An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Fri Mar 01 23:53:59 2019 +0000
Revision:
98:4df3c0f7e707
Parent:
96:68d5621ff49f
Child:
99:8139b0c274f4
Modified flipper logic timing; add Minimum Time Output port flag (proposed changes only; may be replaced collectively by a new Chime Logic type)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 87:8d35c74403af 69 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 70 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 71 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 72 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 73 // low precision.
mjr 6:cc35eb643e8f 74 //
mjr 87:8d35c74403af 75 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 76 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 77 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 78 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 79 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 80 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 81 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 82 // supported, and works very well, but unfortunately the sensor is difficult
mjr 87:8d35c74403af 83 // to find now since it's been discontinued by the manufacturer.
mjr 87:8d35c74403af 84 //
mjr 87:8d35c74403af 85 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 86 // sensor options.
mjr 87:8d35c74403af 87 //
mjr 87:8d35c74403af 88 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 89 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 90 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 91 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 92 //
mjr 77:0b96f6867312 93 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 94 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 95 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 96 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 97 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 98 //
mjr 53:9b2611964afc 99 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 100 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 101 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 102 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 103 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 104 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 105 // attached devices without any modifications.
mjr 5:a70c0bce770d 106 //
mjr 53:9b2611964afc 107 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 108 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 109 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 110 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 111 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 112 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 113 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 114 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 115 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 116 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 117 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 118 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 119 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 120 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 121 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 122 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 123 //
mjr 87:8d35c74403af 124 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 125 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 126 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 127 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 128 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 129 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 130 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 131 // virtual pinball project.
mjr 53:9b2611964afc 132 //
mjr 53:9b2611964afc 133 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 134 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 135 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 136 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 137 // built in to the boards.
mjr 87:8d35c74403af 138 //
mjr 87:8d35c74403af 139 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 140 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 141 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 142 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 143 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 144 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 145 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 146 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 147 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 148 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 149 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 150 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 151 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 152 //
mjr 38:091e511ce8a0 153 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 154 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 155 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 156 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 157 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 158 //
mjr 38:091e511ce8a0 159 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 160 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 161 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 162 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 163 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 164 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 165 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 166 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 167 // remote control transmitter feature below.
mjr 77:0b96f6867312 168 //
mjr 77:0b96f6867312 169 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 170 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 171 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 172 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 173 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 174 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 175 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 176 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 177 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 178 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 179 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 180 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 181 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 182 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 183 //
mjr 35:e959ffba78fd 184 //
mjr 35:e959ffba78fd 185 //
mjr 33:d832bcab089e 186 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 187 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 188 //
mjr 48:058ace2aed1d 189 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 190 //
mjr 48:058ace2aed1d 191 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 192 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 193 // has been established)
mjr 48:058ace2aed1d 194 //
mjr 48:058ace2aed1d 195 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 196 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 197 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 198 //
mjr 38:091e511ce8a0 199 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 200 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 201 // transmissions are failing.
mjr 38:091e511ce8a0 202 //
mjr 73:4e8ce0b18915 203 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 204 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 205 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 206 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 207 // enabled.
mjr 73:4e8ce0b18915 208 //
mjr 6:cc35eb643e8f 209 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 210 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 211 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 212 // no plunger sensor configured.
mjr 6:cc35eb643e8f 213 //
mjr 38:091e511ce8a0 214 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 215 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 216 //
mjr 48:058ace2aed1d 217 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 218 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 219 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 220 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 221 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 222 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 223 //
mjr 48:058ace2aed1d 224 //
mjr 48:058ace2aed1d 225 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 226 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 227 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 228 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 229 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 230 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 231 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 232 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 233
mjr 33:d832bcab089e 234
mjr 0:5acbbe3f4cf4 235 #include "mbed.h"
mjr 6:cc35eb643e8f 236 #include "math.h"
mjr 74:822a92bc11d2 237 #include "diags.h"
mjr 48:058ace2aed1d 238 #include "pinscape.h"
mjr 79:682ae3171a08 239 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 240 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 241 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 242 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 243 #include "crc32.h"
mjr 26:cb71c4af2912 244 #include "TLC5940.h"
mjr 87:8d35c74403af 245 #include "TLC59116.h"
mjr 34:6b981a2afab7 246 #include "74HC595.h"
mjr 35:e959ffba78fd 247 #include "nvm.h"
mjr 48:058ace2aed1d 248 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 249 #include "IRReceiver.h"
mjr 77:0b96f6867312 250 #include "IRTransmitter.h"
mjr 77:0b96f6867312 251 #include "NewPwm.h"
mjr 74:822a92bc11d2 252
mjr 82:4f6209cb5c33 253 // plunger sensors
mjr 82:4f6209cb5c33 254 #include "plunger.h"
mjr 82:4f6209cb5c33 255 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 256 #include "potSensor.h"
mjr 82:4f6209cb5c33 257 #include "quadSensor.h"
mjr 82:4f6209cb5c33 258 #include "nullSensor.h"
mjr 82:4f6209cb5c33 259 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 260 #include "distanceSensor.h"
mjr 87:8d35c74403af 261 #include "tsl14xxSensor.h"
mjr 82:4f6209cb5c33 262
mjr 2:c174f9ee414a 263
mjr 21:5048e16cc9ef 264 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 265 #include "config.h"
mjr 17:ab3cec0c8bf4 266
mjr 76:7f5912b6340e 267 // forward declarations
mjr 76:7f5912b6340e 268 static void waitPlungerIdle(void);
mjr 53:9b2611964afc 269
mjr 53:9b2611964afc 270 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 271 //
mjr 53:9b2611964afc 272 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 273 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 274 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 275 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 276 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 277 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 278 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 279 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 280 // interface.
mjr 53:9b2611964afc 281 //
mjr 53:9b2611964afc 282 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 283 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 284 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 285 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 286 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 287 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 288 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 289 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 290 //
mjr 53:9b2611964afc 291 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 292 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 293 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 294 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 295 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 296 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 297 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 298 //
mjr 53:9b2611964afc 299 const char *getOpenSDAID()
mjr 53:9b2611964afc 300 {
mjr 53:9b2611964afc 301 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 302 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 303 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 304
mjr 53:9b2611964afc 305 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 306 }
mjr 53:9b2611964afc 307
mjr 53:9b2611964afc 308 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 309 //
mjr 53:9b2611964afc 310 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 311 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 312 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 313 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 314 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 315 // want from this.
mjr 53:9b2611964afc 316 //
mjr 53:9b2611964afc 317 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 318 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 319 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 320 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 321 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 322 // macros.
mjr 53:9b2611964afc 323 //
mjr 53:9b2611964afc 324 const char *getBuildID()
mjr 53:9b2611964afc 325 {
mjr 53:9b2611964afc 326 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 327 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 328 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 329
mjr 53:9b2611964afc 330 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 331 }
mjr 53:9b2611964afc 332
mjr 74:822a92bc11d2 333 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 334 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 335 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 336 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 337 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 338 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 339 Timer mainLoopTimer;
mjr 76:7f5912b6340e 340 #endif
mjr 76:7f5912b6340e 341
mjr 53:9b2611964afc 342
mjr 5:a70c0bce770d 343 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 344 //
mjr 38:091e511ce8a0 345 // Forward declarations
mjr 38:091e511ce8a0 346 //
mjr 38:091e511ce8a0 347 void setNightMode(bool on);
mjr 38:091e511ce8a0 348 void toggleNightMode();
mjr 38:091e511ce8a0 349
mjr 38:091e511ce8a0 350 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 351 // utilities
mjr 17:ab3cec0c8bf4 352
mjr 77:0b96f6867312 353 // int/float point square of a number
mjr 77:0b96f6867312 354 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 355 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 356
mjr 26:cb71c4af2912 357 // floating point rounding
mjr 26:cb71c4af2912 358 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 359
mjr 17:ab3cec0c8bf4 360
mjr 33:d832bcab089e 361 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 362 //
mjr 40:cc0d9814522b 363 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 364 // the running state.
mjr 40:cc0d9814522b 365 //
mjr 77:0b96f6867312 366 class ExtTimer: public Timer
mjr 40:cc0d9814522b 367 {
mjr 40:cc0d9814522b 368 public:
mjr 77:0b96f6867312 369 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 370
mjr 40:cc0d9814522b 371 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 372 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 373
mjr 40:cc0d9814522b 374 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 375
mjr 40:cc0d9814522b 376 private:
mjr 40:cc0d9814522b 377 bool running;
mjr 40:cc0d9814522b 378 };
mjr 40:cc0d9814522b 379
mjr 53:9b2611964afc 380
mjr 53:9b2611964afc 381 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 382 //
mjr 33:d832bcab089e 383 // USB product version number
mjr 5:a70c0bce770d 384 //
mjr 47:df7a88cd249c 385 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 386
mjr 33:d832bcab089e 387 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 388 //
mjr 6:cc35eb643e8f 389 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 390 //
mjr 6:cc35eb643e8f 391 #define JOYMAX 4096
mjr 6:cc35eb643e8f 392
mjr 9:fd65b0a94720 393
mjr 17:ab3cec0c8bf4 394 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 395 //
mjr 40:cc0d9814522b 396 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 397 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 398 //
mjr 35:e959ffba78fd 399
mjr 35:e959ffba78fd 400 // unsigned 16-bit integer
mjr 35:e959ffba78fd 401 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 402 {
mjr 35:e959ffba78fd 403 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 404 }
mjr 40:cc0d9814522b 405 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 406 {
mjr 40:cc0d9814522b 407 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 408 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 409 }
mjr 35:e959ffba78fd 410
mjr 35:e959ffba78fd 411 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 412 {
mjr 35:e959ffba78fd 413 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 414 }
mjr 40:cc0d9814522b 415 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 416 {
mjr 40:cc0d9814522b 417 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 418 }
mjr 35:e959ffba78fd 419
mjr 35:e959ffba78fd 420 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 421 {
mjr 35:e959ffba78fd 422 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 423 }
mjr 40:cc0d9814522b 424 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 425 {
mjr 40:cc0d9814522b 426 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 427 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 428 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 429 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 430 }
mjr 35:e959ffba78fd 431
mjr 35:e959ffba78fd 432 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 433 {
mjr 35:e959ffba78fd 434 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 435 }
mjr 35:e959ffba78fd 436
mjr 53:9b2611964afc 437 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 438 //
mjr 53:9b2611964afc 439 // The internal mbed PinName format is
mjr 53:9b2611964afc 440 //
mjr 53:9b2611964afc 441 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 442 //
mjr 53:9b2611964afc 443 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 444 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 445 //
mjr 53:9b2611964afc 446 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 447 // pin name fits in 8 bits:
mjr 53:9b2611964afc 448 //
mjr 53:9b2611964afc 449 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 450 //
mjr 53:9b2611964afc 451 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 454 //
mjr 53:9b2611964afc 455 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 456 {
mjr 53:9b2611964afc 457 if (c == 0xFF)
mjr 53:9b2611964afc 458 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 459 else
mjr 53:9b2611964afc 460 return PinName(
mjr 53:9b2611964afc 461 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 462 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 463 }
mjr 40:cc0d9814522b 464 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 465 {
mjr 53:9b2611964afc 466 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469
mjr 35:e959ffba78fd 470 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 471 //
mjr 38:091e511ce8a0 472 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 473 //
mjr 38:091e511ce8a0 474 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 475 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 476 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 477 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 478 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 479 // SPI capability.
mjr 38:091e511ce8a0 480 //
mjr 38:091e511ce8a0 481 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 482
mjr 73:4e8ce0b18915 483 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 484 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 485 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 486 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 487
mjr 38:091e511ce8a0 488 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 489 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 490 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 491 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 492 {
mjr 73:4e8ce0b18915 493 // remember the new state
mjr 73:4e8ce0b18915 494 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 495
mjr 73:4e8ce0b18915 496 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 497 // applying it to the blue LED
mjr 73:4e8ce0b18915 498 if (diagLEDState == 0)
mjr 77:0b96f6867312 499 {
mjr 77:0b96f6867312 500 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 501 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 502 }
mjr 73:4e8ce0b18915 503
mjr 73:4e8ce0b18915 504 // set the new state
mjr 38:091e511ce8a0 505 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 506 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 507 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 508 }
mjr 38:091e511ce8a0 509
mjr 73:4e8ce0b18915 510 // update the LEDs with the current state
mjr 73:4e8ce0b18915 511 void diagLED(void)
mjr 73:4e8ce0b18915 512 {
mjr 73:4e8ce0b18915 513 diagLED(
mjr 73:4e8ce0b18915 514 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 515 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 516 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 517 }
mjr 73:4e8ce0b18915 518
mjr 38:091e511ce8a0 519 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 520 // an on-board LED segment
mjr 38:091e511ce8a0 521 struct LedSeg
mjr 38:091e511ce8a0 522 {
mjr 38:091e511ce8a0 523 bool r, g, b;
mjr 38:091e511ce8a0 524 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 525
mjr 38:091e511ce8a0 526 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 527 {
mjr 38:091e511ce8a0 528 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 529 // our on-board LED segments
mjr 38:091e511ce8a0 530 int t = pc.typ;
mjr 38:091e511ce8a0 531 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 532 {
mjr 38:091e511ce8a0 533 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 534 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 535 if (pin == LED1)
mjr 38:091e511ce8a0 536 r = true;
mjr 38:091e511ce8a0 537 else if (pin == LED2)
mjr 38:091e511ce8a0 538 g = true;
mjr 38:091e511ce8a0 539 else if (pin == LED3)
mjr 38:091e511ce8a0 540 b = true;
mjr 38:091e511ce8a0 541 }
mjr 38:091e511ce8a0 542 }
mjr 38:091e511ce8a0 543 };
mjr 38:091e511ce8a0 544
mjr 38:091e511ce8a0 545 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 546 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 547 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 548 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 549 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 550 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 551 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 552 {
mjr 38:091e511ce8a0 553 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 554 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 555 LedSeg l;
mjr 38:091e511ce8a0 556 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 557 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 558
mjr 38:091e511ce8a0 559 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 560 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 561 // LedWiz use.
mjr 38:091e511ce8a0 562 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 563 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 564 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 565 }
mjr 38:091e511ce8a0 566
mjr 38:091e511ce8a0 567
mjr 38:091e511ce8a0 568 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 569 //
mjr 76:7f5912b6340e 570 // LedWiz emulation
mjr 76:7f5912b6340e 571 //
mjr 76:7f5912b6340e 572
mjr 76:7f5912b6340e 573 // LedWiz output states.
mjr 76:7f5912b6340e 574 //
mjr 76:7f5912b6340e 575 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 576 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 577 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 578 // The two axes are independent.
mjr 76:7f5912b6340e 579 //
mjr 76:7f5912b6340e 580 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 581 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 582 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 583 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 584 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 585 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 586 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 587 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 588
mjr 76:7f5912b6340e 589 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 590 static uint8_t *wizOn;
mjr 76:7f5912b6340e 591
mjr 76:7f5912b6340e 592 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 593 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 594 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 595 //
mjr 76:7f5912b6340e 596 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 597 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 598 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 599 // 130 = flash on / off
mjr 76:7f5912b6340e 600 // 131 = on / ramp down
mjr 76:7f5912b6340e 601 // 132 = ramp up / on
mjr 5:a70c0bce770d 602 //
mjr 76:7f5912b6340e 603 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 604 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 605 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 606 static uint8_t *wizVal;
mjr 76:7f5912b6340e 607
mjr 76:7f5912b6340e 608 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 609 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 610 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 611 // by the extended protocol:
mjr 76:7f5912b6340e 612 //
mjr 76:7f5912b6340e 613 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 614 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 615 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 616 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 617 // if the brightness is non-zero.
mjr 76:7f5912b6340e 618 //
mjr 76:7f5912b6340e 619 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 620 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 621 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 622 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 623 // 0..255 range.
mjr 26:cb71c4af2912 624 //
mjr 76:7f5912b6340e 625 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 626 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 627 // level.
mjr 26:cb71c4af2912 628 //
mjr 76:7f5912b6340e 629 static uint8_t *outLevel;
mjr 76:7f5912b6340e 630
mjr 76:7f5912b6340e 631
mjr 76:7f5912b6340e 632 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 633 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 634 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 635 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 636 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 637 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 638 //
mjr 76:7f5912b6340e 639 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 640 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 641 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 642 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 643 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 644 // at the maximum size.
mjr 76:7f5912b6340e 645 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 646 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 647
mjr 26:cb71c4af2912 648 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 649 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 650 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 651 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 652 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 653
mjr 76:7f5912b6340e 654
mjr 76:7f5912b6340e 655 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 656 //
mjr 76:7f5912b6340e 657 // Output Ports
mjr 76:7f5912b6340e 658 //
mjr 76:7f5912b6340e 659 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 660 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 661 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 662 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 663 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 664 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 665 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 666 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 667 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 668 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 669 // you have to ration pins among features.
mjr 76:7f5912b6340e 670 //
mjr 87:8d35c74403af 671 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 672 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 673 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 674 //
mjr 87:8d35c74403af 675 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 676 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 677 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 678 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 679 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 680 //
mjr 87:8d35c74403af 681 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 682 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 683 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 684 //
mjr 87:8d35c74403af 685 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 686 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 687 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 688 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 689 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 690 // for the chime board outputs.
mjr 76:7f5912b6340e 691 //
mjr 76:7f5912b6340e 692 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 693 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 694 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 695 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 696 //
mjr 76:7f5912b6340e 697 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 698 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 699 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 700 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 701 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 702 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 703 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 704 // of physical devices they're connected to.
mjr 76:7f5912b6340e 705
mjr 76:7f5912b6340e 706
mjr 26:cb71c4af2912 707 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 708 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 709 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 710 class LwOut
mjr 6:cc35eb643e8f 711 {
mjr 6:cc35eb643e8f 712 public:
mjr 40:cc0d9814522b 713 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 714 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 715 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 716 };
mjr 26:cb71c4af2912 717
mjr 35:e959ffba78fd 718 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 719 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 720 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 721 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 722 // numbering.
mjr 35:e959ffba78fd 723 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 724 {
mjr 33:d832bcab089e 725 public:
mjr 35:e959ffba78fd 726 LwVirtualOut() { }
mjr 40:cc0d9814522b 727 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 728 };
mjr 26:cb71c4af2912 729
mjr 34:6b981a2afab7 730 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 731 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 732 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 733 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 734 {
mjr 34:6b981a2afab7 735 public:
mjr 34:6b981a2afab7 736 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 737 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 738
mjr 34:6b981a2afab7 739 private:
mjr 53:9b2611964afc 740 // underlying physical output
mjr 34:6b981a2afab7 741 LwOut *out;
mjr 34:6b981a2afab7 742 };
mjr 34:6b981a2afab7 743
mjr 53:9b2611964afc 744 // Global ZB Launch Ball state
mjr 53:9b2611964afc 745 bool zbLaunchOn = false;
mjr 53:9b2611964afc 746
mjr 53:9b2611964afc 747 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 748 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 749 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 750 {
mjr 53:9b2611964afc 751 public:
mjr 53:9b2611964afc 752 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 753 virtual void set(uint8_t val)
mjr 53:9b2611964afc 754 {
mjr 53:9b2611964afc 755 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 756 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 757
mjr 53:9b2611964afc 758 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 759 out->set(val);
mjr 53:9b2611964afc 760 }
mjr 53:9b2611964afc 761
mjr 53:9b2611964afc 762 private:
mjr 53:9b2611964afc 763 // underlying physical or virtual output
mjr 53:9b2611964afc 764 LwOut *out;
mjr 53:9b2611964afc 765 };
mjr 53:9b2611964afc 766
mjr 53:9b2611964afc 767
mjr 40:cc0d9814522b 768 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 769 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 772 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 773 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 774 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 775 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 776 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 777 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 778 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 779 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 780 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 781 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 782 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 783 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 784 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 785 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 786 };
mjr 40:cc0d9814522b 787
mjr 40:cc0d9814522b 788 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 789 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 790 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 791 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 792 {
mjr 40:cc0d9814522b 793 public:
mjr 40:cc0d9814522b 794 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 795 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 796
mjr 40:cc0d9814522b 797 private:
mjr 40:cc0d9814522b 798 LwOut *out;
mjr 40:cc0d9814522b 799 };
mjr 40:cc0d9814522b 800
mjr 77:0b96f6867312 801 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 802 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 803 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 804 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 805
mjr 40:cc0d9814522b 806 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 807 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 808 // mode is engaged.
mjr 40:cc0d9814522b 809 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 810 {
mjr 40:cc0d9814522b 811 public:
mjr 40:cc0d9814522b 812 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 813 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 814
mjr 53:9b2611964afc 815 private:
mjr 53:9b2611964afc 816 LwOut *out;
mjr 53:9b2611964afc 817 };
mjr 53:9b2611964afc 818
mjr 53:9b2611964afc 819 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 820 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 821 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 822 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 823 {
mjr 53:9b2611964afc 824 public:
mjr 53:9b2611964afc 825 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 826 virtual void set(uint8_t)
mjr 53:9b2611964afc 827 {
mjr 53:9b2611964afc 828 // ignore the host value and simply show the current
mjr 53:9b2611964afc 829 // night mode setting
mjr 53:9b2611964afc 830 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 831 }
mjr 40:cc0d9814522b 832
mjr 40:cc0d9814522b 833 private:
mjr 40:cc0d9814522b 834 LwOut *out;
mjr 40:cc0d9814522b 835 };
mjr 40:cc0d9814522b 836
mjr 26:cb71c4af2912 837
mjr 89:c43cd923401c 838 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 839 // top of a physical pin output.
mjr 89:c43cd923401c 840 //
mjr 89:c43cd923401c 841 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 842 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 843 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 844 // level is ON.
mjr 89:c43cd923401c 845 //
mjr 89:c43cd923401c 846 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 847 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 848 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 849 //
mjr 89:c43cd923401c 850 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 851 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 852 // power and start a timer.
mjr 89:c43cd923401c 853 //
mjr 89:c43cd923401c 854 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 855 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 856 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 857 //
mjr 89:c43cd923401c 858 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 859 {
mjr 89:c43cd923401c 860 public:
mjr 89:c43cd923401c 861 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 862 // the configuration.
mjr 89:c43cd923401c 863 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 864 : out(o), params(params)
mjr 89:c43cd923401c 865 {
mjr 89:c43cd923401c 866 // initially OFF
mjr 89:c43cd923401c 867 state = 0;
mjr 89:c43cd923401c 868 }
mjr 89:c43cd923401c 869
mjr 89:c43cd923401c 870 virtual void set(uint8_t level)
mjr 89:c43cd923401c 871 {
mjr 98:4df3c0f7e707 872 // remember the new nominal level set by the client
mjr 89:c43cd923401c 873 val = level;
mjr 89:c43cd923401c 874
mjr 89:c43cd923401c 875 // update the physical output according to our current timing state
mjr 89:c43cd923401c 876 switch (state)
mjr 89:c43cd923401c 877 {
mjr 89:c43cd923401c 878 case 0:
mjr 89:c43cd923401c 879 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 880 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 881 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 882 // off, so there's no change.
mjr 89:c43cd923401c 883 if (level != 0)
mjr 89:c43cd923401c 884 {
mjr 89:c43cd923401c 885 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 886 state = 1;
mjr 89:c43cd923401c 887
mjr 89:c43cd923401c 888 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 889 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 890 // requested
mjr 89:c43cd923401c 891 out->set(level);
mjr 89:c43cd923401c 892
mjr 89:c43cd923401c 893 // add myself to the pending timer list
mjr 89:c43cd923401c 894 pending[nPending++] = this;
mjr 89:c43cd923401c 895
mjr 89:c43cd923401c 896 // note the starting time
mjr 89:c43cd923401c 897 t0 = timer.read_us();
mjr 89:c43cd923401c 898 }
mjr 89:c43cd923401c 899 break;
mjr 89:c43cd923401c 900
mjr 89:c43cd923401c 901 case 1:
mjr 89:c43cd923401c 902 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 903 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 904 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 905 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 906 out->set(level);
mjr 89:c43cd923401c 907 if (level == 0)
mjr 89:c43cd923401c 908 {
mjr 89:c43cd923401c 909 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 910 // so we need to remove it from the list.
mjr 89:c43cd923401c 911 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 912 {
mjr 89:c43cd923401c 913 // is this us?
mjr 89:c43cd923401c 914 if (pending[i] == this)
mjr 89:c43cd923401c 915 {
mjr 89:c43cd923401c 916 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 917 // last list entry
mjr 89:c43cd923401c 918 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 919
mjr 89:c43cd923401c 920 // no need to look any further
mjr 89:c43cd923401c 921 break;
mjr 89:c43cd923401c 922 }
mjr 89:c43cd923401c 923 }
mjr 89:c43cd923401c 924
mjr 89:c43cd923401c 925 // switch to state 0 (off)
mjr 89:c43cd923401c 926 state = 0;
mjr 89:c43cd923401c 927 }
mjr 89:c43cd923401c 928 break;
mjr 89:c43cd923401c 929
mjr 89:c43cd923401c 930 case 2:
mjr 89:c43cd923401c 931 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 932 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 933 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 934 // as the upper bound.
mjr 89:c43cd923401c 935 if (level == 0)
mjr 89:c43cd923401c 936 {
mjr 89:c43cd923401c 937 // switching off - turn off the physical output
mjr 89:c43cd923401c 938 out->set(0);
mjr 89:c43cd923401c 939
mjr 89:c43cd923401c 940 // go to state 0 (off)
mjr 89:c43cd923401c 941 state = 0;
mjr 89:c43cd923401c 942 }
mjr 89:c43cd923401c 943 else
mjr 89:c43cd923401c 944 {
mjr 89:c43cd923401c 945 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 946 // lower of the requested power and the hold power
mjr 89:c43cd923401c 947 uint8_t hold = holdPower();
mjr 89:c43cd923401c 948 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 949 }
mjr 89:c43cd923401c 950 break;
mjr 89:c43cd923401c 951 }
mjr 89:c43cd923401c 952 }
mjr 89:c43cd923401c 953
mjr 89:c43cd923401c 954 // Class initialization
mjr 89:c43cd923401c 955 static void classInit(Config &cfg)
mjr 89:c43cd923401c 956 {
mjr 89:c43cd923401c 957 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 958 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 959 // all of these outputs.
mjr 89:c43cd923401c 960 int n = 0;
mjr 89:c43cd923401c 961 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 962 {
mjr 89:c43cd923401c 963 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 964 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 965 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 966 ++n;
mjr 89:c43cd923401c 967 }
mjr 89:c43cd923401c 968
mjr 89:c43cd923401c 969 // allocate space for the pending timer list
mjr 89:c43cd923401c 970 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 971
mjr 89:c43cd923401c 972 // there's nothing in the pending list yet
mjr 89:c43cd923401c 973 nPending = 0;
mjr 89:c43cd923401c 974
mjr 89:c43cd923401c 975 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 976 // use it to figure elapsed times.
mjr 89:c43cd923401c 977 timer.start();
mjr 89:c43cd923401c 978 }
mjr 89:c43cd923401c 979
mjr 89:c43cd923401c 980 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 981 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 982 static void poll()
mjr 89:c43cd923401c 983 {
mjr 89:c43cd923401c 984 // note the current time
mjr 89:c43cd923401c 985 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 986
mjr 89:c43cd923401c 987 // go through the timer list
mjr 89:c43cd923401c 988 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 989 {
mjr 89:c43cd923401c 990 // get the port
mjr 89:c43cd923401c 991 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 992
mjr 89:c43cd923401c 993 // assume we'll keep it
mjr 89:c43cd923401c 994 bool remove = false;
mjr 89:c43cd923401c 995
mjr 89:c43cd923401c 996 // check if the port is still on
mjr 89:c43cd923401c 997 if (port->state != 0)
mjr 89:c43cd923401c 998 {
mjr 89:c43cd923401c 999 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1000 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1001 {
mjr 89:c43cd923401c 1002 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1003 port->state = 2;
mjr 89:c43cd923401c 1004
mjr 89:c43cd923401c 1005 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1006 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1007 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1008 uint8_t val = port->val;
mjr 89:c43cd923401c 1009 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1010
mjr 89:c43cd923401c 1011 // we're done with the timer
mjr 89:c43cd923401c 1012 remove = true;
mjr 89:c43cd923401c 1013 }
mjr 89:c43cd923401c 1014 }
mjr 89:c43cd923401c 1015 else
mjr 89:c43cd923401c 1016 {
mjr 89:c43cd923401c 1017 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1018 // it from the timer list
mjr 89:c43cd923401c 1019 remove = true;
mjr 89:c43cd923401c 1020 }
mjr 89:c43cd923401c 1021
mjr 89:c43cd923401c 1022 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1023 if (remove)
mjr 89:c43cd923401c 1024 {
mjr 89:c43cd923401c 1025 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1026 // the last entry in the list.
mjr 89:c43cd923401c 1027 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1028
mjr 89:c43cd923401c 1029 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1030 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1031 }
mjr 89:c43cd923401c 1032 else
mjr 89:c43cd923401c 1033 {
mjr 89:c43cd923401c 1034 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1035 ++i;
mjr 89:c43cd923401c 1036 }
mjr 89:c43cd923401c 1037 }
mjr 89:c43cd923401c 1038 }
mjr 89:c43cd923401c 1039
mjr 89:c43cd923401c 1040 protected:
mjr 89:c43cd923401c 1041 // underlying physical output
mjr 89:c43cd923401c 1042 LwOut *out;
mjr 89:c43cd923401c 1043
mjr 89:c43cd923401c 1044 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1045 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1046 uint32_t t0;
mjr 89:c43cd923401c 1047
mjr 89:c43cd923401c 1048 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1049 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1050 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1051 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1052 // if it's lower.
mjr 89:c43cd923401c 1053 uint8_t val;
mjr 89:c43cd923401c 1054
mjr 89:c43cd923401c 1055 // Current port state:
mjr 89:c43cd923401c 1056 //
mjr 89:c43cd923401c 1057 // 0 = off
mjr 89:c43cd923401c 1058 // 1 = on at initial full power
mjr 89:c43cd923401c 1059 // 2 = on at hold power
mjr 89:c43cd923401c 1060 uint8_t state;
mjr 89:c43cd923401c 1061
mjr 89:c43cd923401c 1062 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1063 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1064 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1065 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1066 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1067 uint8_t params;
mjr 89:c43cd923401c 1068
mjr 98:4df3c0f7e707 1069 // Full-power time mapping. This maps from the 4-bit (0..15) time value
mjr 98:4df3c0f7e707 1070 // in the parameters to the number of microseconds.
mjr 98:4df3c0f7e707 1071 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1072
mjr 89:c43cd923401c 1073 // Figure the initial full-power time in microseconds
mjr 98:4df3c0f7e707 1074 inline uint32_t fullPowerTime_us() const { return paramToTime_us[params >> 4]; }
mjr 89:c43cd923401c 1075
mjr 89:c43cd923401c 1076 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1077 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1078
mjr 89:c43cd923401c 1079 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1080 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1081 // (which runs continuously).
mjr 89:c43cd923401c 1082 static Timer timer;
mjr 89:c43cd923401c 1083
mjr 89:c43cd923401c 1084 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1085 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1086 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1087 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1088 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1089 static uint8_t nPending;
mjr 89:c43cd923401c 1090 };
mjr 89:c43cd923401c 1091
mjr 89:c43cd923401c 1092 // Flipper Logic statics
mjr 89:c43cd923401c 1093 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1094 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1095 uint8_t LwFlipperLogicOut::nPending;
mjr 98:4df3c0f7e707 1096 const uint32_t LwFlipperLogicOut::paramToTime_us[] = {
mjr 98:4df3c0f7e707 1097 1000,
mjr 98:4df3c0f7e707 1098 2000,
mjr 98:4df3c0f7e707 1099 5000,
mjr 98:4df3c0f7e707 1100 10000,
mjr 98:4df3c0f7e707 1101 20000,
mjr 98:4df3c0f7e707 1102 40000,
mjr 98:4df3c0f7e707 1103 80000,
mjr 98:4df3c0f7e707 1104 100000,
mjr 98:4df3c0f7e707 1105 150000,
mjr 98:4df3c0f7e707 1106 200000,
mjr 98:4df3c0f7e707 1107 300000,
mjr 98:4df3c0f7e707 1108 400000,
mjr 98:4df3c0f7e707 1109 500000,
mjr 98:4df3c0f7e707 1110 600000,
mjr 98:4df3c0f7e707 1111 700000,
mjr 98:4df3c0f7e707 1112 800000
mjr 98:4df3c0f7e707 1113 };
mjr 98:4df3c0f7e707 1114
mjr 98:4df3c0f7e707 1115 // Minimum On Time output. This is a filter output that we layer on
mjr 98:4df3c0f7e707 1116 // a physical output to force the underlying output to stay on for a
mjr 98:4df3c0f7e707 1117 // minimum interval. This can be used for devices that need to be on
mjr 98:4df3c0f7e707 1118 // for a certain amount of time to trigger their full effect, such as
mjr 98:4df3c0f7e707 1119 // slower solenoids or contactors.
mjr 98:4df3c0f7e707 1120 class LwMinTimeOut: public LwOut
mjr 98:4df3c0f7e707 1121 {
mjr 98:4df3c0f7e707 1122 public:
mjr 98:4df3c0f7e707 1123 // Set up the output. 'param' is the configuration parameter
mjr 98:4df3c0f7e707 1124 // for the mininum time span.
mjr 98:4df3c0f7e707 1125 LwMinTimeOut(LwOut *o, uint8_t param)
mjr 98:4df3c0f7e707 1126 : out(o), param(param)
mjr 98:4df3c0f7e707 1127 {
mjr 98:4df3c0f7e707 1128 // initially OFF
mjr 98:4df3c0f7e707 1129 state = 0;
mjr 98:4df3c0f7e707 1130 }
mjr 98:4df3c0f7e707 1131
mjr 98:4df3c0f7e707 1132 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1133 {
mjr 98:4df3c0f7e707 1134 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1135 switch (state)
mjr 98:4df3c0f7e707 1136 {
mjr 98:4df3c0f7e707 1137 case 0:
mjr 98:4df3c0f7e707 1138 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1139 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1140 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1141 // off, so there's no change.
mjr 98:4df3c0f7e707 1142 if (level != 0)
mjr 98:4df3c0f7e707 1143 {
mjr 98:4df3c0f7e707 1144 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1145 // logically on)
mjr 98:4df3c0f7e707 1146 state = 1;
mjr 98:4df3c0f7e707 1147
mjr 98:4df3c0f7e707 1148 // set the requested output level
mjr 98:4df3c0f7e707 1149 out->set(level);
mjr 98:4df3c0f7e707 1150
mjr 98:4df3c0f7e707 1151 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1152 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1153
mjr 98:4df3c0f7e707 1154 // note the starting time
mjr 98:4df3c0f7e707 1155 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1156 }
mjr 98:4df3c0f7e707 1157 break;
mjr 98:4df3c0f7e707 1158
mjr 98:4df3c0f7e707 1159 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1160 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1161 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1162 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1163 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1164 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1165 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1166 //
mjr 98:4df3c0f7e707 1167 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1168 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1169 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1170 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1171 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1172 if (level != 0)
mjr 98:4df3c0f7e707 1173 {
mjr 98:4df3c0f7e707 1174 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1175 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1176 out->set(level);
mjr 98:4df3c0f7e707 1177 state = 1;
mjr 98:4df3c0f7e707 1178 }
mjr 98:4df3c0f7e707 1179 else
mjr 98:4df3c0f7e707 1180 {
mjr 98:4df3c0f7e707 1181 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1182 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1183 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1184 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1185 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1186 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1187 // time requirement.
mjr 98:4df3c0f7e707 1188 state = 2;
mjr 98:4df3c0f7e707 1189 }
mjr 98:4df3c0f7e707 1190 break;
mjr 98:4df3c0f7e707 1191
mjr 98:4df3c0f7e707 1192 case 3:
mjr 98:4df3c0f7e707 1193 // We're out of the minimum ON interval, so we can set any new
mjr 98:4df3c0f7e707 1194 // level, including fully off. Pass the new power level through
mjr 98:4df3c0f7e707 1195 // to the port.
mjr 98:4df3c0f7e707 1196 out->set(level);
mjr 98:4df3c0f7e707 1197
mjr 98:4df3c0f7e707 1198 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1199 if (level == 0)
mjr 98:4df3c0f7e707 1200 state = 0;
mjr 98:4df3c0f7e707 1201 break;
mjr 98:4df3c0f7e707 1202 }
mjr 98:4df3c0f7e707 1203 }
mjr 98:4df3c0f7e707 1204
mjr 98:4df3c0f7e707 1205 // Class initialization
mjr 98:4df3c0f7e707 1206 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1207 {
mjr 98:4df3c0f7e707 1208 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1209 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1210 // all of these outputs.
mjr 98:4df3c0f7e707 1211 int n = 0;
mjr 98:4df3c0f7e707 1212 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1213 {
mjr 98:4df3c0f7e707 1214 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1215 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 98:4df3c0f7e707 1216 && (cfg.outPort[i].flags & PortFlagMinOnTime) != 0)
mjr 98:4df3c0f7e707 1217 ++n;
mjr 98:4df3c0f7e707 1218 }
mjr 98:4df3c0f7e707 1219
mjr 98:4df3c0f7e707 1220 // allocate space for the pending timer list
mjr 98:4df3c0f7e707 1221 pending = new LwMinTimeOut*[n];
mjr 98:4df3c0f7e707 1222
mjr 98:4df3c0f7e707 1223 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1224 nPending = 0;
mjr 98:4df3c0f7e707 1225
mjr 98:4df3c0f7e707 1226 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1227 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1228 timer.start();
mjr 98:4df3c0f7e707 1229 }
mjr 98:4df3c0f7e707 1230
mjr 98:4df3c0f7e707 1231 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1232 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1233 static void poll()
mjr 98:4df3c0f7e707 1234 {
mjr 98:4df3c0f7e707 1235 // note the current time
mjr 98:4df3c0f7e707 1236 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1237
mjr 98:4df3c0f7e707 1238 // go through the timer list
mjr 98:4df3c0f7e707 1239 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1240 {
mjr 98:4df3c0f7e707 1241 // get the port
mjr 98:4df3c0f7e707 1242 LwMinTimeOut *port = pending[i];
mjr 98:4df3c0f7e707 1243
mjr 98:4df3c0f7e707 1244 // assume we'll keep it
mjr 98:4df3c0f7e707 1245 bool remove = false;
mjr 98:4df3c0f7e707 1246
mjr 98:4df3c0f7e707 1247 // check if we're in the minimum ON period for the port
mjr 98:4df3c0f7e707 1248 if (port->state == 1 || port->state == 2)
mjr 98:4df3c0f7e707 1249 {
mjr 98:4df3c0f7e707 1250 // we are - check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1251 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1252 {
mjr 98:4df3c0f7e707 1253 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1254 // it advances to the next state.
mjr 98:4df3c0f7e707 1255 if (port->state == 1)
mjr 98:4df3c0f7e707 1256 {
mjr 98:4df3c0f7e707 1257 // The port is logically on, so advance to state 3,
mjr 98:4df3c0f7e707 1258 // "on past minimum initial time". The underlying
mjr 98:4df3c0f7e707 1259 // port is already at its proper level, since we pass
mjr 98:4df3c0f7e707 1260 // through non-zero power settings to the underlying
mjr 98:4df3c0f7e707 1261 // port throughout the initial ON interval.
mjr 98:4df3c0f7e707 1262 port->state = 3;
mjr 98:4df3c0f7e707 1263 }
mjr 98:4df3c0f7e707 1264 else
mjr 98:4df3c0f7e707 1265 {
mjr 98:4df3c0f7e707 1266 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1267 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1268 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1269 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1270 // the port off now.
mjr 98:4df3c0f7e707 1271 port->out->set(0);
mjr 98:4df3c0f7e707 1272
mjr 98:4df3c0f7e707 1273 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1274 port->state = 0;
mjr 98:4df3c0f7e707 1275 }
mjr 98:4df3c0f7e707 1276
mjr 98:4df3c0f7e707 1277 // we're done with the timer
mjr 98:4df3c0f7e707 1278 remove = true;
mjr 98:4df3c0f7e707 1279 }
mjr 98:4df3c0f7e707 1280 }
mjr 98:4df3c0f7e707 1281
mjr 98:4df3c0f7e707 1282 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1283 if (remove)
mjr 98:4df3c0f7e707 1284 {
mjr 98:4df3c0f7e707 1285 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1286 // the last entry in the list.
mjr 98:4df3c0f7e707 1287 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1288
mjr 98:4df3c0f7e707 1289 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1290 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1291 }
mjr 98:4df3c0f7e707 1292 else
mjr 98:4df3c0f7e707 1293 {
mjr 98:4df3c0f7e707 1294 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1295 ++i;
mjr 98:4df3c0f7e707 1296 }
mjr 98:4df3c0f7e707 1297 }
mjr 98:4df3c0f7e707 1298 }
mjr 98:4df3c0f7e707 1299
mjr 98:4df3c0f7e707 1300 protected:
mjr 98:4df3c0f7e707 1301 // underlying physical output
mjr 98:4df3c0f7e707 1302 LwOut *out;
mjr 98:4df3c0f7e707 1303
mjr 98:4df3c0f7e707 1304 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1305 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1306 uint32_t t0;
mjr 98:4df3c0f7e707 1307
mjr 98:4df3c0f7e707 1308 // Current port state:
mjr 98:4df3c0f7e707 1309 //
mjr 98:4df3c0f7e707 1310 // 0 = off
mjr 98:4df3c0f7e707 1311 // 1 = initial minimum ON interval, logical port is ON
mjr 98:4df3c0f7e707 1312 // 2 = initial minimum ON interval, logical port is OFF
mjr 98:4df3c0f7e707 1313 // 3 = past the minimum ON interval
mjr 98:4df3c0f7e707 1314 //
mjr 98:4df3c0f7e707 1315 uint8_t state;
mjr 98:4df3c0f7e707 1316
mjr 98:4df3c0f7e707 1317 // Configuration parameter. This encodes the minimum ON time.
mjr 98:4df3c0f7e707 1318 uint8_t param;
mjr 98:4df3c0f7e707 1319
mjr 98:4df3c0f7e707 1320 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1321 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1322 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1323 static Timer timer;
mjr 98:4df3c0f7e707 1324
mjr 98:4df3c0f7e707 1325 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1326 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1327
mjr 98:4df3c0f7e707 1328 // Figure the minimum ON time
mjr 98:4df3c0f7e707 1329 inline uint32_t minOnTime_us() const { return paramToTime_us[param & 0x0F]; }
mjr 98:4df3c0f7e707 1330
mjr 98:4df3c0f7e707 1331 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1332 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1333 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1334 // ON intervals.
mjr 98:4df3c0f7e707 1335 static LwMinTimeOut **pending;
mjr 98:4df3c0f7e707 1336 static uint8_t nPending;
mjr 98:4df3c0f7e707 1337 };
mjr 98:4df3c0f7e707 1338
mjr 98:4df3c0f7e707 1339 // Min Time Out statics
mjr 98:4df3c0f7e707 1340 Timer LwMinTimeOut::timer;
mjr 98:4df3c0f7e707 1341 LwMinTimeOut **LwMinTimeOut::pending;
mjr 98:4df3c0f7e707 1342 uint8_t LwMinTimeOut::nPending;
mjr 98:4df3c0f7e707 1343 const uint32_t LwMinTimeOut::paramToTime_us[] = {
mjr 98:4df3c0f7e707 1344 1000,
mjr 98:4df3c0f7e707 1345 2000,
mjr 98:4df3c0f7e707 1346 5000,
mjr 98:4df3c0f7e707 1347 10000,
mjr 98:4df3c0f7e707 1348 20000,
mjr 98:4df3c0f7e707 1349 40000,
mjr 98:4df3c0f7e707 1350 80000,
mjr 98:4df3c0f7e707 1351 100000,
mjr 98:4df3c0f7e707 1352 150000,
mjr 98:4df3c0f7e707 1353 200000,
mjr 98:4df3c0f7e707 1354 300000,
mjr 98:4df3c0f7e707 1355 400000,
mjr 98:4df3c0f7e707 1356 500000,
mjr 98:4df3c0f7e707 1357 600000,
mjr 98:4df3c0f7e707 1358 700000,
mjr 98:4df3c0f7e707 1359 800000
mjr 98:4df3c0f7e707 1360 };
mjr 89:c43cd923401c 1361
mjr 35:e959ffba78fd 1362 //
mjr 35:e959ffba78fd 1363 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1364 // assignments set in config.h.
mjr 33:d832bcab089e 1365 //
mjr 35:e959ffba78fd 1366 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1367 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1368 {
mjr 35:e959ffba78fd 1369 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1370 {
mjr 53:9b2611964afc 1371 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1372 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1373 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1374 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1375 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1376 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1377 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1378 }
mjr 35:e959ffba78fd 1379 }
mjr 26:cb71c4af2912 1380
mjr 40:cc0d9814522b 1381 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1382 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1383 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1384 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1385 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1386 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1387 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1388 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1389 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1390 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1391 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1392 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1393 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1394 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1395 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1396 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1397 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1398 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1399 };
mjr 40:cc0d9814522b 1400
mjr 40:cc0d9814522b 1401 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1402 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1403 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1404 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1405 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1406 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1407 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1408 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1409 // are always 8 bits.
mjr 40:cc0d9814522b 1410 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1411 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1412 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1413 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1414 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1415 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1416 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1417 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1418 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1419 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1420 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1421 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1422 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1423 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1424 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1425 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1426 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1427 };
mjr 40:cc0d9814522b 1428
mjr 26:cb71c4af2912 1429 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1430 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1431 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1432 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1433 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1434 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1435 {
mjr 26:cb71c4af2912 1436 public:
mjr 60:f38da020aa13 1437 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1438 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1439 {
mjr 26:cb71c4af2912 1440 if (val != prv)
mjr 40:cc0d9814522b 1441 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1442 }
mjr 60:f38da020aa13 1443 uint8_t idx;
mjr 40:cc0d9814522b 1444 uint8_t prv;
mjr 26:cb71c4af2912 1445 };
mjr 26:cb71c4af2912 1446
mjr 40:cc0d9814522b 1447 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1448 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1449 {
mjr 40:cc0d9814522b 1450 public:
mjr 60:f38da020aa13 1451 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1452 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1453 {
mjr 40:cc0d9814522b 1454 if (val != prv)
mjr 40:cc0d9814522b 1455 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1456 }
mjr 60:f38da020aa13 1457 uint8_t idx;
mjr 40:cc0d9814522b 1458 uint8_t prv;
mjr 40:cc0d9814522b 1459 };
mjr 40:cc0d9814522b 1460
mjr 87:8d35c74403af 1461 //
mjr 87:8d35c74403af 1462 // TLC59116 interface object
mjr 87:8d35c74403af 1463 //
mjr 87:8d35c74403af 1464 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1465 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1466 {
mjr 87:8d35c74403af 1467 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1468 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1469 {
mjr 87:8d35c74403af 1470 // set up the interface
mjr 87:8d35c74403af 1471 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1472 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1473 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1474 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1475
mjr 87:8d35c74403af 1476 // initialize the chips
mjr 87:8d35c74403af 1477 tlc59116->init();
mjr 87:8d35c74403af 1478 }
mjr 87:8d35c74403af 1479 }
mjr 87:8d35c74403af 1480
mjr 87:8d35c74403af 1481 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1482 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1483 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1484 // (0-15).
mjr 87:8d35c74403af 1485 //
mjr 87:8d35c74403af 1486 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1487 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1488 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1489 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1490 {
mjr 87:8d35c74403af 1491 public:
mjr 87:8d35c74403af 1492 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1493 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1494 {
mjr 87:8d35c74403af 1495 if (val != prv)
mjr 87:8d35c74403af 1496 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1497 }
mjr 87:8d35c74403af 1498
mjr 87:8d35c74403af 1499 protected:
mjr 87:8d35c74403af 1500 uint8_t addr;
mjr 87:8d35c74403af 1501 uint8_t port;
mjr 87:8d35c74403af 1502 uint8_t prv;
mjr 87:8d35c74403af 1503 };
mjr 87:8d35c74403af 1504
mjr 87:8d35c74403af 1505
mjr 87:8d35c74403af 1506 //
mjr 34:6b981a2afab7 1507 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1508 // config.h.
mjr 87:8d35c74403af 1509 //
mjr 35:e959ffba78fd 1510 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1511
mjr 35:e959ffba78fd 1512 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1513 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1514 {
mjr 35:e959ffba78fd 1515 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1516 {
mjr 53:9b2611964afc 1517 hc595 = new HC595(
mjr 53:9b2611964afc 1518 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1519 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1520 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1521 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1522 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1523 hc595->init();
mjr 35:e959ffba78fd 1524 hc595->update();
mjr 35:e959ffba78fd 1525 }
mjr 35:e959ffba78fd 1526 }
mjr 34:6b981a2afab7 1527
mjr 34:6b981a2afab7 1528 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1529 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1530 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1531 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1532 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1533 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1534 {
mjr 33:d832bcab089e 1535 public:
mjr 60:f38da020aa13 1536 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1537 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1538 {
mjr 34:6b981a2afab7 1539 if (val != prv)
mjr 40:cc0d9814522b 1540 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1541 }
mjr 60:f38da020aa13 1542 uint8_t idx;
mjr 40:cc0d9814522b 1543 uint8_t prv;
mjr 33:d832bcab089e 1544 };
mjr 33:d832bcab089e 1545
mjr 26:cb71c4af2912 1546
mjr 40:cc0d9814522b 1547
mjr 64:ef7ca92dff36 1548 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1549 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1550 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1551 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1552 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1553 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1554 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1555 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1556 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1557 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1558 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1559 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1560 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1561 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1562 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1563 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1564 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1565 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1566 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1567 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1568 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1569 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1570 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1571 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1572 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1573 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1574 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1575 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1576 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1577 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1578 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1579 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1580 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1581 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1582 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1583 };
mjr 26:cb71c4af2912 1584
mjr 64:ef7ca92dff36 1585
mjr 92:f264fbaa1be5 1586 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1587 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1588 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1589 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1590 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1591 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1592 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1593 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1594 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1595 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1596 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1597 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1598 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1599 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1600 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1601 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1602 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1603 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1604 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1605 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1606 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1607 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1608 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1609 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1610 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1611 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1612 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1613 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1614 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1615 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1616 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1617 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1618 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1619 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1620 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1621 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1622 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1623 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1624 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1625 };
mjr 64:ef7ca92dff36 1626
mjr 77:0b96f6867312 1627 // Polled-update PWM output list
mjr 74:822a92bc11d2 1628 //
mjr 77:0b96f6867312 1629 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1630 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1631 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1632 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1633 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1634 //
mjr 92:f264fbaa1be5 1635 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1636 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1637 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1638 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1639 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1640 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1641 //
mjr 92:f264fbaa1be5 1642 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1643 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1644 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1645 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1646 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1647 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1648 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1649 // enough to become noticeable.
mjr 92:f264fbaa1be5 1650 //
mjr 92:f264fbaa1be5 1651 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1652 // mbed solution isn't really a solution at all because it creates a separate
mjr 92:f264fbaa1be5 1653 // problem of its own. The mbed approach is reset the TPM "count" register
mjr 92:f264fbaa1be5 1654 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1655 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1656 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1657 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1658 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1659 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1660 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1661 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1662 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1663 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1664 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1665 //
mjr 92:f264fbaa1be5 1666 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1667 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1668 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1669 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1670 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1671 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1672 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1673 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1674 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1675 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1676 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1677 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1678 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1679 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1680 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1681 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1682 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1683 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1684 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1685 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1686 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1687 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1688 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1689 //
mjr 77:0b96f6867312 1690 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1691 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1692 // of polled items.
mjr 74:822a92bc11d2 1693 static int numPolledPwm;
mjr 74:822a92bc11d2 1694 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1695
mjr 74:822a92bc11d2 1696 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1697 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1698 {
mjr 6:cc35eb643e8f 1699 public:
mjr 43:7a6364d82a41 1700 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1701 {
mjr 77:0b96f6867312 1702 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1703 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1704 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1705
mjr 94:0476b3e2b996 1706 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1707 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1708 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1709 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1710 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1711 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1712 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1713 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1714 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1715 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1716 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1717 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1718 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1719 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1720 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1721 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1722
mjr 94:0476b3e2b996 1723 // set the initial brightness value
mjr 77:0b96f6867312 1724 set(initVal);
mjr 43:7a6364d82a41 1725 }
mjr 74:822a92bc11d2 1726
mjr 40:cc0d9814522b 1727 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1728 {
mjr 77:0b96f6867312 1729 // save the new value
mjr 74:822a92bc11d2 1730 this->val = val;
mjr 77:0b96f6867312 1731
mjr 77:0b96f6867312 1732 // commit it to the hardware
mjr 77:0b96f6867312 1733 commit();
mjr 13:72dda449c3c0 1734 }
mjr 74:822a92bc11d2 1735
mjr 74:822a92bc11d2 1736 // handle periodic update polling
mjr 74:822a92bc11d2 1737 void poll()
mjr 74:822a92bc11d2 1738 {
mjr 77:0b96f6867312 1739 commit();
mjr 74:822a92bc11d2 1740 }
mjr 74:822a92bc11d2 1741
mjr 74:822a92bc11d2 1742 protected:
mjr 77:0b96f6867312 1743 virtual void commit()
mjr 74:822a92bc11d2 1744 {
mjr 74:822a92bc11d2 1745 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1746 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1747 }
mjr 74:822a92bc11d2 1748
mjr 77:0b96f6867312 1749 NewPwmOut p;
mjr 77:0b96f6867312 1750 uint8_t val;
mjr 6:cc35eb643e8f 1751 };
mjr 26:cb71c4af2912 1752
mjr 74:822a92bc11d2 1753 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1754 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1755 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1756 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1757 {
mjr 64:ef7ca92dff36 1758 public:
mjr 64:ef7ca92dff36 1759 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1760 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1761 {
mjr 64:ef7ca92dff36 1762 }
mjr 74:822a92bc11d2 1763
mjr 74:822a92bc11d2 1764 protected:
mjr 77:0b96f6867312 1765 virtual void commit()
mjr 64:ef7ca92dff36 1766 {
mjr 74:822a92bc11d2 1767 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1768 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1769 }
mjr 64:ef7ca92dff36 1770 };
mjr 64:ef7ca92dff36 1771
mjr 74:822a92bc11d2 1772 // poll the PWM outputs
mjr 74:822a92bc11d2 1773 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1774 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1775 void pollPwmUpdates()
mjr 74:822a92bc11d2 1776 {
mjr 94:0476b3e2b996 1777 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1778 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1779 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1780 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1781 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1782 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1783 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1784 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1785 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1786 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1787 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1788 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1789 // viewer.
mjr 94:0476b3e2b996 1790 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1791 {
mjr 74:822a92bc11d2 1792 // time the run for statistics collection
mjr 74:822a92bc11d2 1793 IF_DIAG(
mjr 74:822a92bc11d2 1794 Timer t;
mjr 74:822a92bc11d2 1795 t.start();
mjr 74:822a92bc11d2 1796 )
mjr 74:822a92bc11d2 1797
mjr 74:822a92bc11d2 1798 // poll each output
mjr 74:822a92bc11d2 1799 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1800 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1801
mjr 74:822a92bc11d2 1802 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1803 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1804
mjr 74:822a92bc11d2 1805 // collect statistics
mjr 74:822a92bc11d2 1806 IF_DIAG(
mjr 76:7f5912b6340e 1807 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1808 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1809 )
mjr 74:822a92bc11d2 1810 }
mjr 74:822a92bc11d2 1811 }
mjr 64:ef7ca92dff36 1812
mjr 26:cb71c4af2912 1813 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1814 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1815 {
mjr 6:cc35eb643e8f 1816 public:
mjr 43:7a6364d82a41 1817 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1818 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1819 {
mjr 13:72dda449c3c0 1820 if (val != prv)
mjr 40:cc0d9814522b 1821 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1822 }
mjr 6:cc35eb643e8f 1823 DigitalOut p;
mjr 40:cc0d9814522b 1824 uint8_t prv;
mjr 6:cc35eb643e8f 1825 };
mjr 26:cb71c4af2912 1826
mjr 29:582472d0bc57 1827 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1828 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1829 // port n (0-based).
mjr 35:e959ffba78fd 1830 //
mjr 35:e959ffba78fd 1831 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1832 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1833 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1834 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1835 // 74HC595 ports).
mjr 33:d832bcab089e 1836 static int numOutputs;
mjr 33:d832bcab089e 1837 static LwOut **lwPin;
mjr 33:d832bcab089e 1838
mjr 38:091e511ce8a0 1839 // create a single output pin
mjr 53:9b2611964afc 1840 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1841 {
mjr 38:091e511ce8a0 1842 // get this item's values
mjr 38:091e511ce8a0 1843 int typ = pc.typ;
mjr 38:091e511ce8a0 1844 int pin = pc.pin;
mjr 38:091e511ce8a0 1845 int flags = pc.flags;
mjr 40:cc0d9814522b 1846 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1847 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1848 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 1849 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 98:4df3c0f7e707 1850 int hasMinOnTime = flags & PortFlagMinOnTime;
mjr 89:c43cd923401c 1851
mjr 89:c43cd923401c 1852 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 1853 if (flipperLogic)
mjr 89:c43cd923401c 1854 gamma = false;
mjr 38:091e511ce8a0 1855
mjr 38:091e511ce8a0 1856 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1857 LwOut *lwp;
mjr 38:091e511ce8a0 1858 switch (typ)
mjr 38:091e511ce8a0 1859 {
mjr 38:091e511ce8a0 1860 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1861 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1862 if (pin != 0)
mjr 64:ef7ca92dff36 1863 {
mjr 64:ef7ca92dff36 1864 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1865 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1866 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1867 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1868 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1869 {
mjr 64:ef7ca92dff36 1870 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1871 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1872
mjr 64:ef7ca92dff36 1873 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1874 gamma = false;
mjr 64:ef7ca92dff36 1875 }
mjr 64:ef7ca92dff36 1876 else
mjr 64:ef7ca92dff36 1877 {
mjr 64:ef7ca92dff36 1878 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1879 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1880 }
mjr 64:ef7ca92dff36 1881 }
mjr 48:058ace2aed1d 1882 else
mjr 48:058ace2aed1d 1883 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1884 break;
mjr 38:091e511ce8a0 1885
mjr 38:091e511ce8a0 1886 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1887 // Digital GPIO port
mjr 48:058ace2aed1d 1888 if (pin != 0)
mjr 48:058ace2aed1d 1889 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1890 else
mjr 48:058ace2aed1d 1891 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1892 break;
mjr 38:091e511ce8a0 1893
mjr 38:091e511ce8a0 1894 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1895 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1896 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1897 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1898 {
mjr 40:cc0d9814522b 1899 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1900 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1901 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1902 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1903 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1904 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1905 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1906 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1907 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1908 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1909 // for this unlikely case.
mjr 40:cc0d9814522b 1910 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1911 {
mjr 40:cc0d9814522b 1912 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1913 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1914
mjr 40:cc0d9814522b 1915 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1916 gamma = false;
mjr 40:cc0d9814522b 1917 }
mjr 40:cc0d9814522b 1918 else
mjr 40:cc0d9814522b 1919 {
mjr 40:cc0d9814522b 1920 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1921 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1922 }
mjr 40:cc0d9814522b 1923 }
mjr 38:091e511ce8a0 1924 else
mjr 40:cc0d9814522b 1925 {
mjr 40:cc0d9814522b 1926 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1927 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1928 }
mjr 38:091e511ce8a0 1929 break;
mjr 38:091e511ce8a0 1930
mjr 38:091e511ce8a0 1931 case PortType74HC595:
mjr 87:8d35c74403af 1932 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 1933 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 1934 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1935 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1936 else
mjr 38:091e511ce8a0 1937 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1938 break;
mjr 87:8d35c74403af 1939
mjr 87:8d35c74403af 1940 case PortTypeTLC59116:
mjr 87:8d35c74403af 1941 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 1942 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 1943 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 1944 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 1945 if (tlc59116 != 0)
mjr 87:8d35c74403af 1946 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 1947 break;
mjr 38:091e511ce8a0 1948
mjr 38:091e511ce8a0 1949 case PortTypeVirtual:
mjr 43:7a6364d82a41 1950 case PortTypeDisabled:
mjr 38:091e511ce8a0 1951 default:
mjr 38:091e511ce8a0 1952 // virtual or unknown
mjr 38:091e511ce8a0 1953 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1954 break;
mjr 38:091e511ce8a0 1955 }
mjr 38:091e511ce8a0 1956
mjr 40:cc0d9814522b 1957 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1958 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1959 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1960 if (activeLow)
mjr 38:091e511ce8a0 1961 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1962
mjr 89:c43cd923401c 1963 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 1964 if (flipperLogic)
mjr 89:c43cd923401c 1965 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 1966
mjr 98:4df3c0f7e707 1967 // Layer on the Minimum On Time if desired
mjr 98:4df3c0f7e707 1968 if (hasMinOnTime)
mjr 98:4df3c0f7e707 1969 lwp = new LwMinTimeOut(lwp, pc.minOnTime);
mjr 98:4df3c0f7e707 1970
mjr 89:c43cd923401c 1971 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 1972 if (noisy)
mjr 40:cc0d9814522b 1973 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1974
mjr 40:cc0d9814522b 1975 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1976 if (gamma)
mjr 40:cc0d9814522b 1977 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1978
mjr 53:9b2611964afc 1979 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1980 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1981 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1982 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1983 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1984
mjr 53:9b2611964afc 1985 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1986 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1987 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1988
mjr 38:091e511ce8a0 1989 // turn it off initially
mjr 38:091e511ce8a0 1990 lwp->set(0);
mjr 38:091e511ce8a0 1991
mjr 38:091e511ce8a0 1992 // return the pin
mjr 38:091e511ce8a0 1993 return lwp;
mjr 38:091e511ce8a0 1994 }
mjr 38:091e511ce8a0 1995
mjr 6:cc35eb643e8f 1996 // initialize the output pin array
mjr 35:e959ffba78fd 1997 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1998 {
mjr 98:4df3c0f7e707 1999 // Initialize the Flipper Logic and Minimum On Time outputs
mjr 89:c43cd923401c 2000 LwFlipperLogicOut::classInit(cfg);
mjr 98:4df3c0f7e707 2001 LwMinTimeOut::classInit(cfg);
mjr 89:c43cd923401c 2002
mjr 35:e959ffba78fd 2003 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2004 // total number of ports.
mjr 35:e959ffba78fd 2005 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2006 int i;
mjr 35:e959ffba78fd 2007 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2008 {
mjr 35:e959ffba78fd 2009 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2010 {
mjr 35:e959ffba78fd 2011 numOutputs = i;
mjr 34:6b981a2afab7 2012 break;
mjr 34:6b981a2afab7 2013 }
mjr 33:d832bcab089e 2014 }
mjr 33:d832bcab089e 2015
mjr 73:4e8ce0b18915 2016 // allocate the pin array
mjr 73:4e8ce0b18915 2017 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2018
mjr 73:4e8ce0b18915 2019 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2020 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2021
mjr 73:4e8ce0b18915 2022 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2023 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2024 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2025
mjr 73:4e8ce0b18915 2026 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2027 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2028 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2029
mjr 73:4e8ce0b18915 2030 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2031 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2032 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2033
mjr 35:e959ffba78fd 2034 // create the pin interface object for each port
mjr 35:e959ffba78fd 2035 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2036 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2037 }
mjr 6:cc35eb643e8f 2038
mjr 76:7f5912b6340e 2039 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2040 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2041 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2042 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2043 // equivalent to 48.
mjr 40:cc0d9814522b 2044 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2045 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2046 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2047 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2048 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2049 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2050 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2051 255, 255
mjr 40:cc0d9814522b 2052 };
mjr 40:cc0d9814522b 2053
mjr 76:7f5912b6340e 2054 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2055 // level (1..48)
mjr 76:7f5912b6340e 2056 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2057 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2058 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2059 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2060 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2061 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2062 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2063 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2064 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2065 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2066 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2067 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2068 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2069 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2070 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2071 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2072 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2073 };
mjr 76:7f5912b6340e 2074
mjr 74:822a92bc11d2 2075 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2076 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2077 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2078 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2079 //
mjr 74:822a92bc11d2 2080 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2081 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2082 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2083 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2084 //
mjr 74:822a92bc11d2 2085 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2086 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2087 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2088 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2089 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2090 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2091 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2092 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2093 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2094 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2095 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2096 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2097 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2098 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2099 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2100 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2101 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2102 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2103 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2104 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2105
mjr 74:822a92bc11d2 2106 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2107 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2108 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2109 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2110 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2111 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2112 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2113 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2114 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2115 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2116 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2117 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2118 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2119 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2120 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2121 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2122 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2123
mjr 74:822a92bc11d2 2124 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2126 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2128 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2129 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2130 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2131 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2132 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2133 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2134 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2135 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2136 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2137 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2138 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2139 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2140 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2141
mjr 74:822a92bc11d2 2142 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2143 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2144 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2145 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2146 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2147 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2148 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2149 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2150 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2151 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2152 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2153 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2154 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2155 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2156 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2157 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2158 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2159 };
mjr 74:822a92bc11d2 2160
mjr 74:822a92bc11d2 2161 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2162 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2163 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2164
mjr 76:7f5912b6340e 2165 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2166 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2167
mjr 76:7f5912b6340e 2168 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2169 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2170 // outputs on each cycle.
mjr 29:582472d0bc57 2171 static void wizPulse()
mjr 29:582472d0bc57 2172 {
mjr 76:7f5912b6340e 2173 // current bank
mjr 76:7f5912b6340e 2174 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2175
mjr 76:7f5912b6340e 2176 // start a timer for statistics collection
mjr 76:7f5912b6340e 2177 IF_DIAG(
mjr 76:7f5912b6340e 2178 Timer t;
mjr 76:7f5912b6340e 2179 t.start();
mjr 76:7f5912b6340e 2180 )
mjr 76:7f5912b6340e 2181
mjr 76:7f5912b6340e 2182 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2183 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2184 //
mjr 76:7f5912b6340e 2185 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2186 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2187 //
mjr 76:7f5912b6340e 2188 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2189 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2190 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2191 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2192 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2193 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2194 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2195 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2196 // current cycle.
mjr 76:7f5912b6340e 2197 //
mjr 76:7f5912b6340e 2198 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2199 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2200 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2201 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2202 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2203 //
mjr 76:7f5912b6340e 2204 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2205 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2206 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2207 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2208 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2209 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2210 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2211 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2212 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2213 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2214 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2215 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2216 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2217 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2218 // bit counts.
mjr 76:7f5912b6340e 2219 //
mjr 76:7f5912b6340e 2220 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2221 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2222 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2223 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2224 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2225 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2226 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2227 // one division for another!
mjr 76:7f5912b6340e 2228 //
mjr 76:7f5912b6340e 2229 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2230 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2231 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2232 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2233 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2234 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2235 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2236 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2237 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2238 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2239 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2240 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2241 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2242 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2243 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2244 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2245 // remainder calculation anyway.
mjr 76:7f5912b6340e 2246 //
mjr 76:7f5912b6340e 2247 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2248 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2249 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2250 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2251 //
mjr 76:7f5912b6340e 2252 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2253 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2254 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2255 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2256 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2257 // the result, since we started with 32.
mjr 76:7f5912b6340e 2258 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2259 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2260 };
mjr 76:7f5912b6340e 2261 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2262
mjr 76:7f5912b6340e 2263 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2264 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2265 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2266 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2267 toPort = numOutputs;
mjr 76:7f5912b6340e 2268
mjr 76:7f5912b6340e 2269 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2270 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2271 {
mjr 76:7f5912b6340e 2272 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2273 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2274 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2275 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2276 if (wizOn[i])
mjr 29:582472d0bc57 2277 {
mjr 76:7f5912b6340e 2278 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2279 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2280 {
mjr 76:7f5912b6340e 2281 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2282 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2283 }
mjr 29:582472d0bc57 2284 }
mjr 76:7f5912b6340e 2285 }
mjr 76:7f5912b6340e 2286
mjr 34:6b981a2afab7 2287 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2288 if (hc595 != 0)
mjr 35:e959ffba78fd 2289 hc595->update();
mjr 76:7f5912b6340e 2290
mjr 76:7f5912b6340e 2291 // switch to the next bank
mjr 76:7f5912b6340e 2292 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2293 wizPulseBank = 0;
mjr 76:7f5912b6340e 2294
mjr 76:7f5912b6340e 2295 // collect timing statistics
mjr 76:7f5912b6340e 2296 IF_DIAG(
mjr 76:7f5912b6340e 2297 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2298 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2299 )
mjr 1:d913e0afb2ac 2300 }
mjr 38:091e511ce8a0 2301
mjr 76:7f5912b6340e 2302 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2303 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2304 {
mjr 76:7f5912b6340e 2305 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2306 if (wizOn[port])
mjr 76:7f5912b6340e 2307 {
mjr 76:7f5912b6340e 2308 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2309 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2310 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2311 // it on the next cycle.
mjr 76:7f5912b6340e 2312 int val = wizVal[port];
mjr 76:7f5912b6340e 2313 if (val <= 49)
mjr 76:7f5912b6340e 2314 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2315 }
mjr 76:7f5912b6340e 2316 else
mjr 76:7f5912b6340e 2317 {
mjr 76:7f5912b6340e 2318 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2319 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2320 }
mjr 73:4e8ce0b18915 2321 }
mjr 73:4e8ce0b18915 2322
mjr 73:4e8ce0b18915 2323 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2324 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2325 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2326 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2327 //
mjr 73:4e8ce0b18915 2328 void allOutputsOff()
mjr 73:4e8ce0b18915 2329 {
mjr 92:f264fbaa1be5 2330 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2331 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2332 {
mjr 73:4e8ce0b18915 2333 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2334 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2335 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2336 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2337 }
mjr 73:4e8ce0b18915 2338
mjr 73:4e8ce0b18915 2339 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2340 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2341 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2342
mjr 73:4e8ce0b18915 2343 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2344 if (hc595 != 0)
mjr 38:091e511ce8a0 2345 hc595->update();
mjr 38:091e511ce8a0 2346 }
mjr 38:091e511ce8a0 2347
mjr 74:822a92bc11d2 2348 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2349 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2350 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2351 // address any port group.
mjr 74:822a92bc11d2 2352 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2353 {
mjr 76:7f5912b6340e 2354 // update all on/off states in the group
mjr 74:822a92bc11d2 2355 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2356 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2357 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2358 {
mjr 74:822a92bc11d2 2359 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2360 if (bit == 0x100) {
mjr 74:822a92bc11d2 2361 bit = 1;
mjr 74:822a92bc11d2 2362 ++imsg;
mjr 74:822a92bc11d2 2363 }
mjr 74:822a92bc11d2 2364
mjr 74:822a92bc11d2 2365 // set the on/off state
mjr 76:7f5912b6340e 2366 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2367
mjr 76:7f5912b6340e 2368 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2369 updateLwPort(port);
mjr 74:822a92bc11d2 2370 }
mjr 74:822a92bc11d2 2371
mjr 74:822a92bc11d2 2372 // set the flash speed for the port group
mjr 74:822a92bc11d2 2373 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2374 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2375
mjr 76:7f5912b6340e 2376 // update 74HC959 outputs
mjr 76:7f5912b6340e 2377 if (hc595 != 0)
mjr 76:7f5912b6340e 2378 hc595->update();
mjr 74:822a92bc11d2 2379 }
mjr 74:822a92bc11d2 2380
mjr 74:822a92bc11d2 2381 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2382 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2383 {
mjr 74:822a92bc11d2 2384 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2385 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2386 {
mjr 74:822a92bc11d2 2387 // get the value
mjr 74:822a92bc11d2 2388 uint8_t v = data[i];
mjr 74:822a92bc11d2 2389
mjr 74:822a92bc11d2 2390 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2391 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2392 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2393 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2394 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2395 // as such.
mjr 74:822a92bc11d2 2396 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2397 v = 48;
mjr 74:822a92bc11d2 2398
mjr 74:822a92bc11d2 2399 // store it
mjr 76:7f5912b6340e 2400 wizVal[port] = v;
mjr 76:7f5912b6340e 2401
mjr 76:7f5912b6340e 2402 // update the port
mjr 76:7f5912b6340e 2403 updateLwPort(port);
mjr 74:822a92bc11d2 2404 }
mjr 74:822a92bc11d2 2405
mjr 76:7f5912b6340e 2406 // update 74HC595 outputs
mjr 76:7f5912b6340e 2407 if (hc595 != 0)
mjr 76:7f5912b6340e 2408 hc595->update();
mjr 74:822a92bc11d2 2409 }
mjr 74:822a92bc11d2 2410
mjr 77:0b96f6867312 2411 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2412 //
mjr 77:0b96f6867312 2413 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2414 //
mjr 77:0b96f6867312 2415
mjr 77:0b96f6867312 2416 // receiver
mjr 77:0b96f6867312 2417 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2418
mjr 77:0b96f6867312 2419 // transmitter
mjr 77:0b96f6867312 2420 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2421
mjr 77:0b96f6867312 2422 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2423 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2424 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2425 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2426 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2427 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2428 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2429 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2430 // configuration slot n
mjr 77:0b96f6867312 2431 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2432
mjr 78:1e00b3fa11af 2433 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2434 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2435 // protocol.
mjr 78:1e00b3fa11af 2436 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2437
mjr 78:1e00b3fa11af 2438 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2439 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2440 // while waiting for the rest.
mjr 78:1e00b3fa11af 2441 static struct
mjr 78:1e00b3fa11af 2442 {
mjr 78:1e00b3fa11af 2443 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2444 uint64_t code; // code
mjr 78:1e00b3fa11af 2445 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2446 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2447 } IRAdHocCmd;
mjr 88:98bce687e6c0 2448
mjr 77:0b96f6867312 2449
mjr 77:0b96f6867312 2450 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2451 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2452 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2453 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2454 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2455 // amount of time.
mjr 77:0b96f6867312 2456 Timer IRTimer;
mjr 77:0b96f6867312 2457
mjr 77:0b96f6867312 2458 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2459 // The states are:
mjr 77:0b96f6867312 2460 //
mjr 77:0b96f6867312 2461 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2462 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2463 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2464 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2465 //
mjr 77:0b96f6867312 2466 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2467 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2468 // received within a reasonable time.
mjr 77:0b96f6867312 2469 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2470
mjr 77:0b96f6867312 2471 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2472 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2473 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2474 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2475 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2476 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2477 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2478 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2479 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2480
mjr 78:1e00b3fa11af 2481 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2482 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2483 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2484 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2485 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2486 // index; 0 represents no command.
mjr 77:0b96f6867312 2487 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2488
mjr 77:0b96f6867312 2489 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2490 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2491 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2492 // command we received.
mjr 77:0b96f6867312 2493 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2494
mjr 77:0b96f6867312 2495 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2496 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2497 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2498 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2499 // distinct key press.
mjr 77:0b96f6867312 2500 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2501
mjr 78:1e00b3fa11af 2502
mjr 77:0b96f6867312 2503 // initialize
mjr 77:0b96f6867312 2504 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2505 {
mjr 77:0b96f6867312 2506 PinName pin;
mjr 77:0b96f6867312 2507
mjr 77:0b96f6867312 2508 // start the IR timer
mjr 77:0b96f6867312 2509 IRTimer.start();
mjr 77:0b96f6867312 2510
mjr 77:0b96f6867312 2511 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2512 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2513 {
mjr 77:0b96f6867312 2514 // no virtual buttons yet
mjr 77:0b96f6867312 2515 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2516 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2517
mjr 77:0b96f6867312 2518 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2519 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2520 {
mjr 77:0b96f6867312 2521 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2522 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2523 }
mjr 77:0b96f6867312 2524
mjr 77:0b96f6867312 2525 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2526 // real button inputs
mjr 77:0b96f68