An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Wed Aug 27 00:43:20 2014 +0000
Revision:
12:669df364a565
Parent:
11:bd9da7088e6e
Child:
13:72dda449c3c0
Fixed the indicator light (broken by bug in button reader)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 5:a70c0bce770d 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet. I wrote this
mjr 5:a70c0bce770d 23 // software to perform a number of tasks that I needed for my cabinet. It runs on a
mjr 5:a70c0bce770d 24 // Freescale KL25Z microcontroller, which is a small and inexpensive device that
mjr 5:a70c0bce770d 25 // attaches to the host PC via USB and can interface with numerous types of external
mjr 5:a70c0bce770d 26 // hardware.
mjr 5:a70c0bce770d 27 //
mjr 5:a70c0bce770d 28 // I designed the software and hardware in this project especially for Pinscape, but
mjr 5:a70c0bce770d 29 // it uses standard interfaces in Windows and Visual Pinball, so it should be
mjr 5:a70c0bce770d 30 // readily usable in anyone else's VP-based cabinet. I've tried to document the
mjr 5:a70c0bce770d 31 // hardware in enough detail for anyone else to duplicate the entire project, and
mjr 5:a70c0bce770d 32 // the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 6:cc35eb643e8f 34 // The device appears to the host computer as a USB joystick. This works with the
mjr 6:cc35eb643e8f 35 // standard Windows joystick device drivers, so there's no need to install any
mjr 6:cc35eb643e8f 36 // software on the PC - Windows should recognize it as a joystick when you plug
mjr 6:cc35eb643e8f 37 // it in and shouldn't ask you to install anything. If you bring up the control
mjr 6:cc35eb643e8f 38 // panel for USB Game Controllers, this device will appear as "Pinscape Controller".
mjr 6:cc35eb643e8f 39 // *Don't* do any calibration with the Windows control panel or third-part
mjr 6:cc35eb643e8f 40 // calibration tools. The device calibrates itself automatically for the
mjr 6:cc35eb643e8f 41 // accelerometer data, and has its own special calibration procedure for the
mjr 6:cc35eb643e8f 42 // plunger (see below).
mjr 6:cc35eb643e8f 43 //
mjr 5:a70c0bce770d 44 // The controller provides the following functions. It should be possible to use
mjr 5:a70c0bce770d 45 // any subet of the features without using all of them. External hardware for any
mjr 5:a70c0bce770d 46 // particular function can simply be omitted if that feature isn't needed.
mjr 5:a70c0bce770d 47 //
mjr 5:a70c0bce770d 48 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudge accelerations are
mjr 5:a70c0bce770d 49 // processed into a physics model of a rolling ball, and changes to the ball's
mjr 5:a70c0bce770d 50 // motion are sent to the host computer via the joystick interface. This is designed
mjr 5:a70c0bce770d 51 // especially to work with Visuall Pinball's nudge handling to produce realistic
mjr 5:a70c0bce770d 52 // on-screen results in VP. By doing some physics modeling right on the device,
mjr 5:a70c0bce770d 53 // rather than sending raw accelerometer data to VP, we can produce better results
mjr 5:a70c0bce770d 54 // using our awareness of the real physical parameters of a pinball cabinet.
mjr 5:a70c0bce770d 55 // VP's nudge handling has to be more generic, so it can't make the same sorts
mjr 5:a70c0bce770d 56 // of assumptions that we can about the dynamics of a real cabinet.
mjr 5:a70c0bce770d 57 //
mjr 5:a70c0bce770d 58 // The nudge data reports are compatible with the built-in Windows USB joystick
mjr 5:a70c0bce770d 59 // drivers and with VP's own joystick input scheme, so the nudge sensing is almost
mjr 5:a70c0bce770d 60 // plug-and-play. There are no Windiows drivers to install, and the only VP work
mjr 5:a70c0bce770d 61 // needed is to customize a few global preference settings.
mjr 5:a70c0bce770d 62 //
mjr 5:a70c0bce770d 63 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 5:a70c0bce770d 64 // The sensor must be wired to a particular set of I/O ports on the KL25Z, and must
mjr 5:a70c0bce770d 65 // be positioned adjacent to the plunger with proper lighting. The physical and
mjr 5:a70c0bce770d 66 // electronic installation details are desribed in the project documentation. We read
mjr 5:a70c0bce770d 67 // the CCD to determine how far back the plunger is pulled, and report this to Visual
mjr 5:a70c0bce770d 68 // Pinball via the joystick interface. As with the nudge data, this is all nearly
mjr 5:a70c0bce770d 69 // plug-and-play, in that it works with the default Windows USB drivers and works
mjr 5:a70c0bce770d 70 // with the existing VP handling for analog plunger input. A few VP settings are
mjr 5:a70c0bce770d 71 // needed to tell VP to allow the plunger.
mjr 5:a70c0bce770d 72 //
mjr 6:cc35eb643e8f 73 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 74 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 75 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 76 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 6:cc35eb643e8f 77 // sensor or the mechanical plunger, since their alignment might change slightly
mjr 6:cc35eb643e8f 78 // when you put everything back together.) To calibrate, you have to attach a
mjr 6:cc35eb643e8f 79 // momentary switch (e.g., a push-button switch) between one of the KL25Z ground
mjr 6:cc35eb643e8f 80 // pins (e.g., jumper J9 pin 12) and PTE29 (J10 pin 9). Press and hold the
mjr 6:cc35eb643e8f 81 // button for about two seconds - the LED on the KL25Z wlil flash blue while
mjr 6:cc35eb643e8f 82 // you hold the button, and will turn solid blue when you've held it down long
mjr 6:cc35eb643e8f 83 // enough to enter calibration mode. This mode will last about 15 seconds.
mjr 6:cc35eb643e8f 84 // Simply pull the plunger all the way back, hold it for a few moments, and
mjr 6:cc35eb643e8f 85 // gradually return it to the starting position. *Don't* release it - we want
mjr 6:cc35eb643e8f 86 // to measure the maximum retracted position and the rest position, but NOT
mjr 6:cc35eb643e8f 87 // the maximum forward position when the outer barrel spring is compressed.
mjr 6:cc35eb643e8f 88 // After about 15 seconds, the device will save the new calibration settings
mjr 6:cc35eb643e8f 89 // to its flash memory, and the LED will return to the regular "heartbeat"
mjr 6:cc35eb643e8f 90 // flashes. If this is the first time you calibrated, you should observe the
mjr 6:cc35eb643e8f 91 // color of the flashes change from yellow/green to blue/green to indicate
mjr 6:cc35eb643e8f 92 // that the plunger has been calibrated.
mjr 6:cc35eb643e8f 93 //
mjr 6:cc35eb643e8f 94 // Note that while Visual Pinball itself has good native support for analog
mjr 6:cc35eb643e8f 95 // plungers, most of the VP tables in circulation don't implement the necessary
mjr 6:cc35eb643e8f 96 // scripting features to make this work properly. Therefore, you'll have to do
mjr 6:cc35eb643e8f 97 // a little scripting work for each table you download to add the required code
mjr 6:cc35eb643e8f 98 // to that individual table. The work has to be customized for each table, so
mjr 6:cc35eb643e8f 99 // I haven't been able to automate this process, but I have tried to reduce it
mjr 6:cc35eb643e8f 100 // to a relatively simple recipe that I've documented separately.
mjr 5:a70c0bce770d 101 //
mjr 5:a70c0bce770d 102 // - In addition to the CCD sensor, a button should be attached (also described in
mjr 5:a70c0bce770d 103 // the project documentation) to activate calibration mode for the plunger. When
mjr 5:a70c0bce770d 104 // calibration mode is activated, the software reads the plunger position for about
mjr 5:a70c0bce770d 105 // 10 seconds when to note the limits of travel, and uses these limits to ensure
mjr 5:a70c0bce770d 106 // accurate reports to VP that properly report the actual position of the physical
mjr 5:a70c0bce770d 107 // plunger. The calibration is stored in non-volatile memory on the KL25Z, so it's
mjr 5:a70c0bce770d 108 // only necessary to calibrate once - the calibration will survive power cycling
mjr 5:a70c0bce770d 109 // and reboots of the PC. It's only necessary to recalibrate if the CCD sensor or
mjr 5:a70c0bce770d 110 // the plunger are removed and reinstalled, since the relative alignment of the
mjr 5:a70c0bce770d 111 // parts could cahnge slightly when reinstalling.
mjr 5:a70c0bce770d 112 //
mjr 5:a70c0bce770d 113 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 114 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 115 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 116 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 117 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 118 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 119 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 120 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 121 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 122 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 123 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 124 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 125 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 126 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 127 //
mjr 5:a70c0bce770d 128 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 129 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 130 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 131 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 132 // distinct unit number.
mjr 5:a70c0bce770d 133 //
mjr 5:a70c0bce770d 134 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 135 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 136 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 137 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 138 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 139 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 140 //
mjr 6:cc35eb643e8f 141 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 142 //
mjr 6:cc35eb643e8f 143 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 144 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 145 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 146 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 147 //
mjr 6:cc35eb643e8f 148 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 149 //
mjr 6:cc35eb643e8f 150 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 151 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 152 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 153 //
mjr 6:cc35eb643e8f 154 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 155 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 156 // This flash mode won't appear if the CCD has been disabled. Note
mjr 6:cc35eb643e8f 157 // that the device can't tell whether a CCD is physically attached,
mjr 6:cc35eb643e8f 158 // so you should use the config command to disable the CCD software
mjr 6:cc35eb643e8f 159 // features if you won't be attaching a CCD.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 174 //
mjr 9:fd65b0a94720 175 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 176 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 177 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 178 // mode without attaching a physical button.
mjr 9:fd65b0a94720 179 //
mjr 9:fd65b0a94720 180 // length = 8 bytes
mjr 9:fd65b0a94720 181 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 182 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 183 //
mjr 10:976666ffa4ef 184 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 185 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 186 //
mjr 10:976666ffa4ef 187 // length = 8 bytes
mjr 10:976666ffa4ef 188 // byte 0 = 65 (0x41)
mjr 10:976666ffa4ef 189 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 190 //
mjr 10:976666ffa4ef 191 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 192 // Each report has the following structure:
mjr 10:976666ffa4ef 193 //
mjr 10:976666ffa4ef 194 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 195 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 196 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 197 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 198 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 199 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 200 // etc for the rest of the packet
mjr 10:976666ffa4ef 201 //
mjr 10:976666ffa4ef 202 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 203 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 204 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 205 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 206 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 207 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 208 // this somewhat kludgey approach.
mjr 6:cc35eb643e8f 209
mjr 0:5acbbe3f4cf4 210 #include "mbed.h"
mjr 6:cc35eb643e8f 211 #include "math.h"
mjr 0:5acbbe3f4cf4 212 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 213 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 214 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 215 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 216 #include "crc32.h"
mjr 2:c174f9ee414a 217
mjr 5:a70c0bce770d 218
mjr 5:a70c0bce770d 219 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 220 //
mjr 5:a70c0bce770d 221 // Configuration details
mjr 5:a70c0bce770d 222 //
mjr 2:c174f9ee414a 223
mjr 5:a70c0bce770d 224 // Our USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 225 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 226 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 227 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 228 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 229 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 230 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 231 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 232 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 233 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 234 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 235 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 236 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 237 //
mjr 5:a70c0bce770d 238 // We use unit #7 by default. There doesn't seem to be a requirement that
mjr 5:a70c0bce770d 239 // unit numbers be contiguous (DirectOutput Framework and other software
mjr 5:a70c0bce770d 240 // seem happy to have units 0 and 7 installed, without 1-6 existing).
mjr 5:a70c0bce770d 241 // Marking this unit as #7 should work for almost everybody out of the box;
mjr 5:a70c0bce770d 242 // the most common case seems to be to have a single LedWiz installed, and
mjr 5:a70c0bce770d 243 // it's probably extremely rare to more than two.
mjr 6:cc35eb643e8f 244 //
mjr 6:cc35eb643e8f 245 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 246 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 247 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 248 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 249 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 250 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 251 // we send to the USB controller.
mjr 5:a70c0bce770d 252 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 253 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 254 const uint16_t USB_VERSION_NO = 0x0006;
mjr 6:cc35eb643e8f 255 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER = 0x07;
mjr 0:5acbbe3f4cf4 256
mjr 9:fd65b0a94720 257 // Number of pixels we read from the sensor on each frame. This can be
mjr 9:fd65b0a94720 258 // less than the physical pixel count if desired; we'll read every nth
mjr 9:fd65b0a94720 259 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 9:fd65b0a94720 260 // we'll read every 4th pixel. It takes time to read each pixel, so the
mjr 9:fd65b0a94720 261 // fewer pixels we read, the higher the refresh rate we can achieve.
mjr 9:fd65b0a94720 262 // It's therefore better not to read more pixels than we have to.
mjr 9:fd65b0a94720 263 //
mjr 9:fd65b0a94720 264 // VP seems to have an internal resolution in the 8-bit range, so there's
mjr 9:fd65b0a94720 265 // no apparent benefit to reading more than 128-256 pixels when using VP.
mjr 9:fd65b0a94720 266 // Empirically, 160 pixels seems about right. The overall travel of a
mjr 9:fd65b0a94720 267 // standard pinball plunger is about 3", so 160 pixels gives us resolution
mjr 9:fd65b0a94720 268 // of about 1/50". This seems to take full advantage of VP's modeling
mjr 9:fd65b0a94720 269 // ability, and is probably also more precise than a human player's
mjr 9:fd65b0a94720 270 // perception of the plunger position.
mjr 9:fd65b0a94720 271 const int npix = 160;
mjr 9:fd65b0a94720 272
mjr 4:02c7cd7b2183 273 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 4:02c7cd7b2183 274 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 0:5acbbe3f4cf4 275
mjr 1:d913e0afb2ac 276 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 277 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 278 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 279
mjr 11:bd9da7088e6e 280 // Joystick button input pin assignments. You can wire up to
mjr 11:bd9da7088e6e 281 // 32 GPIO ports to buttons (equipped with momentary switches).
mjr 11:bd9da7088e6e 282 // Connect each switch between the desired GPIO port and ground
mjr 11:bd9da7088e6e 283 // (J9 pin 12 or 14). When the button is pressed, we'll tell the
mjr 11:bd9da7088e6e 284 // host PC that the corresponding joystick button as pressed. We
mjr 11:bd9da7088e6e 285 // debounce the keystrokes in software, so you can simply wire
mjr 11:bd9da7088e6e 286 // directly to pushbuttons with no additional external hardware.
mjr 11:bd9da7088e6e 287 //
mjr 11:bd9da7088e6e 288 // Note that we assign 24 buttons by default, even though the USB
mjr 11:bd9da7088e6e 289 // joystick interface can handle up to 32 buttons. VP itself only
mjr 11:bd9da7088e6e 290 // allows mapping of up to 24 buttons in the preferences dialog
mjr 11:bd9da7088e6e 291 // (although it can recognize 32 buttons internally). If you want
mjr 11:bd9da7088e6e 292 // more buttons, you can reassign pins that are assigned by default
mjr 11:bd9da7088e6e 293 // as LedWiz outputs. To reassign a pin, find the pin you wish to
mjr 11:bd9da7088e6e 294 // reassign in the LedWizPortMap array below, and change the pin name
mjr 11:bd9da7088e6e 295 // there to NC (for Not Connected). You can then change one of the
mjr 11:bd9da7088e6e 296 // "NC" entries below to the reallocated pin name. The limit is 32
mjr 11:bd9da7088e6e 297 // buttons total.
mjr 11:bd9da7088e6e 298 //
mjr 11:bd9da7088e6e 299 // Note: PTD1 (pin J2-12) should NOT be assigned as a button input,
mjr 11:bd9da7088e6e 300 // as this pin is physically connected on the KL25Z to the on-board
mjr 11:bd9da7088e6e 301 // indicator LED's blue segment. This precludes any other use of
mjr 11:bd9da7088e6e 302 // the pin.
mjr 11:bd9da7088e6e 303 PinName buttonMap[] = {
mjr 11:bd9da7088e6e 304 PTC2, // J10 pin 10, joystick button 1
mjr 11:bd9da7088e6e 305 PTB3, // J10 pin 8, joystick button 2
mjr 11:bd9da7088e6e 306 PTB2, // J10 pin 6, joystick button 3
mjr 11:bd9da7088e6e 307 PTB1, // J10 pin 4, joystick button 4
mjr 11:bd9da7088e6e 308
mjr 11:bd9da7088e6e 309 PTE30, // J10 pin 11, joystick button 5
mjr 11:bd9da7088e6e 310 PTE22, // J10 pin 5, joystick button 6
mjr 11:bd9da7088e6e 311
mjr 11:bd9da7088e6e 312 PTE5, // J9 pin 15, joystick button 7
mjr 11:bd9da7088e6e 313 PTE4, // J9 pin 13, joystick button 8
mjr 11:bd9da7088e6e 314 PTE3, // J9 pin 11, joystick button 9
mjr 11:bd9da7088e6e 315 PTE2, // J9 pin 9, joystick button 10
mjr 11:bd9da7088e6e 316 PTB11, // J9 pin 7, joystick button 11
mjr 11:bd9da7088e6e 317 PTB10, // J9 pin 5, joystick button 12
mjr 11:bd9da7088e6e 318 PTB9, // J9 pin 3, joystick button 13
mjr 11:bd9da7088e6e 319 PTB8, // J9 pin 1, joystick button 14
mjr 11:bd9da7088e6e 320
mjr 11:bd9da7088e6e 321 PTC12, // J2 pin 1, joystick button 15
mjr 11:bd9da7088e6e 322 PTC13, // J2 pin 3, joystick button 16
mjr 11:bd9da7088e6e 323 PTC16, // J2 pin 5, joystick button 17
mjr 11:bd9da7088e6e 324 PTC17, // J2 pin 7, joystick button 18
mjr 11:bd9da7088e6e 325 PTA16, // J2 pin 9, joystick button 19
mjr 11:bd9da7088e6e 326 PTA17, // J2 pin 11, joystick button 20
mjr 11:bd9da7088e6e 327 PTE31, // J2 pin 13, joystick button 21
mjr 11:bd9da7088e6e 328 PTD6, // J2 pin 17, joystick button 22
mjr 11:bd9da7088e6e 329 PTD7, // J2 pin 19, joystick button 23
mjr 11:bd9da7088e6e 330
mjr 11:bd9da7088e6e 331 PTE1, // J2 pin 20, joystick button 24
mjr 11:bd9da7088e6e 332
mjr 11:bd9da7088e6e 333 NC, // not used, joystick button 25
mjr 11:bd9da7088e6e 334 NC, // not used, joystick button 26
mjr 11:bd9da7088e6e 335 NC, // not used, joystick button 27
mjr 11:bd9da7088e6e 336 NC, // not used, joystick button 28
mjr 11:bd9da7088e6e 337 NC, // not used, joystick button 29
mjr 11:bd9da7088e6e 338 NC, // not used, joystick button 30
mjr 11:bd9da7088e6e 339 NC, // not used, joystick button 31
mjr 11:bd9da7088e6e 340 NC // not used, joystick button 32
mjr 11:bd9da7088e6e 341 };
mjr 11:bd9da7088e6e 342
mjr 11:bd9da7088e6e 343 // LED-Wiz emulation output pin assignments.
mjr 6:cc35eb643e8f 344 //
mjr 6:cc35eb643e8f 345 // The LED-Wiz protocol allows setting individual intensity levels
mjr 6:cc35eb643e8f 346 // on all outputs, with 48 levels of intensity. This can be used
mjr 6:cc35eb643e8f 347 // to control lamp brightness and motor speeds, among other things.
mjr 6:cc35eb643e8f 348 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 6:cc35eb643e8f 349 // can support the full complement of 32 outputs, we can only provide
mjr 6:cc35eb643e8f 350 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 6:cc35eb643e8f 351 // can only be switched fully on and fully off - we can't support
mjr 6:cc35eb643e8f 352 // dimming on these, so they'll ignore any intensity level setting
mjr 6:cc35eb643e8f 353 // requested by the host. Use these for devices that don't have any
mjr 6:cc35eb643e8f 354 // use for intensity settings anyway, such as contactors and knockers.
mjr 6:cc35eb643e8f 355 //
mjr 11:bd9da7088e6e 356 // Ports with pins assigned as "NC" are not connected. That is,
mjr 11:bd9da7088e6e 357 // there's no physical pin for that LedWiz port number. You can
mjr 11:bd9da7088e6e 358 // send LedWiz commands to turn NC ports on and off, but doing so
mjr 11:bd9da7088e6e 359 // will have no effect. The reason we leave some ports unassigned
mjr 11:bd9da7088e6e 360 // is that we don't have enough physical GPIO pins to fill out the
mjr 11:bd9da7088e6e 361 // full LedWiz complement of 32 ports. Many pins are already taken
mjr 11:bd9da7088e6e 362 // for other purposes, such as button inputs or the plunger CCD
mjr 11:bd9da7088e6e 363 // interface.
mjr 11:bd9da7088e6e 364 //
mjr 6:cc35eb643e8f 365 // The mapping between physical output pins on the KL25Z and the
mjr 6:cc35eb643e8f 366 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 6:cc35eb643e8f 367 // customize this by changing the entries in the array below if you
mjr 6:cc35eb643e8f 368 // wish to rearrange the pins for any reason. Be aware that some
mjr 6:cc35eb643e8f 369 // of the physical outputs are already used for other purposes
mjr 6:cc35eb643e8f 370 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 6:cc35eb643e8f 371 // CCD sensor - but you can of course reassign those as well by
mjr 6:cc35eb643e8f 372 // changing the corresponding declarations elsewhere in this module).
mjr 6:cc35eb643e8f 373 // The assignments we make here have two main objectives: first,
mjr 6:cc35eb643e8f 374 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 6:cc35eb643e8f 375 // wiring by keeping the output pins together physically), and
mjr 6:cc35eb643e8f 376 // second, to make the physical pin layout match the LED-Wiz port
mjr 6:cc35eb643e8f 377 // numbering order to the extent possible. There's one big wrench
mjr 6:cc35eb643e8f 378 // in the works, though, which is the limited number and discontiguous
mjr 6:cc35eb643e8f 379 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 6:cc35eb643e8f 380 // us from doing the most obvious sequential ordering of the pins,
mjr 6:cc35eb643e8f 381 // so we end up with the outputs arranged into several blocks.
mjr 6:cc35eb643e8f 382 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 6:cc35eb643e8f 383 // read on...
mjr 6:cc35eb643e8f 384 //
mjr 6:cc35eb643e8f 385 // With the LED-Wiz, the host software configuration usually
mjr 6:cc35eb643e8f 386 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 6:cc35eb643e8f 387 // (for the red, green, and blue components, which need to be
mjr 6:cc35eb643e8f 388 // physically wired to separate outputs to allow each color to be
mjr 6:cc35eb643e8f 389 // controlled independently). To facilitate this, we arrange the
mjr 6:cc35eb643e8f 390 // PWM-enabled outputs so that they're grouped together in the
mjr 6:cc35eb643e8f 391 // port numbering scheme. Unfortunately, these outputs aren't
mjr 6:cc35eb643e8f 392 // together in a single group in the physical pin layout, so to
mjr 6:cc35eb643e8f 393 // group them logically in the LED-Wiz port numbering scheme, we
mjr 6:cc35eb643e8f 394 // have to break up the overall numbering scheme into several blocks.
mjr 6:cc35eb643e8f 395 // So our port numbering goes sequentially down each column of
mjr 6:cc35eb643e8f 396 // header pins, but there are several break points where we have
mjr 6:cc35eb643e8f 397 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 6:cc35eb643e8f 398 // logically.
mjr 6:cc35eb643e8f 399 //
mjr 6:cc35eb643e8f 400 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 6:cc35eb643e8f 401 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 6:cc35eb643e8f 402 // documentation - this is the physical pin that the port controls.
mjr 6:cc35eb643e8f 403 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 6:cc35eb643e8f 404 // number that you use on the PC side (in the DirectOutput config
mjr 6:cc35eb643e8f 405 // file, for example) to address the port. PWM-capable ports are
mjr 6:cc35eb643e8f 406 // marked as such - we group the PWM-capable ports into the first
mjr 6:cc35eb643e8f 407 // 10 LED-Wiz port numbers.
mjr 11:bd9da7088e6e 408 //
mjr 11:bd9da7088e6e 409 // If you wish to reallocate a pin in the array below to some other
mjr 11:bd9da7088e6e 410 // use, such as a button input port, simply change the pin name in
mjr 11:bd9da7088e6e 411 // the entry to NC (for Not Connected). This will disable the given
mjr 11:bd9da7088e6e 412 // logical LedWiz port number and free up the physical pin.
mjr 11:bd9da7088e6e 413 //
mjr 11:bd9da7088e6e 414 // If you wish to reallocate a pin currently assigned to the button
mjr 11:bd9da7088e6e 415 // input array, simply change the entry for the pin in the buttonMap[]
mjr 11:bd9da7088e6e 416 // array above to NC (for "not connected"), and plug the pin name into
mjr 11:bd9da7088e6e 417 // a slot of your choice in the array below.
mjr 11:bd9da7088e6e 418 //
mjr 11:bd9da7088e6e 419 // Note: PTD1 (pin J2-12) should NOT be assigned as an LedWiz output,
mjr 11:bd9da7088e6e 420 // as this pin is physically connected on the KL25Z to the on-board
mjr 11:bd9da7088e6e 421 // indicator LED's blue segment. This precludes any other use of
mjr 11:bd9da7088e6e 422 // the pin.
mjr 6:cc35eb643e8f 423 //
mjr 6:cc35eb643e8f 424 struct {
mjr 6:cc35eb643e8f 425 PinName pin;
mjr 6:cc35eb643e8f 426 bool isPWM;
mjr 6:cc35eb643e8f 427 } ledWizPortMap[32] = {
mjr 6:cc35eb643e8f 428 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 6:cc35eb643e8f 429 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 6:cc35eb643e8f 430 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 6:cc35eb643e8f 431 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 6:cc35eb643e8f 432 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 6:cc35eb643e8f 433 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 6:cc35eb643e8f 434 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 6:cc35eb643e8f 435 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 6:cc35eb643e8f 436 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 6:cc35eb643e8f 437 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 9:fd65b0a94720 438 { PTD2, false }, // pin J2-8, LW port 11
mjr 9:fd65b0a94720 439 { PTC8, false }, // pin J1-14, LW port 12
mjr 9:fd65b0a94720 440 { PTC9, false }, // pin J1-16, LW port 13
mjr 9:fd65b0a94720 441 { PTC7, false }, // pin J1-1, LW port 14
mjr 9:fd65b0a94720 442 { PTC0, false }, // pin J1-3, LW port 15
mjr 9:fd65b0a94720 443 { PTC3, false }, // pin J1-5, LW port 16
mjr 9:fd65b0a94720 444 { PTC4, false }, // pin J1-7, LW port 17
mjr 9:fd65b0a94720 445 { PTC5, false }, // pin J1-9, LW port 18
mjr 9:fd65b0a94720 446 { PTC6, false }, // pin J1-11, LW port 19
mjr 9:fd65b0a94720 447 { PTC10, false }, // pin J1-13, LW port 20
mjr 9:fd65b0a94720 448 { PTC11, false }, // pin J1-15, LW port 21
mjr 11:bd9da7088e6e 449 { PTE0, false }, // pin J2-18, LW port 22
mjr 11:bd9da7088e6e 450 { NC, false }, // Not used, LW port 23
mjr 11:bd9da7088e6e 451 { NC, false }, // Not used, LW port 24
mjr 11:bd9da7088e6e 452 { NC, false }, // Not used, LW port 25
mjr 11:bd9da7088e6e 453 { NC, false }, // Not used, LW port 26
mjr 11:bd9da7088e6e 454 { NC, false }, // Not used, LW port 27
mjr 11:bd9da7088e6e 455 { NC, false }, // Not used, LW port 28
mjr 11:bd9da7088e6e 456 { NC, false }, // Not used, LW port 29
mjr 11:bd9da7088e6e 457 { NC, false }, // Not used, LW port 30
mjr 11:bd9da7088e6e 458 { NC, false }, // Not used, LW port 31
mjr 11:bd9da7088e6e 459 { NC, false } // Not used, LW port 32
mjr 6:cc35eb643e8f 460 };
mjr 6:cc35eb643e8f 461
mjr 6:cc35eb643e8f 462
mjr 5:a70c0bce770d 463 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 5:a70c0bce770d 464 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 5:a70c0bce770d 465
mjr 5:a70c0bce770d 466 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 5:a70c0bce770d 467 #define MMA8451_SCL_PIN PTE25
mjr 5:a70c0bce770d 468 #define MMA8451_SDA_PIN PTE24
mjr 5:a70c0bce770d 469
mjr 5:a70c0bce770d 470 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 5:a70c0bce770d 471 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 5:a70c0bce770d 472 // wired on this board to the MMA8451 interrupt controller.
mjr 5:a70c0bce770d 473 #define MMA8451_INT_PIN PTA15
mjr 5:a70c0bce770d 474
mjr 6:cc35eb643e8f 475 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 476 #define JOYMAX 4096
mjr 6:cc35eb643e8f 477
mjr 5:a70c0bce770d 478
mjr 5:a70c0bce770d 479 // ---------------------------------------------------------------------------
mjr 9:fd65b0a94720 480 // utilities
mjr 9:fd65b0a94720 481
mjr 9:fd65b0a94720 482 // number of elements in an array
mjr 9:fd65b0a94720 483 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 9:fd65b0a94720 484
mjr 9:fd65b0a94720 485 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 486 //
mjr 5:a70c0bce770d 487 // LedWiz emulation
mjr 5:a70c0bce770d 488 //
mjr 5:a70c0bce770d 489
mjr 0:5acbbe3f4cf4 490 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 491
mjr 6:cc35eb643e8f 492 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 493 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 494 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 495 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 496 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 497 // outs.
mjr 6:cc35eb643e8f 498 class LwOut
mjr 6:cc35eb643e8f 499 {
mjr 6:cc35eb643e8f 500 public:
mjr 6:cc35eb643e8f 501 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 502 };
mjr 6:cc35eb643e8f 503 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 504 {
mjr 6:cc35eb643e8f 505 public:
mjr 6:cc35eb643e8f 506 LwPwmOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 507 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 508 PwmOut p;
mjr 6:cc35eb643e8f 509 };
mjr 6:cc35eb643e8f 510 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 511 {
mjr 6:cc35eb643e8f 512 public:
mjr 6:cc35eb643e8f 513 LwDigOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 514 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 515 DigitalOut p;
mjr 6:cc35eb643e8f 516 };
mjr 11:bd9da7088e6e 517 class LwUnusedOut: public LwOut
mjr 11:bd9da7088e6e 518 {
mjr 11:bd9da7088e6e 519 public:
mjr 11:bd9da7088e6e 520 LwUnusedOut() { }
mjr 11:bd9da7088e6e 521 virtual void set(float val) { }
mjr 11:bd9da7088e6e 522 };
mjr 6:cc35eb643e8f 523
mjr 6:cc35eb643e8f 524 // output pin array
mjr 6:cc35eb643e8f 525 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 526
mjr 6:cc35eb643e8f 527 // initialize the output pin array
mjr 6:cc35eb643e8f 528 void initLwOut()
mjr 6:cc35eb643e8f 529 {
mjr 9:fd65b0a94720 530 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 531 {
mjr 11:bd9da7088e6e 532 PinName p = (i < countof(ledWizPortMap) ? ledWizPortMap[i].pin : NC);
mjr 11:bd9da7088e6e 533 if (p == NC)
mjr 11:bd9da7088e6e 534 lwPin[i] = new LwUnusedOut();
mjr 11:bd9da7088e6e 535 else if (ledWizPortMap[i].isPWM)
mjr 11:bd9da7088e6e 536 lwPin[i] = new LwPwmOut(p);
mjr 11:bd9da7088e6e 537 else
mjr 11:bd9da7088e6e 538 lwPin[i] = new LwDigOut(p);
mjr 6:cc35eb643e8f 539 }
mjr 6:cc35eb643e8f 540 }
mjr 6:cc35eb643e8f 541
mjr 0:5acbbe3f4cf4 542 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 543 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 544
mjr 0:5acbbe3f4cf4 545 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 546 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 547 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 548 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 549 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 550 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 551 };
mjr 0:5acbbe3f4cf4 552
mjr 1:d913e0afb2ac 553 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 554 {
mjr 1:d913e0afb2ac 555 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 556 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 557 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 558 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 559 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 560 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 561 return 0.0;
mjr 0:5acbbe3f4cf4 562 else
mjr 0:5acbbe3f4cf4 563 return 1.0;
mjr 0:5acbbe3f4cf4 564 }
mjr 0:5acbbe3f4cf4 565 else {
mjr 0:5acbbe3f4cf4 566 // off
mjr 0:5acbbe3f4cf4 567 return 1.0;
mjr 0:5acbbe3f4cf4 568 }
mjr 0:5acbbe3f4cf4 569 }
mjr 0:5acbbe3f4cf4 570
mjr 1:d913e0afb2ac 571 static void updateWizOuts()
mjr 1:d913e0afb2ac 572 {
mjr 6:cc35eb643e8f 573 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 574 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 575 }
mjr 1:d913e0afb2ac 576
mjr 11:bd9da7088e6e 577
mjr 11:bd9da7088e6e 578 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 579 //
mjr 11:bd9da7088e6e 580 // Button input
mjr 11:bd9da7088e6e 581 //
mjr 11:bd9da7088e6e 582
mjr 11:bd9da7088e6e 583 // button input map array
mjr 11:bd9da7088e6e 584 DigitalIn *buttonDigIn[32];
mjr 11:bd9da7088e6e 585
mjr 12:669df364a565 586 // timer for button reports
mjr 12:669df364a565 587 static Timer buttonTimer;
mjr 12:669df364a565 588
mjr 11:bd9da7088e6e 589 // initialize the button inputs
mjr 11:bd9da7088e6e 590 void initButtons()
mjr 11:bd9da7088e6e 591 {
mjr 11:bd9da7088e6e 592 // create the digital inputs
mjr 11:bd9da7088e6e 593 for (int i = 0 ; i < countof(buttonDigIn) ; ++i)
mjr 11:bd9da7088e6e 594 {
mjr 11:bd9da7088e6e 595 if (i < countof(buttonMap) && buttonMap[i] != NC)
mjr 11:bd9da7088e6e 596 buttonDigIn[i] = new DigitalIn(buttonMap[i]);
mjr 11:bd9da7088e6e 597 else
mjr 11:bd9da7088e6e 598 buttonDigIn[i] = 0;
mjr 11:bd9da7088e6e 599 }
mjr 12:669df364a565 600
mjr 12:669df364a565 601 // start the button timer
mjr 12:669df364a565 602 buttonTimer.start();
mjr 11:bd9da7088e6e 603 }
mjr 11:bd9da7088e6e 604
mjr 11:bd9da7088e6e 605
mjr 11:bd9da7088e6e 606 // read the raw button input state
mjr 11:bd9da7088e6e 607 uint32_t readButtonsRaw()
mjr 11:bd9da7088e6e 608 {
mjr 11:bd9da7088e6e 609 // start with all buttons off
mjr 11:bd9da7088e6e 610 uint32_t buttons = 0;
mjr 11:bd9da7088e6e 611
mjr 11:bd9da7088e6e 612 // scan the button list
mjr 11:bd9da7088e6e 613 uint32_t bit = 1;
mjr 11:bd9da7088e6e 614 for (int i = 0 ; i < countof(buttonDigIn) ; ++i, bit <<= 1)
mjr 11:bd9da7088e6e 615 {
mjr 11:bd9da7088e6e 616 if (buttonDigIn[i] != 0 && !buttonDigIn[i]->read())
mjr 11:bd9da7088e6e 617 buttons |= bit;
mjr 11:bd9da7088e6e 618 }
mjr 11:bd9da7088e6e 619
mjr 11:bd9da7088e6e 620 // return the button list
mjr 11:bd9da7088e6e 621 return buttons;
mjr 11:bd9da7088e6e 622 }
mjr 11:bd9da7088e6e 623
mjr 11:bd9da7088e6e 624 // Read buttons with debouncing. We keep a circular buffer
mjr 11:bd9da7088e6e 625 // of recent input readings. We'll AND together the status of
mjr 11:bd9da7088e6e 626 // each button over the past 50ms. A button that has been on
mjr 11:bd9da7088e6e 627 // continuously for 50ms will be reported as ON. All others
mjr 11:bd9da7088e6e 628 // will be reported as OFF.
mjr 11:bd9da7088e6e 629 uint32_t readButtonsDebounced()
mjr 11:bd9da7088e6e 630 {
mjr 11:bd9da7088e6e 631 struct reading {
mjr 11:bd9da7088e6e 632 int dt; // time since previous reading
mjr 11:bd9da7088e6e 633 uint32_t b; // button state at this reading
mjr 11:bd9da7088e6e 634 };
mjr 11:bd9da7088e6e 635 static reading readings[8]; // circular buffer of readings
mjr 11:bd9da7088e6e 636 static int ri = 0; // reading buffer index (next write position)
mjr 11:bd9da7088e6e 637
mjr 11:bd9da7088e6e 638 // get the write pointer
mjr 11:bd9da7088e6e 639 reading *r = &readings[ri];
mjr 11:bd9da7088e6e 640
mjr 11:bd9da7088e6e 641 // figure the time since the last reading, and read the raw button state
mjr 12:669df364a565 642 r->dt = buttonTimer.read_ms();
mjr 11:bd9da7088e6e 643 uint32_t b = r->b = readButtonsRaw();
mjr 11:bd9da7088e6e 644
mjr 11:bd9da7088e6e 645 // start timing the next interval
mjr 12:669df364a565 646 buttonTimer.reset();
mjr 11:bd9da7088e6e 647
mjr 11:bd9da7088e6e 648 // AND together readings over 50ms
mjr 11:bd9da7088e6e 649 int ms = 0;
mjr 12:669df364a565 650 for (int i = 1 ; i < countof(readings) && ms < 50 ; ++i)
mjr 11:bd9da7088e6e 651 {
mjr 11:bd9da7088e6e 652 // find the next prior reading, wrapping in the circular buffer
mjr 11:bd9da7088e6e 653 int j = ri - i;
mjr 11:bd9da7088e6e 654 if (j < 0)
mjr 11:bd9da7088e6e 655 j = countof(readings) - 1;
mjr 11:bd9da7088e6e 656
mjr 11:bd9da7088e6e 657 reading *rj = &readings[j];
mjr 11:bd9da7088e6e 658
mjr 11:bd9da7088e6e 659 // AND the buttons for this reading
mjr 11:bd9da7088e6e 660 b &= rj->b;
mjr 11:bd9da7088e6e 661
mjr 11:bd9da7088e6e 662 // count the time
mjr 11:bd9da7088e6e 663 ms += rj->dt;
mjr 11:bd9da7088e6e 664 }
mjr 11:bd9da7088e6e 665
mjr 11:bd9da7088e6e 666 // advance the write position for next time
mjr 11:bd9da7088e6e 667 ri += 1;
mjr 12:669df364a565 668 if (ri >= countof(readings))
mjr 11:bd9da7088e6e 669 ri = 0;
mjr 11:bd9da7088e6e 670
mjr 11:bd9da7088e6e 671 // return the debounced result
mjr 11:bd9da7088e6e 672 return b;
mjr 11:bd9da7088e6e 673 }
mjr 11:bd9da7088e6e 674
mjr 5:a70c0bce770d 675 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 676 //
mjr 5:a70c0bce770d 677 // Non-volatile memory (NVM)
mjr 5:a70c0bce770d 678 //
mjr 0:5acbbe3f4cf4 679
mjr 5:a70c0bce770d 680 // Structure defining our NVM storage layout. We store a small
mjr 2:c174f9ee414a 681 // amount of persistent data in flash memory to retain calibration
mjr 5:a70c0bce770d 682 // data when powered off.
mjr 2:c174f9ee414a 683 struct NVM
mjr 2:c174f9ee414a 684 {
mjr 2:c174f9ee414a 685 // checksum - we use this to determine if the flash record
mjr 6:cc35eb643e8f 686 // has been properly initialized
mjr 2:c174f9ee414a 687 uint32_t checksum;
mjr 2:c174f9ee414a 688
mjr 2:c174f9ee414a 689 // signature value
mjr 2:c174f9ee414a 690 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 6:cc35eb643e8f 691 static const uint16_t VERSION = 0x0003;
mjr 6:cc35eb643e8f 692
mjr 6:cc35eb643e8f 693 // Is the data structure valid? We test the signature and
mjr 6:cc35eb643e8f 694 // checksum to determine if we've been properly stored.
mjr 6:cc35eb643e8f 695 int valid() const
mjr 6:cc35eb643e8f 696 {
mjr 6:cc35eb643e8f 697 return (d.sig == SIGNATURE
mjr 6:cc35eb643e8f 698 && d.vsn == VERSION
mjr 6:cc35eb643e8f 699 && d.sz == sizeof(NVM)
mjr 6:cc35eb643e8f 700 && checksum == CRC32(&d, sizeof(d)));
mjr 6:cc35eb643e8f 701 }
mjr 6:cc35eb643e8f 702
mjr 6:cc35eb643e8f 703 // save to non-volatile memory
mjr 6:cc35eb643e8f 704 void save(FreescaleIAP &iap, int addr)
mjr 6:cc35eb643e8f 705 {
mjr 6:cc35eb643e8f 706 // update the checksum and structure size
mjr 6:cc35eb643e8f 707 checksum = CRC32(&d, sizeof(d));
mjr 6:cc35eb643e8f 708 d.sz = sizeof(NVM);
mjr 6:cc35eb643e8f 709
mjr 6:cc35eb643e8f 710 // erase the sector
mjr 6:cc35eb643e8f 711 iap.erase_sector(addr);
mjr 6:cc35eb643e8f 712
mjr 6:cc35eb643e8f 713 // save the data
mjr 6:cc35eb643e8f 714 iap.program_flash(addr, this, sizeof(*this));
mjr 6:cc35eb643e8f 715 }
mjr 2:c174f9ee414a 716
mjr 9:fd65b0a94720 717 // reset calibration data for calibration mode
mjr 9:fd65b0a94720 718 void resetPlunger()
mjr 9:fd65b0a94720 719 {
mjr 9:fd65b0a94720 720 // set extremes for the calibration data
mjr 9:fd65b0a94720 721 d.plungerMax = 0;
mjr 9:fd65b0a94720 722 d.plungerZero = npix;
mjr 9:fd65b0a94720 723 d.plungerMin = npix;
mjr 9:fd65b0a94720 724 }
mjr 9:fd65b0a94720 725
mjr 2:c174f9ee414a 726 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 727 struct
mjr 2:c174f9ee414a 728 {
mjr 6:cc35eb643e8f 729 // Signature, structure version, and structure size - further verification
mjr 6:cc35eb643e8f 730 // that we have valid initialized data. The size is a simple proxy for a
mjr 6:cc35eb643e8f 731 // structure version, as the most common type of change to the structure as
mjr 6:cc35eb643e8f 732 // the software evolves will be the addition of new elements. We also
mjr 6:cc35eb643e8f 733 // provide an explicit version number that we can update manually if we
mjr 6:cc35eb643e8f 734 // make any changes that don't affect the structure size but would affect
mjr 6:cc35eb643e8f 735 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 2:c174f9ee414a 736 uint32_t sig;
mjr 2:c174f9ee414a 737 uint16_t vsn;
mjr 6:cc35eb643e8f 738 int sz;
mjr 2:c174f9ee414a 739
mjr 6:cc35eb643e8f 740 // has the plunger been manually calibrated?
mjr 6:cc35eb643e8f 741 int plungerCal;
mjr 6:cc35eb643e8f 742
mjr 2:c174f9ee414a 743 // plunger calibration min and max
mjr 2:c174f9ee414a 744 int plungerMin;
mjr 6:cc35eb643e8f 745 int plungerZero;
mjr 2:c174f9ee414a 746 int plungerMax;
mjr 6:cc35eb643e8f 747
mjr 6:cc35eb643e8f 748 // is the CCD enabled?
mjr 6:cc35eb643e8f 749 int ccdEnabled;
mjr 6:cc35eb643e8f 750
mjr 6:cc35eb643e8f 751 // LedWiz unit number
mjr 6:cc35eb643e8f 752 uint8_t ledWizUnitNo;
mjr 2:c174f9ee414a 753 } d;
mjr 2:c174f9ee414a 754 };
mjr 2:c174f9ee414a 755
mjr 5:a70c0bce770d 756
mjr 5:a70c0bce770d 757 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 758 //
mjr 5:a70c0bce770d 759 // Customization joystick subbclass
mjr 5:a70c0bce770d 760 //
mjr 5:a70c0bce770d 761
mjr 5:a70c0bce770d 762 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 763 {
mjr 5:a70c0bce770d 764 public:
mjr 5:a70c0bce770d 765 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 766 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 767 {
mjr 5:a70c0bce770d 768 suspended_ = false;
mjr 5:a70c0bce770d 769 }
mjr 5:a70c0bce770d 770
mjr 5:a70c0bce770d 771 // are we connected?
mjr 5:a70c0bce770d 772 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 773
mjr 5:a70c0bce770d 774 // Are we in suspend mode?
mjr 5:a70c0bce770d 775 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 776
mjr 5:a70c0bce770d 777 protected:
mjr 5:a70c0bce770d 778 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 779 { suspended_ = suspended; }
mjr 5:a70c0bce770d 780
mjr 5:a70c0bce770d 781 // are we suspended?
mjr 5:a70c0bce770d 782 int suspended_;
mjr 5:a70c0bce770d 783 };
mjr 5:a70c0bce770d 784
mjr 5:a70c0bce770d 785 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 786 //
mjr 6:cc35eb643e8f 787 // Some simple math service routines
mjr 6:cc35eb643e8f 788 //
mjr 6:cc35eb643e8f 789
mjr 6:cc35eb643e8f 790 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 791 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 792
mjr 6:cc35eb643e8f 793 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 794 //
mjr 5:a70c0bce770d 795 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 796 //
mjr 5:a70c0bce770d 797
mjr 5:a70c0bce770d 798 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 799 //
mjr 5:a70c0bce770d 800 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 801 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 802 // automatic calibration.
mjr 5:a70c0bce770d 803 //
mjr 5:a70c0bce770d 804 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 805 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 806 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 807 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 808 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 809 // every sample.
mjr 5:a70c0bce770d 810 //
mjr 6:cc35eb643e8f 811 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 812 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 813 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 814 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 815 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 816 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 817 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 818 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 819 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 820 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 821 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 822 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 823 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 824 // of nudging, say).
mjr 5:a70c0bce770d 825 //
mjr 5:a70c0bce770d 826
mjr 6:cc35eb643e8f 827 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 828 struct AccHist
mjr 5:a70c0bce770d 829 {
mjr 6:cc35eb643e8f 830 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 831 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 832 {
mjr 6:cc35eb643e8f 833 // save the raw position
mjr 6:cc35eb643e8f 834 this->x = x;
mjr 6:cc35eb643e8f 835 this->y = y;
mjr 6:cc35eb643e8f 836 this->d = distance(prv);
mjr 6:cc35eb643e8f 837 }
mjr 6:cc35eb643e8f 838
mjr 6:cc35eb643e8f 839 // reading for this entry
mjr 5:a70c0bce770d 840 float x, y;
mjr 5:a70c0bce770d 841
mjr 6:cc35eb643e8f 842 // distance from previous entry
mjr 6:cc35eb643e8f 843 float d;
mjr 5:a70c0bce770d 844
mjr 6:cc35eb643e8f 845 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 846 float xtot, ytot;
mjr 6:cc35eb643e8f 847 int cnt;
mjr 6:cc35eb643e8f 848
mjr 6:cc35eb643e8f 849 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 850 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 851 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 852 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 853
mjr 6:cc35eb643e8f 854 float distance(AccHist *p)
mjr 6:cc35eb643e8f 855 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 856 };
mjr 5:a70c0bce770d 857
mjr 5:a70c0bce770d 858 // accelerometer wrapper class
mjr 3:3514575d4f86 859 class Accel
mjr 3:3514575d4f86 860 {
mjr 3:3514575d4f86 861 public:
mjr 3:3514575d4f86 862 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 863 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 864 {
mjr 5:a70c0bce770d 865 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 866 irqPin_ = irqPin;
mjr 5:a70c0bce770d 867
mjr 5:a70c0bce770d 868 // reset and initialize
mjr 5:a70c0bce770d 869 reset();
mjr 5:a70c0bce770d 870 }
mjr 5:a70c0bce770d 871
mjr 5:a70c0bce770d 872 void reset()
mjr 5:a70c0bce770d 873 {
mjr 6:cc35eb643e8f 874 // clear the center point
mjr 6:cc35eb643e8f 875 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 876
mjr 6:cc35eb643e8f 877 // start the calibration timer
mjr 5:a70c0bce770d 878 tCenter_.start();
mjr 5:a70c0bce770d 879 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 880
mjr 5:a70c0bce770d 881 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 882 mma_.init();
mjr 6:cc35eb643e8f 883
mjr 6:cc35eb643e8f 884 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 885 vx_ = vy_ = 0;
mjr 3:3514575d4f86 886
mjr 6:cc35eb643e8f 887 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 888 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 889 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 890
mjr 3:3514575d4f86 891 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 892 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 893
mjr 3:3514575d4f86 894 // start our timers
mjr 3:3514575d4f86 895 tGet_.start();
mjr 3:3514575d4f86 896 tInt_.start();
mjr 3:3514575d4f86 897 }
mjr 3:3514575d4f86 898
mjr 9:fd65b0a94720 899 void get(int &x, int &y)
mjr 3:3514575d4f86 900 {
mjr 3:3514575d4f86 901 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 902 __disable_irq();
mjr 3:3514575d4f86 903
mjr 3:3514575d4f86 904 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 905 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 906 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 907
mjr 6:cc35eb643e8f 908 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 909 vx_ = vy_ = 0;
mjr 3:3514575d4f86 910
mjr 3:3514575d4f86 911 // get the time since the last get() sample
mjr 3:3514575d4f86 912 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 913 tGet_.reset();
mjr 3:3514575d4f86 914
mjr 3:3514575d4f86 915 // done manipulating the shared data
mjr 3:3514575d4f86 916 __enable_irq();
mjr 3:3514575d4f86 917
mjr 6:cc35eb643e8f 918 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 919 vx /= dt;
mjr 6:cc35eb643e8f 920 vy /= dt;
mjr 6:cc35eb643e8f 921
mjr 6:cc35eb643e8f 922 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 923 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 924 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 925
mjr 5:a70c0bce770d 926 // check for auto-centering every so often
mjr 5:a70c0bce770d 927 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 928 {
mjr 5:a70c0bce770d 929 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 930 AccHist *prv = p;
mjr 5:a70c0bce770d 931 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 932 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 933 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 934
mjr 5:a70c0bce770d 935 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 936 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 937 {
mjr 5:a70c0bce770d 938 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 939 static const float accTol = .01;
mjr 6:cc35eb643e8f 940 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 941 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 942 && p0[1].d < accTol
mjr 6:cc35eb643e8f 943 && p0[2].d < accTol
mjr 6:cc35eb643e8f 944 && p0[3].d < accTol
mjr 6:cc35eb643e8f 945 && p0[4].d < accTol)
mjr 5:a70c0bce770d 946 {
mjr 6:cc35eb643e8f 947 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 948 // the samples over the rest period
mjr 6:cc35eb643e8f 949 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 950 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 951 }
mjr 5:a70c0bce770d 952 }
mjr 5:a70c0bce770d 953 else
mjr 5:a70c0bce770d 954 {
mjr 5:a70c0bce770d 955 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 956 ++nAccPrv_;
mjr 5:a70c0bce770d 957 }
mjr 6:cc35eb643e8f 958
mjr 6:cc35eb643e8f 959 // clear the new item's running totals
mjr 6:cc35eb643e8f 960 p->clearAvg();
mjr 5:a70c0bce770d 961
mjr 5:a70c0bce770d 962 // reset the timer
mjr 5:a70c0bce770d 963 tCenter_.reset();
mjr 5:a70c0bce770d 964 }
mjr 5:a70c0bce770d 965
mjr 6:cc35eb643e8f 966 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 967 x = rawToReport(vx);
mjr 6:cc35eb643e8f 968 y = rawToReport(vy);
mjr 5:a70c0bce770d 969
mjr 6:cc35eb643e8f 970 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 971 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 972 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 973 #endif
mjr 3:3514575d4f86 974 }
mjr 3:3514575d4f86 975
mjr 3:3514575d4f86 976 private:
mjr 6:cc35eb643e8f 977 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 978 int rawToReport(float v)
mjr 5:a70c0bce770d 979 {
mjr 6:cc35eb643e8f 980 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 981 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 982
mjr 6:cc35eb643e8f 983 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 984 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 985 static const int filter[] = {
mjr 6:cc35eb643e8f 986 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 987 0,
mjr 6:cc35eb643e8f 988 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 989 };
mjr 6:cc35eb643e8f 990 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 991 }
mjr 5:a70c0bce770d 992
mjr 3:3514575d4f86 993 // interrupt handler
mjr 3:3514575d4f86 994 void isr()
mjr 3:3514575d4f86 995 {
mjr 3:3514575d4f86 996 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 997 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 998 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 999 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 1000 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 1001 float x, y, z;
mjr 5:a70c0bce770d 1002 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 1003
mjr 3:3514575d4f86 1004 // calculate the time since the last interrupt
mjr 3:3514575d4f86 1005 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 1006 tInt_.reset();
mjr 6:cc35eb643e8f 1007
mjr 6:cc35eb643e8f 1008 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 1009 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 1010 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 1011
mjr 6:cc35eb643e8f 1012 // store the updates
mjr 6:cc35eb643e8f 1013 ax_ = x;
mjr 6:cc35eb643e8f 1014 ay_ = y;
mjr 6:cc35eb643e8f 1015 az_ = z;
mjr 3:3514575d4f86 1016 }
mjr 3:3514575d4f86 1017
mjr 3:3514575d4f86 1018 // underlying accelerometer object
mjr 3:3514575d4f86 1019 MMA8451Q mma_;
mjr 3:3514575d4f86 1020
mjr 5:a70c0bce770d 1021 // last raw acceleration readings
mjr 6:cc35eb643e8f 1022 float ax_, ay_, az_;
mjr 5:a70c0bce770d 1023
mjr 6:cc35eb643e8f 1024 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 1025 float vx_, vy_;
mjr 6:cc35eb643e8f 1026
mjr 3:3514575d4f86 1027 // timer for measuring time between get() samples
mjr 3:3514575d4f86 1028 Timer tGet_;
mjr 3:3514575d4f86 1029
mjr 3:3514575d4f86 1030 // timer for measuring time between interrupts
mjr 3:3514575d4f86 1031 Timer tInt_;
mjr 5:a70c0bce770d 1032
mjr 6:cc35eb643e8f 1033 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 1034 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 1035 // at rest.
mjr 6:cc35eb643e8f 1036 float cx_, cy_;
mjr 5:a70c0bce770d 1037
mjr 5:a70c0bce770d 1038 // timer for atuo-centering
mjr 5:a70c0bce770d 1039 Timer tCenter_;
mjr 6:cc35eb643e8f 1040
mjr 6:cc35eb643e8f 1041 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 1042 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 1043 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 1044 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 1045 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 1046 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 1047 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 1048 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 1049 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 1050 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 1051 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 1052 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 1053 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 1054 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 1055 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 1056
mjr 5:a70c0bce770d 1057 // interurupt pin name
mjr 5:a70c0bce770d 1058 PinName irqPin_;
mjr 5:a70c0bce770d 1059
mjr 5:a70c0bce770d 1060 // interrupt router
mjr 5:a70c0bce770d 1061 InterruptIn intIn_;
mjr 3:3514575d4f86 1062 };
mjr 3:3514575d4f86 1063
mjr 5:a70c0bce770d 1064
mjr 5:a70c0bce770d 1065 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1066 //
mjr 5:a70c0bce770d 1067 // Clear the I2C bus for the MMA8451!. This seems necessary some of the time
mjr 5:a70c0bce770d 1068 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1069 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1070 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 5:a70c0bce770d 1071 // the SCL line is supposed to clear this conidtion.
mjr 5:a70c0bce770d 1072 //
mjr 5:a70c0bce770d 1073 void clear_i2c()
mjr 5:a70c0bce770d 1074 {
mjr 5:a70c0bce770d 1075 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 1076 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1077 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1078
mjr 5:a70c0bce770d 1079 // clock the SCL 9 times
mjr 5:a70c0bce770d 1080 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1081 {
mjr 5:a70c0bce770d 1082 scl = 1;
mjr 5:a70c0bce770d 1083 wait_us(20);
mjr 5:a70c0bce770d 1084 scl = 0;
mjr 5:a70c0bce770d 1085 wait_us(20);
mjr 5:a70c0bce770d 1086 }
mjr 5:a70c0bce770d 1087 }
mjr 5:a70c0bce770d 1088
mjr 5:a70c0bce770d 1089 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1090 //
mjr 5:a70c0bce770d 1091 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 1092 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 1093 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 1094 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 1095 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 1096 // port outputs.
mjr 5:a70c0bce770d 1097 //
mjr 0:5acbbe3f4cf4 1098 int main(void)
mjr 0:5acbbe3f4cf4 1099 {
mjr 1:d913e0afb2ac 1100 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 1101 ledR = 1;
mjr 4:02c7cd7b2183 1102 ledG = 1;
mjr 4:02c7cd7b2183 1103 ledB = 1;
mjr 1:d913e0afb2ac 1104
mjr 6:cc35eb643e8f 1105 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 1106 initLwOut();
mjr 6:cc35eb643e8f 1107
mjr 11:bd9da7088e6e 1108 // initialize the button input ports
mjr 11:bd9da7088e6e 1109 initButtons();
mjr 11:bd9da7088e6e 1110
mjr 6:cc35eb643e8f 1111 // we don't need a reset yet
mjr 6:cc35eb643e8f 1112 bool needReset = false;
mjr 6:cc35eb643e8f 1113
mjr 5:a70c0bce770d 1114 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 1115 clear_i2c();
mjr 5:a70c0bce770d 1116
mjr 2:c174f9ee414a 1117 // set up a flash memory controller
mjr 2:c174f9ee414a 1118 FreescaleIAP iap;
mjr 2:c174f9ee414a 1119
mjr 2:c174f9ee414a 1120 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 1121 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 1122 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 1123 NVM cfg;
mjr 2:c174f9ee414a 1124
mjr 2:c174f9ee414a 1125 // check for valid flash
mjr 6:cc35eb643e8f 1126 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 1127
mjr 2:c174f9ee414a 1128 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 1129 if (flash_valid) {
mjr 2:c174f9ee414a 1130 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 1131 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 1132 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 1133 }
mjr 2:c174f9ee414a 1134 else {
mjr 2:c174f9ee414a 1135 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 1136 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 1137 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 1138 cfg.d.plungerCal = 0;
mjr 6:cc35eb643e8f 1139 cfg.d.plungerZero = 0;
mjr 2:c174f9ee414a 1140 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 1141 cfg.d.plungerMax = npix;
mjr 6:cc35eb643e8f 1142 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 6:cc35eb643e8f 1143 cfg.d.ccdEnabled = true;
mjr 2:c174f9ee414a 1144 }
mjr 1:d913e0afb2ac 1145
mjr 6:cc35eb643e8f 1146 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 1147 // number from the saved configuration.
mjr 6:cc35eb643e8f 1148 MyUSBJoystick js(
mjr 6:cc35eb643e8f 1149 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 1150 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 1151 USB_VERSION_NO);
mjr 6:cc35eb643e8f 1152
mjr 1:d913e0afb2ac 1153 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 1154 Timer calBtnTimer;
mjr 1:d913e0afb2ac 1155 calBtnTimer.start();
mjr 1:d913e0afb2ac 1156 int calBtnLit = false;
mjr 1:d913e0afb2ac 1157
mjr 1:d913e0afb2ac 1158 // Calibration button state:
mjr 1:d913e0afb2ac 1159 // 0 = not pushed
mjr 1:d913e0afb2ac 1160 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 1161 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 1162 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 1163 int calBtnState = 0;
mjr 1:d913e0afb2ac 1164
mjr 1:d913e0afb2ac 1165 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 1166 Timer hbTimer;
mjr 1:d913e0afb2ac 1167 hbTimer.start();
mjr 1:d913e0afb2ac 1168 int hb = 0;
mjr 5:a70c0bce770d 1169 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 1170
mjr 1:d913e0afb2ac 1171 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 1172 Timer acTimer;
mjr 1:d913e0afb2ac 1173 acTimer.start();
mjr 1:d913e0afb2ac 1174
mjr 0:5acbbe3f4cf4 1175 // create the accelerometer object
mjr 5:a70c0bce770d 1176 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 1177
mjr 0:5acbbe3f4cf4 1178 // create the CCD array object
mjr 1:d913e0afb2ac 1179 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 1180
mjr 1:d913e0afb2ac 1181 // last accelerometer report, in mouse coordinates
mjr 6:cc35eb643e8f 1182 int x = 0, y = 0, z = 0;
mjr 6:cc35eb643e8f 1183
mjr 6:cc35eb643e8f 1184 // previous two plunger readings, for "debouncing" the results (z0 is
mjr 6:cc35eb643e8f 1185 // the most recent, z1 is the one before that)
mjr 6:cc35eb643e8f 1186 int z0 = 0, z1 = 0, z2 = 0;
mjr 6:cc35eb643e8f 1187
mjr 6:cc35eb643e8f 1188 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 1189 // plunger movement from a retracted position towards the rest position.
mjr 6:cc35eb643e8f 1190 // The actual plunger spring return speed seems to be too slow for VP,
mjr 6:cc35eb643e8f 1191 // so when we detect the start of this motion, we immediately tell VP
mjr 6:cc35eb643e8f 1192 // to return the plunger to rest, then we monitor the real plunger
mjr 6:cc35eb643e8f 1193 // until it atcually stops.
mjr 9:fd65b0a94720 1194 int firing = 0;
mjr 2:c174f9ee414a 1195
mjr 2:c174f9ee414a 1196 // start the first CCD integration cycle
mjr 2:c174f9ee414a 1197 ccd.clear();
mjr 9:fd65b0a94720 1198
mjr 9:fd65b0a94720 1199 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1200 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1201 // of these bits:
mjr 9:fd65b0a94720 1202 // 0x01 -> plunger sensor enabled
mjr 9:fd65b0a94720 1203 uint16_t statusFlags = (cfg.d.ccdEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1204
mjr 10:976666ffa4ef 1205 // flag: send a pixel dump after the next read
mjr 10:976666ffa4ef 1206 bool reportPix = false;
mjr 1:d913e0afb2ac 1207
mjr 1:d913e0afb2ac 1208 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1209 // host requests
mjr 0:5acbbe3f4cf4 1210 for (;;)
mjr 0:5acbbe3f4cf4 1211 {
mjr 0:5acbbe3f4cf4 1212 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 1213 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 1214 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 1215 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 1216 HID_REPORT report;
mjr 6:cc35eb643e8f 1217 while (js.readNB(&report))
mjr 0:5acbbe3f4cf4 1218 {
mjr 6:cc35eb643e8f 1219 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1220 if (report.length == 8)
mjr 1:d913e0afb2ac 1221 {
mjr 6:cc35eb643e8f 1222 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1223 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1224 {
mjr 6:cc35eb643e8f 1225 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1226 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1227 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1228 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1229
mjr 6:cc35eb643e8f 1230 // update all on/off states
mjr 6:cc35eb643e8f 1231 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1232 {
mjr 6:cc35eb643e8f 1233 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1234 bit = 1;
mjr 6:cc35eb643e8f 1235 ++ri;
mjr 6:cc35eb643e8f 1236 }
mjr 6:cc35eb643e8f 1237 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1238 }
mjr 6:cc35eb643e8f 1239
mjr 6:cc35eb643e8f 1240 // update the physical outputs
mjr 1:d913e0afb2ac 1241 updateWizOuts();
mjr 6:cc35eb643e8f 1242
mjr 6:cc35eb643e8f 1243 // reset the PBA counter
mjr 6:cc35eb643e8f 1244 pbaIdx = 0;
mjr 6:cc35eb643e8f 1245 }
mjr 6:cc35eb643e8f 1246 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1247 {
mjr 6:cc35eb643e8f 1248 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1249 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1250 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1251 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1252 // message type.
mjr 6:cc35eb643e8f 1253 if (data[1] == 1)
mjr 6:cc35eb643e8f 1254 {
mjr 9:fd65b0a94720 1255 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1256 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1257 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1258 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1259
mjr 6:cc35eb643e8f 1260 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1261 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1262 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1263
mjr 6:cc35eb643e8f 1264 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1265 cfg.d.ledWizUnitNo = newUnitNo;
mjr 6:cc35eb643e8f 1266 cfg.d.ccdEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1267
mjr 9:fd65b0a94720 1268 // update the status flags
mjr 9:fd65b0a94720 1269 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1270
mjr 9:fd65b0a94720 1271 // if the ccd is no longer enabled, use 0 for z reports
mjr 9:fd65b0a94720 1272 if (!cfg.d.ccdEnabled)
mjr 9:fd65b0a94720 1273 z = 0;
mjr 9:fd65b0a94720 1274
mjr 6:cc35eb643e8f 1275 // save the configuration
mjr 6:cc35eb643e8f 1276 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1277 }
mjr 9:fd65b0a94720 1278 else if (data[1] == 2)
mjr 9:fd65b0a94720 1279 {
mjr 9:fd65b0a94720 1280 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1281 // (No parameters)
mjr 9:fd65b0a94720 1282
mjr 9:fd65b0a94720 1283 // enter calibration mode
mjr 9:fd65b0a94720 1284 calBtnState = 3;
mjr 9:fd65b0a94720 1285 calBtnTimer.reset();
mjr 9:fd65b0a94720 1286 cfg.resetPlunger();
mjr 9:fd65b0a94720 1287 }
mjr 10:976666ffa4ef 1288 else if (data[1] == 3)
mjr 10:976666ffa4ef 1289 {
mjr 10:976666ffa4ef 1290 // 3 = pixel dump
mjr 10:976666ffa4ef 1291 // (No parameters)
mjr 10:976666ffa4ef 1292 reportPix = true;
mjr 10:976666ffa4ef 1293
mjr 10:976666ffa4ef 1294 // show purple until we finish sending the report
mjr 10:976666ffa4ef 1295 ledR = 0;
mjr 10:976666ffa4ef 1296 ledB = 0;
mjr 10:976666ffa4ef 1297 ledG = 1;
mjr 10:976666ffa4ef 1298 }
mjr 6:cc35eb643e8f 1299 }
mjr 6:cc35eb643e8f 1300 else
mjr 6:cc35eb643e8f 1301 {
mjr 6:cc35eb643e8f 1302 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1303 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1304 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1305 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1306 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1307
mjr 6:cc35eb643e8f 1308 // update all output profile settings
mjr 6:cc35eb643e8f 1309 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1310 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1311
mjr 6:cc35eb643e8f 1312 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1313 if (pbaIdx == 24)
mjr 6:cc35eb643e8f 1314 updateWizOuts();
mjr 6:cc35eb643e8f 1315
mjr 6:cc35eb643e8f 1316 // advance to the next bank
mjr 6:cc35eb643e8f 1317 pbaIdx = (pbaIdx + 8) & 31;
mjr 6:cc35eb643e8f 1318 }
mjr 0:5acbbe3f4cf4 1319 }
mjr 0:5acbbe3f4cf4 1320 }
mjr 1:d913e0afb2ac 1321
mjr 1:d913e0afb2ac 1322 // check for plunger calibration
mjr 1:d913e0afb2ac 1323 if (!calBtn)
mjr 0:5acbbe3f4cf4 1324 {
mjr 1:d913e0afb2ac 1325 // check the state
mjr 1:d913e0afb2ac 1326 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1327 {
mjr 1:d913e0afb2ac 1328 case 0:
mjr 1:d913e0afb2ac 1329 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1330 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1331 calBtnState = 1;
mjr 1:d913e0afb2ac 1332 break;
mjr 1:d913e0afb2ac 1333
mjr 1:d913e0afb2ac 1334 case 1:
mjr 1:d913e0afb2ac 1335 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1336 // passed, start the hold period
mjr 9:fd65b0a94720 1337 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1338 calBtnState = 2;
mjr 1:d913e0afb2ac 1339 break;
mjr 1:d913e0afb2ac 1340
mjr 1:d913e0afb2ac 1341 case 2:
mjr 1:d913e0afb2ac 1342 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1343 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1344 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1345 {
mjr 1:d913e0afb2ac 1346 // enter calibration mode
mjr 1:d913e0afb2ac 1347 calBtnState = 3;
mjr 9:fd65b0a94720 1348 calBtnTimer.reset();
mjr 9:fd65b0a94720 1349 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1350 }
mjr 1:d913e0afb2ac 1351 break;
mjr 2:c174f9ee414a 1352
mjr 2:c174f9ee414a 1353 case 3:
mjr 9:fd65b0a94720 1354 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1355 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1356 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1357 break;
mjr 0:5acbbe3f4cf4 1358 }
mjr 0:5acbbe3f4cf4 1359 }
mjr 1:d913e0afb2ac 1360 else
mjr 1:d913e0afb2ac 1361 {
mjr 2:c174f9ee414a 1362 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1363 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1364 // and save the results to flash.
mjr 2:c174f9ee414a 1365 //
mjr 2:c174f9ee414a 1366 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1367 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1368 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1369 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1370 {
mjr 2:c174f9ee414a 1371 // exit calibration mode
mjr 1:d913e0afb2ac 1372 calBtnState = 0;
mjr 2:c174f9ee414a 1373
mjr 6:cc35eb643e8f 1374 // save the updated configuration
mjr 6:cc35eb643e8f 1375 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1376 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1377
mjr 2:c174f9ee414a 1378 // the flash state is now valid
mjr 2:c174f9ee414a 1379 flash_valid = true;
mjr 2:c174f9ee414a 1380 }
mjr 2:c174f9ee414a 1381 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1382 {
mjr 2:c174f9ee414a 1383 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1384 calBtnState = 0;
mjr 2:c174f9ee414a 1385 }
mjr 1:d913e0afb2ac 1386 }
mjr 1:d913e0afb2ac 1387
mjr 1:d913e0afb2ac 1388 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1389 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1390 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1391 {
mjr 1:d913e0afb2ac 1392 case 2:
mjr 1:d913e0afb2ac 1393 // in the hold period - flash the light
mjr 9:fd65b0a94720 1394 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1395 break;
mjr 1:d913e0afb2ac 1396
mjr 1:d913e0afb2ac 1397 case 3:
mjr 1:d913e0afb2ac 1398 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1399 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1400 break;
mjr 1:d913e0afb2ac 1401
mjr 1:d913e0afb2ac 1402 default:
mjr 1:d913e0afb2ac 1403 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1404 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1405 break;
mjr 1:d913e0afb2ac 1406 }
mjr 3:3514575d4f86 1407
mjr 3:3514575d4f86 1408 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1409 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1410 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1411 {
mjr 1:d913e0afb2ac 1412 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1413 if (calBtnLit) {
mjr 2:c174f9ee414a 1414 calBtnLed = 1;
mjr 4:02c7cd7b2183 1415 ledR = 1;
mjr 4:02c7cd7b2183 1416 ledG = 1;
mjr 9:fd65b0a94720 1417 ledB = 0;
mjr 2:c174f9ee414a 1418 }
mjr 2:c174f9ee414a 1419 else {
mjr 2:c174f9ee414a 1420 calBtnLed = 0;
mjr 4:02c7cd7b2183 1421 ledR = 1;
mjr 4:02c7cd7b2183 1422 ledG = 1;
mjr 9:fd65b0a94720 1423 ledB = 1;
mjr 2:c174f9ee414a 1424 }
mjr 1:d913e0afb2ac 1425 }
mjr 1:d913e0afb2ac 1426
mjr 6:cc35eb643e8f 1427 // read the plunger sensor, if it's enabled
mjr 10:976666ffa4ef 1428 uint16_t pix[npix];
mjr 6:cc35eb643e8f 1429 if (cfg.d.ccdEnabled)
mjr 6:cc35eb643e8f 1430 {
mjr 6:cc35eb643e8f 1431 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1432 // clear result on this frame
mjr 6:cc35eb643e8f 1433 int znew = z;
mjr 2:c174f9ee414a 1434
mjr 6:cc35eb643e8f 1435 // read the array
mjr 6:cc35eb643e8f 1436 ccd.read(pix, npix);
mjr 6:cc35eb643e8f 1437
mjr 6:cc35eb643e8f 1438 // get the average brightness at each end of the sensor
mjr 6:cc35eb643e8f 1439 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 6:cc35eb643e8f 1440 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 6:cc35eb643e8f 1441
mjr 6:cc35eb643e8f 1442 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 6:cc35eb643e8f 1443 // compare sums of three pixels at a time to smooth out noise
mjr 6:cc35eb643e8f 1444 long midpt = (avg1 + avg2)/2 * 3;
mjr 6:cc35eb643e8f 1445
mjr 6:cc35eb643e8f 1446 // Work from the bright end to the dark end. VP interprets the
mjr 6:cc35eb643e8f 1447 // Z axis value as the amount the plunger is pulled: zero is the
mjr 6:cc35eb643e8f 1448 // rest position, and the axis maximum is fully pulled. So we
mjr 6:cc35eb643e8f 1449 // essentially want to report how much of the sensor is lit,
mjr 6:cc35eb643e8f 1450 // since this increases as the plunger is pulled back.
mjr 6:cc35eb643e8f 1451 int si = 1, di = 1;
mjr 6:cc35eb643e8f 1452 if (avg1 < avg2)
mjr 6:cc35eb643e8f 1453 si = npix - 2, di = -1;
mjr 6:cc35eb643e8f 1454
mjr 6:cc35eb643e8f 1455 // If the bright end and dark end don't differ by enough, skip this
mjr 6:cc35eb643e8f 1456 // reading entirely - we must have an overexposed or underexposed frame.
mjr 6:cc35eb643e8f 1457 // Otherwise proceed with the scan.
mjr 6:cc35eb643e8f 1458 if (labs(avg1 - avg2) > 0x1000)
mjr 6:cc35eb643e8f 1459 {
mjr 6:cc35eb643e8f 1460 uint16_t *pixp = pix + si;
mjr 6:cc35eb643e8f 1461 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 6:cc35eb643e8f 1462 {
mjr 6:cc35eb643e8f 1463 // if we've crossed the midpoint, report this position
mjr 6:cc35eb643e8f 1464 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 6:cc35eb643e8f 1465 {
mjr 6:cc35eb643e8f 1466 // note the new position
mjr 6:cc35eb643e8f 1467 int pos = n;
mjr 6:cc35eb643e8f 1468
mjr 6:cc35eb643e8f 1469 // Calibrate, or apply calibration, depending on the mode.
mjr 6:cc35eb643e8f 1470 // In either case, normalize to our range. VP appears to
mjr 6:cc35eb643e8f 1471 // ignore negative Z axis values.
mjr 6:cc35eb643e8f 1472 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1473 {
mjr 6:cc35eb643e8f 1474 // calibrating - note if we're expanding the calibration envelope
mjr 6:cc35eb643e8f 1475 if (pos < cfg.d.plungerMin)
mjr 6:cc35eb643e8f 1476 cfg.d.plungerMin = pos;
mjr 6:cc35eb643e8f 1477 if (pos < cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1478 cfg.d.plungerZero = pos;
mjr 6:cc35eb643e8f 1479 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1480 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1481
mjr 6:cc35eb643e8f 1482 // normalize to the full physical range while calibrating
mjr 6:cc35eb643e8f 1483 znew = int(round(float(pos)/npix * JOYMAX));
mjr 6:cc35eb643e8f 1484 }
mjr 6:cc35eb643e8f 1485 else
mjr 6:cc35eb643e8f 1486 {
mjr 6:cc35eb643e8f 1487 // Running normally - normalize to the calibration range. Note
mjr 6:cc35eb643e8f 1488 // that values below the zero point are allowed - the zero point
mjr 6:cc35eb643e8f 1489 // represents the park position, where the plunger sits when at
mjr 6:cc35eb643e8f 1490 // rest, but a mechanical plunger has a smmall amount of travel
mjr 6:cc35eb643e8f 1491 // in the "push" direction. We represent forward travel with
mjr 6:cc35eb643e8f 1492 // negative z values.
mjr 6:cc35eb643e8f 1493 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1494 pos = cfg.d.plungerMax;
mjr 6:cc35eb643e8f 1495 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1496 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1497 }
mjr 6:cc35eb643e8f 1498
mjr 6:cc35eb643e8f 1499 // done
mjr 6:cc35eb643e8f 1500 break;
mjr 6:cc35eb643e8f 1501 }
mjr 6:cc35eb643e8f 1502 }
mjr 6:cc35eb643e8f 1503 }
mjr 7:100a25f8bf56 1504
mjr 7:100a25f8bf56 1505 // Determine if the plunger is being fired - i.e., if the player
mjr 7:100a25f8bf56 1506 // has just released the plunger from a retracted position.
mjr 6:cc35eb643e8f 1507 //
mjr 7:100a25f8bf56 1508 // We treat firing as an event. That is, we tell VP when the
mjr 7:100a25f8bf56 1509 // plunger is fired, and then stop sending data until the firing
mjr 7:100a25f8bf56 1510 // is complete, allowing VP to carry out the firing motion using
mjr 7:100a25f8bf56 1511 // its internal model plunger rather than trying to track the
mjr 7:100a25f8bf56 1512 // intermediate positions of the mechanical plunger throughout
mjr 9:fd65b0a94720 1513 // the firing motion. This is essential because the firing
mjr 9:fd65b0a94720 1514 // motion is too fast for us to track - in the time it takes us
mjr 9:fd65b0a94720 1515 // to read one frame, the plunger can make it all the way to the
mjr 9:fd65b0a94720 1516 // zero position and bounce back halfway. Fortunately, the range
mjr 9:fd65b0a94720 1517 // of motions for the plunger is limited, so if we see any rapid
mjr 9:fd65b0a94720 1518 // change of position toward the rest position, it's reasonably
mjr 9:fd65b0a94720 1519 // safe to interpret it as a firing event.
mjr 9:fd65b0a94720 1520 //
mjr 9:fd65b0a94720 1521 // This isn't foolproof. The user can trick us by doing a
mjr 9:fd65b0a94720 1522 // controlled rapid forward push but stopping short of the rest
mjr 9:fd65b0a94720 1523 // position. We'll misinterpret that as a firing event. But
mjr 9:fd65b0a94720 1524 // that's not a natural motion that a user would make with a
mjr 9:fd65b0a94720 1525 // plunger, so it's probably an acceptable false positive.
mjr 9:fd65b0a94720 1526 //
mjr 9:fd65b0a94720 1527 // Possible future enhancement: we could add a second physical
mjr 9:fd65b0a94720 1528 // sensor that detects when the plunger reaches the zero position
mjr 9:fd65b0a94720 1529 // and asserts an interrupt. In the interrupt handler, set a
mjr 9:fd65b0a94720 1530 // flag indicating the zero position signal. On each scan of
mjr 9:fd65b0a94720 1531 // the CCD, also check that flag; if it's set, enter firing
mjr 9:fd65b0a94720 1532 // event mode just as we do now. The key here is that the
mjr 9:fd65b0a94720 1533 // secondary sensor would have to be something much faster
mjr 9:fd65b0a94720 1534 // than our CCD scan - it would have to react on, say, the
mjr 9:fd65b0a94720 1535 // millisecond time scale. A simple mechanical switch or a
mjr 9:fd65b0a94720 1536 // proximity sensor could work. This would let us detect
mjr 9:fd65b0a94720 1537 // with certainty when the plunger physically fires, eliminating
mjr 9:fd65b0a94720 1538 // the case where the use can fool us with motion that's fast
mjr 9:fd65b0a94720 1539 // enough to look like a release but doesn't actually reach the
mjr 9:fd65b0a94720 1540 // starting position.
mjr 6:cc35eb643e8f 1541 //
mjr 7:100a25f8bf56 1542 // To detremine when a firing even occurs, we watch for rapid
mjr 7:100a25f8bf56 1543 // motion from a retracted position towards the rest position -
mjr 7:100a25f8bf56 1544 // that is, large position changes in the negative direction over
mjr 7:100a25f8bf56 1545 // a couple of consecutive readings. When we see a rapid move
mjr 7:100a25f8bf56 1546 // toward zero, we set our internal 'firing' flag, immediately
mjr 7:100a25f8bf56 1547 // report to VP that the plunger has returned to the zero
mjr 7:100a25f8bf56 1548 // position, and then suspend reports until the mechanical
mjr 7:100a25f8bf56 1549 // readings indicate that the plunger has come to rest (indicated
mjr 7:100a25f8bf56 1550 // by several readings in a row at roughly the same position).
mjr 9:fd65b0a94720 1551 //
mjr 9:fd65b0a94720 1552 // Tolerance for firing is 1/3 of the current pull distance, or
mjr 9:fd65b0a94720 1553 // about 1/2", whichever is greater. Making this value too small
mjr 9:fd65b0a94720 1554 // makes for too many false positives. Empirically, 1/4" is too
mjr 9:fd65b0a94720 1555 // twitchy, so set a floor at about 1/2". But we can be less
mjr 9:fd65b0a94720 1556 // sensitive the further back the plunger is pulled, since even
mjr 9:fd65b0a94720 1557 // a long pull will snap back quickly. Note that JOYMAX always
mjr 9:fd65b0a94720 1558 // corresponds to about 3", no matter how many pixels we're
mjr 9:fd65b0a94720 1559 // reading, since the physical sensor is about 3" long; so we
mjr 9:fd65b0a94720 1560 // factor out the pixel count calculate (approximate) physical
mjr 9:fd65b0a94720 1561 // distances based on the normalized axis range.
mjr 9:fd65b0a94720 1562 //
mjr 9:fd65b0a94720 1563 // Firing pattern: when firing, don't simply report a solid 0,
mjr 9:fd65b0a94720 1564 // but instead report a series of pseudo-bouces. This looks
mjr 9:fd65b0a94720 1565 // more realistic, beacause the real plunger is also bouncing
mjr 9:fd65b0a94720 1566 // around during this time. To get maximum firing power in
mjr 9:fd65b0a94720 1567 // the simulation, though, our pseudo-bounces are tiny cmopared
mjr 9:fd65b0a94720 1568 // to the real thing.
mjr 9:fd65b0a94720 1569 const int restTol = JOYMAX/24;
mjr 9:fd65b0a94720 1570 int fireTol = z/3 > JOYMAX/6 ? z/3 : JOYMAX/6;
mjr 9:fd65b0a94720 1571 static const int firePattern[] = {
mjr 9:fd65b0a94720 1572 -JOYMAX/12, -JOYMAX/12, -JOYMAX/12,
mjr 9:fd65b0a94720 1573 };
mjr 9:fd65b0a94720 1574 if (firing != 0)
mjr 6:cc35eb643e8f 1575 {
mjr 6:cc35eb643e8f 1576 // Firing in progress - we've already told VP to send its
mjr 6:cc35eb643e8f 1577 // model plunger all the way back to the rest position, so
mjr 6:cc35eb643e8f 1578 // send no further reports until the mechanical plunger
mjr 6:cc35eb643e8f 1579 // actually comes to rest somewhere.
mjr 6:cc35eb643e8f 1580 if (abs(z0 - z2) < restTol && abs(znew - z2) < restTol)
mjr 6:cc35eb643e8f 1581 {
mjr 6:cc35eb643e8f 1582 // the plunger is back at rest - firing is done
mjr 9:fd65b0a94720 1583 firing = 0;
mjr 6:cc35eb643e8f 1584
mjr 6:cc35eb643e8f 1585 // resume normal reporting
mjr 6:cc35eb643e8f 1586 z = z2;
mjr 6:cc35eb643e8f 1587 }
mjr 9:fd65b0a94720 1588 else if (firing < countof(firePattern))
mjr 9:fd65b0a94720 1589 {
mjr 9:fd65b0a94720 1590 // firing - report the next position in the pseudo-bounce
mjr 9:fd65b0a94720 1591 // pattern
mjr 9:fd65b0a94720 1592 z = firePattern[firing++];
mjr 9:fd65b0a94720 1593 }
mjr 9:fd65b0a94720 1594 else
mjr 9:fd65b0a94720 1595 {
mjr 9:fd65b0a94720 1596 // firing, out of pseudo-bounce items - just report the
mjr 9:fd65b0a94720 1597 // rest position
mjr 9:fd65b0a94720 1598 z = 0;
mjr 9:fd65b0a94720 1599 }
mjr 6:cc35eb643e8f 1600 }
mjr 6:cc35eb643e8f 1601 else if (z0 < z2 && z1 < z2 && znew < z2
mjr 6:cc35eb643e8f 1602 && (z0 < z2 - fireTol
mjr 6:cc35eb643e8f 1603 || z1 < z2 - fireTol
mjr 6:cc35eb643e8f 1604 || znew < z2 - fireTol))
mjr 6:cc35eb643e8f 1605 {
mjr 6:cc35eb643e8f 1606 // Big jumps toward rest position in last two readings -
mjr 6:cc35eb643e8f 1607 // firing has begun. Report an immediate return to the
mjr 6:cc35eb643e8f 1608 // rest position, and send no further reports until the
mjr 6:cc35eb643e8f 1609 // physical plunger has come to rest. This effectively
mjr 6:cc35eb643e8f 1610 // detaches VP's model plunger from the real world for
mjr 6:cc35eb643e8f 1611 // the duration of the spring return, letting VP evolve
mjr 6:cc35eb643e8f 1612 // its model without trying to synchronize with the
mjr 6:cc35eb643e8f 1613 // mechanical version. The release motion is too fast
mjr 6:cc35eb643e8f 1614 // for that to work well; we can't take samples quickly
mjr 6:cc35eb643e8f 1615 // enough to get prcise velocity or acceleration
mjr 6:cc35eb643e8f 1616 // readings. It's better to let VP figure the speed
mjr 6:cc35eb643e8f 1617 // and acceleration through modeling. Plus, that lets
mjr 6:cc35eb643e8f 1618 // each virtual table set the desired parameters for its
mjr 6:cc35eb643e8f 1619 // virtual plunger, rather than imposing the actual
mjr 6:cc35eb643e8f 1620 // mechanical charateristics of the physical plunger on
mjr 6:cc35eb643e8f 1621 // every table.
mjr 9:fd65b0a94720 1622 firing = 1;
mjr 9:fd65b0a94720 1623
mjr 9:fd65b0a94720 1624 // report the first firing pattern position
mjr 9:fd65b0a94720 1625 z = firePattern[0];
mjr 6:cc35eb643e8f 1626 }
mjr 6:cc35eb643e8f 1627 else
mjr 6:cc35eb643e8f 1628 {
mjr 6:cc35eb643e8f 1629 // everything normal; report the 3rd recent position on
mjr 6:cc35eb643e8f 1630 // tape delay
mjr 6:cc35eb643e8f 1631 z = z2;
mjr 6:cc35eb643e8f 1632 }
mjr 6:cc35eb643e8f 1633
mjr 6:cc35eb643e8f 1634 // shift in the new reading
mjr 6:cc35eb643e8f 1635 z2 = z1;
mjr 6:cc35eb643e8f 1636 z1 = z0;
mjr 6:cc35eb643e8f 1637 z0 = znew;
mjr 2:c174f9ee414a 1638 }
mjr 9:fd65b0a94720 1639 else
mjr 9:fd65b0a94720 1640 {
mjr 9:fd65b0a94720 1641 // plunger disabled - pause 10ms to throttle updates to a
mjr 9:fd65b0a94720 1642 // reasonable pace
mjr 9:fd65b0a94720 1643 wait_ms(10);
mjr 9:fd65b0a94720 1644 }
mjr 6:cc35eb643e8f 1645
mjr 1:d913e0afb2ac 1646 // read the accelerometer
mjr 9:fd65b0a94720 1647 int xa, ya;
mjr 9:fd65b0a94720 1648 accel.get(xa, ya);
mjr 1:d913e0afb2ac 1649
mjr 6:cc35eb643e8f 1650 // confine the results to our joystick axis range
mjr 6:cc35eb643e8f 1651 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 6:cc35eb643e8f 1652 if (xa > JOYMAX) xa = JOYMAX;
mjr 6:cc35eb643e8f 1653 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 6:cc35eb643e8f 1654 if (ya > JOYMAX) ya = JOYMAX;
mjr 1:d913e0afb2ac 1655
mjr 6:cc35eb643e8f 1656 // store the updated accelerometer coordinates
mjr 6:cc35eb643e8f 1657 x = xa;
mjr 6:cc35eb643e8f 1658 y = ya;
mjr 6:cc35eb643e8f 1659
mjr 11:bd9da7088e6e 1660 // update the buttons
mjr 11:bd9da7088e6e 1661 uint32_t buttons = readButtonsDebounced();
mjr 11:bd9da7088e6e 1662
mjr 8:c732e279ee29 1663 // Send the status report. Note that the nominal x and y axes
mjr 8:c732e279ee29 1664 // are reversed - this makes it more intuitive to set up in VP.
mjr 8:c732e279ee29 1665 // If we mount the Freesale card flat on the floor of the cabinet
mjr 8:c732e279ee29 1666 // with the USB connectors facing the front of the cabinet, this
mjr 8:c732e279ee29 1667 // arrangement of our nominal axes aligns with VP's standard
mjr 8:c732e279ee29 1668 // setting, so that we can configure VP with X Axis = X on the
mjr 8:c732e279ee29 1669 // joystick and Y Axis = Y on the joystick.
mjr 11:bd9da7088e6e 1670 js.update(y, x, z, buttons, statusFlags);
mjr 1:d913e0afb2ac 1671
mjr 10:976666ffa4ef 1672 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 1673 if (reportPix)
mjr 10:976666ffa4ef 1674 {
mjr 10:976666ffa4ef 1675 // we have satisfied this request
mjr 10:976666ffa4ef 1676 reportPix = false;
mjr 10:976666ffa4ef 1677
mjr 10:976666ffa4ef 1678 // send reports for all pixels
mjr 10:976666ffa4ef 1679 int idx = 0;
mjr 10:976666ffa4ef 1680 while (idx < npix)
mjr 10:976666ffa4ef 1681 js.updateExposure(idx, npix, pix);
mjr 10:976666ffa4ef 1682
mjr 10:976666ffa4ef 1683 // The pixel dump requires many USB reports, since each report
mjr 10:976666ffa4ef 1684 // can only send a few pixel values. An integration cycle has
mjr 10:976666ffa4ef 1685 // been running all this time, since each read starts a new
mjr 10:976666ffa4ef 1686 // cycle. Our timing is longer than usual on this round, so
mjr 10:976666ffa4ef 1687 // the integration won't be comparable to a normal cycle. Throw
mjr 10:976666ffa4ef 1688 // this one away by doing a read now, and throwing it away - that
mjr 10:976666ffa4ef 1689 // will get the timing of the *next* cycle roughly back to normal.
mjr 10:976666ffa4ef 1690 ccd.read(pix, npix);
mjr 10:976666ffa4ef 1691 }
mjr 10:976666ffa4ef 1692
mjr 6:cc35eb643e8f 1693 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1694 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1695 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1696 #endif
mjr 6:cc35eb643e8f 1697
mjr 6:cc35eb643e8f 1698 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1699 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1700 {
mjr 5:a70c0bce770d 1701 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1702 {
mjr 5:a70c0bce770d 1703 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1704 ledR = 1;
mjr 4:02c7cd7b2183 1705 ledG = 1;
mjr 4:02c7cd7b2183 1706 ledB = 1;
mjr 5:a70c0bce770d 1707
mjr 5:a70c0bce770d 1708 // show a status flash every so often
mjr 5:a70c0bce770d 1709 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1710 {
mjr 6:cc35eb643e8f 1711 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1712 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1713 {
mjr 5:a70c0bce770d 1714 ledR = 0;
mjr 5:a70c0bce770d 1715 wait(0.05);
mjr 5:a70c0bce770d 1716 ledR = 1;
mjr 5:a70c0bce770d 1717 wait(0.25);
mjr 5:a70c0bce770d 1718 }
mjr 5:a70c0bce770d 1719 }
mjr 2:c174f9ee414a 1720 }
mjr 6:cc35eb643e8f 1721 else if (needReset)
mjr 2:c174f9ee414a 1722 {
mjr 6:cc35eb643e8f 1723 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1724 // flash red/green
mjr 6:cc35eb643e8f 1725 hb = !hb;
mjr 6:cc35eb643e8f 1726 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1727 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1728 ledB = 0;
mjr 6:cc35eb643e8f 1729 }
mjr 6:cc35eb643e8f 1730 else if (cfg.d.ccdEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1731 {
mjr 6:cc35eb643e8f 1732 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1733 hb = !hb;
mjr 6:cc35eb643e8f 1734 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1735 ledG = 0;
mjr 6:cc35eb643e8f 1736 ledB = 1;
mjr 6:cc35eb643e8f 1737 }
mjr 6:cc35eb643e8f 1738 else
mjr 6:cc35eb643e8f 1739 {
mjr 6:cc35eb643e8f 1740 // connected - flash blue/green
mjr 2:c174f9ee414a 1741 hb = !hb;
mjr 4:02c7cd7b2183 1742 ledR = 1;
mjr 4:02c7cd7b2183 1743 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1744 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1745 }
mjr 1:d913e0afb2ac 1746
mjr 1:d913e0afb2ac 1747 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1748 hbTimer.reset();
mjr 5:a70c0bce770d 1749 ++hbcnt;
mjr 1:d913e0afb2ac 1750 }
mjr 1:d913e0afb2ac 1751 }
mjr 0:5acbbe3f4cf4 1752 }