An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Sun Jan 28 20:00:57 2018 +0000
Revision:
94:0476b3e2b996
Parent:
93:177832c29041
Child:
95:8eca8acbb82c
Change default PWM frequency for GPIO ports to 2 kHz

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 89:c43cd923401c 838 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 839 // top of a physical pin output.
mjr 89:c43cd923401c 840 //
mjr 89:c43cd923401c 841 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 842 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 843 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 844 // level is ON.
mjr 89:c43cd923401c 845 //
mjr 89:c43cd923401c 846 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 847 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 848 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 849 //
mjr 89:c43cd923401c 850 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 851 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 852 // power and start a timer.
mjr 89:c43cd923401c 853 //
mjr 89:c43cd923401c 854 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 855 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 856 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 857 //
mjr 89:c43cd923401c 858 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 859 {
mjr 89:c43cd923401c 860 public:
mjr 89:c43cd923401c 861 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 862 // the configuration.
mjr 89:c43cd923401c 863 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 864 : out(o), params(params)
mjr 89:c43cd923401c 865 {
mjr 89:c43cd923401c 866 // initially OFF
mjr 89:c43cd923401c 867 state = 0;
mjr 89:c43cd923401c 868 }
mjr 89:c43cd923401c 869
mjr 89:c43cd923401c 870 virtual void set(uint8_t level)
mjr 89:c43cd923401c 871 {
mjr 89:c43cd923401c 872 // remebmber the new nominal level set by the client
mjr 89:c43cd923401c 873 val = level;
mjr 89:c43cd923401c 874
mjr 89:c43cd923401c 875 // update the physical output according to our current timing state
mjr 89:c43cd923401c 876 switch (state)
mjr 89:c43cd923401c 877 {
mjr 89:c43cd923401c 878 case 0:
mjr 89:c43cd923401c 879 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 880 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 881 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 882 // off, so there's no change.
mjr 89:c43cd923401c 883 if (level != 0)
mjr 89:c43cd923401c 884 {
mjr 89:c43cd923401c 885 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 886 state = 1;
mjr 89:c43cd923401c 887
mjr 89:c43cd923401c 888 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 889 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 890 // requested
mjr 89:c43cd923401c 891 out->set(level);
mjr 89:c43cd923401c 892
mjr 89:c43cd923401c 893 // add myself to the pending timer list
mjr 89:c43cd923401c 894 pending[nPending++] = this;
mjr 89:c43cd923401c 895
mjr 89:c43cd923401c 896 // note the starting time
mjr 89:c43cd923401c 897 t0 = timer.read_us();
mjr 89:c43cd923401c 898 }
mjr 89:c43cd923401c 899 break;
mjr 89:c43cd923401c 900
mjr 89:c43cd923401c 901 case 1:
mjr 89:c43cd923401c 902 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 903 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 904 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 905 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 906 out->set(level);
mjr 89:c43cd923401c 907 if (level == 0)
mjr 89:c43cd923401c 908 {
mjr 89:c43cd923401c 909 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 910 // so we need to remove it from the list.
mjr 89:c43cd923401c 911 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 912 {
mjr 89:c43cd923401c 913 // is this us?
mjr 89:c43cd923401c 914 if (pending[i] == this)
mjr 89:c43cd923401c 915 {
mjr 89:c43cd923401c 916 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 917 // last list entry
mjr 89:c43cd923401c 918 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 919
mjr 89:c43cd923401c 920 // no need to look any further
mjr 89:c43cd923401c 921 break;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923 }
mjr 89:c43cd923401c 924
mjr 89:c43cd923401c 925 // switch to state 0 (off)
mjr 89:c43cd923401c 926 state = 0;
mjr 89:c43cd923401c 927 }
mjr 89:c43cd923401c 928 break;
mjr 89:c43cd923401c 929
mjr 89:c43cd923401c 930 case 2:
mjr 89:c43cd923401c 931 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 932 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 933 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 934 // as the upper bound.
mjr 89:c43cd923401c 935 if (level == 0)
mjr 89:c43cd923401c 936 {
mjr 89:c43cd923401c 937 // switching off - turn off the physical output
mjr 89:c43cd923401c 938 out->set(0);
mjr 89:c43cd923401c 939
mjr 89:c43cd923401c 940 // go to state 0 (off)
mjr 89:c43cd923401c 941 state = 0;
mjr 89:c43cd923401c 942 }
mjr 89:c43cd923401c 943 else
mjr 89:c43cd923401c 944 {
mjr 89:c43cd923401c 945 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 946 // lower of the requested power and the hold power
mjr 89:c43cd923401c 947 uint8_t hold = holdPower();
mjr 89:c43cd923401c 948 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953
mjr 89:c43cd923401c 954 // Class initialization
mjr 89:c43cd923401c 955 static void classInit(Config &cfg)
mjr 89:c43cd923401c 956 {
mjr 89:c43cd923401c 957 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 958 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 959 // all of these outputs.
mjr 89:c43cd923401c 960 int n = 0;
mjr 89:c43cd923401c 961 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 964 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 965 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 966 ++n;
mjr 89:c43cd923401c 967 }
mjr 89:c43cd923401c 968
mjr 89:c43cd923401c 969 // allocate space for the pending timer list
mjr 89:c43cd923401c 970 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 971
mjr 89:c43cd923401c 972 // there's nothing in the pending list yet
mjr 89:c43cd923401c 973 nPending = 0;
mjr 89:c43cd923401c 974
mjr 89:c43cd923401c 975 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 976 // use it to figure elapsed times.
mjr 89:c43cd923401c 977 timer.start();
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979
mjr 89:c43cd923401c 980 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 981 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 982 static void poll()
mjr 89:c43cd923401c 983 {
mjr 89:c43cd923401c 984 // note the current time
mjr 89:c43cd923401c 985 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 986
mjr 89:c43cd923401c 987 // go through the timer list
mjr 89:c43cd923401c 988 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 989 {
mjr 89:c43cd923401c 990 // get the port
mjr 89:c43cd923401c 991 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 992
mjr 89:c43cd923401c 993 // assume we'll keep it
mjr 89:c43cd923401c 994 bool remove = false;
mjr 89:c43cd923401c 995
mjr 89:c43cd923401c 996 // check if the port is still on
mjr 89:c43cd923401c 997 if (port->state != 0)
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1000 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1001 {
mjr 89:c43cd923401c 1002 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1003 port->state = 2;
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1006 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1007 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1008 uint8_t val = port->val;
mjr 89:c43cd923401c 1009 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1010
mjr 89:c43cd923401c 1011 // we're done with the timer
mjr 89:c43cd923401c 1012 remove = true;
mjr 89:c43cd923401c 1013 }
mjr 89:c43cd923401c 1014 }
mjr 89:c43cd923401c 1015 else
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1018 // it from the timer list
mjr 89:c43cd923401c 1019 remove = true;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021
mjr 89:c43cd923401c 1022 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1023 if (remove)
mjr 89:c43cd923401c 1024 {
mjr 89:c43cd923401c 1025 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1026 // the last entry in the list.
mjr 89:c43cd923401c 1027 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1030 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1031 }
mjr 89:c43cd923401c 1032 else
mjr 89:c43cd923401c 1033 {
mjr 89:c43cd923401c 1034 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1035 ++i;
mjr 89:c43cd923401c 1036 }
mjr 89:c43cd923401c 1037 }
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039
mjr 89:c43cd923401c 1040 protected:
mjr 89:c43cd923401c 1041 // underlying physical output
mjr 89:c43cd923401c 1042 LwOut *out;
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1045 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1046 uint32_t t0;
mjr 89:c43cd923401c 1047
mjr 89:c43cd923401c 1048 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1049 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1050 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1051 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1052 // if it's lower.
mjr 89:c43cd923401c 1053 uint8_t val;
mjr 89:c43cd923401c 1054
mjr 89:c43cd923401c 1055 // Current port state:
mjr 89:c43cd923401c 1056 //
mjr 89:c43cd923401c 1057 // 0 = off
mjr 89:c43cd923401c 1058 // 1 = on at initial full power
mjr 89:c43cd923401c 1059 // 2 = on at hold power
mjr 89:c43cd923401c 1060 uint8_t state;
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1063 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1064 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1065 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1066 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1067 uint8_t params;
mjr 89:c43cd923401c 1068
mjr 89:c43cd923401c 1069 // Figure the initial full-power time in microseconds
mjr 89:c43cd923401c 1070 inline uint32_t fullPowerTime_us() const { return ((params >> 4) + 1)*50000; }
mjr 89:c43cd923401c 1071
mjr 89:c43cd923401c 1072 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1073 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1074
mjr 89:c43cd923401c 1075 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1076 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1077 // (which runs continuously).
mjr 89:c43cd923401c 1078 static Timer timer;
mjr 89:c43cd923401c 1079
mjr 89:c43cd923401c 1080 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 89:c43cd923401c 1081 // transitions from OFF to ON, tis timer
mjr 89:c43cd923401c 1082 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1083 static uint8_t nPending;
mjr 89:c43cd923401c 1084 };
mjr 89:c43cd923401c 1085
mjr 89:c43cd923401c 1086 // Flipper Logic statics
mjr 89:c43cd923401c 1087 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1088 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1089 uint8_t LwFlipperLogicOut::nPending;
mjr 89:c43cd923401c 1090
mjr 35:e959ffba78fd 1091 //
mjr 35:e959ffba78fd 1092 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1093 // assignments set in config.h.
mjr 33:d832bcab089e 1094 //
mjr 35:e959ffba78fd 1095 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1096 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1097 {
mjr 35:e959ffba78fd 1098 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1099 {
mjr 53:9b2611964afc 1100 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1101 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1102 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1103 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1104 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1105 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1106 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1107 }
mjr 35:e959ffba78fd 1108 }
mjr 26:cb71c4af2912 1109
mjr 40:cc0d9814522b 1110 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1111 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1112 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1113 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1114 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1115 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1116 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1117 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1118 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1119 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1120 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1121 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1122 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1123 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1124 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1125 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1126 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1127 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1128 };
mjr 40:cc0d9814522b 1129
mjr 40:cc0d9814522b 1130 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1131 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1132 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1133 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1134 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1135 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1136 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1137 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1138 // are always 8 bits.
mjr 40:cc0d9814522b 1139 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1140 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1141 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1142 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1143 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1144 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1145 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1146 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1147 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1148 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1149 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1150 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1151 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1152 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1153 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1154 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1155 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1156 };
mjr 40:cc0d9814522b 1157
mjr 26:cb71c4af2912 1158 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1159 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1160 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1161 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1162 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1163 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1164 {
mjr 26:cb71c4af2912 1165 public:
mjr 60:f38da020aa13 1166 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1167 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1168 {
mjr 26:cb71c4af2912 1169 if (val != prv)
mjr 40:cc0d9814522b 1170 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1171 }
mjr 60:f38da020aa13 1172 uint8_t idx;
mjr 40:cc0d9814522b 1173 uint8_t prv;
mjr 26:cb71c4af2912 1174 };
mjr 26:cb71c4af2912 1175
mjr 40:cc0d9814522b 1176 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1177 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1178 {
mjr 40:cc0d9814522b 1179 public:
mjr 60:f38da020aa13 1180 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1181 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1182 {
mjr 40:cc0d9814522b 1183 if (val != prv)
mjr 40:cc0d9814522b 1184 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1185 }
mjr 60:f38da020aa13 1186 uint8_t idx;
mjr 40:cc0d9814522b 1187 uint8_t prv;
mjr 40:cc0d9814522b 1188 };
mjr 40:cc0d9814522b 1189
mjr 87:8d35c74403af 1190 //
mjr 87:8d35c74403af 1191 // TLC59116 interface object
mjr 87:8d35c74403af 1192 //
mjr 87:8d35c74403af 1193 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1194 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1195 {
mjr 87:8d35c74403af 1196 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1197 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1198 {
mjr 87:8d35c74403af 1199 // set up the interface
mjr 87:8d35c74403af 1200 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1201 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1202 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1203 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1204
mjr 87:8d35c74403af 1205 // initialize the chips
mjr 87:8d35c74403af 1206 tlc59116->init();
mjr 87:8d35c74403af 1207 }
mjr 87:8d35c74403af 1208 }
mjr 87:8d35c74403af 1209
mjr 87:8d35c74403af 1210 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1211 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1212 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1213 // (0-15).
mjr 87:8d35c74403af 1214 //
mjr 87:8d35c74403af 1215 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1216 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1217 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1218 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1219 {
mjr 87:8d35c74403af 1220 public:
mjr 87:8d35c74403af 1221 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1222 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1223 {
mjr 87:8d35c74403af 1224 if (val != prv)
mjr 87:8d35c74403af 1225 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1226 }
mjr 87:8d35c74403af 1227
mjr 87:8d35c74403af 1228 protected:
mjr 87:8d35c74403af 1229 uint8_t addr;
mjr 87:8d35c74403af 1230 uint8_t port;
mjr 87:8d35c74403af 1231 uint8_t prv;
mjr 87:8d35c74403af 1232 };
mjr 87:8d35c74403af 1233
mjr 87:8d35c74403af 1234
mjr 87:8d35c74403af 1235 //
mjr 34:6b981a2afab7 1236 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1237 // config.h.
mjr 87:8d35c74403af 1238 //
mjr 35:e959ffba78fd 1239 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1240
mjr 35:e959ffba78fd 1241 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1242 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1243 {
mjr 35:e959ffba78fd 1244 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1245 {
mjr 53:9b2611964afc 1246 hc595 = new HC595(
mjr 53:9b2611964afc 1247 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1248 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1249 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1250 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1251 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1252 hc595->init();
mjr 35:e959ffba78fd 1253 hc595->update();
mjr 35:e959ffba78fd 1254 }
mjr 35:e959ffba78fd 1255 }
mjr 34:6b981a2afab7 1256
mjr 34:6b981a2afab7 1257 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1258 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1259 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1260 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1261 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1262 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1263 {
mjr 33:d832bcab089e 1264 public:
mjr 60:f38da020aa13 1265 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1266 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1267 {
mjr 34:6b981a2afab7 1268 if (val != prv)
mjr 40:cc0d9814522b 1269 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1270 }
mjr 60:f38da020aa13 1271 uint8_t idx;
mjr 40:cc0d9814522b 1272 uint8_t prv;
mjr 33:d832bcab089e 1273 };
mjr 33:d832bcab089e 1274
mjr 26:cb71c4af2912 1275
mjr 40:cc0d9814522b 1276
mjr 64:ef7ca92dff36 1277 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1278 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1279 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1280 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1281 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1282 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1283 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1284 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1285 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1286 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1287 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1288 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1289 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1290 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1291 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1292 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1293 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1294 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1295 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1296 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1297 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1298 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1299 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1300 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1301 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1302 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1303 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1304 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1305 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1306 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1307 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1308 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1309 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1310 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1311 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1312 };
mjr 26:cb71c4af2912 1313
mjr 64:ef7ca92dff36 1314
mjr 92:f264fbaa1be5 1315 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1316 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1317 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1318 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1319 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1320 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1321 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1322 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1323 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1324 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1325 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1326 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1327 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1328 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1329 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1330 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1331 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1332 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1333 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1334 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1335 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1336 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1337 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1338 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1339 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1340 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1341 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1342 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1343 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1344 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1345 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1346 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1347 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1348 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1349 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1350 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1351 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1352 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1353 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1354 };
mjr 64:ef7ca92dff36 1355
mjr 77:0b96f6867312 1356 // Polled-update PWM output list
mjr 74:822a92bc11d2 1357 //
mjr 77:0b96f6867312 1358 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1359 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1360 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1361 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1362 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1363 //
mjr 92:f264fbaa1be5 1364 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1365 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1366 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1367 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1368 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1369 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1370 //
mjr 92:f264fbaa1be5 1371 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1372 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1373 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1374 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1375 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1376 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1377 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1378 // enough to become noticeable.
mjr 92:f264fbaa1be5 1379 //
mjr 92:f264fbaa1be5 1380 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1381 // mbed solution isn't really a solution at all because it creates a separate
mjr 92:f264fbaa1be5 1382 // problem of its own. The mbed approach is reset the TPM "count" register
mjr 92:f264fbaa1be5 1383 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1384 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1385 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1386 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1387 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1388 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1389 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1390 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1391 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1392 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1393 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1394 //
mjr 92:f264fbaa1be5 1395 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1396 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1397 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1398 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1399 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1400 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1401 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1402 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1403 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1404 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1405 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1406 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1407 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1408 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1409 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1410 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1411 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1412 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1413 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1414 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1415 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1416 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1417 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1418 //
mjr 77:0b96f6867312 1419 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1420 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1421 // of polled items.
mjr 74:822a92bc11d2 1422 static int numPolledPwm;
mjr 74:822a92bc11d2 1423 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1424
mjr 74:822a92bc11d2 1425 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1426 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1427 {
mjr 6:cc35eb643e8f 1428 public:
mjr 43:7a6364d82a41 1429 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1430 {
mjr 77:0b96f6867312 1431 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1432 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1433 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1434
mjr 94:0476b3e2b996 1435 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1436 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1437 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1438 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1439 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1440 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1441 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1442 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1443 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1444 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1445 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1446 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1447 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1448 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1449 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1450 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1451
mjr 94:0476b3e2b996 1452 // set the initial brightness value
mjr 77:0b96f6867312 1453 set(initVal);
mjr 43:7a6364d82a41 1454 }
mjr 74:822a92bc11d2 1455
mjr 40:cc0d9814522b 1456 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1457 {
mjr 77:0b96f6867312 1458 // save the new value
mjr 74:822a92bc11d2 1459 this->val = val;
mjr 77:0b96f6867312 1460
mjr 77:0b96f6867312 1461 // commit it to the hardware
mjr 77:0b96f6867312 1462 commit();
mjr 13:72dda449c3c0 1463 }
mjr 74:822a92bc11d2 1464
mjr 74:822a92bc11d2 1465 // handle periodic update polling
mjr 74:822a92bc11d2 1466 void poll()
mjr 74:822a92bc11d2 1467 {
mjr 77:0b96f6867312 1468 commit();
mjr 74:822a92bc11d2 1469 }
mjr 74:822a92bc11d2 1470
mjr 74:822a92bc11d2 1471 protected:
mjr 77:0b96f6867312 1472 virtual void commit()
mjr 74:822a92bc11d2 1473 {
mjr 74:822a92bc11d2 1474 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1475 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1476 }
mjr 74:822a92bc11d2 1477
mjr 77:0b96f6867312 1478 NewPwmOut p;
mjr 77:0b96f6867312 1479 uint8_t val;
mjr 6:cc35eb643e8f 1480 };
mjr 26:cb71c4af2912 1481
mjr 74:822a92bc11d2 1482 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1483 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1484 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1485 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1486 {
mjr 64:ef7ca92dff36 1487 public:
mjr 64:ef7ca92dff36 1488 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1489 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1490 {
mjr 64:ef7ca92dff36 1491 }
mjr 74:822a92bc11d2 1492
mjr 74:822a92bc11d2 1493 protected:
mjr 77:0b96f6867312 1494 virtual void commit()
mjr 64:ef7ca92dff36 1495 {
mjr 74:822a92bc11d2 1496 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1497 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1498 }
mjr 64:ef7ca92dff36 1499 };
mjr 64:ef7ca92dff36 1500
mjr 74:822a92bc11d2 1501 // poll the PWM outputs
mjr 74:822a92bc11d2 1502 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1503 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1504 void pollPwmUpdates()
mjr 74:822a92bc11d2 1505 {
mjr 94:0476b3e2b996 1506 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1507 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1508 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1509 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1510 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1511 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1512 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1513 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1514 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1515 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1516 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1517 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1518 // viewer.
mjr 94:0476b3e2b996 1519 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1520 {
mjr 74:822a92bc11d2 1521 // time the run for statistics collection
mjr 74:822a92bc11d2 1522 IF_DIAG(
mjr 74:822a92bc11d2 1523 Timer t;
mjr 74:822a92bc11d2 1524 t.start();
mjr 74:822a92bc11d2 1525 )
mjr 74:822a92bc11d2 1526
mjr 74:822a92bc11d2 1527 // poll each output
mjr 74:822a92bc11d2 1528 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1529 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1530
mjr 74:822a92bc11d2 1531 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1532 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1533
mjr 74:822a92bc11d2 1534 // collect statistics
mjr 74:822a92bc11d2 1535 IF_DIAG(
mjr 76:7f5912b6340e 1536 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1537 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1538 )
mjr 74:822a92bc11d2 1539 }
mjr 74:822a92bc11d2 1540 }
mjr 64:ef7ca92dff36 1541
mjr 26:cb71c4af2912 1542 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1543 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1544 {
mjr 6:cc35eb643e8f 1545 public:
mjr 43:7a6364d82a41 1546 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1547 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1548 {
mjr 13:72dda449c3c0 1549 if (val != prv)
mjr 40:cc0d9814522b 1550 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1551 }
mjr 6:cc35eb643e8f 1552 DigitalOut p;
mjr 40:cc0d9814522b 1553 uint8_t prv;
mjr 6:cc35eb643e8f 1554 };
mjr 26:cb71c4af2912 1555
mjr 29:582472d0bc57 1556 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1557 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1558 // port n (0-based).
mjr 35:e959ffba78fd 1559 //
mjr 35:e959ffba78fd 1560 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1561 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1562 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1563 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1564 // 74HC595 ports).
mjr 33:d832bcab089e 1565 static int numOutputs;
mjr 33:d832bcab089e 1566 static LwOut **lwPin;
mjr 33:d832bcab089e 1567
mjr 38:091e511ce8a0 1568 // create a single output pin
mjr 53:9b2611964afc 1569 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1570 {
mjr 38:091e511ce8a0 1571 // get this item's values
mjr 38:091e511ce8a0 1572 int typ = pc.typ;
mjr 38:091e511ce8a0 1573 int pin = pc.pin;
mjr 38:091e511ce8a0 1574 int flags = pc.flags;
mjr 40:cc0d9814522b 1575 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1576 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1577 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1578 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 89:c43cd923401c 1579
mjr 89:c43cd923401c 1580 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1581 if (flipperLogic)
mjr 89:c43cd923401c 1582 gamma = false;
mjr 38:091e511ce8a0 1583
mjr 38:091e511ce8a0 1584 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1585 LwOut *lwp;
mjr 38:091e511ce8a0 1586 switch (typ)
mjr 38:091e511ce8a0 1587 {
mjr 38:091e511ce8a0 1588 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1589 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1590 if (pin != 0)
mjr 64:ef7ca92dff36 1591 {
mjr 64:ef7ca92dff36 1592 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1593 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1594 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1595 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1596 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1597 {
mjr 64:ef7ca92dff36 1598 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1599 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1600
mjr 64:ef7ca92dff36 1601 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1602 gamma = false;
mjr 64:ef7ca92dff36 1603 }
mjr 64:ef7ca92dff36 1604 else
mjr 64:ef7ca92dff36 1605 {
mjr 64:ef7ca92dff36 1606 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1607 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1608 }
mjr 64:ef7ca92dff36 1609 }
mjr 48:058ace2aed1d 1610 else
mjr 48:058ace2aed1d 1611 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1612 break;
mjr 38:091e511ce8a0 1613
mjr 38:091e511ce8a0 1614 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1615 // Digital GPIO port
mjr 48:058ace2aed1d 1616 if (pin != 0)
mjr 48:058ace2aed1d 1617 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1618 else
mjr 48:058ace2aed1d 1619 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1620 break;
mjr 38:091e511ce8a0 1621
mjr 38:091e511ce8a0 1622 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1623 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1624 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1625 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1626 {
mjr 40:cc0d9814522b 1627 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1628 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1629 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1630 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1631 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1632 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1633 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1634 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1635 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1636 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1637 // for this unlikely case.
mjr 40:cc0d9814522b 1638 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1639 {
mjr 40:cc0d9814522b 1640 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1641 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1642
mjr 40:cc0d9814522b 1643 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1644 gamma = false;
mjr 40:cc0d9814522b 1645 }
mjr 40:cc0d9814522b 1646 else
mjr 40:cc0d9814522b 1647 {
mjr 40:cc0d9814522b 1648 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1649 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1650 }
mjr 40:cc0d9814522b 1651 }
mjr 38:091e511ce8a0 1652 else
mjr 40:cc0d9814522b 1653 {
mjr 40:cc0d9814522b 1654 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1655 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1656 }
mjr 38:091e511ce8a0 1657 break;
mjr 38:091e511ce8a0 1658
mjr 38:091e511ce8a0 1659 case PortType74HC595:
mjr 87:8d35c74403af 1660 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1661 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1662 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1663 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1664 else
mjr 38:091e511ce8a0 1665 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1666 break;
mjr 87:8d35c74403af 1667
mjr 87:8d35c74403af 1668 case PortTypeTLC59116:
mjr 87:8d35c74403af 1669 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1670 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1671 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1672 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1673 if (tlc59116 != 0)
mjr 87:8d35c74403af 1674 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1675 break;
mjr 38:091e511ce8a0 1676
mjr 38:091e511ce8a0 1677 case PortTypeVirtual:
mjr 43:7a6364d82a41 1678 case PortTypeDisabled:
mjr 38:091e511ce8a0 1679 default:
mjr 38:091e511ce8a0 1680 // virtual or unknown
mjr 38:091e511ce8a0 1681 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1682 break;
mjr 38:091e511ce8a0 1683 }
mjr 38:091e511ce8a0 1684
mjr 40:cc0d9814522b 1685 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1686 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1687 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1688 if (activeLow)
mjr 38:091e511ce8a0 1689 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1690
mjr 89:c43cd923401c 1691 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 1692 if (flipperLogic)
mjr 89:c43cd923401c 1693 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 1694
mjr 89:c43cd923401c 1695 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 1696 if (noisy)
mjr 40:cc0d9814522b 1697 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1698
mjr 40:cc0d9814522b 1699 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1700 if (gamma)
mjr 40:cc0d9814522b 1701 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1702
mjr 53:9b2611964afc 1703 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1704 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1705 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1706 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1707 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1708
mjr 53:9b2611964afc 1709 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1710 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1711 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1712
mjr 38:091e511ce8a0 1713 // turn it off initially
mjr 38:091e511ce8a0 1714 lwp->set(0);
mjr 38:091e511ce8a0 1715
mjr 38:091e511ce8a0 1716 // return the pin
mjr 38:091e511ce8a0 1717 return lwp;
mjr 38:091e511ce8a0 1718 }
mjr 38:091e511ce8a0 1719
mjr 6:cc35eb643e8f 1720 // initialize the output pin array
mjr 35:e959ffba78fd 1721 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1722 {
mjr 89:c43cd923401c 1723 // Initialize the Flipper Logic outputs
mjr 89:c43cd923401c 1724 LwFlipperLogicOut::classInit(cfg);
mjr 89:c43cd923401c 1725
mjr 35:e959ffba78fd 1726 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1727 // total number of ports.
mjr 35:e959ffba78fd 1728 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1729 int i;
mjr 35:e959ffba78fd 1730 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1731 {
mjr 35:e959ffba78fd 1732 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1733 {
mjr 35:e959ffba78fd 1734 numOutputs = i;
mjr 34:6b981a2afab7 1735 break;
mjr 34:6b981a2afab7 1736 }
mjr 33:d832bcab089e 1737 }
mjr 33:d832bcab089e 1738
mjr 73:4e8ce0b18915 1739 // allocate the pin array
mjr 73:4e8ce0b18915 1740 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1741
mjr 73:4e8ce0b18915 1742 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1743 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1744
mjr 73:4e8ce0b18915 1745 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1746 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1747 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1748
mjr 73:4e8ce0b18915 1749 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1750 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1751 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1752
mjr 73:4e8ce0b18915 1753 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1754 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1755 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1756
mjr 35:e959ffba78fd 1757 // create the pin interface object for each port
mjr 35:e959ffba78fd 1758 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1759 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1760 }
mjr 6:cc35eb643e8f 1761
mjr 76:7f5912b6340e 1762 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 1763 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 1764 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 1765 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 1766 // equivalent to 48.
mjr 40:cc0d9814522b 1767 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1768 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1769 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1770 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1771 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1772 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1773 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1774 255, 255
mjr 40:cc0d9814522b 1775 };
mjr 40:cc0d9814522b 1776
mjr 76:7f5912b6340e 1777 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 1778 // level (1..48)
mjr 76:7f5912b6340e 1779 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 1780 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 1781 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 1782 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 1783 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 1784 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 1785 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 1786 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 1787 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 1788 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 1789 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 1790 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 1791 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 1792 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 1793 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 1794 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 1795 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 1796 };
mjr 76:7f5912b6340e 1797
mjr 74:822a92bc11d2 1798 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1799 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1800 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1801 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1802 //
mjr 74:822a92bc11d2 1803 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1804 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1805 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1806 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1807 //
mjr 74:822a92bc11d2 1808 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1809 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1810 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1811 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1812 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1813 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1814 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1815 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1816 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1817 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1818 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1819 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1820 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1821 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1822 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1823 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1824 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1825 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1826 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1827 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1828
mjr 74:822a92bc11d2 1829 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1830 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1831 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1832 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1833 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1834 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1835 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1836 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1837 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1838 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1839 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1840 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1841 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1842 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1843 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1844 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1845 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1846
mjr 74:822a92bc11d2 1847 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1848 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1849 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1850 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1851 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1852 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1853 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1854 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1855 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1856 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1857 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1858 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1859 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1860 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1861 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1862 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1863 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1864
mjr 74:822a92bc11d2 1865 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1866 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1867 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1868 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1869 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1870 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1871 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1872 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1873 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1874 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1875 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1876 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1877 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1878 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1879 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1880 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1881 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1882 };
mjr 74:822a92bc11d2 1883
mjr 74:822a92bc11d2 1884 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1885 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1886 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1887
mjr 76:7f5912b6340e 1888 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 1889 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 1890
mjr 76:7f5912b6340e 1891 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 1892 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 1893 // outputs on each cycle.
mjr 29:582472d0bc57 1894 static void wizPulse()
mjr 29:582472d0bc57 1895 {
mjr 76:7f5912b6340e 1896 // current bank
mjr 76:7f5912b6340e 1897 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 1898
mjr 76:7f5912b6340e 1899 // start a timer for statistics collection
mjr 76:7f5912b6340e 1900 IF_DIAG(
mjr 76:7f5912b6340e 1901 Timer t;
mjr 76:7f5912b6340e 1902 t.start();
mjr 76:7f5912b6340e 1903 )
mjr 76:7f5912b6340e 1904
mjr 76:7f5912b6340e 1905 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 1906 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 1907 //
mjr 76:7f5912b6340e 1908 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 1909 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 1910 //
mjr 76:7f5912b6340e 1911 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 1912 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 1913 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 1914 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 1915 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 1916 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 1917 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 1918 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 1919 // current cycle.
mjr 76:7f5912b6340e 1920 //
mjr 76:7f5912b6340e 1921 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 1922 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 1923 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 1924 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 1925 // there by less-than-obvious means.
mjr 76:7f5912b6340e 1926 //
mjr 76:7f5912b6340e 1927 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 1928 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 1929 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 1930 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 1931 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 1932 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 1933 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 1934 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 1935 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 1936 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 1937 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 1938 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 1939 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 1940 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 1941 // bit counts.
mjr 76:7f5912b6340e 1942 //
mjr 76:7f5912b6340e 1943 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 1944 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 1945 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 1946 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 1947 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 1948 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 1949 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 1950 // one division for another!
mjr 76:7f5912b6340e 1951 //
mjr 76:7f5912b6340e 1952 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 1953 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 1954 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 1955 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 1956 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 1957 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 1958 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 1959 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 1960 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 1961 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 1962 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 1963 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 1964 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 1965 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 1966 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 1967 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 1968 // remainder calculation anyway.
mjr 76:7f5912b6340e 1969 //
mjr 76:7f5912b6340e 1970 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 1971 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 1972 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 1973 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 1974 //
mjr 76:7f5912b6340e 1975 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 1976 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 1977 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 1978 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 1979 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 1980 // the result, since we started with 32.
mjr 76:7f5912b6340e 1981 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 1982 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 1983 };
mjr 76:7f5912b6340e 1984 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 1985
mjr 76:7f5912b6340e 1986 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 1987 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 1988 int toPort = fromPort+32;
mjr 76:7f5912b6340e 1989 if (toPort > numOutputs)
mjr 76:7f5912b6340e 1990 toPort = numOutputs;
mjr 76:7f5912b6340e 1991
mjr 76:7f5912b6340e 1992 // update all outputs set to flashing values
mjr 76:7f5912b6340e 1993 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 1994 {
mjr 76:7f5912b6340e 1995 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 1996 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 1997 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 1998 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 1999 if (wizOn[i])
mjr 29:582472d0bc57 2000 {
mjr 76:7f5912b6340e 2001 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2002 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2003 {
mjr 76:7f5912b6340e 2004 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2005 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2006 }
mjr 29:582472d0bc57 2007 }
mjr 76:7f5912b6340e 2008 }
mjr 76:7f5912b6340e 2009
mjr 34:6b981a2afab7 2010 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2011 if (hc595 != 0)
mjr 35:e959ffba78fd 2012 hc595->update();
mjr 76:7f5912b6340e 2013
mjr 76:7f5912b6340e 2014 // switch to the next bank
mjr 76:7f5912b6340e 2015 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2016 wizPulseBank = 0;
mjr 76:7f5912b6340e 2017
mjr 76:7f5912b6340e 2018 // collect timing statistics
mjr 76:7f5912b6340e 2019 IF_DIAG(
mjr 76:7f5912b6340e 2020 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2021 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2022 )
mjr 1:d913e0afb2ac 2023 }
mjr 38:091e511ce8a0 2024
mjr 76:7f5912b6340e 2025 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2026 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2027 {
mjr 76:7f5912b6340e 2028 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2029 if (wizOn[port])
mjr 76:7f5912b6340e 2030 {
mjr 76:7f5912b6340e 2031 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2032 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2033 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2034 // it on the next cycle.
mjr 76:7f5912b6340e 2035 int val = wizVal[port];
mjr 76:7f5912b6340e 2036 if (val <= 49)
mjr 76:7f5912b6340e 2037 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2038 }
mjr 76:7f5912b6340e 2039 else
mjr 76:7f5912b6340e 2040 {
mjr 76:7f5912b6340e 2041 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2042 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2043 }
mjr 73:4e8ce0b18915 2044 }
mjr 73:4e8ce0b18915 2045
mjr 73:4e8ce0b18915 2046 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2047 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2048 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2049 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2050 //
mjr 73:4e8ce0b18915 2051 void allOutputsOff()
mjr 73:4e8ce0b18915 2052 {
mjr 92:f264fbaa1be5 2053 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2054 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2055 {
mjr 73:4e8ce0b18915 2056 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2057 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2058 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2059 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2060 }
mjr 73:4e8ce0b18915 2061
mjr 73:4e8ce0b18915 2062 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2063 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2064 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2065
mjr 73:4e8ce0b18915 2066 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2067 if (hc595 != 0)
mjr 38:091e511ce8a0 2068 hc595->update();
mjr 38:091e511ce8a0 2069 }
mjr 38:091e511ce8a0 2070
mjr 74:822a92bc11d2 2071 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2072 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2073 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2074 // address any port group.
mjr 74:822a92bc11d2 2075 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2076 {
mjr 76:7f5912b6340e 2077 // update all on/off states in the group
mjr 74:822a92bc11d2 2078 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2079 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2080 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2081 {
mjr 74:822a92bc11d2 2082 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2083 if (bit == 0x100) {
mjr 74:822a92bc11d2 2084 bit = 1;
mjr 74:822a92bc11d2 2085 ++imsg;
mjr 74:822a92bc11d2 2086 }
mjr 74:822a92bc11d2 2087
mjr 74:822a92bc11d2 2088 // set the on/off state
mjr 76:7f5912b6340e 2089 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2090
mjr 76:7f5912b6340e 2091 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2092 updateLwPort(port);
mjr 74:822a92bc11d2 2093 }
mjr 74:822a92bc11d2 2094
mjr 74:822a92bc11d2 2095 // set the flash speed for the port group
mjr 74:822a92bc11d2 2096 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2097 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2098
mjr 76:7f5912b6340e 2099 // update 74HC959 outputs
mjr 76:7f5912b6340e 2100 if (hc595 != 0)
mjr 76:7f5912b6340e 2101 hc595->update();
mjr 74:822a92bc11d2 2102 }
mjr 74:822a92bc11d2 2103
mjr 74:822a92bc11d2 2104 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2105 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2106 {
mjr 74:822a92bc11d2 2107 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2108 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2109 {
mjr 74:822a92bc11d2 2110 // get the value
mjr 74:822a92bc11d2 2111 uint8_t v = data[i];
mjr 74:822a92bc11d2 2112
mjr 74:822a92bc11d2 2113 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2114 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2115 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2116 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2117 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2118 // as such.
mjr 74:822a92bc11d2 2119 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2120 v = 48;
mjr 74:822a92bc11d2 2121
mjr 74:822a92bc11d2 2122 // store it
mjr 76:7f5912b6340e 2123 wizVal[port] = v;
mjr 76:7f5912b6340e 2124
mjr 76:7f5912b6340e 2125 // update the port
mjr 76:7f5912b6340e 2126 updateLwPort(port);
mjr 74:822a92bc11d2 2127 }
mjr 74:822a92bc11d2 2128
mjr 76:7f5912b6340e 2129 // update 74HC595 outputs
mjr 76:7f5912b6340e 2130 if (hc595 != 0)
mjr 76:7f5912b6340e 2131 hc595->update();
mjr 74:822a92bc11d2 2132 }
mjr 74:822a92bc11d2 2133
mjr 77:0b96f6867312 2134 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2135 //
mjr 77:0b96f6867312 2136 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2137 //
mjr 77:0b96f6867312 2138
mjr 77:0b96f6867312 2139 // receiver
mjr 77:0b96f6867312 2140 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2141
mjr 77:0b96f6867312 2142 // transmitter
mjr 77:0b96f6867312 2143 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2144
mjr 77:0b96f6867312 2145 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2146 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2147 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2148 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2149 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2150 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2151 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2152 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2153 // configuration slot n
mjr 77:0b96f6867312 2154 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2155
mjr 78:1e00b3fa11af 2156 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2157 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2158 // protocol.
mjr 78:1e00b3fa11af 2159 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2160
mjr 78:1e00b3fa11af 2161 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2162 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2163 // while waiting for the rest.
mjr 78:1e00b3fa11af 2164 static struct
mjr 78:1e00b3fa11af 2165 {
mjr 78:1e00b3fa11af 2166 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2167 uint64_t code; // code
mjr 78:1e00b3fa11af 2168 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2169 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2170 } IRAdHocCmd;
mjr 88:98bce687e6c0 2171
mjr 77:0b96f6867312 2172
mjr 77:0b96f6867312 2173 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2174 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2175 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2176 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2177 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2178 // amount of time.
mjr 77:0b96f6867312 2179 Timer IRTimer;
mjr 77:0b96f6867312 2180
mjr 77:0b96f6867312 2181 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2182 // The states are:
mjr 77:0b96f6867312 2183 //
mjr 77:0b96f6867312 2184 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2185 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2186 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2187 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2188 //
mjr 77:0b96f6867312 2189 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2190 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2191 // received within a reasonable time.
mjr 77:0b96f6867312 2192 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2193
mjr 77:0b96f6867312 2194 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2195 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2196 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2197 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2198 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2199 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2200 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2201 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2202 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2203
mjr 78:1e00b3fa11af 2204 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2205 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2206 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2207 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2208 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2209 // index; 0 represents no command.
mjr 77:0b96f6867312 2210 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2211
mjr 77:0b96f6867312 2212 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2213 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2214 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2215 // command we received.
mjr 77:0b96f6867312 2216 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2217
mjr 77:0b96f6867312 2218 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2219 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2220 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2221 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2222 // distinct key press.
mjr 77:0b96f6867312 2223 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2224
mjr 78:1e00b3fa11af 2225
mjr 77:0b96f6867312 2226 // initialize
mjr 77:0b96f6867312 2227 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2228 {
mjr 77:0b96f6867312 2229 PinName pin;
mjr 77:0b96f6867312 2230
mjr 77:0b96f6867312 2231 // start the IR timer
mjr 77:0b96f6867312 2232 IRTimer.start();
mjr 77:0b96f6867312 2233
mjr 77:0b96f6867312 2234 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2235 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2236 {
mjr 77:0b96f6867312 2237 // no virtual buttons yet
mjr 77:0b96f6867312 2238 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2239 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2240
mjr 77:0b96f6867312 2241 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2242 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2243 {
mjr 77:0b96f6867312 2244 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2245 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2246 }
mjr 77:0b96f6867312 2247
mjr 77:0b96f6867312 2248 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2249 // real button inputs
mjr 77:0b96f6867312 2250 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2251 {
mjr 77:0b96f6867312 2252 // get the button
mjr 77:0b96f6867312 2253 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2254
mjr 77:0b96f6867312 2255 // check the unshifted button
mjr 77:0b96f6867312 2256 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2257 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2258 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2259 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2260
mjr 77:0b96f6867312 2261 // check the shifted button
mjr 77:0b96f6867312 2262 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2263 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2264 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2265 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2266 }
mjr 77:0b96f6867312 2267
mjr 77:0b96f6867312 2268 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2269 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2270 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2271
mjr 77:0b96f6867312 2272 // create the transmitter
mjr 77:0b96f6867312 2273 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2274
mjr 77:0b96f6867312 2275 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2276 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2277 {
mjr 77:0b96f6867312 2278 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2279 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2280 if (vb != 0xFF)
mjr 77:0b96f6867312 2281 {
mjr 77:0b96f6867312 2282 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2283 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2284 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2285 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2286 }
mjr 77:0b96f6867312 2287 }
mjr 77:0b96f6867312 2288 }
mjr 77:0b96f6867312 2289
mjr 77:0b96f6867312 2290 // if there's a receiver, set it up
mjr 77:0b96f6867312 2291 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2292 {
mjr 77:0b96f6867312 2293 // create the receiver
mjr 77:0b96f6867312 2294 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2295
mjr 77:0b96f6867312 2296 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2297 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2298 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2299
mjr 77:0b96f6867312 2300 // enable it
mjr 77:0b96f6867312 2301 ir_rx->enable();
mjr 77:0b96f6867312 2302
mjr 77:0b96f6867312 2303 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2304 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2305 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2306 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2307 {
mjr 77:0b96f6867312 2308 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2309 if (cb.protocol != 0
mjr 77:0b96f6867312 2310 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2311 {
mjr 77:0b96f6867312 2312 kbKeys = true;
mjr 77:0b96f6867312 2313 break;
mjr 77:0b96f6867312 2314 }
mjr 77:0b96f6867312 2315 }
mjr 77:0b96f6867312 2316 }
mjr 77:0b96f6867312 2317 }
mjr 77:0b96f6867312 2318
mjr 77:0b96f6867312 2319 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2320 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2321 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2322 {
mjr 77:0b96f6867312 2323 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2324 if (ir_tx != 0)
mjr 77:0b96f6867312 2325 {
mjr 77:0b96f6867312 2326 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2327 int slot = cmd - 1;
mjr 77:0b96f6867312 2328
mjr 77:0b96f6867312 2329 // press or release the virtual button
mjr 77:0b96f6867312 2330 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2331 }
mjr 77:0b96f6867312 2332 }
mjr 77:0b96f6867312 2333
mjr 78:1e00b3fa11af 2334 // Process IR input and output
mjr 77:0b96f6867312 2335 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2336 {
mjr 78:1e00b3fa11af 2337 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2338 if (ir_tx != 0)
mjr 77:0b96f6867312 2339 {
mjr 78:1e00b3fa11af 2340 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2341 // is ready to send, send it.
mjr 78:1e00b3fa11af 2342 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2343 {
mjr 78:1e00b3fa11af 2344 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2345 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2346 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2347 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2348
mjr 78:1e00b3fa11af 2349 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2350 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2351 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2352
mjr 78:1e00b3fa11af 2353 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2354 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2355 }
mjr 77:0b96f6867312 2356 }
mjr 78:1e00b3fa11af 2357
mjr 78:1e00b3fa11af 2358 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2359 if (ir_rx != 0)
mjr 77:0b96f6867312 2360 {
mjr 78:1e00b3fa11af 2361 // Time out any received command
mjr 78:1e00b3fa11af 2362 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2363 {
mjr 80:94dc2946871b 2364 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2365 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2366 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2367 if (t > 200000)
mjr 78:1e00b3fa11af 2368 IRCommandIn = 0;
mjr 80:94dc2946871b 2369 else if (t > 50000)
mjr 78:1e00b3fa11af 2370 IRKeyGap = false;
mjr 78:1e00b3fa11af 2371 }
mjr 78:1e00b3fa11af 2372
mjr 78:1e00b3fa11af 2373 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2374 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2375 {
mjr 78:1e00b3fa11af 2376 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2377 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2378 // limit.
mjr 78:1e00b3fa11af 2379 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2380 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2381 int n;
mjr 78:1e00b3fa11af 2382 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2383
mjr 78:1e00b3fa11af 2384 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2385 if (n != 0)
mjr 78:1e00b3fa11af 2386 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2387
mjr 78:1e00b3fa11af 2388 // check for a command
mjr 78:1e00b3fa11af 2389 IRCommand c;
mjr 78:1e00b3fa11af 2390 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2391 {
mjr 78:1e00b3fa11af 2392 // check the current learning state
mjr 78:1e00b3fa11af 2393 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2394 {
mjr 78:1e00b3fa11af 2395 case 1:
mjr 78:1e00b3fa11af 2396 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2397 // This is it.
mjr 78:1e00b3fa11af 2398 learnedIRCode = c;
mjr 78:1e00b3fa11af 2399
mjr 78:1e00b3fa11af 2400 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2401 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2402 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2403 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2404 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2405 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2406 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2407 break;
mjr 78:1e00b3fa11af 2408
mjr 78:1e00b3fa11af 2409 case 2:
mjr 78:1e00b3fa11af 2410 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2411 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2412 //
mjr 78:1e00b3fa11af 2413 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2414 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2415 //
mjr 78:1e00b3fa11af 2416 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2417 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2418 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2419 // them.
mjr 78:1e00b3fa11af 2420 //
mjr 78:1e00b3fa11af 2421 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2422 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2423 // over.
mjr 78:1e00b3fa11af 2424 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2425 && c.hasDittos
mjr 78:1e00b3fa11af 2426 && c.ditto)
mjr 78:1e00b3fa11af 2427 {
mjr 78:1e00b3fa11af 2428 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2429 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2430 }
mjr 78:1e00b3fa11af 2431 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2432 && c.hasDittos
mjr 78:1e00b3fa11af 2433 && !c.ditto
mjr 78:1e00b3fa11af 2434 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2435 {
mjr 78:1e00b3fa11af 2436 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2437 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2438 // protocol supports them
mjr 78:1e00b3fa11af 2439 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2440 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2441 }
mjr 78:1e00b3fa11af 2442 else
mjr 78:1e00b3fa11af 2443 {
mjr 78:1e00b3fa11af 2444 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2445 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2446 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2447 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2448 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2449 }
mjr 78:1e00b3fa11af 2450 break;
mjr 78:1e00b3fa11af 2451 }
mjr 77:0b96f6867312 2452
mjr 78:1e00b3fa11af 2453 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2454 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2455 // learning mode.
mjr 78:1e00b3fa11af 2456 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2457 {
mjr 78:1e00b3fa11af 2458 // figure the flags:
mjr 78:1e00b3fa11af 2459 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2460 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2461 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2462 flags |= 0x02;
mjr 78:1e00b3fa11af 2463
mjr 78:1e00b3fa11af 2464 // report the code
mjr 78:1e00b3fa11af 2465 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2466
mjr 78:1e00b3fa11af 2467 // exit learning mode
mjr 78:1e00b3fa11af 2468 IRLearningMode = 0;
mjr 77:0b96f6867312 2469 }
mjr 77:0b96f6867312 2470 }
mjr 77:0b96f6867312 2471
mjr 78:1e00b3fa11af 2472 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2473 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2474 {
mjr 78:1e00b3fa11af 2475 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2476 // zero data elements
mjr 78:1e00b3fa11af 2477 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2478
mjr 78:1e00b3fa11af 2479
mjr 78:1e00b3fa11af 2480 // cancel learning mode
mjr 77:0b96f6867312 2481 IRLearningMode = 0;
mjr 77:0b96f6867312 2482 }
mjr 77:0b96f6867312 2483 }
mjr 78:1e00b3fa11af 2484 else
mjr 77:0b96f6867312 2485 {
mjr 78:1e00b3fa11af 2486 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2487 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2488 ir_rx->process();
mjr 78:1e00b3fa11af 2489
mjr 78:1e00b3fa11af 2490 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2491 // have been read.
mjr 78:1e00b3fa11af 2492 IRCommand c;
mjr 78:1e00b3fa11af 2493 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2494 {
mjr 78:1e00b3fa11af 2495 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2496 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2497 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2498 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2499 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2500 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2501 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2502 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2503 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2504 //
mjr 78:1e00b3fa11af 2505 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2506 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2507 // command.
mjr 78:1e00b3fa11af 2508 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2509 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2510 {
mjr 78:1e00b3fa11af 2511 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2512 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2513 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2514 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2515 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2516 if (c.ditto)
mjr 78:1e00b3fa11af 2517 {
mjr 78:1e00b3fa11af 2518 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2519 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2520 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2521 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2522 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2523 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2524 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2525 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2526 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2527 }
mjr 78:1e00b3fa11af 2528 else
mjr 78:1e00b3fa11af 2529 {
mjr 78:1e00b3fa11af 2530 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2531 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2532 // prior command.
mjr 78:1e00b3fa11af 2533 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2534 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2535 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2536
mjr 78:1e00b3fa11af 2537 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2538 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2539 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2540 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2541 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2542 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2543 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2544 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2545 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2546 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2547 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2548 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2549 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2550 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2551 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2552 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2553 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2554 autoRepeat =
mjr 78:1e00b3fa11af 2555 repeat
mjr 78:1e00b3fa11af 2556 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2557 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2558 }
mjr 78:1e00b3fa11af 2559 }
mjr 78:1e00b3fa11af 2560
mjr 78:1e00b3fa11af 2561 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2562 if (repeat)
mjr 78:1e00b3fa11af 2563 {
mjr 78:1e00b3fa11af 2564 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2565 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2566 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2567 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2568 // key press event.
mjr 78:1e00b3fa11af 2569 if (!autoRepeat)
mjr 78:1e00b3fa11af 2570 IRKeyGap = true;
mjr 78:1e00b3fa11af 2571
mjr 78:1e00b3fa11af 2572 // restart the key-up timer
mjr 78:1e00b3fa11af 2573 IRTimer.reset();
mjr 78:1e00b3fa11af 2574 }
mjr 78:1e00b3fa11af 2575 else if (c.ditto)
mjr 78:1e00b3fa11af 2576 {
mjr 78:1e00b3fa11af 2577 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 2578 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 2579 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 2580 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 2581 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 2582 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 2583 // a full command for a new key press.
mjr 78:1e00b3fa11af 2584 IRCommandIn = 0;
mjr 77:0b96f6867312 2585 }
mjr 77:0b96f6867312 2586 else
mjr 77:0b96f6867312 2587 {
mjr 78:1e00b3fa11af 2588 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 2589 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 2590 // the new command).
mjr 78:1e00b3fa11af 2591 IRCommandIn = 0;
mjr 77:0b96f6867312 2592
mjr 78:1e00b3fa11af 2593 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 2594 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 2595 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2596 {
mjr 78:1e00b3fa11af 2597 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 2598 // list both match the input, it's a match
mjr 78:1e00b3fa11af 2599 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 2600 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 2601 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 2602 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 2603 {
mjr 78:1e00b3fa11af 2604 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 2605 // remember the starting time.
mjr 78:1e00b3fa11af 2606 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 2607 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 2608 IRTimer.reset();
mjr 78:1e00b3fa11af 2609
mjr 78:1e00b3fa11af 2610 // no need to keep searching
mjr 78:1e00b3fa11af 2611 break;
mjr 78:1e00b3fa11af 2612 }
mjr 77:0b96f6867312 2613 }
mjr 77:0b96f6867312 2614 }
mjr 77:0b96f6867312 2615 }
mjr 77:0b96f6867312 2616 }
mjr 77:0b96f6867312 2617 }
mjr 77:0b96f6867312 2618 }
mjr 77:0b96f6867312 2619
mjr 74:822a92bc11d2 2620
mjr 11:bd9da7088e6e 2621 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 2622 //
mjr 11:bd9da7088e6e 2623 // Button input
mjr 11:bd9da7088e6e 2624 //
mjr 11:bd9da7088e6e 2625
mjr 18:5e890ebd0023 2626 // button state
mjr 18:5e890ebd0023 2627 struct ButtonState
mjr 18:5e890ebd0023 2628 {
mjr 38:091e511ce8a0 2629 ButtonState()
mjr 38:091e511ce8a0 2630 {
mjr 53:9b2611964afc 2631 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 2632 virtState = 0;
mjr 53:9b2611964afc 2633 dbState = 0;
mjr 38:091e511ce8a0 2634 pulseState = 0;
mjr 53:9b2611964afc 2635 pulseTime = 0;
mjr 38:091e511ce8a0 2636 }
mjr 35:e959ffba78fd 2637
mjr 53:9b2611964afc 2638 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 2639 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 2640 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 2641 //
mjr 53:9b2611964afc 2642 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 2643 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 2644 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 2645 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2646 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2647 void virtPress(bool on)
mjr 53:9b2611964afc 2648 {
mjr 53:9b2611964afc 2649 // Increment or decrement the current state
mjr 53:9b2611964afc 2650 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2651 }
mjr 53:9b2611964afc 2652
mjr 53:9b2611964afc 2653 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2654 TinyDigitalIn di;
mjr 38:091e511ce8a0 2655
mjr 65:739875521aae 2656 // Time of last pulse state transition.
mjr 65:739875521aae 2657 //
mjr 65:739875521aae 2658 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2659 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2660 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2661 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2662 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2663 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2664 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2665 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2666 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2667 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2668 // This software system can't be fooled that way.)
mjr 65:739875521aae 2669 uint32_t pulseTime;
mjr 18:5e890ebd0023 2670
mjr 65:739875521aae 2671 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2672 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2673 uint8_t cfgIndex;
mjr 53:9b2611964afc 2674
mjr 53:9b2611964afc 2675 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2676 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2677 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2678 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2679 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2680 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2681 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2682 // and physical source states.
mjr 53:9b2611964afc 2683 uint8_t virtState;
mjr 38:091e511ce8a0 2684
mjr 38:091e511ce8a0 2685 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2686 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2687 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2688 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2689 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2690 uint8_t dbState;
mjr 38:091e511ce8a0 2691
mjr 65:739875521aae 2692 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2693 uint8_t physState : 1;
mjr 65:739875521aae 2694
mjr 65:739875521aae 2695 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2696 uint8_t logState : 1;
mjr 65:739875521aae 2697
mjr 79:682ae3171a08 2698 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 2699 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 2700 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 2701 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 2702 uint8_t prevLogState : 1;
mjr 65:739875521aae 2703
mjr 65:739875521aae 2704 // Pulse state
mjr 65:739875521aae 2705 //
mjr 65:739875521aae 2706 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2707 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2708 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2709 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2710 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2711 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2712 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2713 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2714 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2715 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2716 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 2717 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 2718 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2719 //
mjr 38:091e511ce8a0 2720 // Pulse state:
mjr 38:091e511ce8a0 2721 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2722 // 1 -> off
mjr 38:091e511ce8a0 2723 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2724 // 3 -> on
mjr 38:091e511ce8a0 2725 // 4 -> transitioning on-off
mjr 65:739875521aae 2726 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2727
mjr 65:739875521aae 2728 } __attribute__((packed));
mjr 65:739875521aae 2729
mjr 65:739875521aae 2730 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2731 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2732 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2733
mjr 66:2e3583fbd2f4 2734 // Shift button state
mjr 66:2e3583fbd2f4 2735 struct
mjr 66:2e3583fbd2f4 2736 {
mjr 66:2e3583fbd2f4 2737 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 2738 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 2739 // 0 = not shifted
mjr 66:2e3583fbd2f4 2740 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2741 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 2742 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 2743 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 2744 }
mjr 66:2e3583fbd2f4 2745 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2746
mjr 38:091e511ce8a0 2747 // Button data
mjr 38:091e511ce8a0 2748 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2749
mjr 38:091e511ce8a0 2750 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2751 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2752 // modifier keys.
mjr 38:091e511ce8a0 2753 struct
mjr 38:091e511ce8a0 2754 {
mjr 38:091e511ce8a0 2755 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2756 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2757 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2758 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2759 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2760
mjr 38:091e511ce8a0 2761 // Media key state
mjr 38:091e511ce8a0 2762 struct
mjr 38:091e511ce8a0 2763 {
mjr 38:091e511ce8a0 2764 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2765 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2766 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2767
mjr 79:682ae3171a08 2768 // button scan interrupt timer
mjr 79:682ae3171a08 2769 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 2770
mjr 38:091e511ce8a0 2771 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2772 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2773 void scanButtons()
mjr 38:091e511ce8a0 2774 {
mjr 79:682ae3171a08 2775 // schedule the next interrupt
mjr 79:682ae3171a08 2776 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 2777
mjr 38:091e511ce8a0 2778 // scan all button input pins
mjr 73:4e8ce0b18915 2779 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2780 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2781 {
mjr 73:4e8ce0b18915 2782 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2783 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2784 bs->dbState = db;
mjr 73:4e8ce0b18915 2785
mjr 73:4e8ce0b18915 2786 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2787 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2788 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2789 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2790 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2791 db &= stable;
mjr 73:4e8ce0b18915 2792 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2793 bs->physState = !db;
mjr 38:091e511ce8a0 2794 }
mjr 38:091e511ce8a0 2795 }
mjr 38:091e511ce8a0 2796
mjr 38:091e511ce8a0 2797 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2798 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2799 // in the physical button state.
mjr 38:091e511ce8a0 2800 Timer buttonTimer;
mjr 12:669df364a565 2801
mjr 65:739875521aae 2802 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2803 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2804 {
mjr 65:739875521aae 2805 // count it
mjr 65:739875521aae 2806 ++nButtons;
mjr 65:739875521aae 2807
mjr 67:c39e66c4e000 2808 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2809 // keyboard interface
mjr 72:884207c0aab0 2810 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2811 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2812 kbKeys = true;
mjr 65:739875521aae 2813 }
mjr 65:739875521aae 2814
mjr 11:bd9da7088e6e 2815 // initialize the button inputs
mjr 35:e959ffba78fd 2816 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2817 {
mjr 66:2e3583fbd2f4 2818 // presume no shift key
mjr 66:2e3583fbd2f4 2819 shiftButton.index = -1;
mjr 82:4f6209cb5c33 2820 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2821
mjr 65:739875521aae 2822 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2823 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2824 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2825 nButtons = 0;
mjr 65:739875521aae 2826 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2827 {
mjr 65:739875521aae 2828 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2829 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2830 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2831 }
mjr 65:739875521aae 2832
mjr 65:739875521aae 2833 // Count virtual buttons
mjr 65:739875521aae 2834
mjr 65:739875521aae 2835 // ZB Launch
mjr 65:739875521aae 2836 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2837 {
mjr 65:739875521aae 2838 // valid - remember the live button index
mjr 65:739875521aae 2839 zblButtonIndex = nButtons;
mjr 65:739875521aae 2840
mjr 65:739875521aae 2841 // count it
mjr 72:884207c0aab0 2842 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2843 }
mjr 65:739875521aae 2844
mjr 65:739875521aae 2845 // Allocate the live button slots
mjr 65:739875521aae 2846 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2847
mjr 65:739875521aae 2848 // Configure the physical inputs
mjr 65:739875521aae 2849 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2850 {
mjr 65:739875521aae 2851 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2852 if (pin != NC)
mjr 65:739875521aae 2853 {
mjr 65:739875521aae 2854 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2855 bs->cfgIndex = i;
mjr 65:739875521aae 2856
mjr 65:739875521aae 2857 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2858 bs->di.assignPin(pin);
mjr 65:739875521aae 2859
mjr 65:739875521aae 2860 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2861 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2862 bs->pulseState = 1;
mjr 65:739875521aae 2863
mjr 66:2e3583fbd2f4 2864 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2865 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2866 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2867 // config slots are left unused.
mjr 78:1e00b3fa11af 2868 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 2869 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2870
mjr 65:739875521aae 2871 // advance to the next button
mjr 65:739875521aae 2872 ++bs;
mjr 65:739875521aae 2873 }
mjr 65:739875521aae 2874 }
mjr 65:739875521aae 2875
mjr 53:9b2611964afc 2876 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2877 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2878 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2879 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2880
mjr 53:9b2611964afc 2881 // ZB Launch Ball button
mjr 65:739875521aae 2882 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2883 {
mjr 65:739875521aae 2884 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2885 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2886 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2887 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2888 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2889 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2890 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2891 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2892
mjr 66:2e3583fbd2f4 2893 // advance to the next button
mjr 65:739875521aae 2894 ++bs;
mjr 11:bd9da7088e6e 2895 }
mjr 12:669df364a565 2896
mjr 38:091e511ce8a0 2897 // start the button scan thread
mjr 79:682ae3171a08 2898 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2899
mjr 38:091e511ce8a0 2900 // start the button state transition timer
mjr 12:669df364a565 2901 buttonTimer.start();
mjr 11:bd9da7088e6e 2902 }
mjr 11:bd9da7088e6e 2903
mjr 67:c39e66c4e000 2904 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2905 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2906 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2907 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2908 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2909 //
mjr 67:c39e66c4e000 2910 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2911 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2912 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2913 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2914 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2915 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2916 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2917 //
mjr 67:c39e66c4e000 2918 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2919 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2920 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2921 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2922 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2923 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2924 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2925 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2926 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2927 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2928 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2929 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2930 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2931 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2932 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2933 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2934 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 2935 };
mjr 77:0b96f6867312 2936
mjr 77:0b96f6867312 2937 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 2938 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 2939 // states of the button iputs.
mjr 77:0b96f6867312 2940 struct KeyState
mjr 77:0b96f6867312 2941 {
mjr 77:0b96f6867312 2942 KeyState()
mjr 77:0b96f6867312 2943 {
mjr 77:0b96f6867312 2944 // zero all members
mjr 77:0b96f6867312 2945 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 2946 }
mjr 77:0b96f6867312 2947
mjr 77:0b96f6867312 2948 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 2949 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 2950 uint8_t mediakeys;
mjr 77:0b96f6867312 2951
mjr 77:0b96f6867312 2952 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 2953 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 2954 // USBJoystick.cpp).
mjr 77:0b96f6867312 2955 uint8_t modkeys;
mjr 77:0b96f6867312 2956
mjr 77:0b96f6867312 2957 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 2958 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 2959 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 2960 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 2961 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 2962 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 2963 uint8_t keys[7];
mjr 77:0b96f6867312 2964
mjr 77:0b96f6867312 2965 // number of valid entries in keys[] array
mjr 77:0b96f6867312 2966 int nkeys;
mjr 77:0b96f6867312 2967
mjr 77:0b96f6867312 2968 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 2969 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 2970 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 2971 uint32_t js;
mjr 77:0b96f6867312 2972
mjr 77:0b96f6867312 2973
mjr 77:0b96f6867312 2974 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 2975 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 2976 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 2977 {
mjr 77:0b96f6867312 2978 // add the key according to the type
mjr 77:0b96f6867312 2979 switch (typ)
mjr 77:0b96f6867312 2980 {
mjr 77:0b96f6867312 2981 case BtnTypeJoystick:
mjr 77:0b96f6867312 2982 // joystick button
mjr 77:0b96f6867312 2983 js |= (1 << (val - 1));
mjr 77:0b96f6867312 2984 break;
mjr 77:0b96f6867312 2985
mjr 77:0b96f6867312 2986 case BtnTypeKey:
mjr 77:0b96f6867312 2987 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 2988 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 2989 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 2990 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 2991 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 2992 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 2993 // explicitly using media keys if desired.
mjr 77:0b96f6867312 2994 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 2995 {
mjr 77:0b96f6867312 2996 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 2997 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 2998 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 2999 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3000 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3001 }
mjr 77:0b96f6867312 3002 else
mjr 77:0b96f6867312 3003 {
mjr 77:0b96f6867312 3004 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3005 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3006 // apply, add the key to the key array.
mjr 77:0b96f6867312 3007 if (nkeys < 7)
mjr 77:0b96f6867312 3008 {
mjr 77:0b96f6867312 3009 bool found = false;
mjr 77:0b96f6867312 3010 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3011 {
mjr 77:0b96f6867312 3012 if (keys[i] == val)
mjr 77:0b96f6867312 3013 {
mjr 77:0b96f6867312 3014 found = true;
mjr 77:0b96f6867312 3015 break;
mjr 77:0b96f6867312 3016 }
mjr 77:0b96f6867312 3017 }
mjr 77:0b96f6867312 3018 if (!found)
mjr 77:0b96f6867312 3019 keys[nkeys++] = val;
mjr 77:0b96f6867312 3020 }
mjr 77:0b96f6867312 3021 }
mjr 77:0b96f6867312 3022 break;
mjr 77:0b96f6867312 3023
mjr 77:0b96f6867312 3024 case BtnTypeMedia:
mjr 77:0b96f6867312 3025 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3026 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3027 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3028 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3029 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3030 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3031 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3032 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3033 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3034 break;
mjr 77:0b96f6867312 3035 }
mjr 77:0b96f6867312 3036 }
mjr 77:0b96f6867312 3037 };
mjr 67:c39e66c4e000 3038
mjr 67:c39e66c4e000 3039
mjr 38:091e511ce8a0 3040 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3041 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3042 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3043 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3044 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3045 {
mjr 77:0b96f6867312 3046 // key state
mjr 77:0b96f6867312 3047 KeyState ks;
mjr 38:091e511ce8a0 3048
mjr 38:091e511ce8a0 3049 // calculate the time since the last run
mjr 53:9b2611964afc 3050 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3051 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3052
mjr 66:2e3583fbd2f4 3053 // check the shift button state
mjr 66:2e3583fbd2f4 3054 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3055 {
mjr 78:1e00b3fa11af 3056 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3057 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3058
mjr 78:1e00b3fa11af 3059 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3060 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3061 {
mjr 66:2e3583fbd2f4 3062 case 0:
mjr 78:1e00b3fa11af 3063 default:
mjr 78:1e00b3fa11af 3064 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3065 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3066 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3067 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3068 {
mjr 78:1e00b3fa11af 3069 case 0:
mjr 78:1e00b3fa11af 3070 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3071 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3072 if (sbs->physState)
mjr 78:1e00b3fa11af 3073 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3074 break;
mjr 78:1e00b3fa11af 3075
mjr 78:1e00b3fa11af 3076 case 1:
mjr 78:1e00b3fa11af 3077 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3078 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3079 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3080 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3081 // pulse event.
mjr 78:1e00b3fa11af 3082 if (!sbs->physState)
mjr 78:1e00b3fa11af 3083 {
mjr 78:1e00b3fa11af 3084 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3085 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3086 }
mjr 78:1e00b3fa11af 3087 break;
mjr 78:1e00b3fa11af 3088
mjr 78:1e00b3fa11af 3089 case 2:
mjr 78:1e00b3fa11af 3090 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3091 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3092 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3093 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3094 // suppressed.
mjr 78:1e00b3fa11af 3095 if (!sbs->physState)
mjr 78:1e00b3fa11af 3096 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3097 break;
mjr 78:1e00b3fa11af 3098
mjr 78:1e00b3fa11af 3099 case 3:
mjr 78:1e00b3fa11af 3100 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3101 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3102 // has expired.
mjr 78:1e00b3fa11af 3103 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3104 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3105 else
mjr 78:1e00b3fa11af 3106 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3107 break;
mjr 78:1e00b3fa11af 3108 }
mjr 66:2e3583fbd2f4 3109 break;
mjr 66:2e3583fbd2f4 3110
mjr 66:2e3583fbd2f4 3111 case 1:
mjr 78:1e00b3fa11af 3112 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3113 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3114 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3115 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3116 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3117 break;
mjr 66:2e3583fbd2f4 3118 }
mjr 66:2e3583fbd2f4 3119 }
mjr 38:091e511ce8a0 3120
mjr 11:bd9da7088e6e 3121 // scan the button list
mjr 18:5e890ebd0023 3122 ButtonState *bs = buttonState;
mjr 65:739875521aae 3123 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3124 {
mjr 77:0b96f6867312 3125 // get the config entry for the button
mjr 77:0b96f6867312 3126 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3127
mjr 66:2e3583fbd2f4 3128 // Check the button type:
mjr 66:2e3583fbd2f4 3129 // - shift button
mjr 66:2e3583fbd2f4 3130 // - pulsed button
mjr 66:2e3583fbd2f4 3131 // - regular button
mjr 66:2e3583fbd2f4 3132 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3133 {
mjr 78:1e00b3fa11af 3134 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3135 // depends on the mode.
mjr 78:1e00b3fa11af 3136 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3137 {
mjr 78:1e00b3fa11af 3138 case 0:
mjr 78:1e00b3fa11af 3139 default:
mjr 78:1e00b3fa11af 3140 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3141 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3142 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3143 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3144 break;
mjr 78:1e00b3fa11af 3145
mjr 78:1e00b3fa11af 3146 case 1:
mjr 78:1e00b3fa11af 3147 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3148 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3149 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3150 break;
mjr 66:2e3583fbd2f4 3151 }
mjr 66:2e3583fbd2f4 3152 }
mjr 66:2e3583fbd2f4 3153 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3154 {
mjr 38:091e511ce8a0 3155 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3156 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3157 {
mjr 53:9b2611964afc 3158 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3159 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3160 }
mjr 53:9b2611964afc 3161 else
mjr 53:9b2611964afc 3162 {
mjr 53:9b2611964afc 3163 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3164 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3165 switch (bs->pulseState)
mjr 18:5e890ebd0023 3166 {
mjr 38:091e511ce8a0 3167 case 1:
mjr 38:091e511ce8a0 3168 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3169 if (bs->physState)
mjr 53:9b2611964afc 3170 {
mjr 38:091e511ce8a0 3171 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3172 bs->pulseState = 2;
mjr 53:9b2611964afc 3173 bs->logState = 1;
mjr 38:091e511ce8a0 3174 }
mjr 38:091e511ce8a0 3175 break;
mjr 18:5e890ebd0023 3176
mjr 38:091e511ce8a0 3177 case 2:
mjr 38:091e511ce8a0 3178 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3179 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3180 // change in state in the logical button
mjr 38:091e511ce8a0 3181 bs->pulseState = 3;
mjr 38:091e511ce8a0 3182 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3183 bs->logState = 0;
mjr 38:091e511ce8a0 3184 break;
mjr 38:091e511ce8a0 3185
mjr 38:091e511ce8a0 3186 case 3:
mjr 38:091e511ce8a0 3187 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3188 if (!bs->physState)
mjr 53:9b2611964afc 3189 {
mjr 38:091e511ce8a0 3190 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3191 bs->pulseState = 4;
mjr 53:9b2611964afc 3192 bs->logState = 1;
mjr 38:091e511ce8a0 3193 }
mjr 38:091e511ce8a0 3194 break;
mjr 38:091e511ce8a0 3195
mjr 38:091e511ce8a0 3196 case 4:
mjr 38:091e511ce8a0 3197 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3198 bs->pulseState = 1;
mjr 38:091e511ce8a0 3199 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3200 bs->logState = 0;
mjr 38:091e511ce8a0 3201 break;
mjr 18:5e890ebd0023 3202 }
mjr 18:5e890ebd0023 3203 }
mjr 38:091e511ce8a0 3204 }
mjr 38:091e511ce8a0 3205 else
mjr 38:091e511ce8a0 3206 {
mjr 38:091e511ce8a0 3207 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3208 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3209 }
mjr 77:0b96f6867312 3210
mjr 77:0b96f6867312 3211 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3212 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3213 //
mjr 78:1e00b3fa11af 3214 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3215 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3216 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3217 //
mjr 78:1e00b3fa11af 3218 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3219 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3220 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3221 //
mjr 78:1e00b3fa11af 3222 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3223 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3224 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3225 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3226 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3227 bool useShift =
mjr 77:0b96f6867312 3228 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3229 && shiftButton.index != i
mjr 77:0b96f6867312 3230 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3231 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3232 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3233
mjr 77:0b96f6867312 3234 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3235 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3236 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3237 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3238 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3239 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3240 shiftButton.state = 2;
mjr 35:e959ffba78fd 3241
mjr 38:091e511ce8a0 3242 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3243 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3244 {
mjr 77:0b96f6867312 3245 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3246 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3247 {
mjr 77:0b96f6867312 3248 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3249 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3250 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3251 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3252 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3253 // the night mode state.
mjr 77:0b96f6867312 3254 //
mjr 77:0b96f6867312 3255 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3256 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3257 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3258 {
mjr 77:0b96f6867312 3259 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3260 // current switch state.
mjr 53:9b2611964afc 3261 setNightMode(bs->logState);
mjr 53:9b2611964afc 3262 }
mjr 82:4f6209cb5c33 3263 else if (bs->logState)
mjr 53:9b2611964afc 3264 {
mjr 77:0b96f6867312 3265 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3266 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3267 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3268 // OFF to ON.
mjr 66:2e3583fbd2f4 3269 //
mjr 77:0b96f6867312 3270 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3271 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3272 // button.
mjr 77:0b96f6867312 3273 bool pressed;
mjr 66:2e3583fbd2f4 3274 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3275 {
mjr 77:0b96f6867312 3276 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3277 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3278 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3279 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3280 }
mjr 77:0b96f6867312 3281 else
mjr 77:0b96f6867312 3282 {
mjr 77:0b96f6867312 3283 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3284 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3285 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3286 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3287 }
mjr 66:2e3583fbd2f4 3288
mjr 66:2e3583fbd2f4 3289 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3290 // toggle night mode
mjr 66:2e3583fbd2f4 3291 if (pressed)
mjr 53:9b2611964afc 3292 toggleNightMode();
mjr 53:9b2611964afc 3293 }
mjr 35:e959ffba78fd 3294 }
mjr 38:091e511ce8a0 3295
mjr 77:0b96f6867312 3296 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3297 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3298 if (irc != 0)
mjr 77:0b96f6867312 3299 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3300
mjr 38:091e511ce8a0 3301 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3302 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3303 }
mjr 38:091e511ce8a0 3304
mjr 53:9b2611964afc 3305 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3306 // key state list
mjr 53:9b2611964afc 3307 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3308 {
mjr 70:9f58735a1732 3309 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3310 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3311 uint8_t typ, val;
mjr 77:0b96f6867312 3312 if (useShift)
mjr 66:2e3583fbd2f4 3313 {
mjr 77:0b96f6867312 3314 typ = bc->typ2;
mjr 77:0b96f6867312 3315 val = bc->val2;
mjr 66:2e3583fbd2f4 3316 }
mjr 77:0b96f6867312 3317 else
mjr 77:0b96f6867312 3318 {
mjr 77:0b96f6867312 3319 typ = bc->typ;
mjr 77:0b96f6867312 3320 val = bc->val;
mjr 77:0b96f6867312 3321 }
mjr 77:0b96f6867312 3322
mjr 70:9f58735a1732 3323 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3324 // the keyboard or joystick event.
mjr 77:0b96f6867312 3325 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3326 }
mjr 11:bd9da7088e6e 3327 }
mjr 77:0b96f6867312 3328
mjr 77:0b96f6867312 3329 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3330 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3331 // the IR key.
mjr 77:0b96f6867312 3332 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3333 {
mjr 77:0b96f6867312 3334 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3335 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3336 }
mjr 77:0b96f6867312 3337
mjr 77:0b96f6867312 3338 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3339 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3340
mjr 77:0b96f6867312 3341 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3342 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3343 jsButtons = ks.js;
mjr 77:0b96f6867312 3344
mjr 77:0b96f6867312 3345 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3346 // something changes)
mjr 77:0b96f6867312 3347 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3348 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3349 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3350 {
mjr 35:e959ffba78fd 3351 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3352 kbState.changed = true;
mjr 77:0b96f6867312 3353 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3354 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3355 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3356 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3357 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3358 }
mjr 35:e959ffba78fd 3359 else {
mjr 35:e959ffba78fd 3360 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3361 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3362 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3363 }
mjr 35:e959ffba78fd 3364 }
mjr 35:e959ffba78fd 3365
mjr 77:0b96f6867312 3366 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3367 // something changes)
mjr 77:0b96f6867312 3368 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3369 {
mjr 77:0b96f6867312 3370 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3371 mediaState.changed = true;
mjr 77:0b96f6867312 3372 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3373 }
mjr 11:bd9da7088e6e 3374 }
mjr 11:bd9da7088e6e 3375
mjr 73:4e8ce0b18915 3376 // Send a button status report
mjr 73:4e8ce0b18915 3377 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3378 {
mjr 73:4e8ce0b18915 3379 // start with all buttons off
mjr 73:4e8ce0b18915 3380 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3381 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3382
mjr 73:4e8ce0b18915 3383 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3384 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3385 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3386 {
mjr 73:4e8ce0b18915 3387 // get the physical state
mjr 73:4e8ce0b18915 3388 int b = bs->physState;
mjr 73:4e8ce0b18915 3389
mjr 73:4e8ce0b18915 3390 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3391 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3392 int si = idx / 8;
mjr 73:4e8ce0b18915 3393 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3394 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3395 }
mjr 73:4e8ce0b18915 3396
mjr 73:4e8ce0b18915 3397 // send the report
mjr 73:4e8ce0b18915 3398 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3399 }
mjr 73:4e8ce0b18915 3400
mjr 5:a70c0bce770d 3401 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3402 //
mjr 5:a70c0bce770d 3403 // Customization joystick subbclass
mjr 5:a70c0bce770d 3404 //
mjr 5:a70c0bce770d 3405
mjr 5:a70c0bce770d 3406 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3407 {
mjr 5:a70c0bce770d 3408 public:
mjr 35:e959ffba78fd 3409 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3410 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3411 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3412 {
mjr 54:fd77a6b2f76c 3413 sleeping_ = false;
mjr 54:fd77a6b2f76c 3414 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3415 timer_.start();
mjr 54:fd77a6b2f76c 3416 }
mjr 54:fd77a6b2f76c 3417
mjr 54:fd77a6b2f76c 3418 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3419 void diagFlash()
mjr 54:fd77a6b2f76c 3420 {
mjr 54:fd77a6b2f76c 3421 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3422 {
mjr 54:fd77a6b2f76c 3423 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3424 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3425 {
mjr 54:fd77a6b2f76c 3426 // short red flash
mjr 54:fd77a6b2f76c 3427 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3428 wait_us(50000);
mjr 54:fd77a6b2f76c 3429 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3430 wait_us(50000);
mjr 54:fd77a6b2f76c 3431 }
mjr 54:fd77a6b2f76c 3432 }
mjr 5:a70c0bce770d 3433 }
mjr 5:a70c0bce770d 3434
mjr 5:a70c0bce770d 3435 // are we connected?
mjr 5:a70c0bce770d 3436 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3437
mjr 54:fd77a6b2f76c 3438 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3439 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3440 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3441 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3442 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3443
mjr 54:fd77a6b2f76c 3444 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3445 //
mjr 54:fd77a6b2f76c 3446 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3447 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3448 // other way.
mjr 54:fd77a6b2f76c 3449 //
mjr 54:fd77a6b2f76c 3450 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3451 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3452 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3453 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3454 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3455 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3456 //
mjr 54:fd77a6b2f76c 3457 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3458 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3459 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3460 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3461 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3462 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3463 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3464 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3465 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3466 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3467 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3468 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3469 // is effectively dead.
mjr 54:fd77a6b2f76c 3470 //
mjr 54:fd77a6b2f76c 3471 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3472 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3473 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3474 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3475 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3476 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3477 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3478 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3479 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3480 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3481 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3482 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3483 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3484 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3485 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3486 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3487 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3488 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3489 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3490 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3491 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3492 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3493 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3494 // a disconnect.
mjr 54:fd77a6b2f76c 3495 //
mjr 54:fd77a6b2f76c 3496 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3497 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3498 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3499 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3500 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3501 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3502 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3503 //
mjr 54:fd77a6b2f76c 3504 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3505 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3506 //
mjr 54:fd77a6b2f76c 3507 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3508 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3509 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3510 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3511 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3512 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3513 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3514 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3515 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3516 // reliable in practice.
mjr 54:fd77a6b2f76c 3517 //
mjr 54:fd77a6b2f76c 3518 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3519 //
mjr 54:fd77a6b2f76c 3520 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3521 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3522 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3523 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3524 // return.
mjr 54:fd77a6b2f76c 3525 //
mjr 54:fd77a6b2f76c 3526 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3527 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3528 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3529 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3530 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3531 //
mjr 54:fd77a6b2f76c 3532 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3533 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3534 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3535 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3536 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3537 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3538 //
mjr 54:fd77a6b2f76c 3539 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3540 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3541 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3542 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3543 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3544 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3545 // freezes over.
mjr 54:fd77a6b2f76c 3546 //
mjr 54:fd77a6b2f76c 3547 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3548 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3549 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3550 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3551 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3552 void recoverConnection()
mjr 54:fd77a6b2f76c 3553 {
mjr 54:fd77a6b2f76c 3554 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3555 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3556 {
mjr 54:fd77a6b2f76c 3557 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3558 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 3559 {
mjr 54:fd77a6b2f76c 3560 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 3561 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 3562 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 3563 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 3564 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 3565 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 3566 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 3567 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 3568 __disable_irq();
mjr 54:fd77a6b2f76c 3569 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 3570 {
mjr 54:fd77a6b2f76c 3571 connect(false);
mjr 54:fd77a6b2f76c 3572 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3573 done = true;
mjr 54:fd77a6b2f76c 3574 }
mjr 54:fd77a6b2f76c 3575 __enable_irq();
mjr 54:fd77a6b2f76c 3576 }
mjr 54:fd77a6b2f76c 3577 }
mjr 54:fd77a6b2f76c 3578 }
mjr 5:a70c0bce770d 3579
mjr 5:a70c0bce770d 3580 protected:
mjr 54:fd77a6b2f76c 3581 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 3582 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 3583 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 3584 //
mjr 54:fd77a6b2f76c 3585 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 3586 //
mjr 54:fd77a6b2f76c 3587 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 3588 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 3589 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 3590 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 3591 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 3592 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 3593 {
mjr 54:fd77a6b2f76c 3594 // note the new state
mjr 54:fd77a6b2f76c 3595 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 3596
mjr 54:fd77a6b2f76c 3597 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 3598 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 3599 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 3600 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 3601 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 3602 {
mjr 54:fd77a6b2f76c 3603 disconnect();
mjr 54:fd77a6b2f76c 3604 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 3605 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 3606 }
mjr 54:fd77a6b2f76c 3607 }
mjr 54:fd77a6b2f76c 3608
mjr 54:fd77a6b2f76c 3609 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 3610 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 3611
mjr 54:fd77a6b2f76c 3612 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 3613 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 3614
mjr 54:fd77a6b2f76c 3615 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 3616 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 3617
mjr 54:fd77a6b2f76c 3618 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 3619 Timer timer_;
mjr 5:a70c0bce770d 3620 };
mjr 5:a70c0bce770d 3621
mjr 5:a70c0bce770d 3622 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3623 //
mjr 5:a70c0bce770d 3624 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 3625 //
mjr 5:a70c0bce770d 3626
mjr 5:a70c0bce770d 3627 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 3628 //
mjr 5:a70c0bce770d 3629 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 3630 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 3631 // automatic calibration.
mjr 5:a70c0bce770d 3632 //
mjr 77:0b96f6867312 3633 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 3634 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 3635 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 3636 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 3637 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 3638 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 3639 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 3640 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 3641 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 3642 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 3643 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 3644 //
mjr 77:0b96f6867312 3645 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 3646 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 3647 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 3648 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 3649 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 3650 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 3651 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 3652 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 3653 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 3654 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 3655 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 3656 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 3657 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 3658 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 3659 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 3660 // rather than change it across the board.
mjr 5:a70c0bce770d 3661 //
mjr 6:cc35eb643e8f 3662 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 3663 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 3664 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 3665 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 3666 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 3667 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 3668 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 3669 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 3670 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 3671 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 3672 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 3673 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 3674 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 3675 // of nudging, say).
mjr 5:a70c0bce770d 3676 //
mjr 5:a70c0bce770d 3677
mjr 17:ab3cec0c8bf4 3678 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 3679 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 3680
mjr 17:ab3cec0c8bf4 3681 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 3682 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 3683 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 3684
mjr 17:ab3cec0c8bf4 3685 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 3686 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 3687 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 3688 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 3689
mjr 17:ab3cec0c8bf4 3690
mjr 6:cc35eb643e8f 3691 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 3692 struct AccHist
mjr 5:a70c0bce770d 3693 {
mjr 77:0b96f6867312 3694 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3695 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 3696 {
mjr 6:cc35eb643e8f 3697 // save the raw position
mjr 6:cc35eb643e8f 3698 this->x = x;
mjr 6:cc35eb643e8f 3699 this->y = y;
mjr 77:0b96f6867312 3700 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 3701 }
mjr 6:cc35eb643e8f 3702
mjr 6:cc35eb643e8f 3703 // reading for this entry
mjr 77:0b96f6867312 3704 int x, y;
mjr 77:0b96f6867312 3705
mjr 77:0b96f6867312 3706 // (distance from previous entry) squared
mjr 77:0b96f6867312 3707 int dsq;
mjr 5:a70c0bce770d 3708
mjr 6:cc35eb643e8f 3709 // total and count of samples averaged over this period
mjr 77:0b96f6867312 3710 int xtot, ytot;
mjr 6:cc35eb643e8f 3711 int cnt;
mjr 6:cc35eb643e8f 3712
mjr 77:0b96f6867312 3713 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 3714 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 3715 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 3716 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 3717
mjr 77:0b96f6867312 3718 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 3719 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 3720 };
mjr 5:a70c0bce770d 3721
mjr 5:a70c0bce770d 3722 // accelerometer wrapper class
mjr 3:3514575d4f86 3723 class Accel
mjr 3:3514575d4f86 3724 {
mjr 3:3514575d4f86 3725 public:
mjr 78:1e00b3fa11af 3726 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 3727 int range, int autoCenterMode)
mjr 77:0b96f6867312 3728 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 3729 {
mjr 5:a70c0bce770d 3730 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 3731 irqPin_ = irqPin;
mjr 77:0b96f6867312 3732
mjr 77:0b96f6867312 3733 // remember the range
mjr 77:0b96f6867312 3734 range_ = range;
mjr 78:1e00b3fa11af 3735
mjr 78:1e00b3fa11af 3736 // set the auto-centering mode
mjr 78:1e00b3fa11af 3737 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 3738
mjr 78:1e00b3fa11af 3739 // no manual centering request has been received
mjr 78:1e00b3fa11af 3740 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 3741
mjr 5:a70c0bce770d 3742 // reset and initialize
mjr 5:a70c0bce770d 3743 reset();
mjr 5:a70c0bce770d 3744 }
mjr 5:a70c0bce770d 3745
mjr 78:1e00b3fa11af 3746 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 3747 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 3748 // as soon as we have enough data.
mjr 78:1e00b3fa11af 3749 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 3750
mjr 78:1e00b3fa11af 3751 // set the auto-centering mode
mjr 78:1e00b3fa11af 3752 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 3753 {
mjr 78:1e00b3fa11af 3754 // remember the mode
mjr 78:1e00b3fa11af 3755 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 3756
mjr 78:1e00b3fa11af 3757 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 3758 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 3759 if (mode == 0)
mjr 78:1e00b3fa11af 3760 {
mjr 78:1e00b3fa11af 3761 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 3762 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 3763 }
mjr 78:1e00b3fa11af 3764 else if (mode <= 60)
mjr 78:1e00b3fa11af 3765 {
mjr 78:1e00b3fa11af 3766 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 3767 // interval is 1/5 of this
mjr 78:1e00b3fa11af 3768 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 3769 }
mjr 78:1e00b3fa11af 3770 else
mjr 78:1e00b3fa11af 3771 {
mjr 78:1e00b3fa11af 3772 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 3773 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 3774 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 3775 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 3776 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 3777 // includes recent data.
mjr 78:1e00b3fa11af 3778 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 3779 }
mjr 78:1e00b3fa11af 3780 }
mjr 78:1e00b3fa11af 3781
mjr 5:a70c0bce770d 3782 void reset()
mjr 5:a70c0bce770d 3783 {
mjr 6:cc35eb643e8f 3784 // clear the center point
mjr 77:0b96f6867312 3785 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 3786
mjr 77:0b96f6867312 3787 // start the auto-centering timer
mjr 5:a70c0bce770d 3788 tCenter_.start();
mjr 5:a70c0bce770d 3789 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 3790
mjr 5:a70c0bce770d 3791 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 3792 mma_.init();
mjr 77:0b96f6867312 3793
mjr 77:0b96f6867312 3794 // set the range
mjr 77:0b96f6867312 3795 mma_.setRange(
mjr 77:0b96f6867312 3796 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 3797 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 3798 2);
mjr 6:cc35eb643e8f 3799
mjr 77:0b96f6867312 3800 // set the average accumulators to zero
mjr 77:0b96f6867312 3801 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3802 nSum_ = 0;
mjr 3:3514575d4f86 3803
mjr 3:3514575d4f86 3804 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 3805 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 3806 }
mjr 3:3514575d4f86 3807
mjr 77:0b96f6867312 3808 void poll()
mjr 76:7f5912b6340e 3809 {
mjr 77:0b96f6867312 3810 // read samples until we clear the FIFO
mjr 77:0b96f6867312 3811 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 3812 {
mjr 77:0b96f6867312 3813 int x, y, z;
mjr 77:0b96f6867312 3814 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 3815
mjr 77:0b96f6867312 3816 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 3817 xSum_ += (x - cx_);
mjr 77:0b96f6867312 3818 ySum_ += (y - cy_);
mjr 77:0b96f6867312 3819 ++nSum_;
mjr 77:0b96f6867312 3820
mjr 77:0b96f6867312 3821 // store the updates
mjr 77:0b96f6867312 3822 ax_ = x;
mjr 77:0b96f6867312 3823 ay_ = y;
mjr 77:0b96f6867312 3824 az_ = z;
mjr 77:0b96f6867312 3825 }
mjr 76:7f5912b6340e 3826 }
mjr 77:0b96f6867312 3827
mjr 9:fd65b0a94720 3828 void get(int &x, int &y)
mjr 3:3514575d4f86 3829 {
mjr 77:0b96f6867312 3830 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 3831 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 3832 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 3833 int nSum = nSum_;
mjr 6:cc35eb643e8f 3834
mjr 77:0b96f6867312 3835 // reset the average accumulators for the next run
mjr 77:0b96f6867312 3836 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 3837 nSum_ = 0;
mjr 77:0b96f6867312 3838
mjr 77:0b96f6867312 3839 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 3840 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3841 p->addAvg(ax, ay);
mjr 77:0b96f6867312 3842
mjr 78:1e00b3fa11af 3843 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 3844 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 3845 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 3846 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 3847 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 3848 {
mjr 77:0b96f6867312 3849 // add the latest raw sample to the history list
mjr 77:0b96f6867312 3850 AccHist *prv = p;
mjr 77:0b96f6867312 3851 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 3852 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3853 iAccPrv_ = 0;
mjr 77:0b96f6867312 3854 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 3855 p->set(ax, ay, prv);
mjr 77:0b96f6867312 3856
mjr 78:1e00b3fa11af 3857 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 3858 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 3859 {
mjr 78:1e00b3fa11af 3860 // Center if:
mjr 78:1e00b3fa11af 3861 //
mjr 78:1e00b3fa11af 3862 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 3863 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 3864 //
mjr 78:1e00b3fa11af 3865 // - A manual centering request is pending
mjr 78:1e00b3fa11af 3866 //
mjr 77:0b96f6867312 3867 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 3868 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 3869 if (manualCenterRequest_
mjr 78:1e00b3fa11af 3870 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 3871 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 3872 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 3873 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 3874 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 3875 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 3876 {
mjr 77:0b96f6867312 3877 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 3878 // the samples over the rest period
mjr 77:0b96f6867312 3879 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 3880 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 3881
mjr 78:1e00b3fa11af 3882 // clear any pending manual centering request
mjr 78:1e00b3fa11af 3883 manualCenterRequest_ = false;
mjr 77:0b96f6867312 3884 }
mjr 77:0b96f6867312 3885 }
mjr 77:0b96f6867312 3886 else
mjr 77:0b96f6867312 3887 {
mjr 77:0b96f6867312 3888 // not enough samples yet; just up the count
mjr 77:0b96f6867312 3889 ++nAccPrv_;
mjr 77:0b96f6867312 3890 }
mjr 6:cc35eb643e8f 3891
mjr 77:0b96f6867312 3892 // clear the new item's running totals
mjr 77:0b96f6867312 3893 p->clearAvg();
mjr 5:a70c0bce770d 3894
mjr 77:0b96f6867312 3895 // reset the timer
mjr 77:0b96f6867312 3896 tCenter_.reset();
mjr 77:0b96f6867312 3897 }
mjr 5:a70c0bce770d 3898
mjr 77:0b96f6867312 3899 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 3900 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 3901 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 3902
mjr 6:cc35eb643e8f 3903 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 3904 if (x != 0 || y != 0)
mjr 77:0b96f6867312 3905 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 3906 #endif
mjr 77:0b96f6867312 3907 }
mjr 29:582472d0bc57 3908
mjr 3:3514575d4f86 3909 private:
mjr 6:cc35eb643e8f 3910 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 3911 int rawToReport(int v)
mjr 5:a70c0bce770d 3912 {
mjr 77:0b96f6867312 3913 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 3914 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 3915 // so their scale is 2^13.
mjr 77:0b96f6867312 3916 //
mjr 77:0b96f6867312 3917 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 3918 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 3919 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 3920 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 3921 int i = v*JOYMAX;
mjr 77:0b96f6867312 3922 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 3923
mjr 6:cc35eb643e8f 3924 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 3925 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 3926 static const int filter[] = {
mjr 6:cc35eb643e8f 3927 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 3928 0,
mjr 6:cc35eb643e8f 3929 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 3930 };
mjr 6:cc35eb643e8f 3931 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 3932 }
mjr 5:a70c0bce770d 3933
mjr 3:3514575d4f86 3934 // underlying accelerometer object
mjr 3:3514575d4f86 3935 MMA8451Q mma_;
mjr 3:3514575d4f86 3936
mjr 77:0b96f6867312 3937 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 3938 // scale -8192..+8191
mjr 77:0b96f6867312 3939 int ax_, ay_, az_;
mjr 77:0b96f6867312 3940
mjr 77:0b96f6867312 3941 // running sum of readings since last get()
mjr 77:0b96f6867312 3942 int xSum_, ySum_;
mjr 77:0b96f6867312 3943
mjr 77:0b96f6867312 3944 // number of readings since last get()
mjr 77:0b96f6867312 3945 int nSum_;
mjr 6:cc35eb643e8f 3946
mjr 6:cc35eb643e8f 3947 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 3948 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 3949 // at rest.
mjr 77:0b96f6867312 3950 int cx_, cy_;
mjr 77:0b96f6867312 3951
mjr 77:0b96f6867312 3952 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 3953 uint8_t range_;
mjr 78:1e00b3fa11af 3954
mjr 78:1e00b3fa11af 3955 // auto-center mode:
mjr 78:1e00b3fa11af 3956 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 3957 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 3958 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 3959 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 3960
mjr 78:1e00b3fa11af 3961 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 3962 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 3963
mjr 78:1e00b3fa11af 3964 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 3965 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 3966
mjr 77:0b96f6867312 3967 // atuo-centering timer
mjr 5:a70c0bce770d 3968 Timer tCenter_;
mjr 6:cc35eb643e8f 3969
mjr 6:cc35eb643e8f 3970 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 3971 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 3972 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 3973 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 3974 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 3975 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 3976 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 3977 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 3978 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 3979 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 3980 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 3981 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 3982 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 3983 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 3984 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 3985
mjr 5:a70c0bce770d 3986 // interurupt pin name
mjr 5:a70c0bce770d 3987 PinName irqPin_;
mjr 3:3514575d4f86 3988 };
mjr 3:3514575d4f86 3989
mjr 5:a70c0bce770d 3990 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3991 //
mjr 14:df700b22ca08 3992 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 3993 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 3994 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 3995 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 3996 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 3997 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 3998 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 3999 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 4000 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 4001 //
mjr 14:df700b22ca08 4002 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 4003 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 4004 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 4005 //
mjr 5:a70c0bce770d 4006 void clear_i2c()
mjr 5:a70c0bce770d 4007 {
mjr 38:091e511ce8a0 4008 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 4009 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 4010 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 4011
mjr 5:a70c0bce770d 4012 // clock the SCL 9 times
mjr 5:a70c0bce770d 4013 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 4014 {
mjr 5:a70c0bce770d 4015 scl = 1;
mjr 5:a70c0bce770d 4016 wait_us(20);
mjr 5:a70c0bce770d 4017 scl = 0;
mjr 5:a70c0bce770d 4018 wait_us(20);
mjr 5:a70c0bce770d 4019 }
mjr 5:a70c0bce770d 4020 }
mjr 76:7f5912b6340e 4021
mjr 76:7f5912b6340e 4022
mjr 14:df700b22ca08 4023 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4024 //
mjr 33:d832bcab089e 4025 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4026 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4027 //
mjr 33:d832bcab089e 4028 class Debouncer
mjr 33:d832bcab089e 4029 {
mjr 33:d832bcab089e 4030 public:
mjr 33:d832bcab089e 4031 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4032 {
mjr 33:d832bcab089e 4033 t.start();
mjr 33:d832bcab089e 4034 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4035 this->tmin = tmin;
mjr 33:d832bcab089e 4036 }
mjr 33:d832bcab089e 4037
mjr 33:d832bcab089e 4038 // Get the current stable value
mjr 33:d832bcab089e 4039 bool val() const { return stable; }
mjr 33:d832bcab089e 4040
mjr 33:d832bcab089e 4041 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4042 // input device.
mjr 33:d832bcab089e 4043 void sampleIn(bool val)
mjr 33:d832bcab089e 4044 {
mjr 33:d832bcab089e 4045 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4046 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4047 // on the sample reader.
mjr 33:d832bcab089e 4048 if (val != prv)
mjr 33:d832bcab089e 4049 {
mjr 33:d832bcab089e 4050 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4051 t.reset();
mjr 33:d832bcab089e 4052
mjr 33:d832bcab089e 4053 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4054 prv = val;
mjr 33:d832bcab089e 4055 }
mjr 33:d832bcab089e 4056 else if (val != stable)
mjr 33:d832bcab089e 4057 {
mjr 33:d832bcab089e 4058 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4059 // and different from the stable value. This means that
mjr 33:d832bcab089e 4060 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4061 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4062 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4063 if (t.read() > tmin)
mjr 33:d832bcab089e 4064 stable = val;
mjr 33:d832bcab089e 4065 }
mjr 33:d832bcab089e 4066 }
mjr 33:d832bcab089e 4067
mjr 33:d832bcab089e 4068 private:
mjr 33:d832bcab089e 4069 // current stable value
mjr 33:d832bcab089e 4070 bool stable;
mjr 33:d832bcab089e 4071
mjr 33:d832bcab089e 4072 // last raw sample value
mjr 33:d832bcab089e 4073 bool prv;
mjr 33:d832bcab089e 4074
mjr 33:d832bcab089e 4075 // elapsed time since last raw input change
mjr 33:d832bcab089e 4076 Timer t;
mjr 33:d832bcab089e 4077
mjr 33:d832bcab089e 4078 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4079 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4080 float tmin;
mjr 33:d832bcab089e 4081 };
mjr 33:d832bcab089e 4082
mjr 33:d832bcab089e 4083
mjr 33:d832bcab089e 4084 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4085 //
mjr 33:d832bcab089e 4086 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4087 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4088 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4089 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4090 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4091 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4092 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4093 //
mjr 33:d832bcab089e 4094 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4095 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4096 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4097 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4098 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4099 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4100 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4101 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4102 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4103 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4104 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4105 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4106 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4107 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4108 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4109 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4110 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4111 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4112 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4113 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4114 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4115 //
mjr 40:cc0d9814522b 4116 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4117 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4118 //
mjr 33:d832bcab089e 4119 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4120 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4121 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4122 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4123 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4124 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4125 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4126 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4127 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4128 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4129 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4130 //
mjr 33:d832bcab089e 4131 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4132 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4133 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4134 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4135 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4136 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4137 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4138 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4139 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4140 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4141 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4142 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4143 // first check.
mjr 33:d832bcab089e 4144 //
mjr 33:d832bcab089e 4145 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4146 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4147 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4148 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4149 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4150 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4151 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4152 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4153 //
mjr 33:d832bcab089e 4154
mjr 77:0b96f6867312 4155 // Current PSU2 power state:
mjr 33:d832bcab089e 4156 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4157 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4158 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4159 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4160 // 5 -> TV relay on
mjr 77:0b96f6867312 4161 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4162 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4163
mjr 73:4e8ce0b18915 4164 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4165 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4166 // separate state for each:
mjr 73:4e8ce0b18915 4167 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4168 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4169 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4170 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4171 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4172
mjr 79:682ae3171a08 4173 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4174 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4175
mjr 77:0b96f6867312 4176 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4177 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4178 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4179 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4180 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4181 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4182 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4183 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4184 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4185 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4186 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4187
mjr 77:0b96f6867312 4188 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4189 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4190
mjr 35:e959ffba78fd 4191 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4192 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4193 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4194
mjr 73:4e8ce0b18915 4195 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4196 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4197 {
mjr 73:4e8ce0b18915 4198 // update the state
mjr 73:4e8ce0b18915 4199 if (state)
mjr 73:4e8ce0b18915 4200 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4201 else
mjr 73:4e8ce0b18915 4202 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4203
mjr 73:4e8ce0b18915 4204 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4205 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4206 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4207 }
mjr 35:e959ffba78fd 4208
mjr 86:e30a1f60f783 4209 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4210 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4211 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4212 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4213 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4214 // we say it's okay.
mjr 86:e30a1f60f783 4215 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4216 {
mjr 86:e30a1f60f783 4217 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4218 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4219 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4220 // to the same state later.
mjr 86:e30a1f60f783 4221 return psu2_state == 1;
mjr 86:e30a1f60f783 4222 }
mjr 86:e30a1f60f783 4223
mjr 77:0b96f6867312 4224 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4225 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4226 // functions.
mjr 77:0b96f6867312 4227 Timer powerStatusTimer;
mjr 77:0b96f6867312 4228 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4229 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4230 {
mjr 79:682ae3171a08 4231 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4232 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4233 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4234 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4235 {
mjr 79:682ae3171a08 4236 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4237 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4238 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4239 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4240 }
mjr 79:682ae3171a08 4241
mjr 77:0b96f6867312 4242 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4243 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4244 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4245 // skip this whole routine.
mjr 77:0b96f6867312 4246 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4247 return;
mjr 77:0b96f6867312 4248
mjr 77:0b96f6867312 4249 // reset the update timer for next time
mjr 77:0b96f6867312 4250 powerStatusTimer.reset();
mjr 77:0b96f6867312 4251
mjr 77:0b96f6867312 4252 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4253 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4254 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4255 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4256 static Timer tv_timer;
mjr 35:e959ffba78fd 4257
mjr 33:d832bcab089e 4258 // Check our internal state
mjr 33:d832bcab089e 4259 switch (psu2_state)
mjr 33:d832bcab089e 4260 {
mjr 33:d832bcab089e 4261 case 1:
mjr 33:d832bcab089e 4262 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4263 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4264 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4265 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4266 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4267 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4268 {
mjr 33:d832bcab089e 4269 // switch to OFF state
mjr 33:d832bcab089e 4270 psu2_state = 2;
mjr 33:d832bcab089e 4271
mjr 33:d832bcab089e 4272 // try setting the latch
mjr 35:e959ffba78fd 4273 psu2_status_set->write(1);
mjr 33:d832bcab089e 4274 }
mjr 77:0b96f6867312 4275 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4276 break;
mjr 33:d832bcab089e 4277
mjr 33:d832bcab089e 4278 case 2:
mjr 33:d832bcab089e 4279 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4280 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4281 psu2_status_set->write(0);
mjr 33:d832bcab089e 4282 psu2_state = 3;
mjr 77:0b96f6867312 4283 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4284 break;
mjr 33:d832bcab089e 4285
mjr 33:d832bcab089e 4286 case 3:
mjr 33:d832bcab089e 4287 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4288 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4289 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4290 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4291 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4292 {
mjr 33:d832bcab089e 4293 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4294 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4295 tv_timer.reset();
mjr 33:d832bcab089e 4296 tv_timer.start();
mjr 33:d832bcab089e 4297 psu2_state = 4;
mjr 73:4e8ce0b18915 4298
mjr 73:4e8ce0b18915 4299 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4300 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4301 }
mjr 33:d832bcab089e 4302 else
mjr 33:d832bcab089e 4303 {
mjr 33:d832bcab089e 4304 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4305 // our last check. Return to idle state.
mjr 87:8d35c74403af 4306 psu2_state = 1;
mjr 33:d832bcab089e 4307 }
mjr 33:d832bcab089e 4308 break;
mjr 33:d832bcab089e 4309
mjr 33:d832bcab089e 4310 case 4:
mjr 77:0b96f6867312 4311 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4312 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4313 // off again before the countdown finished.
mjr 77:0b96f6867312 4314 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4315 {
mjr 77:0b96f6867312 4316 // power is off - start a new check cycle
mjr 77:0b96f6867312 4317 psu2_status_set->write(1);
mjr 77:0b96f6867312 4318 psu2_state = 2;
mjr 77:0b96f6867312 4319 break;
mjr 77:0b96f6867312 4320 }
mjr 77:0b96f6867312 4321
mjr 77:0b96f6867312 4322 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4323 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4324
mjr 77:0b96f6867312 4325 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4326 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4327 {
mjr 33:d832bcab089e 4328 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4329 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4330 psu2_state = 5;
mjr 77:0b96f6867312 4331
mjr 77:0b96f6867312 4332 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4333 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4334 }
mjr 33:d832bcab089e 4335 break;
mjr 33:d832bcab089e 4336
mjr 33:d832bcab089e 4337 case 5:
mjr 33:d832bcab089e 4338 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4339 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4340 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4341
mjr 77:0b96f6867312 4342 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4343 psu2_state = 6;
mjr 77:0b96f6867312 4344 tvon_ir_state = 0;
mjr 77:0b96f6867312 4345
mjr 77:0b96f6867312 4346 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4347 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4348 break;
mjr 77:0b96f6867312 4349
mjr 77:0b96f6867312 4350 case 6:
mjr 77:0b96f6867312 4351 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4352 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4353 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4354 psu2_state = 1;
mjr 77:0b96f6867312 4355 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4356
mjr 77:0b96f6867312 4357 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4358 if (ir_tx != 0)
mjr 77:0b96f6867312 4359 {
mjr 77:0b96f6867312 4360 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4361 if (ir_tx->isSending())
mjr 77:0b96f6867312 4362 {
mjr 77:0b96f6867312 4363 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4364 // state 6.
mjr 77:0b96f6867312 4365 psu2_state = 6;
mjr 77:0b96f6867312 4366 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4367 break;
mjr 77:0b96f6867312 4368 }
mjr 77:0b96f6867312 4369
mjr 77:0b96f6867312 4370 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4371 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4372 // number.
mjr 77:0b96f6867312 4373 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4374 {
mjr 77:0b96f6867312 4375 // is this a TV ON command?
mjr 77:0b96f6867312 4376 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4377 {
mjr 77:0b96f6867312 4378 // It's a TV ON command - check if it's the one we're
mjr 77:0b96f6867312 4379 // looking for.
mjr 77:0b96f6867312 4380 if (n == tvon_ir_state)
mjr 77:0b96f6867312 4381 {
mjr 77:0b96f6867312 4382 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4383 // pushing its virtual button.
mjr 77:0b96f6867312 4384 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4385 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4386
mjr 77:0b96f6867312 4387 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4388 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4389 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4390 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4391 // to send the code once.
mjr 77:0b96f6867312 4392 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4393
mjr 77:0b96f6867312 4394 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4395 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4396 // the next one.
mjr 77:0b96f6867312 4397 psu2_state = 6;
mjr 77:0b96f6867312 4398 tvon_ir_state++;
mjr 77:0b96f6867312 4399 break;
mjr 77:0b96f6867312 4400 }
mjr 77:0b96f6867312 4401
mjr 77:0b96f6867312 4402 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4403 ++n;
mjr 77:0b96f6867312 4404 }
mjr 77:0b96f6867312 4405 }
mjr 77:0b96f6867312 4406 }
mjr 33:d832bcab089e 4407 break;
mjr 33:d832bcab089e 4408 }
mjr 77:0b96f6867312 4409
mjr 77:0b96f6867312 4410 // update the diagnostic LEDs
mjr 77:0b96f6867312 4411 diagLED();
mjr 33:d832bcab089e 4412 }
mjr 33:d832bcab089e 4413
mjr 77:0b96f6867312 4414 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4415 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4416 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4417 // are configured as NC.
mjr 77:0b96f6867312 4418 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4419 {
mjr 55:4db125cd11a0 4420 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4421 // time is nonzero
mjr 77:0b96f6867312 4422 powerStatusTimer.reset();
mjr 77:0b96f6867312 4423 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4424 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4425 {
mjr 77:0b96f6867312 4426 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4427 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4428 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4429
mjr 77:0b96f6867312 4430 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4431 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4432 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4433
mjr 77:0b96f6867312 4434 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4435 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4436 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4437 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4438
mjr 77:0b96f6867312 4439 // Start the TV timer
mjr 77:0b96f6867312 4440 powerStatusTimer.start();
mjr 35:e959ffba78fd 4441 }
mjr 35:e959ffba78fd 4442 }
mjr 35:e959ffba78fd 4443
mjr 73:4e8ce0b18915 4444 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4445 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4446 //
mjr 73:4e8ce0b18915 4447 // Mode:
mjr 73:4e8ce0b18915 4448 // 0 = turn relay off
mjr 73:4e8ce0b18915 4449 // 1 = turn relay on
mjr 73:4e8ce0b18915 4450 // 2 = pulse relay
mjr 73:4e8ce0b18915 4451 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4452 {
mjr 73:4e8ce0b18915 4453 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4454 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4455 return;
mjr 73:4e8ce0b18915 4456
mjr 73:4e8ce0b18915 4457 switch (mode)
mjr 73:4e8ce0b18915 4458 {
mjr 73:4e8ce0b18915 4459 case 0:
mjr 73:4e8ce0b18915 4460 // relay off
mjr 73:4e8ce0b18915 4461 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4462 break;
mjr 73:4e8ce0b18915 4463
mjr 73:4e8ce0b18915 4464 case 1:
mjr 73:4e8ce0b18915 4465 // relay on
mjr 73:4e8ce0b18915 4466 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4467 break;
mjr 73:4e8ce0b18915 4468
mjr 73:4e8ce0b18915 4469 case 2:
mjr 79:682ae3171a08 4470 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4471 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4472 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4473 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4474 break;
mjr 73:4e8ce0b18915 4475 }
mjr 73:4e8ce0b18915 4476 }
mjr 73:4e8ce0b18915 4477
mjr 73:4e8ce0b18915 4478
mjr 35:e959ffba78fd 4479 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4480 //
mjr 35:e959ffba78fd 4481 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4482 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4483 //
mjr 35:e959ffba78fd 4484 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4485 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4486 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4487 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4488 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4489 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4490 //
mjr 35:e959ffba78fd 4491 NVM nvm;
mjr 35:e959ffba78fd 4492
mjr 86:e30a1f60f783 4493 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4494 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4495 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4496 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4497
mjr 86:e30a1f60f783 4498 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4499 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4500
mjr 79:682ae3171a08 4501 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4502 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4503
mjr 86:e30a1f60f783 4504 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4505 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4506
mjr 86:e30a1f60f783 4507
mjr 35:e959ffba78fd 4508 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4509 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4510
mjr 35:e959ffba78fd 4511 // flash memory controller interface
mjr 35:e959ffba78fd 4512 FreescaleIAP iap;
mjr 35:e959ffba78fd 4513
mjr 79:682ae3171a08 4514 // figure the flash address for the config data
mjr 79:682ae3171a08 4515 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4516 {
mjr 79:682ae3171a08 4517 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4518 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4519
mjr 79:682ae3171a08 4520 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4521 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4522
mjr 79:682ae3171a08 4523 // locate it at the top of memory
mjr 79:682ae3171a08 4524 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4525
mjr 79:682ae3171a08 4526 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4527 return (const NVM *)addr;
mjr 35:e959ffba78fd 4528 }
mjr 35:e959ffba78fd 4529
mjr 76:7f5912b6340e 4530 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4531 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4532 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4533 // in either case.
mjr 76:7f5912b6340e 4534 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4535 {
mjr 35:e959ffba78fd 4536 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4537 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4538 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4539 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4540 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4541 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4542 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4543 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4544 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4545 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4546 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4547 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4548 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4549 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4550 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4551 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4552
mjr 35:e959ffba78fd 4553 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4554 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4555
mjr 35:e959ffba78fd 4556 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 4557 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 4558 if (nvm_valid)
mjr 35:e959ffba78fd 4559 {
mjr 35:e959ffba78fd 4560 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 4561 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 4562 }
mjr 35:e959ffba78fd 4563 else
mjr 35:e959ffba78fd 4564 {
mjr 76:7f5912b6340e 4565 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 4566 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 4567 }
mjr 76:7f5912b6340e 4568
mjr 76:7f5912b6340e 4569 // tell the caller what happened
mjr 76:7f5912b6340e 4570 return nvm_valid;
mjr 35:e959ffba78fd 4571 }
mjr 35:e959ffba78fd 4572
mjr 86:e30a1f60f783 4573 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 4574 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 4575 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 4576 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 4577 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 4578 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 4579 {
mjr 76:7f5912b6340e 4580 // make sure the plunger sensor isn't busy
mjr 76:7f5912b6340e 4581 waitPlungerIdle();
mjr 76:7f5912b6340e 4582
mjr 76:7f5912b6340e 4583 // get the config block location in the flash memory
mjr 77:0b96f6867312 4584 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 4585
mjr 79:682ae3171a08 4586 // save the data
mjr 86:e30a1f60f783 4587 if (nvm.save(iap, addr))
mjr 86:e30a1f60f783 4588 {
mjr 86:e30a1f60f783 4589 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 4590 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 4591
mjr 86:e30a1f60f783 4592 // start the followup timer
mjr 87:8d35c74403af 4593 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 4594 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 4595 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 4596
mjr 86:e30a1f60f783 4597 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 4598 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 4599
mjr 86:e30a1f60f783 4600 // return success
mjr 86:e30a1f60f783 4601 return true;
mjr 86:e30a1f60f783 4602 }
mjr 86:e30a1f60f783 4603 else
mjr 86:e30a1f60f783 4604 {
mjr 86:e30a1f60f783 4605 // return failure
mjr 86:e30a1f60f783 4606 return false;
mjr 86:e30a1f60f783 4607 }
mjr 76:7f5912b6340e 4608 }
mjr 76:7f5912b6340e 4609
mjr 76:7f5912b6340e 4610 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 4611 //
mjr 76:7f5912b6340e 4612 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 4613 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 4614 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 4615 // downloading it to the device.
mjr 76:7f5912b6340e 4616 //
mjr 76:7f5912b6340e 4617 // Ideally, we'd use the host-loaded memory for all configuration updates,
mjr 76:7f5912b6340e 4618 // because the KL25Z doesn't seem to be 100% reliable writing flash itself.
mjr 76:7f5912b6340e 4619 // There seems to be a chance of memory bus contention while a write is in
mjr 76:7f5912b6340e 4620 // progress, which can either corrupt the write or cause the CPU to lock up
mjr 76:7f5912b6340e 4621 // before the write is completed. It seems more reliable to program the
mjr 76:7f5912b6340e 4622 // flash externally, via the OpenSDA connection. Unfortunately, none of
mjr 76:7f5912b6340e 4623 // the available OpenSDA versions are capable of programming specific flash
mjr 76:7f5912b6340e 4624 // sectors; they always erase the entire flash memory space. We *could*
mjr 76:7f5912b6340e 4625 // make the Windows config program simply re-download the entire firmware
mjr 76:7f5912b6340e 4626 // for every configuration update, but I'd rather not because of the extra
mjr 76:7f5912b6340e 4627 // wear this would put on the flash. So, as a compromise, we'll use the
mjr 76:7f5912b6340e 4628 // host-loaded config whenever the user explicitly updates the firmware,
mjr 76:7f5912b6340e 4629 // but we'll use the on-board writer when only making a config change.
mjr 76:7f5912b6340e 4630 //
mjr 76:7f5912b6340e 4631 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 4632 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 4633 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 4634 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 4635 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 4636 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 4637 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 4638 //
mjr 76:7f5912b6340e 4639 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 4640 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 4641 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 4642 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 4643 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 4644 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 4645 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 4646 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 4647 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 4648 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 4649
mjr 76:7f5912b6340e 4650 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 4651 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 4652 {
mjr 76:7f5912b6340e 4653 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 4654 // 32-byte signature header
mjr 76:7f5912b6340e 4655 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 4656 };
mjr 76:7f5912b6340e 4657
mjr 76:7f5912b6340e 4658 // forward reference to config var store function
mjr 76:7f5912b6340e 4659 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 4660
mjr 76:7f5912b6340e 4661 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 4662 // configuration object.
mjr 76:7f5912b6340e 4663 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 4664 {
mjr 76:7f5912b6340e 4665 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 4666 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 4667 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 4668 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 4669 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 4670 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 4671 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 4672 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 4673 {
mjr 76:7f5912b6340e 4674 // load this variable
mjr 76:7f5912b6340e 4675 configVarSet(p);
mjr 76:7f5912b6340e 4676 }
mjr 35:e959ffba78fd 4677 }
mjr 35:e959ffba78fd 4678
mjr 35:e959ffba78fd 4679 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4680 //
mjr 55:4db125cd11a0 4681 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 4682 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 4683 //
mjr 55:4db125cd11a0 4684 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 4685 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 4686 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 4687
mjr 55:4db125cd11a0 4688
mjr 55:4db125cd11a0 4689
mjr 55:4db125cd11a0 4690 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 4691 //
mjr 40:cc0d9814522b 4692 // Night mode setting updates
mjr 40:cc0d9814522b 4693 //
mjr 38:091e511ce8a0 4694
mjr 38:091e511ce8a0 4695 // Turn night mode on or off
mjr 38:091e511ce8a0 4696 static void setNightMode(bool on)
mjr 38:091e511ce8a0 4697 {
mjr 77:0b96f6867312 4698 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 4699 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 4700 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 4701 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 4702
mjr 40:cc0d9814522b 4703 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 4704 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 4705 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 4706 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 4707
mjr 76:7f5912b6340e 4708 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 4709 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 4710 // mode change.
mjr 76:7f5912b6340e 4711 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 4712 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 4713
mjr 76:7f5912b6340e 4714 // update 74HC595 outputs
mjr 76:7f5912b6340e 4715 if (hc595 != 0)
mjr 76:7f5912b6340e 4716 hc595->update();
mjr 38:091e511ce8a0 4717 }
mjr 38:091e511ce8a0 4718
mjr 38:091e511ce8a0 4719 // Toggle night mode
mjr 38:091e511ce8a0 4720 static void toggleNightMode()
mjr 38:091e511ce8a0 4721 {
mjr 53:9b2611964afc 4722 setNightMode(!nightMode);
mjr 38:091e511ce8a0 4723 }
mjr 38:091e511ce8a0 4724
mjr 38:091e511ce8a0 4725
mjr 38:091e511ce8a0 4726 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 4727 //
mjr 35:e959ffba78fd 4728 // Plunger Sensor
mjr 35:e959ffba78fd 4729 //
mjr 35:e959ffba78fd 4730
mjr 35:e959ffba78fd 4731 // the plunger sensor interface object
mjr 35:e959ffba78fd 4732 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 4733
mjr 87:8d35c74403af 4734 // wait for the plunger sensor to complete any outstanding DMA transfer
mjr 76:7f5912b6340e 4735 static void waitPlungerIdle(void)
mjr 76:7f5912b6340e 4736 {
mjr 87:8d35c74403af 4737 while (plungerSensor->dmaBusy()) { }
mjr 76:7f5912b6340e 4738 }
mjr 76:7f5912b6340e 4739
mjr 35:e959ffba78fd 4740 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 4741 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 4742 void createPlunger()
mjr 35:e959ffba78fd 4743 {
mjr 35:e959ffba78fd 4744 // create the new sensor object according to the type
mjr 35:e959ffba78fd 4745 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 4746 {
mjr 82:4f6209cb5c33 4747 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 4748 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 4749 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4750 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 4751 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4752 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4753 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4754 break;
mjr 35:e959ffba78fd 4755
mjr 82:4f6209cb5c33 4756 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 4757 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 4758 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 4759 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 4760 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 4761 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4762 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 4763 break;
mjr 35:e959ffba78fd 4764
mjr 35:e959ffba78fd 4765 case PlungerType_Pot:
mjr 82:4f6209cb5c33 4766 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 4767 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 4768 // pins are: AO (analog in)
mjr 53:9b2611964afc 4769 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 4770 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 4771 break;
mjr 82:4f6209cb5c33 4772
mjr 82:4f6209cb5c33 4773 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 4774 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 4775 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 4776 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 4777 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 4778 300,
mjr 82:4f6209cb5c33 4779 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4780 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 4781 break;
mjr 82:4f6209cb5c33 4782
mjr 82:4f6209cb5c33 4783 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 4784 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 4785 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 4786 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 4787 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4788 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4789 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4790 break;
mjr 82:4f6209cb5c33 4791
mjr 82:4f6209cb5c33 4792 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 4793 // VL6180X time-of-flight IR distance sensor
mjr 82:4f6209cb5c33 4794 // pins are: SDL, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 4795 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 4796 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 4797 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 4798 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 4799 break;
mjr 82:4f6209cb5c33 4800
mjr 35:e959ffba78fd 4801 case PlungerType_None:
mjr 35:e959ffba78fd 4802 default:
mjr 35:e959ffba78fd 4803 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 4804 break;
mjr 35:e959ffba78fd 4805 }
mjr 86:e30a1f60f783 4806
mjr 87:8d35c74403af 4807 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 4808 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 4809 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 4810 }
mjr 33:d832bcab089e 4811
mjr 52:8298b2a73eb2 4812 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 4813 bool plungerCalMode;
mjr 52:8298b2a73eb2 4814
mjr 48:058ace2aed1d 4815 // Plunger reader
mjr 51:57eb311faafa 4816 //
mjr 51:57eb311faafa 4817 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 4818 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 4819 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 4820 //
mjr 51:57eb311faafa 4821 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 4822 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 4823 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 4824 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 4825 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 4826 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 4827 // firing motion.
mjr 51:57eb311faafa 4828 //
mjr 51:57eb311faafa 4829 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 4830 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 4831 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 4832 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 4833 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 4834 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 4835 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 4836 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 4837 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 4838 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 4839 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 4840 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 4841 // a classic digital aliasing effect.
mjr 51:57eb311faafa 4842 //
mjr 51:57eb311faafa 4843 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 4844 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 4845 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 4846 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 4847 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 4848 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 4849 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 4850 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 4851 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 4852 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 4853 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 4854 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 4855 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 4856 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 4857 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 4858 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 4859 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 4860 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 4861 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 4862 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 4863 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 4864 //
mjr 48:058ace2aed1d 4865 class PlungerReader
mjr 48:058ace2aed1d 4866 {
mjr 48:058ace2aed1d 4867 public:
mjr 48:058ace2aed1d 4868 PlungerReader()
mjr 48:058ace2aed1d 4869 {
mjr 48:058ace2aed1d 4870 // not in a firing event yet
mjr 48:058ace2aed1d 4871 firing = 0;
mjr 48:058ace2aed1d 4872 }
mjr 76:7f5912b6340e 4873
mjr 48:058ace2aed1d 4874 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 4875 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 4876 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 4877 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 4878 void read()
mjr 48:058ace2aed1d 4879 {
mjr 76:7f5912b6340e 4880 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 4881 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 4882 return;
mjr 76:7f5912b6340e 4883
mjr 48:058ace2aed1d 4884 // Read a sample from the sensor
mjr 48:058ace2aed1d 4885 PlungerReading r;
mjr 48:058ace2aed1d 4886 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 4887 {
mjr 53:9b2611964afc 4888 // check for calibration mode
mjr 53:9b2611964afc 4889 if (plungerCalMode)
mjr 53:9b2611964afc 4890 {
mjr 53:9b2611964afc 4891 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 4892 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 4893 // expand the envelope to include this new value.
mjr 53:9b2611964afc 4894 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 4895 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 4896 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 4897 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 4898
mjr 76:7f5912b6340e 4899 // update our cached calibration data
mjr 76:7f5912b6340e 4900 onUpdateCal();
mjr 50:40015764bbe6 4901
mjr 53:9b2611964afc 4902 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 4903 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 4904 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 4905 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 4906 if (calState == 0)
mjr 53:9b2611964afc 4907 {
mjr 53:9b2611964afc 4908 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 4909 {
mjr 53:9b2611964afc 4910 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 4911 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 4912 {
mjr 53:9b2611964afc 4913 // we've been at rest long enough - count it
mjr 53:9b2611964afc 4914 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 4915 calZeroPosN += 1;
mjr 53:9b2611964afc 4916
mjr 53:9b2611964afc 4917 // update the zero position from the new average
mjr 53:9b2611964afc 4918 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 4919 onUpdateCal();
mjr 53:9b2611964afc 4920
mjr 53:9b2611964afc 4921 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 4922 calState = 1;
mjr 53:9b2611964afc 4923 }
mjr 53:9b2611964afc 4924 }
mjr 53:9b2611964afc 4925 else
mjr 53:9b2611964afc 4926 {
mjr 53:9b2611964afc 4927 // we're not close to the last position - start again here
mjr 53:9b2611964afc 4928 calZeroStart = r;
mjr 53:9b2611964afc 4929 }
mjr 53:9b2611964afc 4930 }
mjr 53:9b2611964afc 4931
mjr 53:9b2611964afc 4932 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 4933 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 4934 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 4935 r.pos = int(
mjr 53:9b2611964afc 4936 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 4937 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 4938 }
mjr 53:9b2611964afc 4939 else
mjr 53:9b2611964afc 4940 {
mjr 53:9b2611964afc 4941 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 4942 // rescale to the joystick range.
mjr 76:7f5912b6340e 4943 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 4944
mjr 53:9b2611964afc 4945 // limit the result to the valid joystick range
mjr 53:9b2611964afc 4946 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 4947 r.pos = JOYMAX;
mjr 53:9b2611964afc 4948 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 4949 r.pos = -JOYMAX;
mjr 53:9b2611964afc 4950 }
mjr 50:40015764bbe6 4951
mjr 87:8d35c74403af 4952 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 4953 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 4954 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 4955 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 4956 //
mjr 87:8d35c74403af 4957 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 4958 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 4959 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 4960 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 4961 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 4962 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 4963 // 25-50ms.
mjr 87:8d35c74403af 4964 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 4965 return;
mjr 87:8d35c74403af 4966
mjr 87:8d35c74403af 4967 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 4968 z = r.pos;
mjr 87:8d35c74403af 4969
mjr 87:8d35c74403af 4970 // Firing event detection.
mjr 87:8d35c74403af 4971 //
mjr 87:8d35c74403af 4972 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 4973 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 4974 // spring tension.
mjr 50:40015764bbe6 4975 //
mjr 87:8d35c74403af 4976 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 4977 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 4978 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 4979 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 4980 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 4981 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 4982 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 4983 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 4984 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 4985 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 4986 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 4987 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 4988 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 4989 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 4990 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 4991 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 4992 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 4993 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 4994 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 4995 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 4996 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 4997 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 4998 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 4999 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5000 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5001 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5002 // forward position for a short time.
mjr 76:7f5912b6340e 5003 //
mjr 87:8d35c74403af 5004 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5005 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5006 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5007 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5008 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5009 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5010 //
mjr 87:8d35c74403af 5011 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5012 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5013 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5014 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5015 // to the park position.
mjr 87:8d35c74403af 5016 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5017 switch (firing)
mjr 50:40015764bbe6 5018 {
mjr 50:40015764bbe6 5019 case 0:
mjr 87:8d35c74403af 5020 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5021 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5022 // release, enter firing mode.
mjr 87:8d35c74403af 5023 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5024 {
mjr 87:8d35c74403af 5025 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5026 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5027 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5028 {
mjr 87:8d35c74403af 5029 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5030 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5031 firingMode(1);
mjr 87:8d35c74403af 5032 f0 = prv;
mjr 87:8d35c74403af 5033 z = f0.pos;
mjr 87:8d35c74403af 5034
mjr 87:8d35c74403af 5035 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5036 // state 2 (not at rest)
mjr 87:8d35c74403af 5037 if (calState == 1)
mjr 87:8d35c74403af 5038 calState = 2;
mjr 87:8d35c74403af 5039 }
mjr 50:40015764bbe6 5040 }
mjr 50:40015764bbe6 5041 break;
mjr 50:40015764bbe6 5042
mjr 50:40015764bbe6 5043 case 1:
mjr 87:8d35c74403af 5044 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5045 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5046 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5047 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5048 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5049 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5050 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5051 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5052 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5053 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5054 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5055 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5056 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5057 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5058 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5059 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5060 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5061 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5062 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5063 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5064 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5065 if (r.pos <= 0)
mjr 50:40015764bbe6 5066 {
mjr 87:8d35c74403af 5067 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5068 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5069 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5070 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5071 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5072 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5073 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5074 // physics.
mjr 50:40015764bbe6 5075 firingMode(2);
mjr 53:9b2611964afc 5076
mjr 53:9b2611964afc 5077 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5078 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5079 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5080 {
mjr 53:9b2611964afc 5081 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5082 // come to rest
mjr 53:9b2611964afc 5083 calState = 0;
mjr 53:9b2611964afc 5084
mjr 87:8d35c74403af 5085 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5086 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5087 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5088 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5089 {
mjr 53:9b2611964afc 5090 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5091 calRlsTimeN += 1;
mjr 53:9b2611964afc 5092 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5093 }
mjr 53:9b2611964afc 5094 }
mjr 87:8d35c74403af 5095
mjr 87:8d35c74403af 5096 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5097 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5098 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5099 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5100 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5101 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5102 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5103 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5104 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5105 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5106 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5107 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5108 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5109 // small in any case.)
mjr 87:8d35c74403af 5110 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5111
mjr 87:8d35c74403af 5112 // reset the starting time for this phase
mjr 87:8d35c74403af 5113 f0.t = r.t;
mjr 50:40015764bbe6 5114 }
mjr 50:40015764bbe6 5115 else
mjr 50:40015764bbe6 5116 {
mjr 87:8d35c74403af 5117 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5118 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5119 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5120 if (dt < 50000
mjr 87:8d35c74403af 5121 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5122 {
mjr 87:8d35c74403af 5123 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5124 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5125 // stay in the first release phase.
mjr 87:8d35c74403af 5126 z = f0.pos;
mjr 87:8d35c74403af 5127 }
mjr 87:8d35c74403af 5128 else
mjr 87:8d35c74403af 5129 {
mjr 87:8d35c74403af 5130 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5131 // motion. Return to the default state.
mjr 87:8d35c74403af 5132 firingMode(0);
mjr 87:8d35c74403af 5133 calState = 1;
mjr 87:8d35c74403af 5134 }
mjr 50:40015764bbe6 5135 }
mjr 50:40015764bbe6 5136 break;
mjr 50:40015764bbe6 5137
mjr 50:40015764bbe6 5138 case 2:
mjr 87:8d35c74403af 5139 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5140 // Hold here for 25ms.
mjr 87:8d35c74403af 5141 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5142 {
mjr 87:8d35c74403af 5143 // stay here for now
mjr 87:8d35c74403af 5144 z = f0.pos;
mjr 50:40015764bbe6 5145 }
mjr 50:40015764bbe6 5146 else
mjr 50:40015764bbe6 5147 {
mjr 87:8d35c74403af 5148 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5149 // position until the plunger comes to rest
mjr 50:40015764bbe6 5150 firingMode(3);
mjr 50:40015764bbe6 5151 z = 0;
mjr 87:8d35c74403af 5152
mjr 87:8d35c74403af 5153 // remember when we started
mjr 87:8d35c74403af 5154 f0.t = r.t;
mjr 50:40015764bbe6 5155 }
mjr 50:40015764bbe6 5156 break;
mjr 50:40015764bbe6 5157
mjr 50:40015764bbe6 5158 case 3:
mjr 87:8d35c74403af 5159 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5160 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5161 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5162 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5163 {
mjr 87:8d35c74403af 5164 // stay here a while longer
mjr 87:8d35c74403af 5165 z = 0;
mjr 50:40015764bbe6 5166 }
mjr 50:40015764bbe6 5167 else
mjr 50:40015764bbe6 5168 {
mjr 87:8d35c74403af 5169 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5170 firingMode(0);
mjr 50:40015764bbe6 5171 }
mjr 50:40015764bbe6 5172 break;
mjr 50:40015764bbe6 5173 }
mjr 50:40015764bbe6 5174
mjr 82:4f6209cb5c33 5175 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5176 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5177 {
mjr 82:4f6209cb5c33 5178 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5179 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5180 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5181 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5182 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5183 {
mjr 82:4f6209cb5c33 5184 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5185 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5186 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5187 }
mjr 82:4f6209cb5c33 5188 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5189 {
mjr 82:4f6209cb5c33 5190 // auto-zero now
mjr 82:4f6209cb5c33 5191 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5192
mjr 82:4f6209cb5c33 5193 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5194 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5195 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5196 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5197 }
mjr 82:4f6209cb5c33 5198 }
mjr 82:4f6209cb5c33 5199
mjr 87:8d35c74403af 5200 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5201 prv = r;
mjr 48:058ace2aed1d 5202 }
mjr 48:058ace2aed1d 5203 }
mjr 48:058ace2aed1d 5204
mjr 48:058ace2aed1d 5205 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5206 int16_t getPosition()
mjr 58:523fdcffbe6d 5207 {
mjr 86:e30a1f60f783 5208 // return the last reading
mjr 86:e30a1f60f783 5209 return z;
mjr 55:4db125cd11a0 5210 }
mjr 58:523fdcffbe6d 5211
mjr 48:058ace2aed1d 5212 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5213 void setCalMode(bool f)
mjr 48:058ace2aed1d 5214 {
mjr 52:8298b2a73eb2 5215 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5216 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5217 {
mjr 52:8298b2a73eb2 5218 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5219 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5220
mjr 52:8298b2a73eb2 5221 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5222 calState = 0;
mjr 52:8298b2a73eb2 5223 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5224 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5225 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5226 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5227
mjr 82:4f6209cb5c33 5228 // tell the plunger we're starting calibration
mjr 82:4f6209cb5c33 5229 plungerSensor->beginCalibration();
mjr 82:4f6209cb5c33 5230
mjr 52:8298b2a73eb2 5231 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5232 PlungerReading r;
mjr 52:8298b2a73eb2 5233 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5234 {
mjr 52:8298b2a73eb2 5235 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5236 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5237 onUpdateCal();
mjr 52:8298b2a73eb2 5238
mjr 52:8298b2a73eb2 5239 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5240 calZeroStart = r;
mjr 52:8298b2a73eb2 5241 }
mjr 52:8298b2a73eb2 5242 else
mjr 52:8298b2a73eb2 5243 {
mjr 52:8298b2a73eb2 5244 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5245 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5246 onUpdateCal();
mjr 52:8298b2a73eb2 5247
mjr 52:8298b2a73eb2 5248 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5249 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5250 calZeroStart.t = 0;
mjr 53:9b2611964afc 5251 }
mjr 53:9b2611964afc 5252 }
mjr 53:9b2611964afc 5253 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5254 {
mjr 53:9b2611964afc 5255 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5256 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5257 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5258 // physically meaningless.
mjr 53:9b2611964afc 5259 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5260 {
mjr 53:9b2611964afc 5261 // bad settings - reset to defaults
mjr 53:9b2611964afc 5262 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5263 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5264 onUpdateCal();
mjr 52:8298b2a73eb2 5265 }
mjr 52:8298b2a73eb2 5266 }
mjr 52:8298b2a73eb2 5267
mjr 48:058ace2aed1d 5268 // remember the new mode
mjr 52:8298b2a73eb2 5269 plungerCalMode = f;
mjr 48:058ace2aed1d 5270 }
mjr 48:058ace2aed1d 5271
mjr 76:7f5912b6340e 5272 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5273 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5274 // cached inverse is calculated as
mjr 76:7f5912b6340e 5275 //
mjr 76:7f5912b6340e 5276 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5277 //
mjr 76:7f5912b6340e 5278 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5279 //
mjr 76:7f5912b6340e 5280 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5281 //
mjr 76:7f5912b6340e 5282 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5283 int invCalRange;
mjr 76:7f5912b6340e 5284
mjr 76:7f5912b6340e 5285 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5286 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5287 {
mjr 76:7f5912b6340e 5288 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5289 }
mjr 76:7f5912b6340e 5290
mjr 76:7f5912b6340e 5291 void onUpdateCal()
mjr 76:7f5912b6340e 5292 {
mjr 76:7f5912b6340e 5293 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5294 }
mjr 76:7f5912b6340e 5295
mjr 48:058ace2aed1d 5296 // is a firing event in progress?
mjr 53:9b2611964afc 5297 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5298
mjr 48:058ace2aed1d 5299 private:
mjr 87:8d35c74403af 5300 // current reported joystick reading
mjr 87:8d35c74403af 5301 int z;
mjr 87:8d35c74403af 5302
mjr 87:8d35c74403af 5303 // previous reading
mjr 87:8d35c74403af 5304 PlungerReading prv;
mjr 87:8d35c74403af 5305
mjr 52:8298b2a73eb2 5306 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5307 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5308 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5309 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5310 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5311 // 1 = at rest
mjr 52:8298b2a73eb2 5312 // 2 = retracting
mjr 52:8298b2a73eb2 5313 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5314 uint8_t calState;
mjr 52:8298b2a73eb2 5315
mjr 52:8298b2a73eb2 5316 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5317 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5318 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5319 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5320 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5321 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5322 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5323 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5324 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5325 long calZeroPosSum;
mjr 52:8298b2a73eb2 5326 int calZeroPosN;
mjr 52:8298b2a73eb2 5327
mjr 52:8298b2a73eb2 5328 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5329 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5330 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5331 int calRlsTimeN;
mjr 52:8298b2a73eb2 5332
mjr 85:3c28aee81cde 5333 // Auto-zeroing timer
mjr 85:3c28aee81cde 5334 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5335
mjr 48:058ace2aed1d 5336 // set a firing mode
mjr 48:058ace2aed1d 5337 inline void firingMode(int m)
mjr 48:058ace2aed1d 5338 {
mjr 48:058ace2aed1d 5339 firing = m;
mjr 48:058ace2aed1d 5340 }
mjr 48:058ace2aed1d 5341
mjr 48:058ace2aed1d 5342 // Firing event state.
mjr 48:058ace2aed1d 5343 //
mjr 87:8d35c74403af 5344 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5345 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5346 //
mjr 87:8d35c74403af 5347 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5348 //
mjr 87:8d35c74403af 5349 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5350 //
mjr 87:8d35c74403af 5351 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5352 //
mjr 48:058ace2aed1d 5353 int firing;
mjr 48:058ace2aed1d 5354
mjr 87:8d35c74403af 5355 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5356 PlungerReading f0;
mjr 48:058ace2aed1d 5357 };
mjr 48:058ace2aed1d 5358
mjr 48:058ace2aed1d 5359 // plunger reader singleton
mjr 48:058ace2aed1d 5360 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5361
mjr 48:058ace2aed1d 5362 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5363 //
mjr 48:058ace2aed1d 5364 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5365 //
mjr 48:058ace2aed1d 5366 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5367 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5368 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5369 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5370 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5371 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5372 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5373 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5374 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5375 //
mjr 48:058ace2aed1d 5376 // This feature has two configuration components:
mjr 48:058ace2aed1d 5377 //
mjr 48:058ace2aed1d 5378 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5379 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5380 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5381 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5382 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5383 // plunger/launch button connection.
mjr 48:058ace2aed1d 5384 //
mjr 48:058ace2aed1d 5385 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5386 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5387 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5388 // position.
mjr 48:058ace2aed1d 5389 //
mjr 48:058ace2aed1d 5390 class ZBLaunchBall
mjr 48:058ace2aed1d 5391 {
mjr 48:058ace2aed1d 5392 public:
mjr 48:058ace2aed1d 5393 ZBLaunchBall()
mjr 48:058ace2aed1d 5394 {
mjr 48:058ace2aed1d 5395 // start in the default state
mjr 48:058ace2aed1d 5396 lbState = 0;
mjr 53:9b2611964afc 5397 btnState = false;
mjr 48:058ace2aed1d 5398 }
mjr 48:058ace2aed1d 5399
mjr 48:058ace2aed1d 5400 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5401 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5402 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5403 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5404 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5405 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5406 void update()
mjr 48:058ace2aed1d 5407 {
mjr 53:9b2611964afc 5408 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5409 // plunger firing event
mjr 53:9b2611964afc 5410 if (zbLaunchOn)
mjr 48:058ace2aed1d 5411 {
mjr 53:9b2611964afc 5412 // note the new position
mjr 48:058ace2aed1d 5413 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5414
mjr 53:9b2611964afc 5415 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5416 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5417
mjr 53:9b2611964afc 5418 // check the state
mjr 48:058ace2aed1d 5419 switch (lbState)
mjr 48:058ace2aed1d 5420 {
mjr 48:058ace2aed1d 5421 case 0:
mjr 53:9b2611964afc 5422 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5423 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5424 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5425 // the button.
mjr 53:9b2611964afc 5426 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5427 {
mjr 53:9b2611964afc 5428 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5429 lbTimer.reset();
mjr 53:9b2611964afc 5430 lbTimer.start();
mjr 53:9b2611964afc 5431 setButton(true);
mjr 53:9b2611964afc 5432
mjr 53:9b2611964afc 5433 // switch to state 1
mjr 53:9b2611964afc 5434 lbState = 1;
mjr 53:9b2611964afc 5435 }
mjr 48:058ace2aed1d 5436 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5437 {
mjr 53:9b2611964afc 5438 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5439 // button as long as we're pushed forward
mjr 53:9b2611964afc 5440 setButton(true);
mjr 53:9b2611964afc 5441 }
mjr 53:9b2611964afc 5442 else
mjr 53:9b2611964afc 5443 {
mjr 53:9b2611964afc 5444 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5445 setButton(false);
mjr 53:9b2611964afc 5446 }
mjr 48:058ace2aed1d 5447 break;
mjr 48:058ace2aed1d 5448
mjr 48:058ace2aed1d 5449 case 1:
mjr 53:9b2611964afc 5450 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5451 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5452 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5453 {
mjr 53:9b2611964afc 5454 // timer expired - turn off the button
mjr 53:9b2611964afc 5455 setButton(false);
mjr 53:9b2611964afc 5456
mjr 53:9b2611964afc 5457 // switch to state 2
mjr 53:9b2611964afc 5458 lbState = 2;
mjr 53:9b2611964afc 5459 }
mjr 48:058ace2aed1d 5460 break;
mjr 48:058ace2aed1d 5461
mjr 48:058ace2aed1d 5462 case 2:
mjr 53:9b2611964afc 5463 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5464 // plunger launch event to end.
mjr 53:9b2611964afc 5465 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5466 {
mjr 53:9b2611964afc 5467 // firing event done - return to default state
mjr 53:9b2611964afc 5468 lbState = 0;
mjr 53:9b2611964afc 5469 }
mjr 48:058ace2aed1d 5470 break;
mjr 48:058ace2aed1d 5471 }
mjr 53:9b2611964afc 5472 }
mjr 53:9b2611964afc 5473 else
mjr 53:9b2611964afc 5474 {
mjr 53:9b2611964afc 5475 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5476 setButton(false);
mjr 48:058ace2aed1d 5477
mjr 53:9b2611964afc 5478 // return to the default state
mjr 53:9b2611964afc 5479 lbState = 0;
mjr 48:058ace2aed1d 5480 }
mjr 48:058ace2aed1d 5481 }
mjr 53:9b2611964afc 5482
mjr 53:9b2611964afc 5483 // Set the button state
mjr 53:9b2611964afc 5484 void setButton(bool on)
mjr 53:9b2611964afc 5485 {
mjr 53:9b2611964afc 5486 if (btnState != on)
mjr 53:9b2611964afc 5487 {
mjr 53:9b2611964afc 5488 // remember the new state
mjr 53:9b2611964afc 5489 btnState = on;
mjr 53:9b2611964afc 5490
mjr 53:9b2611964afc 5491 // update the virtual button state
mjr 65:739875521aae 5492 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5493 }
mjr 53:9b2611964afc 5494 }
mjr 53:9b2611964afc 5495
mjr 48:058ace2aed1d 5496 private:
mjr 48:058ace2aed1d 5497 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5498 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5499 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5500 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5501 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5502 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5503 //
mjr 48:058ace2aed1d 5504 // States:
mjr 48:058ace2aed1d 5505 // 0 = default
mjr 53:9b2611964afc 5506 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5507 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5508 // firing event to end)
mjr 53:9b2611964afc 5509 uint8_t lbState;
mjr 48:058ace2aed1d 5510
mjr 53:9b2611964afc 5511 // button state
mjr 53:9b2611964afc 5512 bool btnState;
mjr 48:058ace2aed1d 5513
mjr 48:058ace2aed1d 5514 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5515 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5516 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5517 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5518 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5519 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5520 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5521 Timer lbTimer;
mjr 48:058ace2aed1d 5522 };
mjr 48:058ace2aed1d 5523
mjr 35:e959ffba78fd 5524 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5525 //
mjr 35:e959ffba78fd 5526 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 5527 //
mjr 54:fd77a6b2f76c 5528 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 5529 {
mjr 35:e959ffba78fd 5530 // disconnect from USB
mjr 54:fd77a6b2f76c 5531 if (disconnect)
mjr 54:fd77a6b2f76c 5532 js.disconnect();
mjr 35:e959ffba78fd 5533
mjr 35:e959ffba78fd 5534 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 5535 wait_us(pause_us);
mjr 35:e959ffba78fd 5536
mjr 35:e959ffba78fd 5537 // reset the device
mjr 35:e959ffba78fd 5538 NVIC_SystemReset();
mjr 35:e959ffba78fd 5539 while (true) { }
mjr 35:e959ffba78fd 5540 }
mjr 35:e959ffba78fd 5541
mjr 35:e959ffba78fd 5542 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5543 //
mjr 35:e959ffba78fd 5544 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 5545 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 5546 //
mjr 35:e959ffba78fd 5547 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 5548 {
mjr 35:e959ffba78fd 5549 int tmp;
mjr 78:1e00b3fa11af 5550 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 5551 {
mjr 35:e959ffba78fd 5552 case OrientationFront:
mjr 35:e959ffba78fd 5553 tmp = x;
mjr 35:e959ffba78fd 5554 x = y;
mjr 35:e959ffba78fd 5555 y = tmp;
mjr 35:e959ffba78fd 5556 break;
mjr 35:e959ffba78fd 5557
mjr 35:e959ffba78fd 5558 case OrientationLeft:
mjr 35:e959ffba78fd 5559 x = -x;
mjr 35:e959ffba78fd 5560 break;
mjr 35:e959ffba78fd 5561
mjr 35:e959ffba78fd 5562 case OrientationRight:
mjr 35:e959ffba78fd 5563 y = -y;
mjr 35:e959ffba78fd 5564 break;
mjr 35:e959ffba78fd 5565
mjr 35:e959ffba78fd 5566 case OrientationRear:
mjr 35:e959ffba78fd 5567 tmp = -x;
mjr 35:e959ffba78fd 5568 x = -y;
mjr 35:e959ffba78fd 5569 y = tmp;
mjr 35:e959ffba78fd 5570 break;
mjr 35:e959ffba78fd 5571 }
mjr 35:e959ffba78fd 5572 }
mjr 35:e959ffba78fd 5573
mjr 35:e959ffba78fd 5574 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5575 //
mjr 35:e959ffba78fd 5576 // Calibration button state:
mjr 35:e959ffba78fd 5577 // 0 = not pushed
mjr 35:e959ffba78fd 5578 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 5579 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 5580 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 5581 int calBtnState = 0;
mjr 35:e959ffba78fd 5582
mjr 35:e959ffba78fd 5583 // calibration button debounce timer
mjr 35:e959ffba78fd 5584 Timer calBtnTimer;
mjr 35:e959ffba78fd 5585
mjr 35:e959ffba78fd 5586 // calibration button light state
mjr 35:e959ffba78fd 5587 int calBtnLit = false;
mjr 35:e959ffba78fd 5588
mjr 35:e959ffba78fd 5589
mjr 35:e959ffba78fd 5590 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5591 //
mjr 40:cc0d9814522b 5592 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 5593 //
mjr 40:cc0d9814522b 5594
mjr 40:cc0d9814522b 5595 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 5596 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 5597 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 5598 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 5599 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 5600 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 5601 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 5602 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5603 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 5604 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 5605 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 5606 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 5607
mjr 40:cc0d9814522b 5608 // redefine everything for the SET messages
mjr 40:cc0d9814522b 5609 #undef if_msg_valid
mjr 40:cc0d9814522b 5610 #undef v_byte
mjr 40:cc0d9814522b 5611 #undef v_ui16
mjr 77:0b96f6867312 5612 #undef v_ui32
mjr 40:cc0d9814522b 5613 #undef v_pin
mjr 53:9b2611964afc 5614 #undef v_byte_ro
mjr 91:ae9be42652bf 5615 #undef v_byte_wo
mjr 74:822a92bc11d2 5616 #undef v_ui32_ro
mjr 74:822a92bc11d2 5617 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 5618 #undef v_func
mjr 38:091e511ce8a0 5619
mjr 91:ae9be42652bf 5620 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 5621 #define if_msg_valid(test)
mjr 53:9b2611964afc 5622 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 5623 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 5624 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 5625 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 5626 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 5627 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 5628 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 5629 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 5630 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 5631 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 5632
mjr 35:e959ffba78fd 5633
mjr 35:e959ffba78fd 5634 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5635 //
mjr 35:e959ffba78fd 5636 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 5637 // LedWiz protocol.
mjr 33:d832bcab089e 5638 //
mjr 78:1e00b3fa11af 5639 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 5640 {
mjr 38:091e511ce8a0 5641 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 5642 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 5643 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 5644 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 5645 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 5646 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 5647 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 5648 // So our full protocol is as follows:
mjr 38:091e511ce8a0 5649 //
mjr 38:091e511ce8a0 5650 // first byte =
mjr 74:822a92bc11d2 5651 // 0-48 -> PBA
mjr 74:822a92bc11d2 5652 // 64 -> SBA
mjr 38:091e511ce8a0 5653 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 5654 // 129-132 -> PBA
mjr 38:091e511ce8a0 5655 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 5656 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 5657 // other -> reserved for future use
mjr 38:091e511ce8a0 5658 //
mjr 39:b3815a1c3802 5659 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 5660 if (data[0] == 64)
mjr 35:e959ffba78fd 5661 {
mjr 74:822a92bc11d2 5662 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 5663 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 5664 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 5665 sba_sbx(0, data);
mjr 74:822a92bc11d2 5666
mjr 74:822a92bc11d2 5667 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 5668 pbaIdx = 0;
mjr 38:091e511ce8a0 5669 }
mjr 38:091e511ce8a0 5670 else if (data[0] == 65)
mjr 38:091e511ce8a0 5671 {
mjr 38:091e511ce8a0 5672 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 5673 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 5674 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 5675 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 5676 // message type.
mjr 39:b3815a1c3802 5677 switch (data[1])
mjr 38:091e511ce8a0 5678 {
mjr 39:b3815a1c3802 5679 case 0:
mjr 39:b3815a1c3802 5680 // No Op
mjr 39:b3815a1c3802 5681 break;
mjr 39:b3815a1c3802 5682
mjr 39:b3815a1c3802 5683 case 1:
mjr 38:091e511ce8a0 5684 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 5685 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 5686 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 5687 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 5688 {
mjr 39:b3815a1c3802 5689
mjr 39:b3815a1c3802 5690 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 5691 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 5692 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 5693
mjr 86:e30a1f60f783 5694 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 5695 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 5696
mjr 39:b3815a1c3802 5697 // set the configuration parameters from the message
mjr 39:b3815a1c3802 5698 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 5699 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 5700
mjr 77:0b96f6867312 5701 // set the flag to do the save
mjr 86:e30a1f60f783 5702 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 5703 }
mjr 39:b3815a1c3802 5704 break;
mjr 38:091e511ce8a0 5705
mjr 39:b3815a1c3802 5706 case 2:
mjr 38:091e511ce8a0 5707 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 5708 // (No parameters)
mjr 38:091e511ce8a0 5709
mjr 38:091e511ce8a0 5710 // enter calibration mode
mjr 38:091e511ce8a0 5711 calBtnState = 3;
mjr 52:8298b2a73eb2 5712 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 5713 calBtnTimer.reset();
mjr 39:b3815a1c3802 5714 break;
mjr 39:b3815a1c3802 5715
mjr 39:b3815a1c3802 5716 case 3:
mjr 52:8298b2a73eb2 5717 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 5718 // data[2] = flag bits
mjr 53:9b2611964afc 5719 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 5720 reportPlungerStat = true;
mjr 53:9b2611964afc 5721 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 5722 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 5723
mjr 38:091e511ce8a0 5724 // show purple until we finish sending the report
mjr 38:091e511ce8a0 5725 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 5726 break;
mjr 39:b3815a1c3802 5727
mjr 39:b3815a1c3802 5728 case 4:
mjr 38:091e511ce8a0 5729 // 4 = hardware configuration query
mjr 38:091e511ce8a0 5730 // (No parameters)
mjr 38:091e511ce8a0 5731 js.reportConfig(
mjr 38:091e511ce8a0 5732 numOutputs,
mjr 38:091e511ce8a0 5733 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 5734 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 5735 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 5736 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 5737 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 5738 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 5739 true, // we support the configurable joystick report timing features
mjr 79:682ae3171a08 5740 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 5741 break;
mjr 39:b3815a1c3802 5742
mjr 39:b3815a1c3802 5743 case 5:
mjr 38:091e511ce8a0 5744 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 5745 allOutputsOff();
mjr 39:b3815a1c3802 5746 break;
mjr 39:b3815a1c3802 5747
mjr 39:b3815a1c3802 5748 case 6:
mjr 85:3c28aee81cde 5749 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 5750 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 5751 //
mjr 85:3c28aee81cde 5752 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 5753 // data[3] = flags:
mjr 85:3c28aee81cde 5754 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 5755 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 5756 break;
mjr 40:cc0d9814522b 5757
mjr 40:cc0d9814522b 5758 case 7:
mjr 40:cc0d9814522b 5759 // 7 = Device ID report
mjr 53:9b2611964afc 5760 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 5761 js.reportID(data[2]);
mjr 40:cc0d9814522b 5762 break;
mjr 40:cc0d9814522b 5763
mjr 40:cc0d9814522b 5764 case 8:
mjr 40:cc0d9814522b 5765 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 5766 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 5767 setNightMode(data[2]);
mjr 40:cc0d9814522b 5768 break;
mjr 52:8298b2a73eb2 5769
mjr 52:8298b2a73eb2 5770 case 9:
mjr 52:8298b2a73eb2 5771 // 9 = Config variable query.
mjr 52:8298b2a73eb2 5772 // data[2] = config var ID
mjr 52:8298b2a73eb2 5773 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 5774 {
mjr 53:9b2611964afc 5775 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 5776 // the rest of the buffer
mjr 52:8298b2a73eb2 5777 uint8_t reply[8];
mjr 52:8298b2a73eb2 5778 reply[1] = data[2];
mjr 52:8298b2a73eb2 5779 reply[2] = data[3];
mjr 53:9b2611964afc 5780 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 5781
mjr 52:8298b2a73eb2 5782 // query the value
mjr 52:8298b2a73eb2 5783 configVarGet(reply);
mjr 52:8298b2a73eb2 5784
mjr 52:8298b2a73eb2 5785 // send the reply
mjr 52:8298b2a73eb2 5786 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 5787 }
mjr 52:8298b2a73eb2 5788 break;
mjr 53:9b2611964afc 5789
mjr 53:9b2611964afc 5790 case 10:
mjr 53:9b2611964afc 5791 // 10 = Build ID query.
mjr 53:9b2611964afc 5792 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 5793 break;
mjr 73:4e8ce0b18915 5794
mjr 73:4e8ce0b18915 5795 case 11:
mjr 73:4e8ce0b18915 5796 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 5797 // data[2] = operation:
mjr 73:4e8ce0b18915 5798 // 0 = turn relay off
mjr 73:4e8ce0b18915 5799 // 1 = turn relay on
mjr 73:4e8ce0b18915 5800 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 5801 TVRelay(data[2]);
mjr 73:4e8ce0b18915 5802 break;
mjr 73:4e8ce0b18915 5803
mjr 73:4e8ce0b18915 5804 case 12:
mjr 77:0b96f6867312 5805 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 5806 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 5807 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 5808 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 5809 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 5810
mjr 77:0b96f6867312 5811 // enter IR learning mode
mjr 77:0b96f6867312 5812 IRLearningMode = 1;
mjr 77:0b96f6867312 5813
mjr 77:0b96f6867312 5814 // cancel any regular IR input in progress
mjr 77:0b96f6867312 5815 IRCommandIn = 0;
mjr 77:0b96f6867312 5816
mjr 77:0b96f6867312 5817 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 5818 IRTimer.reset();
mjr 73:4e8ce0b18915 5819 break;
mjr 73:4e8ce0b18915 5820
mjr 73:4e8ce0b18915 5821 case 13:
mjr 73:4e8ce0b18915 5822 // 13 = Send button status report
mjr 73:4e8ce0b18915 5823 reportButtonStatus(js);
mjr 73:4e8ce0b18915 5824 break;
mjr 78:1e00b3fa11af 5825
mjr 78:1e00b3fa11af 5826 case 14:
mjr 78:1e00b3fa11af 5827 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 5828 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 5829 break;
mjr 78:1e00b3fa11af 5830
mjr 78:1e00b3fa11af 5831 case 15:
mjr 78:1e00b3fa11af 5832 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 5833 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 5834 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 5835 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 5836 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 5837 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 5838 break;
mjr 78:1e00b3fa11af 5839
mjr 78:1e00b3fa11af 5840 case 16:
mjr 78:1e00b3fa11af 5841 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 5842 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 5843 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 5844 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 5845 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 5846 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 5847 break;
mjr 88:98bce687e6c0 5848
mjr 88:98bce687e6c0 5849 case 17:
mjr 88:98bce687e6c0 5850 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 5851 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 5852 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 5853 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 5854 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 5855 {
mjr 88:98bce687e6c0 5856 // get the IR command slot in the config
mjr 88:98bce687e6c0 5857 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 5858
mjr 88:98bce687e6c0 5859 // copy the IR command data from the config
mjr 88:98bce687e6c0 5860 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 5861 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 5862 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 5863
mjr 88:98bce687e6c0 5864 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 5865 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 5866 // is free
mjr 88:98bce687e6c0 5867 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 5868 }
mjr 88:98bce687e6c0 5869 break;
mjr 38:091e511ce8a0 5870 }
mjr 38:091e511ce8a0 5871 }
mjr 38:091e511ce8a0 5872 else if (data[0] == 66)
mjr 38:091e511ce8a0 5873 {
mjr 38:091e511ce8a0 5874 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 5875 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 5876 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 5877 // in a variable-dependent format.
mjr 40:cc0d9814522b 5878 configVarSet(data);
mjr 86:e30a1f60f783 5879
mjr 87:8d35c74403af 5880 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 5881 // dynamically
mjr 87:8d35c74403af 5882 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 5883 }
mjr 74:822a92bc11d2 5884 else if (data[0] == 67)
mjr 74:822a92bc11d2 5885 {
mjr 74:822a92bc11d2 5886 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 5887 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 5888 // to ports beyond the first 32.
mjr 74:822a92bc11d2 5889 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 5890 }
mjr 74:822a92bc11d2 5891 else if (data[0] == 68)
mjr 74:822a92bc11d2 5892 {
mjr 74:822a92bc11d2 5893 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 5894 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 5895 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 5896
mjr 74:822a92bc11d2 5897 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 5898 int portGroup = data[1];
mjr 74:822a92bc11d2 5899
mjr 74:822a92bc11d2 5900 // unpack the brightness values
mjr 74:822a92bc11d2 5901 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 5902 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 5903 uint8_t bri[8] = {
mjr 74:822a92bc11d2 5904 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 5905 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 5906 };
mjr 74:822a92bc11d2 5907
mjr 74:822a92bc11d2 5908 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 5909 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 5910 {
mjr 74:822a92bc11d2 5911 if (bri[i] >= 60)
mjr 74:822a92bc11d2 5912 bri[i] += 129-60;
mjr 74:822a92bc11d2 5913 }
mjr 74:822a92bc11d2 5914
mjr 74:822a92bc11d2 5915 // Carry out the PBA
mjr 74:822a92bc11d2 5916 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 5917 }
mjr 38:091e511ce8a0 5918 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 5919 {
mjr 38:091e511ce8a0 5920 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 5921 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 5922 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 5923 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 5924 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 5925 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 5926 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 5927 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 5928 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 5929 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 5930 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 5931 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 5932 //
mjr 38:091e511ce8a0 5933 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 5934 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 5935 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 5936 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 5937 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 5938 // address those ports anyway.
mjr 63:5cd1a5f3a41b 5939
mjr 63:5cd1a5f3a41b 5940 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 5941 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 5942 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 5943
mjr 63:5cd1a5f3a41b 5944 // update each port
mjr 38:091e511ce8a0 5945 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 5946 {
mjr 38:091e511ce8a0 5947 // set the brightness level for the output
mjr 40:cc0d9814522b 5948 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 5949 outLevel[i] = b;
mjr 38:091e511ce8a0 5950
mjr 74:822a92bc11d2 5951 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 5952 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 5953 // LedWiz mode on a future update
mjr 76:7f5912b6340e 5954 if (b != 0)
mjr 76:7f5912b6340e 5955 {
mjr 76:7f5912b6340e 5956 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 5957 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 5958 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 5959 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 5960 // forward unchanged.
mjr 76:7f5912b6340e 5961 wizOn[i] = 1;
mjr 76:7f5912b6340e 5962 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 5963 }
mjr 76:7f5912b6340e 5964 else
mjr 76:7f5912b6340e 5965 {
mjr 76:7f5912b6340e 5966 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 5967 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 5968 wizOn[i] = 0;
mjr 76:7f5912b6340e 5969 }
mjr 74:822a92bc11d2 5970
mjr 38:091e511ce8a0 5971 // set the output
mjr 40:cc0d9814522b 5972 lwPin[i]->set(b);
mjr 38:091e511ce8a0 5973 }
mjr 38:091e511ce8a0 5974
mjr 38:091e511ce8a0 5975 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 5976 if (hc595 != 0)
mjr 38:091e511ce8a0 5977 hc595->update();
mjr 38:091e511ce8a0 5978 }
mjr 38:091e511ce8a0 5979 else
mjr 38:091e511ce8a0 5980 {
mjr 74:822a92bc11d2 5981 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 5982 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 5983 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 5984 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 5985 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 5986 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 5987 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 5988 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 5989 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 5990 //
mjr 38:091e511ce8a0 5991 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 5992 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 5993 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 5994 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 5995 // protocol mode.
mjr 38:091e511ce8a0 5996 //
mjr 38:091e511ce8a0 5997 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 5998 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 5999
mjr 74:822a92bc11d2 6000 // carry out the PBA
mjr 74:822a92bc11d2 6001 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6002
mjr 74:822a92bc11d2 6003 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6004 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6005 }
mjr 38:091e511ce8a0 6006 }
mjr 35:e959ffba78fd 6007
mjr 38:091e511ce8a0 6008 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6009 //
mjr 5:a70c0bce770d 6010 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6011 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6012 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6013 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6014 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6015 // port outputs.
mjr 5:a70c0bce770d 6016 //
mjr 0:5acbbe3f4cf4 6017 int main(void)
mjr 0:5acbbe3f4cf4 6018 {
mjr 60:f38da020aa13 6019 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6020 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6021
mjr 94:0476b3e2b996 6022 // Set the default PWM period to 1ms. This will be used for PWM
mjr 94:0476b3e2b996 6023 // channels on PWM units whose periods aren't changed explicitly,
mjr 94:0476b3e2b996 6024 // so it'll apply to LW outputs assigned to GPIO pins. Note that
mjr 94:0476b3e2b996 6025 // the KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6026 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6027 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6028 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6029 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6030 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6031 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6032 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6033 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6034 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6035 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6036 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6037 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6038 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6039 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6040 //
mjr 94:0476b3e2b996 6041 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6042 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6043 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6044 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6045 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6046 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6047 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6048
mjr 76:7f5912b6340e 6049 // clear the I2C connection
mjr 35:e959ffba78fd 6050 clear_i2c();
mjr 82:4f6209cb5c33 6051
mjr 82:4f6209cb5c33 6052 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6053 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6054 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6055 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6056 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6057 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6058
mjr 76:7f5912b6340e 6059 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6060 // configuration data:
mjr 76:7f5912b6340e 6061 //
mjr 76:7f5912b6340e 6062 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6063 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6064 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6065 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6066 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6067 // to store user settings updates.
mjr 76:7f5912b6340e 6068 //
mjr 76:7f5912b6340e 6069 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6070 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6071 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6072 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6073 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6074 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6075 // without a separate download of the config data.
mjr 76:7f5912b6340e 6076 //
mjr 76:7f5912b6340e 6077 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6078 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6079 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6080 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6081 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6082 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6083 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6084 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6085 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6086 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6087 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6088 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6089 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6090
mjr 38:091e511ce8a0 6091 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6092 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6093
mjr 33:d832bcab089e 6094 // we're not connected/awake yet
mjr 33:d832bcab089e 6095 bool connected = false;
mjr 40:cc0d9814522b 6096 Timer connectChangeTimer;
mjr 33:d832bcab089e 6097
mjr 35:e959ffba78fd 6098 // create the plunger sensor interface
mjr 35:e959ffba78fd 6099 createPlunger();
mjr 76:7f5912b6340e 6100
mjr 76:7f5912b6340e 6101 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6102 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6103
mjr 60:f38da020aa13 6104 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6105 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6106
mjr 87:8d35c74403af 6107 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6108 init_tlc59116(cfg);
mjr 87:8d35c74403af 6109
mjr 60:f38da020aa13 6110 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6111 init_hc595(cfg);
mjr 6:cc35eb643e8f 6112
mjr 54:fd77a6b2f76c 6113 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6114 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6115 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6116 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6117 initLwOut(cfg);
mjr 48:058ace2aed1d 6118
mjr 60:f38da020aa13 6119 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6120 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6121 tlc5940->start();
mjr 87:8d35c74403af 6122
mjr 77:0b96f6867312 6123 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6124 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6125 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6126 // USB keyboard interface.
mjr 77:0b96f6867312 6127 bool kbKeys = false;
mjr 77:0b96f6867312 6128
mjr 77:0b96f6867312 6129 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6130 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6131
mjr 77:0b96f6867312 6132 // start the power status time, if applicable
mjr 77:0b96f6867312 6133 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6134
mjr 35:e959ffba78fd 6135 // initialize the button input ports
mjr 35:e959ffba78fd 6136 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6137
mjr 60:f38da020aa13 6138 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6139 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6140 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6141 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6142 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6143 // to the joystick interface.
mjr 51:57eb311faafa 6144 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6145 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6146
mjr 60:f38da020aa13 6147 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6148 // flash pattern while waiting.
mjr 70:9f58735a1732 6149 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6150 connTimeoutTimer.start();
mjr 70:9f58735a1732 6151 connFlashTimer.start();
mjr 51:57eb311faafa 6152 while (!js.configured())
mjr 51:57eb311faafa 6153 {
mjr 51:57eb311faafa 6154 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6155 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6156 {
mjr 51:57eb311faafa 6157 // short yellow flash
mjr 51:57eb311faafa 6158 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6159 wait_us(50000);
mjr 51:57eb311faafa 6160 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6161
mjr 51:57eb311faafa 6162 // reset the flash timer
mjr 70:9f58735a1732 6163 connFlashTimer.reset();
mjr 51:57eb311faafa 6164 }
mjr 70:9f58735a1732 6165
mjr 77:0b96f6867312 6166 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6167 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6168 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6169 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6170 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6171 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6172 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6173 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6174 reboot(js, false, 0);
mjr 77:0b96f6867312 6175
mjr 77:0b96f6867312 6176 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6177 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6178 }
mjr 60:f38da020aa13 6179
mjr 60:f38da020aa13 6180 // we're now connected to the host
mjr 54:fd77a6b2f76c 6181 connected = true;
mjr 40:cc0d9814522b 6182
mjr 92:f264fbaa1be5 6183 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6184 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6185 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6186 //
mjr 92:f264fbaa1be5 6187 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6188 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6189 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6190 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6191 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6192 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6193 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6194 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6195 // sampling rate as best we can.
mjr 38:091e511ce8a0 6196 Timer jsReportTimer;
mjr 38:091e511ce8a0 6197 jsReportTimer.start();
mjr 38:091e511ce8a0 6198
mjr 92:f264fbaa1be5 6199 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6200 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6201 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6202 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6203 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6204 //
mjr 92:f264fbaa1be5 6205 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6206 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6207 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6208 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6209 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6210 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6211
mjr 92:f264fbaa1be5 6212 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6213 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6214 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6215 // can be set in the configuration.
mjr 92:f264fbaa1be5 6216 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6217
mjr 60:f38da020aa13 6218 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6219 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6220 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6221 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6222 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6223 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6224 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6225 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6226 Timer jsOKTimer;
mjr 38:091e511ce8a0 6227 jsOKTimer.start();
mjr 35:e959ffba78fd 6228
mjr 55:4db125cd11a0 6229 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6230 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6231 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6232 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6233 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6234
mjr 55:4db125cd11a0 6235 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6236 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6237 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6238
mjr 55:4db125cd11a0 6239 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6240 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6241 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6242
mjr 35:e959ffba78fd 6243 // initialize the calibration button
mjr 1:d913e0afb2ac 6244 calBtnTimer.start();
mjr 35:e959ffba78fd 6245 calBtnState = 0;
mjr 1:d913e0afb2ac 6246
mjr 1:d913e0afb2ac 6247 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6248 Timer hbTimer;
mjr 1:d913e0afb2ac 6249 hbTimer.start();
mjr 1:d913e0afb2ac 6250 int hb = 0;
mjr 5:a70c0bce770d 6251 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6252
mjr 1:d913e0afb2ac 6253 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6254 Timer acTimer;
mjr 1:d913e0afb2ac 6255 acTimer.start();
mjr 1:d913e0afb2ac 6256
mjr 0:5acbbe3f4cf4 6257 // create the accelerometer object
mjr 77:0b96f6867312 6258 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6259 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6260
mjr 48:058ace2aed1d 6261 // initialize the plunger sensor
mjr 35:e959ffba78fd 6262 plungerSensor->init();
mjr 10:976666ffa4ef 6263
mjr 48:058ace2aed1d 6264 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6265 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6266
mjr 54:fd77a6b2f76c 6267 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6268 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6269 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6270 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6271 hc595->enable(true);
mjr 87:8d35c74403af 6272 if (tlc59116 != 0)
mjr 87:8d35c74403af 6273 tlc59116->enable(true);
mjr 74:822a92bc11d2 6274
mjr 76:7f5912b6340e 6275 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6276 wizCycleTimer.start();
mjr 74:822a92bc11d2 6277
mjr 74:822a92bc11d2 6278 // start the PWM update polling timer
mjr 74:822a92bc11d2 6279 polledPwmTimer.start();
mjr 43:7a6364d82a41 6280
mjr 1:d913e0afb2ac 6281 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6282 // host requests
mjr 0:5acbbe3f4cf4 6283 for (;;)
mjr 0:5acbbe3f4cf4 6284 {
mjr 74:822a92bc11d2 6285 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6286 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 74:822a92bc11d2 6287
mjr 48:058ace2aed1d 6288 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6289 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6290 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6291 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6292 LedWizMsg lwm;
mjr 48:058ace2aed1d 6293 Timer lwt;
mjr 48:058ace2aed1d 6294 lwt.start();
mjr 77:0b96f6867312 6295 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6296 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6297 {
mjr 78:1e00b3fa11af 6298 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6299 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6300 }
mjr 74:822a92bc11d2 6301
mjr 74:822a92bc11d2 6302 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6303 IF_DIAG(
mjr 74:822a92bc11d2 6304 if (msgCount != 0)
mjr 74:822a92bc11d2 6305 {
mjr 76:7f5912b6340e 6306 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6307 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6308 }
mjr 74:822a92bc11d2 6309 )
mjr 74:822a92bc11d2 6310
mjr 77:0b96f6867312 6311 // process IR input
mjr 77:0b96f6867312 6312 process_IR(cfg, js);
mjr 77:0b96f6867312 6313
mjr 77:0b96f6867312 6314 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6315 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6316
mjr 74:822a92bc11d2 6317 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6318 wizPulse();
mjr 74:822a92bc11d2 6319
mjr 74:822a92bc11d2 6320 // update PWM outputs
mjr 74:822a92bc11d2 6321 pollPwmUpdates();
mjr 77:0b96f6867312 6322
mjr 89:c43cd923401c 6323 // update Flipper Logic outputs
mjr 89:c43cd923401c 6324 LwFlipperLogicOut::poll();
mjr 89:c43cd923401c 6325
mjr 77:0b96f6867312 6326 // poll the accelerometer
mjr 77:0b96f6867312 6327 accel.poll();
mjr 55:4db125cd11a0 6328
mjr 76:7f5912b6340e 6329 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6330 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6331
mjr 55:4db125cd11a0 6332 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6333 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6334 tlc5940->send();
mjr 87:8d35c74403af 6335
mjr 87:8d35c74403af 6336 // send TLC59116 data updates
mjr 87:8d35c74403af 6337 if (tlc59116 != 0)
mjr 87:8d35c74403af 6338 tlc59116->send();
mjr 1:d913e0afb2ac 6339
mjr 76:7f5912b6340e 6340 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6341 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6342
mjr 1:d913e0afb2ac 6343 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6344 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6345 {
mjr 1:d913e0afb2ac 6346 // check the state
mjr 1:d913e0afb2ac 6347 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6348 {
mjr 1:d913e0afb2ac 6349 case 0:
mjr 1:d913e0afb2ac 6350 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6351 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6352 calBtnState = 1;
mjr 1:d913e0afb2ac 6353 break;
mjr 1:d913e0afb2ac 6354
mjr 1:d913e0afb2ac 6355 case 1:
mjr 1:d913e0afb2ac 6356 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6357 // passed, start the hold period
mjr 48:058ace2aed1d 6358 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6359 calBtnState = 2;
mjr 1:d913e0afb2ac 6360 break;
mjr 1:d913e0afb2ac 6361
mjr 1:d913e0afb2ac 6362 case 2:
mjr 1:d913e0afb2ac 6363 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6364 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6365 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6366 {
mjr 1:d913e0afb2ac 6367 // enter calibration mode
mjr 1:d913e0afb2ac 6368 calBtnState = 3;
mjr 9:fd65b0a94720 6369 calBtnTimer.reset();
mjr 35:e959ffba78fd 6370
mjr 44:b5ac89b9cd5d 6371 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6372 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6373 }
mjr 1:d913e0afb2ac 6374 break;
mjr 2:c174f9ee414a 6375
mjr 2:c174f9ee414a 6376 case 3:
mjr 9:fd65b0a94720 6377 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6378 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6379 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6380 break;
mjr 0:5acbbe3f4cf4 6381 }
mjr 0:5acbbe3f4cf4 6382 }
mjr 1:d913e0afb2ac 6383 else
mjr 1:d913e0afb2ac 6384 {
mjr 2:c174f9ee414a 6385 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6386 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6387 // and save the results to flash.
mjr 2:c174f9ee414a 6388 //
mjr 2:c174f9ee414a 6389 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6390 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6391 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6392 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6393 {
mjr 2:c174f9ee414a 6394 // exit calibration mode
mjr 1:d913e0afb2ac 6395 calBtnState = 0;
mjr 52:8298b2a73eb2 6396 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6397
mjr 6:cc35eb643e8f 6398 // save the updated configuration
mjr 35:e959ffba78fd 6399 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6400 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6401 }
mjr 2:c174f9ee414a 6402 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6403 {
mjr 2:c174f9ee414a 6404 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6405 calBtnState = 0;
mjr 2:c174f9ee414a 6406 }
mjr 1:d913e0afb2ac 6407 }
mjr 1:d913e0afb2ac 6408
mjr 1:d913e0afb2ac 6409 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6410 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6411 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6412 {
mjr 1:d913e0afb2ac 6413 case 2:
mjr 1:d913e0afb2ac 6414 // in the hold period - flash the light
mjr 48:058ace2aed1d 6415 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6416 break;
mjr 1:d913e0afb2ac 6417
mjr 1:d913e0afb2ac 6418 case 3:
mjr 1:d913e0afb2ac 6419 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6420 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6421 break;
mjr 1:d913e0afb2ac 6422
mjr 1:d913e0afb2ac 6423 default:
mjr 1:d913e0afb2ac 6424 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6425 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6426 break;
mjr 1:d913e0afb2ac 6427 }
mjr 3:3514575d4f86 6428
mjr 3:3514575d4f86 6429 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6430 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6431 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6432 {
mjr 1:d913e0afb2ac 6433 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6434 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6435 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6436 calBtnLed->write(1);
mjr 38:091e511ce8a0 6437 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6438 }
mjr 2:c174f9ee414a 6439 else {
mjr 17:ab3cec0c8bf4 6440 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6441 calBtnLed->write(0);
mjr 38:091e511ce8a0 6442 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6443 }
mjr 1:d913e0afb2ac 6444 }
mjr 35:e959ffba78fd 6445
mjr 76:7f5912b6340e 6446 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6447 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6448
mjr 48:058ace2aed1d 6449 // read the plunger sensor
mjr 48:058ace2aed1d 6450 plungerReader.read();
mjr 48:058ace2aed1d 6451
mjr 76:7f5912b6340e 6452 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6453 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6454
mjr 53:9b2611964afc 6455 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6456 zbLaunchBall.update();
mjr 37:ed52738445fc 6457
mjr 76:7f5912b6340e 6458 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6459 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6460
mjr 53:9b2611964afc 6461 // process button updates
mjr 53:9b2611964afc 6462 processButtons(cfg);
mjr 53:9b2611964afc 6463
mjr 76:7f5912b6340e 6464 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6465 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6466
mjr 38:091e511ce8a0 6467 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6468 if (kbState.changed)
mjr 37:ed52738445fc 6469 {
mjr 38:091e511ce8a0 6470 // send a keyboard report
mjr 37:ed52738445fc 6471 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6472 kbState.changed = false;
mjr 37:ed52738445fc 6473 }
mjr 38:091e511ce8a0 6474
mjr 38:091e511ce8a0 6475 // likewise for the media controller
mjr 37:ed52738445fc 6476 if (mediaState.changed)
mjr 37:ed52738445fc 6477 {
mjr 38:091e511ce8a0 6478 // send a media report
mjr 37:ed52738445fc 6479 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6480 mediaState.changed = false;
mjr 37:ed52738445fc 6481 }
mjr 38:091e511ce8a0 6482
mjr 76:7f5912b6340e 6483 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6484 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6485
mjr 38:091e511ce8a0 6486 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6487 bool jsOK = false;
mjr 55:4db125cd11a0 6488
mjr 55:4db125cd11a0 6489 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6490 uint16_t statusFlags =
mjr 77:0b96f6867312 6491 cfg.plunger.enabled // 0x01
mjr 77:0b96f6867312 6492 | nightMode // 0x02
mjr 79:682ae3171a08 6493 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6494 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6495 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6496 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6497
mjr 50:40015764bbe6 6498 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6499 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6500 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 6501 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 6502 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 6503 {
mjr 92:f264fbaa1be5 6504 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 6505 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 6506 // not, repeat the last sample.
mjr 92:f264fbaa1be5 6507 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 6508 {
mjr 92:f264fbaa1be5 6509 // read the accelerometer
mjr 92:f264fbaa1be5 6510 int xa, ya;
mjr 92:f264fbaa1be5 6511 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 6512
mjr 92:f264fbaa1be5 6513 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 6514 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 6515 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 6516 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 6517 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 6518
mjr 92:f264fbaa1be5 6519 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 6520 x = xa;
mjr 92:f264fbaa1be5 6521 y = ya;
mjr 92:f264fbaa1be5 6522
mjr 92:f264fbaa1be5 6523 // reset the stutter counter
mjr 92:f264fbaa1be5 6524 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6525 }
mjr 17:ab3cec0c8bf4 6526
mjr 48:058ace2aed1d 6527 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 6528 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 6529 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 6530 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 6531 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 6532 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 6533 // regular plunger inputs.
mjr 92:f264fbaa1be5 6534 int zActual = plungerReader.getPosition();
mjr 92:f264fbaa1be5 6535 int zReported = (!cfg.plunger.enabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 6536
mjr 35:e959ffba78fd 6537 // rotate X and Y according to the device orientation in the cabinet
mjr 35:e959ffba78fd 6538 accelRotate(x, y);
mjr 35:e959ffba78fd 6539
mjr 35:e959ffba78fd 6540 // send the joystick report
mjr 92:f264fbaa1be5 6541 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 6542
mjr 17:ab3cec0c8bf4 6543 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 6544 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 6545 }
mjr 21:5048e16cc9ef 6546
mjr 52:8298b2a73eb2 6547 // If we're in sensor status mode, report all pixel exposure values
mjr 52:8298b2a73eb2 6548 if (reportPlungerStat)
mjr 10:976666ffa4ef 6549 {
mjr 17:ab3cec0c8bf4 6550 // send the report
mjr 53:9b2611964afc 6551 plungerSensor->sendStatusReport(js, reportPlungerStatFlags, reportPlungerStatTime);
mjr 17:ab3cec0c8bf4 6552
mjr 10:976666ffa4ef 6553 // we have satisfied this request
mjr 52:8298b2a73eb2 6554 reportPlungerStat = false;
mjr 10:976666ffa4ef 6555 }
mjr 10:976666ffa4ef 6556
mjr 35:e959ffba78fd 6557 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 6558 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 6559 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 6560 {
mjr 55:4db125cd11a0 6561 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 6562 jsReportTimer.reset();
mjr 38:091e511ce8a0 6563 }
mjr 38:091e511ce8a0 6564
mjr 38:091e511ce8a0 6565 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 6566 if (jsOK)
mjr 38:091e511ce8a0 6567 {
mjr 38:091e511ce8a0 6568 jsOKTimer.reset();
mjr 38:091e511ce8a0 6569 jsOKTimer.start();
mjr 21:5048e16cc9ef 6570 }
mjr 21:5048e16cc9ef 6571
mjr 76:7f5912b6340e 6572 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 6573 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6574
mjr 6:cc35eb643e8f 6575 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 6576 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 6577 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 6578 #endif
mjr 6:cc35eb643e8f 6579
mjr 33:d832bcab089e 6580 // check for connection status changes
mjr 54:fd77a6b2f76c 6581 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 6582 if (newConnected != connected)
mjr 33:d832bcab089e 6583 {
mjr 54:fd77a6b2f76c 6584 // give it a moment to stabilize
mjr 40:cc0d9814522b 6585 connectChangeTimer.start();
mjr 55:4db125cd11a0 6586 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 6587 {
mjr 33:d832bcab089e 6588 // note the new status
mjr 33:d832bcab089e 6589 connected = newConnected;
mjr 40:cc0d9814522b 6590
mjr 40:cc0d9814522b 6591 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 6592 connectChangeTimer.stop();
mjr 40:cc0d9814522b 6593 connectChangeTimer.reset();
mjr 33:d832bcab089e 6594
mjr 54:fd77a6b2f76c 6595 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 6596 if (!connected)
mjr 40:cc0d9814522b 6597 {
mjr 54:fd77a6b2f76c 6598 // turn off all outputs
mjr 33:d832bcab089e 6599 allOutputsOff();
mjr 40:cc0d9814522b 6600
mjr 40:cc0d9814522b 6601 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 6602 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 6603 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 6604 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 6605 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 6606 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 6607 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 6608 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 6609 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 6610 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 6611 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 6612 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 6613 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 6614 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 6615 // the power first comes on.
mjr 40:cc0d9814522b 6616 if (tlc5940 != 0)
mjr 40:cc0d9814522b 6617 tlc5940->enable(false);
mjr 87:8d35c74403af 6618 if (tlc59116 != 0)
mjr 87:8d35c74403af 6619 tlc59116->enable(false);
mjr 40:cc0d9814522b 6620 if (hc595 != 0)
mjr 40:cc0d9814522b 6621 hc595->enable(false);
mjr 40:cc0d9814522b 6622 }
mjr 33:d832bcab089e 6623 }
mjr 33:d832bcab089e 6624 }
mjr 48:058ace2aed1d 6625
mjr 53:9b2611964afc 6626 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 6627 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 6628 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 6629 {
mjr 85:3c28aee81cde 6630 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 6631 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 6632 {
mjr 86:e30a1f60f783 6633 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 6634 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 6635 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 6636 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 6637 // status allows it.
mjr 86:e30a1f60f783 6638 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 6639 reboot(js);
mjr 82:4f6209cb5c33 6640 }
mjr 85:3c28aee81cde 6641 else
mjr 85:3c28aee81cde 6642 {
mjr 86:e30a1f60f783 6643 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 6644
mjr 86:e30a1f60f783 6645 // stop and reset the post-save timer
mjr 86:e30a1f60f783 6646 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 6647 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 6648
mjr 86:e30a1f60f783 6649 // clear the post-save success flag
mjr 86:e30a1f60f783 6650 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 6651 }
mjr 77:0b96f6867312 6652 }
mjr 86:e30a1f60f783 6653
mjr 48:058ace2aed1d 6654 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 6655 if (!connected)
mjr 48:058ace2aed1d 6656 {
mjr 54:fd77a6b2f76c 6657 // show USB HAL debug events
mjr 54:fd77a6b2f76c 6658 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 6659 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 6660
mjr 54:fd77a6b2f76c 6661 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 6662 js.diagFlash();
mjr 54:fd77a6b2f76c 6663
mjr 54:fd77a6b2f76c 6664 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 6665 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6666
mjr 51:57eb311faafa 6667 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 6668 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 6669 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 6670
mjr 54:fd77a6b2f76c 6671 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 6672 Timer diagTimer;
mjr 54:fd77a6b2f76c 6673 diagTimer.reset();
mjr 54:fd77a6b2f76c 6674 diagTimer.start();
mjr 74:822a92bc11d2 6675
mjr 74:822a92bc11d2 6676 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 6677 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 6678
mjr 54:fd77a6b2f76c 6679 // loop until we get our connection back
mjr 54:fd77a6b2f76c 6680 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 6681 {
mjr 54:fd77a6b2f76c 6682 // try to recover the connection
mjr 54:fd77a6b2f76c 6683 js.recoverConnection();
mjr 54:fd77a6b2f76c 6684
mjr 89:c43cd923401c 6685 // update Flipper Logic outputs
mjr 89:c43cd923401c 6686 LwFlipperLogicOut::poll();
mjr 89:c43cd923401c 6687
mjr 55:4db125cd11a0 6688 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 6689 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6690 tlc5940->send();
mjr 87:8d35c74403af 6691
mjr 87:8d35c74403af 6692 // update TLC59116 outputs
mjr 87:8d35c74403af 6693 if (tlc59116 != 0)
mjr 87:8d35c74403af 6694 tlc59116->send();
mjr 55:4db125cd11a0 6695
mjr 54:fd77a6b2f76c 6696 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 6697 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6698 {
mjr 54:fd77a6b2f76c 6699 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 6700 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 6701
mjr 54:fd77a6b2f76c 6702 // show diagnostic feedback
mjr 54:fd77a6b2f76c 6703 js.diagFlash();
mjr 51:57eb311faafa 6704
mjr 51:57eb311faafa 6705 // reset the flash timer
mjr 54:fd77a6b2f76c 6706 diagTimer.reset();
mjr 51:57eb311faafa 6707 }
mjr 51:57eb311faafa 6708
mjr 77:0b96f6867312 6709 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 6710 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 6711 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 6712 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 6713 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 6714 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 6715 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 6716 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 6717 // round and keep waiting.
mjr 51:57eb311faafa 6718 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6719 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6720 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6721 reboot(js, false, 0);
mjr 77:0b96f6867312 6722
mjr 77:0b96f6867312 6723 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6724 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 6725 }
mjr 54:fd77a6b2f76c 6726
mjr 74:822a92bc11d2 6727 // resume the main loop timer
mjr 74:822a92bc11d2 6728 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 6729
mjr 54:fd77a6b2f76c 6730 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 6731 connected = true;
mjr 54:fd77a6b2f76c 6732 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 6733
mjr 54:fd77a6b2f76c 6734 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 6735 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6736 tlc5940->enable(true);
mjr 87:8d35c74403af 6737 if (tlc59116 != 0)
mjr 87:8d35c74403af 6738 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 6739 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6740 {
mjr 55:4db125cd11a0 6741 hc595->enable(true);
mjr 54:fd77a6b2f76c 6742 hc595->update(true);
mjr 51:57eb311faafa 6743 }
mjr 48:058ace2aed1d 6744 }
mjr 43:7a6364d82a41 6745
mjr 6:cc35eb643e8f 6746 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 6747 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 6748 {
mjr 54:fd77a6b2f76c 6749 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 6750 {
mjr 39:b3815a1c3802 6751 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 6752 //
mjr 54:fd77a6b2f76c 6753 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 6754 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 6755 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 6756 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 6757 hb = !hb;
mjr 38:091e511ce8a0 6758 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 6759
mjr 54:fd77a6b2f76c 6760 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 6761 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 6762 // with the USB connection.
mjr 54:fd77a6b2f76c 6763 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 6764 {
mjr 54:fd77a6b2f76c 6765 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 6766 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 6767 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 6768 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 6769 // power status allows it.
mjr 86:e30a1f60f783 6770 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6771 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 6772 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 6773 }
mjr 54:fd77a6b2f76c 6774 else
mjr 54:fd77a6b2f76c 6775 {
mjr 54:fd77a6b2f76c 6776 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 6777 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 6778 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 6779 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 6780 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 6781 }
mjr 38:091e511ce8a0 6782 }
mjr 73:4e8ce0b18915 6783 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 6784 {
mjr 73:4e8ce0b18915 6785 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 6786 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 6787 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 6788 }
mjr 35:e959ffba78fd 6789 else if (cfg.plunger.enabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 6790 {
mjr 6:cc35eb643e8f 6791 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 6792 hb = !hb;
mjr 38:091e511ce8a0 6793 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 6794 }
mjr 6:cc35eb643e8f 6795 else
mjr 6:cc35eb643e8f 6796 {
mjr 6:cc35eb643e8f 6797 // connected - flash blue/green
mjr 2:c174f9ee414a 6798 hb = !hb;
mjr 38:091e511ce8a0 6799 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 6800 }
mjr 1:d913e0afb2ac 6801
mjr 1:d913e0afb2ac 6802 // reset the heartbeat timer
mjr 1:d913e0afb2ac 6803 hbTimer.reset();
mjr 5:a70c0bce770d 6804 ++hbcnt;
mjr 1:d913e0afb2ac 6805 }
mjr 74:822a92bc11d2 6806
mjr 74:822a92bc11d2 6807 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 6808 IF_DIAG(
mjr 76:7f5912b6340e 6809 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 6810 mainLoopIterCount++;
mjr 74:822a92bc11d2 6811 )
mjr 1:d913e0afb2ac 6812 }
mjr 0:5acbbe3f4cf4 6813 }