An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Sat Aug 23 01:24:36 2014 +0000
Revision:
10:976666ffa4ef
Parent:
9:fd65b0a94720
Child:
11:bd9da7088e6e
Add raw pixel dump support for use by the Windows config tool

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 5:a70c0bce770d 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet. I wrote this
mjr 5:a70c0bce770d 23 // software to perform a number of tasks that I needed for my cabinet. It runs on a
mjr 5:a70c0bce770d 24 // Freescale KL25Z microcontroller, which is a small and inexpensive device that
mjr 5:a70c0bce770d 25 // attaches to the host PC via USB and can interface with numerous types of external
mjr 5:a70c0bce770d 26 // hardware.
mjr 5:a70c0bce770d 27 //
mjr 5:a70c0bce770d 28 // I designed the software and hardware in this project especially for Pinscape, but
mjr 5:a70c0bce770d 29 // it uses standard interfaces in Windows and Visual Pinball, so it should be
mjr 5:a70c0bce770d 30 // readily usable in anyone else's VP-based cabinet. I've tried to document the
mjr 5:a70c0bce770d 31 // hardware in enough detail for anyone else to duplicate the entire project, and
mjr 5:a70c0bce770d 32 // the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 6:cc35eb643e8f 34 // The device appears to the host computer as a USB joystick. This works with the
mjr 6:cc35eb643e8f 35 // standard Windows joystick device drivers, so there's no need to install any
mjr 6:cc35eb643e8f 36 // software on the PC - Windows should recognize it as a joystick when you plug
mjr 6:cc35eb643e8f 37 // it in and shouldn't ask you to install anything. If you bring up the control
mjr 6:cc35eb643e8f 38 // panel for USB Game Controllers, this device will appear as "Pinscape Controller".
mjr 6:cc35eb643e8f 39 // *Don't* do any calibration with the Windows control panel or third-part
mjr 6:cc35eb643e8f 40 // calibration tools. The device calibrates itself automatically for the
mjr 6:cc35eb643e8f 41 // accelerometer data, and has its own special calibration procedure for the
mjr 6:cc35eb643e8f 42 // plunger (see below).
mjr 6:cc35eb643e8f 43 //
mjr 5:a70c0bce770d 44 // The controller provides the following functions. It should be possible to use
mjr 5:a70c0bce770d 45 // any subet of the features without using all of them. External hardware for any
mjr 5:a70c0bce770d 46 // particular function can simply be omitted if that feature isn't needed.
mjr 5:a70c0bce770d 47 //
mjr 5:a70c0bce770d 48 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudge accelerations are
mjr 5:a70c0bce770d 49 // processed into a physics model of a rolling ball, and changes to the ball's
mjr 5:a70c0bce770d 50 // motion are sent to the host computer via the joystick interface. This is designed
mjr 5:a70c0bce770d 51 // especially to work with Visuall Pinball's nudge handling to produce realistic
mjr 5:a70c0bce770d 52 // on-screen results in VP. By doing some physics modeling right on the device,
mjr 5:a70c0bce770d 53 // rather than sending raw accelerometer data to VP, we can produce better results
mjr 5:a70c0bce770d 54 // using our awareness of the real physical parameters of a pinball cabinet.
mjr 5:a70c0bce770d 55 // VP's nudge handling has to be more generic, so it can't make the same sorts
mjr 5:a70c0bce770d 56 // of assumptions that we can about the dynamics of a real cabinet.
mjr 5:a70c0bce770d 57 //
mjr 5:a70c0bce770d 58 // The nudge data reports are compatible with the built-in Windows USB joystick
mjr 5:a70c0bce770d 59 // drivers and with VP's own joystick input scheme, so the nudge sensing is almost
mjr 5:a70c0bce770d 60 // plug-and-play. There are no Windiows drivers to install, and the only VP work
mjr 5:a70c0bce770d 61 // needed is to customize a few global preference settings.
mjr 5:a70c0bce770d 62 //
mjr 5:a70c0bce770d 63 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 5:a70c0bce770d 64 // The sensor must be wired to a particular set of I/O ports on the KL25Z, and must
mjr 5:a70c0bce770d 65 // be positioned adjacent to the plunger with proper lighting. The physical and
mjr 5:a70c0bce770d 66 // electronic installation details are desribed in the project documentation. We read
mjr 5:a70c0bce770d 67 // the CCD to determine how far back the plunger is pulled, and report this to Visual
mjr 5:a70c0bce770d 68 // Pinball via the joystick interface. As with the nudge data, this is all nearly
mjr 5:a70c0bce770d 69 // plug-and-play, in that it works with the default Windows USB drivers and works
mjr 5:a70c0bce770d 70 // with the existing VP handling for analog plunger input. A few VP settings are
mjr 5:a70c0bce770d 71 // needed to tell VP to allow the plunger.
mjr 5:a70c0bce770d 72 //
mjr 6:cc35eb643e8f 73 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 74 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 75 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 76 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 6:cc35eb643e8f 77 // sensor or the mechanical plunger, since their alignment might change slightly
mjr 6:cc35eb643e8f 78 // when you put everything back together.) To calibrate, you have to attach a
mjr 6:cc35eb643e8f 79 // momentary switch (e.g., a push-button switch) between one of the KL25Z ground
mjr 6:cc35eb643e8f 80 // pins (e.g., jumper J9 pin 12) and PTE29 (J10 pin 9). Press and hold the
mjr 6:cc35eb643e8f 81 // button for about two seconds - the LED on the KL25Z wlil flash blue while
mjr 6:cc35eb643e8f 82 // you hold the button, and will turn solid blue when you've held it down long
mjr 6:cc35eb643e8f 83 // enough to enter calibration mode. This mode will last about 15 seconds.
mjr 6:cc35eb643e8f 84 // Simply pull the plunger all the way back, hold it for a few moments, and
mjr 6:cc35eb643e8f 85 // gradually return it to the starting position. *Don't* release it - we want
mjr 6:cc35eb643e8f 86 // to measure the maximum retracted position and the rest position, but NOT
mjr 6:cc35eb643e8f 87 // the maximum forward position when the outer barrel spring is compressed.
mjr 6:cc35eb643e8f 88 // After about 15 seconds, the device will save the new calibration settings
mjr 6:cc35eb643e8f 89 // to its flash memory, and the LED will return to the regular "heartbeat"
mjr 6:cc35eb643e8f 90 // flashes. If this is the first time you calibrated, you should observe the
mjr 6:cc35eb643e8f 91 // color of the flashes change from yellow/green to blue/green to indicate
mjr 6:cc35eb643e8f 92 // that the plunger has been calibrated.
mjr 6:cc35eb643e8f 93 //
mjr 6:cc35eb643e8f 94 // Note that while Visual Pinball itself has good native support for analog
mjr 6:cc35eb643e8f 95 // plungers, most of the VP tables in circulation don't implement the necessary
mjr 6:cc35eb643e8f 96 // scripting features to make this work properly. Therefore, you'll have to do
mjr 6:cc35eb643e8f 97 // a little scripting work for each table you download to add the required code
mjr 6:cc35eb643e8f 98 // to that individual table. The work has to be customized for each table, so
mjr 6:cc35eb643e8f 99 // I haven't been able to automate this process, but I have tried to reduce it
mjr 6:cc35eb643e8f 100 // to a relatively simple recipe that I've documented separately.
mjr 5:a70c0bce770d 101 //
mjr 5:a70c0bce770d 102 // - In addition to the CCD sensor, a button should be attached (also described in
mjr 5:a70c0bce770d 103 // the project documentation) to activate calibration mode for the plunger. When
mjr 5:a70c0bce770d 104 // calibration mode is activated, the software reads the plunger position for about
mjr 5:a70c0bce770d 105 // 10 seconds when to note the limits of travel, and uses these limits to ensure
mjr 5:a70c0bce770d 106 // accurate reports to VP that properly report the actual position of the physical
mjr 5:a70c0bce770d 107 // plunger. The calibration is stored in non-volatile memory on the KL25Z, so it's
mjr 5:a70c0bce770d 108 // only necessary to calibrate once - the calibration will survive power cycling
mjr 5:a70c0bce770d 109 // and reboots of the PC. It's only necessary to recalibrate if the CCD sensor or
mjr 5:a70c0bce770d 110 // the plunger are removed and reinstalled, since the relative alignment of the
mjr 5:a70c0bce770d 111 // parts could cahnge slightly when reinstalling.
mjr 5:a70c0bce770d 112 //
mjr 5:a70c0bce770d 113 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 114 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 115 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 116 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 117 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 118 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 119 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 120 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 121 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 122 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 123 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 124 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 125 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 126 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 127 //
mjr 5:a70c0bce770d 128 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 129 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 130 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 131 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 132 // distinct unit number.
mjr 5:a70c0bce770d 133 //
mjr 5:a70c0bce770d 134 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 135 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 136 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 137 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 138 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 139 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 140 //
mjr 6:cc35eb643e8f 141 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 142 //
mjr 6:cc35eb643e8f 143 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 144 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 145 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 146 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 147 //
mjr 6:cc35eb643e8f 148 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 149 //
mjr 6:cc35eb643e8f 150 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 151 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 152 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 153 //
mjr 6:cc35eb643e8f 154 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 155 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 156 // This flash mode won't appear if the CCD has been disabled. Note
mjr 6:cc35eb643e8f 157 // that the device can't tell whether a CCD is physically attached,
mjr 6:cc35eb643e8f 158 // so you should use the config command to disable the CCD software
mjr 6:cc35eb643e8f 159 // features if you won't be attaching a CCD.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 174 //
mjr 9:fd65b0a94720 175 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 176 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 177 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 178 // mode without attaching a physical button.
mjr 9:fd65b0a94720 179 //
mjr 9:fd65b0a94720 180 // length = 8 bytes
mjr 9:fd65b0a94720 181 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 182 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 183 //
mjr 10:976666ffa4ef 184 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 185 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 186 //
mjr 10:976666ffa4ef 187 // length = 8 bytes
mjr 10:976666ffa4ef 188 // byte 0 = 65 (0x41)
mjr 10:976666ffa4ef 189 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 190 //
mjr 10:976666ffa4ef 191 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 192 // Each report has the following structure:
mjr 10:976666ffa4ef 193 //
mjr 10:976666ffa4ef 194 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 195 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 196 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 197 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 198 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 199 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 200 // etc for the rest of the packet
mjr 10:976666ffa4ef 201 //
mjr 10:976666ffa4ef 202 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 203 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 204 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 205 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 206 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 207 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 208 // this somewhat kludgey approach.
mjr 6:cc35eb643e8f 209
mjr 0:5acbbe3f4cf4 210 #include "mbed.h"
mjr 6:cc35eb643e8f 211 #include "math.h"
mjr 0:5acbbe3f4cf4 212 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 213 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 214 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 215 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 216 #include "crc32.h"
mjr 2:c174f9ee414a 217
mjr 5:a70c0bce770d 218
mjr 5:a70c0bce770d 219 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 220 //
mjr 5:a70c0bce770d 221 // Configuration details
mjr 5:a70c0bce770d 222 //
mjr 2:c174f9ee414a 223
mjr 5:a70c0bce770d 224 // Our USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 225 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 226 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 227 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 228 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 229 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 230 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 231 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 232 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 233 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 234 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 235 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 236 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 237 //
mjr 5:a70c0bce770d 238 // We use unit #7 by default. There doesn't seem to be a requirement that
mjr 5:a70c0bce770d 239 // unit numbers be contiguous (DirectOutput Framework and other software
mjr 5:a70c0bce770d 240 // seem happy to have units 0 and 7 installed, without 1-6 existing).
mjr 5:a70c0bce770d 241 // Marking this unit as #7 should work for almost everybody out of the box;
mjr 5:a70c0bce770d 242 // the most common case seems to be to have a single LedWiz installed, and
mjr 5:a70c0bce770d 243 // it's probably extremely rare to more than two.
mjr 6:cc35eb643e8f 244 //
mjr 6:cc35eb643e8f 245 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 246 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 247 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 248 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 249 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 250 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 251 // we send to the USB controller.
mjr 5:a70c0bce770d 252 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 253 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 254 const uint16_t USB_VERSION_NO = 0x0006;
mjr 6:cc35eb643e8f 255 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER = 0x07;
mjr 0:5acbbe3f4cf4 256
mjr 9:fd65b0a94720 257 // Number of pixels we read from the sensor on each frame. This can be
mjr 9:fd65b0a94720 258 // less than the physical pixel count if desired; we'll read every nth
mjr 9:fd65b0a94720 259 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 9:fd65b0a94720 260 // we'll read every 4th pixel. It takes time to read each pixel, so the
mjr 9:fd65b0a94720 261 // fewer pixels we read, the higher the refresh rate we can achieve.
mjr 9:fd65b0a94720 262 // It's therefore better not to read more pixels than we have to.
mjr 9:fd65b0a94720 263 //
mjr 9:fd65b0a94720 264 // VP seems to have an internal resolution in the 8-bit range, so there's
mjr 9:fd65b0a94720 265 // no apparent benefit to reading more than 128-256 pixels when using VP.
mjr 9:fd65b0a94720 266 // Empirically, 160 pixels seems about right. The overall travel of a
mjr 9:fd65b0a94720 267 // standard pinball plunger is about 3", so 160 pixels gives us resolution
mjr 9:fd65b0a94720 268 // of about 1/50". This seems to take full advantage of VP's modeling
mjr 9:fd65b0a94720 269 // ability, and is probably also more precise than a human player's
mjr 9:fd65b0a94720 270 // perception of the plunger position.
mjr 9:fd65b0a94720 271 const int npix = 160;
mjr 9:fd65b0a94720 272
mjr 4:02c7cd7b2183 273 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 4:02c7cd7b2183 274 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 0:5acbbe3f4cf4 275
mjr 1:d913e0afb2ac 276 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 277 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 278 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 279
mjr 6:cc35eb643e8f 280 // LED-Wiz emulation output pin assignments. The LED-Wiz protocol
mjr 6:cc35eb643e8f 281 // can support up to 32 outputs. The KL25Z can physically provide
mjr 6:cc35eb643e8f 282 // about 48 (in addition to the ports we're already using for the
mjr 6:cc35eb643e8f 283 // CCD sensor and the calibration button), but to stay compatible
mjr 6:cc35eb643e8f 284 // with the LED-Wiz protocol we'll stop at 32.
mjr 6:cc35eb643e8f 285 //
mjr 6:cc35eb643e8f 286 // The LED-Wiz protocol allows setting individual intensity levels
mjr 6:cc35eb643e8f 287 // on all outputs, with 48 levels of intensity. This can be used
mjr 6:cc35eb643e8f 288 // to control lamp brightness and motor speeds, among other things.
mjr 6:cc35eb643e8f 289 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 6:cc35eb643e8f 290 // can support the full complement of 32 outputs, we can only provide
mjr 6:cc35eb643e8f 291 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 6:cc35eb643e8f 292 // can only be switched fully on and fully off - we can't support
mjr 6:cc35eb643e8f 293 // dimming on these, so they'll ignore any intensity level setting
mjr 6:cc35eb643e8f 294 // requested by the host. Use these for devices that don't have any
mjr 6:cc35eb643e8f 295 // use for intensity settings anyway, such as contactors and knockers.
mjr 6:cc35eb643e8f 296 //
mjr 6:cc35eb643e8f 297 // The mapping between physical output pins on the KL25Z and the
mjr 6:cc35eb643e8f 298 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 6:cc35eb643e8f 299 // customize this by changing the entries in the array below if you
mjr 6:cc35eb643e8f 300 // wish to rearrange the pins for any reason. Be aware that some
mjr 6:cc35eb643e8f 301 // of the physical outputs are already used for other purposes
mjr 6:cc35eb643e8f 302 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 6:cc35eb643e8f 303 // CCD sensor - but you can of course reassign those as well by
mjr 6:cc35eb643e8f 304 // changing the corresponding declarations elsewhere in this module).
mjr 6:cc35eb643e8f 305 // The assignments we make here have two main objectives: first,
mjr 6:cc35eb643e8f 306 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 6:cc35eb643e8f 307 // wiring by keeping the output pins together physically), and
mjr 6:cc35eb643e8f 308 // second, to make the physical pin layout match the LED-Wiz port
mjr 6:cc35eb643e8f 309 // numbering order to the extent possible. There's one big wrench
mjr 6:cc35eb643e8f 310 // in the works, though, which is the limited number and discontiguous
mjr 6:cc35eb643e8f 311 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 6:cc35eb643e8f 312 // us from doing the most obvious sequential ordering of the pins,
mjr 6:cc35eb643e8f 313 // so we end up with the outputs arranged into several blocks.
mjr 6:cc35eb643e8f 314 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 6:cc35eb643e8f 315 // read on...
mjr 6:cc35eb643e8f 316 //
mjr 6:cc35eb643e8f 317 // With the LED-Wiz, the host software configuration usually
mjr 6:cc35eb643e8f 318 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 6:cc35eb643e8f 319 // (for the red, green, and blue components, which need to be
mjr 6:cc35eb643e8f 320 // physically wired to separate outputs to allow each color to be
mjr 6:cc35eb643e8f 321 // controlled independently). To facilitate this, we arrange the
mjr 6:cc35eb643e8f 322 // PWM-enabled outputs so that they're grouped together in the
mjr 6:cc35eb643e8f 323 // port numbering scheme. Unfortunately, these outputs aren't
mjr 6:cc35eb643e8f 324 // together in a single group in the physical pin layout, so to
mjr 6:cc35eb643e8f 325 // group them logically in the LED-Wiz port numbering scheme, we
mjr 6:cc35eb643e8f 326 // have to break up the overall numbering scheme into several blocks.
mjr 6:cc35eb643e8f 327 // So our port numbering goes sequentially down each column of
mjr 6:cc35eb643e8f 328 // header pins, but there are several break points where we have
mjr 6:cc35eb643e8f 329 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 6:cc35eb643e8f 330 // logically.
mjr 6:cc35eb643e8f 331 //
mjr 6:cc35eb643e8f 332 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 6:cc35eb643e8f 333 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 6:cc35eb643e8f 334 // documentation - this is the physical pin that the port controls.
mjr 6:cc35eb643e8f 335 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 6:cc35eb643e8f 336 // number that you use on the PC side (in the DirectOutput config
mjr 6:cc35eb643e8f 337 // file, for example) to address the port. PWM-capable ports are
mjr 6:cc35eb643e8f 338 // marked as such - we group the PWM-capable ports into the first
mjr 6:cc35eb643e8f 339 // 10 LED-Wiz port numbers.
mjr 6:cc35eb643e8f 340 //
mjr 6:cc35eb643e8f 341 struct {
mjr 6:cc35eb643e8f 342 PinName pin;
mjr 6:cc35eb643e8f 343 bool isPWM;
mjr 6:cc35eb643e8f 344 } ledWizPortMap[32] = {
mjr 6:cc35eb643e8f 345 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 6:cc35eb643e8f 346 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 6:cc35eb643e8f 347 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 6:cc35eb643e8f 348 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 6:cc35eb643e8f 349 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 6:cc35eb643e8f 350 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 6:cc35eb643e8f 351 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 6:cc35eb643e8f 352 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 6:cc35eb643e8f 353 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 6:cc35eb643e8f 354 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 9:fd65b0a94720 355 { PTD2, false }, // pin J2-8, LW port 11
mjr 9:fd65b0a94720 356 { PTC8, false }, // pin J1-14, LW port 12
mjr 9:fd65b0a94720 357 { PTC9, false }, // pin J1-16, LW port 13
mjr 9:fd65b0a94720 358 { PTC7, false }, // pin J1-1, LW port 14
mjr 9:fd65b0a94720 359 { PTC0, false }, // pin J1-3, LW port 15
mjr 9:fd65b0a94720 360 { PTC3, false }, // pin J1-5, LW port 16
mjr 9:fd65b0a94720 361 { PTC4, false }, // pin J1-7, LW port 17
mjr 9:fd65b0a94720 362 { PTC5, false }, // pin J1-9, LW port 18
mjr 9:fd65b0a94720 363 { PTC6, false }, // pin J1-11, LW port 19
mjr 9:fd65b0a94720 364 { PTC10, false }, // pin J1-13, LW port 20
mjr 9:fd65b0a94720 365 { PTC11, false }, // pin J1-15, LW port 21
mjr 9:fd65b0a94720 366 { PTC12, false }, // pin J2-1, LW port 22
mjr 9:fd65b0a94720 367 { PTC13, false }, // pin J2-3, LW port 23
mjr 9:fd65b0a94720 368 { PTC16, false }, // pin J2-5, LW port 24
mjr 9:fd65b0a94720 369 { PTC17, false }, // pin J2-7, LW port 25
mjr 9:fd65b0a94720 370 { PTA16, false }, // pin J2-9, LW port 26
mjr 9:fd65b0a94720 371 { PTA17, false }, // pin J2-11, LW port 27
mjr 9:fd65b0a94720 372 { PTE31, false }, // pin J2-13, LW port 28
mjr 6:cc35eb643e8f 373 { PTD6, false }, // pin J2-17, LW port 29
mjr 6:cc35eb643e8f 374 { PTD7, false }, // pin J2-19, LW port 30
mjr 6:cc35eb643e8f 375 { PTE0, false }, // pin J2-18, LW port 31
mjr 6:cc35eb643e8f 376 { PTE1, false } // pin J2-20, LW port 32
mjr 6:cc35eb643e8f 377 };
mjr 6:cc35eb643e8f 378
mjr 6:cc35eb643e8f 379
mjr 5:a70c0bce770d 380 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 5:a70c0bce770d 381 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 5:a70c0bce770d 382
mjr 5:a70c0bce770d 383 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 5:a70c0bce770d 384 #define MMA8451_SCL_PIN PTE25
mjr 5:a70c0bce770d 385 #define MMA8451_SDA_PIN PTE24
mjr 5:a70c0bce770d 386
mjr 5:a70c0bce770d 387 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 5:a70c0bce770d 388 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 5:a70c0bce770d 389 // wired on this board to the MMA8451 interrupt controller.
mjr 5:a70c0bce770d 390 #define MMA8451_INT_PIN PTA15
mjr 5:a70c0bce770d 391
mjr 6:cc35eb643e8f 392 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 393 #define JOYMAX 4096
mjr 6:cc35eb643e8f 394
mjr 5:a70c0bce770d 395
mjr 5:a70c0bce770d 396 // ---------------------------------------------------------------------------
mjr 9:fd65b0a94720 397 // utilities
mjr 9:fd65b0a94720 398
mjr 9:fd65b0a94720 399 // number of elements in an array
mjr 9:fd65b0a94720 400 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 9:fd65b0a94720 401
mjr 9:fd65b0a94720 402 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 403 //
mjr 5:a70c0bce770d 404 // LedWiz emulation
mjr 5:a70c0bce770d 405 //
mjr 5:a70c0bce770d 406
mjr 0:5acbbe3f4cf4 407 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 408
mjr 6:cc35eb643e8f 409 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 410 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 411 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 412 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 413 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 414 // outs.
mjr 6:cc35eb643e8f 415 class LwOut
mjr 6:cc35eb643e8f 416 {
mjr 6:cc35eb643e8f 417 public:
mjr 6:cc35eb643e8f 418 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 419 };
mjr 6:cc35eb643e8f 420 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 421 {
mjr 6:cc35eb643e8f 422 public:
mjr 6:cc35eb643e8f 423 LwPwmOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 424 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 425 PwmOut p;
mjr 6:cc35eb643e8f 426 };
mjr 6:cc35eb643e8f 427 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 428 {
mjr 6:cc35eb643e8f 429 public:
mjr 6:cc35eb643e8f 430 LwDigOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 431 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 432 DigitalOut p;
mjr 6:cc35eb643e8f 433 };
mjr 6:cc35eb643e8f 434
mjr 6:cc35eb643e8f 435 // output pin array
mjr 6:cc35eb643e8f 436 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 437
mjr 6:cc35eb643e8f 438 // initialize the output pin array
mjr 6:cc35eb643e8f 439 void initLwOut()
mjr 6:cc35eb643e8f 440 {
mjr 9:fd65b0a94720 441 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 442 {
mjr 6:cc35eb643e8f 443 PinName p = ledWizPortMap[i].pin;
mjr 6:cc35eb643e8f 444 lwPin[i] = (ledWizPortMap[i].isPWM
mjr 6:cc35eb643e8f 445 ? (LwOut *)new LwPwmOut(p)
mjr 6:cc35eb643e8f 446 : (LwOut *)new LwDigOut(p));
mjr 6:cc35eb643e8f 447 }
mjr 6:cc35eb643e8f 448 }
mjr 6:cc35eb643e8f 449
mjr 0:5acbbe3f4cf4 450 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 451 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 452
mjr 0:5acbbe3f4cf4 453 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 454 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 455 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 456 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 457 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 458 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 459 };
mjr 0:5acbbe3f4cf4 460
mjr 1:d913e0afb2ac 461 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 462 {
mjr 1:d913e0afb2ac 463 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 464 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 465 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 466 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 467 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 468 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 469 return 0.0;
mjr 0:5acbbe3f4cf4 470 else
mjr 0:5acbbe3f4cf4 471 return 1.0;
mjr 0:5acbbe3f4cf4 472 }
mjr 0:5acbbe3f4cf4 473 else {
mjr 0:5acbbe3f4cf4 474 // off
mjr 0:5acbbe3f4cf4 475 return 1.0;
mjr 0:5acbbe3f4cf4 476 }
mjr 0:5acbbe3f4cf4 477 }
mjr 0:5acbbe3f4cf4 478
mjr 1:d913e0afb2ac 479 static void updateWizOuts()
mjr 1:d913e0afb2ac 480 {
mjr 6:cc35eb643e8f 481 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 482 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 483 }
mjr 1:d913e0afb2ac 484
mjr 5:a70c0bce770d 485 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 486 //
mjr 5:a70c0bce770d 487 // Non-volatile memory (NVM)
mjr 5:a70c0bce770d 488 //
mjr 0:5acbbe3f4cf4 489
mjr 5:a70c0bce770d 490 // Structure defining our NVM storage layout. We store a small
mjr 2:c174f9ee414a 491 // amount of persistent data in flash memory to retain calibration
mjr 5:a70c0bce770d 492 // data when powered off.
mjr 2:c174f9ee414a 493 struct NVM
mjr 2:c174f9ee414a 494 {
mjr 2:c174f9ee414a 495 // checksum - we use this to determine if the flash record
mjr 6:cc35eb643e8f 496 // has been properly initialized
mjr 2:c174f9ee414a 497 uint32_t checksum;
mjr 2:c174f9ee414a 498
mjr 2:c174f9ee414a 499 // signature value
mjr 2:c174f9ee414a 500 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 6:cc35eb643e8f 501 static const uint16_t VERSION = 0x0003;
mjr 6:cc35eb643e8f 502
mjr 6:cc35eb643e8f 503 // Is the data structure valid? We test the signature and
mjr 6:cc35eb643e8f 504 // checksum to determine if we've been properly stored.
mjr 6:cc35eb643e8f 505 int valid() const
mjr 6:cc35eb643e8f 506 {
mjr 6:cc35eb643e8f 507 return (d.sig == SIGNATURE
mjr 6:cc35eb643e8f 508 && d.vsn == VERSION
mjr 6:cc35eb643e8f 509 && d.sz == sizeof(NVM)
mjr 6:cc35eb643e8f 510 && checksum == CRC32(&d, sizeof(d)));
mjr 6:cc35eb643e8f 511 }
mjr 6:cc35eb643e8f 512
mjr 6:cc35eb643e8f 513 // save to non-volatile memory
mjr 6:cc35eb643e8f 514 void save(FreescaleIAP &iap, int addr)
mjr 6:cc35eb643e8f 515 {
mjr 6:cc35eb643e8f 516 // update the checksum and structure size
mjr 6:cc35eb643e8f 517 checksum = CRC32(&d, sizeof(d));
mjr 6:cc35eb643e8f 518 d.sz = sizeof(NVM);
mjr 6:cc35eb643e8f 519
mjr 6:cc35eb643e8f 520 // erase the sector
mjr 6:cc35eb643e8f 521 iap.erase_sector(addr);
mjr 6:cc35eb643e8f 522
mjr 6:cc35eb643e8f 523 // save the data
mjr 6:cc35eb643e8f 524 iap.program_flash(addr, this, sizeof(*this));
mjr 6:cc35eb643e8f 525 }
mjr 2:c174f9ee414a 526
mjr 9:fd65b0a94720 527 // reset calibration data for calibration mode
mjr 9:fd65b0a94720 528 void resetPlunger()
mjr 9:fd65b0a94720 529 {
mjr 9:fd65b0a94720 530 // set extremes for the calibration data
mjr 9:fd65b0a94720 531 d.plungerMax = 0;
mjr 9:fd65b0a94720 532 d.plungerZero = npix;
mjr 9:fd65b0a94720 533 d.plungerMin = npix;
mjr 9:fd65b0a94720 534 }
mjr 9:fd65b0a94720 535
mjr 2:c174f9ee414a 536 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 537 struct
mjr 2:c174f9ee414a 538 {
mjr 6:cc35eb643e8f 539 // Signature, structure version, and structure size - further verification
mjr 6:cc35eb643e8f 540 // that we have valid initialized data. The size is a simple proxy for a
mjr 6:cc35eb643e8f 541 // structure version, as the most common type of change to the structure as
mjr 6:cc35eb643e8f 542 // the software evolves will be the addition of new elements. We also
mjr 6:cc35eb643e8f 543 // provide an explicit version number that we can update manually if we
mjr 6:cc35eb643e8f 544 // make any changes that don't affect the structure size but would affect
mjr 6:cc35eb643e8f 545 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 2:c174f9ee414a 546 uint32_t sig;
mjr 2:c174f9ee414a 547 uint16_t vsn;
mjr 6:cc35eb643e8f 548 int sz;
mjr 2:c174f9ee414a 549
mjr 6:cc35eb643e8f 550 // has the plunger been manually calibrated?
mjr 6:cc35eb643e8f 551 int plungerCal;
mjr 6:cc35eb643e8f 552
mjr 2:c174f9ee414a 553 // plunger calibration min and max
mjr 2:c174f9ee414a 554 int plungerMin;
mjr 6:cc35eb643e8f 555 int plungerZero;
mjr 2:c174f9ee414a 556 int plungerMax;
mjr 6:cc35eb643e8f 557
mjr 6:cc35eb643e8f 558 // is the CCD enabled?
mjr 6:cc35eb643e8f 559 int ccdEnabled;
mjr 6:cc35eb643e8f 560
mjr 6:cc35eb643e8f 561 // LedWiz unit number
mjr 6:cc35eb643e8f 562 uint8_t ledWizUnitNo;
mjr 2:c174f9ee414a 563 } d;
mjr 2:c174f9ee414a 564 };
mjr 2:c174f9ee414a 565
mjr 5:a70c0bce770d 566
mjr 5:a70c0bce770d 567 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 568 //
mjr 5:a70c0bce770d 569 // Customization joystick subbclass
mjr 5:a70c0bce770d 570 //
mjr 5:a70c0bce770d 571
mjr 5:a70c0bce770d 572 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 573 {
mjr 5:a70c0bce770d 574 public:
mjr 5:a70c0bce770d 575 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 576 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 577 {
mjr 5:a70c0bce770d 578 suspended_ = false;
mjr 5:a70c0bce770d 579 }
mjr 5:a70c0bce770d 580
mjr 5:a70c0bce770d 581 // are we connected?
mjr 5:a70c0bce770d 582 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 583
mjr 5:a70c0bce770d 584 // Are we in suspend mode?
mjr 5:a70c0bce770d 585 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 586
mjr 5:a70c0bce770d 587 protected:
mjr 5:a70c0bce770d 588 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 589 { suspended_ = suspended; }
mjr 5:a70c0bce770d 590
mjr 5:a70c0bce770d 591 // are we suspended?
mjr 5:a70c0bce770d 592 int suspended_;
mjr 5:a70c0bce770d 593 };
mjr 5:a70c0bce770d 594
mjr 5:a70c0bce770d 595 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 596 //
mjr 6:cc35eb643e8f 597 // Some simple math service routines
mjr 6:cc35eb643e8f 598 //
mjr 6:cc35eb643e8f 599
mjr 6:cc35eb643e8f 600 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 601 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 602
mjr 6:cc35eb643e8f 603 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 604 //
mjr 5:a70c0bce770d 605 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 606 //
mjr 5:a70c0bce770d 607
mjr 5:a70c0bce770d 608 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 609 //
mjr 5:a70c0bce770d 610 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 611 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 612 // automatic calibration.
mjr 5:a70c0bce770d 613 //
mjr 5:a70c0bce770d 614 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 615 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 616 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 617 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 618 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 619 // every sample.
mjr 5:a70c0bce770d 620 //
mjr 6:cc35eb643e8f 621 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 622 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 623 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 624 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 625 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 626 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 627 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 628 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 629 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 630 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 631 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 632 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 633 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 634 // of nudging, say).
mjr 5:a70c0bce770d 635 //
mjr 5:a70c0bce770d 636
mjr 6:cc35eb643e8f 637 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 638 struct AccHist
mjr 5:a70c0bce770d 639 {
mjr 6:cc35eb643e8f 640 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 641 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 642 {
mjr 6:cc35eb643e8f 643 // save the raw position
mjr 6:cc35eb643e8f 644 this->x = x;
mjr 6:cc35eb643e8f 645 this->y = y;
mjr 6:cc35eb643e8f 646 this->d = distance(prv);
mjr 6:cc35eb643e8f 647 }
mjr 6:cc35eb643e8f 648
mjr 6:cc35eb643e8f 649 // reading for this entry
mjr 5:a70c0bce770d 650 float x, y;
mjr 5:a70c0bce770d 651
mjr 6:cc35eb643e8f 652 // distance from previous entry
mjr 6:cc35eb643e8f 653 float d;
mjr 5:a70c0bce770d 654
mjr 6:cc35eb643e8f 655 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 656 float xtot, ytot;
mjr 6:cc35eb643e8f 657 int cnt;
mjr 6:cc35eb643e8f 658
mjr 6:cc35eb643e8f 659 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 660 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 661 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 662 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 663
mjr 6:cc35eb643e8f 664 float distance(AccHist *p)
mjr 6:cc35eb643e8f 665 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 666 };
mjr 5:a70c0bce770d 667
mjr 5:a70c0bce770d 668 // accelerometer wrapper class
mjr 3:3514575d4f86 669 class Accel
mjr 3:3514575d4f86 670 {
mjr 3:3514575d4f86 671 public:
mjr 3:3514575d4f86 672 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 673 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 674 {
mjr 5:a70c0bce770d 675 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 676 irqPin_ = irqPin;
mjr 5:a70c0bce770d 677
mjr 5:a70c0bce770d 678 // reset and initialize
mjr 5:a70c0bce770d 679 reset();
mjr 5:a70c0bce770d 680 }
mjr 5:a70c0bce770d 681
mjr 5:a70c0bce770d 682 void reset()
mjr 5:a70c0bce770d 683 {
mjr 6:cc35eb643e8f 684 // clear the center point
mjr 6:cc35eb643e8f 685 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 686
mjr 6:cc35eb643e8f 687 // start the calibration timer
mjr 5:a70c0bce770d 688 tCenter_.start();
mjr 5:a70c0bce770d 689 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 690
mjr 5:a70c0bce770d 691 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 692 mma_.init();
mjr 6:cc35eb643e8f 693
mjr 6:cc35eb643e8f 694 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 695 vx_ = vy_ = 0;
mjr 3:3514575d4f86 696
mjr 6:cc35eb643e8f 697 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 698 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 699 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 700
mjr 3:3514575d4f86 701 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 702 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 703
mjr 3:3514575d4f86 704 // start our timers
mjr 3:3514575d4f86 705 tGet_.start();
mjr 3:3514575d4f86 706 tInt_.start();
mjr 3:3514575d4f86 707 }
mjr 3:3514575d4f86 708
mjr 9:fd65b0a94720 709 void get(int &x, int &y)
mjr 3:3514575d4f86 710 {
mjr 3:3514575d4f86 711 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 712 __disable_irq();
mjr 3:3514575d4f86 713
mjr 3:3514575d4f86 714 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 715 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 716 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 717
mjr 6:cc35eb643e8f 718 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 719 vx_ = vy_ = 0;
mjr 3:3514575d4f86 720
mjr 3:3514575d4f86 721 // get the time since the last get() sample
mjr 3:3514575d4f86 722 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 723 tGet_.reset();
mjr 3:3514575d4f86 724
mjr 3:3514575d4f86 725 // done manipulating the shared data
mjr 3:3514575d4f86 726 __enable_irq();
mjr 3:3514575d4f86 727
mjr 6:cc35eb643e8f 728 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 729 vx /= dt;
mjr 6:cc35eb643e8f 730 vy /= dt;
mjr 6:cc35eb643e8f 731
mjr 6:cc35eb643e8f 732 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 733 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 734 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 735
mjr 5:a70c0bce770d 736 // check for auto-centering every so often
mjr 5:a70c0bce770d 737 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 738 {
mjr 5:a70c0bce770d 739 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 740 AccHist *prv = p;
mjr 5:a70c0bce770d 741 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 742 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 743 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 744
mjr 5:a70c0bce770d 745 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 746 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 747 {
mjr 5:a70c0bce770d 748 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 749 static const float accTol = .01;
mjr 6:cc35eb643e8f 750 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 751 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 752 && p0[1].d < accTol
mjr 6:cc35eb643e8f 753 && p0[2].d < accTol
mjr 6:cc35eb643e8f 754 && p0[3].d < accTol
mjr 6:cc35eb643e8f 755 && p0[4].d < accTol)
mjr 5:a70c0bce770d 756 {
mjr 6:cc35eb643e8f 757 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 758 // the samples over the rest period
mjr 6:cc35eb643e8f 759 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 760 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 761 }
mjr 5:a70c0bce770d 762 }
mjr 5:a70c0bce770d 763 else
mjr 5:a70c0bce770d 764 {
mjr 5:a70c0bce770d 765 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 766 ++nAccPrv_;
mjr 5:a70c0bce770d 767 }
mjr 6:cc35eb643e8f 768
mjr 6:cc35eb643e8f 769 // clear the new item's running totals
mjr 6:cc35eb643e8f 770 p->clearAvg();
mjr 5:a70c0bce770d 771
mjr 5:a70c0bce770d 772 // reset the timer
mjr 5:a70c0bce770d 773 tCenter_.reset();
mjr 5:a70c0bce770d 774 }
mjr 5:a70c0bce770d 775
mjr 6:cc35eb643e8f 776 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 777 x = rawToReport(vx);
mjr 6:cc35eb643e8f 778 y = rawToReport(vy);
mjr 5:a70c0bce770d 779
mjr 6:cc35eb643e8f 780 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 781 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 782 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 783 #endif
mjr 3:3514575d4f86 784 }
mjr 3:3514575d4f86 785
mjr 3:3514575d4f86 786 private:
mjr 6:cc35eb643e8f 787 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 788 int rawToReport(float v)
mjr 5:a70c0bce770d 789 {
mjr 6:cc35eb643e8f 790 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 791 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 792
mjr 6:cc35eb643e8f 793 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 794 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 795 static const int filter[] = {
mjr 6:cc35eb643e8f 796 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 797 0,
mjr 6:cc35eb643e8f 798 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 799 };
mjr 6:cc35eb643e8f 800 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 801 }
mjr 5:a70c0bce770d 802
mjr 3:3514575d4f86 803 // interrupt handler
mjr 3:3514575d4f86 804 void isr()
mjr 3:3514575d4f86 805 {
mjr 3:3514575d4f86 806 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 807 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 808 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 809 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 810 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 811 float x, y, z;
mjr 5:a70c0bce770d 812 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 813
mjr 3:3514575d4f86 814 // calculate the time since the last interrupt
mjr 3:3514575d4f86 815 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 816 tInt_.reset();
mjr 6:cc35eb643e8f 817
mjr 6:cc35eb643e8f 818 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 819 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 820 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 821
mjr 6:cc35eb643e8f 822 // store the updates
mjr 6:cc35eb643e8f 823 ax_ = x;
mjr 6:cc35eb643e8f 824 ay_ = y;
mjr 6:cc35eb643e8f 825 az_ = z;
mjr 3:3514575d4f86 826 }
mjr 3:3514575d4f86 827
mjr 3:3514575d4f86 828 // underlying accelerometer object
mjr 3:3514575d4f86 829 MMA8451Q mma_;
mjr 3:3514575d4f86 830
mjr 5:a70c0bce770d 831 // last raw acceleration readings
mjr 6:cc35eb643e8f 832 float ax_, ay_, az_;
mjr 5:a70c0bce770d 833
mjr 6:cc35eb643e8f 834 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 835 float vx_, vy_;
mjr 6:cc35eb643e8f 836
mjr 3:3514575d4f86 837 // timer for measuring time between get() samples
mjr 3:3514575d4f86 838 Timer tGet_;
mjr 3:3514575d4f86 839
mjr 3:3514575d4f86 840 // timer for measuring time between interrupts
mjr 3:3514575d4f86 841 Timer tInt_;
mjr 5:a70c0bce770d 842
mjr 6:cc35eb643e8f 843 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 844 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 845 // at rest.
mjr 6:cc35eb643e8f 846 float cx_, cy_;
mjr 5:a70c0bce770d 847
mjr 5:a70c0bce770d 848 // timer for atuo-centering
mjr 5:a70c0bce770d 849 Timer tCenter_;
mjr 6:cc35eb643e8f 850
mjr 6:cc35eb643e8f 851 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 852 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 853 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 854 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 855 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 856 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 857 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 858 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 859 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 860 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 861 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 862 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 863 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 864 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 865 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 866
mjr 5:a70c0bce770d 867 // interurupt pin name
mjr 5:a70c0bce770d 868 PinName irqPin_;
mjr 5:a70c0bce770d 869
mjr 5:a70c0bce770d 870 // interrupt router
mjr 5:a70c0bce770d 871 InterruptIn intIn_;
mjr 3:3514575d4f86 872 };
mjr 3:3514575d4f86 873
mjr 5:a70c0bce770d 874
mjr 5:a70c0bce770d 875 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 876 //
mjr 5:a70c0bce770d 877 // Clear the I2C bus for the MMA8451!. This seems necessary some of the time
mjr 5:a70c0bce770d 878 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 879 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 880 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 5:a70c0bce770d 881 // the SCL line is supposed to clear this conidtion.
mjr 5:a70c0bce770d 882 //
mjr 5:a70c0bce770d 883 void clear_i2c()
mjr 5:a70c0bce770d 884 {
mjr 5:a70c0bce770d 885 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 886 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 887 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 888
mjr 5:a70c0bce770d 889 // clock the SCL 9 times
mjr 5:a70c0bce770d 890 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 891 {
mjr 5:a70c0bce770d 892 scl = 1;
mjr 5:a70c0bce770d 893 wait_us(20);
mjr 5:a70c0bce770d 894 scl = 0;
mjr 5:a70c0bce770d 895 wait_us(20);
mjr 5:a70c0bce770d 896 }
mjr 5:a70c0bce770d 897 }
mjr 5:a70c0bce770d 898
mjr 5:a70c0bce770d 899 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 900 //
mjr 5:a70c0bce770d 901 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 902 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 903 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 904 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 905 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 906 // port outputs.
mjr 5:a70c0bce770d 907 //
mjr 0:5acbbe3f4cf4 908 int main(void)
mjr 0:5acbbe3f4cf4 909 {
mjr 1:d913e0afb2ac 910 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 911 ledR = 1;
mjr 4:02c7cd7b2183 912 ledG = 1;
mjr 4:02c7cd7b2183 913 ledB = 1;
mjr 1:d913e0afb2ac 914
mjr 6:cc35eb643e8f 915 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 916 initLwOut();
mjr 6:cc35eb643e8f 917
mjr 6:cc35eb643e8f 918 // we don't need a reset yet
mjr 6:cc35eb643e8f 919 bool needReset = false;
mjr 6:cc35eb643e8f 920
mjr 5:a70c0bce770d 921 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 922 clear_i2c();
mjr 5:a70c0bce770d 923
mjr 2:c174f9ee414a 924 // set up a flash memory controller
mjr 2:c174f9ee414a 925 FreescaleIAP iap;
mjr 2:c174f9ee414a 926
mjr 2:c174f9ee414a 927 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 928 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 929 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 930 NVM cfg;
mjr 2:c174f9ee414a 931
mjr 2:c174f9ee414a 932 // check for valid flash
mjr 6:cc35eb643e8f 933 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 934
mjr 2:c174f9ee414a 935 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 936 if (flash_valid) {
mjr 2:c174f9ee414a 937 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 938 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 939 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 940 }
mjr 2:c174f9ee414a 941 else {
mjr 2:c174f9ee414a 942 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 943 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 944 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 945 cfg.d.plungerCal = 0;
mjr 6:cc35eb643e8f 946 cfg.d.plungerZero = 0;
mjr 2:c174f9ee414a 947 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 948 cfg.d.plungerMax = npix;
mjr 6:cc35eb643e8f 949 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 6:cc35eb643e8f 950 cfg.d.ccdEnabled = true;
mjr 2:c174f9ee414a 951 }
mjr 1:d913e0afb2ac 952
mjr 6:cc35eb643e8f 953 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 954 // number from the saved configuration.
mjr 6:cc35eb643e8f 955 MyUSBJoystick js(
mjr 6:cc35eb643e8f 956 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 957 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 958 USB_VERSION_NO);
mjr 6:cc35eb643e8f 959
mjr 1:d913e0afb2ac 960 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 961 Timer calBtnTimer;
mjr 1:d913e0afb2ac 962 calBtnTimer.start();
mjr 1:d913e0afb2ac 963 int calBtnLit = false;
mjr 1:d913e0afb2ac 964
mjr 1:d913e0afb2ac 965 // Calibration button state:
mjr 1:d913e0afb2ac 966 // 0 = not pushed
mjr 1:d913e0afb2ac 967 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 968 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 969 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 970 int calBtnState = 0;
mjr 1:d913e0afb2ac 971
mjr 1:d913e0afb2ac 972 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 973 Timer hbTimer;
mjr 1:d913e0afb2ac 974 hbTimer.start();
mjr 1:d913e0afb2ac 975 int hb = 0;
mjr 5:a70c0bce770d 976 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 977
mjr 1:d913e0afb2ac 978 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 979 Timer acTimer;
mjr 1:d913e0afb2ac 980 acTimer.start();
mjr 1:d913e0afb2ac 981
mjr 0:5acbbe3f4cf4 982 // create the accelerometer object
mjr 5:a70c0bce770d 983 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 984
mjr 0:5acbbe3f4cf4 985 // create the CCD array object
mjr 1:d913e0afb2ac 986 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 987
mjr 1:d913e0afb2ac 988 // last accelerometer report, in mouse coordinates
mjr 6:cc35eb643e8f 989 int x = 0, y = 0, z = 0;
mjr 6:cc35eb643e8f 990
mjr 6:cc35eb643e8f 991 // previous two plunger readings, for "debouncing" the results (z0 is
mjr 6:cc35eb643e8f 992 // the most recent, z1 is the one before that)
mjr 6:cc35eb643e8f 993 int z0 = 0, z1 = 0, z2 = 0;
mjr 6:cc35eb643e8f 994
mjr 6:cc35eb643e8f 995 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 996 // plunger movement from a retracted position towards the rest position.
mjr 6:cc35eb643e8f 997 // The actual plunger spring return speed seems to be too slow for VP,
mjr 6:cc35eb643e8f 998 // so when we detect the start of this motion, we immediately tell VP
mjr 6:cc35eb643e8f 999 // to return the plunger to rest, then we monitor the real plunger
mjr 6:cc35eb643e8f 1000 // until it atcually stops.
mjr 9:fd65b0a94720 1001 int firing = 0;
mjr 2:c174f9ee414a 1002
mjr 2:c174f9ee414a 1003 // start the first CCD integration cycle
mjr 2:c174f9ee414a 1004 ccd.clear();
mjr 9:fd65b0a94720 1005
mjr 9:fd65b0a94720 1006 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1007 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1008 // of these bits:
mjr 9:fd65b0a94720 1009 // 0x01 -> plunger sensor enabled
mjr 9:fd65b0a94720 1010 uint16_t statusFlags = (cfg.d.ccdEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1011
mjr 10:976666ffa4ef 1012 // flag: send a pixel dump after the next read
mjr 10:976666ffa4ef 1013 bool reportPix = false;
mjr 1:d913e0afb2ac 1014
mjr 1:d913e0afb2ac 1015 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1016 // host requests
mjr 0:5acbbe3f4cf4 1017 for (;;)
mjr 0:5acbbe3f4cf4 1018 {
mjr 0:5acbbe3f4cf4 1019 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 1020 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 1021 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 1022 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 1023 HID_REPORT report;
mjr 6:cc35eb643e8f 1024 while (js.readNB(&report))
mjr 0:5acbbe3f4cf4 1025 {
mjr 6:cc35eb643e8f 1026 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1027 if (report.length == 8)
mjr 1:d913e0afb2ac 1028 {
mjr 6:cc35eb643e8f 1029 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1030 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1031 {
mjr 6:cc35eb643e8f 1032 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1033 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1034 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1035 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1036
mjr 6:cc35eb643e8f 1037 // update all on/off states
mjr 6:cc35eb643e8f 1038 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1039 {
mjr 6:cc35eb643e8f 1040 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1041 bit = 1;
mjr 6:cc35eb643e8f 1042 ++ri;
mjr 6:cc35eb643e8f 1043 }
mjr 6:cc35eb643e8f 1044 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1045 }
mjr 6:cc35eb643e8f 1046
mjr 6:cc35eb643e8f 1047 // update the physical outputs
mjr 1:d913e0afb2ac 1048 updateWizOuts();
mjr 6:cc35eb643e8f 1049
mjr 6:cc35eb643e8f 1050 // reset the PBA counter
mjr 6:cc35eb643e8f 1051 pbaIdx = 0;
mjr 6:cc35eb643e8f 1052 }
mjr 6:cc35eb643e8f 1053 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1054 {
mjr 6:cc35eb643e8f 1055 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1056 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1057 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1058 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1059 // message type.
mjr 6:cc35eb643e8f 1060 if (data[1] == 1)
mjr 6:cc35eb643e8f 1061 {
mjr 9:fd65b0a94720 1062 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1063 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1064 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1065 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1066
mjr 6:cc35eb643e8f 1067 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1068 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1069 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1070
mjr 6:cc35eb643e8f 1071 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1072 cfg.d.ledWizUnitNo = newUnitNo;
mjr 6:cc35eb643e8f 1073 cfg.d.ccdEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1074
mjr 9:fd65b0a94720 1075 // update the status flags
mjr 9:fd65b0a94720 1076 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1077
mjr 9:fd65b0a94720 1078 // if the ccd is no longer enabled, use 0 for z reports
mjr 9:fd65b0a94720 1079 if (!cfg.d.ccdEnabled)
mjr 9:fd65b0a94720 1080 z = 0;
mjr 9:fd65b0a94720 1081
mjr 6:cc35eb643e8f 1082 // save the configuration
mjr 6:cc35eb643e8f 1083 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1084 }
mjr 9:fd65b0a94720 1085 else if (data[1] == 2)
mjr 9:fd65b0a94720 1086 {
mjr 9:fd65b0a94720 1087 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1088 // (No parameters)
mjr 9:fd65b0a94720 1089
mjr 9:fd65b0a94720 1090 // enter calibration mode
mjr 9:fd65b0a94720 1091 calBtnState = 3;
mjr 9:fd65b0a94720 1092 calBtnTimer.reset();
mjr 9:fd65b0a94720 1093 cfg.resetPlunger();
mjr 9:fd65b0a94720 1094 }
mjr 10:976666ffa4ef 1095 else if (data[1] == 3)
mjr 10:976666ffa4ef 1096 {
mjr 10:976666ffa4ef 1097 // 3 = pixel dump
mjr 10:976666ffa4ef 1098 // (No parameters)
mjr 10:976666ffa4ef 1099 reportPix = true;
mjr 10:976666ffa4ef 1100
mjr 10:976666ffa4ef 1101 // show purple until we finish sending the report
mjr 10:976666ffa4ef 1102 ledR = 0;
mjr 10:976666ffa4ef 1103 ledB = 0;
mjr 10:976666ffa4ef 1104 ledG = 1;
mjr 10:976666ffa4ef 1105 }
mjr 6:cc35eb643e8f 1106 }
mjr 6:cc35eb643e8f 1107 else
mjr 6:cc35eb643e8f 1108 {
mjr 6:cc35eb643e8f 1109 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1110 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1111 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1112 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1113 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1114
mjr 6:cc35eb643e8f 1115 // update all output profile settings
mjr 6:cc35eb643e8f 1116 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1117 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1118
mjr 6:cc35eb643e8f 1119 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1120 if (pbaIdx == 24)
mjr 6:cc35eb643e8f 1121 updateWizOuts();
mjr 6:cc35eb643e8f 1122
mjr 6:cc35eb643e8f 1123 // advance to the next bank
mjr 6:cc35eb643e8f 1124 pbaIdx = (pbaIdx + 8) & 31;
mjr 6:cc35eb643e8f 1125 }
mjr 0:5acbbe3f4cf4 1126 }
mjr 0:5acbbe3f4cf4 1127 }
mjr 1:d913e0afb2ac 1128
mjr 1:d913e0afb2ac 1129 // check for plunger calibration
mjr 1:d913e0afb2ac 1130 if (!calBtn)
mjr 0:5acbbe3f4cf4 1131 {
mjr 1:d913e0afb2ac 1132 // check the state
mjr 1:d913e0afb2ac 1133 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1134 {
mjr 1:d913e0afb2ac 1135 case 0:
mjr 1:d913e0afb2ac 1136 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1137 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1138 calBtnState = 1;
mjr 1:d913e0afb2ac 1139 break;
mjr 1:d913e0afb2ac 1140
mjr 1:d913e0afb2ac 1141 case 1:
mjr 1:d913e0afb2ac 1142 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1143 // passed, start the hold period
mjr 9:fd65b0a94720 1144 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1145 calBtnState = 2;
mjr 1:d913e0afb2ac 1146 break;
mjr 1:d913e0afb2ac 1147
mjr 1:d913e0afb2ac 1148 case 2:
mjr 1:d913e0afb2ac 1149 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1150 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1151 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1152 {
mjr 1:d913e0afb2ac 1153 // enter calibration mode
mjr 1:d913e0afb2ac 1154 calBtnState = 3;
mjr 9:fd65b0a94720 1155 calBtnTimer.reset();
mjr 9:fd65b0a94720 1156 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1157 }
mjr 1:d913e0afb2ac 1158 break;
mjr 2:c174f9ee414a 1159
mjr 2:c174f9ee414a 1160 case 3:
mjr 9:fd65b0a94720 1161 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1162 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1163 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1164 break;
mjr 0:5acbbe3f4cf4 1165 }
mjr 0:5acbbe3f4cf4 1166 }
mjr 1:d913e0afb2ac 1167 else
mjr 1:d913e0afb2ac 1168 {
mjr 2:c174f9ee414a 1169 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1170 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1171 // and save the results to flash.
mjr 2:c174f9ee414a 1172 //
mjr 2:c174f9ee414a 1173 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1174 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1175 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1176 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1177 {
mjr 2:c174f9ee414a 1178 // exit calibration mode
mjr 1:d913e0afb2ac 1179 calBtnState = 0;
mjr 2:c174f9ee414a 1180
mjr 6:cc35eb643e8f 1181 // save the updated configuration
mjr 6:cc35eb643e8f 1182 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1183 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1184
mjr 2:c174f9ee414a 1185 // the flash state is now valid
mjr 2:c174f9ee414a 1186 flash_valid = true;
mjr 2:c174f9ee414a 1187 }
mjr 2:c174f9ee414a 1188 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1189 {
mjr 2:c174f9ee414a 1190 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1191 calBtnState = 0;
mjr 2:c174f9ee414a 1192 }
mjr 1:d913e0afb2ac 1193 }
mjr 1:d913e0afb2ac 1194
mjr 1:d913e0afb2ac 1195 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1196 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1197 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1198 {
mjr 1:d913e0afb2ac 1199 case 2:
mjr 1:d913e0afb2ac 1200 // in the hold period - flash the light
mjr 9:fd65b0a94720 1201 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1202 break;
mjr 1:d913e0afb2ac 1203
mjr 1:d913e0afb2ac 1204 case 3:
mjr 1:d913e0afb2ac 1205 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1206 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1207 break;
mjr 1:d913e0afb2ac 1208
mjr 1:d913e0afb2ac 1209 default:
mjr 1:d913e0afb2ac 1210 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1211 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1212 break;
mjr 1:d913e0afb2ac 1213 }
mjr 3:3514575d4f86 1214
mjr 3:3514575d4f86 1215 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1216 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1217 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1218 {
mjr 1:d913e0afb2ac 1219 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1220 if (calBtnLit) {
mjr 2:c174f9ee414a 1221 calBtnLed = 1;
mjr 4:02c7cd7b2183 1222 ledR = 1;
mjr 4:02c7cd7b2183 1223 ledG = 1;
mjr 9:fd65b0a94720 1224 ledB = 0;
mjr 2:c174f9ee414a 1225 }
mjr 2:c174f9ee414a 1226 else {
mjr 2:c174f9ee414a 1227 calBtnLed = 0;
mjr 4:02c7cd7b2183 1228 ledR = 1;
mjr 4:02c7cd7b2183 1229 ledG = 1;
mjr 9:fd65b0a94720 1230 ledB = 1;
mjr 2:c174f9ee414a 1231 }
mjr 1:d913e0afb2ac 1232 }
mjr 1:d913e0afb2ac 1233
mjr 6:cc35eb643e8f 1234 // read the plunger sensor, if it's enabled
mjr 10:976666ffa4ef 1235 uint16_t pix[npix];
mjr 6:cc35eb643e8f 1236 if (cfg.d.ccdEnabled)
mjr 6:cc35eb643e8f 1237 {
mjr 6:cc35eb643e8f 1238 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1239 // clear result on this frame
mjr 6:cc35eb643e8f 1240 int znew = z;
mjr 2:c174f9ee414a 1241
mjr 6:cc35eb643e8f 1242 // read the array
mjr 6:cc35eb643e8f 1243 ccd.read(pix, npix);
mjr 6:cc35eb643e8f 1244
mjr 6:cc35eb643e8f 1245 // get the average brightness at each end of the sensor
mjr 6:cc35eb643e8f 1246 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 6:cc35eb643e8f 1247 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 6:cc35eb643e8f 1248
mjr 6:cc35eb643e8f 1249 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 6:cc35eb643e8f 1250 // compare sums of three pixels at a time to smooth out noise
mjr 6:cc35eb643e8f 1251 long midpt = (avg1 + avg2)/2 * 3;
mjr 6:cc35eb643e8f 1252
mjr 6:cc35eb643e8f 1253 // Work from the bright end to the dark end. VP interprets the
mjr 6:cc35eb643e8f 1254 // Z axis value as the amount the plunger is pulled: zero is the
mjr 6:cc35eb643e8f 1255 // rest position, and the axis maximum is fully pulled. So we
mjr 6:cc35eb643e8f 1256 // essentially want to report how much of the sensor is lit,
mjr 6:cc35eb643e8f 1257 // since this increases as the plunger is pulled back.
mjr 6:cc35eb643e8f 1258 int si = 1, di = 1;
mjr 6:cc35eb643e8f 1259 if (avg1 < avg2)
mjr 6:cc35eb643e8f 1260 si = npix - 2, di = -1;
mjr 6:cc35eb643e8f 1261
mjr 6:cc35eb643e8f 1262 // If the bright end and dark end don't differ by enough, skip this
mjr 6:cc35eb643e8f 1263 // reading entirely - we must have an overexposed or underexposed frame.
mjr 6:cc35eb643e8f 1264 // Otherwise proceed with the scan.
mjr 6:cc35eb643e8f 1265 if (labs(avg1 - avg2) > 0x1000)
mjr 6:cc35eb643e8f 1266 {
mjr 6:cc35eb643e8f 1267 uint16_t *pixp = pix + si;
mjr 6:cc35eb643e8f 1268 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 6:cc35eb643e8f 1269 {
mjr 6:cc35eb643e8f 1270 // if we've crossed the midpoint, report this position
mjr 6:cc35eb643e8f 1271 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 6:cc35eb643e8f 1272 {
mjr 6:cc35eb643e8f 1273 // note the new position
mjr 6:cc35eb643e8f 1274 int pos = n;
mjr 6:cc35eb643e8f 1275
mjr 6:cc35eb643e8f 1276 // Calibrate, or apply calibration, depending on the mode.
mjr 6:cc35eb643e8f 1277 // In either case, normalize to our range. VP appears to
mjr 6:cc35eb643e8f 1278 // ignore negative Z axis values.
mjr 6:cc35eb643e8f 1279 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1280 {
mjr 6:cc35eb643e8f 1281 // calibrating - note if we're expanding the calibration envelope
mjr 6:cc35eb643e8f 1282 if (pos < cfg.d.plungerMin)
mjr 6:cc35eb643e8f 1283 cfg.d.plungerMin = pos;
mjr 6:cc35eb643e8f 1284 if (pos < cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1285 cfg.d.plungerZero = pos;
mjr 6:cc35eb643e8f 1286 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1287 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1288
mjr 6:cc35eb643e8f 1289 // normalize to the full physical range while calibrating
mjr 6:cc35eb643e8f 1290 znew = int(round(float(pos)/npix * JOYMAX));
mjr 6:cc35eb643e8f 1291 }
mjr 6:cc35eb643e8f 1292 else
mjr 6:cc35eb643e8f 1293 {
mjr 6:cc35eb643e8f 1294 // Running normally - normalize to the calibration range. Note
mjr 6:cc35eb643e8f 1295 // that values below the zero point are allowed - the zero point
mjr 6:cc35eb643e8f 1296 // represents the park position, where the plunger sits when at
mjr 6:cc35eb643e8f 1297 // rest, but a mechanical plunger has a smmall amount of travel
mjr 6:cc35eb643e8f 1298 // in the "push" direction. We represent forward travel with
mjr 6:cc35eb643e8f 1299 // negative z values.
mjr 6:cc35eb643e8f 1300 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1301 pos = cfg.d.plungerMax;
mjr 6:cc35eb643e8f 1302 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1303 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1304 }
mjr 6:cc35eb643e8f 1305
mjr 6:cc35eb643e8f 1306 // done
mjr 6:cc35eb643e8f 1307 break;
mjr 6:cc35eb643e8f 1308 }
mjr 6:cc35eb643e8f 1309 }
mjr 6:cc35eb643e8f 1310 }
mjr 7:100a25f8bf56 1311
mjr 7:100a25f8bf56 1312 // Determine if the plunger is being fired - i.e., if the player
mjr 7:100a25f8bf56 1313 // has just released the plunger from a retracted position.
mjr 6:cc35eb643e8f 1314 //
mjr 7:100a25f8bf56 1315 // We treat firing as an event. That is, we tell VP when the
mjr 7:100a25f8bf56 1316 // plunger is fired, and then stop sending data until the firing
mjr 7:100a25f8bf56 1317 // is complete, allowing VP to carry out the firing motion using
mjr 7:100a25f8bf56 1318 // its internal model plunger rather than trying to track the
mjr 7:100a25f8bf56 1319 // intermediate positions of the mechanical plunger throughout
mjr 9:fd65b0a94720 1320 // the firing motion. This is essential because the firing
mjr 9:fd65b0a94720 1321 // motion is too fast for us to track - in the time it takes us
mjr 9:fd65b0a94720 1322 // to read one frame, the plunger can make it all the way to the
mjr 9:fd65b0a94720 1323 // zero position and bounce back halfway. Fortunately, the range
mjr 9:fd65b0a94720 1324 // of motions for the plunger is limited, so if we see any rapid
mjr 9:fd65b0a94720 1325 // change of position toward the rest position, it's reasonably
mjr 9:fd65b0a94720 1326 // safe to interpret it as a firing event.
mjr 9:fd65b0a94720 1327 //
mjr 9:fd65b0a94720 1328 // This isn't foolproof. The user can trick us by doing a
mjr 9:fd65b0a94720 1329 // controlled rapid forward push but stopping short of the rest
mjr 9:fd65b0a94720 1330 // position. We'll misinterpret that as a firing event. But
mjr 9:fd65b0a94720 1331 // that's not a natural motion that a user would make with a
mjr 9:fd65b0a94720 1332 // plunger, so it's probably an acceptable false positive.
mjr 9:fd65b0a94720 1333 //
mjr 9:fd65b0a94720 1334 // Possible future enhancement: we could add a second physical
mjr 9:fd65b0a94720 1335 // sensor that detects when the plunger reaches the zero position
mjr 9:fd65b0a94720 1336 // and asserts an interrupt. In the interrupt handler, set a
mjr 9:fd65b0a94720 1337 // flag indicating the zero position signal. On each scan of
mjr 9:fd65b0a94720 1338 // the CCD, also check that flag; if it's set, enter firing
mjr 9:fd65b0a94720 1339 // event mode just as we do now. The key here is that the
mjr 9:fd65b0a94720 1340 // secondary sensor would have to be something much faster
mjr 9:fd65b0a94720 1341 // than our CCD scan - it would have to react on, say, the
mjr 9:fd65b0a94720 1342 // millisecond time scale. A simple mechanical switch or a
mjr 9:fd65b0a94720 1343 // proximity sensor could work. This would let us detect
mjr 9:fd65b0a94720 1344 // with certainty when the plunger physically fires, eliminating
mjr 9:fd65b0a94720 1345 // the case where the use can fool us with motion that's fast
mjr 9:fd65b0a94720 1346 // enough to look like a release but doesn't actually reach the
mjr 9:fd65b0a94720 1347 // starting position.
mjr 6:cc35eb643e8f 1348 //
mjr 7:100a25f8bf56 1349 // To detremine when a firing even occurs, we watch for rapid
mjr 7:100a25f8bf56 1350 // motion from a retracted position towards the rest position -
mjr 7:100a25f8bf56 1351 // that is, large position changes in the negative direction over
mjr 7:100a25f8bf56 1352 // a couple of consecutive readings. When we see a rapid move
mjr 7:100a25f8bf56 1353 // toward zero, we set our internal 'firing' flag, immediately
mjr 7:100a25f8bf56 1354 // report to VP that the plunger has returned to the zero
mjr 7:100a25f8bf56 1355 // position, and then suspend reports until the mechanical
mjr 7:100a25f8bf56 1356 // readings indicate that the plunger has come to rest (indicated
mjr 7:100a25f8bf56 1357 // by several readings in a row at roughly the same position).
mjr 9:fd65b0a94720 1358 //
mjr 9:fd65b0a94720 1359 // Tolerance for firing is 1/3 of the current pull distance, or
mjr 9:fd65b0a94720 1360 // about 1/2", whichever is greater. Making this value too small
mjr 9:fd65b0a94720 1361 // makes for too many false positives. Empirically, 1/4" is too
mjr 9:fd65b0a94720 1362 // twitchy, so set a floor at about 1/2". But we can be less
mjr 9:fd65b0a94720 1363 // sensitive the further back the plunger is pulled, since even
mjr 9:fd65b0a94720 1364 // a long pull will snap back quickly. Note that JOYMAX always
mjr 9:fd65b0a94720 1365 // corresponds to about 3", no matter how many pixels we're
mjr 9:fd65b0a94720 1366 // reading, since the physical sensor is about 3" long; so we
mjr 9:fd65b0a94720 1367 // factor out the pixel count calculate (approximate) physical
mjr 9:fd65b0a94720 1368 // distances based on the normalized axis range.
mjr 9:fd65b0a94720 1369 //
mjr 9:fd65b0a94720 1370 // Firing pattern: when firing, don't simply report a solid 0,
mjr 9:fd65b0a94720 1371 // but instead report a series of pseudo-bouces. This looks
mjr 9:fd65b0a94720 1372 // more realistic, beacause the real plunger is also bouncing
mjr 9:fd65b0a94720 1373 // around during this time. To get maximum firing power in
mjr 9:fd65b0a94720 1374 // the simulation, though, our pseudo-bounces are tiny cmopared
mjr 9:fd65b0a94720 1375 // to the real thing.
mjr 9:fd65b0a94720 1376 const int restTol = JOYMAX/24;
mjr 9:fd65b0a94720 1377 int fireTol = z/3 > JOYMAX/6 ? z/3 : JOYMAX/6;
mjr 9:fd65b0a94720 1378 static const int firePattern[] = {
mjr 9:fd65b0a94720 1379 -JOYMAX/12, -JOYMAX/12, -JOYMAX/12,
mjr 9:fd65b0a94720 1380 };
mjr 9:fd65b0a94720 1381 if (firing != 0)
mjr 6:cc35eb643e8f 1382 {
mjr 6:cc35eb643e8f 1383 // Firing in progress - we've already told VP to send its
mjr 6:cc35eb643e8f 1384 // model plunger all the way back to the rest position, so
mjr 6:cc35eb643e8f 1385 // send no further reports until the mechanical plunger
mjr 6:cc35eb643e8f 1386 // actually comes to rest somewhere.
mjr 6:cc35eb643e8f 1387 if (abs(z0 - z2) < restTol && abs(znew - z2) < restTol)
mjr 6:cc35eb643e8f 1388 {
mjr 6:cc35eb643e8f 1389 // the plunger is back at rest - firing is done
mjr 9:fd65b0a94720 1390 firing = 0;
mjr 6:cc35eb643e8f 1391
mjr 6:cc35eb643e8f 1392 // resume normal reporting
mjr 6:cc35eb643e8f 1393 z = z2;
mjr 6:cc35eb643e8f 1394 }
mjr 9:fd65b0a94720 1395 else if (firing < countof(firePattern))
mjr 9:fd65b0a94720 1396 {
mjr 9:fd65b0a94720 1397 // firing - report the next position in the pseudo-bounce
mjr 9:fd65b0a94720 1398 // pattern
mjr 9:fd65b0a94720 1399 z = firePattern[firing++];
mjr 9:fd65b0a94720 1400 }
mjr 9:fd65b0a94720 1401 else
mjr 9:fd65b0a94720 1402 {
mjr 9:fd65b0a94720 1403 // firing, out of pseudo-bounce items - just report the
mjr 9:fd65b0a94720 1404 // rest position
mjr 9:fd65b0a94720 1405 z = 0;
mjr 9:fd65b0a94720 1406 }
mjr 6:cc35eb643e8f 1407 }
mjr 6:cc35eb643e8f 1408 else if (z0 < z2 && z1 < z2 && znew < z2
mjr 6:cc35eb643e8f 1409 && (z0 < z2 - fireTol
mjr 6:cc35eb643e8f 1410 || z1 < z2 - fireTol
mjr 6:cc35eb643e8f 1411 || znew < z2 - fireTol))
mjr 6:cc35eb643e8f 1412 {
mjr 6:cc35eb643e8f 1413 // Big jumps toward rest position in last two readings -
mjr 6:cc35eb643e8f 1414 // firing has begun. Report an immediate return to the
mjr 6:cc35eb643e8f 1415 // rest position, and send no further reports until the
mjr 6:cc35eb643e8f 1416 // physical plunger has come to rest. This effectively
mjr 6:cc35eb643e8f 1417 // detaches VP's model plunger from the real world for
mjr 6:cc35eb643e8f 1418 // the duration of the spring return, letting VP evolve
mjr 6:cc35eb643e8f 1419 // its model without trying to synchronize with the
mjr 6:cc35eb643e8f 1420 // mechanical version. The release motion is too fast
mjr 6:cc35eb643e8f 1421 // for that to work well; we can't take samples quickly
mjr 6:cc35eb643e8f 1422 // enough to get prcise velocity or acceleration
mjr 6:cc35eb643e8f 1423 // readings. It's better to let VP figure the speed
mjr 6:cc35eb643e8f 1424 // and acceleration through modeling. Plus, that lets
mjr 6:cc35eb643e8f 1425 // each virtual table set the desired parameters for its
mjr 6:cc35eb643e8f 1426 // virtual plunger, rather than imposing the actual
mjr 6:cc35eb643e8f 1427 // mechanical charateristics of the physical plunger on
mjr 6:cc35eb643e8f 1428 // every table.
mjr 9:fd65b0a94720 1429 firing = 1;
mjr 9:fd65b0a94720 1430
mjr 9:fd65b0a94720 1431 // report the first firing pattern position
mjr 9:fd65b0a94720 1432 z = firePattern[0];
mjr 6:cc35eb643e8f 1433 }
mjr 6:cc35eb643e8f 1434 else
mjr 6:cc35eb643e8f 1435 {
mjr 6:cc35eb643e8f 1436 // everything normal; report the 3rd recent position on
mjr 6:cc35eb643e8f 1437 // tape delay
mjr 6:cc35eb643e8f 1438 z = z2;
mjr 6:cc35eb643e8f 1439 }
mjr 6:cc35eb643e8f 1440
mjr 6:cc35eb643e8f 1441 // shift in the new reading
mjr 6:cc35eb643e8f 1442 z2 = z1;
mjr 6:cc35eb643e8f 1443 z1 = z0;
mjr 6:cc35eb643e8f 1444 z0 = znew;
mjr 2:c174f9ee414a 1445 }
mjr 9:fd65b0a94720 1446 else
mjr 9:fd65b0a94720 1447 {
mjr 9:fd65b0a94720 1448 // plunger disabled - pause 10ms to throttle updates to a
mjr 9:fd65b0a94720 1449 // reasonable pace
mjr 9:fd65b0a94720 1450 wait_ms(10);
mjr 9:fd65b0a94720 1451 }
mjr 6:cc35eb643e8f 1452
mjr 1:d913e0afb2ac 1453 // read the accelerometer
mjr 9:fd65b0a94720 1454 int xa, ya;
mjr 9:fd65b0a94720 1455 accel.get(xa, ya);
mjr 1:d913e0afb2ac 1456
mjr 6:cc35eb643e8f 1457 // confine the results to our joystick axis range
mjr 6:cc35eb643e8f 1458 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 6:cc35eb643e8f 1459 if (xa > JOYMAX) xa = JOYMAX;
mjr 6:cc35eb643e8f 1460 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 6:cc35eb643e8f 1461 if (ya > JOYMAX) ya = JOYMAX;
mjr 1:d913e0afb2ac 1462
mjr 6:cc35eb643e8f 1463 // store the updated accelerometer coordinates
mjr 6:cc35eb643e8f 1464 x = xa;
mjr 6:cc35eb643e8f 1465 y = ya;
mjr 6:cc35eb643e8f 1466
mjr 8:c732e279ee29 1467 // Send the status report. Note that the nominal x and y axes
mjr 8:c732e279ee29 1468 // are reversed - this makes it more intuitive to set up in VP.
mjr 8:c732e279ee29 1469 // If we mount the Freesale card flat on the floor of the cabinet
mjr 8:c732e279ee29 1470 // with the USB connectors facing the front of the cabinet, this
mjr 8:c732e279ee29 1471 // arrangement of our nominal axes aligns with VP's standard
mjr 8:c732e279ee29 1472 // setting, so that we can configure VP with X Axis = X on the
mjr 8:c732e279ee29 1473 // joystick and Y Axis = Y on the joystick.
mjr 9:fd65b0a94720 1474 js.update(y, x, z, 0, statusFlags);
mjr 1:d913e0afb2ac 1475
mjr 10:976666ffa4ef 1476 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 1477 if (reportPix)
mjr 10:976666ffa4ef 1478 {
mjr 10:976666ffa4ef 1479 // we have satisfied this request
mjr 10:976666ffa4ef 1480 reportPix = false;
mjr 10:976666ffa4ef 1481
mjr 10:976666ffa4ef 1482 // send reports for all pixels
mjr 10:976666ffa4ef 1483 int idx = 0;
mjr 10:976666ffa4ef 1484 while (idx < npix)
mjr 10:976666ffa4ef 1485 js.updateExposure(idx, npix, pix);
mjr 10:976666ffa4ef 1486
mjr 10:976666ffa4ef 1487 // The pixel dump requires many USB reports, since each report
mjr 10:976666ffa4ef 1488 // can only send a few pixel values. An integration cycle has
mjr 10:976666ffa4ef 1489 // been running all this time, since each read starts a new
mjr 10:976666ffa4ef 1490 // cycle. Our timing is longer than usual on this round, so
mjr 10:976666ffa4ef 1491 // the integration won't be comparable to a normal cycle. Throw
mjr 10:976666ffa4ef 1492 // this one away by doing a read now, and throwing it away - that
mjr 10:976666ffa4ef 1493 // will get the timing of the *next* cycle roughly back to normal.
mjr 10:976666ffa4ef 1494 ccd.read(pix, npix);
mjr 10:976666ffa4ef 1495 }
mjr 10:976666ffa4ef 1496
mjr 6:cc35eb643e8f 1497 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1498 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1499 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1500 #endif
mjr 6:cc35eb643e8f 1501
mjr 6:cc35eb643e8f 1502 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1503 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1504 {
mjr 5:a70c0bce770d 1505 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1506 {
mjr 5:a70c0bce770d 1507 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1508 ledR = 1;
mjr 4:02c7cd7b2183 1509 ledG = 1;
mjr 4:02c7cd7b2183 1510 ledB = 1;
mjr 5:a70c0bce770d 1511
mjr 5:a70c0bce770d 1512 // show a status flash every so often
mjr 5:a70c0bce770d 1513 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1514 {
mjr 6:cc35eb643e8f 1515 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1516 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1517 {
mjr 5:a70c0bce770d 1518 ledR = 0;
mjr 5:a70c0bce770d 1519 wait(0.05);
mjr 5:a70c0bce770d 1520 ledR = 1;
mjr 5:a70c0bce770d 1521 wait(0.25);
mjr 5:a70c0bce770d 1522 }
mjr 5:a70c0bce770d 1523 }
mjr 2:c174f9ee414a 1524 }
mjr 6:cc35eb643e8f 1525 else if (needReset)
mjr 2:c174f9ee414a 1526 {
mjr 6:cc35eb643e8f 1527 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1528 // flash red/green
mjr 6:cc35eb643e8f 1529 hb = !hb;
mjr 6:cc35eb643e8f 1530 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1531 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1532 ledB = 0;
mjr 6:cc35eb643e8f 1533 }
mjr 6:cc35eb643e8f 1534 else if (cfg.d.ccdEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1535 {
mjr 6:cc35eb643e8f 1536 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1537 hb = !hb;
mjr 6:cc35eb643e8f 1538 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1539 ledG = 0;
mjr 6:cc35eb643e8f 1540 ledB = 1;
mjr 6:cc35eb643e8f 1541 }
mjr 6:cc35eb643e8f 1542 else
mjr 6:cc35eb643e8f 1543 {
mjr 6:cc35eb643e8f 1544 // connected - flash blue/green
mjr 2:c174f9ee414a 1545 hb = !hb;
mjr 4:02c7cd7b2183 1546 ledR = 1;
mjr 4:02c7cd7b2183 1547 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1548 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1549 }
mjr 1:d913e0afb2ac 1550
mjr 1:d913e0afb2ac 1551 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1552 hbTimer.reset();
mjr 5:a70c0bce770d 1553 ++hbcnt;
mjr 1:d913e0afb2ac 1554 }
mjr 1:d913e0afb2ac 1555 }
mjr 0:5acbbe3f4cf4 1556 }