312 3232 uint8_t modkeys;
mjr 77:0b96f6867312 3233
mjr 77:0b96f6867312 3234 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 3235 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 3236 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 3237 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 3238 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 3239 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 3240 uint8_t keys[7];
mjr 77:0b96f6867312 3241
mjr 77:0b96f6867312 3242 // number of valid entries in keys[] array
mjr 77:0b96f6867312 3243 int nkeys;
mjr 77:0b96f6867312 3244
mjr 77:0b96f6867312 3245 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 3246 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 3247 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 3248 uint32_t js;
mjr 77:0b96f6867312 3249
mjr 77:0b96f6867312 3250
mjr 77:0b96f6867312 3251 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 3252 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 3253 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 3254 {
mjr 77:0b96f6867312 3255 // add the key according to the type
mjr 77:0b96f6867312 3256 switch (typ)
mjr 77:0b96f6867312 3257 {
mjr 77:0b96f6867312 3258 case BtnTypeJoystick:
mjr 77:0b96f6867312 3259 // joystick button
mjr 77:0b96f6867312 3260 js |= (1 << (val - 1));
mjr 77:0b96f6867312 3261 break;
mjr 77:0b96f6867312 3262
mjr 77:0b96f6867312 3263 case BtnTypeKey:
mjr 77:0b96f6867312 3264 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 3265 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 3266 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 3267 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 3268 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 3269 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 3270 // explicitly using media keys if desired.
mjr 77:0b96f6867312 3271 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 3272 {
mjr 77:0b96f6867312 3273 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 3274 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 3275 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 3276 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3277 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3278 }
mjr 77:0b96f6867312 3279 else
mjr 77:0b96f6867312 3280 {
mjr 77:0b96f6867312 3281 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3282 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3283 // apply, add the key to the key array.
mjr 77:0b96f6867312 3284 if (nkeys < 7)
mjr 77:0b96f6867312 3285 {
mjr 77:0b96f6867312 3286 bool found = false;
mjr 77:0b96f6867312 3287 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3288 {
mjr 77:0b96f6867312 3289 if (keys[i] == val)
mjr 77:0b96f6867312 3290 {
mjr 77:0b96f6867312 3291 found = true;
mjr 77:0b96f6867312 3292 break;
mjr 77:0b96f6867312 3293 }
mjr 77:0b96f6867312 3294 }
mjr 77:0b96f6867312 3295 if (!found)
mjr 77:0b96f6867312 3296 keys[nkeys++] = val;
mjr 77:0b96f6867312 3297 }
mjr 77:0b96f6867312 3298 }
mjr 77:0b96f6867312 3299 break;
mjr 77:0b96f6867312 3300
mjr 77:0b96f6867312 3301 case BtnTypeMedia:
mjr 77:0b96f6867312 3302 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3303 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3304 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3305 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3306 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3307 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3308 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3309 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3310 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3311 break;
mjr 77:0b96f6867312 3312 }
mjr 77:0b96f6867312 3313 }
mjr 77:0b96f6867312 3314 };
mjr 67:c39e66c4e000 3315
mjr 67:c39e66c4e000 3316
mjr 38:091e511ce8a0 3317 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3318 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3319 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3320 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3321 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3322 {
mjr 77:0b96f6867312 3323 // key state
mjr 77:0b96f6867312 3324 KeyState ks;
mjr 38:091e511ce8a0 3325
mjr 38:091e511ce8a0 3326 // calculate the time since the last run
mjr 53:9b2611964afc 3327 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3328 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3329
mjr 66:2e3583fbd2f4 3330 // check the shift button state
mjr 66:2e3583fbd2f4 3331 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3332 {
mjr 78:1e00b3fa11af 3333 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3334 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3335
mjr 78:1e00b3fa11af 3336 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3337 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3338 {
mjr 66:2e3583fbd2f4 3339 case 0:
mjr 78:1e00b3fa11af 3340 default:
mjr 78:1e00b3fa11af 3341 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3342 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3343 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3344 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3345 {
mjr 78:1e00b3fa11af 3346 case 0:
mjr 78:1e00b3fa11af 3347 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3348 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3349 if (sbs->physState)
mjr 78:1e00b3fa11af 3350 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3351 break;
mjr 78:1e00b3fa11af 3352
mjr 78:1e00b3fa11af 3353 case 1:
mjr 78:1e00b3fa11af 3354 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3355 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3356 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3357 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3358 // pulse event.
mjr 78:1e00b3fa11af 3359 if (!sbs->physState)
mjr 78:1e00b3fa11af 3360 {
mjr 78:1e00b3fa11af 3361 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3362 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3363 }
mjr 78:1e00b3fa11af 3364 break;
mjr 78:1e00b3fa11af 3365
mjr 78:1e00b3fa11af 3366 case 2:
mjr 78:1e00b3fa11af 3367 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3368 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3369 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3370 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3371 // suppressed.
mjr 78:1e00b3fa11af 3372 if (!sbs->physState)
mjr 78:1e00b3fa11af 3373 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3374 break;
mjr 78:1e00b3fa11af 3375
mjr 78:1e00b3fa11af 3376 case 3:
mjr 78:1e00b3fa11af 3377 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3378 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3379 // has expired.
mjr 78:1e00b3fa11af 3380 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3381 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3382 else
mjr 78:1e00b3fa11af 3383 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3384 break;
mjr 78:1e00b3fa11af 3385 }
mjr 66:2e3583fbd2f4 3386 break;
mjr 66:2e3583fbd2f4 3387
mjr 66:2e3583fbd2f4 3388 case 1:
mjr 78:1e00b3fa11af 3389 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3390 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3391 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3392 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3393 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3394 break;
mjr 66:2e3583fbd2f4 3395 }
mjr 66:2e3583fbd2f4 3396 }
mjr 38:091e511ce8a0 3397
mjr 11:bd9da7088e6e 3398 // scan the button list
mjr 18:5e890ebd0023 3399 ButtonState *bs = buttonState;
mjr 65:739875521aae 3400 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3401 {
mjr 77:0b96f6867312 3402 // get the config entry for the button
mjr 77:0b96f6867312 3403 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3404
mjr 66:2e3583fbd2f4 3405 // Check the button type:
mjr 66:2e3583fbd2f4 3406 // - shift button
mjr 66:2e3583fbd2f4 3407 // - pulsed button
mjr 66:2e3583fbd2f4 3408 // - regular button
mjr 66:2e3583fbd2f4 3409 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3410 {
mjr 78:1e00b3fa11af 3411 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3412 // depends on the mode.
mjr 78:1e00b3fa11af 3413 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3414 {
mjr 78:1e00b3fa11af 3415 case 0:
mjr 78:1e00b3fa11af 3416 default:
mjr 78:1e00b3fa11af 3417 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3418 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3419 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3420 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3421 break;
mjr 78:1e00b3fa11af 3422
mjr 78:1e00b3fa11af 3423 case 1:
mjr 78:1e00b3fa11af 3424 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3425 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3426 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3427 break;
mjr 66:2e3583fbd2f4 3428 }
mjr 66:2e3583fbd2f4 3429 }
mjr 66:2e3583fbd2f4 3430 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3431 {
mjr 38:091e511ce8a0 3432 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3433 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3434 {
mjr 53:9b2611964afc 3435 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3436 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3437 }
mjr 53:9b2611964afc 3438 else
mjr 53:9b2611964afc 3439 {
mjr 53:9b2611964afc 3440 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3441 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3442 switch (bs->pulseState)
mjr 18:5e890ebd0023 3443 {
mjr 38:091e511ce8a0 3444 case 1:
mjr 38:091e511ce8a0 3445 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3446 if (bs->physState)
mjr 53:9b2611964afc 3447 {
mjr 38:091e511ce8a0 3448 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3449 bs->pulseState = 2;
mjr 53:9b2611964afc 3450 bs->logState = 1;
mjr 38:091e511ce8a0 3451 }
mjr 38:091e511ce8a0 3452 break;
mjr 18:5e890ebd0023 3453
mjr 38:091e511ce8a0 3454 case 2:
mjr 38:091e511ce8a0 3455 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3456 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3457 // change in state in the logical button
mjr 38:091e511ce8a0 3458 bs->pulseState = 3;
mjr 38:091e511ce8a0 3459 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3460 bs->logState = 0;
mjr 38:091e511ce8a0 3461 break;
mjr 38:091e511ce8a0 3462
mjr 38:091e511ce8a0 3463 case 3:
mjr 38:091e511ce8a0 3464 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3465 if (!bs->physState)
mjr 53:9b2611964afc 3466 {
mjr 38:091e511ce8a0 3467 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3468 bs->pulseState = 4;
mjr 53:9b2611964afc 3469 bs->logState = 1;
mjr 38:091e511ce8a0 3470 }
mjr 38:091e511ce8a0 3471 break;
mjr 38:091e511ce8a0 3472
mjr 38:091e511ce8a0 3473 case 4:
mjr 38:091e511ce8a0 3474 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3475 bs->pulseState = 1;
mjr 38:091e511ce8a0 3476 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3477 bs->logState = 0;
mjr 38:091e511ce8a0 3478 break;
mjr 18:5e890ebd0023 3479 }
mjr 18:5e890ebd0023 3480 }
mjr 38:091e511ce8a0 3481 }
mjr 38:091e511ce8a0 3482 else
mjr 38:091e511ce8a0 3483 {
mjr 38:091e511ce8a0 3484 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3485 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3486 }
mjr 77:0b96f6867312 3487
mjr 77:0b96f6867312 3488 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3489 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3490 //
mjr 78:1e00b3fa11af 3491 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3492 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3493 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3494 //
mjr 78:1e00b3fa11af 3495 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3496 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3497 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3498 //
mjr 78:1e00b3fa11af 3499 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3500 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3501 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3502 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3503 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3504 bool useShift =
mjr 77:0b96f6867312 3505 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3506 && shiftButton.index != i
mjr 77:0b96f6867312 3507 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3508 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3509 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3510
mjr 77:0b96f6867312 3511 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3512 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3513 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3514 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3515 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3516 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3517 shiftButton.state = 2;
mjr 35:e959ffba78fd 3518
mjr 38:091e511ce8a0 3519 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3520 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3521 {
mjr 77:0b96f6867312 3522 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3523 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3524 {
mjr 77:0b96f6867312 3525 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3526 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3527 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3528 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3529 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3530 // the night mode state.
mjr 77:0b96f6867312 3531 //
mjr 77:0b96f6867312 3532 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3533 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3534 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3535 {
mjr 77:0b96f6867312 3536 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3537 // current switch state.
mjr 53:9b2611964afc 3538 setNightMode(bs->logState);
mjr 53:9b2611964afc 3539 }
mjr 82:4f6209cb5c33 3540 else if (bs->logState)
mjr 53:9b2611964afc 3541 {
mjr 77:0b96f6867312 3542 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3543 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3544 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3545 // OFF to ON.
mjr 66:2e3583fbd2f4 3546 //
mjr 77:0b96f6867312 3547 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3548 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3549 // button.
mjr 77:0b96f6867312 3550 bool pressed;
mjr 98:4df3c0f7e707 3551 if (shiftButton.index == i)
mjr 98:4df3c0f7e707 3552 {
mjr 98:4df3c0f7e707 3553 // This button is both the Shift button AND the Night
mjr 98:4df3c0f7e707 3554 // Mode button. This is a special case in that the
mjr 98:4df3c0f7e707 3555 // Shift status is irrelevant, because it's obviously
mjr 98:4df3c0f7e707 3556 // identical to the Night Mode status. So it doesn't
mjr 98:4df3c0f7e707 3557 // matter whether or not the Night Mode button has the
mjr 98:4df3c0f7e707 3558 // shifted flags; the raw button state is all that
mjr 98:4df3c0f7e707 3559 // counts in this case.
mjr 98:4df3c0f7e707 3560 pressed = true;
mjr 98:4df3c0f7e707 3561 }
mjr 98:4df3c0f7e707 3562 else if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3563 {
mjr 77:0b96f6867312 3564 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3565 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3566 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3567 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3568 }
mjr 77:0b96f6867312 3569 else
mjr 77:0b96f6867312 3570 {
mjr 77:0b96f6867312 3571 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3572 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3573 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3574 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3575 }
mjr 66:2e3583fbd2f4 3576
mjr 66:2e3583fbd2f4 3577 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3578 // toggle night mode
mjr 66:2e3583fbd2f4 3579 if (pressed)
mjr 53:9b2611964afc 3580 toggleNightMode();
mjr 53:9b2611964afc 3581 }
mjr 35:e959ffba78fd 3582 }
mjr 38:091e511ce8a0 3583
mjr 77:0b96f6867312 3584 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3585 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3586 if (irc != 0)
mjr 77:0b96f6867312 3587 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3588
mjr 38:091e511ce8a0 3589 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3590 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3591 }
mjr 38:091e511ce8a0 3592
mjr 53:9b2611964afc 3593 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3594 // key state list
mjr 53:9b2611964afc 3595 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3596 {
mjr 70:9f58735a1732 3597 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3598 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3599 uint8_t typ, val;
mjr 77:0b96f6867312 3600 if (useShift)
mjr 66:2e3583fbd2f4 3601 {
mjr 77:0b96f6867312 3602 typ = bc->typ2;
mjr 77:0b96f6867312 3603 val = bc->val2;
mjr 66:2e3583fbd2f4 3604 }
mjr 77:0b96f6867312 3605 else
mjr 77:0b96f6867312 3606 {
mjr 77:0b96f6867312 3607 typ = bc->typ;
mjr 77:0b96f6867312 3608 val = bc->val;
mjr 77:0b96f6867312 3609 }
mjr 77:0b96f6867312 3610
mjr 70:9f58735a1732 3611 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3612 // the keyboard or joystick event.
mjr 77:0b96f6867312 3613 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3614 }
mjr 11:bd9da7088e6e 3615 }
mjr 77:0b96f6867312 3616
mjr 77:0b96f6867312 3617 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3618 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3619 // the IR key.
mjr 77:0b96f6867312 3620 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3621 {
mjr 77:0b96f6867312 3622 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3623 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3624 }
mjr 77:0b96f6867312 3625
mjr 77:0b96f6867312 3626 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3627 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3628
mjr 77:0b96f6867312 3629 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3630 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3631 jsButtons = ks.js;
mjr 77:0b96f6867312 3632
mjr 77:0b96f6867312 3633 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3634 // something changes)
mjr 77:0b96f6867312 3635 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3636 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3637 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3638 {
mjr 35:e959ffba78fd 3639 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3640 kbState.changed = true;
mjr 77:0b96f6867312 3641 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3642 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3643 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3644 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3645 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3646 }
mjr 35:e959ffba78fd 3647 else {
mjr 35:e959ffba78fd 3648 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3649 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3650 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3651 }
mjr 35:e959ffba78fd 3652 }
mjr 35:e959ffba78fd 3653
mjr 77:0b96f6867312 3654 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3655 // something changes)
mjr 77:0b96f6867312 3656 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3657 {
mjr 77:0b96f6867312 3658 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3659 mediaState.changed = true;
mjr 77:0b96f6867312 3660 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3661 }
mjr 11:bd9da7088e6e 3662 }
mjr 11:bd9da7088e6e 3663
mjr 73:4e8ce0b18915 3664 // Send a button status report
mjr 73:4e8ce0b18915 3665 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3666 {
mjr 73:4e8ce0b18915 3667 // start with all buttons off
mjr 73:4e8ce0b18915 3668 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3669 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3670
mjr 73:4e8ce0b18915 3671 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3672 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3673 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3674 {
mjr 73:4e8ce0b18915 3675 // get the physical state
mjr 73:4e8ce0b18915 3676 int b = bs->physState;
mjr 73:4e8ce0b18915 3677
mjr 73:4e8ce0b18915 3678 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3679 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3680 int si = idx / 8;
mjr 73:4e8ce0b18915 3681 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3682 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3683 }
mjr 73:4e8ce0b18915 3684
mjr 73:4e8ce0b18915 3685 // send the report
mjr 73:4e8ce0b18915 3686 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3687 }
mjr 73:4e8ce0b18915 3688
mjr 5:a70c0bce770d 3689 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3690 //
mjr 5:a70c0bce770d 3691 // Customization joystick subbclass
mjr 5:a70c0bce770d 3692 //
mjr 5:a70c0bce770d 3693
mjr 5:a70c0bce770d 3694 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3695 {
mjr 5:a70c0bce770d 3696 public:
mjr 35:e959ffba78fd 3697 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3698 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3699 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3700 {
mjr 54:fd77a6b2f76c 3701 sleeping_ = false;
mjr 54:fd77a6b2f76c 3702 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3703 timer_.start();
mjr 54:fd77a6b2f76c 3704 }
mjr 54:fd77a6b2f76c 3705
mjr 54:fd77a6b2f76c 3706 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3707 void diagFlash()
mjr 54:fd77a6b2f76c 3708 {
mjr 54:fd77a6b2f76c 3709 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3710 {
mjr 54:fd77a6b2f76c 3711 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3712 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3713 {
mjr 54:fd77a6b2f76c 3714 // short red flash
mjr 54:fd77a6b2f76c 3715 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3716 wait_us(50000);
mjr 54:fd77a6b2f76c 3717 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3718 wait_us(50000);
mjr 54:fd77a6b2f76c 3719 }
mjr 54:fd77a6b2f76c 3720 }
mjr 5:a70c0bce770d 3721 }
mjr 5:a70c0bce770d 3722
mjr 5:a70c0bce770d 3723 // are we connected?
mjr 5:a70c0bce770d 3724 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3725
mjr 54:fd77a6b2f76c 3726 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3727 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3728 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3729 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3730 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3731
mjr 54:fd77a6b2f76c 3732 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3733 //
mjr 54:fd77a6b2f76c 3734 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3735 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3736 // other way.
mjr 54:fd77a6b2f76c 3737 //
mjr 54:fd77a6b2f76c 3738 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3739 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3740 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3741 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3742 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3743 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3744 //
mjr 54:fd77a6b2f76c 3745 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3746 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3747 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3748 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3749 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3750 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3751 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3752 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3753 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3754 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3755 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3756 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3757 // is effectively dead.
mjr 54:fd77a6b2f76c 3758 //
mjr 54:fd77a6b2f76c 3759 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3760 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3761 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3762 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3763 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3764 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3765 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3766 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3767 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3768 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3769 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3770 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3771 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3772 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3773 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3774 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3775 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3776 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3777 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3778 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3779 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3780 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3781 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3782 // a disconnect.
mjr 54:fd77a6b2f76c 3783 //
mjr 54:fd77a6b2f76c 3784 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3785 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3786 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3787 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3788 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3789 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3790 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3791 //
mjr 54:fd77a6b2f76c 3792 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3793 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3794 //
mjr 54:fd77a6b2f76c 3795 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3796 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3797 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3798 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3799 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3800 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3801 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3802 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3803 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3804 // reliable in practice.
mjr 54:fd77a6b2f76c 3805 //
mjr 54:fd77a6b2f76c 3806 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3807 //
mjr 54:fd77a6b2f76c 3808 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3809 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3810 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3811 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3812 // return.
mjr 54:fd77a6b2f76c 3813 //
mjr 54:fd77a6b2f76c 3814 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3815 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3816 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3817 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3818 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3819 //
mjr 54:fd77a6b2f76c 3820 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3821 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3822 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3823 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3824 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3825 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3826 //
mjr 54:fd77a6b2f76c 3827 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3828 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3829 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3830 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3831 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3832 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3833 // freezes over.
mjr 54:fd77a6b2f76c 3834 //
mjr 54:fd77a6b2f76c 3835 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3836 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3837 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3838 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3839 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3840 void recoverConnection()
mjr 54:fd77a6b2f76c 3841 {
mjr 54:fd77a6b2f76c 3842 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3843 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3844 {
mjr 54:fd77a6b2f76c 3845 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3846 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3847 {
mjr 54:fd77a6b2f76c 3848 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3849 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3850 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3851 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3852 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3853 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3854 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3855 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3856 __disable_irq();
mjr 54:fd77a6b2f76c 3857 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3858 {
mjr 54:fd77a6b2f76c 3859 connect(false);
mjr 54:fd77a6b2f76c 3860 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3861 done = true;
mjr 54:fd77a6b2f76c 3862 }
mjr 54:fd77a6b2f76c 3863 __enable_irq();
mjr 54:fd77a6b2f76c 3864 }
mjr 54:fd77a6b2f76c 3865 }
mjr 54:fd77a6b2f76c 3866 }
mjr 5:a70c0bce770d 3867
mjr 5:a70c0bce770d 3868 protected:
mjr 54:fd77a6b2f76c 3869 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3870 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3871 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3872 //
mjr 54:fd77a6b2f76c 3873 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3874 //
mjr 54:fd77a6b2f76c 3875 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3876 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3877 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3878 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3879 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3880 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3881 {
mjr 54:fd77a6b2f76c 3882 // note the new state
mjr 54:fd77a6b2f76c 3883 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3884
mjr 54:fd77a6b2f76c 3885 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3886 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3887 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3888 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3889 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3890 {
mjr 54:fd77a6b2f76c 3891 disconnect();
mjr 54:fd77a6b2f76c 3892 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3893 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3894 }
mjr 54:fd77a6b2f76c 3895 }
mjr 54:fd77a6b2f76c 3896
mjr 54:fd77a6b2f76c 3897 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3898 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3899
mjr 54:fd77a6b2f76c 3900 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3901 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3902
mjr 54:fd77a6b2f76c 3903 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3904 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3905
mjr 54:fd77a6b2f76c 3906 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3907 Timer timer_;
mjr 5:a70c0bce770d 3908 };
mjr 5:a70c0bce770d 3909
mjr 5:a70c0bce770d 3910 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3911 //
mjr 5:a70c0bce770d 3912 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3913 //
mjr 5:a70c0bce770d 3914
mjr 5:a70c0bce770d 3915 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3916 //
mjr 5:a70c0bce770d 3917 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3918 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3919 // automatic calibration.
mjr 5:a70c0bce770d 3920 //
mjr 77:0b96f6867312 3921 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3922 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3923 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3924 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3925 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3926 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3927 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3928 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3929 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3930 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3931 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3932 //
mjr 77:0b96f6867312 3933 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3934 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3935 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3936 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3937 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3938 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3939 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3940 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3941 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3942 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3943 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3944 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3945 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3946 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3947 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3948 // rather than change it across the board.
mjr 5:a70c0bce770d 3949 //
mjr 6:cc35eb643e8f 3950 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3951 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3952 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3953 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3954 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3955 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3956 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3957 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3958 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3959 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3960 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3961 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3962 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3963 // of nudging, say).
mjr 5:a70c0bce770d 3964 //
mjr 5:a70c0bce770d 3965
mjr 17:ab3cec0c8bf4 3966 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3967 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3968
mjr 17:ab3cec0c8bf4 3969 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3970 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3971 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3972
mjr 17:ab3cec0c8bf4 3973 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3974 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3975 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3976 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3977
mjr 17:ab3cec0c8bf4 3978
mjr 6:cc35eb643e8f 3979 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3980 struct AccHist
mjr 5:a70c0bce770d 3981 {
mjr 77:0b96f6867312 3982 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3983 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3984 {
mjr 6:cc35eb643e8f 3985 // save the raw position
mjr 6:cc35eb643e8f 3986 this->x = x;
mjr 6:cc35eb643e8f 3987 this->y = y;
mjr 77:0b96f6867312 3988 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3989 }
mjr 6:cc35eb643e8f 3990
mjr 6:cc35eb643e8f 3991 // reading for this entry
mjr 77:0b96f6867312 3992 int x, y;
mjr 77:0b96f6867312 3993
mjr 77:0b96f6867312 3994 // (distance from previous entry) squared
mjr 77:0b96f6867312 3995 int dsq;
mjr 5:a70c0bce770d 3996
mjr 6:cc35eb643e8f 3997 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3998 int xtot, ytot;
mjr 6:cc35eb643e8f 3999 int cnt;
mjr 6:cc35eb643e8f 4000
mjr 77:0b96f6867312 4001 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4002 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 4003 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 4004 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 4005
mjr 77:0b96f6867312 4006 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 4007 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 4008 };
mjr 5:a70c0bce770d 4009
mjr 5:a70c0bce770d 4010 // accelerometer wrapper class
mjr 3:3514575d4f86 4011 class Accel
mjr 3:3514575d4f86 4012 {
mjr 3:3514575d4f86 4013 public:
mjr 78:1e00b3fa11af 4014 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 4015 int range, int autoCenterMode)
mjr 77:0b96f6867312 4016 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 4017 {
mjr 5:a70c0bce770d 4018 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 4019 irqPin_ = irqPin;
mjr 77:0b96f6867312 4020
mjr 77:0b96f6867312 4021 // remember the range
mjr 77:0b96f6867312 4022 range_ = range;
mjr 78:1e00b3fa11af 4023
mjr 78:1e00b3fa11af 4024 // set the auto-centering mode
mjr 78:1e00b3fa11af 4025 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 4026
mjr 78:1e00b3fa11af 4027 // no manual centering request has been received
mjr 78:1e00b3fa11af 4028 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 4029
mjr 5:a70c0bce770d 4030 // reset and initialize
mjr 5:a70c0bce770d 4031 reset();
mjr 5:a70c0bce770d 4032 }
mjr 5:a70c0bce770d 4033
mjr 78:1e00b3fa11af 4034 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 4035 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 4036 // as soon as we have enough data.
mjr 78:1e00b3fa11af 4037 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 4038
mjr 78:1e00b3fa11af 4039 // set the auto-centering mode
mjr 78:1e00b3fa11af 4040 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 4041 {
mjr 78:1e00b3fa11af 4042 // remember the mode
mjr 78:1e00b3fa11af 4043 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 4044
mjr 78:1e00b3fa11af 4045 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 4046 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 4047 if (mode == 0)
mjr 78:1e00b3fa11af 4048 {
mjr 78:1e00b3fa11af 4049 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 4050 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 4051 }
mjr 78:1e00b3fa11af 4052 else if (mode <= 60)
mjr 78:1e00b3fa11af 4053 {
mjr 78:1e00b3fa11af 4054 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 4055 // interval is 1/5 of this
mjr 78:1e00b3fa11af 4056 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 4057 }
mjr 78:1e00b3fa11af 4058 else
mjr 78:1e00b3fa11af 4059 {
mjr 78:1e00b3fa11af 4060 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 4061 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 4062 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 4063 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 4064 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 4065 // includes recent data.
mjr 78:1e00b3fa11af 4066 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 4067 }
mjr 78:1e00b3fa11af 4068 }
mjr 78:1e00b3fa11af 4069
mjr 5:a70c0bce770d 4070 void reset()
mjr 5:a70c0bce770d 4071 {
mjr 6:cc35eb643e8f 4072 // clear the center point
mjr 77:0b96f6867312 4073 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 4074
mjr 77:0b96f6867312 4075 // start the auto-centering timer
mjr 5:a70c0bce770d 4076 tCenter_.start();
mjr 5:a70c0bce770d 4077 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 4078
mjr 5:a70c0bce770d 4079 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 4080 mma_.init();
mjr 77:0b96f6867312 4081
mjr 77:0b96f6867312 4082 // set the range
mjr 77:0b96f6867312 4083 mma_.setRange(
mjr 77:0b96f6867312 4084 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 4085 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 4086 2);
mjr 6:cc35eb643e8f 4087
mjr 77:0b96f6867312 4088 // set the average accumulators to zero
mjr 77:0b96f6867312 4089 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4090 nSum_ = 0;
mjr 3:3514575d4f86 4091
mjr 3:3514575d4f86 4092 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 4093 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 4094 }
mjr 3:3514575d4f86 4095
mjr 77:0b96f6867312 4096 void poll()
mjr 76:7f5912b6340e 4097 {
mjr 77:0b96f6867312 4098 // read samples until we clear the FIFO
mjr 77:0b96f6867312 4099 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 4100 {
mjr 77:0b96f6867312 4101 int x, y, z;
mjr 77:0b96f6867312 4102 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 4103
mjr 77:0b96f6867312 4104 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 4105 xSum_ += (x - cx_);
mjr 77:0b96f6867312 4106 ySum_ += (y - cy_);
mjr 77:0b96f6867312 4107 ++nSum_;
mjr 77:0b96f6867312 4108
mjr 77:0b96f6867312 4109 // store the updates
mjr 77:0b96f6867312 4110 ax_ = x;
mjr 77:0b96f6867312 4111 ay_ = y;
mjr 77:0b96f6867312 4112 az_ = z;
mjr 77:0b96f6867312 4113 }
mjr 76:7f5912b6340e 4114 }
mjr 77:0b96f6867312 4115
mjr 9:fd65b0a94720 4116 void get(int &x, int &y)
mjr 3:3514575d4f86 4117 {
mjr 77:0b96f6867312 4118 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 4119 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 4120 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 4121 int nSum = nSum_;
mjr 6:cc35eb643e8f 4122
mjr 77:0b96f6867312 4123 // reset the average accumulators for the next run
mjr 77:0b96f6867312 4124 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4125 nSum_ = 0;
mjr 77:0b96f6867312 4126
mjr 77:0b96f6867312 4127 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 4128 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4129 p->addAvg(ax, ay);
mjr 77:0b96f6867312 4130
mjr 78:1e00b3fa11af 4131 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 4132 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 4133 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 4134 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 4135 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 4136 {
mjr 77:0b96f6867312 4137 // add the latest raw sample to the history list
mjr 77:0b96f6867312 4138 AccHist *prv = p;
mjr 77:0b96f6867312 4139 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 4140 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4141 iAccPrv_ = 0;
mjr 77:0b96f6867312 4142 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4143 p->set(ax, ay, prv);
mjr 77:0b96f6867312 4144
mjr 78:1e00b3fa11af 4145 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 4146 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4147 {
mjr 78:1e00b3fa11af 4148 // Center if:
mjr 78:1e00b3fa11af 4149 //
mjr 78:1e00b3fa11af 4150 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 4151 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 4152 //
mjr 78:1e00b3fa11af 4153 // - A manual centering request is pending
mjr 78:1e00b3fa11af 4154 //
mjr 77:0b96f6867312 4155 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 4156 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 4157 if (manualCenterRequest_
mjr 78:1e00b3fa11af 4158 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 4159 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 4160 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 4161 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 4162 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 4163 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 4164 {
mjr 77:0b96f6867312 4165 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 4166 // the samples over the rest period
mjr 77:0b96f6867312 4167 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 4168 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 4169
mjr 78:1e00b3fa11af 4170 // clear any pending manual centering request
mjr 78:1e00b3fa11af 4171 manualCenterRequest_ = false;
mjr 77:0b96f6867312 4172 }
mjr 77:0b96f6867312 4173 }
mjr 77:0b96f6867312 4174 else
mjr 77:0b96f6867312 4175 {
mjr 77:0b96f6867312 4176 // not enough samples yet; just up the count
mjr 77:0b96f6867312 4177 ++nAccPrv_;
mjr 77:0b96f6867312 4178 }
mjr 6:cc35eb643e8f 4179
mjr 77:0b96f6867312 4180 // clear the new item's running totals
mjr 77:0b96f6867312 4181 p->clearAvg();
mjr 5:a70c0bce770d 4182
mjr 77:0b96f6867312 4183 // reset the timer
mjr 77:0b96f6867312 4184 tCenter_.reset();
mjr 77:0b96f6867312 4185 }
mjr 5:a70c0bce770d 4186
mjr 77:0b96f6867312 4187 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 4188 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 4189 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 4190
mjr 6:cc35eb643e8f 4191 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 4192 if (x != 0 || y != 0)
mjr 77:0b96f6867312 4193 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 4194 #endif
mjr 77:0b96f6867312 4195 }
mjr 29:582472d0bc57 4196
mjr 3:3514575d4f86 4197 private:
mjr 6:cc35eb643e8f 4198 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 4199 int rawToReport(int v)
mjr 5:a70c0bce770d 4200 {
mjr 77:0b96f6867312 4201 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 4202 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 4203 // so their scale is 2^13.
mjr 77:0b96f6867312 4204 //
mjr 77:0b96f6867312 4205 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 4206 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 4207 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 4208 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 4209 int i = v*JOYMAX;
mjr 77:0b96f6867312 4210 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 4211
mjr 6:cc35eb643e8f 4212 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 4213 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 4214 static const int filter[] = {
mjr 6:cc35eb643e8f 4215 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 4216 0,
mjr 6:cc35eb643e8f 4217 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 4218 };
mjr 6:cc35eb643e8f 4219 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 4220 }
mjr 5:a70c0bce770d 4221
mjr 3:3514575d4f86 4222 // underlying accelerometer object
mjr 3:3514575d4f86 4223 MMA8451Q mma_;
mjr 3:3514575d4f86 4224
mjr 77:0b96f6867312 4225 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 4226 // scale -8192..+8191
mjr 77:0b96f6867312 4227 int ax_, ay_, az_;
mjr 77:0b96f6867312 4228
mjr 77:0b96f6867312 4229 // running sum of readings since last get()
mjr 77:0b96f6867312 4230 int xSum_, ySum_;
mjr 77:0b96f6867312 4231
mjr 77:0b96f6867312 4232 // number of readings since last get()
mjr 77:0b96f6867312 4233 int nSum_;
mjr 6:cc35eb643e8f 4234
mjr 6:cc35eb643e8f 4235 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 4236 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 4237 // at rest.
mjr 77:0b96f6867312 4238 int cx_, cy_;
mjr 77:0b96f6867312 4239
mjr 77:0b96f6867312 4240 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 4241 uint8_t range_;
mjr 78:1e00b3fa11af 4242
mjr 78:1e00b3fa11af 4243 // auto-center mode:
mjr 78:1e00b3fa11af 4244 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 4245 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 4246 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 4247 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 4248
mjr 78:1e00b3fa11af 4249 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 4250 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 4251
mjr 78:1e00b3fa11af 4252 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 4253 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 4254
mjr 77:0b96f6867312 4255 // atuo-centering timer
mjr 5:a70c0bce770d 4256 Timer tCenter_;
mjr 6:cc35eb643e8f 4257
mjr 6:cc35eb643e8f 4258 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 4259 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 4260 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 4261 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 4262 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 4263 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 4264 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 4265 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 4266 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 4267 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 4268 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 4269 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 4270 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 4271 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 4272 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 4273
mjr 5:a70c0bce770d 4274 // interurupt pin name
mjr 5:a70c0bce770d 4275 PinName irqPin_;
mjr 3:3514575d4f86 4276 };
mjr 3:3514575d4f86 4277
mjr 5:a70c0bce770d 4278 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4279 //
mjr 14:df700b22ca08 4280 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 4281 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 4282 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 4283 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 4284 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 4285 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 4286 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 4287 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 4288 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 4289 //
mjr 14:df700b22ca08 4290 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 4291 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 4292 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 4293 //
mjr 5:a70c0bce770d 4294 void clear_i2c()
mjr 5:a70c0bce770d 4295 {
mjr 38:091e511ce8a0 4296 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 4297 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 4298 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 4299
mjr 5:a70c0bce770d 4300 // clock the SCL 9 times
mjr 5:a70c0bce770d 4301 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 4302 {
mjr 5:a70c0bce770d 4303 scl = 1;
mjr 5:a70c0bce770d 4304 wait_us(20);
mjr 5:a70c0bce770d 4305 scl = 0;
mjr 5:a70c0bce770d 4306 wait_us(20);
mjr 5:a70c0bce770d 4307 }
mjr 5:a70c0bce770d 4308 }
mjr 76:7f5912b6340e 4309
mjr 76:7f5912b6340e 4310
mjr 14:df700b22ca08 4311 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4312 //
mjr 33:d832bcab089e 4313 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4314 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4315 //
mjr 33:d832bcab089e 4316 class Debouncer
mjr 33:d832bcab089e 4317 {
mjr 33:d832bcab089e 4318 public:
mjr 33:d832bcab089e 4319 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4320 {
mjr 33:d832bcab089e 4321 t.start();
mjr 33:d832bcab089e 4322 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4323 this->tmin = tmin;
mjr 33:d832bcab089e 4324 }
mjr 33:d832bcab089e 4325
mjr 33:d832bcab089e 4326 // Get the current stable value
mjr 33:d832bcab089e 4327 bool val() const { return stable; }
mjr 33:d832bcab089e 4328
mjr 33:d832bcab089e 4329 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4330 // input device.
mjr 33:d832bcab089e 4331 void sampleIn(bool val)
mjr 33:d832bcab089e 4332 {
mjr 33:d832bcab089e 4333 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4334 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4335 // on the sample reader.
mjr 33:d832bcab089e 4336 if (val != prv)
mjr 33:d832bcab089e 4337 {
mjr 33:d832bcab089e 4338 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4339 t.reset();
mjr 33:d832bcab089e 4340
mjr 33:d832bcab089e 4341 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4342 prv = val;
mjr 33:d832bcab089e 4343 }
mjr 33:d832bcab089e 4344 else if (val != stable)
mjr 33:d832bcab089e 4345 {
mjr 33:d832bcab089e 4346 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4347 // and different from the stable value. This means that
mjr 33:d832bcab089e 4348 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4349 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4350 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4351 if (t.read() > tmin)
mjr 33:d832bcab089e 4352 stable = val;
mjr 33:d832bcab089e 4353 }
mjr 33:d832bcab089e 4354 }
mjr 33:d832bcab089e 4355
mjr 33:d832bcab089e 4356 private:
mjr 33:d832bcab089e 4357 // current stable value
mjr 33:d832bcab089e 4358 bool stable;
mjr 33:d832bcab089e 4359
mjr 33:d832bcab089e 4360 // last raw sample value
mjr 33:d832bcab089e 4361 bool prv;
mjr 33:d832bcab089e 4362
mjr 33:d832bcab089e 4363 // elapsed time since last raw input change
mjr 33:d832bcab089e 4364 Timer t;
mjr 33:d832bcab089e 4365
mjr 33:d832bcab089e 4366 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4367 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4368 float tmin;
mjr 33:d832bcab089e 4369 };
mjr 33:d832bcab089e 4370
mjr 33:d832bcab089e 4371
mjr 33:d832bcab089e 4372 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4373 //
mjr 33:d832bcab089e 4374 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4375 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4376 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4377 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4378 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4379 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4380 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4381 //
mjr 33:d832bcab089e 4382 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4383 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4384 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4385 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4386 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4387 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4388 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4389 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4390 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4391 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4392 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4393 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4394 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4395 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4396 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4397 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4398 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4399 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4400 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4401 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4402 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4403 //
mjr 40:cc0d9814522b 4404 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4405 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4406 //
mjr 33:d832bcab089e 4407 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4408 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4409 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4410 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4411 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4412 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4413 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4414 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4415 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4416 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4417 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4418 //
mjr 33:d832bcab089e 4419 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4420 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4421 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4422 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4423 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4424 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4425 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4426 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4427 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4428 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4429 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4430 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4431 // first check.
mjr 33:d832bcab089e 4432 //
mjr 33:d832bcab089e 4433 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4434 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4435 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4436 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4437 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4438 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4439 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4440 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4441 //
mjr 33:d832bcab089e 4442
mjr 77:0b96f6867312 4443 // Current PSU2 power state:
mjr 33:d832bcab089e 4444 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4445 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4446 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4447 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4448 // 5 -> TV relay on
mjr 77:0b96f6867312 4449 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4450 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4451
mjr 73:4e8ce0b18915 4452 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4453 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4454 // separate state for each:
mjr 73:4e8ce0b18915 4455 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4456 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4457 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4458 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4459 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4460
mjr 79:682ae3171a08 4461 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4462 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4463
mjr 77:0b96f6867312 4464 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4465 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4466 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4467 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4468 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4469 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4470 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4471 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4472 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4473 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4474 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4475
mjr 77:0b96f6867312 4476 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4477 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4478
mjr 35:e959ffba78fd 4479 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4480 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4481 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4482
mjr 73:4e8ce0b18915 4483 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4484 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4485 {
mjr 73:4e8ce0b18915 4486 // update the state
mjr 73:4e8ce0b18915 4487 if (state)
mjr 73:4e8ce0b18915 4488 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4489 else
mjr 73:4e8ce0b18915 4490 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4491
mjr 73:4e8ce0b18915 4492 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4493 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4494 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4495 }
mjr 35:e959ffba78fd 4496
mjr 86:e30a1f60f783 4497 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4498 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4499 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4500 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4501 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4502 // we say it's okay.
mjr 86:e30a1f60f783 4503 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4504 {
mjr 86:e30a1f60f783 4505 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4506 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4507 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4508 // to the same state later.
mjr 86:e30a1f60f783 4509 return psu2_state == 1;
mjr 86:e30a1f60f783 4510 }
mjr 86:e30a1f60f783 4511
mjr 77:0b96f6867312 4512 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4513 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4514 // functions.
mjr 77:0b96f6867312 4515 Timer powerStatusTimer;
mjr 77:0b96f6867312 4516 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4517 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4518 {
mjr 79:682ae3171a08 4519 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4520 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4521 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4522 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4523 {
mjr 79:682ae3171a08 4524 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4525 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4526 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4527 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4528 }
mjr 79:682ae3171a08 4529
mjr 77:0b96f6867312 4530 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4531 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4532 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4533 // skip this whole routine.
mjr 77:0b96f6867312 4534 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4535 return;
mjr 77:0b96f6867312 4536
mjr 77:0b96f6867312 4537 // reset the update timer for next time
mjr 77:0b96f6867312 4538 powerStatusTimer.reset();
mjr 77:0b96f6867312 4539
mjr 77:0b96f6867312 4540 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4541 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4542 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4543 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4544 static Timer tv_timer;
mjr 35:e959ffba78fd 4545
mjr 33:d832bcab089e 4546 // Check our internal state
mjr 33:d832bcab089e 4547 switch (psu2_state)
mjr 33:d832bcab089e 4548 {
mjr 33:d832bcab089e 4549 case 1:
mjr 33:d832bcab089e 4550 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4551 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4552 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4553 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4554 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4555 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4556 {
mjr 33:d832bcab089e 4557 // switch to OFF state
mjr 33:d832bcab089e 4558 psu2_state = 2;
mjr 33:d832bcab089e 4559
mjr 33:d832bcab089e 4560 // try setting the latch
mjr 35:e959ffba78fd 4561 psu2_status_set->write(1);
mjr 33:d832bcab089e 4562 }
mjr 77:0b96f6867312 4563 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4564 break;
mjr 33:d832bcab089e 4565
mjr 33:d832bcab089e 4566 case 2:
mjr 33:d832bcab089e 4567 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4568 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4569 psu2_status_set->write(0);
mjr 33:d832bcab089e 4570 psu2_state = 3;
mjr 77:0b96f6867312 4571 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4572 break;
mjr 33:d832bcab089e 4573
mjr 33:d832bcab089e 4574 case 3:
mjr 33:d832bcab089e 4575 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4576 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4577 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4578 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4579 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4580 {
mjr 33:d832bcab089e 4581 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4582 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4583 tv_timer.reset();
mjr 33:d832bcab089e 4584 tv_timer.start();
mjr 33:d832bcab089e 4585 psu2_state = 4;
mjr 73:4e8ce0b18915 4586
mjr 73:4e8ce0b18915 4587 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4588 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4589 }
mjr 33:d832bcab089e 4590 else
mjr 33:d832bcab089e 4591 {
mjr 33:d832bcab089e 4592 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4593 // our last check. Return to idle state.
mjr 87:8d35c74403af 4594 psu2_state = 1;
mjr 33:d832bcab089e 4595 }
mjr 33:d832bcab089e 4596 break;
mjr 33:d832bcab089e 4597
mjr 33:d832bcab089e 4598 case 4:
mjr 77:0b96f6867312 4599 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4600 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4601 // off again before the countdown finished.
mjr 77:0b96f6867312 4602 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4603 {
mjr 77:0b96f6867312 4604 // power is off - start a new check cycle
mjr 77:0b96f6867312 4605 psu2_status_set->write(1);
mjr 77:0b96f6867312 4606 psu2_state = 2;
mjr 77:0b96f6867312 4607 break;
mjr 77:0b96f6867312 4608 }
mjr 77:0b96f6867312 4609
mjr 77:0b96f6867312 4610 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4611 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4612
mjr 77:0b96f6867312 4613 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4614 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4615 {
mjr 33:d832bcab089e 4616 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4617 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4618 psu2_state = 5;
mjr 77:0b96f6867312 4619
mjr 77:0b96f6867312 4620 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4621 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4622 }
mjr 33:d832bcab089e 4623 break;
mjr 33:d832bcab089e 4624
mjr 33:d832bcab089e 4625 case 5:
mjr 33:d832bcab089e 4626 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4627 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4628 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4629
mjr 77:0b96f6867312 4630 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4631 psu2_state = 6;
mjr 77:0b96f6867312 4632 tvon_ir_state = 0;
mjr 77:0b96f6867312 4633
mjr 77:0b96f6867312 4634 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4635 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4636 break;
mjr 77:0b96f6867312 4637
mjr 77:0b96f6867312 4638 case 6:
mjr 77:0b96f6867312 4639 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4640 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4641 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4642 psu2_state = 1;
mjr 77:0b96f6867312 4643 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4644
mjr 77:0b96f6867312 4645 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4646 if (ir_tx != 0)
mjr 77:0b96f6867312 4647 {
mjr 77:0b96f6867312 4648 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4649 if (ir_tx->isSending())
mjr 77:0b96f6867312 4650 {
mjr 77:0b96f6867312 4651 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4652 // state 6.
mjr 77:0b96f6867312 4653 psu2_state = 6;
mjr 77:0b96f6867312 4654 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4655 break;
mjr 77:0b96f6867312 4656 }
mjr 77:0b96f6867312 4657
mjr 77:0b96f6867312 4658 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4659 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4660 // number.
mjr 77:0b96f6867312 4661 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4662 {
mjr 77:0b96f6867312 4663 // is this a TV ON command?
mjr 77:0b96f6867312 4664 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4665 {
mjr 77:0b96f6867312 4666 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4667 // looking for.
mjr 77:0b96f6867312 4668 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4669 {
mjr 77:0b96f6867312 4670 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4671 // pushing its virtual button.
mjr 77:0b96f6867312 4672 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4673 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4674
mjr 77:0b96f6867312 4675 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4676 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4677 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4678 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4679 // to send the code once.
mjr 77:0b96f6867312 4680 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4681
mjr 77:0b96f6867312 4682 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4683 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4684 // the next one.
mjr 77:0b96f6867312 4685 psu2_state = 6;
mjr 77:0b96f6867312 4686 tvon_ir_state++;
mjr 77:0b96f6867312 4687 break;
mjr 77:0b96f6867312 4688 }
mjr 77:0b96f6867312 4689
mjr 77:0b96f6867312 4690 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4691 ++n;
mjr 77:0b96f6867312 4692 }
mjr 77:0b96f6867312 4693 }
mjr 77:0b96f6867312 4694 }
mjr 33:d832bcab089e 4695 break;
mjr 33:d832bcab089e 4696 }
mjr 77:0b96f6867312 4697
mjr 77:0b96f6867312 4698 // update the diagnostic LEDs
mjr 77:0b96f6867312 4699 diagLED();
mjr 33:d832bcab089e 4700 }
mjr 33:d832bcab089e 4701
mjr 77:0b96f6867312 4702 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4703 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4704 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4705 // are configured as NC.
mjr 77:0b96f6867312 4706 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4707 {
mjr 55:4db125cd11a0 4708 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4709 // time is nonzero
mjr 77:0b96f6867312 4710 powerStatusTimer.reset();
mjr 77:0b96f6867312 4711 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4712 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4713 {
mjr 77:0b96f6867312 4714 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4715 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4716 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4717
mjr 77:0b96f6867312 4718 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4719 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4720 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4721
mjr 77:0b96f6867312 4722 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4723 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4724 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4725 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4726
mjr 77:0b96f6867312 4727 // Start the TV timer
mjr 77:0b96f6867312 4728 powerStatusTimer.start();
mjr 35:e959ffba78fd 4729 }
mjr 35:e959ffba78fd 4730 }
mjr 35:e959ffba78fd 4731
mjr 73:4e8ce0b18915 4732 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4733 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4734 //
mjr 73:4e8ce0b18915 4735 // Mode:
mjr 73:4e8ce0b18915 4736 // 0 = turn relay off
mjr 73:4e8ce0b18915 4737 // 1 = turn relay on
mjr 73:4e8ce0b18915 4738 // 2 = pulse relay
mjr 73:4e8ce0b18915 4739 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4740 {
mjr 73:4e8ce0b18915 4741 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4742 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4743 return;
mjr 73:4e8ce0b18915 4744
mjr 73:4e8ce0b18915 4745 switch (mode)
mjr 73:4e8ce0b18915 4746 {
mjr 73:4e8ce0b18915 4747 case 0:
mjr 73:4e8ce0b18915 4748 // relay off
mjr 73:4e8ce0b18915 4749 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4750 break;
mjr 73:4e8ce0b18915 4751
mjr 73:4e8ce0b18915 4752 case 1:
mjr 73:4e8ce0b18915 4753 // relay on
mjr 73:4e8ce0b18915 4754 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4755 break;
mjr 73:4e8ce0b18915 4756
mjr 73:4e8ce0b18915 4757 case 2:
mjr 79:682ae3171a08 4758 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4759 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4760 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4761 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4762 break;
mjr 73:4e8ce0b18915 4763 }
mjr 73:4e8ce0b18915 4764 }
mjr 73:4e8ce0b18915 4765
mjr 73:4e8ce0b18915 4766
mjr 35:e959ffba78fd 4767 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4768 //
mjr 35:e959ffba78fd 4769 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4770 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4771 //
mjr 35:e959ffba78fd 4772 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4773 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4774 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4775 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4776 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4777 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4778 //
mjr 35:e959ffba78fd 4779 NVM nvm;
mjr 35:e959ffba78fd 4780
mjr 86:e30a1f60f783 4781 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4782 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4783 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4784 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4785
mjr 86:e30a1f60f783 4786 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4787 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4788
mjr 79:682ae3171a08 4789 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4790 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4791
mjr 86:e30a1f60f783 4792 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4793 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4794
mjr 86:e30a1f60f783 4795
mjr 35:e959ffba78fd 4796 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4797 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4798
mjr 35:e959ffba78fd 4799 // flash memory controller interface
mjr 35:e959ffba78fd 4800 FreescaleIAP iap;
mjr 35:e959ffba78fd 4801
mjr 79:682ae3171a08 4802 // figure the flash address for the config data
mjr 79:682ae3171a08 4803 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4804 {
mjr 79:682ae3171a08 4805 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4806 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4807
mjr 79:682ae3171a08 4808 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4809 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4810
mjr 79:682ae3171a08 4811 // locate it at the top of memory
mjr 79:682ae3171a08 4812 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4813
mjr 79:682ae3171a08 4814 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4815 return (const NVM *)addr;
mjr 35:e959ffba78fd 4816 }
mjr 35:e959ffba78fd 4817
mjr 76:7f5912b6340e 4818 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4819 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4820 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4821 // in either case.
mjr 76:7f5912b6340e 4822 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4823 {
mjr 35:e959ffba78fd 4824 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4825 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4826 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4827 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4828 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4829 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4830 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4831 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4832 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4833 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4834 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4835 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4836 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4837 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4838 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4839 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4840
mjr 35:e959ffba78fd 4841 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4842 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4843
mjr 35:e959ffba78fd 4844 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4845 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4846 if (nvm_valid)
mjr 35:e959ffba78fd 4847 {
mjr 35:e959ffba78fd 4848 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4849 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4850 }
mjr 35:e959ffba78fd 4851 else
mjr 35:e959ffba78fd 4852 {
mjr 76:7f5912b6340e 4853 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4854 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4855 }
mjr 76:7f5912b6340e 4856
mjr 76:7f5912b6340e 4857 // tell the caller what happened
mjr 76:7f5912b6340e 4858 return nvm_valid;
mjr 35:e959ffba78fd 4859 }
mjr 35:e959ffba78fd 4860
mjr 86:e30a1f60f783 4861 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4862 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4863 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4864 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4865 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4866 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4867 {
mjr 76:7f5912b6340e 4868 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4869 waitPlungerIdle();
mjr 76:7f5912b6340e 4870
mjr 76:7f5912b6340e 4871 // get the config block location in the flash memory
mjr 77:0b96f6867312 4872 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4873
mjr 79:682ae3171a08 4874 // save the data
mjr 86:e30a1f60f783 4875 if (nvm.save(iap, addr))
mjr 86:e30a1f60f783 4876 {
mjr 86:e30a1f60f783 4877 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4878 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4879
mjr 86:e30a1f60f783 4880 // start the followup timer
mjr 87:8d35c74403af 4881 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4882 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4883 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4884
mjr 86:e30a1f60f783 4885 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4886 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 4887
mjr 86:e30a1f60f783 4888 // return success
mjr 86:e30a1f60f783 4889 return true;
mjr 86:e30a1f60f783 4890 }
mjr 86:e30a1f60f783 4891 else
mjr 86:e30a1f60f783 4892 {
mjr 86:e30a1f60f783 4893 // return failure
mjr 86:e30a1f60f783 4894 return false;
mjr 86:e30a1f60f783 4895 }
mjr 76:7f5912b6340e 4896 }
mjr 76:7f5912b6340e 4897
mjr 76:7f5912b6340e 4898 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4899 //
mjr 76:7f5912b6340e 4900 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4901 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4902 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4903 // downloading it to the device.
mjr 76:7f5912b6340e 4904 //
mjr 76:7f5912b6340e 4905 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4906 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4907 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4908 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4909 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4910 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4911 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4912 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4913 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4914 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4915 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4916 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4917 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4918 //
mjr 76:7f5912b6340e 4919 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4920 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4921 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4922 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4923 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4924 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4925 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4926 //
mjr 76:7f5912b6340e 4927 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4928 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4929 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4930 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4931 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4932 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4933 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4934 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4935 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4936 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4937
mjr 76:7f5912b6340e 4938 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4939 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4940 {
mjr 76:7f5912b6340e 4941 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4942 // 32-byte signature header
mjr 76:7f5912b6340e 4943 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4944 };
mjr 76:7f5912b6340e 4945
mjr 76:7f5912b6340e 4946 // forward reference to config var store function
mjr 76:7f5912b6340e 4947 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4948
mjr 76:7f5912b6340e 4949 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4950 // configuration object.
mjr 76:7f5912b6340e 4951 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4952 {
mjr 76:7f5912b6340e 4953 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4954 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4955 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4956 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4957 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4958 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4959 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4960 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4961 {
mjr 76:7f5912b6340e 4962 // load this variable
mjr 76:7f5912b6340e 4963 configVarSet(p);
mjr 76:7f5912b6340e 4964 }
mjr 35:e959ffba78fd 4965 }
mjr 35:e959ffba78fd 4966
mjr 35:e959ffba78fd 4967 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4968 //
mjr 55:4db125cd11a0 4969 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4970 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4971 //
mjr 55:4db125cd11a0 4972 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4973 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4974 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4975
mjr 55:4db125cd11a0 4976
mjr 55:4db125cd11a0 4977
mjr 55:4db125cd11a0 4978 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4979 //
mjr 40:cc0d9814522b 4980 // Night mode setting updates
mjr 40:cc0d9814522b 4981 //
mjr 38:091e511ce8a0 4982
mjr 38:091e511ce8a0 4983 // Turn night mode on or off
mjr 38:091e511ce8a0 4984 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4985 {
mjr 77:0b96f6867312 4986 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4987 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4988 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4989 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4990
mjr 40:cc0d9814522b 4991 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4992 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4993 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4994 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4995
mjr 76:7f5912b6340e 4996 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4997 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4998 // mode change.
mjr 76:7f5912b6340e 4999 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 5000 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 5001
mjr 76:7f5912b6340e 5002 // update 74HC595 outputs
mjr 76:7f5912b6340e 5003 if (hc595 != 0)
mjr 76:7f5912b6340e 5004 hc595->update();
mjr 38:091e511ce8a0 5005 }
mjr 38:091e511ce8a0 5006
mjr 38:091e511ce8a0 5007 // Toggle night mode
mjr 38:091e511ce8a0 5008 static void toggleNightMode()
mjr 38:091e511ce8a0 5009 {
mjr 53:9b2611964afc 5010 setNightMode(!nightMode);
mjr 38:091e511ce8a0 5011 }
mjr 38:091e511ce8a0 5012
mjr 38:091e511ce8a0 5013
mjr 38:091e511ce8a0 5014 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5015 //
mjr 35:e959ffba78fd 5016 // Plunger Sensor
mjr 35:e959ffba78fd 5017 //
mjr 35:e959ffba78fd 5018
mjr 35:e959ffba78fd 5019 // the plunger sensor interface object
mjr 35:e959ffba78fd 5020 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 5021
mjr 87:8d35c74403af 5022 // wait for the plunger sensor to complete any outstanding DMA transfer
mjr 76:7f5912b6340e 5023 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 5024 {
mjr 87:8d35c74403af 5025 while (plungerSensor->dmaBusy()) { }
mjr 76:7f5912b6340e 5026 }
mjr 76:7f5912b6340e 5027
mjr 35:e959ffba78fd 5028 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 5029 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 5030 void createPlunger()
mjr 35:e959ffba78fd 5031 {
mjr 35:e959ffba78fd 5032 // create the new sensor object according to the type
mjr 35:e959ffba78fd 5033 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 5034 {
mjr 82:4f6209cb5c33 5035 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 5036 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 5037 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5038 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 5039 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5040 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5041 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5042 break;
mjr 35:e959ffba78fd 5043
mjr 82:4f6209cb5c33 5044 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 5045 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 5046 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5047 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 5048 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5049 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5050 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5051 break;
mjr 35:e959ffba78fd 5052
mjr 35:e959ffba78fd 5053 case PlungerType_Pot:
mjr 82:4f6209cb5c33 5054 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 5055 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 5056 // pins are: AO (analog in)
mjr 53:9b2611964afc 5057 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 5058 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 5059 break;
mjr 82:4f6209cb5c33 5060
mjr 82:4f6209cb5c33 5061 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 5062 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 5063 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 5064 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 5065 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 5066 300,
mjr 82:4f6209cb5c33 5067 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5068 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 5069 break;
mjr 82:4f6209cb5c33 5070
mjr 82:4f6209cb5c33 5071 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 5072 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 5073 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 5074 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 5075 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5076 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5077 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5078 break;
mjr 82:4f6209cb5c33 5079
mjr 82:4f6209cb5c33 5080 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 5081 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 5082 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 5083 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 5084 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5085 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5086 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5087 break;
mjr 82:4f6209cb5c33 5088
mjr 35:e959ffba78fd 5089 case PlungerType_None:
mjr 35:e959ffba78fd 5090 default:
mjr 35:e959ffba78fd 5091 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 5092 break;
mjr 35:e959ffba78fd 5093 }
mjr 86:e30a1f60f783 5094
mjr 87:8d35c74403af 5095 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 5096 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 5097 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 5098 }
mjr 33:d832bcab089e 5099
mjr 52:8298b2a73eb2 5100 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 5101 bool plungerCalMode;
mjr 52:8298b2a73eb2 5102
mjr 48:058ace2aed1d 5103 // Plunger reader
mjr 51:57eb311faafa 5104 //
mjr 51:57eb311faafa 5105 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 5106 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 5107 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 5108 //
mjr 51:57eb311faafa 5109 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 5110 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 5111 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 5112 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 5113 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 5114 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 5115 // firing motion.
mjr 51:57eb311faafa 5116 //
mjr 51:57eb311faafa 5117 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 5118 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 5119 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 5120 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 5121 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 5122 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 5123 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 5124 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 5125 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 5126 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 5127 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 5128 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 5129 // a classic digital aliasing effect.
mjr 51:57eb311faafa 5130 //
mjr 51:57eb311faafa 5131 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 5132 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 5133 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 5134 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 5135 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 5136 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 5137 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 5138 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 5139 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 5140 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 5141 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 5142 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 5143 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 5144 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 5145 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 5146 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 5147 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 5148 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 5149 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 5150 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 5151 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 5152 //
mjr 48:058ace2aed1d 5153 class PlungerReader
mjr 48:058ace2aed1d 5154 {
mjr 48:058ace2aed1d 5155 public:
mjr 48:058ace2aed1d 5156 PlungerReader()
mjr 48:058ace2aed1d 5157 {
mjr 48:058ace2aed1d 5158 // not in a firing event yet
mjr 48:058ace2aed1d 5159 firing = 0;
mjr 48:058ace2aed1d 5160 }
mjr 76:7f5912b6340e 5161
mjr 48:058ace2aed1d 5162 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 5163 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 5164 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 5165 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 5166 void read()
mjr 48:058ace2aed1d 5167 {
mjr 76:7f5912b6340e 5168 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 5169 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 5170 return;
mjr 76:7f5912b6340e 5171
mjr 48:058ace2aed1d 5172 // Read a sample from the sensor
mjr 48:058ace2aed1d 5173 PlungerReading r;
mjr 48:058ace2aed1d 5174 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 5175 {
mjr 53:9b2611964afc 5176 // check for calibration mode
mjr 53:9b2611964afc 5177 if (plungerCalMode)
mjr 53:9b2611964afc 5178 {
mjr 53:9b2611964afc 5179 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 5180 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 5181 // expand the envelope to include this new value.
mjr 53:9b2611964afc 5182 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 5183 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 5184 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 5185 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 5186
mjr 76:7f5912b6340e 5187 // update our cached calibration data
mjr 76:7f5912b6340e 5188 onUpdateCal();
mjr 50:40015764bbe6 5189
mjr 53:9b2611964afc 5190 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 5191 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 5192 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 5193 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 5194 if (calState == 0)
mjr 53:9b2611964afc 5195 {
mjr 53:9b2611964afc 5196 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 5197 {
mjr 53:9b2611964afc 5198 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 5199 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 5200 {
mjr 53:9b2611964afc 5201 // we've been at rest long enough - count it
mjr 53:9b2611964afc 5202 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 5203 calZeroPosN += 1;
mjr 53:9b2611964afc 5204
mjr 53:9b2611964afc 5205 // update the zero position from the new average
mjr 53:9b2611964afc 5206 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 5207 onUpdateCal();
mjr 53:9b2611964afc 5208
mjr 53:9b2611964afc 5209 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 5210 calState = 1;
mjr 53:9b2611964afc 5211 }
mjr 53:9b2611964afc 5212 }
mjr 53:9b2611964afc 5213 else
mjr 53:9b2611964afc 5214 {
mjr 53:9b2611964afc 5215 // we're not close to the last position - start again here
mjr 53:9b2611964afc 5216 calZeroStart = r;
mjr 53:9b2611964afc 5217 }
mjr 53:9b2611964afc 5218 }
mjr 53:9b2611964afc 5219
mjr 53:9b2611964afc 5220 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 5221 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 5222 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 5223 r.pos = int(
mjr 53:9b2611964afc 5224 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 5225 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 5226 }
mjr 53:9b2611964afc 5227 else
mjr 53:9b2611964afc 5228 {
mjr 53:9b2611964afc 5229 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 5230 // rescale to the joystick range.
mjr 76:7f5912b6340e 5231 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 5232
mjr 53:9b2611964afc 5233 // limit the result to the valid joystick range
mjr 53:9b2611964afc 5234 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 5235 r.pos = JOYMAX;
mjr 53:9b2611964afc 5236 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 5237 r.pos = -JOYMAX;
mjr 53:9b2611964afc 5238 }
mjr 50:40015764bbe6 5239
mjr 87:8d35c74403af 5240 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 5241 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 5242 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 5243 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 5244 //
mjr 87:8d35c74403af 5245 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 5246 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 5247 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 5248 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 5249 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 5250 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 5251 // 25-50ms.
mjr 87:8d35c74403af 5252 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 5253 return;
mjr 87:8d35c74403af 5254
mjr 87:8d35c74403af 5255 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 5256 z = r.pos;
mjr 87:8d35c74403af 5257
mjr 87:8d35c74403af 5258 // Firing event detection.
mjr 87:8d35c74403af 5259 //
mjr 87:8d35c74403af 5260 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 5261 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 5262 // spring tension.
mjr 50:40015764bbe6 5263 //
mjr 87:8d35c74403af 5264 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 5265 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 5266 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 5267 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 5268 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 5269 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 5270 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 5271 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 5272 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 5273 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 5274 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 5275 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 5276 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 5277 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 5278 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 5279 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 5280 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 5281 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 5282 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 5283 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 5284 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 5285 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 5286 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 5287 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5288 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5289 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5290 // forward position for a short time.
mjr 76:7f5912b6340e 5291 //
mjr 87:8d35c74403af 5292 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5293 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5294 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5295 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5296 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5297 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5298 //
mjr 87:8d35c74403af 5299 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5300 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5301 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5302 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5303 // to the park position.
mjr 87:8d35c74403af 5304 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5305 switch (firing)
mjr 50:40015764bbe6 5306 {
mjr 50:40015764bbe6 5307 case 0:
mjr 87:8d35c74403af 5308 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5309 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5310 // release, enter firing mode.
mjr 87:8d35c74403af 5311 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5312 {
mjr 87:8d35c74403af 5313 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5314 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5315 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5316 {
mjr 87:8d35c74403af 5317 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5318 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5319 firingMode(1);
mjr 87:8d35c74403af 5320 f0 = prv;
mjr 87:8d35c74403af 5321 z = f0.pos;
mjr 87:8d35c74403af 5322
mjr 87:8d35c74403af 5323 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5324 // state 2 (not at rest)
mjr 87:8d35c74403af 5325 if (calState == 1)
mjr 87:8d35c74403af 5326 calState = 2;
mjr 87:8d35c74403af 5327 }
mjr 50:40015764bbe6 5328 }
mjr 50:40015764bbe6 5329 break;
mjr 50:40015764bbe6 5330
mjr 50:40015764bbe6 5331 case 1:
mjr 87:8d35c74403af 5332 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5333 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5334 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5335 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5336 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5337 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5338 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5339 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5340 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5341 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5342 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5343 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5344 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5345 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5346 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5347 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5348 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5349 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5350 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5351 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5352 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5353 if (r.pos <= 0)
mjr 50:40015764bbe6 5354 {
mjr 87:8d35c74403af 5355 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5356 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5357 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5358 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5359 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5360 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5361 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5362 // physics.
mjr 50:40015764bbe6 5363 firingMode(2);
mjr 53:9b2611964afc 5364
mjr 53:9b2611964afc 5365 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5366 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5367 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5368 {
mjr 53:9b2611964afc 5369 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5370 // come to rest
mjr 53:9b2611964afc 5371 calState = 0;
mjr 53:9b2611964afc 5372
mjr 87:8d35c74403af 5373 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5374 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5375 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5376 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5377 {
mjr 53:9b2611964afc 5378 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5379 calRlsTimeN += 1;
mjr 53:9b2611964afc 5380 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5381 }
mjr 53:9b2611964afc 5382 }
mjr 87:8d35c74403af 5383
mjr 87:8d35c74403af 5384 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5385 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5386 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5387 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5388 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5389 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5390 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5391 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5392 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5393 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5394 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5395 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5396 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5397 // small in any case.)
mjr 87:8d35c74403af 5398 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5399
mjr 87:8d35c74403af 5400 // reset the starting time for this phase
mjr 87:8d35c74403af 5401 f0.t = r.t;
mjr 50:40015764bbe6 5402 }
mjr 50:40015764bbe6 5403 else
mjr 50:40015764bbe6 5404 {
mjr 87:8d35c74403af 5405 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5406 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5407 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5408 if (dt < 50000
mjr 87:8d35c74403af 5409 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5410 {
mjr 87:8d35c74403af 5411 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5412 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5413 // stay in the first release phase.
mjr 87:8d35c74403af 5414 z = f0.pos;
mjr 87:8d35c74403af 5415 }
mjr 87:8d35c74403af 5416 else
mjr 87:8d35c74403af 5417 {
mjr 87:8d35c74403af 5418 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5419 // motion. Return to the default state.
mjr 87:8d35c74403af 5420 firingMode(0);
mjr 87:8d35c74403af 5421 calState = 1;
mjr 87:8d35c74403af 5422 }
mjr 50:40015764bbe6 5423 }
mjr 50:40015764bbe6 5424 break;
mjr 50:40015764bbe6 5425
mjr 50:40015764bbe6 5426 case 2:
mjr 87:8d35c74403af 5427 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5428 // Hold here for 25ms.
mjr 87:8d35c74403af 5429 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5430 {
mjr 87:8d35c74403af 5431 // stay here for now
mjr 87:8d35c74403af 5432 z = f0.pos;
mjr 50:40015764bbe6 5433 }
mjr 50:40015764bbe6 5434 else
mjr 50:40015764bbe6 5435 {
mjr 87:8d35c74403af 5436 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5437 // position until the plunger comes to rest
mjr 50:40015764bbe6 5438 firingMode(3);
mjr 50:40015764bbe6 5439 z = 0;
mjr 87:8d35c74403af 5440
mjr 87:8d35c74403af 5441 // remember when we started
mjr 87:8d35c74403af 5442 f0.t = r.t;
mjr 50:40015764bbe6 5443 }
mjr 50:40015764bbe6 5444 break;
mjr 50:40015764bbe6 5445
mjr 50:40015764bbe6 5446 case 3:
mjr 87:8d35c74403af 5447 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5448 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5449 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5450 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5451 {
mjr 87:8d35c74403af 5452 // stay here a while longer
mjr 87:8d35c74403af 5453 z = 0;
mjr 50:40015764bbe6 5454 }
mjr 50:40015764bbe6 5455 else
mjr 50:40015764bbe6 5456 {
mjr 87:8d35c74403af 5457 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5458 firingMode(0);
mjr 50:40015764bbe6 5459 }
mjr 50:40015764bbe6 5460 break;
mjr 50:40015764bbe6 5461 }
mjr 50:40015764bbe6 5462
mjr 82:4f6209cb5c33 5463 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5464 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5465 {
mjr 82:4f6209cb5c33 5466 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5467 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5468 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5469 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5470 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5471 {
mjr 82:4f6209cb5c33 5472 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5473 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5474 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5475 }
mjr 82:4f6209cb5c33 5476 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5477 {
mjr 82:4f6209cb5c33 5478 // auto-zero now
mjr 82:4f6209cb5c33 5479 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5480
mjr 82:4f6209cb5c33 5481 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5482 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5483 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5484 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5485 }
mjr 82:4f6209cb5c33 5486 }
mjr 82:4f6209cb5c33 5487
mjr 87:8d35c74403af 5488 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5489 prv = r;
mjr 48:058ace2aed1d 5490 }
mjr 48:058ace2aed1d 5491 }
mjr 48:058ace2aed1d 5492
mjr 48:058ace2aed1d 5493 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5494 int16_t getPosition()
mjr 58:523fdcffbe6d 5495 {
mjr 86:e30a1f60f783 5496 // return the last reading
mjr 86:e30a1f60f783 5497 return z;
mjr 55:4db125cd11a0 5498 }
mjr 58:523fdcffbe6d 5499
mjr 48:058ace2aed1d 5500 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5501 void setCalMode(bool f)
mjr 48:058ace2aed1d 5502 {
mjr 52:8298b2a73eb2 5503 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5504 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5505 {
mjr 52:8298b2a73eb2 5506 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5507 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5508
mjr 52:8298b2a73eb2 5509 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5510 calState = 0;
mjr 52:8298b2a73eb2 5511 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5512 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5513 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5514 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5515
mjr 82:4f6209cb5c33 5516 // tell the plunger we're starting calibration
mjr 82:4f6209cb5c33 5517 plungerSensor->beginCalibration();
mjr 82:4f6209cb5c33 5518
mjr 52:8298b2a73eb2 5519 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5520 PlungerReading r;
mjr 52:8298b2a73eb2 5521 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5522 {
mjr 52:8298b2a73eb2 5523 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5524 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5525 onUpdateCal();
mjr 52:8298b2a73eb2 5526
mjr 52:8298b2a73eb2 5527 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5528 calZeroStart = r;
mjr 52:8298b2a73eb2 5529 }
mjr 52:8298b2a73eb2 5530 else
mjr 52:8298b2a73eb2 5531 {
mjr 52:8298b2a73eb2 5532 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5533 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5534 onUpdateCal();
mjr 52:8298b2a73eb2 5535
mjr 52:8298b2a73eb2 5536 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5537 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5538 calZeroStart.t = 0;
mjr 53:9b2611964afc 5539 }
mjr 53:9b2611964afc 5540 }
mjr 53:9b2611964afc 5541 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5542 {
mjr 53:9b2611964afc 5543 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5544 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5545 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5546 // physically meaningless.
mjr 53:9b2611964afc 5547 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5548 {
mjr 53:9b2611964afc 5549 // bad settings - reset to defaults
mjr 53:9b2611964afc 5550 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5551 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5552 onUpdateCal();
mjr 52:8298b2a73eb2 5553 }
mjr 52:8298b2a73eb2 5554 }
mjr 52:8298b2a73eb2 5555
mjr 48:058ace2aed1d 5556 // remember the new mode
mjr 52:8298b2a73eb2 5557 plungerCalMode = f;
mjr 48:058ace2aed1d 5558 }
mjr 48:058ace2aed1d 5559
mjr 76:7f5912b6340e 5560 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5561 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5562 // cached inverse is calculated as
mjr 76:7f5912b6340e 5563 //
mjr 76:7f5912b6340e 5564 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5565 //
mjr 76:7f5912b6340e 5566 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5567 //
mjr 76:7f5912b6340e 5568 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5569 //
mjr 76:7f5912b6340e 5570 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5571 int invCalRange;
mjr 76:7f5912b6340e 5572
mjr 76:7f5912b6340e 5573 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5574 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5575 {
mjr 76:7f5912b6340e 5576 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5577 }
mjr 76:7f5912b6340e 5578
mjr 76:7f5912b6340e 5579 void onUpdateCal()
mjr 76:7f5912b6340e 5580 {
mjr 76:7f5912b6340e 5581 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5582 }
mjr 76:7f5912b6340e 5583
mjr 48:058ace2aed1d 5584 // is a firing event in progress?
mjr 53:9b2611964afc 5585 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5586
mjr 48:058ace2aed1d 5587 private:
mjr 87:8d35c74403af 5588 // current reported joystick reading
mjr 87:8d35c74403af 5589 int z;
mjr 87:8d35c74403af 5590
mjr 87:8d35c74403af 5591 // previous reading
mjr 87:8d35c74403af 5592 PlungerReading prv;
mjr 87:8d35c74403af 5593
mjr 52:8298b2a73eb2 5594 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5595 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5596 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5597 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5598 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5599 // 1 = at rest
mjr 52:8298b2a73eb2 5600 // 2 = retracting
mjr 52:8298b2a73eb2 5601 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5602 uint8_t calState;
mjr 52:8298b2a73eb2 5603
mjr 52:8298b2a73eb2 5604 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5605 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5606 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5607 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5608 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5609 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5610 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5611 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5612 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5613 long calZeroPosSum;
mjr 52:8298b2a73eb2 5614 int calZeroPosN;
mjr 52:8298b2a73eb2 5615
mjr 52:8298b2a73eb2 5616 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5617 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5618 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5619 int calRlsTimeN;
mjr 52:8298b2a73eb2 5620
mjr 85:3c28aee81cde 5621 // Auto-zeroing timer
mjr 85:3c28aee81cde 5622 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5623
mjr 48:058ace2aed1d 5624 // set a firing mode
mjr 48:058ace2aed1d 5625 inline void firingMode(int m)
mjr 48:058ace2aed1d 5626 {
mjr 48:058ace2aed1d 5627 firing = m;
mjr 48:058ace2aed1d 5628 }
mjr 48:058ace2aed1d 5629
mjr 48:058ace2aed1d 5630 // Firing event state.
mjr 48:058ace2aed1d 5631 //
mjr 87:8d35c74403af 5632 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5633 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5634 //
mjr 87:8d35c74403af 5635 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5636 //
mjr 87:8d35c74403af 5637 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5638 //
mjr 87:8d35c74403af 5639 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5640 //
mjr 48:058ace2aed1d 5641 int firing;
mjr 48:058ace2aed1d 5642
mjr 87:8d35c74403af 5643 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5644 PlungerReading f0;
mjr 48:058ace2aed1d 5645 };
mjr 48:058ace2aed1d 5646
mjr 48:058ace2aed1d 5647 // plunger reader singleton
mjr 48:058ace2aed1d 5648 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5649
mjr 48:058ace2aed1d 5650 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5651 //
mjr 48:058ace2aed1d 5652 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5653 //
mjr 48:058ace2aed1d 5654 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5655 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5656 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5657 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5658 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5659 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5660 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5661 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5662 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5663 //
mjr 48:058ace2aed1d 5664 // This feature has two configuration components:
mjr 48:058ace2aed1d 5665 //
mjr 48:058ace2aed1d 5666 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5667 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5668 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5669 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5670 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5671 // plunger/launch button connection.
mjr 48:058ace2aed1d 5672 //
mjr 48:058ace2aed1d 5673 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5674 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5675 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5676 // position.
mjr 48:058ace2aed1d 5677 //
mjr 48:058ace2aed1d 5678 class ZBLaunchBall
mjr 48:058ace2aed1d 5679 {
mjr 48:058ace2aed1d 5680 public:
mjr 48:058ace2aed1d 5681 ZBLaunchBall()
mjr 48:058ace2aed1d 5682 {
mjr 48:058ace2aed1d 5683 // start in the default state
mjr 48:058ace2aed1d 5684 lbState = 0;
mjr 53:9b2611964afc 5685 btnState = false;
mjr 48:058ace2aed1d 5686 }
mjr 48:058ace2aed1d 5687
mjr 48:058ace2aed1d 5688 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5689 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5690 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5691 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5692 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5693 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5694 void update()
mjr 48:058ace2aed1d 5695 {
mjr 53:9b2611964afc 5696 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5697 // plunger firing event
mjr 53:9b2611964afc 5698 if (zbLaunchOn)
mjr 48:058ace2aed1d 5699 {
mjr 53:9b2611964afc 5700 // note the new position
mjr 48:058ace2aed1d 5701 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5702
mjr 53:9b2611964afc 5703 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5704 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5705
mjr 53:9b2611964afc 5706 // check the state
mjr 48:058ace2aed1d 5707 switch (lbState)
mjr 48:058ace2aed1d 5708 {
mjr 48:058ace2aed1d 5709 case 0:
mjr 53:9b2611964afc 5710 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5711 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5712 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5713 // the button.
mjr 53:9b2611964afc 5714 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5715 {
mjr 53:9b2611964afc 5716 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5717 lbTimer.reset();
mjr 53:9b2611964afc 5718 lbTimer.start();
mjr 53:9b2611964afc 5719 setButton(true);
mjr 53:9b2611964afc 5720
mjr 53:9b2611964afc 5721 // switch to state 1
mjr 53:9b2611964afc 5722 lbState = 1;
mjr 53:9b2611964afc 5723 }
mjr 48:058ace2aed1d 5724 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5725 {
mjr 53:9b2611964afc 5726 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5727 // button as long as we're pushed forward
mjr 53:9b2611964afc 5728 setButton(true);
mjr 53:9b2611964afc 5729 }
mjr 53:9b2611964afc 5730 else
mjr 53:9b2611964afc 5731 {
mjr 53:9b2611964afc 5732 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5733 setButton(false);
mjr 53:9b2611964afc 5734 }
mjr 48:058ace2aed1d 5735 break;
mjr 48:058ace2aed1d 5736
mjr 48:058ace2aed1d 5737 case 1:
mjr 53:9b2611964afc 5738 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5739 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5740 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5741 {
mjr 53:9b2611964afc 5742 // timer expired - turn off the button
mjr 53:9b2611964afc 5743 setButton(false);
mjr 53:9b2611964afc 5744
mjr 53:9b2611964afc 5745 // switch to state 2
mjr 53:9b2611964afc 5746 lbState = 2;
mjr 53:9b2611964afc 5747 }
mjr 48:058ace2aed1d 5748 break;
mjr 48:058ace2aed1d 5749
mjr 48:058ace2aed1d 5750 case 2:
mjr 53:9b2611964afc 5751 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5752 // plunger launch event to end.
mjr 53:9b2611964afc 5753 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5754 {
mjr 53:9b2611964afc 5755 // firing event done - return to default state
mjr 53:9b2611964afc 5756 lbState = 0;
mjr 53:9b2611964afc 5757 }
mjr 48:058ace2aed1d 5758 break;
mjr 48:058ace2aed1d 5759 }
mjr 53:9b2611964afc 5760 }
mjr 53:9b2611964afc 5761 else
mjr 53:9b2611964afc 5762 {
mjr 53:9b2611964afc 5763 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5764 setButton(false);
mjr 48:058ace2aed1d 5765
mjr 53:9b2611964afc 5766 // return to the default state
mjr 53:9b2611964afc 5767 lbState = 0;
mjr 48:058ace2aed1d 5768 }
mjr 48:058ace2aed1d 5769 }
mjr 53:9b2611964afc 5770
mjr 53:9b2611964afc 5771 // Set the button state
mjr 53:9b2611964afc 5772 void setButton(bool on)
mjr 53:9b2611964afc 5773 {
mjr 53:9b2611964afc 5774 if (btnState != on)
mjr 53:9b2611964afc 5775 {
mjr 53:9b2611964afc 5776 // remember the new state
mjr 53:9b2611964afc 5777 btnState = on;
mjr 53:9b2611964afc 5778
mjr 53:9b2611964afc 5779 // update the virtual button state
mjr 65:739875521aae 5780 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5781 }
mjr 53:9b2611964afc 5782 }
mjr 53:9b2611964afc 5783
mjr 48:058ace2aed1d 5784 private:
mjr 48:058ace2aed1d 5785 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5786 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5787 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5788 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5789 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5790 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5791 //
mjr 48:058ace2aed1d 5792 // States:
mjr 48:058ace2aed1d 5793 // 0 = default
mjr 53:9b2611964afc 5794 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5795 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5796 // firing event to end)
mjr 53:9b2611964afc 5797 uint8_t lbState;
mjr 48:058ace2aed1d 5798
mjr 53:9b2611964afc 5799 // button state
mjr 53:9b2611964afc 5800 bool btnState;
mjr 48:058ace2aed1d 5801
mjr 48:058ace2aed1d 5802 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5803 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5804 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5805 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5806 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5807 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5808 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5809 Timer lbTimer;
mjr 48:058ace2aed1d 5810 };
mjr 48:058ace2aed1d 5811
mjr 35:e959ffba78fd 5812 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5813 //
mjr 35:e959ffba78fd 5814 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5815 //
mjr 54:fd77a6b2f76c 5816 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5817 {
mjr 35:e959ffba78fd 5818 // disconnect from USB
mjr 54:fd77a6b2f76c 5819 if (disconnect)
mjr 54:fd77a6b2f76c 5820 js.disconnect();
mjr 35:e959ffba78fd 5821
mjr 35:e959ffba78fd 5822 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5823 wait_us(pause_us);
mjr 35:e959ffba78fd 5824
mjr 35:e959ffba78fd 5825 // reset the device
mjr 35:e959ffba78fd 5826 NVIC_SystemReset();
mjr 35:e959ffba78fd 5827 while (true) { }
mjr 35:e959ffba78fd 5828 }
mjr 35:e959ffba78fd 5829
mjr 35:e959ffba78fd 5830 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5831 //
mjr 35:e959ffba78fd 5832 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5833 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5834 //
mjr 35:e959ffba78fd 5835 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5836 {
mjr 35:e959ffba78fd 5837 int tmp;
mjr 78:1e00b3fa11af 5838 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5839 {
mjr 35:e959ffba78fd 5840 case OrientationFront:
mjr 35:e959ffba78fd 5841 tmp = x;
mjr 35:e959ffba78fd 5842 x = y;
mjr 35:e959ffba78fd 5843 y = tmp;
mjr 35:e959ffba78fd 5844 break;
mjr 35:e959ffba78fd 5845
mjr 35:e959ffba78fd 5846 case OrientationLeft:
mjr 35:e959ffba78fd 5847 x = -x;
mjr 35:e959ffba78fd 5848 break;
mjr 35:e959ffba78fd 5849
mjr 35:e959ffba78fd 5850 case OrientationRight:
mjr 35:e959ffba78fd 5851 y = -y;
mjr 35:e959ffba78fd 5852 break;
mjr 35:e959ffba78fd 5853
mjr 35:e959ffba78fd 5854 case OrientationRear:
mjr 35:e959ffba78fd 5855 tmp = -x;
mjr 35:e959ffba78fd 5856 x = -y;
mjr 35:e959ffba78fd 5857 y = tmp;
mjr 35:e959ffba78fd 5858 break;
mjr 35:e959ffba78fd 5859 }
mjr 35:e959ffba78fd 5860 }
mjr 35:e959ffba78fd 5861
mjr 35:e959ffba78fd 5862 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5863 //
mjr 35:e959ffba78fd 5864 // Calibration button state:
mjr 35:e959ffba78fd 5865 // 0 = not pushed
mjr 35:e959ffba78fd 5866 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5867 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5868 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5869 int calBtnState = 0;
mjr 35:e959ffba78fd 5870
mjr 35:e959ffba78fd 5871 // calibration button debounce timer
mjr 35:e959ffba78fd 5872 Timer calBtnTimer;
mjr 35:e959ffba78fd 5873
mjr 35:e959ffba78fd 5874 // calibration button light state
mjr 35:e959ffba78fd 5875 int calBtnLit = false;
mjr 35:e959ffba78fd 5876
mjr 35:e959ffba78fd 5877
mjr 35:e959ffba78fd 5878 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5879 //
mjr 40:cc0d9814522b 5880 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5881 //
mjr 40:cc0d9814522b 5882
mjr 40:cc0d9814522b 5883 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5884 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5885 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 5886 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5887 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5888 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5889 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5890 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5891 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5892 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5893 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5894 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5895
mjr 40:cc0d9814522b 5896 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5897 #undef if_msg_valid
mjr 40:cc0d9814522b 5898 #undef v_byte
mjr 40:cc0d9814522b 5899 #undef v_ui16
mjr 77:0b96f6867312 5900 #undef v_ui32
mjr 40:cc0d9814522b 5901 #undef v_pin
mjr 53:9b2611964afc 5902 #undef v_byte_ro
mjr 91:ae9be42652bf 5903 #undef v_byte_wo
mjr 74:822a92bc11d2 5904 #undef v_ui32_ro
mjr 74:822a92bc11d2 5905 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5906 #undef v_func
mjr 38:091e511ce8a0 5907
mjr 91:ae9be42652bf 5908 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 5909 #define if_msg_valid(test)
mjr 53:9b2611964afc 5910 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5911 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5912 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5913 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5914 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5915 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5916 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 5917 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 5918 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5919 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5920
mjr 35:e959ffba78fd 5921
mjr 35:e959ffba78fd 5922 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5923 //
mjr 35:e959ffba78fd 5924 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5925 // LedWiz protocol.
mjr 33:d832bcab089e 5926 //
mjr 78:1e00b3fa11af 5927 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5928 {
mjr 38:091e511ce8a0 5929 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5930 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5931 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5932 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5933 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5934 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5935 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5936 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5937 //
mjr 38:091e511ce8a0 5938 // first byte =
mjr 74:822a92bc11d2 5939 // 0-48 -> PBA
mjr 74:822a92bc11d2 5940 // 64 -> SBA
mjr 38:091e511ce8a0 5941 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5942 // 129-132 -> PBA
mjr 38:091e511ce8a0 5943 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5944 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5945 // other -> reserved for future use
mjr 38:091e511ce8a0 5946 //
mjr 39:b3815a1c3802 5947 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5948 if (data[0] == 64)
mjr 35:e959ffba78fd 5949 {
mjr 74:822a92bc11d2 5950 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5951 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5952 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5953 sba_sbx(0, data);
mjr 74:822a92bc11d2 5954
mjr 74:822a92bc11d2 5955 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5956 pbaIdx = 0;
mjr 38:091e511ce8a0 5957 }
mjr 38:091e511ce8a0 5958 else if (data[0] == 65)
mjr 38:091e511ce8a0 5959 {
mjr 38:091e511ce8a0 5960 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5961 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5962 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5963 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5964 // message type.
mjr 39:b3815a1c3802 5965 switch (data[1])
mjr 38:091e511ce8a0 5966 {
mjr 39:b3815a1c3802 5967 case 0:
mjr 39:b3815a1c3802 5968 // No Op
mjr 39:b3815a1c3802 5969 break;
mjr 39:b3815a1c3802 5970
mjr 39:b3815a1c3802 5971 case 1:
mjr 38:091e511ce8a0 5972 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5973 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5974 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5975 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5976 {
mjr 39:b3815a1c3802 5977
mjr 39:b3815a1c3802 5978 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5979 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5980 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5981
mjr 86:e30a1f60f783 5982 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 5983 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5984
mjr 39:b3815a1c3802 5985 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5986 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5987 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5988
mjr 77:0b96f6867312 5989 // set the flag to do the save
mjr 86:e30a1f60f783 5990 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 5991 }
mjr 39:b3815a1c3802 5992 break;
mjr 38:091e511ce8a0 5993
mjr 39:b3815a1c3802 5994 case 2:
mjr 38:091e511ce8a0 5995 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5996 // (No parameters)
mjr 38:091e511ce8a0 5997
mjr 38:091e511ce8a0 5998 // enter calibration mode
mjr 38:091e511ce8a0 5999 calBtnState = 3;
mjr 52:8298b2a73eb2 6000 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 6001 calBtnTimer.reset();
mjr 39:b3815a1c3802 6002 break;
mjr 39:b3815a1c3802 6003
mjr 39:b3815a1c3802 6004 case 3:
mjr 52:8298b2a73eb2 6005 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 6006 // data[2] = flag bits
mjr 53:9b2611964afc 6007 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 6008 reportPlungerStat = true;
mjr 53:9b2611964afc 6009 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 6010 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 6011
mjr 38:091e511ce8a0 6012 // show purple until we finish sending the report
mjr 38:091e511ce8a0 6013 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 6014 break;
mjr 39:b3815a1c3802 6015
mjr 39:b3815a1c3802 6016 case 4:
mjr 38:091e511ce8a0 6017 // 4 = hardware configuration query
mjr 38:091e511ce8a0 6018 // (No parameters)
mjr 38:091e511ce8a0 6019 js.reportConfig(
mjr 38:091e511ce8a0 6020 numOutputs,
mjr 38:091e511ce8a0 6021 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 6022 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 6023 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 6024 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 6025 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 6026 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 6027 true, // we support the configurable joystick report timing features
mjr 98:4df3c0f7e707 6028 true, // we use the new flipper logic timing table
mjr 79:682ae3171a08 6029 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 6030 break;
mjr 39:b3815a1c3802 6031
mjr 39:b3815a1c3802 6032 case 5:
mjr 38:091e511ce8a0 6033 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 6034 allOutputsOff();
mjr 39:b3815a1c3802 6035 break;
mjr 39:b3815a1c3802 6036
mjr 39:b3815a1c3802 6037 case 6:
mjr 85:3c28aee81cde 6038 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 6039 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 6040 //
mjr 85:3c28aee81cde 6041 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 6042 // data[3] = flags:
mjr 85:3c28aee81cde 6043 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 6044 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 6045 break;
mjr 40:cc0d9814522b 6046
mjr 40:cc0d9814522b 6047 case 7:
mjr 40:cc0d9814522b 6048 // 7 = Device ID report
mjr 53:9b2611964afc 6049 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 6050 js.reportID(data[2]);
mjr 40:cc0d9814522b 6051 break;
mjr 40:cc0d9814522b 6052
mjr 40:cc0d9814522b 6053 case 8:
mjr 40:cc0d9814522b 6054 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 6055 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 6056 setNightMode(data[2]);
mjr 40:cc0d9814522b 6057 break;
mjr 52:8298b2a73eb2 6058
mjr 52:8298b2a73eb2 6059 case 9:
mjr 52:8298b2a73eb2 6060 // 9 = Config variable query.
mjr 52:8298b2a73eb2 6061 // data[2] = config var ID
mjr 52:8298b2a73eb2 6062 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 6063 {
mjr 53:9b2611964afc 6064 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 6065 // the rest of the buffer
mjr 52:8298b2a73eb2 6066 uint8_t reply[8];
mjr 52:8298b2a73eb2 6067 reply[1] = data[2];
mjr 52:8298b2a73eb2 6068 reply[2] = data[3];
mjr 53:9b2611964afc 6069 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 6070
mjr 52:8298b2a73eb2 6071 // query the value
mjr 52:8298b2a73eb2 6072 configVarGet(reply);
mjr 52:8298b2a73eb2 6073
mjr 52:8298b2a73eb2 6074 // send the reply
mjr 52:8298b2a73eb2 6075 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 6076 }
mjr 52:8298b2a73eb2 6077 break;
mjr 53:9b2611964afc 6078
mjr 53:9b2611964afc 6079 case 10:
mjr 53:9b2611964afc 6080 // 10 = Build ID query.
mjr 53:9b2611964afc 6081 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 6082 break;
mjr 73:4e8ce0b18915 6083
mjr 73:4e8ce0b18915 6084 case 11:
mjr 73:4e8ce0b18915 6085 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 6086 // data[2] = operation:
mjr 73:4e8ce0b18915 6087 // 0 = turn relay off
mjr 73:4e8ce0b18915 6088 // 1 = turn relay on
mjr 73:4e8ce0b18915 6089 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 6090 TVRelay(data[2]);
mjr 73:4e8ce0b18915 6091 break;
mjr 73:4e8ce0b18915 6092
mjr 73:4e8ce0b18915 6093 case 12:
mjr 77:0b96f6867312 6094 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 6095 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 6096 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 6097 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 6098 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 6099
mjr 77:0b96f6867312 6100 // enter IR learning mode
mjr 77:0b96f6867312 6101 IRLearningMode = 1;
mjr 77:0b96f6867312 6102
mjr 77:0b96f6867312 6103 // cancel any regular IR input in progress
mjr 77:0b96f6867312 6104 IRCommandIn = 0;
mjr 77:0b96f6867312 6105
mjr 77:0b96f6867312 6106 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 6107 IRTimer.reset();
mjr 73:4e8ce0b18915 6108 break;
mjr 73:4e8ce0b18915 6109
mjr 73:4e8ce0b18915 6110 case 13:
mjr 73:4e8ce0b18915 6111 // 13 = Send button status report
mjr 73:4e8ce0b18915 6112 reportButtonStatus(js);
mjr 73:4e8ce0b18915 6113 break;
mjr 78:1e00b3fa11af 6114
mjr 78:1e00b3fa11af 6115 case 14:
mjr 78:1e00b3fa11af 6116 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 6117 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 6118 break;
mjr 78:1e00b3fa11af 6119
mjr 78:1e00b3fa11af 6120 case 15:
mjr 78:1e00b3fa11af 6121 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 6122 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 6123 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 6124 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 6125 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 6126 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 6127 break;
mjr 78:1e00b3fa11af 6128
mjr 78:1e00b3fa11af 6129 case 16:
mjr 78:1e00b3fa11af 6130 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 6131 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 6132 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 6133 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 6134 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 6135 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 6136 break;
mjr 88:98bce687e6c0 6137
mjr 88:98bce687e6c0 6138 case 17:
mjr 88:98bce687e6c0 6139 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 6140 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 6141 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 6142 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 6143 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 6144 {
mjr 88:98bce687e6c0 6145 // get the IR command slot in the config
mjr 88:98bce687e6c0 6146 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 6147
mjr 88:98bce687e6c0 6148 // copy the IR command data from the config
mjr 88:98bce687e6c0 6149 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 6150 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 6151 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 6152
mjr 88:98bce687e6c0 6153 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 6154 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 6155 // is free
mjr 88:98bce687e6c0 6156 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 6157 }
mjr 88:98bce687e6c0 6158 break;
mjr 38:091e511ce8a0 6159 }
mjr 38:091e511ce8a0 6160 }
mjr 38:091e511ce8a0 6161 else if (data[0] == 66)
mjr 38:091e511ce8a0 6162 {
mjr 38:091e511ce8a0 6163 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 6164 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 6165 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 6166 // in a variable-dependent format.
mjr 40:cc0d9814522b 6167 configVarSet(data);
mjr 86:e30a1f60f783 6168
mjr 87:8d35c74403af 6169 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 6170 // dynamically
mjr 87:8d35c74403af 6171 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 6172 }
mjr 74:822a92bc11d2 6173 else if (data[0] == 67)
mjr 74:822a92bc11d2 6174 {
mjr 74:822a92bc11d2 6175 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 6176 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 6177 // to ports beyond the first 32.
mjr 74:822a92bc11d2 6178 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 6179 }
mjr 74:822a92bc11d2 6180 else if (data[0] == 68)
mjr 74:822a92bc11d2 6181 {
mjr 74:822a92bc11d2 6182 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 6183 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 6184 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 6185
mjr 74:822a92bc11d2 6186 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 6187 int portGroup = data[1];
mjr 74:822a92bc11d2 6188
mjr 74:822a92bc11d2 6189 // unpack the brightness values
mjr 74:822a92bc11d2 6190 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 6191 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 6192 uint8_t bri[8] = {
mjr 74:822a92bc11d2 6193 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 6194 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 6195 };
mjr 74:822a92bc11d2 6196
mjr 74:822a92bc11d2 6197 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 6198 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 6199 {
mjr 74:822a92bc11d2 6200 if (bri[i] >= 60)
mjr 74:822a92bc11d2 6201 bri[i] += 129-60;
mjr 74:822a92bc11d2 6202 }
mjr 74:822a92bc11d2 6203
mjr 74:822a92bc11d2 6204 // Carry out the PBA
mjr 74:822a92bc11d2 6205 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 6206 }
mjr 38:091e511ce8a0 6207 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 6208 {
mjr 38:091e511ce8a0 6209 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 6210 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 6211 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 6212 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 6213 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 6214 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 6215 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 6216 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 6217 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 6218 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 6219 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 6220 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 6221 //
mjr 38:091e511ce8a0 6222 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 6223 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 6224 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 6225 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 6226 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 6227 // address those ports anyway.
mjr 63:5cd1a5f3a41b 6228
mjr 63:5cd1a5f3a41b 6229 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 6230 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 6231 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 6232
mjr 63:5cd1a5f3a41b 6233 // update each port
mjr 38:091e511ce8a0 6234 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 6235 {
mjr 38:091e511ce8a0 6236 // set the brightness level for the output
mjr 40:cc0d9814522b 6237 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 6238 outLevel[i] = b;
mjr 38:091e511ce8a0 6239
mjr 74:822a92bc11d2 6240 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 6241 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 6242 // LedWiz mode on a future update
mjr 76:7f5912b6340e 6243 if (b != 0)
mjr 76:7f5912b6340e 6244 {
mjr 76:7f5912b6340e 6245 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 6246 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 6247 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 6248 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 6249 // forward unchanged.
mjr 76:7f5912b6340e 6250 wizOn[i] = 1;
mjr 76:7f5912b6340e 6251 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 6252 }
mjr 76:7f5912b6340e 6253 else
mjr 76:7f5912b6340e 6254 {
mjr 76:7f5912b6340e 6255 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 6256 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 6257 wizOn[i] = 0;
mjr 76:7f5912b6340e 6258 }
mjr 74:822a92bc11d2 6259
mjr 38:091e511ce8a0 6260 // set the output
mjr 40:cc0d9814522b 6261 lwPin[i]->set(b);
mjr 38:091e511ce8a0 6262 }
mjr 38:091e511ce8a0 6263
mjr 38:091e511ce8a0 6264 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 6265 if (hc595 != 0)
mjr 38:091e511ce8a0 6266 hc595->update();
mjr 38:091e511ce8a0 6267 }
mjr 38:091e511ce8a0 6268 else
mjr 38:091e511ce8a0 6269 {
mjr 74:822a92bc11d2 6270 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 6271 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 6272 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 6273 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 6274 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 6275 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 6276 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 6277 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 6278 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 6279 //
mjr 38:091e511ce8a0 6280 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 6281 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 6282 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 6283 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 6284 // protocol mode.
mjr 38:091e511ce8a0 6285 //
mjr 38:091e511ce8a0 6286 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 6287 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 6288
mjr 74:822a92bc11d2 6289 // carry out the PBA
mjr 74:822a92bc11d2 6290 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6291
mjr 74:822a92bc11d2 6292 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6293 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6294 }
mjr 38:091e511ce8a0 6295 }
mjr 35:e959ffba78fd 6296
mjr 38:091e511ce8a0 6297 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6298 //
mjr 5:a70c0bce770d 6299 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6300 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6301 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6302 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6303 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6304 // port outputs.
mjr 5:a70c0bce770d 6305 //
mjr 0:5acbbe3f4cf4 6306 int main(void)
mjr 0:5acbbe3f4cf4 6307 {
mjr 60:f38da020aa13 6308 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6309 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6310
mjr 98:4df3c0f7e707 6311 // Set the default PWM period to 0.5ms = 2 kHz. This will be used
mjr 98:4df3c0f7e707 6312 // for PWM channels on PWM units whose periods aren't changed
mjr 98:4df3c0f7e707 6313 // explicitly, so it'll apply to LW outputs assigned to GPIO pins.
mjr 98:4df3c0f7e707 6314 // The KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6315 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6316 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6317 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6318 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6319 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6320 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6321 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6322 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6323 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6324 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6325 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6326 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6327 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6328 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6329 //
mjr 94:0476b3e2b996 6330 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6331 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6332 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6333 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6334 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6335 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6336 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6337
mjr 76:7f5912b6340e 6338 // clear the I2C connection
mjr 35:e959ffba78fd 6339 clear_i2c();
mjr 82:4f6209cb5c33 6340
mjr 82:4f6209cb5c33 6341 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6342 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6343 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6344 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6345 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6346 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6347
mjr 76:7f5912b6340e 6348 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6349 // configuration data:
mjr 76:7f5912b6340e 6350 //
mjr 76:7f5912b6340e 6351 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6352 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6353 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6354 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6355 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6356 // to store user settings updates.
mjr 76:7f5912b6340e 6357 //
mjr 76:7f5912b6340e 6358 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6359 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6360 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6361 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6362 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6363 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6364 // without a separate download of the config data.
mjr 76:7f5912b6340e 6365 //
mjr 76:7f5912b6340e 6366 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6367 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6368 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6369 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6370 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6371 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6372 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6373 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6374 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6375 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6376 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6377 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6378 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6379
mjr 38:091e511ce8a0 6380 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6381 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6382
mjr 33:d832bcab089e 6383 // we're not connected/awake yet
mjr 33:d832bcab089e 6384 bool connected = false;
mjr 40:cc0d9814522b 6385 Timer connectChangeTimer;
mjr 33:d832bcab089e 6386
mjr 35:e959ffba78fd 6387 // create the plunger sensor interface
mjr 35:e959ffba78fd 6388 createPlunger();
mjr 76:7f5912b6340e 6389
mjr 76:7f5912b6340e 6390 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6391 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6392
mjr 60:f38da020aa13 6393 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6394 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6395
mjr 87:8d35c74403af 6396 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6397 init_tlc59116(cfg);
mjr 87:8d35c74403af 6398
mjr 60:f38da020aa13 6399 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6400 init_hc595(cfg);
mjr 6:cc35eb643e8f 6401
mjr 54:fd77a6b2f76c 6402 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6403 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6404 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6405 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6406 initLwOut(cfg);
mjr 48:058ace2aed1d 6407
mjr 60:f38da020aa13 6408 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6409 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6410 tlc5940->start();
mjr 87:8d35c74403af 6411
mjr 77:0b96f6867312 6412 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6413 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6414 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6415 // USB keyboard interface.
mjr 77:0b96f6867312 6416 bool kbKeys = false;
mjr 77:0b96f6867312 6417
mjr 77:0b96f6867312 6418 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6419 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6420
mjr 77:0b96f6867312 6421 // start the power status time, if applicable
mjr 77:0b96f6867312 6422 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6423
mjr 35:e959ffba78fd 6424 // initialize the button input ports
mjr 35:e959ffba78fd 6425 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6426
mjr 60:f38da020aa13 6427 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6428 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6429 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6430 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6431 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6432 // to the joystick interface.
mjr 51:57eb311faafa 6433 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6434 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6435
mjr 60:f38da020aa13 6436 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6437 // flash pattern while waiting.
mjr 70:9f58735a1732 6438 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6439 connTimeoutTimer.start();
mjr 70:9f58735a1732 6440 connFlashTimer.start();
mjr 51:57eb311faafa 6441 while (!js.configured())
mjr 51:57eb311faafa 6442 {
mjr 51:57eb311faafa 6443 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6444 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6445 {
mjr 51:57eb311faafa 6446 // short yellow flash
mjr 51:57eb311faafa 6447 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6448 wait_us(50000);
mjr 51:57eb311faafa 6449 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6450
mjr 51:57eb311faafa 6451 // reset the flash timer
mjr 70:9f58735a1732 6452 connFlashTimer.reset();
mjr 51:57eb311faafa 6453 }
mjr 70:9f58735a1732 6454
mjr 77:0b96f6867312 6455 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6456 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6457 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6458 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6459 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6460 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6461 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6462 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6463 reboot(js, false, 0);
mjr 77:0b96f6867312 6464
mjr 77:0b96f6867312 6465 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6466 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6467 }
mjr 60:f38da020aa13 6468
mjr 60:f38da020aa13 6469 // we're now connected to the host
mjr 54:fd77a6b2f76c 6470 connected = true;
mjr 40:cc0d9814522b 6471
mjr 92:f264fbaa1be5 6472 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6473 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6474 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6475 //
mjr 92:f264fbaa1be5 6476 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6477 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6478 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6479 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6480 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6481 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6482 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6483 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6484 // sampling rate as best we can.
mjr 38:091e511ce8a0 6485 Timer jsReportTimer;
mjr 38:091e511ce8a0 6486 jsReportTimer.start();
mjr 38:091e511ce8a0 6487
mjr 92:f264fbaa1be5 6488 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6489 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6490 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6491 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6492 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6493 //
mjr 92:f264fbaa1be5 6494 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6495 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6496 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6497 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6498 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6499 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6500
mjr 92:f264fbaa1be5 6501 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6502 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6503 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6504 // can be set in the configuration.
mjr 92:f264fbaa1be5 6505 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6506
mjr 60:f38da020aa13 6507 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6508 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6509 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6510 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6511 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6512 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6513 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6514 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6515 Timer jsOKTimer;
mjr 38:091e511ce8a0 6516 jsOKTimer.start();
mjr 35:e959ffba78fd 6517
mjr 55:4db125cd11a0 6518 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6519 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6520 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6521 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6522 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6523
mjr 55:4db125cd11a0 6524 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6525 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6526 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6527
mjr 55:4db125cd11a0 6528 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6529 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6530 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6531
mjr 35:e959ffba78fd 6532 // initialize the calibration button
mjr 1:d913e0afb2ac 6533 calBtnTimer.start();
mjr 35:e959ffba78fd 6534 calBtnState = 0;
mjr 1:d913e0afb2ac 6535
mjr 1:d913e0afb2ac 6536 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6537 Timer hbTimer;
mjr 1:d913e0afb2ac 6538 hbTimer.start();
mjr 1:d913e0afb2ac 6539 int hb = 0;
mjr 5:a70c0bce770d 6540 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6541
mjr 1:d913e0afb2ac 6542 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6543 Timer acTimer;
mjr 1:d913e0afb2ac 6544 acTimer.start();
mjr 1:d913e0afb2ac 6545
mjr 0:5acbbe3f4cf4 6546 // create the accelerometer object
mjr 77:0b96f6867312 6547 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6548 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6549
mjr 48:058ace2aed1d 6550 // initialize the plunger sensor
mjr 35:e959ffba78fd 6551 plungerSensor->init();
mjr 10:976666ffa4ef 6552
mjr 48:058ace2aed1d 6553 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6554 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6555
mjr 54:fd77a6b2f76c 6556 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6557 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6558 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6559 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6560 hc595->enable(true);
mjr 87:8d35c74403af 6561 if (tlc59116 != 0)
mjr 87:8d35c74403af 6562 tlc59116->enable(true);
mjr 74:822a92bc11d2 6563
mjr 76:7f5912b6340e 6564 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6565 wizCycleTimer.start();
mjr 74:822a92bc11d2 6566
mjr 74:822a92bc11d2 6567 // start the PWM update polling timer
mjr 74:822a92bc11d2 6568 polledPwmTimer.start();
mjr 43:7a6364d82a41 6569
mjr 1:d913e0afb2ac 6570 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6571 // host requests
mjr 0:5acbbe3f4cf4 6572 for (;;)
mjr 0:5acbbe3f4cf4 6573 {
mjr 74:822a92bc11d2 6574 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6575 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 96:68d5621ff49f 6576
mjr 48:058ace2aed1d 6577 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6578 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6579 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6580 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6581 LedWizMsg lwm;
mjr 48:058ace2aed1d 6582 Timer lwt;
mjr 48:058ace2aed1d 6583 lwt.start();
mjr 77:0b96f6867312 6584 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6585 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6586 {
mjr 78:1e00b3fa11af 6587 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6588 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6589 }
mjr 74:822a92bc11d2 6590
mjr 74:822a92bc11d2 6591 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6592 IF_DIAG(
mjr 74:822a92bc11d2 6593 if (msgCount != 0)
mjr 74:822a92bc11d2 6594 {
mjr 76:7f5912b6340e 6595 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6596 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6597 }
mjr 74:822a92bc11d2 6598 )
mjr 74:822a92bc11d2 6599
mjr 77:0b96f6867312 6600 // process IR input
mjr 77:0b96f6867312 6601 process_IR(cfg, js);
mjr 77:0b96f6867312 6602
mjr 77:0b96f6867312 6603 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6604 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6605
mjr 74:822a92bc11d2 6606 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6607 wizPulse();
mjr 74:822a92bc11d2 6608
mjr 74:822a92bc11d2 6609 // update PWM outputs
mjr 74:822a92bc11d2 6610 pollPwmUpdates();
mjr 77:0b96f6867312 6611
mjr 98:4df3c0f7e707 6612 // update Flipper Logic and Min On Time outputs
mjr 89:c43cd923401c 6613 LwFlipperLogicOut::poll();
mjr 98:4df3c0f7e707 6614 LwMinTimeOut::poll();
mjr 89:c43cd923401c 6615
mjr 77:0b96f6867312 6616 // poll the accelerometer
mjr 77:0b96f6867312 6617 accel.poll();
mjr 55:4db125cd11a0 6618
mjr 96:68d5621ff49f 6619 // Note the "effective" plunger enabled status. This has two
mjr 96:68d5621ff49f 6620 // components: the explicit "enabled" bit, and the plunger sensor
mjr 96:68d5621ff49f 6621 // type setting. For most purposes, a plunger type of NONE is
mjr 96:68d5621ff49f 6622 // equivalent to disabled. Set this to explicit 0x01 or 0x00
mjr 96:68d5621ff49f 6623 // so that we can OR the bit into status reports.
mjr 96:68d5621ff49f 6624 uint8_t effectivePlungerEnabled = (cfg.plunger.enabled
mjr 96:68d5621ff49f 6625 && cfg.plunger.sensorType != PlungerType_None) ? 0x01 : 0x00;
mjr 96:68d5621ff49f 6626
mjr 76:7f5912b6340e 6627 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6628 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6629
mjr 55:4db125cd11a0 6630 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6631 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6632 tlc5940->send();
mjr 87:8d35c74403af 6633
mjr 87:8d35c74403af 6634 // send TLC59116 data updates
mjr 87:8d35c74403af 6635 if (tlc59116 != 0)
mjr 87:8d35c74403af 6636 tlc59116->send();
mjr 1:d913e0afb2ac 6637
mjr 76:7f5912b6340e 6638 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6639 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6640
mjr 1:d913e0afb2ac 6641 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6642 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6643 {
mjr 1:d913e0afb2ac 6644 // check the state
mjr 1:d913e0afb2ac 6645 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6646 {
mjr 1:d913e0afb2ac 6647 case 0:
mjr 1:d913e0afb2ac 6648 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6649 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6650 calBtnState = 1;
mjr 1:d913e0afb2ac 6651 break;
mjr 1:d913e0afb2ac 6652
mjr 1:d913e0afb2ac 6653 case 1:
mjr 1:d913e0afb2ac 6654 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6655 // passed, start the hold period
mjr 48:058ace2aed1d 6656 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6657 calBtnState = 2;
mjr 1:d913e0afb2ac 6658 break;
mjr 1:d913e0afb2ac 6659
mjr 1:d913e0afb2ac 6660 case 2:
mjr 1:d913e0afb2ac 6661 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6662 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6663 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6664 {
mjr 1:d913e0afb2ac 6665 // enter calibration mode
mjr 1:d913e0afb2ac 6666 calBtnState = 3;
mjr 9:fd65b0a94720 6667 calBtnTimer.reset();
mjr 35:e959ffba78fd 6668
mjr 44:b5ac89b9cd5d 6669 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6670 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6671 }
mjr 1:d913e0afb2ac 6672 break;
mjr 2:c174f9ee414a 6673
mjr 2:c174f9ee414a 6674 case 3:
mjr 9:fd65b0a94720 6675 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6676 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6677 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6678 break;
mjr 0:5acbbe3f4cf4 6679 }
mjr 0:5acbbe3f4cf4 6680 }
mjr 1:d913e0afb2ac 6681 else
mjr 1:d913e0afb2ac 6682 {
mjr 2:c174f9ee414a 6683 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6684 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6685 // and save the results to flash.
mjr 2:c174f9ee414a 6686 //
mjr 2:c174f9ee414a 6687 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6688 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6689 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6690 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6691 {
mjr 2:c174f9ee414a 6692 // exit calibration mode
mjr 1:d913e0afb2ac 6693 calBtnState = 0;
mjr 52:8298b2a73eb2 6694 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6695
mjr 6:cc35eb643e8f 6696 // save the updated configuration
mjr 35:e959ffba78fd 6697 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6698 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6699 }
mjr 2:c174f9ee414a 6700 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6701 {
mjr 2:c174f9ee414a 6702 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6703 calBtnState = 0;
mjr 2:c174f9ee414a 6704 }
mjr 1:d913e0afb2ac 6705 }
mjr 1:d913e0afb2ac 6706
mjr 1:d913e0afb2ac 6707 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6708 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6709 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6710 {
mjr 1:d913e0afb2ac 6711 case 2:
mjr 1:d913e0afb2ac 6712 // in the hold period - flash the light
mjr 48:058ace2aed1d 6713 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6714 break;
mjr 1:d913e0afb2ac 6715
mjr 1:d913e0afb2ac 6716 case 3:
mjr 1:d913e0afb2ac 6717 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6718 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6719 break;
mjr 1:d913e0afb2ac 6720
mjr 1:d913e0afb2ac 6721 default:
mjr 1:d913e0afb2ac 6722 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6723 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6724 break;
mjr 1:d913e0afb2ac 6725 }
mjr 3:3514575d4f86 6726
mjr 3:3514575d4f86 6727 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6728 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6729 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6730 {
mjr 1:d913e0afb2ac 6731 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6732 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6733 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6734 calBtnLed->write(1);
mjr 38:091e511ce8a0 6735 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6736 }
mjr 2:c174f9ee414a 6737 else {
mjr 17:ab3cec0c8bf4 6738 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6739 calBtnLed->write(0);
mjr 38:091e511ce8a0 6740 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6741 }
mjr 1:d913e0afb2ac 6742 }
mjr 35:e959ffba78fd 6743
mjr 76:7f5912b6340e 6744 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6745 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6746
mjr 48:058ace2aed1d 6747 // read the plunger sensor
mjr 48:058ace2aed1d 6748 plungerReader.read();
mjr 48:058ace2aed1d 6749
mjr 76:7f5912b6340e 6750 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6751 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6752
mjr 53:9b2611964afc 6753 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6754 zbLaunchBall.update();
mjr 37:ed52738445fc 6755
mjr 76:7f5912b6340e 6756 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6757 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6758
mjr 53:9b2611964afc 6759 // process button updates
mjr 53:9b2611964afc 6760 processButtons(cfg);
mjr 53:9b2611964afc 6761
mjr 76:7f5912b6340e 6762 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6763 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6764
mjr 38:091e511ce8a0 6765 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6766 if (kbState.changed)
mjr 37:ed52738445fc 6767 {
mjr 38:091e511ce8a0 6768 // send a keyboard report
mjr 37:ed52738445fc 6769 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6770 kbState.changed = false;
mjr 37:ed52738445fc 6771 }
mjr 38:091e511ce8a0 6772
mjr 38:091e511ce8a0 6773 // likewise for the media controller
mjr 37:ed52738445fc 6774 if (mediaState.changed)
mjr 37:ed52738445fc 6775 {
mjr 38:091e511ce8a0 6776 // send a media report
mjr 37:ed52738445fc 6777 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6778 mediaState.changed = false;
mjr 37:ed52738445fc 6779 }
mjr 38:091e511ce8a0 6780
mjr 76:7f5912b6340e 6781 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6782 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6783
mjr 38:091e511ce8a0 6784 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6785 bool jsOK = false;
mjr 55:4db125cd11a0 6786
mjr 55:4db125cd11a0 6787 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6788 uint16_t statusFlags =
mjr 96:68d5621ff49f 6789 effectivePlungerEnabled // 0x01
mjr 77:0b96f6867312 6790 | nightMode // 0x02
mjr 79:682ae3171a08 6791 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6792 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6793 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6794 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6795
mjr 50:40015764bbe6 6796 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6797 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6798 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6799 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 6800 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 6801 {
mjr 92:f264fbaa1be5 6802 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 6803 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 6804 // not, repeat the last sample.
mjr 92:f264fbaa1be5 6805 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 6806 {
mjr 92:f264fbaa1be5 6807 // read the accelerometer
mjr 92:f264fbaa1be5 6808 int xa, ya;
mjr 92:f264fbaa1be5 6809 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6810
mjr 92:f264fbaa1be5 6811 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 6812 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 6813 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 6814 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 6815 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 6816
mjr 92:f264fbaa1be5 6817 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 6818 x = xa;
mjr 92:f264fbaa1be5 6819 y = ya;
mjr 92:f264fbaa1be5 6820
mjr 95:8eca8acbb82c 6821 // rotate X and Y according to the device orientation in the cabinet
mjr 95:8eca8acbb82c 6822 accelRotate(x, y);
mjr 95:8eca8acbb82c 6823
mjr 92:f264fbaa1be5 6824 // reset the stutter counter
mjr 92:f264fbaa1be5 6825 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6826 }
mjr 17:ab3cec0c8bf4 6827
mjr 48:058ace2aed1d 6828 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6829 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6830 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6831 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6832 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6833 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6834 // regular plunger inputs.
mjr 92:f264fbaa1be5 6835 int zActual = plungerReader.getPosition();
mjr 96:68d5621ff49f 6836 int zReported = (!effectivePlungerEnabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 6837
mjr 35:e959ffba78fd 6838 // send the joystick report
mjr 92:f264fbaa1be5 6839 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6840
mjr 17:ab3cec0c8bf4 6841 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6842 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6843 }
mjr 21:5048e16cc9ef 6844
mjr 52:8298b2a73eb2 6845 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6846 if (reportPlungerStat)
mjr 10:976666ffa4ef 6847 {
mjr 17:ab3cec0c8bf4 6848 // send the report
mjr 53:9b2611964afc 6849 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6850
mjr 10:976666ffa4ef 6851 // we have satisfied this request
mjr 52:8298b2a73eb2 6852 reportPlungerStat = false;
mjr 10:976666ffa4ef 6853 }
mjr 10:976666ffa4ef 6854
mjr 35:e959ffba78fd 6855 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6856 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6857 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6858 {
mjr 55:4db125cd11a0 6859 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6860 jsReportTimer.reset();
mjr 38:091e511ce8a0 6861 }
mjr 38:091e511ce8a0 6862
mjr 38:091e511ce8a0 6863 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6864 if (jsOK)
mjr 38:091e511ce8a0 6865 {
mjr 38:091e511ce8a0 6866 jsOKTimer.reset();
mjr 38:091e511ce8a0 6867 jsOKTimer.start();
mjr 21:5048e16cc9ef 6868 }
mjr 21:5048e16cc9ef 6869
mjr 76:7f5912b6340e 6870 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6871 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6872
mjr 6:cc35eb643e8f 6873 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6874 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6875 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6876 #endif
mjr 6:cc35eb643e8f 6877
mjr 33:d832bcab089e 6878 // check for connection status changes
mjr 54:fd77a6b2f76c 6879 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6880 if (newConnected != connected)
mjr 33:d832bcab089e 6881 {
mjr 54:fd77a6b2f76c 6882 // give it a moment to stabilize
mjr 40:cc0d9814522b 6883 connectChangeTimer.start();
mjr 55:4db125cd11a0 6884 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6885 {
mjr 33:d832bcab089e 6886 // note the new status
mjr 33:d832bcab089e 6887 connected = newConnected;
mjr 40:cc0d9814522b 6888
mjr 40:cc0d9814522b 6889 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6890 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6891 connectChangeTimer.reset();
mjr 33:d832bcab089e 6892
mjr 54:fd77a6b2f76c 6893 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6894 if (!connected)
mjr 40:cc0d9814522b 6895 {
mjr 54:fd77a6b2f76c 6896 // turn off all outputs
mjr 33:d832bcab089e 6897 allOutputsOff();
mjr 40:cc0d9814522b 6898
mjr 40:cc0d9814522b 6899 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6900 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6901 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6902 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6903 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6904 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6905 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6906 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6907 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6908 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6909 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6910 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6911 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6912 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6913 // the power first comes on.
mjr 40:cc0d9814522b 6914 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6915 tlc5940->enable(false);
mjr 87:8d35c74403af 6916 if (tlc59116 != 0)
mjr 87:8d35c74403af 6917 tlc59116->enable(false);
mjr 40:cc0d9814522b 6918 if (hc595 != 0)
mjr 40:cc0d9814522b 6919 hc595->enable(false);
mjr 40:cc0d9814522b 6920 }
mjr 33:d832bcab089e 6921 }
mjr 33:d832bcab089e 6922 }
mjr 48:058ace2aed1d 6923
mjr 53:9b2611964afc 6924 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 6925 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 6926 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 6927 {
mjr 85:3c28aee81cde 6928 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 6929 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 6930 {
mjr 86:e30a1f60f783 6931 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 6932 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 6933 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 6934 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 6935 // status allows it.
mjr 86:e30a1f60f783 6936 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 6937 reboot(js);
mjr 82:4f6209cb5c33 6938 }
mjr 85:3c28aee81cde 6939 else
mjr 85:3c28aee81cde 6940 {
mjr 86:e30a1f60f783 6941 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 6942
mjr 86:e30a1f60f783 6943 // stop and reset the post-save timer
mjr 86:e30a1f60f783 6944 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 6945 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 6946
mjr 86:e30a1f60f783 6947 // clear the post-save success flag
mjr 86:e30a1f60f783 6948 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 6949 }
mjr 77:0b96f6867312 6950 }
mjr 86:e30a1f60f783 6951
mjr 48:058ace2aed1d 6952 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6953 if (!connected)
mjr 48:058ace2aed1d 6954 {
mjr 54:fd77a6b2f76c 6955 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6956 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6957 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6958
mjr 54:fd77a6b2f76c 6959 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6960 js.diagFlash();
mjr 54:fd77a6b2f76c 6961
mjr 54:fd77a6b2f76c 6962 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6963 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6964
mjr 51:57eb311faafa 6965 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6966 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6967 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6968
mjr 54:fd77a6b2f76c 6969 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6970 Timer diagTimer;
mjr 54:fd77a6b2f76c 6971 diagTimer.reset();
mjr 54:fd77a6b2f76c 6972 diagTimer.start();
mjr 74:822a92bc11d2 6973
mjr 74:822a92bc11d2 6974 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6975 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6976
mjr 54:fd77a6b2f76c 6977 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6978 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6979 {
mjr 54:fd77a6b2f76c 6980 // try to recover the connection
mjr 54:fd77a6b2f76c 6981 js.recoverConnection();
mjr 54:fd77a6b2f76c 6982
mjr 98:4df3c0f7e707 6983 // update Flipper Logic and Min Out Time outputs
mjr 89:c43cd923401c 6984 LwFlipperLogicOut::poll();
mjr 98:4df3c0f7e707 6985 LwMinTimeOut::poll();
mjr 89:c43cd923401c 6986
mjr 55:4db125cd11a0 6987 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6988 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6989 tlc5940->send();
mjr 87:8d35c74403af 6990
mjr 87:8d35c74403af 6991 // update TLC59116 outputs
mjr 87:8d35c74403af 6992 if (tlc59116 != 0)
mjr 87:8d35c74403af 6993 tlc59116->send();
mjr 55:4db125cd11a0 6994
mjr 54:fd77a6b2f76c 6995 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6996 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6997 {
mjr 54:fd77a6b2f76c 6998 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6999 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 7000
mjr 54:fd77a6b2f76c 7001 // show diagnostic feedback
mjr 54:fd77a6b2f76c 7002 js.diagFlash();
mjr 51:57eb311faafa 7003
mjr 51:57eb311faafa 7004 // reset the flash timer
mjr 54:fd77a6b2f76c 7005 diagTimer.reset();
mjr 51:57eb311faafa 7006 }
mjr 51:57eb311faafa 7007
mjr 77:0b96f6867312 7008 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 7009 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 7010 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 7011 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 7012 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 7013 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 7014 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 7015 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 7016 // round and keep waiting.
mjr 51:57eb311faafa 7017 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 7018 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7019 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7020 reboot(js, false, 0);
mjr 77:0b96f6867312 7021
mjr 77:0b96f6867312 7022 // update the PSU2 power sensing status
mjr 77:0b96f6867312 7023 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 7024 }
mjr 54:fd77a6b2f76c 7025
mjr 74:822a92bc11d2 7026 // resume the main loop timer
mjr 74:822a92bc11d2 7027 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 7028
mjr 54:fd77a6b2f76c 7029 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 7030 connected = true;
mjr 54:fd77a6b2f76c 7031 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 7032
mjr 54:fd77a6b2f76c 7033 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 7034 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7035 tlc5940->enable(true);
mjr 87:8d35c74403af 7036 if (tlc59116 != 0)
mjr 87:8d35c74403af 7037 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 7038 if (hc595 != 0)
mjr 54:fd77a6b2f76c 7039 {
mjr 55:4db125cd11a0 7040 hc595->enable(true);
mjr 54:fd77a6b2f76c 7041 hc595->update(true);
mjr 51:57eb311faafa 7042 }
mjr 48:058ace2aed1d 7043 }
mjr 43:7a6364d82a41 7044
mjr 6:cc35eb643e8f 7045 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 7046 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 7047 {
mjr 54:fd77a6b2f76c 7048 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 7049 {
mjr 39:b3815a1c3802 7050 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 7051 //
mjr 54:fd77a6b2f76c 7052 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 7053 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 7054 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 7055 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 7056 hb = !hb;
mjr 38:091e511ce8a0 7057 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 7058
mjr 54:fd77a6b2f76c 7059 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 7060 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 7061 // with the USB connection.
mjr 54:fd77a6b2f76c 7062 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 7063 {
mjr 54:fd77a6b2f76c 7064 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 7065 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 7066 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 7067 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 7068 // power status allows it.
mjr 86:e30a1f60f783 7069 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7070 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7071 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 7072 }
mjr 54:fd77a6b2f76c 7073 else
mjr 54:fd77a6b2f76c 7074 {
mjr 54:fd77a6b2f76c 7075 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 7076 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 7077 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 7078 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 7079 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 7080 }
mjr 38:091e511ce8a0 7081 }
mjr 73:4e8ce0b18915 7082 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 7083 {
mjr 73:4e8ce0b18915 7084 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 7085 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 7086 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 7087 }
mjr 96:68d5621ff49f 7088 else if (effectivePlungerEnabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 7089 {
mjr 6:cc35eb643e8f 7090 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 7091 hb = !hb;
mjr 38:091e511ce8a0 7092 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 7093 }
mjr 6:cc35eb643e8f 7094 else
mjr 6:cc35eb643e8f 7095 {
mjr 6:cc35eb643e8f 7096 // connected - flash blue/green
mjr 2:c174f9ee414a 7097 hb = !hb;
mjr 38:091e511ce8a0 7098 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 7099 }
mjr 1:d913e0afb2ac 7100
mjr 1:d913e0afb2ac 7101 // reset the heartbeat timer
mjr 1:d913e0afb2ac 7102 hbTimer.reset();
mjr 5:a70c0bce770d 7103 ++hbcnt;
mjr 1:d913e0afb2ac 7104 }
mjr 74:822a92bc11d2 7105
mjr 74:822a92bc11d2 7106 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 7107 IF_DIAG(
mjr 76:7f5912b6340e 7108 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 7109 mainLoopIterCount++;
mjr 74:822a92bc11d2 7110 )
mjr 1:d913e0afb2ac 7111 }
mjr 0:5acbbe3f4cf4 7112 }